WorldWideScience

Sample records for alter tissue-specific dna

  1. Tissue-specific patterns of allelically-skewed DNA methylation

    Science.gov (United States)

    Marzi, Sarah J.; Meaburn, Emma L.; Dempster, Emma L.; Lunnon, Katie; Paya-Cano, Jose L.; Smith, Rebecca G.; Volta, Manuela; Troakes, Claire; Schalkwyk, Leonard C.; Mill, Jonathan

    2016-01-01

    ABSTRACT While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood. PMID:26786711

  2. Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease

    OpenAIRE

    Sather, Blythe D.; Treuting, Piper; Perdue, Nikole; Miazgowicz, Mike; Fontenot, Jason D.; Rudensky, Alexander Y.; Campbell, Daniel J.

    2007-01-01

    CD4+Foxp3+ regulatory T cells (T reg) are essential for maintaining self-tolerance, but their functional mechanisms and sites of action in vivo are poorly defined. We examined the homing receptor expression and tissue distribution of T reg cells in the steady state and determined whether altering their distribution by removal of a single chemokine receptor impairs their ability to maintain tissue-specific peripheral tolerance. We found that T reg cells are distributed throughout all nonlympho...

  3. Tissue-specific alterations in expression and function of P-glycoprotein in streptozotocininduced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Lu-lu ZHANG; Guang-ji WANG; Lin XIE; Liang LU; Shi JIN; Xin-yue JING; Dan YAO; Nan HU; Li LIU; Ru DUAN; Xiao-dong LIU

    2011-01-01

    Aim: To investigate the changes of expression and function of P-glycoprotein (P-GP) in cerebral cortex, hippocampus, liver, intestinal mucosa and kidney of streptozocin-induced diabetic rats.Methods: Diabetic rats were prepared via a single dose of streptozocin (65 mg/kg, ip). Abcb1/P-GP mRNA and protein expression levels in tissues were evaluated using quantitative real time polymerase chain reaction (QRT-PCR) analysis and Western blot, respectively.P-GP function was investigated via measuring tissue-to-plasma concentration ratios and body fluid excretion percentages of rhodamine 123.Results: In 5- and 8-week diabetic rats, Abcb1a mRNA levels were significantly decreased in cerebral cortices and intestinal mucosa,but dramatically increased in hippocampus and kidney. In liver, the level was increased in 5-week diabetic rats, and decreased in 8-week diabetic rats. Abcb1b mRNA levels were increased in cerebral cortex, hippocampus and kidney, but reduced in liver and intestinal mucosa in the diabetic rats. Western blot results were in accordance with the alterations of Abcb1a mRNA levels in most tissues examined. P-GP activity was markedly decreased in most tissues of diabetic rats, except kidney tissues.Conclusion: Alterations in the expression and function of Abcb1/P-GP under diabetic conditions are tissue specific, Abcb1 specific and diabetic duration-dependent.

  4. Tissue-specific modulation of mitochondrial DNA segregation by a defect in mitochondrial division.

    Science.gov (United States)

    Jokinen, Riikka; Marttinen, Paula; Stewart, James B; Neil Dear, T; Battersby, Brendan J

    2016-02-15

    Mitochondria are dynamic organelles that divide and fuse by remodeling an outer and inner membrane in response to developmental, physiological and stress stimuli. These events are coordinated by conserved dynamin-related GTPases. The dynamics of mitochondrial morphology require coordination with mitochondrial DNA (mtDNA) to ensure faithful genome transmission, however, this process remains poorly understood. Mitochondrial division is linked to the segregation of mtDNA but how it affects cases of mtDNA heteroplasmy, where two or more mtDNA variants/mutations co-exist in a cell, is unknown. Segregation of heteroplasmic human pathogenic mtDNA mutations is a critical factor in the onset and severity of human mitochondrial diseases. Here, we investigated the coupling of mitochondrial morphology to the transmission and segregation of mtDNA in mammals by taking advantage of two genetically modified mouse models: one with a dominant-negative mutation in the dynamin-related protein 1 (Drp1 or Dnm1l) that impairs mitochondrial fission and the other, heteroplasmic mice segregating two neutral mtDNA haplotypes (BALB and NZB). We show a tissue-specific response to mtDNA segregation from a defect in mitochondrial fission. Only mtDNA segregation in the hematopoietic compartment is modulated from impaired Dnm1l function. In contrast, no effect was observed in other tissues arising from the three germ layers during development and in mtDNA transmission through the female germline. Our data suggest a robust organization of a heteroplasmic mtDNA segregating unit across mammalian cell types that can overcome impaired mitochondrial division to ensure faithful transmission of the mitochondrial genome. PMID:26681804

  5. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency

    NARCIS (Netherlands)

    J. Müller (Julia); S. Mayerl (Steffen); T.J. Visser (Ton); V.M. Darras (Veerle); A. Boelen (Anita); L. Frappart (Lucien); L. Mariotta (Luca); F. Verrey; H. Heuer (Heike)

    2014-01-01

    textabstractThe monocarboxylate transporter Mct10 (Slc16a10; T-type amino acid transporter) facilitates the cellular transport of thyroid hormone (TH) and shows an overlapping expression with the wellestablished TH transporter Mct8. Because Mct8 deficiency is associated with distinct tissue-specific

  6. Detection of neuronal tissue in meat using tissue specific DNA modifications

    Directory of Open Access Journals (Sweden)

    Harris N.

    2004-01-01

    Full Text Available A method has been developed to differentiate between non-muscle tissues such as liver, kidney and heart and that of muscle in meat samples using tissue specific DNA detection. Only muscle tissue is considered meat from the point of view of labelling (Food Labelling [Amendment] (England Regulations 2003 and Quantitative Ingredient Declaration (QUID, and also certain parts of the carcass are prohibited to be used in raw meat products (Meat Products [England] Regulations 2003. Included in the prohibited offal are brain and spinal cord. The described methodology has therefore been developed primarily to enforce labelling rules but also to contribute to the enforcement of BSE legislation on the detection of Central Nervous System (CNS tissue. The latter requires the removal of Specified Risk Material (SRM, such as bovine and ovine brain and spinal cord, from the food chain. Current methodologies for detection of CNS tissue include histological examination, analysis of cholesterol content and immunodetection. These can potentially be time consuming, less applicable to processed samples and may not be readily adapted to high throughput sample analysis. The objective of this work was therefore to develop a DNAbased detection assay that exploits the sensitivity and specificity of PCR and is potentially applicable to more highly processed food samples. For neuronal tissue, the DNA target selected was the promoter for Glial Fibrillary Acidic Protein (GFAP, a gene whose expression is restricted to astroglial cells within CNS tissue. The promoter fragments from both cattle and sheep have been isolated and key differences in the methylation patterns of certain CpG dinucleotides in the sequences from bovine and sheep brain and spinal cord and the corresponding skeletal muscle identified. These have been used to design a PCR assay exploiting Methylation Specific PCR (MSP to specifically amplify the neuronal tissue derived sequence and therefore identify the

  7. Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes

    International Nuclear Information System (INIS)

    Radiation is a well-known genotoxic agent and human carcinogen that gives rise to a variety of long-term effects. Its detrimental influence on cellular function is actively studied nowadays. One of the most analyzed, yet least understood long-term effects of ionizing radiation is transgenerational genomic instability. The inheritance of genomic instability suggests the possible involvement of epigenetic mechanisms, such as changes of the methylation of cytosine residues located within CpG dinucleotides. In the current study we evaluated the dose-dependence of the radiation-induced global genome DNA methylation changes. We also analyzed the effects of acute and chronic high dose (5 Gy) exposure on DNA methylation in liver, spleen, and lung tissues of male and female mice and evaluated the possible persistence of the radiation-induced DNA methylation changes. Here we report that radiation-induced DNA methylation changes were sex- and tissue-specific, dose-dependent, and persistent. In parallel we have studied the levels of DNA damage in the exposed tissues. Based on the correlation between the levels of DNA methylation and DNA damage we propose that radiation-induced global genome DNA hypomethylation is DNA repair-related

  8. Cloning, expression and characterization of human tissue-specific DNA polymerase λ2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    DNA polymerase (POL) λ plays an important role during DNA repair and DNA nonhomologous recom-bination processes. A novel POL λ variant was cloned from a human liver cDNA library and named POL λ2 (GenBank Accession No. AY302442). POL λ2 has 2206 base pairs in length with an open reading frame of 1452 base pairs encoding a 482-amino-acids protein. Bioinformatics analysis reveals that POL λ2 spans 7.9 kb on human chromosome 10q24 and is composed of 8 exons and 7 introns. It has the specific domain of DNA polymerase X family-POL Xc at the C-terminus and BRCT domain at the N-terminus. POL λ2 was localized predominantly in nucleus in transfected L0-2 cells. It was expressed abundantly in liver and testis, weakly in ovary, and undetectably in other tested human tissues. In comparison with the expression ratio between POL λ and POL λ2 in normal liver tissues and hepato-cellular carcinoma (HCC) adjacent tissues, the ratio was aberrant in 80% of those 15 HCC specimens examined due to the up-regulated expression of POL λ. This abnormality might be involved in hepato-carcinogenesis. The recombinant POL λ2 with His-tag was expressed as a soluble active protein in E. coli BL21 (DE3)CONDON Plus and purified by Ni-NTA resin and then desalted by Superdex-75 chro-matography in an FPLC system. The analysis using isotope α-32P-dCTP incorporation in vitro showed that the purified recombinant POL λ2 exhibited DNA polymerase activity.

  9. Cloning, expression and characterization of human tissue-specific DNA polymerase λ2

    Institute of Scientific and Technical Information of China (English)

    GU Fu; LI YuYang; L(U) Hong; YOU Chun; LIU JianPing; CHEN Ao; YU Yao; WANG Xiang; WAN DaFang; GU JianRen; YUAN HanYing

    2007-01-01

    DNA polymerase (POL) λ plays an important role during DNA repair and DNA nonhomologous recombination processes. A novel POL λ variant was cloned from a human liver cDNA library and named POL λ2 (GenBank Accession No. AY302442). POL λ2 has 2206 base pairs in length with an open reading frame of 1452 base pairs encoding a 482-amino-acids protein. Bioinformatics analysis reveals that POL λ2 spans 7.9 kb on human chromosome 10q24 and is composed of 8 exons and 7 introns. It has the specific domain of DNA polymerase X family-POL Xc at the C-terminus and BRCT domain at the N-terminus. POL λ2 was localized predominantly in nucleus in transfected L0-2 cells. It was expressed abundantly in liver and testis, weakly in ovary, and undetectably in other tested human tissues. In comparison with the expression ratio between POL λ and POL λ2 in normal liver tissues and hepatocellular carcinoma (HCC) adjacent tissues, the ratio was aberrant in 80% of those 15 HCC specimens examined due to the up-regulated expression of POL λ. This abnormality might be involved in hepatocarcinogenesis. The recombinant POL λ2 with His-tag was expressed as a soluble active protein in E.coli BL21 (DE3)CONDON Plus and purified by Ni-NTA resin and then desalted by Superdex-75 chromatography in an FPLC system. The analysis using isotope α-32p-dCTP incorporation in vitro showed that the purified recombinant POL λ2 exhibited DNA polymerase activity.

  10. Tissue specific alterations in the Elα subunit of branched-chain ketoacid dehydrogenase (BCKD) in rats

    International Nuclear Information System (INIS)

    Polyclonal antibodies (anti-E1E2 IgG) directed against bovine kidney BCKD have been used to examine the metabolic role of this enzyme in the rat. BCKD activity was assayed in detergent-disrupted kidney mitochondria using [1-14C]α-ketoacids. Rates of oxidation of the keto analogs of leucine, valine and isoleucine were 21.6 +/- 1.5, 20.6 +/- 1.3 and 10.2 +/- 0.6 nmol/min/mg protein, respectively. Addition of anti-E1E2 IgG completely inhibited oxidation of all 3 ketoacids. Anti-E1E2 IgG inhibited oxidation of the keto analogs derived from methionine and threonine by 75% and 30%, respectively. It did not inhibit mitochondrial dehydrogenases other than BCKD. Thus, BCKD appears to be important in oxidative metabolism of 5 of the 9 indispensable amino acids. Immunoblots of rat kidneys, liver, muscle and heart mitochondria revealed a tissue specific alteration in the E1α subunit of BCKD. Kidneys and heart each appeared to contain two E1α polypeptides differing by an apparent molecular weight of 900 daltons; the predominant E1α polypeptide in heart was the heavier E1α band whereas in kidney it was the lighter band. Liver and muscle, however, each exhibited a single but different E1α polypeptide. E1α in liver corresponded to the lighter E1α polypeptide of kidney and heart whereas in muscle E1α corresponded to the heavier polypeptide. The E1α subunit differences are associated with differences in basal BCKD activity of these tissues

  11. A novel rat genomic simple repeat DNA with RNA-homology shows triplex (H-DNA)-like structure and tissue-specific RNA expression

    International Nuclear Information System (INIS)

    Mammalian genome contains a wide variety of repetitive DNA sequences of relatively unknown function. We report a novel 227 bp simple repeat DNA (3.3 DNA) with a d {(GA) 7A (AG) 7} dinucleotide mirror repeat from the rat (Rattus norvegicus) genome. 3.3 DNA showed 75-85% homology with several eukaryotic mRNAs due to (GA/CU) n dinucleotide repeats by nBlast search and a dispersed distribution in the rat genome by Southern blot hybridization with [32P]3.3 DNA. The d {(GA) 7A (AG) 7} mirror repeat formed a triplex (H-DNA)-like structure in vitro. Two large RNAs of 9.1 and 7.5 kb were detected by [32P]3.3 DNA in rat brain by Northern blot hybridization indicating expression of such simple sequence repeats at RNA level in vivo. Further, several cDNAs were isolated from a rat cDNA library by [32P]3.3 DNA probe. Three such cDNAs showed tissue-specific RNA expression in rat. pRT 4.1 cDNA showed strong expression of a 2.39 kb RNA in brain and spleen, pRT 5.5 cDNA showed strong expression of a 2.8 kb RNA in brain and a 3.9 kb RNA in lungs, and pRT 11.4 cDNA showed weak expression of a 2.4 kb RNA in lungs. Thus, genomic simple sequence repeats containing d (GA/CT) n dinucleotides are transcriptionally expressed and regulated in rat tissues. Such d (GA/CT) n dinucleotide repeats may form structural elements (e.g., triplex) which may be sites for functional regulation of genomic coding sequences as well as RNAs. This may be a general function of such transcriptionally active simple sequence repeats widely dispersed in mammalian genome

  12. Bipartite recognition of DNA by TCF/Pangolin is remarkably flexible and contributes to transcriptional responsiveness and tissue specificity of wingless signaling.

    Directory of Open Access Journals (Sweden)

    Hilary C Archbold

    2014-09-01

    Full Text Available The T-cell factor (TCF family of transcription factors are major mediators of Wnt/β-catenin signaling in metazoans. All TCFs contain a High Mobility Group (HMG domain that possesses specific DNA binding activity. In addition, many TCFs contain a second DNA binding domain, the C-clamp, which binds to DNA motifs referred to as Helper sites. While HMG and Helper sites are both important for the activation of several Wnt dependent cis-regulatory modules (W-CRMs, the rules of what constitutes a functional HMG-Helper site pair are unknown. In this report, we employed a combination of in vitro binding, reporter gene analysis and bioinformatics to address this question, using the Drosophila family member TCF/Pangolin (TCF/Pan as a model. We found that while there were constraints for the orientation and spacing of HMG-Helper pairs, the presence of a Helper site near a HMG site in any orientation increased binding and transcriptional response, with some orientations displaying tissue-specific patterns. We found that altering an HMG-Helper site pair from a sub-optimal to optimal orientation/spacing dramatically increased the responsiveness of a W-CRM in several fly tissues. In addition, we used the knowledge gained to bioinformatically identify two novel W-CRMs, one that was activated by Wnt/β-catenin signaling in the prothoracic gland, a tissue not previously connected to this pathway. In sum, this work extends the importance of Helper sites in fly W-CRMs and suggests that the type of HMG-Helper pair is a major factor in setting the threshold for Wnt activation and tissue-responsiveness.

  13. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice

    Directory of Open Access Journals (Sweden)

    Xiao Luo

    2016-05-01

    Full Text Available Cold exposure or β3-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT. It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β3-adrenoceptor agonist (CL316,243-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1–5 days. Interscapular brown adipose tissue (iBAT, inguinal subcutaneous WAT (sWAT and epididymal WAT (eWAT were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA and white adipocyte (WA treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation.

  14. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice.

    Science.gov (United States)

    Luo, Xiao; Jia, Ru; Zhang, Qiangling; Sun, Bo; Yan, Jianqun

    2016-01-01

    Cold exposure or β₃-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT). It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β₃-adrenoceptor agonist (CL316,243)-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1-5 days. Interscapular brown adipose tissue (iBAT), inguinal subcutaneous WAT (sWAT) and epididymal WAT (eWAT) were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA) and white adipocyte (WA) treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation. PMID:27223282

  15. Different cis-Regulatory DNA Elements Mediate Developmental Stage- and Tissue-specific Expression of the Human COL2A1 Gene in Transgenic Mice

    OpenAIRE

    Leung, Keith K.H.; Ng, Ling Jim; Ho, Ken K.Y.; Tam, Patrick P L; Cheah, Kathryn S. E.

    1998-01-01

    Expression of the type II collagen gene (human COL2A1, mouse Col2a1) heralds the differentiation of chondrocytes. It is also expressed in progenitor cells of some nonchondrogenic tissues during embryogenesis. DNA sequences in the 5' flanking region and intron 1 are known to control tissue- specific expression in vitro, but the regulation of COL2A1 expression in vivo is not clearly understood. We have tested the regulatory activity of DNA sequences from COL2A1 on the expression of a lacZ repor...

  16. Evolution of tissue-specific keratins as deduced from novel cDNA sequences of the lungfish Protopterus aethiopicus.

    Science.gov (United States)

    Schaffeld, Michael; Bremer, Miriam; Hunzinger, Christian; Markl, Jürgen

    2005-03-01

    Lungfishes are possibly the closest extant relatives of the land vertebrates (tetrapods). We report here the cDNA and predicted amino acid sequences of 13 different keratins (ten type I and three type II) of the lungfish Protopterus aethiopicus. These keratins include the orthologs of human K8 and K18. The lungfish keratins were also identified in tissue extracts using two-dimensional polyacrylamide gel electrophoresis, keratin blot binding assays and immunoblotting. The identified keratin spots were analyzed by peptide mass fingerprinting which assigned seven sequences (inclusively Protopterus K8 and K18) to their respective protein spot. The peptide mass fingerprints also revealed the fact that the major epidermal type I and type II keratins of this lungfish have not yet been sequenced. Nevertheless, phylogenetic trees constructed from multiple sequence alignments of keratins from lungfish and distantly related vertebrates such as lamprey, shark, trout, frog, and human reveal new insights into the evolution of K8 and K18, and unravel a variety of independent keratin radiation events. PMID:15819414

  17. Identification of a proglucagon cDNA from Rana tigrina rugulosa that encodes two GLP-1s and that is alternatively spliced in a tissue-specific manner.

    Science.gov (United States)

    Yeung, C M; Chow, B K

    2001-11-01

    Glucagon plays a pivotal role in the regulation of metabolism. A glucagon receptor has been previously characterized in the frog, Rana tigrina rugulosa, and the frog and human glucagon receptors have been shown to possess similar binding affinities toward human glucagon. To study the structural evolution of glucagon peptide and its receptor in vertebrates, in the current study, a proglucagon cDNA from the same frog species was cloned. Interestingly, in contrast to the mammalian proglucagons that contain only one GLP-1 peptide, the frog proglucagon cDNA encodes two GLP-1 peptides (GLP-1A and GLP-1B) in addition to a glucagon peptide and a glucagon-like peptide 2 (GLP-2). By reverse transcriptase-PCR (RT-PCR) analysis, the proglucagon gene expression was widely detected in the brain, colon, small intestine, liver, lung, and pancreas, suggesting that the proglucagon-derived peptides have diverse functions in frogs. Moreover, tissue-specific alternative mRNA splicing was observed in the brain, colon, and pancreas. In these tissues, proglucagon transcripts with a 135 bp in frame deletion encoding GLP-1A were found. This splicing event in R. tigrina rugulosa is novel because it deletes a GLP-1 encoding sequence instead of the GLP-2 observed in other vertebrates. These findings should enhance understanding of the proglucagon evolution, structure, and expression in vertebrates. PMID:11703080

  18. Differential gene expression and characterization of tissue-specific cDNA clones in oil palm using mRNA differential display.

    Science.gov (United States)

    San, Cha Thye; Shah, Farida Habib

    2005-12-01

    The mRNA differential display method was utilized to study the differential expression and regulation of genes in two species of oil palm, the commercially grown variety Elaeis guineensis, var. tenera and the South American species, Elaeis oleifera. We demonstrated the differential expression of genes in the mesocarp and kernel at the week of active oil synthesis (15 week after anthesis) during fruit development as compare to the roots and leaves and the isolation of tissue-specific and species-specific cDNA clones. A total of eight specific cDNA clones were isolated and their specificities were confirmed by Northern hybridization and classified into three groups. Group one contains four clones (KT3, KT4, KT5 and KT6) that are kernel-specific for E. guineensis, tenera and E. oleifera. The second group represents clone FST1, which is mesocarp and kernel-specific for E. guineensis, tenera and E. oleifera. The third group represents clones MLT1, MLT2 and MLO1 that are mesocarp and leaf-specific. Northern analysis showed that their expressions were developmentally regulated. Nucleotide sequencing and homology search in GenBank data revealed that clones KT3 and KT4 encode for the same maturation protein PM3. While clones MLT1 and MLT2 encode for S-ribonuclease binding protein and fibrillin, respectively. The other clones (KT5, KT6, FST1 and MLO1) did not display any significant homology to any known protein. PMID:16328884

  19. Identification of tissue-specific DNA-protein binding sites by means of two-dimensional electrophoretic mobility shift assay display.

    Science.gov (United States)

    Chernov, Igor P; Timchenko, Kira A; Akopov, Sergey B; Nikolaev, Lev G; Sverdlov, Eugene D

    2007-05-01

    We developed a technique of differential electrophoretic mobility shift assay (EMSA) display allowing identification of tissue-specific protein-binding sites within long genomic sequences. Using this approach, we identified 10 cell type-specific protein-binding sites (protein target sites [PTSs]) within a 137-kb human chromosome 19 region. In general, tissue-specific binding of proteins from different nuclear extracts by individual PTSs did not follow the all-or-nothing principle. Most often, PTS-protein complexes were formed in all cases, but they were different for different nuclear extracts used. PMID:17359930

  20. Alterations of ultraviolet irradiated DNA

    International Nuclear Information System (INIS)

    Thymine dimers production has been studied in several DNA-3H irradiated at various wave lenght of U.V. Light. The influence of dimers on the hydrodynamic and optic properties, thermal structural stability and transformant capacity of DNA have been studied too. At last the recognition and excision of dimers by the DNA-UV-Endonuclease and DNA-Polimerase-I was also studied. (author)

  1. Primary structure of cucumber (Cucumis sativus) ascorbate oxidase deduced from cDNA sequence: homology with blue copper proteins and tissue-specific expression.

    OpenAIRE

    Ohkawa, J; Okada, N; Shinmyo, A; Takano, M.

    1989-01-01

    cDNA clones for ascorbate oxidase were isolated from a cDNA library made from cucumber (Cucumis sativus) fruit mRNA. The library was screened with synthetic oligonucleotides that encode the NH2-terminal sequence of this enzyme. Nucleotide sequence analysis of the cloned cDNA inserts revealed a 1761-base-pair open reading frame that encoded an NH2-terminal signal peptide of 33 amino acids and a mature enzyme of 554 amino acids (Mr, 62,258). The amino acid sequence deduced from nucleotide seque...

  2. Altered DNA methylation in PAH deficient phenylketonuria.

    Science.gov (United States)

    Dobrowolski, Steven F; Lyons-Weiler, James; Spridik, Kayla; Biery, Amy; Breck, Jane; Vockley, Jerry; Yatsenko, Svetlana; Sultana, Tamanna

    2015-01-01

    While phenylalanine (PHE) is the toxic insult in phenylketonuria (PKU), mechanisms underlying PHE toxicity remain ill-defined. Altered DNA methylation in response to toxic exposures is well-recognized. DNA methylation patterns were assessed in blood and brain from PKU patients to determine if PHE toxicity impacts methylation. Methylome assessment, utilizing methylated DNA immunoprecipitation and paired-end sequencing, was performed in DNA obtained from brain tissue of classical PKU patients, leukocytes from poorly controlled PKU patients, leukocytes from well controlled PKU patients, and appropriate control tissues. In PKU brain tissue, expression analysis determined the impact of methylation on gene function. Differential methylation was observed in brain tissue of PKU patients and expression studies identified downstream impact on gene expression. Altered patterns of methylation were observed in leukocytes of well controlled and poorly controlled patients with more extensive methylation in patients with high PHE exposure. Differential methylation of noncoding RNA genes was extensive in patients with high PHE exposure but minimal in well controlled patients. Methylome repatterning leading to altered gene expression was present in brain tissue of PKU patients, suggesting a role in neuropathology. Aberrant methylation is observed in leukocytes of PKU patients and is influenced by PHE exposure. DNA methylation may provide a biomarker relating to historic PHE exposure. PMID:25990862

  3. [Tissue-specific Changes in the Polymorphism of Simple Repeats in DNA of the Offspring of Different Sex Born from Irradiated Male or Female Mice].

    Science.gov (United States)

    Lomaeva, M G; Fomenko, L A; Vasil'eva, G V; Bezlepkin, V G

    2016-01-01

    Evidence is presented indicating the differences in the polymorphism of microsatellite (MCS) repeats in DNA of somatic tissues in the offspring of BALB/c mice of different sex born from preconceptionally irradiated males or females. Brother-sister groups of the offspring born by non-irradiated parental pairs were compared with the offspring obtained after the irradiation of one parent in the same pairs. The number of MCS repeats in DNA of somatic tissues of the offspring from irradiated males or females was compared by a polymerase chain reaction using an arbitrary primer. It was found that changes in the polymorphism of the number of MCS repeats in the offspring from the males irradiated at a dose of 2 Gy was insignificant as compared with the offspring from control animals. In the offspring born by the females irradiated at a dose of 2 Gy (which does not impair the reproductive capacity), a statistically significant increase in the polymorphism was observed. Changes in the polymorphism were different in the offspring of different sex. A higher level of polymorphism was revealed in the female offspring born from the females of the F0 generation after their irradiation at a dose of 2 Gy. The increase in the polymorphism of the number of MCS repeats in DNA was more pronounced in postmitotic tissues compared with proliferating tissues. PMID:27534065

  4. The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants.

    Science.gov (United States)

    Baumann, K; De Paolis, A; Costantino, P; Gualberti, G

    1999-01-01

    The Dof proteins are a large family of plant transcription factors that share a single highly conserved zinc finger. The tobacco Dof protein NtBBF1 was identified by its ability to bind to regulatory domain B in the promoter of the rolB oncogene. In this study, we show that the ACT T TA target sequence of NtBBF1 in domain B is necessary for tissue-specific expression of rolB. beta-Glucuronidase (GUS) activity of tobacco plants containing a rolB promoter-GUS fusion with a mutated NtBBF1 target sequence within domain B is almost completely suppressed in apical meristems and is severely abated in the vascular system. The ACT T TA motif is shown here also to be one of the cis-regulatory elements involved in auxin induction of rolB. The pattern of NtBBF1 expression in plants is remarkably similar to that of rolB, except in mesophyll cells of mature leaves, in which only NtBBF1 expression could be detected. Ectopic expression of rolB in mesophyll cells was achieved by particle gun delivery if the NtBBF1 binding sequence was intact. These data provide evidence that in the plant, a Dof protein DNA binding sequence acts as a transcriptional regulatory motif, and they point to NtBBF1 as the protein involved in mediating tissue-specific and auxin-inducible expression of rolB. PMID:10072394

  5. HA novel approach to investigate tissue-specific trinucleotide repeat instability

    Directory of Open Access Journals (Sweden)

    Boily Marie-Josee

    2010-03-01

    Full Text Available Abstract Background In Huntington's disease (HD, an expanded CAG repeat produces characteristic striatal neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could modify the disease process. Therefore, understanding the mechanisms underlying the tissue specificity of somatic instability may provide novel routes to therapies. However progress in this area has been hampered by the lack of sensitive high-throughput instability quantification methods and global approaches to identify the underlying factors. Results Here we describe a novel approach to gain insight into the factors responsible for the tissue specificity of somatic instability. Using accurate genetic knock-in mouse models of HD, we developed a reliable, high-throughput method to quantify tissue HD CAG repeat instability and integrated this with genome-wide bioinformatic approaches. Using tissue instability quantified in 16 tissues as a phenotype and tissue microarray gene expression as a predictor, we built a mathematical model and identified a gene expression signature that accurately predicted tissue instability. Using the predictive ability of this signature we found that somatic instability was not a consequence of pathogenesis. In support of this, genetic crosses with models of accelerated neuropathology failed to induce somatic instability. In addition, we searched for genes and pathways that correlated with tissue instability. We found that expression levels of DNA repair genes did not explain the tissue specificity of somatic instability. Instead, our data implicate other pathways, particularly cell cycle, metabolism and neurotransmitter pathways, acting in combination to generate tissue-specific patterns of instability. Conclusion Our study clearly demonstrates that multiple tissue factors reflect the level of

  6. Smoking During Pregnancy Seems to Alter Fetal DNA, Study Finds

    Science.gov (United States)

    ... nlm.nih.gov/medlineplus/news/fullstory_158077.html Smoking During Pregnancy Seems to Alter Fetal DNA, Study ... that were affected by a mother-to-be's smoking. The findings may help improve understanding about the ...

  7. Triple helix DNA alters nucleosomal histone-DNA interactions and acts as a nucleosome barrier.

    OpenAIRE

    Westin, L; Blomquist, P.; Milligan, J F; Wrange, O

    1995-01-01

    Oligonucleotides which form triple helical complexes on double-stranded DNA have been previously reported to selectively inhibit transcription both in vitro and in vivo by physically blocking RNA polymerase or transcription factor access to the DNA template. Here we show that a 16mer oligonucleotide, which forms triple helix DNA by binding to a 16 bp homopurine segment, alters the formation of histone-DNA contacts during in vitro nucleosome reconstitution. This effect was DNA sequence-specifi...

  8. Dnmt3 and G9a Cooperate for Tissue-specific Development in Zebrafish*

    OpenAIRE

    Rai, Kunal; Jafri, Itrat F.; Chidester, Stephanie; James, Smitha R.; Karpf, Adam R.; Cairns, Bradley R.; Jones, David A.

    2009-01-01

    Although DNA methylation is critical for proper embryonic and tissue-specific development, how different DNA methyltransferases affect tissue-specific development and their targets remains unknown. We address this issue in zebrafish through antisense-based morpholino knockdown of Dnmt3 and Dnmt1. Our data reveal that Dnmt3 is required for proper neurogenesis, and its absence results in profound defects in brain and retina. Interestingly, other organs such as intestine remain unaffected sugges...

  9. DNA alterations photosensitized by tetracycline and some of its derivatives

    International Nuclear Information System (INIS)

    Bacteriophage M13 mp10 DNA were irradiated with near-UV light in the presence of tetracycline derivatives and primed with synthetic oligonucleotide to be used for DNA synthesis using Escherichia coli DNA polymerase. Chain terminations were observed by denaturing polyacrylamide gel electrophoresis and mapped precisely. All the synthesis stops occurred before or at the level of guanine residues, showing that the photoreaction mediated by tetracycline derivatives led to a preferential alteration of guanine residues. These lesions were demonstrated to be induced in DNA through a pathway involving singlet oxygen. Tetracycline derivatives also photoinduced the breakage of the DNA sugar-phosphate backbone monitored by the conversion of supercoiled phi X174 DNA to a relaxed form. This lesion was shown to be initiated by hydroxyl radicals. The production of this free radical has been confirmed by electron paramagnetic resonance (EPR) spin trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide as spin trap. In addition to the EPR signal due to OH radicals trapping another unassigned signal has been detected

  10. DNA methylation alterations in grade II- and anaplastic pleomorphic xanthoastrocytoma

    International Nuclear Information System (INIS)

    Pleomorphic xanthoastrocytoma (PXA) is a rare WHO grade II tumor accounting for less than 1% of all astrocytomas. Malignant transformation into PXA with anaplastic features, is unusual and correlates with poorer outcome of the patients. Using a DNA methylation custom array, we have quantified the DNA methylation level on the promoter sequence of 807 cancer-related genes of WHO grade II (n = 11) and III PXA (n = 2) and compared to normal brain tissue (n = 10) and glioblastoma (n = 87) samples. DNA methylation levels were further confirmed on independent samples by pyrosequencing of the promoter sequences. Increasing DNA promoter hypermethylation events were observed in anaplastic PXA as compared with grade II samples. We further validated differential hypermethylation of CD81, HCK, HOXA5, ASCL2 and TES on anaplastic PXA and grade II tumors. Moreover, these epigenetic alterations overlap those described in glioblastoma patients, suggesting common mechanisms of tumorigenesis. Even taking into consideration the small size of our patient populations, our data strongly suggest that epigenome-wide profiling of PXA is a valuable tool to identify methylated genes, which may play a role in the malignant progression of PXA. These methylation alterations may provide useful biomarkers for decision-making in those patients with low-grade PXA displaying a high risk of malignant transformation

  11. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  12. Tissue-specific splicing mutation in acute intermittent porphyria

    International Nuclear Information System (INIS)

    An inherited deficiency of porphobilinogen deaminase in humans is responsible for the autosomal dominant disease acute intermittent porphyria. Different classes of mutations have been described at the protein level suggesting that this is a heterogeneous disease. It was previously demonstrated that porphobilinogen deaminase is encoded by two distinct mRNA species expressed in a tissue-specific manner. Analysis of the genomic sequences indicated that these two mRNAs are transcribed from two promoters and only differ in their first exon. The first mutation identified in the human porphobilinogen deaminase gene is a single-base substitution (G → A) in the canonical 5' splice donor site of intron 1. This mutation leads to a particular subtype of acute intermittent porphyria characterized by the restriction of the enzymatic defect to nonerythropoietic tissues. Hybridization analysis using olignonucleotide probes after in vitro amplification of genomic DNA offers another possibility of detecting asymptomatic carriers of the mutation in affected families

  13. Tissue-specific splicing mutation in acute intermittent porphyria

    Energy Technology Data Exchange (ETDEWEB)

    Grandchamp, B.; Picat, C. (Laboratoire de Genetique Moleculaire, Paris (France)); Mignotte, V.; Romeo, P.H.; Goossens, M. (Institut National de la Sante et de la Recherche Medicale, Creteil (France)); Wilson, J.H.P.; Sandkuyl, L. (Erasmus Univ., Rotterdam (Netherlands)); Te Velde, K. (Saint Geertruiden Hospital, Deventer (Netherlands)); Nordmann, Y. (Hopital Louis Mourier, Colombes (France))

    1989-01-01

    An inherited deficiency of porphobilinogen deaminase in humans is responsible for the autosomal dominant disease acute intermittent porphyria. Different classes of mutations have been described at the protein level suggesting that this is a heterogeneous disease. It was previously demonstrated that porphobilinogen deaminase is encoded by two distinct mRNA species expressed in a tissue-specific manner. Analysis of the genomic sequences indicated that these two mRNAs are transcribed from two promoters and only differ in their first exon. The first mutation identified in the human porphobilinogen deaminase gene is a single-base substitution (G {yields} A) in the canonical 5{prime} splice donor site of intron 1. This mutation leads to a particular subtype of acute intermittent porphyria characterized by the restriction of the enzymatic defect to nonerythropoietic tissues. Hybridization analysis using olignonucleotide probes after in vitro amplification of genomic DNA offers another possibility of detecting asymptomatic carriers of the mutation in affected families.

  14. Evaluation of human sperm DNA alterations: comet assay

    International Nuclear Information System (INIS)

    Full text: Reactive oxygen species would be able to generate base oxidation and strand breaks at the sperm DNA. These alterations could impair the embryo development or the differentiation of any of the embryonic cellular progenies if the fertilization takes place. The aim of the study was to develop the method of single cell gel electrophoresis or comet assay, with slight modifications, in order to investigate the effects on human sperm DNA caused by the oxidative stress induced by H2O2 or the exposure to ionizing radiation. Motile spermatozoa from samples of normozoospermic donors were exposed to increasing concentrations of H2O2 (17,6 μM to 140,8 μM) or UV radiation (15 W for 1 h). Then, the sperm cells, included in 1% agarose gels, were electrophoresed under alkaline conditions (20 V for 5 min). The sperm DNA was stained with the silver method. The total length of sperm DNA migration for each treatment group was assessed using a microscope. The statistical analysis of the mean results among the different treatments was performed by the ANOVA test followed by the Dunn' test or by the Student t-test when only one treatment was applied. The results of the comet assays showed significant dose-dependent increases in sperm DNA migration for spermatozoa treated with H2O2 respect to controls (p 2O2 treatment, the UV radiation would cause the cross-linking of the nucleotides, which could explain the observed results. The comet assay appears to be a sensitive method to assess potential damages in human sperm DNA. (author)

  15. Mitochondrial DNA alterations of peripheral lymphocytes in acute lymphoblastic leukemia patients undergoing total body irradiation therapy

    OpenAIRE

    2011-01-01

    Background Mitochondrial DNA (mtDNA) alterations, including mtDNA copy number and mtDNA 4977 bp common deletion (CD), are key indicators of irradiation-induced damage. The relationship between total body irradiation (TBI) treatment and mtDNA alterations in vivo, however, has not been postulated yet. The aim of this study is to analyze mtDNA alterations in irradiated human peripheral lymphocytes from acute lymphoblastic leukemia (ALL) patients as well as to take them as predictors for radiatio...

  16. Somatic alterations in mitochondrial DNA and mitochondrial dysfunction in gastric cancer progression.

    Science.gov (United States)

    Lee, Hsin-Chen; Huang, Kuo-Hung; Yeh, Tien-Shun; Chi, Chin-Wen

    2014-04-14

    Energy metabolism reprogramming was recently identified as one of the cancer hallmarks. One of the underlying mechanisms of energy metabolism reprogramming is mitochondrial dysfunction caused by mutations in nuclear genes or mitochondrial DNA (mtDNA). In the past decades, several types of somatic mtDNA alterations have been identified in gastric cancer. However, the role of these mtDNA alterations in gastric cancer progression remains unclear. In this review, we summarize recently identified somatic mtDNA alterations in gastric cancers as well as the relationship between these alterations and the clinicopathological features of gastric cancer. The causative factors and potential roles of the somatic mtDNA alterations in cancer progression are also discussed. We suggest that point mutations and mtDNA copy number decreases are the two most common mtDNA alterations that result in mitochondrial dysfunction in gastric cancers. The two primary mutation types (transition mutations and mononucleotide or dinucleotide repeat instability) imply potential causative factors. Mitochondrial dysfunction-generated reactive oxygen species may be involved in the malignant changes of gastric cancer. The search for strategies to prevent mtDNA alterations and inhibit the mitochondrial retrograde signaling will benefit the development of novel treatments for gastric cancer and other malignancies. PMID:24744584

  17. Methods to alter levels of a DNA repair protein

    Science.gov (United States)

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-10-17

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  18. Mitochondrial DNA alterations of peripheral lymphocytes in acute lymphoblastic leukemia patients undergoing total body irradiation therapy

    International Nuclear Information System (INIS)

    Mitochondrial DNA (mtDNA) alterations, including mtDNA copy number and mtDNA 4977 bp common deletion (CD), are key indicators of irradiation-induced damage. The relationship between total body irradiation (TBI) treatment and mtDNA alterations in vivo, however, has not been postulated yet. The aim of this study is to analyze mtDNA alterations in irradiated human peripheral lymphocytes from acute lymphoblastic leukemia (ALL) patients as well as to take them as predictors for radiation toxicity. Peripheral blood lymphocytes were isolated from 26 ALL patients 24 hours after TBI preconditioning (4.5 and 9 Gy, respectively). Extracted DNA was analyzed by real-time PCR method. Average 2.31 times mtDNA and 0.53 fold CD levels were observed after 4.5 Gy exposure compared to their basal levels. 9 Gy TBI produced a greater response of both mtDNA and CD levels than 4.5 Gy. Significant inverse correlation was found between mtDNA content and CD level at 4.5 and 9 Gy (P = 0.037 and 0.048). Moreover, mtDNA content of lymphocytes without irradiation was found to be correlated to age. mtDNA and CD content may be considered as predictive factors to radiation toxicity

  19. Mitochondrial DNA alterations of peripheral lymphocytes in acute lymphoblastic leukemia patients undergoing total body irradiation therapy

    Directory of Open Access Journals (Sweden)

    Ji Fuyun

    2011-10-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA alterations, including mtDNA copy number and mtDNA 4977 bp common deletion (CD, are key indicators of irradiation-induced damage. The relationship between total body irradiation (TBI treatment and mtDNA alterations in vivo, however, has not been postulated yet. The aim of this study is to analyze mtDNA alterations in irradiated human peripheral lymphocytes from acute lymphoblastic leukemia (ALL patients as well as to take them as predictors for radiation toxicity. Methods Peripheral blood lymphocytes were isolated from 26 ALL patients 24 hours after TBI preconditioning (4.5 and 9 Gy, respectively. Extracted DNA was analyzed by real-time PCR method. Results Average 2.31 times mtDNA and 0.53 fold CD levels were observed after 4.5 Gy exposure compared to their basal levels. 9 Gy TBI produced a greater response of both mtDNA and CD levels than 4.5 Gy. Significant inverse correlation was found between mtDNA content and CD level at 4.5 and 9 Gy (P = 0.037 and 0.048. Moreover, mtDNA content of lymphocytes without irradiation was found to be correlated to age. Conclusions mtDNA and CD content may be considered as predictive factors to radiation toxicity.

  20. Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Xian; Wen-Ming Cong; Shu-Hui Zhang; Meng-Chao Wu

    2005-01-01

    AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments.METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD)with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated,purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data.RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size,histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene.CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcinogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis.

  1. Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing.

    Directory of Open Access Journals (Sweden)

    Maria Gutierrez-Arcelus

    2015-01-01

    Full Text Available Understanding how genetic variation affects distinct cellular phenotypes, such as gene expression levels, alternative splicing and DNA methylation levels, is essential for better understanding of complex diseases and traits. Furthermore, how inter-individual variation of DNA methylation is associated to gene expression is just starting to be studied. In this study, we use the GenCord cohort of 204 newborn Europeans' lymphoblastoid cell lines, T-cells and fibroblasts derived from umbilical cords. The samples were previously genotyped for 2.5 million SNPs, mRNA-sequenced, and assayed for methylation levels in 482,421 CpG sites. We observe that methylation sites associated to expression levels are enriched in enhancers, gene bodies and CpG island shores. We show that while the correlation between DNA methylation and gene expression can be positive or negative, it is very consistent across cell-types. However, this epigenetic association to gene expression appears more tissue-specific than the genetic effects on gene expression or DNA methylation (observed in both sharing estimations based on P-values and effect size correlations between cell-types. This predominance of genetic effects can also be reflected by the observation that allele specific expression differences between individuals dominate over tissue-specific effects. Additionally, we discover genetic effects on alternative splicing and interestingly, a large amount of DNA methylation correlating to alternative splicing, both in a tissue-specific manner. The locations of the SNPs and methylation sites involved in these associations highlight the participation of promoter proximal and distant regulatory regions on alternative splicing. Overall, our results provide high-resolution analyses showing how genome sequence variation has a broad effect on cellular phenotypes across cell-types, whereas epigenetic factors provide a secondary layer of variation that is more tissue-specific. Furthermore

  2. Altered radiation recovery by DNA double-strand break inducers

    International Nuclear Information System (INIS)

    Identical biphasic time-dependent profiles of cell survival were obtained in V79 fibroblasts exposed to a split-dose protocol consisting of a fixed dose of γ-rays followed, at a variable time interval, either by a second exposure to radiation, or by contact with an equi-toxic amount of antitumor drugs acting to produce DNA double-strand breaks. The drugs used in this context were the neocarcinostatin antibiotic (NCS), which preferentially cleaves DNA in the linker region of nucleosomes, and etoposide (VP), whose major target is topoisomerase IIα, a nuclear matrix fraction-linked enzyme acting to relieve topological constraints in replicating DNA and mitotic chromosomes. Radiation-induced DNA strand break rejoining was not inhibited by either drug. The initial number of DNA strand breaks was consistently found o depend only on the radiation dose and/or on the drug concentration. However, the cytotoxicity they induced in combined treatment was determined in essence by the time elapsed after the first radiation exposure. While resistance to NCS and VP in non-irradiated, synchronized cells peaks in G2 phase of the cell cycle, enhanced drug susceptibility was observed within the radiation-induced G2 block. Concomitant exposure to drug and radiation also resulted in supra-additive cytotoxic interaction. Our data suggest that impaired split-dose radiation recovery dose not proceed from inhibition of DNA damage repair, but rather from additional double-strand breaks produced by drug or radiation during the time cells are in the dynamic process of DNA repair; a time range characterized by a dynamic DNA fragility. (authors)

  3. Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish.

    Science.gov (United States)

    Gombeau, Kewin; Pereira, Sandrine; Ravanat, Jean-Luc; Camilleri, Virginie; Cavalie, Isabelle; Bourdineaud, Jean-Paul; Adam-Guillermin, Christelle

    2016-04-01

    We examined the effects of chronic exposure to different concentrations (2 and 20 μg L(-)(1)) of environmentally relevant waterborne depleted uranium (DU) on the DNA methylation patterns both at HpaII restriction sites (5'-CCGG-3') and across the whole genome in the zebrafish brain, gonads, and eyes. We first identified sex-dependent differences in the methylation level of HpaII sites after exposure. In males, these effects were present as early as 7 days after exposure to 20 μg L(-)(1) DU, and were even more pronounced in the brain, gonads, and eyes after 24 days. However, in females, hypomethylation was only observed in the gonads after exposure to 20 μg L(-)(1) DU for 24 days. Sex-specific effects of DU were also apparent at the whole-genome level, because in males, exposure to 20 μg L(-)(1) DU for 24 days resulted in cytosine hypermethylation in the brain and eyes and hypomethylation in the gonads. In contrast, in females, hypermethylation was observed in the brain after exposure to both concentrations of DU for 7 days. Based on our current knowledge of uranium toxicity, several hypotheses are proposed to explain these findings, including the involvement of oxidative stress, alteration of demethylation enzymes and the calcium signaling pathway. This study reports, for the first time, the sex- and tissue-specific epigenetic changes that occur in a nonhuman organism after exposure to environmentally relevant concentrations of uranium, which could induce transgenerational epigenetic effects. PMID:26829549

  4. Interleukin-6 Promotes Tumorigenesis by Altering DNA Methylation in Oral Cancer Cells

    OpenAIRE

    Gasche, Jacqueline A; Hoffmann, Jürgen; Boland, C. Richard; Goel, Ajay

    2011-01-01

    Worldwide oral squamous cell carcinoma (OSCC) accounts for more than 100,000 deaths each year. Chronic inflammation constitutes one of the key risk factors for OSCC. Accumulating evidence suggests that aberrant DNA methylation may contribute to OSCC tumorigenesis. This study investigated whether chronic inflammation alters DNA methylation and expression of cancer-associated genes in OSCC.

  5. Tissue-specific tagging of endogenous loci in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kate Koles

    2016-01-01

    Full Text Available Fluorescent protein tags have revolutionized cell and developmental biology, and in combination with binary expression systems they enable diverse tissue-specific studies of protein function. However these binary expression systems often do not recapitulate endogenous protein expression levels, localization, binding partners and/or developmental windows of gene expression. To address these limitations, we have developed a method called T-STEP (tissue-specific tagging of endogenous proteins that allows endogenous loci to be tagged in a tissue specific manner. T-STEP uses a combination of efficient CRISPR/Cas9-enhanced gene targeting and tissue-specific recombinase-mediated tag swapping to temporally and spatially label endogenous proteins. We have employed this method to GFP tag OCRL (a phosphoinositide-5-phosphatase in the endocytic pathway and Vps35 (a Parkinson's disease-implicated component of the endosomal retromer complex in diverse Drosophila tissues including neurons, glia, muscles and hemocytes. Selective tagging of endogenous proteins allows, for the first time, cell type-specific live imaging and proteomics in complex tissues.

  6. Analysis of tissue-specific region in sericin 1 gene promoter of Bombyx mori

    International Nuclear Information System (INIS)

    The gene encoding sericin 1 (Ser1) of silkworm (Bombyx mori) is specifically expressed in the middle silk gland cells. To identify element involved in this transcription-dependent spatial restriction, truncation of the 5' terminal from the sericin 1 (Ser1) promoter is studied in vivo. A 209 bp DNA sequence upstream of the transcriptional start site (-586 to -378) is found to be responsible for promoting tissue-specific transcription. Analysis of this 209 bp region by overlapping deletion studies showed that a 25 bp region (-500 to -476) suppresses the ectopic expression of the Ser1 promoter. An unknown factor abundant in fat body nuclear extracts is shown to bind to this 25 bp fragment. These results suggest that this 25 bp region and the unknown factor are necessary for determining the tissue-specificity of the Ser1 promoter

  7. Epigenetic alterations in gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    In-Seon CHOI; Tsung-Teh WU

    2005-01-01

    Gastric cancer is believed to result in part from the accumulation of multiple genetic alterations leading to oncogene overexpression and tumor suppressor loss. Epigenetic alterations as a distinct and crucial mechanism to silence a variety of methylated tissue-specific and imprinted genes, have been extensively studied in gastric carcinoma and play important roles in gastric carcinogenesis. This review will briefly discuss the basic aspects of DNA methylation and CpG island methylation, in particular the epigenetic alterations of certain critical genes implicated in gastric carcinogenesis and its relevance of clinical implications.

  8. RNA-Cleaving DNA Enzymes with Altered Regio- or Enantioselectivity

    Science.gov (United States)

    Ordoukhanian, Phillip; Joyce, Gerald F.

    2002-01-01

    In vitro evolution methods were used to obtain DNA enzymes that cleave either a 2',5' - phosphodiester following a wibonucleotide or a 3',5' -phosphodiester following an L-ribonucleotide. Both enzymes can operate in an intermolecular reaction format with multiple turnover. The DNA enzyme that cleaves a 2',5' -phosphodiester exhibits a k(sub cat) of approx. 0.01/ min and catalytic efficiency, k(sub cat)/k(sub m) of approx. 10(exp 5)/ M min. The enzyme that cleaves an L-ribonudeotide is about 10-fold slower and has a catalytic efficiency of approx. 4 x 10(exp 5)/ M min. Both enzymes require a divalent metal cation for their activity and have optimal catalytic rate at pH 7-8 and 35-50 C. In a comparison of each enzyme s activity with either its corresponding substrate that contains an unnatural ribonudeotide or a substrate that instead contains a standard ribonucleotide, the 2',5' -phosphodiester-deaving DNA enzyme exhibited a regioselectivity of 6000- fold, while the L-ribonucleotide-cleaving DNA enzyme exhibited an enantioselectivity of 50-fold. These molecules demonstrate how in vitro evolution can be used to obtain regio- and enantioselective catalysts that exhibit specificities for nonnatural analogues of biological compounds.

  9. Tissue-Specific Posttranslational Modification Allows Functional Targeting of Thyrotropin

    OpenAIRE

    Keisuke Ikegami; Xiao-Hui Liao; Yuta Hoshino; Hiroko Ono; Wataru Ota; Yuka Ito; Taeko Nishiwaki-Ohkawa; Chihiro Sato; Ken Kitajima; Masayuki Iigo; Yasufumi Shigeyoshi; Masanobu Yamada; Yoshiharu Murata; Samuel Refetoff; Takashi Yoshimura

    2014-01-01

    Thyroid-stimulating hormone (TSH; thyrotropin) is a glycoprotein secreted from the pituitary gland. Pars distalis-derived TSH (PD-TSH) stimulates the thyroid gland to produce thyroid hormones (THs), whereas pars tuberalis-derived TSH (PT-TSH) acts on the hypothalamus to regulate seasonal physiology and behavior. However, it had not been clear how these two TSHs avoid functional crosstalk. Here, we show that this regulation is mediated by tissue-specific glycosylation. Although PT-TSH is relea...

  10. Housekeeping and tissue-specific genes in mouse tissues

    Directory of Open Access Journals (Sweden)

    St-Amand Jonny

    2007-05-01

    Full Text Available Abstract Background This study aims to characterize the housekeeping and tissue-specific genes in 15 mouse tissues by using the serial analysis of gene expression (SAGE strategy which indicates the relative level of expression for each transcript matched to the tag. Results Here, we identified constantly expressed housekeeping genes, such as eukaryotic translation elongation factor 2, which is expressed in all tissues without significant difference in expression levels. Moreover, most of these genes were not regulated by experimental conditions such as steroid hormones, adrenalectomy and gonadectomy. In addition, we report previously postulated housekeeping genes such as peptidyl-prolyl cis-trans isomerase A, glyceraldehyde-3-phosphate dehydrogenase and beta-actin, which are expressed in all the tissues, but with significant difference in their expression levels. We have also identified genes uniquely detected in each of the 15 tissues and other tissues from public databases. Conclusion These identified housekeeping genes could represent appropriate controls for RT-PCR and northern blot when comparing the expression levels of genes in several tissues. The results reveal several tissue-specific genes highly expressed in testis and pituitary gland. Furthermore, the main function of tissue-specific genes expressed in liver, lung and bone is the cell defence, whereas several keratins involved in cell structure function are exclusively detected in skin and vagina. The results from this study can be used for example to target a tissue for agent delivering by using the promoter of tissue-specific genes. Moreover, this study could be used as basis for further researches on physiology and pathology of these tissues.

  11. Housekeeping and tissue-specific genes in mouse tissues

    OpenAIRE

    St-Amand Jonny; Yoshioka Mayumi; Cadrin-Girard Jean F; Nishida Yuichiro; Kouadjo Kouame E

    2007-01-01

    Abstract Background This study aims to characterize the housekeeping and tissue-specific genes in 15 mouse tissues by using the serial analysis of gene expression (SAGE) strategy which indicates the relative level of expression for each transcript matched to the tag. Results Here, we identified constantly expressed housekeeping genes, such as eukaryotic translation elongation factor 2, which is expressed in all tissues without significant difference in expression levels. Moreover, most of the...

  12. Tissue-specific splicing factor gene expression signatures

    OpenAIRE

    Grosso, A. R.; Gomes, Anita; Barbosa-Morais, Nuno; Caldeira, Sandra; Thorne, Natalie; Grech, Godfrey; Lindern, Marieke; Carmo-Fonseca, Maria

    2008-01-01

    textabstractThe alternative splicing code that controls and coordinates the transcriptome in complex multicellular organisms remains poorly understood. It has long been argued that regulation of alternative splicing relies on combinatorial interactions between multiple proteins, and that tissue-specific splicing decisions most likely result from differences in the concentration and/or activity of these proteins. However, large-scale data to systematically address this issue have just recently...

  13. Laminin Mediates Tissue-specific Gene Expression in Mammary Epithelia

    OpenAIRE

    Streuli, Charles H

    2011-01-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional di...

  14. Predicting Tissue-Specific Enhancers in the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  15. Tissue-specific expression of the rat beta-casein gene in transgenic mice.

    OpenAIRE

    Lee, K. F.; DeMayo, F J; Atiee, S H; Rosen, J. M.

    1988-01-01

    The rat beta-casein gene is a member of a small gene family, encoding the principal milk proteins. In order to understand the mechanisms by which its stage- and tissue-specific expression are regulated, initially, a 14 kb genomic clone containing the entire 7.5 kb rat beta-casein gene with 3.5 kb of 5' and 3.0 kb of 3' flanking DNA was microinjected into the germline of mice. Eight F0 transgenic mice were generated with copy numbers ranging from 1-10; five transmitted the transgene to their o...

  16. Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis.

    Science.gov (United States)

    Ambur, Ole Herman; Frye, Stephan A; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  17. Flow cytometric analysis of oil palm: a preliminary analysis for cultivars and genomic DNA alteration

    Directory of Open Access Journals (Sweden)

    Warawut Chuthammathat

    2005-12-01

    Full Text Available DNA contents of oil palm (Elaeis guineensis Jacq. cultivars were analyzed by flow cytometry using different external reference plant species. Analysis using corn (Zea mays line CE-777 as a reference plant gave the highest DNA content of oil palm (4.72±0.23 pg 2C-1 whereas the DNA content was found to be lower when using soybean (Glycine max cv. Polanka (3.77±0.09 pg 2C-1 or tomato (Lycopersicon esculentum cv. Stupicke (4.25±0.09 pg 2C-1 as a reference. The nuclear DNA contents of Dura (D109, Pisifera (P168 and Tenera (T38 cultivars were 3.46±0.04, 3.24±0.03 and 3.76±0.04 pg 2C-1 nuclei, respectively, using soybean as a reference. One haploid genome of oil palm therefore ranged from 1.56 to 1.81±109 base pairs. DNA contents from one-year-old calli and cell suspension of oil palm were found to be significantly different from those of seedlings. It thus should be noted that genomic DNA alteration occurred in these cultured tissues. We therefore confirm that flow cytometric analysis could verify cultivars, DNA content and genomic DNA alteration of oil palm using soybean as an external reference standard.

  18. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (UV) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either X-ray-like (i.e., they cause damage that XP cells can repair) or UV-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed

  19. Predicting tissue-specific expressions based on sequence characteristics

    KAUST Repository

    Paik, Hyojung

    2011-04-30

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  20. Bioprinting Cellularized Constructs Using a Tissue-specific Hydrogel Bioink.

    Science.gov (United States)

    Skardal, Aleksander; Devarasetty, Mahesh; Kang, Hyun-Wook; Seol, Young-Joon; Forsythe, Steven D; Bishop, Colin; Shupe, Thomas; Soker, Shay; Atala, Anthony

    2016-01-01

    Bioprinting has emerged as a versatile biofabrication approach for creating tissue engineered organ constructs. These constructs have potential use as organ replacements for implantation in patients, and also, when created on a smaller size scale as model "organoids" that can be used in in vitro systems for drug and toxicology screening. Despite development of a wide variety of bioprinting devices, application of bioprinting technology can be limited by the availability of materials that both expedite bioprinting procedures and support cell viability and function by providing tissue-specific cues. Here we describe a versatile hyaluronic acid (HA) and gelatin-based hydrogel system comprised of a multi-crosslinker, 2-stage crosslinking protocol, which can provide tissue specific biochemical signals and mimic the mechanical properties of in vivo tissues. Biochemical factors are provided by incorporating tissue-derived extracellular matrix materials, which include potent growth factors. Tissue mechanical properties are controlled combinations of PEG-based crosslinkers with varying molecular weights, geometries (linear or multi-arm), and functional groups to yield extrudable bioinks and final construct shear stiffness values over a wide range (100 Pa to 20 kPa). Using these parameters, hydrogel bioinks were used to bioprint primary liver spheroids in a liver-specific bioink to create in vitro liver constructs with high cell viability and measurable functional albumin and urea output. This methodology provides a general framework that can be adapted for future customization of hydrogels for biofabrication of a wide range of tissue construct types. PMID:27166839

  1. Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants.

    Directory of Open Access Journals (Sweden)

    Rui Wu

    Full Text Available BACKGROUND: Grafting has been extensively used to enhance the performance of horticultural crops. Since Charles Darwin coined the term "graft hybrid" meaning that asexual combination of different plant species may generate products that are genetically distinct, highly discrepant opinions exist supporting or against the concept. Recent studies have documented that grafting enables exchanges of both RNA and DNA molecules between the grafting partners, thus providing a molecular basis for grafting-induced genetic variation. DNA methylation is known as prone to alterations as a result of perturbation of internal and external conditions. Given characteristics of grafting, it is interesting to test whether the process may cause an alteration of this epigenetic marker in the grafted organismal products. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed relative global DNA methylation levels and locus-specific methylation patterns by the MSAP marker and locus-specific bisulfite-sequencing in the seed plants (wild-type controls, self- and hetero-grafted scions/rootstocks, selfed progenies of scions and their seed-plant controls, involving three Solanaceae species. We quantified expression of putative genes involved in establishing and/or maintaining DNA methylation by q-(RT-PCR. We found that (1 hetero-grafting caused extensive alteration of DNA methylation patterns in a locus-specific manner, especially in scions, although relative methylation levels remain largely unaltered; (2 the altered methylation patterns in the hetero-grafting-derived scions could be inherited to sexual progenies with some sites showing further alterations or revisions; (3 hetero-grafting caused dynamic changes in steady-state transcript abundance of genes encoding for a set of enzymes functionally relevant to DNA methylation. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that inter-species grafting in plants could produce extensive and heritable alterations in DNA methylation. We

  2. Tissue-specific assimilation, depuration and toxicity of nickel in Mytilus edulis

    International Nuclear Information System (INIS)

    The tissue-specific accumulation and time-dependent depuration of radioactive 63Ni by the byssus, gut, foot, gills, kidney, adductor muscle and faeces of Mytilus edulis has been investigated using a pulse-chase technique. The rate and extent of depuration of 63Ni varied between tissues and, after 168 h, the concentration factors and assimilation efficiencies ranged from 1 to 35 L kg−1 and 5%–13%, respectively. Mussels were also exposed to a range of environmentally-realistic concentrations of dissolved Ni, prior to the analysis of biological endpoints. The clearance rate was concentration-dependent and at the highest concentration decreased by 30%. Neutral red retention (NRR) assays indicated a cytotoxic response and DNA strand breaks were observed in the haemocytes. The association of DNA damage with that of physiological and cytotoxic effects suggests that Ni exerts a significant impact on Mytilus edulis at cellular and genetic levels. - Highlights: ► Tissue-specific accumulation and depuration of nickel by marine mussels was evaluated. ► Concentration factors for nickel in mussel tissues were lower than recommended values. ► Cytotoxic and genotoxic effects were detected in mussel haemocytes in the presence of dissolved nickel. ► Nickel exerts a significant effect on mussels at cellular and genetic levels. - Nickel is accumulated preferentially in the byssus and gut of marine mussels and it exerts a cytotoxic and genotoxic response in their haemocytes.

  3. A hierarchy of ECM-mediated signalling tissue-specific gene expression regulates tissue-specific gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Roskelley, Calvin D; Srebrow, Anabella; Bissell, Mina J

    1995-10-07

    A dynamic and reciprocal flow of information between cells and the extracellular matrix contributes significantly to the regulation of form and function in developing systems. Signals generated by the extracellular matrix do not act in isolation. Instead, they are processed within the context of global signalling hierarchies whose constituent inputs and outputs are constantly modulated by all the factors present in the cell's surrounding microenvironment. This is particularly evident in the mammary gland, where the construction and subsequent destruction of such a hierarchy regulates changes in tissue-specific gene expression, morphogenesis and apoptosis during each developmental cycle of pregnancy, lactation and involution.

  4. DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies.

    Directory of Open Access Journals (Sweden)

    Nadine Schuler

    Full Text Available PURPOSE: In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. METHODS AND MATERIALS: In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. RESULTS: Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. CONCLUSIONS: Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies.

  5. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  6. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    International Nuclear Information System (INIS)

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  7. Mitochondrial DNA alterations in the progression of gastric carcinomas: unexplored issues and future research needs.

    Science.gov (United States)

    Rigoli, Luciana; Caruso, Rosario Alberto

    2014-11-21

    Gastric cancer is the second most frequent cause of cancer death worldwide. Patients infected with Helicobacter pylori (H. pylori) are at increased risk of gastric cancer. H. pylori induces genomic instability in both nuclear and mitochondrial (mt) DNA of gastric epithelial cells. Changes in mtDNA represent an early event during gastric tumorigenesis, and thus may serve as potential biomarkers for early detection and prognosis in gastric carcinoma.This review article summarizes the mtDNA mutations that have been reported in gastric carcinomas and their precancerous conditions. Unexplored research topics, such as the role of mtDNA alterations in an alternative pathway of gastric carcinogenesis, are identified and directions for future research are suggested. PMID:25473169

  8. Tissue specific metal characterization of selected fish species in Pakistan.

    Science.gov (United States)

    Ahmed, Mukhtiar; Ahmad, Taufiq; Liaquat, Muhammad; Abbasi, Kashif Sarfraz; Farid, Ibrahim Bayoumi Abdel; Jahangir, Muhammad

    2016-04-01

    Concentration of various metals, i.e., zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), iron (Fe), manganese (Mn), chromium (Cr), and silver (Ag), was evaluated in five indigenous fish species (namely, silver carp, common carp, mahseer, thela fish, and rainbow trout), by using atomic absorption spectrophotometer. It is proved from this study that, overall, mahseer and rainbow trout had high amount of zinc, whereas thela fish and silver carp had high concentration of copper, chromium, silver, nickel, and lead, while common carp had highest amount of iron contents. Furthermore, a tissue-specific discrimination among various fish species was observed, where higher metal concentrations were noticed in fish liver, with decreasing concentration in other organs like skin, gills, and finally the least contents in fish muscle. Multivariate data analysis showed not only a variation in heavy metals among the tissues but also discrimination among the selected fish species. PMID:26951449

  9. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B.; Balish, Rebecca S.; Tehryung, Kim; McKinney, Elizabeth C.

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  10. Single cell analysis reveals gametic and tissue-specific instability of the SCA1 CAG repeat

    Energy Technology Data Exchange (ETDEWEB)

    Chong, S.S.; McCall, A.E.; Cota, J. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Spinocerebellar ataxia type 1 is an autosomal dominant neurodegenerative disease caused by expansion of a CAG trinucleotide repeat within the SCA1 gene on chromosome 6p22-23. We performed a comparative analysis of the SCA1 CAG repeat from blood and sperm of an affected male. Genomic amplification revealed a broader smear of the SCA1 allele product from sperm compared to that from peripheral blood leukocytes (PBL). To resolve this observed difference, we analyzed single sperm directly and demonstrate that the SCA1 allele in PBL is also heterogeneous, although the range of variability in allele sizes is much less than that observed in sperm. Limited genome analysis was also performed on PBL DNA from an unaffected individual with an upper normal allele of 36 repeats in parallel with an affected individual with an expanded allele of 40 repeats. The 36 repeat normal allele, which contains a CAT interruption, was completely stable compared to the uninterrupted repeat of the SCA1 allele, demonstrating a direct correlation between absence of a CAT interruption and somatic instability of the repeat. We also analyzed the size of the CAG repeat in tissues derived from various brain regions from a patient with juvenile-onset disease to determine if the size of the expansion correlated with the site of neuropathology. The results clearly show tissue-specific differences in mosaicism of repeat length. More importantly, the pattern of tissue-specific differences in repeat-length mosaicism in SCA1 within the brain parallels those seen in Huntington disease. In both disorders the expanded alleles are smaller in cerebellar tissue. These results suggest that the observed tissue-specific differences in instability of the SCA1 CAG repeat, either within the brain or between blood and sperm, are a function of the intracellular milieu or the intrinsic replicative potential of the various celltypes.

  11. Global DNA methylation is altered by neoadjuvant chemoradiotherapy in rectal cancer and may predict response to treatment - A pilot study.

    LENUS (Irish Health Repository)

    Tsang, J S

    2014-07-28

    In rectal cancer, not all tumours display a response to neoadjuvant treatment. An accurate predictor of response does not exist to guide patient-specific treatment. DNA methylation is a distinctive molecular pathway in colorectal carcinogenesis. Whether DNA methylation is altered by neoadjuvant treatment and a potential response predictor is unknown. We aimed to determine whether DNA methylation is altered by neoadjuvant chemoradiotherapy (CRT) and to determine its role in predicting response to treatment.

  12. Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging.

    Directory of Open Access Journals (Sweden)

    W Edward Visser

    Full Text Available DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/- or intermediate (Ercc1-/Δ-7 progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging.

  13. Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging

    Science.gov (United States)

    Visser, W. Edward; Barnhoorn, Sander; Ottaviani, Alexandre; van der Pluijm, Ingrid; Brandt, Renata; Kaptein, Ellen; van Heerebeek, Ramona; van Toor, Hans; Garinis, George A.; Peeters, Robin P.; Medici, Marco; van Ham, Willy; Vermeij, Wilbert P.; de Waard, Monique C.; de Krijger, Ronald R.; Boelen, Anita; Kwakkel, Joan; Kopchick, John J.; List, Edward O.; Melis, Joost P. M.; Darras, Veerle M.; Dollé, Martijn E. T.; van der Horst, Gijsbertus T. J.; Hoeijmakers, Jan H. J.; Visser, Theo J.

    2016-01-01

    DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging. PMID:26953569

  14. Alterations in radioresistance of eucaryotic cells after the transfer of genomic wildtype DNA and metallothionein genes

    International Nuclear Information System (INIS)

    The presented paper describes experiments concerning the alteration of radiosensitivity of eucaryotic cells after gene transfer. Ionizing radiation (γ- or X-ray) induces DNA single- or double strand breaks, which are religated by an unknown repair system. Repair deficient cells are highly sensitive to ionizing radiation. In the experiments described, cells from a patient with the heritable disease Ataxia telangiectasia were used as well as two X-ray sensitive CHO mutant cell lines. After gene transfer of an intact human DNA repair gene or a metallothionein gene the cells should regain radioresistance. (orig.)

  15. Tissue-specific accelerated aging in nucleotide excision repair deficiency

    OpenAIRE

    Laura J. Niedernhofer

    2008-01-01

    Nucleotide excision repair (NER) is a multi-step DNA repair mechanism that removes helix-distorting modified nucleotides from the genome. NER is divided into two subpathways depending on the location of DNA damage in the genome and how it is first detected. Global genome NER identifies and repairs DNA lesions throughout the genome. This subpathway of NER primarily protects against the accumulation of mutations in the genome. Transcription-coupled (TC) NER rapidly repairs lesions in the transc...

  16. Tissue specific regulation of lipogenesis by thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Blennemann, B.; Freake, H. (Univ. of Connecticut, Storrs (United States))

    1990-02-26

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone.

  17. Tissue-Specific Posttranslational Modification Allows Functional Targeting of Thyrotropin

    Directory of Open Access Journals (Sweden)

    Keisuke Ikegami

    2014-11-01

    Full Text Available Thyroid-stimulating hormone (TSH; thyrotropin is a glycoprotein secreted from the pituitary gland. Pars distalis-derived TSH (PD-TSH stimulates the thyroid gland to produce thyroid hormones (THs, whereas pars tuberalis-derived TSH (PT-TSH acts on the hypothalamus to regulate seasonal physiology and behavior. However, it had not been clear how these two TSHs avoid functional crosstalk. Here, we show that this regulation is mediated by tissue-specific glycosylation. Although PT-TSH is released into the circulation, it does not stimulate the thyroid gland. PD-TSH is known to have sulfated biantennary N-glycans, and sulfated TSH is rapidly metabolized in the liver. In contrast, PT-TSH has sialylated multibranched N-glycans; in the circulation, it forms the macro-TSH complex with immunoglobulin or albumin, resulting in the loss of its bioactivity. Glycosylation is fundamental to a wide range of biological processes. This report demonstrates its involvement in preventing functional crosstalk of signaling molecules in the body.

  18. Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila

    Directory of Open Access Journals (Sweden)

    Peter Smibert

    2012-03-01

    Full Text Available We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR shortening in the testis and lengthening in the central nervous system (CNS; the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system.

  19. Turning on Myogenin in Muscle: A Paradigm for Understanding Mechanisms of Tissue-Specific Gene Expression

    Directory of Open Access Journals (Sweden)

    Herve Faralli

    2012-01-01

    Full Text Available Expression of the myogenin (Myog gene is restricted to skeletal muscle cells where the transcriptional activator turns on a gene expression program that permits the transition from proliferating myoblasts to differentiating myotubes. The strict temporal and spatial regulation on Myog expression in the embryo makes it an ideal gene to study the developmental regulation of tissue-specific expression. Over the last 20 years, our knowledge of the regulation of Myog expression has evolved from the identification of the minimal promoter elements necessary for the gene to be transcribed in muscle, to a mechanistic understanding of how the proteins that bind these DNA elements work together to establish transcriptional competence. Here we present our current understanding of the developmental regulation of gene expression gained from studies of the Myog gene.

  20. Multiple novel nesprin-1 and nesprin-2 variants act as versatile tissue-specific intracellular scaffolds.

    Directory of Open Access Journals (Sweden)

    Dipen Rajgor

    Full Text Available BACKGROUND: Nesprins (Nuclear envelope spectrin-repeat proteins are a novel family of giant spectrin-repeat containing proteins. The nesprin-1 and nesprin-2 genes consist of 146 and 116 exons which encode proteins of ∼1mDa and ∼800 kDa is size respectively when all the exons are utilised in translation. However emerging data suggests that the nesprins have multiple alternative start and termination sites throughout their genes allowing the generation of smaller isoforms. RESULTS: In this study we set out to identify novel alternatively transcribed nesprin variants by screening the EST database and by using RACE analysis to identify cDNA ends. These two methods provided potential hits for alternative start and termination sites that were validated by PCR and DNA sequencing. We show that these alternative sites are not only expressed in a tissue specific manner but by combining different sites together it is possible to create a wide array of nesprin variants. By cloning and expressing small novel nesprin variants into human fibroblasts and U2OS cells we show localization to actin stress-fibres, focal adhesions, microtubules, the nucleolus, nuclear matrix and the nuclear envelope (NE. Furthermore we show that the sub-cellular localization of individual nesprin variants can vary depending on the cell type, suggesting any single nesprin variant may have different functions in different cell types. CONCLUSIONS: These studies suggest nesprins act as highly versatile tissue specific intracellular protein scaffolds and identify potential novel functions for nesprins beyond cytoplasmic-nuclear coupling. These alternate functions may also account for the diverse range of disease phenotypes observed when these genes are mutated.

  1. Tissue-Specific Gene Delivery via Nanoparticle Coating

    OpenAIRE

    Harris, Todd J.; Green, Jordan J.; Fung, Peter W.; Langer, Robert; Anderson, Daniel G.; Bhatia, Sangeeta N.

    2009-01-01

    The use of biomaterials for gene delivery can potentially avoid many of the safety concerns with viral gene delivery. However, the efficacy of polymeric gene delivery methods is low, particularly in vivo. One significant concern is that the interior and exterior composition of polymeric gene delivery nanoparticles are often coupled, with a single polymer backbone governing all functions from biophysical properties of the polymer/DNA particle to DNA condensation and release. In this work we de...

  2. Inhibiting DNA methylation alters olfactory extinction but not acquisition learning in Apis cerana and Apis mellifera.

    Science.gov (United States)

    Gong, Zhiwen; Wang, Chao; Nieh, James C; Tan, Ken

    2016-07-01

    DNA methylation plays a key role in invertebrate acquisition and extinction memory. Honey bees have excellent olfactory learning, but the role of DNA methylation in memory formation has, to date, only been studied in Apis mellifera. We inhibited DNA methylation by inhibiting DNA methyltransferase (DNMT) with zebularine (zeb) and studied the resulting effects upon olfactory acquisition and extinction memory in two honey bee species, Apis cerana and A. mellifera. We used the proboscis extension reflex (PER) assay to measure memory. We provide the first demonstration that DNA methylation is also important in the olfactory extinction learning of A. cerana. DNMT did not reduce acquisition learning in either species. However, zeb bidirectionally and differentially altered extinction learning in both species. In particular, zeb provided 1h before acquisition learning improved extinction memory retention in A. mellifera, but reduced extinction memory retention in A. cerana. The reasons for these differences are unclear, but provide a basis for future studies to explore species-specific differences in the effects of methylation on memory formation. PMID:27262427

  3. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  4. Nuclear and mitochondrial DNA alterations in newborns with prenatal exposure to cigarette smoke.

    Science.gov (United States)

    Pirini, Francesca; Guida, Elisa; Lawson, Fahcina; Mancinelli, Andrea; Guerrero-Preston, Rafael

    2015-02-01

    Newborns exposed to maternal cigarette smoke (CS) in utero have an increased risk of developing chronic diseases, cancer, and acquiring decreased cognitive function in adulthood. Although the literature reports many deleterious effects associated with maternal cigarette smoking on the fetus, the molecular alterations and mechanisms of action are not yet clear. Smoking may act directly on nuclear DNA by inducing mutations or epigenetic modifications. Recent studies also indicate that smoking may act on mitochondrial DNA by inducing a change in the number of copies to make up for the damage caused by smoking on the respiratory chain and lack of energy. In addition, individual genetic susceptibility plays a significant role in determining the effects of smoking during development. Furthermore, prior exposure of paternal and maternal gametes to cigarette smoke may affect the health of the developing individual, not only the in utero exposure. This review examines the genetic and epigenetic alterations in nuclear and mitochondrial DNA associated with smoke exposure during the most sensitive periods of development (prior to conception, prenatal and early postnatal) and assesses how such changes may have consequences for both fetal growth and development. PMID:25648174

  5. Nuclear and Mitochondrial DNA Alterations in Newborns with Prenatal Exposure to Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Francesca Pirini

    2015-01-01

    Full Text Available Newborns exposed to maternal cigarette smoke (CS in utero have an increased risk of developing chronic diseases, cancer, and acquiring decreased cognitive function in adulthood. Although the literature reports many deleterious effects associated with maternal cigarette smoking on the fetus, the molecular alterations and mechanisms of action are not yet clear. Smoking may act directly on nuclear DNA by inducing mutations or epigenetic modifications. Recent studies also indicate that smoking may act on mitochondrial DNA by inducing a change in the number of copies to make up for the damage caused by smoking on the respiratory chain and lack of energy. In addition, individual genetic susceptibility plays a significant role in determining the effects of smoking during development. Furthermore, prior exposure of paternal and maternal gametes to cigarette smoke may affect the health of the developing individual, not only the in utero exposure. This review examines the genetic and epigenetic alterations in nuclear and mitochondrial DNA associated with smoke exposure during the most sensitive periods of development (prior to conception, prenatal and early postnatal and assesses how such changes may have consequences for both fetal growth and development.

  6. Altered placental DNA methylation patterns associated with maternal smoking: current perspectives

    Directory of Open Access Journals (Sweden)

    Maccani JZ

    2015-05-01

    Full Text Available Jennifer ZJ Maccani, Matthew A Maccani Penn State Tobacco Center of Regulatory Science, College of Medicine, Department of Public Health Sciences, Hershey, PA, USA Abstract: The developmental origins of health and disease hypothesis states that adverse early life exposures can have lasting, detrimental effects on lifelong health. Exposure to maternal cigarette smoking during pregnancy is associated with morbidity and mortality in offspring, including increased risks for miscarriage, stillbirth, low birth weight, preterm birth, asthma, obesity, altered neurobehavior, and other conditions. Maternal cigarette smoking during pregnancy interferes with placental growth and functioning, and it has been proposed that this may occur through the disruption of normal and necessary placental epigenetic patterns. Epigenome-wide association studies have identified a number of differentially methylated placental genes that are associated with maternal smoking during pregnancy, including RUNX3, PURA, GTF2H2, GCA, GPR135, and HKR1. The placental methylation status of RUNX3 and NR3C1 has also been linked to adverse infant outcomes, including preterm birth and low birth weight, respectively. Candidate gene analyses have also found maternal smoking-associated placental methylation differences in the NR3C1, CYP1A1, HTR2A, and HSD11B2 genes, as well as in the repetitive elements LINE-1 and AluYb8. The differential methylation patterns of several genes have been confirmed to also exhibit altered gene expression patterns, including CYP1A1, CYP19A1, NR3C1, and HTR2A. Placental methylation patterns associated with maternal smoking during pregnancy may be largely gene-specific and tissue-specific and, to a lesser degree, involve global changes. It is important for future research to investigate the mechanistic roles that these differentially methylated genes may play in mediating the association between maternal smoking during pregnancy and disease in later life, as well

  7. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    International Nuclear Information System (INIS)

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-κB (NF-κB) is a key transcription factor for production of MMPs. An inhibitor of NF-κB activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-κB in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: ► Cybrids are useful models to study the role of mtDNA changes in cancer development. ► mtDNA changes affect the expression of nuclear genes associated with tumorigenesis. ► MMP-9 is up-regulated and

  8. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, Jana; Janda, Jaroslav [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States); Sligh, James E, E-mail: jsligh@azcc.arizona.edu [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States)

    2012-10-15

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear

  9. Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death.

    Directory of Open Access Journals (Sweden)

    Mohamed I Husseiny

    Full Text Available The onset of metabolic dysregulation in type 1 diabetes (T1D occurs after autoimmune destruction of the majority of pancreatic insulin-producing beta cells. We previously demonstrated that the DNA encoding the insulin gene is uniquely unmethylated in these cells and then developed a methylation-specific PCR (MSP assay to identify circulating beta cell DNA in streptozotocin-treated mice prior to the rise in blood glucose. The current study extends to autoimmune non-obese diabetic (NOD mice and humans, showing in NOD mice that beta cell death occurs six weeks before the rise in blood sugar and coincides with the onset of islet infiltration by immune cells, demonstrating the utility of MSP for monitoring T1D. We previously reported unique patterns of methylation of the human insulin gene, and now extend this to other human tissues. The methylation patterns of the human insulin promoter, intron 1, exon 2, and intron 2 were determined in several normal human tissues. Similar to our previous report, the human insulin promoter was unmethylated in beta cells, but methylated in all other tissues tested. In contrast, intron 1, exon 2 and intron 2 did not exhibit any tissue-specific DNA methylation pattern. Subsequently, a human MSP assay was developed based on the methylation pattern of the insulin promoter and human islet DNA was successfully detected in circulation of T1D patients after islet transplantation therapy. Signal levels of normal controls and pre-transplant samples were shown to be similar, but increased dramatically after islet transplantation. In plasma the signal declines with time but in whole blood remains elevated for at least two weeks, indicating that association of beta cell DNA with blood cells prolongs the signal. This assay provides an effective method to monitor beta cell destruction in early T1D and in islet transplantation therapy.

  10. Tissue-Specific Methylation of Human Insulin Gene and PCR Assay for Monitoring Beta Cell Death

    Science.gov (United States)

    Husseiny, Mohamed I.; Kaye, Alexander; Zebadua, Emily; Kandeel, Fouad; Ferreri, Kevin

    2014-01-01

    The onset of metabolic dysregulation in type 1 diabetes (T1D) occurs after autoimmune destruction of the majority of pancreatic insulin-producing beta cells. We previously demonstrated that the DNA encoding the insulin gene is uniquely unmethylated in these cells and then developed a methylation-specific PCR (MSP) assay to identify circulating beta cell DNA in streptozotocin-treated mice prior to the rise in blood glucose. The current study extends to autoimmune non-obese diabetic (NOD) mice and humans, showing in NOD mice that beta cell death occurs six weeks before the rise in blood sugar and coincides with the onset of islet infiltration by immune cells, demonstrating the utility of MSP for monitoring T1D. We previously reported unique patterns of methylation of the human insulin gene, and now extend this to other human tissues. The methylation patterns of the human insulin promoter, intron 1, exon 2, and intron 2 were determined in several normal human tissues. Similar to our previous report, the human insulin promoter was unmethylated in beta cells, but methylated in all other tissues tested. In contrast, intron 1, exon 2 and intron 2 did not exhibit any tissue-specific DNA methylation pattern. Subsequently, a human MSP assay was developed based on the methylation pattern of the insulin promoter and human islet DNA was successfully detected in circulation of T1D patients after islet transplantation therapy. Signal levels of normal controls and pre-transplant samples were shown to be similar, but increased dramatically after islet transplantation. In plasma the signal declines with time but in whole blood remains elevated for at least two weeks, indicating that association of beta cell DNA with blood cells prolongs the signal. This assay provides an effective method to monitor beta cell destruction in early T1D and in islet transplantation therapy. PMID:24722187

  11. Using a cDNA microarray to study cellular gene expression altered by Mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    徐永忠; 谢建平; 李瑶; 乐军; 陈建平; 淳于利娟; 王洪海

    2003-01-01

    Objective To examine the global effects of Mycobacterium tuberculosis (M.tuberculosis) infection on macrophages. Methods The gene expression profiling of macrophage U937, in response to infection with M.tuberculosis H37Ra, was monitored using a high-density cDNA microarray. Results M.tuberculosis infection caused 463 differentially expressed genes, of which 366 genes are known genes registered in the Gene Bank. These genes function in various cellular processes including intracellular signalling, cytoskeletal rearrangement, apoptosis, transcriptional regulation, cell surface receptors, cell-mediated immunity as well as a variety of cellular metabolic pathways, and may play key roles in M.tuberculosis infection and intracellular survival. Conclusions M.tuberculosis infection alters the expression of host-cell genes, and these genes will provide a foundation for understanding the infection process of M.tuberculosis. The cDNA microarray is a powerful tool for studying pathogen-host cell interaction.

  12. Atomic Insight into the Altered O6-Methylguanine-DNA Methyltransferase Protein Architecture in Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Naveed Anjum Chikan

    Full Text Available O6-methylguanine-DNA methyltransferase (MGMT is one of the major DNA repair protein that counteracts the alkalyting agent-induced DNA damage by replacing O6-methylguanine (mutagenic lesion back to guanine, eventually suppressing the mismatch errors and double strand crosslinks. Exonic alterations in the form of nucleotide polymorphism may result in altered protein structure that in turn can lead to the loss of function. In the present study, we focused on the population feared for high exposure to alkylating agents owing to their typical and specialized dietary habits. To this end, gastric cancer patients pooled out from the population were selected for the mutational screening of a specific error prone region of MGMT gene. We found that nearly 40% of the studied neoplastic samples harbored missense mutation at codon151 resulting into Serine to Isoleucine variation. This variation resulted in bringing about the structural disorder, subsequently ensuing into a major stoichiometric variance in recognition domain, substrate binding and selectivity loop of the active site of the MGMT protein, as observed under virtual microscope of molecular dynamics simulation (MDS. The atomic insight into MGMT protein by computational approach showed a significant change in the intra molecular hydrogen bond pattern, thus leading to the observed structural anomalies. To further examine the mutational implications on regulatory plugs of MGMT that holds the protein in a DNA-Binding position, a MDS based analysis was carried out on, all known physically interacting amino acids essentially clustered into groups based on their position and function. The results generated by physical-functional clustering of protein indicated that the identified mutation in the vicinity of the active site of MGMT protein causes the local and global destabilization of a protein by either eliminating the stabilizing salt bridges in cluster C3, C4, and C5 or by locally destabilizing the

  13. Methamidophos alters sperm function and DNA at different stages of spermatogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Urióstegui-Acosta, Mayrut; Hernández-Ochoa, Isabel [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico); Sánchez-Gutiérrez, Manuel [Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Hidalgo (Mexico); Piña-Guzmán, Belem [Instituto Politécnico Nacional-UPIBI, D.F. (Mexico); Rafael-Vázquez, Leticia; Solís-Heredia, M.J.; Martínez-Aguilar, Gerardo [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico); Quintanilla-Vega, Betzabet, E-mail: mquintan@cinvestav.mx [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico)

    2014-09-15

    Methamidophos (MET) is a highly toxic organophosphate (OP) pesticide that is widely used in developing countries. MET has male reproductive effects, including decreased fertility. We evaluated MET effects on sperm quality, fertilization and DNA integrity, exploring the sensitivity of different stages of spermatogenesis. Adult male mice received MET (3.75 or 5 mg/kg-bw/ip/day/4 days) and were euthanized 1, 28 or 45 days post-treatment (dpt) to evaluate MET's effects on epididymal maturation, meiosis or mitosis, respectively. Spermatozoa were obtained from the cauda epididymis–vas deferens and were evaluated for sperm quality, acrosome reaction (AR; Coomassie staining), mitochondrial membrane potential (by JC-1), DNA damage (comet assay), oxidative damage (malondialdehyde (MDA) production), in vitro fertilization and protein phosphorylation (immunodetection), and erythrocyte acetylcholinesterase (AChE) activity. At 1-dpt, MET inhibited AChE (43–57%) and increased abnormal cells (6%). While at 28- and 45-dpt, sperm motility and viability were significantly reduced with an increasing MET dose, and abnormal morphology increased at 5 mg/kg/day/4 days. MDA and mitochondrial activity were not affected at any dose or time. DNA damage (OTM and %DNA) was observed at 5 mg/kg/day/4 days in a time-dependent manner, whereas both parameters were altered in cells from mice exposed to 3.75 mg/kg/day/4 days only at 28-dpt. Depending on the time of collection, initial-, spontaneous- and induced-AR were altered at 5 mg/kg/day/4 days, and the fertilization capacity also decreased. Sperm phosphorylation (at serine and tyrosine residues) was observed at all time points. Data suggest that meiosis and mitosis are the more sensitive stages of spermatogenesis for MET reproductive toxicity compared to epididymal maturation. - Highlights: • Methamidophos alters sperm cell function at different stages of spermatogenesis. • Testicular stages of spermatogenesis are more sensitive to

  14. Methamidophos alters sperm function and DNA at different stages of spermatogenesis in mice

    International Nuclear Information System (INIS)

    Methamidophos (MET) is a highly toxic organophosphate (OP) pesticide that is widely used in developing countries. MET has male reproductive effects, including decreased fertility. We evaluated MET effects on sperm quality, fertilization and DNA integrity, exploring the sensitivity of different stages of spermatogenesis. Adult male mice received MET (3.75 or 5 mg/kg-bw/ip/day/4 days) and were euthanized 1, 28 or 45 days post-treatment (dpt) to evaluate MET's effects on epididymal maturation, meiosis or mitosis, respectively. Spermatozoa were obtained from the cauda epididymis–vas deferens and were evaluated for sperm quality, acrosome reaction (AR; Coomassie staining), mitochondrial membrane potential (by JC-1), DNA damage (comet assay), oxidative damage (malondialdehyde (MDA) production), in vitro fertilization and protein phosphorylation (immunodetection), and erythrocyte acetylcholinesterase (AChE) activity. At 1-dpt, MET inhibited AChE (43–57%) and increased abnormal cells (6%). While at 28- and 45-dpt, sperm motility and viability were significantly reduced with an increasing MET dose, and abnormal morphology increased at 5 mg/kg/day/4 days. MDA and mitochondrial activity were not affected at any dose or time. DNA damage (OTM and %DNA) was observed at 5 mg/kg/day/4 days in a time-dependent manner, whereas both parameters were altered in cells from mice exposed to 3.75 mg/kg/day/4 days only at 28-dpt. Depending on the time of collection, initial-, spontaneous- and induced-AR were altered at 5 mg/kg/day/4 days, and the fertilization capacity also decreased. Sperm phosphorylation (at serine and tyrosine residues) was observed at all time points. Data suggest that meiosis and mitosis are the more sensitive stages of spermatogenesis for MET reproductive toxicity compared to epididymal maturation. - Highlights: • Methamidophos alters sperm cell function at different stages of spermatogenesis. • Testicular stages of spermatogenesis are more sensitive to

  15. Tissue-specific insulin signaling, metabolic syndrome and cardiovascular disease

    OpenAIRE

    Rask-Madsen, Christian; Kahn, C. Ronald

    2012-01-01

    Impaired insulin signaling is central to the development of the metabolic syndrome and can promote cardiovascular disease indirectly through development of abnormal glucose and lipid metabolism, hypertension and a proinflammatory state. However, insulin action directly on vascular endothelium, atherosclerotic plaque macrophages, and in the heart, kidney, and retina has now been described, and impaired insulin signaling in these locations can alter progression of cardiovascular disease in the ...

  16. Regulating expression of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  17. Regulating expressin of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, R N; Dai, Shunhong

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  18. Metabolic profiling of the tissue-specific responses in mussel Mytilus galloprovincialis towards Vibrio harveyi challenge.

    Science.gov (United States)

    Liu, Xiaoli; Ji, Chenglong; Zhao, Jianmin; Wang, Qing; Li, Fei; Wu, Huifeng

    2014-08-01

    Mussel Mytilus galloprovincialis is a marine aquaculture shellfish distributing widely along the coast in north China. In this work, we studied the differential metabolic responses induced by Vibrio harveyi in digestive gland and gill tissues from M. galloprovincialis using NMR-based metabolomics. The differential metabolic responses in the two tissue types were detected, except the similarly altered taurine and betaine. These metabolic responses suggested that V. harveyi mainly induced osmotic disruption and reduced energy demand via the metabolic pathways of glucose synthesis and ATP/AMP conversion in mussel digestive gland. In mussel gill tissues, V. harveyi basically caused osmotic stress and possible reduced energy demand as shown by the elevated phosphocholine that is involved in one of the metabolic pathways of ATP synthesis from ADP and phosphocholine. The altered mRNA expression levels of related genes (superoxide dismutase with copper and zinc, heat shock protein 90, defensin and lysozyme) suggested that V. harveyi induced clear oxidative and immune stresses in both digestive gland and gill tissues. However, the mRNA expression levels of both lysozyme and defensin in digestive gland were more significantly up-regulated than those in gill from V. harveyi-challenged mussel M. galloprovincialis, meaning that the immune organ, digestive gland, was more sensitive than gill. Overall, our results indicated that V. harveyi could induce tissue-specific metabolic responses in mussel M. galloprovincialis. PMID:24911264

  19. Early Chronotype and Tissue-Specific Alterations of Circadian Clock Function in Spontaneously Hypertensive Rats

    Czech Academy of Sciences Publication Activity Database

    Sládek, Martin; Polidarová, Lenka; Nováková, Marta; Parkanová, Daniela; Sumová, Alena

    2012-01-01

    Roč. 7, č. 10 (2012), e46951. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GAP303/11/0668; GA ČR(CZ) GPP305/10/P244 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : SHR * circadian system * clock gene * metabolism * colon * liver * suprachiasmatic nucleus Subject RIV: ED - Physiology Impact factor: 3.730, year: 2012

  20. TISSUE SPECIFIC RESPONSES ALTER THE BIOMASS ACCUMULATION IN WHEAT UNDER GRADUAL AND SUDDEN SALT STRESS

    OpenAIRE

    Yumurtaci A.; Uncuoglu A. A.

    2012-01-01

    Salinity is one the major limiting environmental factors which has negative side effects on crop production. The purpose of this study was to investigate the differences between the gradual and sudden salt stress effects on biomass accumulation associated with whole plant development in three different tissues of two wheat species ( Triticum aestivum and Triticum durum) under hydroponic conditions in the long term. Considering the effects of sudden and gradual stress for biomass accumulation,...

  1. Tissue specific responses alter the biomass accumulation in wheat under gradual and sudden salt stress

    Directory of Open Access Journals (Sweden)

    Yumurtaci A.

    2012-11-01

    Full Text Available Salinity is one the major limiting environmental factors which has negative side effects on crop production. The purpose of this study was to investigate the differences between the gradual and sudden salt stress effects on biomass accumulation associated with whole plant development in three different tissues of two wheat species ( Triticum aestivum and Triticum durum under hydroponic conditions in the long term. Considering the effects of sudden and gradual stress for biomass accumulation, while importance of salinity x genotype interaction for fresh weights was 5%, association for salinity x tissue type was found as 1% important. Interestingly, root branching and development of lateral roots were much more negatively affected by gradual stress rather than sudden salt application. Our results demonstrated that root and leaf were both critical tissues to test the salt tolerance by physiologically but sheath tissue might be used as an alternative source of variation for solving the interactions between root and leaves in wheat.

  2. Construction and analyses of human large-scale tissue specific networks.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Construction and analyses of tissue specific networks is crucial to unveil the function and organizational structure of biological systems. As a direct method to detect protein dynamics, human proteome-wide expression data provide an valuable resource to investigate the tissue specificity of proteins and interactions. By integrating protein expression data with large-scale interaction network, we constructed 30 tissue/cell specific networks in human and analyzed their properties and functions. Rather than the tissue specificity of proteins, we mainly focused on the tissue specificity of interactions to distill tissue specific networks. Through comparing our tissue specific networks with those inferred from gene expression data, we found our networks have larger scales and higher reliability. Furthermore, we investigated the similar extent of multiple tissue specific networks, which proved that tissues with similar functions tend to contain more common interactions. Finally, we found that the tissue specific networks differed from the static network in multiple topological properties. The proteins in tissue specific networks are interacting looser and the hubs play more important roles than those in the static network.

  3. De novo assembly and analysis of tissue-specific transcriptomes revealed the tissue-specific genes and profile of immunity from Strongylocentrotus intermedius.

    Science.gov (United States)

    Chen, Yadong; Chang, Yaqing; Wang, Xiuli; Qiu, Xuemei; Liu, Yang

    2015-10-01

    Strongylocentrotus intermedius is an important marine species in north China and Japan. Recent years, diseases are threating the sea urchin aquaculture industry seriously. To provide a genetic resource for S. intermedius as well as overview the immune-related genes of S. intermedius, we performed transcriptome sequencing of three cDNA libraries representing three tissues, coelomocytes, gut and peristomial membrane respectively. In total 138,421 contigs were assembled from all sequencing data. 96,764 contigs were annotated according to bioinformatics databases, including NT, nr, Swiss-Prot, KEGG, COG. 49,336 Contigs were annotated as CDS. In this study, we obtained 24,778 gene families from S. intermedius transcriptome. The gene expression analysis revealed that more genes were expressed in gut, more high expression level genes in coelomocytes when compared with other tissues. Specific expressed contigs in coelomocytes, gut, and peristomial membrane were 546, 1136, and 1012 respectively. Pathway analysis suggested 25, 17 and 36 potential specifically pathways may specific progressed in peristomial membrane, gut and coelomocytes respectively. Similarities and differences between S. intermedius and other echinoderms were analyzed. S. intermedius was more homology to Strongylocentrotus purpuratus than others sea urchin. Of 24,778 genes, 1074 genes are immune-related, immune genes were expressed with a higher level in coelomocytes than other tissues. Complement system may be the most important immune system in sea urchin. We also identified 2438 SSRs and 16,236 SNPs for S. intermedius. These results provide a transcriptome resource and foundation to study molecular mechanisms of sea urchin immune system. PMID:26253994

  4. Common DNA methylation alterations of Alzheimer's disease and aging in peripheral whole blood

    Science.gov (United States)

    Li, Hongdong; Guo, Zheng; Guo, You; Li, Mengyao; Yan, Haidan; Cheng, Jun; Wang, Chenguang; Hong, Guini

    2016-01-01

    Alzheimer's disease (AD) is a common aging-related neurodegenerative illness. Recently, many studies have tried to identify AD- or aging-related DNA methylation (DNAm) biomarkers from peripheral whole blood (PWB). However, the origin of PWB biomarkers is still controversial. In this study, by analyzing 2565 DNAm profiles for PWB and brain tissue, we showed that aging-related DNAm CpGs (Age-CpGs) and AD-related DNAm CpGs (AD-CpGs) observable in PWB both mainly reflected DNAm alterations intrinsic in leukocyte subtypes rather than methylation differences introduced by the increased ratio of myeloid to lymphoid cells during aging or AD progression. The PWB Age-CpGs and AD-CpGs significantly overlapped 107 sites (P-value = 2.61×10−12) and 97 had significantly concordant methylation alterations in AD and aging (P-value nervous system development, neuron differentiation and neurogenesis. More than 60.8% of these 97 concordant sites were found to be significantly correlated with age in normal peripheral CD4+ T cells and CD14+ monocytes as well as in four brain regions, and 44 sites were also significantly differentially methylated in different regions of AD brain tissue. Taken together, the PWB DNAm alterations related to both aging and AD could be exploited for identification of AD biomarkers. PMID:26943045

  5. Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Yannan Fan

    Full Text Available The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26(stopMet knock-in context (Del-R26(Met reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an

  6. Role of Mitochondrial DNA Copy Number Alteration in Human Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Chen-Sung Lin

    2016-05-01

    Full Text Available We investigated the role of mitochondrial DNA (mtDNA copy number alteration in human renal cell carcinoma (RCC. The mtDNA copy numbers of paired cancer and non-cancer parts from five resected RCC kidneys after radical nephrectomy were determined by quantitative polymerase chain reaction (Q-PCR. An RCC cell line, 786-O, was infected by lentiviral particles to knock down mitochondrial transcriptional factor A (TFAM. Null target (NT and TFAM-knockdown (TFAM-KD represented the control and knockdown 786-O clones, respectively. Protein or mRNA expression levels of TFAM; mtDNA-encoded NADH dehydrogenase subunit 1 (ND1, ND6 and cytochrome c oxidase subunit 2 (COX-2; nuclear DNA (nDNA-encoded succinate dehydrogenase subunit A (SDHA; v-akt murine thymoma viral oncogene homolog 1 gene (AKT-encoded AKT and v-myc myelocytomatosis viral oncogene homolog gene (c-MYC-encoded MYC; glycolytic enzymes including hexokinase II (HK-II, glucose 6-phosphate isomerase (GPI, phosphofructokinase (PFK, and lactate dehydrogenase subunit A (LDHA; and hypoxia-inducible factors the HIF-1α and HIF-2α, pyruvate dehydrogenase kinase 1 (PDK1, and pyruvate dehydrogenase E1 component α subunit (PDHA1 were analyzed by Western blot or Q-PCR. Bioenergetic parameters of cellular metabolism, basal mitochondrial oxygen consumption rate (mOCRB and basal extracellular acidification rate (ECARB, were measured by a Seahorse XFe-24 analyzer. Cell invasiveness was evaluated by a trans-well migration assay and vimentin expression. Doxorubicin was used as a chemotherapeutic agent. The results showed a decrease of mtDNA copy numbers in resected RCC tissues (p = 0.043. The TFAM-KD clone expressed lower mtDNA copy number (p = 0.034, lower mRNA levels of TFAM (p = 0.008, ND1 (p = 0.007, and ND6 (p = 0.017, and lower protein levels of TFAM and COX-2 than did the NT clone. By contrast, the protein levels of HIF-2α, HK-II, PFK, LDHA, AKT, MYC and vimentin; trans-well migration activity (p = 0

  7. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    Directory of Open Access Journals (Sweden)

    Bruno Chausse

    Full Text Available Intermittent fasting (IF is a dietary intervention often used as an alternative to caloric restriction (CR and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  8. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication.

    Directory of Open Access Journals (Sweden)

    Dany Graindorge

    Full Text Available UVA radiation (320-400 nm is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS, such as singlet oxygen (1O2 and hydrogen peroxide (H2O2, which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1 to several hours (replication fork velocity and origin firing. The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.

  9. Similar blood-borne DNA methylation alterations in cancer and inflammatory diseases determined by subpopulation shifts in peripheral leukocytes

    OpenAIRE

    Li, H; Zheng, T.; Chen, B; Hong, G; Zhang, W.; Shi, T; Li, S.; Ao, L; Wang, C.; Guo, Z.

    2014-01-01

    Background: Although many DNA methylation (DNAm) alterations observed in peripheral whole blood/leukocytes and serum have been considered as potential diagnostic markers for cancer, their origin and their specificity for cancer (e.g., vs inflammatory diseases) remain unclear. Methods: From publicly available datasets, we identified changes in the methylation of blood-borne DNA for multiple cancers and inflammatory diseases. We compared the identified changes with DNAm difference between myelo...

  10. Characterization and tissue-specific expression patterns of the Plasmodium chabaudi cir multigene family

    Directory of Open Access Journals (Sweden)

    Krücken Jürgen

    2011-09-01

    Full Text Available Abstract Background Variant antigens expressed on the surface of parasitized red blood cells (pRBCs are important virulence factors of malaria parasites. Whereas Plasmodium falciparum erythrocyte membrane proteins 1 (PfEMP1 are responsible for sequestration of mature parasites, little is known about putative ligands mediating cytoadherence to host receptors in other Plasmodium species. Candidates include members of the pir superfamily found in the human parasite Plasmodium vivax (vir, in the simian pathogen Plasmodium knowlesi (kir and in the rodent malarias Plasmodium yoelii (yir, Plasmodium berghei (bir and Plasmodium chabaudi (cir. The aim of this study was to reveal a potential involvement of cir genes in P. chabaudi sequestration. Methods Subfamilies of cir genes were identified by bioinformatic analyses of annotated sequence data in the Plasmodium Genome Database. In order to examine tissue-specific differences in the expression of cir mRNAs, RT-PCR with subfamily-specific primers was used. In total, 432 cDNA clones derived from six different tissues were sequenced to characterize the transcribed cir gene repertoire. To confirm differences in transcription profiles of cir genes, restriction fragment length polymorphism (RFLP analyses were performed to compare different host tissues and to identify changes during the course of P. chabaudi infections in immunocompetent mice. Results The phylogenetic analysis of annotated P. chabaudi putative CIR proteins identified two major subfamilies. Comparison of transcribed cir genes from six different tissues revealed significant differences in the frequency clones belonging to individual cir gene subgroups were obtained from different tissues. Further hints of difference in the transcription of cir genes in individual tissues were obtained by RFLP. Whereas only minimal changes in the transcription pattern of cir genes could be detected during the developmental cycle of the parasites, switching to

  11. Tissue-specific RNA expression marks distant-acting developmental enhancers.

    Directory of Open Access Journals (Sweden)

    Han Wu

    2014-09-01

    Full Text Available Short non-coding transcripts can be transcribed from distant-acting transcriptional enhancer loci, but the prevalence of such enhancer RNAs (eRNAs within the transcriptome, and the association of eRNA expression with tissue-specific enhancer activity in vivo remain poorly understood. Here, we investigated the expression dynamics of tissue-specific non-coding RNAs in embryonic mouse tissues via deep RNA sequencing. Overall, approximately 80% of validated in vivo enhancers show tissue-specific RNA expression that correlates with tissue-specific enhancer activity. Globally, we identified thousands of tissue-specifically transcribed non-coding regions (TSTRs displaying various genomic hallmarks of bona fide enhancers. In transgenic mouse reporter assays, over half of tested TSTRs functioned as enhancers with reproducible activity in the predicted tissue. Together, our results demonstrate that tissue-specific eRNA expression is a common feature of in vivo enhancers, as well as a major source of extragenic transcription, and that eRNA expression signatures can be used to predict tissue-specific enhancers independent of known epigenomic enhancer marks.

  12. Study of mitochondrial DNA alteration in the exhaled breath condensate of patients affected by obstructive lung diseases.

    Science.gov (United States)

    Carpagnano, G E; Lacedonia, D; Carone, M; Soccio, P; Cotugno, G; Palmiotti, G A; Scioscia, G; Foschino Barbaro, M P

    2016-01-01

    Mitochondrial DNA (MtDNA) has been studied as an expression of oxidative stress in asthma, COPD, lung cancer and obstructive sleep apnea, but it has been mainly investigated systemically, although the pathogenetic mechanisms begin in the airways and only later progress to systemic circulation. The aim of this study was to investigate the MtDNA alterations in the exhaled breath condensate (EBC) of patients with asthma, COPD and asthma-COPD overlap syndrome (ACOS). In order to analyze better what happens to mitochondria, both locally and systemically, we compared MtDNA/nDNA in blood and EBC of paired patients. Thirteen (13) COPD patients, 14 asthmatics, 23 ACOS (10 according to Spanish guidelines, 13 in line with GINA guidelines) and 12 healthy subjects were enrolled. Patients underwent clinical and functional diagnostic tests as foreseen by the guidelines. They underwent blood and EBC collection. Content of MtDNA and nuclear DNA (nDNA) was measured in the blood cells and EBC of patients by Real Time PCR. The ratio between MtDNA/nDNA was calculated. For the first time we were able to detect MtDNA/nDNA in the EBC. We found higher exhaled MtDNA/nDNA in COPD, asthmatic and ACOS patients respectively compared to healthy subjects (21.9  ±  4.9 versus 6.51  ±  0.21, p  <  0.05; 7.9  ±  2.5 versus 6.51  ±  0.21, p  =  0.06; 18.3  ±  3.4 versus 6.51  ±  0.21, p  <  0.05). The level of exhaled MtDNA/nDNA was positively correlated with the plasmatic one. The levels of MtDNA/nDNA in the EBC, as expression of oxidative stress, are increased in COPD, asthmatic and ACOS patients compared to healthy subjects. These are preliminary results in a small number of well characterized patients that requires confirmation on a larger population. We support new studies directed toward the analysis of exhaled MtDNA/nDNA as a new exhaled non-invasive marker in other inflammatory/oxidative airways diseases. PMID

  13. Tissue-specific changes of glutamine synthetase activity in oats after rhizosphere infestation by Pseudomonas syringae pv. tabaci. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knight, T.J. [Univ. of Southern Maine, Portland, ME (United States); Temple, S.; Sengupta-Gopalan, C. [New Mexico State Univ., Las Curces, NM (United States)] [and others

    1996-05-15

    Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels of GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.

  14. Alterations of mtDNA number and 4977 bp deletion induced by ionizing radiation in human peripheral blood

    International Nuclear Information System (INIS)

    Alterations of mitochondria DNA (mtDNA) 4977 bp common deletion (CD) and mtDNA copy number induced by ionizing radiation were observed in human different cell lines and total body irradiation patients. However, only few experiments have evaluated the levels of the CD and mtDNA copy number in human peripheral blood exposed to ionizing radiation till now. The aim of this study is to analyze the mtDNA alterations in irradiated human peripheral blood from healthy donors as well as to explore their feasibility as biomarkers for constructing new biodosimeter. Peripheral blood samples were collected from six healthy donors, and exposed to 60Co gamma ray with the doses of 0 Gy, 1 Gy, 2 Gy, 3 Gy, 4 Gy and 5 Gy. Levels of the CD and mtDNA copy number in irradiated samples after 2h or 24 h incubation were detected using TaqMan real-time PCR, and the CD ratio was calculated. The results showed that the mean of the CD ratio and the CD copy number exhibited a dose-dependent increase 2 h in the dose range from 0-5 Gy, and of the mtDNA copy number significantly increased 24 h in irradiated groups compared with 0 Gy group after irradiation. It indicates that the parameters in human peripheral blood may be considered as molecular biomarkers to applying construction of new biodosimeter. (authors)

  15. Effects of Benzo[a]pyrene on DNA Damage and Histological alterations in Gonad of Scallop Chlamys farreri

    OpenAIRE

    Jing-Jing, Miao; Lu-Qing, Pan; Jing, Liu; Lin, Zhang

    2008-01-01

    Effects of Benzo[a]pyrene on DNA Damage and Histological alterations in Gonad of Scallop Chlamys farreri correspondence: Corresponding author. (Lu-qing, Pan) (Lu-qing, Pan) The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China - No. 5--> , Yushan Road--> , Qingdao--> - CHINA (Jing-jing, Miao) The Key Laboratory of Mariculture, Ministry of Education, Ocean University ...

  16. Trisomy 21 Alters DNA Methylation in Parent-of-Origin-Dependent and -Independent Manners

    Science.gov (United States)

    Alves da Silva, Antônio Francisco; Machado, Filipe Brum; Pavarino, Érika Cristina; Biselli-Périco, Joice Matos; Zampieri, Bruna Lancia; da Silva Francisco Junior, Ronaldo; Mozer Rodrigues, Pedro Thyago; Terra Machado, Douglas; Santos-Rebouças, Cíntia Barros; Gomes Fernandes, Maria; Chuva de Sousa Lopes, Susana Marina; Lopes Rios, Álvaro Fabricio

    2016-01-01

    The supernumerary chromosome 21 in Down syndrome differentially affects the methylation statuses at CpG dinucleotide sites and creates genome-wide transcriptional dysregulation of parental alleles, ultimately causing diverse pathologies. At present, it is unknown whether those effects are dependent or independent of the parental origin of the nondisjoined chromosome 21. Linkage analysis is a standard method for the determination of the parental origin of this aneuploidy, although it is inadequate in cases with deficiency of samples from the progenitors. Here, we assessed the reliability of the epigenetic 5mCpG imprints resulting in the maternally (oocyte)-derived allele methylation at a differentially methylated region (DMR) of the candidate imprinted WRB gene for asserting the parental origin of chromosome 21. We developed a methylation-sensitive restriction enzyme-specific PCR assay, based on the WRB DMR, across single nucleotide polymorphisms (SNPs) to examine the methylation statuses in the parental alleles. In genomic DNA from blood cells of either disomic or trisomic subjects, the maternal alleles were consistently methylated, while the paternal alleles were unmethylated. However, the supernumerary chromosome 21 did alter the methylation patterns at the RUNX1 (chromosome 21) and TMEM131 (chromosome 2) CpG sites in a parent-of-origin-independent manner. To evaluate the 5mCpG imprints, we conducted a computational comparative epigenomic analysis of transcriptome RNA sequencing (RNA-Seq) and histone modification expression patterns. We found allele fractions consistent with the transcriptional biallelic expression of WRB and ten neighboring genes, despite the similarities in the confluence of both a 17-histone modification activation backbone module and a 5-histone modification repressive module between the WRB DMR and the DMRs of six imprinted genes. We concluded that the maternally inherited 5mCpG imprints at the WRB DMR are uncoupled from the parental allele

  17. Genome-wide de Novo Prediction of Proximal and Distal Tissue-Specific Enhancers

    Energy Technology Data Exchange (ETDEWEB)

    Loots, G G; Ovcharenko, I V

    2005-11-03

    Determining how transcriptional regulatory networks are encoded in the human genome is essential for understanding how cellular processes are directed. Here, we present a novel approach for systematically predicting tissue specific regulatory elements (REs) that blends genome-wide expression profiling, vertebrate genome comparisons, and pattern analysis of transcription factor binding sites. This analysis yields 4,670 candidate REs in the human genome with distinct tissue specificities, the majority of which reside far away from transcription start sites. We identify key transcription factors (TFs) for 34 distinct tissues and demonstrate that tissue-specific gene expression relies on multiple regulatory pathways employing similar, but different cohorts of interacting TFs. The methods and results we describe provide a global view of tissue specific gene regulation in humans, and propose a strategy for deciphering the transcriptional regulatory code in eukaryotes.

  18. Mutagenesis and ultraviolet inactivation of transforming DNA of ``Haemophilus influenzae`` complexed with a ``Bacillus subtilis`` protein that alter DNA conformation

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, Jane K. [Brookhaven National Lab., Upton, NY (United States); Setlow, Barbara C.; Setlow, Peter [Connecticut Univ., Farmington, CT (United States)

    1996-12-31

    The wild-type ``Bacillus subtilis`` spore protein, SspC{sup wt}, binds to DNA ``in vitro`` and ``in vivo`` and changes the conformation of DNA from B to A. Synthesis of the cloned SspC{sup wt} gene in ``Escherichia coli`` also causes large increases in mutation frequency. Binding of SspC{sup wt} to transforming DNA from ``Haemophilus influenzae`` made the DNA resistant to ultraviolet (UV) radiation. The mutant protein, SspC{sup ala}, which does not bind DNA, did not change the UV resistance. The UV sensitivity of the DNA/SspC{sup wt} complex was not increased when the recipients of the DNA were defective in excision of pyrimidine dimers. These data indicate that the ``H. influenzae`` excision mechanism does not operate on the spore photoproduct formed by UV irradiation of the complex. Selection for the streptomycin- or erythromycin-resistance markers on the transforming DNA evidenced significant mutations at loci closely linked to these, but not at other loci. SspC{sup wt} apparently entered the cell attached to the transforming DNA, and caused mutations in adjacent loci. The amount of such mutations decreased when the transforming DNA was UV irradiated, because UV unlinks linked markers. (author). 22 refs, 4 figs, 4 tabs.

  19. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    DEFF Research Database (Denmark)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.;

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes...... propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics....

  20. A comprehensive functional analysis of tissue specificity of human gene expression

    OpenAIRE

    Guryanov Alexey; Brennan Richard J; Rakhmatulin Eugene; Bugrim Andrej; Dosymbekov Damir; Serebriyskaya Tatiana; Shi Weiwei; Sviridov Evgeny; Nikolsky Yuri; Dezső Zoltán (1947-) (fizikus); Li Kelly; Blake Julie; Samaha Raymond R; Nikolskaya Tatiana

    2008-01-01

    Abstract Background In recent years, the maturation of microarray technology has allowed the genome-wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping') genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues. Results We measured whole genome expression in 31 human ti...

  1. Alterations in mitochondrial DNA: a technique for the detection of irradiated BEEF

    International Nuclear Information System (INIS)

    DNA molecules are very sensitive to ionizing radiation, even at low doses. Strand breaks are easy to detect despite the generally low DNA content of foods, but such ruptures are not specific to radiation processing. In order to make DNA strand rupture more specific to radiation (other than by deep freezing) it appears necessary to isolate the irradiated DNA from cellular enzymes. This is the case for mitochondrial DNA that is protected from enzymatic reactions by the mitochondrial walls but not from radiation. It can be assumed that DNA strand breaks in mitochondria will be specific to ionizing radiation. The authors explain their methods to extract and analyse the mitochondrial DNA

  2. The random amplified polymorphic DNA (RAPD) assay to determine DNA alterations, repair and transgenerational effects in B(a)P exposed Daphnia magna.

    Science.gov (United States)

    Atienzar, Franck A; Jha, Awadhesh N

    2004-08-18

    The random amplified polymorphic DNA (RAPD) is a useful assay for the detection of genotoxin-induced DNA damage and mutations. In this study, we have further evaluated the potential of this assay to measure benzo(a)pyrene [B(a)P]-induced DNA changes, and repair (in kinetic experiments) as well as transgenerational effects in the water fleas, Daphnia magna. The organisms, which reproduce parthenogenetically, were exposed to 50 microg L(-1) B(a)P for 3 or 6 days and were allowed to recover in clean medium for 12 or 9 days, respectively. Qualitative and quantitative changes were observed in RAPD profiles generated not only from the B(a)P exposed Daphnia but also from previously treated organisms during the recovery experiments. The fact that some of the RAPD changes disappeared at the end of both recovery experiments suggested that the DNA effects were fully repaired or reversed. In addition, some of the B(a)P-induced RAPD alterations detected in parental D. magna were also observed in the offspring patterns. This suggested that DNA alterations that occurred in germ cells were probably transmitted to the next cohorts. The present study shows that the RAPD method can be useful to qualitatively assess the kinetics of DNA changes, repair and transgenerational effects and such effects could potentially be linked to survival and reproductive success at higher levels of biological organisation. In addition, the water fleas have efficient capabilities to repair or reverse B(a)P-induced DNA effects. Finally, unrepaired or misrepaired genetic damage induced by genotoxins such as B(a)P could be transmitted to next generations in these parthenogenetically reproducing organisms. PMID:15288546

  3. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  4. A comprehensive functional analysis of tissue specificity of human gene expression

    Directory of Open Access Journals (Sweden)

    Guryanov Alexey

    2008-11-01

    Full Text Available Abstract Background In recent years, the maturation of microarray technology has allowed the genome-wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping' genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues. Results We measured whole genome expression in 31 human tissues, identifying 2374 housekeeping genes expressed in all tissues, and genes uniquely expressed in each tissue. Comprehensive functional analysis showed that the housekeeping set is substantially larger than previously thought, and is enriched with vital processes such as oxidative phosphorylation, ubiquitin-dependent proteolysis, translation and energy metabolism. Network topology of the housekeeping network was characterized by higher connectivity and shorter paths between the proteins than the global network. Ontology enrichment scoring and network topology of tissue-specific genes were consistent with each tissue's function and expression patterns clustered together in accordance with tissue origin. Tissue-specific genes were twice as likely as housekeeping genes to be drug targets, allowing the identification of tissue 'signature networks' that will facilitate the discovery of new therapeutic targets and biomarkers of tissue-targeted diseases. Conclusion A comprehensive functional analysis of housekeeping and tissue-specific genes showed that the biological function of housekeeping and tissue-specific genes was consistent with tissue origin. Network analysis revealed that tissue-specific networks have distinct network properties related to each tissue's function. Tissue 'signature networks' promise to be a rich source of targets and biomarkers for disease treatment and diagnosis.

  5. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure.

    Directory of Open Access Journals (Sweden)

    Colm E Nestor

    2014-01-01

    Full Text Available Altered DNA methylation patterns in CD4(+ T-cells indicate the importance of epigenetic mechanisms in inflammatory diseases. However, the identification of these alterations is complicated by the heterogeneity of most inflammatory diseases. Seasonal allergic rhinitis (SAR is an optimal disease model for the study of DNA methylation because of its well-defined phenotype and etiology. We generated genome-wide DNA methylation (N(patients = 8, N(controls = 8 and gene expression (N(patients = 9, Ncontrols = 10 profiles of CD4(+ T-cells from SAR patients and healthy controls using Illumina's HumanMethylation450 and HT-12 microarrays, respectively. DNA methylation profiles clearly and robustly distinguished SAR patients from controls, during and outside the pollen season. In agreement with previously published studies, gene expression profiles of the same samples failed to separate patients and controls. Separation by methylation (N(patients = 12, N(controls = 12, but not by gene expression (N(patients = 21, N(controls = 21 was also observed in an in vitro model system in which purified PBMCs from patients and healthy controls were challenged with allergen. We observed changes in the proportions of memory T-cell populations between patients (N(patients = 35 and controls (N(controls = 12, which could explain the observed difference in DNA methylation. Our data highlight the potential of epigenomics in the stratification of immune disease and represents the first successful molecular classification of SAR using CD4(+ T cells.

  6. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 430C and 450C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 450C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 370C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 410C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  7. Genomic organization of mouse orexin receptors: characterization of two novel tissue-specific splice variants.

    Science.gov (United States)

    Chen, Jing; Randeva, Harpal S

    2004-11-01

    In humans and rat, orexins orchestrate divergent actions through their G protein-coupled receptors, orexin-1 (OX1R) and orexin-2 (OX2R). Orexins also play an important physiological role in mouse, but the receptors through which they function are not characterized. To characterize the physiological role(s) of orexins in the mouse, we cloned and characterized the mouse orexin receptor(s), mOX1R and mOX2R, using rapid amplification of cDNA (mouse brain) ends, RT-PCR, and gene structure analysis. The mOX1R cDNA encodes a 416-amino acid (aa) receptor. We have identified two alternative C terminus splice variants of the mOX2R; mOX2 alpha R (443 aa) and mOX2 beta R (460 aa). Binding studies in human embryonic kidney 293 cells transfected with mOX1R, mOX2 alpha R, and the mOX2 beta R revealed specific, saturable sites for both orexin-A and -B. Activation of these receptors by orexins induced inositol triphosphate (IP(3)) turnover. However, human embryonic kidney 293 cells transfected with mOXRs demonstrated no cAMP response to either orexin-A or orexin-B challenge, although forskolin and GTP gamma S revealed a dose-dependent increase in cAMP. Although, orexin-A and -B showed no difference in binding characteristics between the splice variants; interestingly, orexin-B led to an increase in IP(3) production at all concentrations in the mOX2 beta R variant. Orexin-A, however, showed no difference in IP(3) production between the two variants. Additionally, in the mouse, we demonstrate that these splice variants are distributed in a tissue-specific manner, where OX2 alpha R mRNA was undetectable in skeletal muscle and kidney. Moreover, food deprivation led to a greater increase in hypothalamic mOX2 beta R gene expression, compared with both mOX1R and mOX2 alpha R. This potentially implicates a fundamental physiological role for these splice variants. PMID:15256537

  8. Suppression of Recj Exonuclease Mutants of Escherichia Coli by Alterations in DNA Helicases II (Uvrd) and IV (Held)

    OpenAIRE

    Lovett, S T; Sutera-Jr., V. A.

    1995-01-01

    The recJ gene encodes a single-strand DNA-specific exonuclease involved in homologous recombination. We have isolated a pseudorevertant strain in which recJ mutant phenotypes were alleviated. Suppression of recJ was due to at least three mutations, two of which we have identified as alterations in DNA helicase genes. A recessive amber mutation, ``uvrD517(am),'' at codon 503 of the gene encoding helicase II was sufficient to suppress recJ partially. The uvrD517(am) mutation does not eliminate ...

  9. Motif Discovery in Tissue-Specific Regulatory Sequences Using Directed Information

    Directory of Open Access Journals (Sweden)

    James Douglas Engel

    2007-12-01

    Full Text Available Motif discovery for the identification of functional regulatory elements underlying gene expression is a challenging problem. Sequence inspection often leads to discovery of novel motifs (including transcription factor sites with previously uncharacterized function in gene expression. Coupled with the complexity underlying tissue-specific gene expression, there are several motifs that are putatively responsible for expression in a certain cell type. This has important implications in understanding fundamental biological processes such as development and disease progression. In this work, we present an approach to the identification of motifs (not necessarily transcription factor sites and examine its application to some questions in current bioinformatics research. These motifs are seen to discriminate tissue-specific gene promoter or regulatory regions from those that are not tissue-specific. There are two main contributions of this work. Firstly, we propose the use of directed information for such classification constrained motif discovery, and then use the selected features with a support vector machine (SVM classifier to find the tissue specificity of any sequence of interest. Such analysis yields several novel interesting motifs that merit further experimental characterization. Furthermore, this approach leads to a principled framework for the prospective examination of any chosen motif to be discriminatory motif for a group of coexpressed/coregulated genes, thereby integrating sequence and expression perspectives. We hypothesize that the discovery of these motifs would enable the large-scale investigation for the tissue-specific regulatory role of any conserved sequence element identified from genome-wide studies.

  10. Motif Discovery in Tissue-Specific Regulatory Sequences Using Directed Information

    Directory of Open Access Journals (Sweden)

    States David

    2007-01-01

    Full Text Available Motif discovery for the identification of functional regulatory elements underlying gene expression is a challenging problem. Sequence inspection often leads to discovery of novel motifs (including transcription factor sites with previously uncharacterized function in gene expression. Coupled with the complexity underlying tissue-specific gene expression, there are several motifs that are putatively responsible for expression in a certain cell type. This has important implications in understanding fundamental biological processes such as development and disease progression. In this work, we present an approach to the identification of motifs (not necessarily transcription factor sites and examine its application to some questions in current bioinformatics research. These motifs are seen to discriminate tissue-specific gene promoter or regulatory regions from those that are not tissue-specific. There are two main contributions of this work. Firstly, we propose the use of directed information for such classification constrained motif discovery, and then use the selected features with a support vector machine (SVM classifier to find the tissue specificity of any sequence of interest. Such analysis yields several novel interesting motifs that merit further experimental characterization. Furthermore, this approach leads to a principled framework for the prospective examination of any chosen motif to be discriminatory motif for a group of coexpressed/coregulated genes, thereby integrating sequence and expression perspectives. We hypothesize that the discovery of these motifs would enable the large-scale investigation for the tissue-specific regulatory role of any conserved sequence element identified from genome-wide studies.

  11. Anti–DNA B Cells in MRL/lpr Mice Show Altered Differentiation and Editing Pattern

    OpenAIRE

    Li, Yijin; Li, Hui; Ni, Dongyao; Weigert, Martin

    2002-01-01

    We have studied the regulation of anti–DNA B cells in transgenic mice with a heavy chain transgene (3H9H/56R). This transgene codes for a heavy chain that forms anti–double-stranded DNA (dsDNA) antibody when paired with most members of the endogenous Vκ repertoire, but certain L chains, referred to as Vκ editors, do not sustain dsDNA binding in combination with 3H9H/56R. In the nonautoimmune 3H9H/56R BALB/c, most B cells generated do not bind DNA because the transgene itself is edited or is a...

  12. Presence of intestinal Mycobacterium avium subspecies paratuberculosis (MAP DNA is not associated with altered MMP expression in ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Halwe Jörg M

    2011-04-01

    Full Text Available Abstract Background Mycobacterium avium subspecies paratuberculosis (MAP is suspected to be a causative agent in human Crohn's disease (CD. Recent evidence suggests that pathogenic mycobacteria and MAP can induce the expression of Matrix Metalloproteinases (MMP, which are the main proteases in the pathogenesis of mucosal ulcerations in inflammatory bowel disease (IBD. Within this study we assessed the prevalence of intestinal MAP specific DNA in patients with Crohn's disease, ulcerative colitis (UC, and healthy controls. We further analysed regulation patterns of MMPs in mucosal tissues of UC patients with and without intestinal MAP DNA detection. Methods Colonic biopsy samples were obtained from 63 Norwegian and German IBD patients and 21 healthy controls. RNA was quantified by quantitative real-time polymerase chain reaction (PCR to study MMP gene expression in both pathological and healthy mucosal specimens. The presence of MAP DNA in colonic mucosa was examined using MAP specific PCR. Results MAP DNA was detected in 20% of UC patients and 33% of healthy controls but only in 7% of patients with CD. UC patients treated with corticosteroids exhibited a significantly increased frequency of intestinal MAP DNA compared to those not receiving corticosteroids. Expression of MMP-1, -2, -7, -9, -13, -19, -28 and TNF-α did not differ between UC patients with presence of intestinal MAP DNA compared to those without. MMP-2, MMP-9 and MMP-13 were significantly decreased in UC patients receiving corticosteroids. Conclusions The presence of intestinal MAP specific DNA is not associated with altered MMP expression in UC in vivo. Corticosteroids are associated with increased detection of intestinal MAP DNA and decreased expression of certain MMPs. Frequent detection of MAP DNA in healthy controls might be attributable to the wide environmental distribution of MAP and its presence in the food-chain.

  13. A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures.

    Science.gov (United States)

    Wong, Michael Thomas; Ong, David Eng Hui; Lim, Frances Sheau Huei; Teng, Karen Wei Weng; McGovern, Naomi; Narayanan, Sriram; Ho, Wen Qi; Cerny, Daniela; Tan, Henry Kun Kiaang; Anicete, Rosslyn; Tan, Bien Keem; Lim, Tony Kiat Hon; Chan, Chung Yip; Cheow, Peng Chung; Lee, Ser Yee; Takano, Angela; Tan, Eng-Huat; Tam, John Kit Chung; Tan, Ern Yu; Chan, Jerry Kok Yen; Fink, Katja; Bertoletti, Antonio; Ginhoux, Florent; Curotto de Lafaille, Maria Alicia; Newell, Evan William

    2016-08-16

    Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body. PMID:27521270

  14. Findings on sperm alterations and DNA fragmentation, nutritional, hormonal and antioxidant status in an elite triathlete. Case report

    Directory of Open Access Journals (Sweden)

    D. Vaamonde

    2014-12-01

    Conclusions: In this high-intensity endurance athlete, sperm parameters, mainly sperm morphology and DNA fragmentation, are altered. Further knowledge is needed with regards nutritional antioxidant intake and other dietetic strategies oriented toward avoiding oxidative damage in semen of high-performance triathletes. Moreover, adequate nutritional strategies must be found and nutritional advice given to athletes so as to palliate or dampen the effects of exercise on semen quality.

  15. Search for Genomic Alterations in Monozygotic Twins Discordant for Cleft Lip and/or Palate

    DEFF Research Database (Denmark)

    Kimani, Jane W; Yoshiura, Koh-Ichiro; Shi, Min;

    2009-01-01

    consisting of 1,536 SNPs, to scan for genomic alterations in a sample of monozygotic twin pairs with discordant cleft lip and/or palate phenotypes. Paired analysis for deletions, amplifications and loss of heterozygosity, along with sequence verification of SNPs with discordant genotype calls did not reveal...... any genomic discordance between twin pairs in lymphocyte DNA samples. Our results demonstrate that postzygotic genomic alterations are not a common cause of monozygotic twin discordance for isolated cleft lip and/or palate. However, rare or balanced genomic alterations, tissue-specific events and...

  16. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    Energy Technology Data Exchange (ETDEWEB)

    Blossom, Sarah J., E-mail: blossomsarah@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children' s Hospital Research Institute, 13 Children' s Way, Little Rock, AR 72202 (United States); Cooney, Craig A. [Department of Research and Development, Central Arkansas Veterans Healthcare System, John L. McClellan Memorial Veterans Hospital, 4300 West 7th St., Little Rock, AR 72205-5484 (United States); Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J. [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children' s Hospital Research Institute, 13 Children' s Way, Little Rock, AR 72202 (United States); Wessinger, William D. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, College of Medicine, 4301 West Markham St., Little Rock, AR 72205 (United States)

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  17. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    International Nuclear Information System (INIS)

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  18. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration.

    Science.gov (United States)

    Hall, A E; Lu, W-T; Godfrey, J D; Antonov, A V; Paicu, C; Moxon, S; Dalmay, T; Wilczynska, A; Muller, P A J; Bushell, M

    2016-01-01

    The integrity of the genome is maintained by a host of surveillance and repair mechanisms that are pivotal for cellular function. The tumour suppressor protein p53 is a major component of the DNA damage response pathway and plays a vital role in the maintenance of cell-cycle checkpoints. Here we show that a microRNA, miR-486, and its host gene ankyrin-1 (ANK1) are induced by p53 following DNA damage. Strikingly, the cytoskeleton adaptor protein ankyrin-1 was induced over 80-fold following DNA damage. ANK1 is upregulated in response to a variety of DNA damage agents in a range of cell types. We demonstrate that miR-486-5p is involved in controlling G1/S transition following DNA damage, whereas the induction of the ankyrin-1 protein alters the structure of the actin cytoskeleton and sustains limited cell migration during DNA damage. Importantly, we found that higher ANK1 expression correlates with decreased survival in cancer patients. Thus, these observations highlight ANK1 as an important effector downstream of the p53 pathway. PMID:27054339

  19. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques.

    Directory of Open Access Journals (Sweden)

    Viraj Kulkarni

    Full Text Available HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24(gag elements (CE induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55(gag increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist.

  20. DNA Methylation Alterations at 5'-CCGG Sites in the Interspecific and Intraspecific Hybridizations Derived from Brassica rapa and B. napus.

    Directory of Open Access Journals (Sweden)

    Wanshan Xiong

    Full Text Available DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5'-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5'-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.

  1. Effective removal of co-purified inhibitors from extracted DNA samples using synchronous coefficient of drag alteration (SCODA) technology.

    Science.gov (United States)

    Schmedes, Sarah; Marshall, Pamela; King, Jonathan L; Budowle, Bruce

    2013-07-01

    Various types of biological samples present challenges for extraction of DNA suitable for subsequent molecular analyses. Commonly used extraction methods, such as silica membrane columns and phenol-chloroform, while highly successful may still fail to provide a sufficiently pure DNA extract with some samples. Synchronous coefficient of drag alteration (SCODA), implemented in Boreal Genomics' Aurora Nucleic Acid Extraction System (Boreal Genomics, Vancouver, BC), is a new technology that offers the potential to remove inhibitors effectively while simultaneously concentrating DNA. In this initial study, SCODA was tested for its ability to remove various concentrations of forensically and medically relevant polymerase chain reaction (PCR) inhibitors naturally found in tissue, hair, blood, plant, and soil samples. SCODA was used to purify and concentrate DNA from intentionally contaminated DNA samples containing known concentrations of hematin, humic acid, melanin, and tannic acid. The internal positive control (IPC) provided in the Quantifiler™ Human DNA Quantification Kit (Life Technologies, Foster City, CA) and short tandem repeat (STR) profiling (AmpFℓSTR® Identifiler® Plus PCR Amplification Kit; Life Technologies, Foster City, CA) were used to measure inhibition effects and hence purification. SCODA methodology yielded overall higher efficiency of purification of highly contaminated samples compared with the QIAquick® PCR Purification Kit (Qiagen, Valencia, CA). SCODA-purified DNA yielded no cycle shift of the IPC for each sample and yielded greater allele percentage recovery and relative fluorescence unit values compared with the QIAquick® purification method. The Aurora provided an automated, minimal-step approach to successfully remove inhibitors and concentrate DNA from challenged samples. PMID:23254459

  2. The N(2)-Furfuryl-deoxyguanosine Adduct Does Not Alter the Structure of B-DNA.

    Science.gov (United States)

    Ghodke, Pratibha P; Gore, Kiran R; Harikrishna, S; Samanta, Biswajit; Kottur, Jithesh; Nair, Deepak T; Pradeepkumar, P I

    2016-01-15

    N(2)-Furfuryl-deoxyguanosine (fdG) is carcinogenic DNA adduct that originates from furfuryl alcohol. It is also a stable structural mimic of the damage induced by the nitrofurazone family of antibiotics. For the structural and functional studies of this model N(2)-dG adduct, reliable and rapid access to fdG-modified DNAs are warranted. Toward this end, here we report the synthesis of fdG-modified DNAs using phosphoramidite chemistry involving only three steps. The functional integrity of the modified DNA has been verified by primer extension studies with DNA polymerases I and IV from E. coli. Introduction of fdG into a DNA duplex decreases the Tm by ∼1.6 °C/modification. Molecular dynamics simulations of a DNA duplex bearing the fdG adduct revealed that though the overall B-DNA structure is maintained, this lesion can disrupt W-C H-bonding, stacking interactions, and minor groove hydrations to some extent at the modified site, and these effects lead to slight variations in the local base pair parameters. Overall, our studies show that fdG is tolerated at the minor groove of the DNA to a better extent compared with other bulky DNA damages, and this property will make it difficult for the DNA repair pathways to detect this adduct. PMID:26650891

  3. Mitochondria DNA mutations cause sex-dependent development of hypertension and alterations in cardiovascular function

    OpenAIRE

    Golob, Mark J.; Tian, Lian; Wang, Zhijie; Zimmerman, Todd A.; Caneba, Christine A.; Hacker, Timothy A.; Song, Guoqing; Chesler, Naomi C.

    2014-01-01

    Aging is associated with conduit artery stiffening that is a risk factor for and can precede hypertension and ventricular dysfunction. Increases in mitochondria DNA (mtDNA) frequency have been correlated with aging. Mice with a mutation in the encoding domain (D257A) of a proof-reading deficient version of mtDNA polymerase-γ (POLG) have musculoskeletal features of premature aging and a shortened lifespan. However, few studies using these mice have investigated the effects of mtDNA mutations o...

  4. Tissue-specific expression of insulin-like growth factor II mRNAs with distinct 5' untranslated regions

    International Nuclear Information System (INIS)

    The authors have used RNA from human hypothalamus as template for the production of cDNAs encoding insulin-like growth factor II (IGF-II). The prohormone coding sequence of brain IGF-II RNA is identical to that found in liver; however, the 5' untranslated sequence of the brain cDNA has no homology to the 5' untranslated sequence of the previously reported liver cDNAs. By using hybridization to specific probes as well as a method based on the properties of RNase H, they found that the human IGF-II gene has at least three exons that encode alternative 5' untranslated regions and that are expressed in a tissue-specific manner. A probe specific to the brain cDNA 5' untranslated region hybridizes to a 6.0-kilobase transcript present in placenta, hypothalamus, adrenal gland, kidney, Wilms tumor, and a pheochromocytoma. The 5' untranslated sequence of the brain cDNA does not hybridize to a 5.3-kilobase transcript found in liver or to a 5.0-kb transcript found in pheochromocytoma. By using RNase H to specifically fragment the IGF-II transcripts into 3' and 5' fragments, they found that the RNAs vary in size due to differences in the 5' end but not the 3' end

  5. Altered Mitochondrial Function, Mitochondrial DNA and Reduced Metabolic Flexibility in Patients With Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Anna Czajka

    2015-06-01

    Full Text Available The purpose of this study was to determine if mitochondrial dysfunction plays a role in diabetic nephropathy (DN, a kidney disease which affects >100 million people worldwide and is a leading cause of renal failure despite therapy. A cross-sectional study comparing DN with diabetes patients without kidney disease (DC and healthy controls (HCs; and renal mesangial cells (HMCs grown in normal and high glucose, was carried out. Patients with diabetes (DC had increased circulating mitochondrial DNA (MtDNA, and HMCs increased their MtDNA within 24 h of hyperglycaemia. The increased MtDNA content in DCs and HMCs was not functional as transcription was unaltered/down-regulated, and MtDNA damage was present. MtDNA was increased in DC compared to HC, conversely, patients with DN had lower MtDNA than DC. Hyperglycaemic HMCs had fragmented mitochondria and TLR9 pathway activation, and in diabetic patients, mitophagy was reduced. Despite MtDNA content and integrity changing within 4 days, hyperglycaemic HMCs had a normal bio-energetic profile until 8 days, after which mitochondrial metabolism was progressively impaired. Peripheral blood mononuclear cells (PBMCs from DN patients had reduced reserve capacity and maximal respiration, loss of metabolic flexibility and reduced Bioenergetic Health Index (BHI compared to DC. Our data show that MtDNA changes precede bioenergetic dysfunction and that patients with DN have impaired mitochondrial metabolism compared to DC, leading us to propose that systemic mitochondrial dysfunction initiated by glucose induced MtDNA damage may be involved in the development of DN. Longitudinal studies are needed to define a potential cause–effect relationship between changes in MtDNA and bioenergetics in DN.

  6. Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Oded Magger

    Full Text Available The prioritization of candidate disease-causing genes is a fundamental challenge in the post-genomic era. Current state of the art methods exploit a protein-protein interaction (PPI network for this task. They are based on the observation that genes causing phenotypically-similar diseases tend to lie close to one another in a PPI network. However, to date, these methods have used a static picture of human PPIs, while diseases impact specific tissues in which the PPI networks may be dramatically different. Here, for the first time, we perform a large-scale assessment of the contribution of tissue-specific information to gene prioritization. By integrating tissue-specific gene expression data with PPI information, we construct tissue-specific PPI networks for 60 tissues and investigate their prioritization power. We find that tissue-specific PPI networks considerably improve the prioritization results compared to those obtained using a generic PPI network. Furthermore, they allow predicting novel disease-tissue associations, pointing to sub-clinical tissue effects that may escape early detection.

  7. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  8. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  9. ATM alters the otherwise robust chromatin mobility at sites of DNA double-strand breaks (DSBs in human cells.

    Directory of Open Access Journals (Sweden)

    Annabelle Becker

    Full Text Available Ionizing radiation induces DNA double strand breaks (DSBs which can lead to the formation of chromosome rearrangements through error prone repair. In mammalian cells the positional stability of chromatin contributes to the maintenance of genome integrity. DSBs exhibit only a small, submicron scale diffusive mobility, but a slight increase in the mobility of chromatin domains by the induction of DSBs might influence repair fidelity and the formation of translocations. The radiation-induced local DNA decondensation in the vicinity of DSBs is one factor potentially enhancing the mobility of DSB-containing chromatin domains. Therefore in this study we focus on the influence of different chromatin modifying proteins, known to be activated by the DNA damage response, on the mobility of DSBs. IRIF (ionizing radiation induced foci in U2OS cells stably expressing 53BP1-GFP were used as a surrogate marker of DSBs. Low angle charged particle irradiation, known to trigger a pronounced DNA decondensation, was used for the defined induction of linear tracks of IRIF. Our results show that movement of IRIF is independent of the investigated chromatin modifying proteins like ACF1 or PARP1 and PARG. Also depletion of proteins that tether DNA strands like MRE11 and cohesin did not alter IRIF dynamics significantly. Inhibition of ATM, a key component of DNA damage response signaling, resulted in a pronounced confinement of DSB mobility, which might be attributed to a diminished radiation induced decondensation. This confinement following ATM inhibition was confirmed using X-rays, proving that this effect is not restricted to densely ionizing radiation. In conclusion, repair sites of DSBs exhibit a limited mobility on a small spatial scale that is mainly unaffected by depletion of single remodeling or DNA tethering proteins. However, it relies on functional ATM kinase which is considered to influence the chromatin structure after irradiation.

  10. MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development.

    Science.gov (United States)

    Virdi, Kamaldeep S; Wamboldt, Yashitola; Kundariya, Hardik; Laurie, John D; Keren, Ido; Kumar, K R Sunil; Block, Anna; Basset, Gilles; Luebker, Steve; Elowsky, Christian; Day, Philip M; Roose, Johnna L; Bricker, Terry M; Elthon, Thomas; Mackenzie, Sally A

    2016-02-01

    As metabolic centers, plant organelles participate in maintenance, defense, and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We investigated the msh1 phenotype using hemi-complementation mutants and transgene-null segregants from RNAi suppression lines to sub-compartmentalize MSH1 effects. We show that MSH1 expression is spatially regulated, specifically localizing to plastids within the epidermis and vascular parenchyma. The protein binds DNA and localizes to plastid and mitochondrial nucleoids, but fractionation and protein-protein interactions data indicate that MSH1 also associates with the thylakoid membrane. Plastid MSH1 depletion results in variegation, abiotic stress tolerance, variable growth rate, and delayed maturity. Depletion from mitochondria results in 7%-10% of plants altered in leaf morphology, heat tolerance, and mitochondrial genome stability. MSH1 does not localize within the nucleus directly, but plastid depletion produces non-genetic changes in flowering time, maturation, and growth rate that are heritable independent of MSH1. MSH1 depletion alters non-photoactive redox behavior in plastids and a sub-set of mitochondrially altered lines. Ectopic expression produces deleterious effects, underlining its strict expression control. Unraveling the complexity of the MSH1 effect offers insight into triggers of plant-specific, transgenerational adaptation behaviors. PMID:26584715

  11. De novo assembly and characterization of tissue-specific transcriptome in the endangered golden mahseer, Tor putitora.

    Science.gov (United States)

    Barat, Ashoktaru; Kumar, Rohit; Goel, Chirag; Singh, Atul Kumar; Sahoo, Prabhati Kumari

    2016-02-01

    The golden mahseer (Tor putitora) graces most of the Himalayan Rivers of India and neighboring South Asian countries. Despite its several importance as a research model, as food, and in sport fishing, knowledge on transcriptome database is nil. Therefore, it was targeted to develop reference transcriptome databases of the species using next-generation sequencing. In the present study, 100,540,130 high-quality paired-end reads were obtained from six cDNA libraries of spleen, liver, gill, kidney, muscle, and brain with 28.4 GB data using Illumina paired-end sequencing technology. Tissue-specific transcriptomes as well as complete transcriptome assembly were analyzed for concise representation of the study. In brief, the de novo assembly of individual tissue resulted in an average of 31,829 (18,512-46,348) contigs per sample, while combined transcriptome comprised 77,907 unique transcript fragments (unigenes) assembled from reads of six tissues. Approximately 75,407 (96.8%) unigenes could be annotated according to their homology matches in the nr, SwisseProt, GO, or KEGG databases. Comparative analysis showed that 84% of the unigenes have significant similarity to zebra fish RefSeq proteins. Tissue-specific-dominated genes were also identified to hypothesize their localization and expression in individual tissue. In addition, 2485 simple sequence repeats (SSRs) were detected from 77,907 transcripts in the combined transcriptome of the golden mahseer. This study has generated organ-specific transcriptome profiles, which will be helpful to understand the local adaptation, genome evolution, and also future functional studies on immune system of the golden mahseer. PMID:26702399

  12. De novo assembly and characterization of tissue-specific transcriptome in the endangered golden mahseer, Tor putitora

    Directory of Open Access Journals (Sweden)

    Ashoktaru Barat

    2016-02-01

    Full Text Available The golden mahseer (Tor putitora graces most of the Himalayan Rivers of India and neighboring South Asian countries. Despite its several importance as a research model, as food, and in sport fishing, knowledge on transcriptome database is nil. Therefore, it was targeted to develop reference transcriptome databases of the species using next-generation sequencing. In the present study, 100,540,130 high-quality paired-end reads were obtained from six cDNA libraries of spleen, liver, gill, kidney, muscle, and brain with 28.4 GB data using Illumina paired-end sequencing technology. Tissue-specific transcriptomes as well as complete transcriptome assembly were analyzed for concise representation of the study. In brief, the de novo assembly of individual tissue resulted in an average of 31,829 (18,512–46,348 contigs per sample, while combined transcriptome comprised 77,907 unique transcript fragments (unigenes assembled from reads of six tissues. Approximately 75,407 (96.8% unigenes could be annotated according to their homology matches in the nr, SwisseProt, GO, or KEGG databases. Comparative analysis showed that 84% of the unigenes have significant similarity to zebra fish RefSeq proteins. Tissue-specific-dominated genes were also identified to hypothesize their localization and expression in individual tissue. In addition, 2485 simple sequence repeats (SSRs were detected from 77,907 transcripts in the combined transcriptome of the golden mahseer. This study has generated organ-specific transcriptome profiles, which will be helpful to understand the local adaptation, genome evolution, and also future functional studies on immune system of the golden mahseer.

  13. Myristylation alters DNA-binding activity and transactivation of FBR (gag-fos) protein.

    OpenAIRE

    Kamata, N; Jotte, R M; Holt, J. T.

    1991-01-01

    FBR murine sarcoma virus (gag-fos) protein, a virally transduced Fos protein, exhibits decreased gene transactivation in comparison with the cellular Fos protein. Biochemical analysis suggests that myristylation of the virally encoded N-terminal gag region results in decreased DNA binding and transcriptional activation without affecting heterodimerization with Jun protein. These findings demonstrate that protein myristylation can modulate gene regulation by a DNA-binding protein.

  14. DNA-repair, chromosome alterations and chromatin structure under environmental pollutions

    International Nuclear Information System (INIS)

    54 abstracts, 20 of which are within the INIS scope, are presented. The papers are dealing with the influence of some chemicals, environmental pollutants as well as drugs, on the process of DNA repair after ionizing irradiation. Some advanced techniques of detecting genotoxic properties and some papers on the influence of DNA repair on cell differentiation were presented. Genetic changes in man, animals and plants as a consequence of the Chernobylsk accident were described

  15. Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer

    International Nuclear Information System (INIS)

    The roles of mitochondria in energy metabolism, the generation of ROS, aging, and the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in esophageal cancer. The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18 esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma) of tumor/surrounding normal tissue of esophageal cancers, using temporal temperature gradient gel electrophoresis (TTGE), followed by direct DNA sequencing to identify the mutations. Fourteen somatic mtDNA mutations were identified in 55% (11/20) of tumors analyzed, including 2 novel missense mutations and a frameshift mutation in ND4L, ATP6 subunit, and ND4 genes respectively. Nine mutations (64%) were in the D-loop region. Numerous germline variations were found, at least 10 of them were novel and five were missense mutations, some of them occurred in evolutionarily conserved domains. Using real-time quantitative PCR analysis, the mtDNA content was found to increase in some tumors and decrease in others. Analysis of molecular and other clinicopathological findings does not reveal significant correlation between somatic mtDNA mutations and mtDNA content, or between mtDNA content and metastatic status. Our results demonstrate that somatic mtDNA mutations in esophageal cancers are frequent. Some missense and frameshift mutations may play an important role in the tumorigenesis of esophageal carcinoma. More extensive biochemical and molecular studies will be necessary to determine the pathological significance of these somatic mutations

  16. DNA methylation patterns of Brachypodium distachyon chromosomes and their alteration by 5-azacytidine treatment

    OpenAIRE

    Borowska, Natalia; Idziak, Dominika; Hasterok, Robert

    2011-01-01

    Sequential immunolocalisation of 5-methylcytosine (5-MeC) and fluorescence in situ hybridisation with chromosome-specific BAC clones were performed on Brachypodium distachyon mitotic metaphase chromosomes to determine specific DNA methylation patterns of each chromosome in the complement. In the majority of cells examined, chromosomes Bd4 and Bd5, which bear the loci of 5S and 35S ribosomal DNA, respectively, had characteristic 5-MeC patterns. In contrast, the distribution of 5-MeC along the ...

  17. Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer

    Directory of Open Access Journals (Sweden)

    Wang Yu-Fen

    2006-04-01

    Full Text Available Abstract Background The roles of mitochondria in energy metabolism, the generation of ROS, aging, and the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in esophageal cancer. Methods The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18 esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma of tumor/surrounding normal tissue of esophageal cancers, using temporal temperature gradient gel electrophoresis (TTGE, followed by direct DNA sequencing to identify the mutations. Results Fourteen somatic mtDNA mutations were identified in 55% (11/20 of tumors analyzed, including 2 novel missense mutations and a frameshift mutation in ND4L, ATP6 subunit, and ND4 genes respectively. Nine mutations (64% were in the D-loop region. Numerous germline variations were found, at least 10 of them were novel and five were missense mutations, some of them occurred in evolutionarily conserved domains. Using real-time quantitative PCR analysis, the mtDNA content was found to increase in some tumors and decrease in others. Analysis of molecular and other clinicopathological findings does not reveal significant correlation between somatic mtDNA mutations and mtDNA content, or between mtDNA content and metastatic status. Conclusion Our results demonstrate that somatic mtDNA mutations in esophageal cancers are frequent. Some missense and frameshift mutations may play an important role in the tumorigenesis of esophageal carcinoma. More extensive biochemical and molecular studies will be necessary to determine the pathological significance of these somatic mutations.

  18. Radioadapted chicken embryo cells: challenge specificity and alterations in higher-order DNA structure

    International Nuclear Information System (INIS)

    Radioadapted chicken embryo cells (X-irradiation in ovo with 10 cGy at the 14th day of development with priming periods of 24 h) were treated in vitro by challenge doses of 14 different DNA- and/or chromatin-interactive agents, including X-rays. A decrease in the cellular damage, as measured by scheduled DNA synthesis, was only observed with X-irradiation. Sedimentation of nucleoids as well as viscosity of alkaline lysates from ethidium bromide (0.35-400 μg/ml)-, vovobiocin (125-1800 μg/ml)-, and hyperthermia (30 min at 43 and 45 )-treated cells suggest a higher tendency of radioadapted cells to undergo positive DNA supercoiling. When DNA from adapted and non-adapted chicken embryo cells was used as substrate, neither its digestion by DNase I nor the inhibition of DNase I activity by various DNA-interactive agents was changed in primed cells. From the previous investigations as well as from the present results it is concluded that an increase of tightening of protein-DNA interactions within the nuclear matrix is a molecular determinant of the elevated radiation resistance in radioadapted chicken embryo cells. (orig.)

  19. Hypoxia-Induced Changes in DNA Methylation Alter RASAL1 and TGFβ1 Expression in Human Trabecular Meshwork Cells

    Science.gov (United States)

    Irnaten, Mustapha; Clark, Abbot F.; O’Brien, Colm J.; Wallace, Deborah M.

    2016-01-01

    Purpose Fibrosis and a hypoxic environment are associated with the trabecular meshwork (TM) region in the blinding disease glaucoma. Hypoxia has been shown to alter DNA methylation, an epigenetic mechanism involved in regulating gene expression such as the pro-fibrotic transforming growth factor (TGF) β1 and the anti-fibrotic Ras protein activator like 1 (RASAL1). The purpose of this study was to compare DNA methylation levels, and the expression of TGFβ1 and RASAL1 in primary human normal (NTM) with glaucomatous (GTM) cells and in NTM cells under hypoxic conditions. Methods Global DNA methylation was assessed by ELISA in cultured age-matched NTM and GTM cells. qPCR was conducted for TGFβ1, collagen 1α1 (COL1A1), and RASAL1 expression. Western immunoblotting was used to determine protein expression. For hypoxia experiments, NTM cells were cultured in a 1%O2, 5%CO2 and 37°C environment. NTM and GTM cells were treated with TGFβ1 (10ng/ml) and the methylation inhibitor 5-azacytidine (5-aza) (0.5μM) respectively to determine their effects on DNA Methyltransferase 1 (DNMT1) and RASAL1 expression. Results We found increased DNA methylation, increased TGFβ1 expression and decreased RASAL1 expression in GTM cells compared to NTM cells. Similar results were obtained in NTM cells under hypoxic conditions. TGFβ1 treatment increased DNMT1 and COL1A1, and decreased RASAL1 expression in NTM cells. 5-aza treatment decreased DNMT1, TGFβ1 and COL1A1 expression, and increased RASAL1 expression in GTM cells. Conclusions TGFβ1 and RASAL1 expression, global DNA methylation, and expression of associated methylation enzymes were altered between NTM and GTM cells. We found that hypoxia in NTM cells induced similar results to the GTM cells. Furthermore, DNA methylation, TGFβ1 and RASAL1 appear to have an interacting relationship that may play a role in driving pro-fibrotic disease progression in the glaucomatous TM. PMID:27124111

  20. Modulation of the genotoxicity of bleomycin by amines through noncovalent DNA interactions and alteration of physiological conditions in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, George R. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)], E-mail: ghoffmann@holycross.edu; Gessner, Gabrielle S.; Hughes, Jennifer F.; Ronan, Matthew V.; Sylvia, Katelyn E.; Willett, Christine J. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)

    2007-10-01

    noncovalent association with DNA, altered BLM access to DNA, and modulation of physiological conditions.

  1. Modulation of the genotoxicity of bleomycin by amines through noncovalent DNA interactions and alteration of physiological conditions in yeast

    International Nuclear Information System (INIS)

    noncovalent association with DNA, altered BLM access to DNA, and modulation of physiological conditions

  2. The Prp19/Pso4 Core complex Undergoes Ubiquitylation and Structural Alterations in Response to DNA Damage

    Science.gov (United States)

    Lu, Xiaoyan; Legerski, Randy J.

    2007-01-01

    Prp19/Pso4, a U-box containing E3 ligase, has a demonstrated role in pre-mRNA splicing, but has also been implicated in both yeast and mammalian cells as having a direct role in DNA damage processing. In this report we provide further evidence in support of this latter assertion. We show that hPrp19 forms an ubiquitylated oligomeric species that is resistant to disruption by SDS gel electrophoresis under nonreducing conditions suggesting that is mediated by a thiolester between ubiquitin and a cysteine residue in Prp19. The level of this species is significantly enhanced upon treatment of cells with DNA damaging agents, and its association with chromatin is increased. In addition, hPrp19 is known to form a stable core complex with Cdc5L, Plrg1, and Spf27; however, ubiquitylated hPrp19 fails to interact with either Cdc5L or Plrg1 indicating that DNA damage can induce profound alterations to the hPrp19 core complex. Finally, we show that overexpression of hPrp19 in human cells provides a pro-survival affect in that it reduces the levels of apoptosis observed after exposure of cells to DNA damage. PMID:17276391

  3. Low Doses of the Carcinogen Furan Alter Cell Cycle and Apoptosis Gene Expression in Rat Liver Independent of DNA Methylation

    OpenAIRE

    Tao CHEN; Mally, Angela; Ozden, Sibel; Chipman, J. Kevin

    2010-01-01

    Background Evidence of potent rodent carcinogenicity via an unclear mechanism suggests that furan in various foods [leading to an intake of up to 3.5 μg/kg body weight (bw)/day] may present a potential risk to human health. Objectives We tested the hypothesis that altered expression of genes related to cell cycle control, apoptosis, and DNA damage may contribute to the carcinogenicity of furan in rodents. In addition, we investigated the reversibility of such changes and the potential role of...

  4. The human insulin gene linked polymorphic region exhibits an altered DNA structure

    Energy Technology Data Exchange (ETDEWEB)

    Hammond-Kosack, M.C.U.; Docherty, K.; Kilpatrick, M.W. (Univ. of Birmingham (United Kingdom)); Dobrinski, B.; Lurz, R. (Max-Planck-Inst., Berlin (West Germany))

    1992-01-25

    Regulation of transcription of the human insulin gene appears to involve a series of DNA sequences in the 5{prime} region. Hypersensitivity to DNA structural probes has previously been demonstrated in regulatory regions of cloned genomic DNA fragments, and been correlated with gene activity. To investigate the structure of the DNA in the human insulin gene, bromoacetaldehyde and S1 nuclease were reacted with a supercoiled plasmid containing a 5kb genomic insulin fragment. Both probes revealed the human insulin gene linked polymorphic region (ILPR), a region ({minus}363) upstream of the transcriptional start site which contains multiple repeats of a 14-15mer oligonucleotide with the consensus sequence ACAGGGGT(G/C)(T/C)GGGG, as the major hypersensitive site. Fine mapping and electron microscopic analysis both show a very different behavior of the two DNA strands in the region of the ILPR and suggest the G-rich strand may be adopting a highly structured conformation with the complementary strand remaining largely single stranded.

  5. Altered DNA repair, oxidative stress and antioxidant status in coronary artery disease

    Indian Academy of Sciences (India)

    A Supriya Simon; V Chithra; Anoop Vijayan; Roy D Dinesh; T Vijayakumar

    2013-06-01

    Coronary artery disease (CAD) is a multifactorial disease caused by the interplay of environmental risk factors with multiple predisposing genes. The present study was undertaken to evaluate the role of DNA repair efficiency and oxidative stress and antioxidant status in CAD patients. Malonaldehyde (MDA), which is an indicator of oxidative stress, and mean break per cell (b/c) values, which is an indicator of decreased DNA repair efficiency, were found to be significantly increased in patients compared to normal controls ( < 0.05) whereas ascorbic acid and GSH were found to be lower among patients than the control group. It has been found that elevated oxidative stress decreased antioxidant level and decreased DNA repair efficiency can contribute to the development of CAD. This study also showed that high MDA, low ascorbic acid and GSH were significantly associated with high b/c value.

  6. Research Resource: Tissue-Specific Transcriptomics and Cistromics of Nuclear Receptor Signaling: A Web Research Resource

    OpenAIRE

    Ochsner, Scott A.; Watkins, Christopher M.; LaGrone, Benjamin S.; Steffen, David L.; McKenna, Neil J

    2010-01-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that recruit coregulators and other transcription factors to gene promoters to effect regulation of tissue-specific transcriptomes. The prodigious rate at which the NR signaling field has generated high content gene expression and, more recently, genome-wide location analysis datasets has not been matched by a committed effort to archiving this information for routine access by bench and clinical scientists. As a first step to...

  7. Tissue-specific post-translational modification allows functional targeting of thyrotropin

    OpenAIRE

    IKEGAMI, Keisuke; Liao, Xiao-Hui; Hoshino, Yuta; Ono, Hiroko; Ota, Wataru; Ito, Yuka; Nishiwaki-Ohkawa, Taeko; Sato, Chihiro; Kitajima, Ken; Iigo, Masayuki; Shigeyoshi, Yasufumi; Yamada, Masanobu; Murata, Yoshiharu; Refetoff, Samuel; Yoshimura, Takashi

    2014-01-01

    Thyroid-stimulating hormone (TSH: thyrotropin) is a glycoprotein secreted from the pituitary gland. Pars distalis-derived TSH (PD-TSH) stimulates the thyroid gland to produce thyroid hormones (THs), whereas pars tuberalis-derived TSH (PT-TSH) acts on the hypothalamus to regulate seasonal physiology and behavior. However, it had not been clear how these two TSHs avoid functional crosstalk. Here, we show that this regulation is mediated by tissue-specific glycosylation. Although PT-TSH is relea...

  8. Behavioral and electrophysiological outcomes of tissue-specific Smn knockdown in Drosophila melanogaster

    OpenAIRE

    Timmerman, Christina; Sanyal, Subhabrata

    2012-01-01

    Severe reduction in Survival Motor Neuron 1 (SMN1) protein in humans causes Spinal Muscular Atrophy (SMA), a debilitating childhood disease that leads to progressive impairment of the neuro-muscular system. Although previous studies have attempted to identify the tissue(s) in which SMN1 loss most critically leads to disease, tissue-specific functions for this widely expressed protein still remain unclear. Here, we have leveraged RNA interference methods to manipulate SMN function selectively ...

  9. Tissue-Specific Peroxisome Proliferator Activated Receptor Gamma Expression and Metabolic Effects of Telmisartan

    Czech Academy of Sciences Publication Activity Database

    Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Šilhavý, Jan; Landa, Vladimír; Kazdová, L.; Pravenec, Michal; Kurtz, T. W.

    2013-01-01

    Roč. 26, č. 6 (2013), s. 829-835. ISSN 0895-7061 R&D Projects: GA ČR(CZ) GAP303/10/0505; GA MŠk(CZ) LH11049; GA MŠk(CZ) LL1204; GA MŠk(CZ) 7E10067 Institutional support: RVO:67985823 Keywords : telmisartan * metabolic effects * tissue-specific Pparg knockout mice Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.402, year: 2013

  10. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples

    Science.gov (United States)

    Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  11. Influence of inhibitors of poly(ADP-ribose) polymerase on DNA repair, chromosomal alterations, and mutations.

    Science.gov (United States)

    Natarajan, A T; van Zeeland, A A; Zwanenburg, T S

    1983-01-01

    The influence of inhibitors of poly(ADP-ribose) polymerase such as 3-aminobenzamide (3AB) and benzamide (B) on the spontaneously occurring as well as mutagen induced chromosomal aberrations, sister chromatid exchanges (SCEs) and point mutations has been studied. In addition, we have measured the influence of 3AB on DNA repair following treatment with physical and chemical mutagens. Post treatment of X-irradiated mammalian cells with 3AB increases the frequencies of induced chromosomal aberrations by a factor of 2 to 3. Both acentric fragments and exchanges increase indicating that the presence of 3AB slows down the repair of DNA strand breaks (probably DNA double strand breaks), thus making breaks available for interaction with each other to give rise to exchanges. 3AB, when present in the medium containing bromodeoxyuridine(BrdUrd) during two cell cycles, increases the frequencies of SCEs in Chinese hamster ovary cells (CHO) in a concentration dependent manner leading to about a 10-fold increase at 10 mM concentration. Most 3AB induced SCEs occur during the second cell cycle, in which DNA containing bromouridine (BU) is used as template for replication. BU containing DNA appears to be prone to errors during replication. The extent of increase in the frequencies of SCEs by 3AB is correlated with the amount of BU incorporated in the DNA of the cells. The frequencies of spontaneously occurring DNA single strand breaks in cells grown in BrdUrd containing medium are higher than in the cells grown in normal medium and this increase depends on the amount of BU incorporated in the DNA of these cells. We have studied the extent of increase in the frequencies of SCEs due to 1 mM 3AB in several human cell lines, including those derived from patients suffering from genetic diseases such as ataxia telangiectasia (A-T), Fanconi's anemia (FA), and Huntington's chorea. None of these syndromes showed any increased response when compared to normal cells. 3AB, however, increased the

  12. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans

    OpenAIRE

    Houtepen, Lotte C; Vinkers, Christiaan H.; Carrillo-Roa, Tania; Hiemstra, Marieke; van Lier, Pol A; Meeus, Wim; Branje, Susan; Heim, Christine M; Nemeroff, Charles B.; Mill, Jonathan; Schalkwyk, Leonard C.; Creyghton, Menno P.; René S. Kahn; Joëls, Marian; Binder, Elisabeth B.

    2016-01-01

    DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 × 10(-6)). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between chi...

  13. Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast

    OpenAIRE

    LU, Jian; Liu, Yie

    2009-01-01

    Telomeres consist of short guanine-rich repeats. Guanine can be oxidized to 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). 8-oxoguanine DNA glycosylase (Ogg1) repairs these oxidative guanine lesions through the base excision repair (BER) pathway. Here we show that in Saccharomyces cerevisiae ablation of Ogg1p leads to an increase in oxidized guanine level in telomeric DNA. The ogg1 deletion (ogg1Δ) strain shows telomere lengthening that is dependent...

  14. Tissue-Specific Immune Gene Expression in the Migratory Locust, Locusta Migratoria

    Directory of Open Access Journals (Sweden)

    Tamara Pulpitel

    2015-04-01

    Full Text Available The ability of hosts to respond to infection involves several complex immune recognition pathways. Broadly conserved pathogen-associated molecular patterns (PAMPs allow individuals to target a range of invading microbes. Recently, studies on insect innate immunity have found evidence that a single pathogen can activate different immune pathways across species. In this study, expression changes in immune genes encoding peptidoglycan-recognition protein SA (PGRP-SA, gram-negative binding protein 1 (GNBP1 and prophenoloxidase (ProPO were investigated in Locusta migratoria, following an immune challenge using injected lipopolysaccharide (LPS solution from Escherichia coli. Since immune activation might also be tissue-specific, gene expression levels were followed across a range of tissue types. For PGRP-SA, expression increased in response to LPS within all seven of the tissue-types assayed and differed significantly between tissues. Expression of GNBP1 similarly varied across tissue types, yet showed no clear expression difference between LPS-injected and uninfected locusts. Increases in ProPO expression in response to LPS, however, could only be detected in the gut sections. This study has revealed tissue-specific immune response to add a new level of complexity to insect immune studies. In addition to variation in recognition pathways identified in previous works, tissue-specificity should be carefully considered in similar works.

  15. miTALOS v2: Analyzing Tissue Specific microRNA Function.

    Science.gov (United States)

    Preusse, Martin; Theis, Fabian J; Mueller, Nikola S

    2016-01-01

    MicroRNAs are involved in almost all biological processes and have emerged as regulators of signaling pathways. We show that miRNA target genes and pathway genes are not uniformly expressed across human tissues. To capture tissue specific effects, we developed a novel methodology for tissue specific pathway analysis of miRNAs. We incorporated the most recent and highest quality miRNA targeting data (TargetScan and StarBase), RNA-seq based gene expression data (EBI Expression Atlas) and multiple new pathway data sources to increase the biological relevance of the predicted miRNA-pathway associations. We identified new potential roles of miR-199a-3p, miR-199b-3p and the miR-200 family in hepatocellular carcinoma, involving the regulation of metastasis through MAPK and Wnt signaling. Also, an association of miR-571 and Notch signaling in liver fibrosis was proposed. To facilitate data update and future extensions of our tool, we developed a flexible database backend using the graph database neo4j. The new backend as well as the novel methodology were included in the updated miTALOS v2, a tool that provides insights into tissue specific miRNA regulation of biological pathways. miTALOS v2 is available at http://mips.helmholtz-muenchen.de/mitalos. PMID:26998997

  16. Cells determine cell density using a small protein bound to a unique tissue-specific phospholipid

    Directory of Open Access Journals (Sweden)

    Christopher J. Petzold

    2013-10-01

    bone cofactor was identified as a lipid containing a ceramide phosphate, a single chained glycerol lipid and a linker. Tendon uses a different cofactor made up of two fatty acid chains linked directly to the phosphate yielding a molecule about half the size. Moreover, adding the tendon factor/cofactor to osteosarcoma cells causes them to stop growing, which is opposite to its role with tendon cells. Thus, the cofactor is cell type specific both in composition and in the triggered response. Further support of its proposed role came from frozen sections from 5 week old mice where an antibody to the factor stained strongly at the growing ends of the tendon as predicted. In conclusion, the molecule needed for cell density signaling is a small protein bound to a unique, tissue-specific phospholipid yielding a membrane associated but diffusible molecule. Signal transduction is postulated to occur by an increased ordering of the plasma membrane as the concentration of this protein/lipid increases with cell density.

  17. Tissue specific promoters improve the localization of radiation-inducible gene expression

    International Nuclear Information System (INIS)

    expression was quantified in vascular endothelial cells from large vessel (HUVEC) and small vessels (HMEC). We found cell-type specificity of radiation-induction. The promoter region from the ELAM gene gave no expression in cells that were not of endothelial cell origin and x-ray-induction of ELAM in the endothelium required the NFkB binding cis-acting element. ELAM induction was achieved at doses as low as 1 Gy, whereas induction of other radiation inducible genes required 5 to 10 Gy. Cells transfected with the minimal promoter (plasmid pTK-CAT) demonstrated no radiation induction. Expression of the CMV-LacZ genetic construct that was used as a negative control in each transfection was not altered by x-irradiation. Moreover, intravenous administration of liposomes containing a reporter gene linked to the ELAM promoter and a transcriptional amplification system were induced specifically at sites of x-irradiation in an animal model. Conclusions: Activation of transcription of the ELAM-1 promoter by ionizing radiation is a means of activating gene therapy within the vascular endothelium and demonstrates the feasibility of treating vascular lesions with noninvasive procedures. Tissue specific promoters (e. g., ELAM-1) combined with radiation inducible gene therapy improves the localization of gene therapy expression. These results have applications in intravascular brachytherapy for the prevention of blood vessel restenosis

  18. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  19. Genome-wide alterations of the DNA replication program during tumor progression

    Science.gov (United States)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  20. Inhibition of fried meat-induced colorectal DNA damage and altered systemic genotoxicity in humans by crucifera, chlorophyllin, and yogurt.

    Directory of Open Access Journals (Sweden)

    Daniel T Shaughnessy

    Full Text Available Dietary exposures implicated as reducing or causing risk for colorectal cancer may reduce or cause DNA damage in colon tissue; however, no one has assessed this hypothesis directly in humans. Thus, we enrolled 16 healthy volunteers in a 4-week controlled feeding study where 8 subjects were randomly assigned to dietary regimens containing meat cooked at either low (100°C or high temperature (250°C, each for 2 weeks in a crossover design. The other 8 subjects were randomly assigned to dietary regimens containing the high-temperature meat diet alone or in combination with 3 putative mutagen inhibitors: cruciferous vegetables, yogurt, and chlorophyllin tablets, also in a crossover design. Subjects were nonsmokers, at least 18 years old, and not currently taking prescription drugs or antibiotics. We used the Salmonella assay to analyze the meat, urine, and feces for mutagenicity, and the comet assay to analyze rectal biopsies and peripheral blood lymphocytes for DNA damage. Low-temperature meat had undetectable levels of heterocyclic amines (HCAs and was not mutagenic, whereas high-temperature meat had high HCA levels and was highly mutagenic. The high-temperature meat diet increased the mutagenicity of hydrolyzed urine and feces compared to the low-temperature meat diet. The mutagenicity of hydrolyzed urine was increased nearly twofold by the inhibitor diet, indicating that the inhibitors enhanced conjugation. Inhibitors decreased significantly the mutagenicity of un-hydrolyzed and hydrolyzed feces. The diets did not alter the levels of DNA damage in non-target white blood cells, but the inhibitor diet decreased nearly twofold the DNA damage in target colorectal cells. To our knowledge, this is the first demonstration that dietary factors can reduce DNA damage in the target tissue of fried-meat associated carcinogenesis.ClinicalTrials.gov NCT00340743.

  1. Altered metaphase chromosome structure in xrs-5 cells is not related to its radiation sensitivity or defective DNA break rejoining

    International Nuclear Information System (INIS)

    The Chinese hamster ovary (CHO) cell line xrs-5 is a radiation-sensitive derivative of CHO-K1 cells. The xrs-5 cells have a defect in DNA double-strand break rejoining and show alterations in chromosome structure and nuclear morphology. The relationship between radiation sensitivity and metaphase chromosome morphology was examined in 12 'revertant' xrs-5 clones isolated following treatment with 5-azacytidine. Nine of the clones were radioresistant while the other three retained xrs-5-like radiation sensitivity. Chromosome morphology reverted to CHO-K1-like characteristics in three of the radioresistant clones and one of the radiosensitive clones suggesting that the over-condensed metaphase chromosome morphology of xrs-5 cells does not underlie its radiation sensitivity. Radiation sensitivity did correlate with DNA double-strand break rejoining ability. The radioresistant clones showing the over-condensed xrs-5-like chromosome morphology were also slightly more sensitive to the topoisomerase II inhibitor etoposide (VP-16) than CHO-K1, suggesting that the over-condensed morphology might be due to alterations in the phosphorylation of chromatin proteins

  2. Distinct repressing modules on the distal region of the SBP2 promoter contribute to its vascular tissue-specific expression in different vegetative organs.

    Science.gov (United States)

    Freitas, Rejane L; Carvalho, Claudine M; Fietto, Luciano G; Loureiro, Marcelo E; Almeida, Andrea M; Fontes, Elizabeth P B

    2007-11-01

    The Glycine max sucrose binding protein (GmSBP2) promoter directs vascular tissue-specific expression of reporter genes in transgenic tobacco. Here we showed that an SBP2-GFP fusion protein under the control of the GmSBP2 promoter accumulates in the vascular tissues of vegetative organs, which is consistent with the proposed involvement of SBP in sucrose transport-dependent physiological processes. Through gain-of-function experiments we confirmed that the tissue-specific determinants of the SBP2 promoter reside in the distal cis-regulatory domain A, CRD-A (position -2000 to -700) that is organized into a modular configuration to suppress promoter activity in tissues other than vascular tissues. The four analyzed CRD-A sub-modules, designates Frag II (-1785/-1508), Frag III (-1507/-1237), Frag IV (-1236/-971) and Frag V (-970/-700), act independently to alter the constitutive pattern of -92pSBP2-mediated GUS expression in different organs. Frag V fused to -92pSBP2-GUS restored the tissue-specific pattern of the full-length promoter in the shoot apex, but not in other organs. Likewise, Frag IV confined GUS expression to the vascular bundle of leaves, whereas Frag II mediated vascular specific expression in roots. Strong stem expression-repressing elements were located at positions -1485 to -1212, as Frag III limited GUS expression to the inner phloem. We have also mapped a procambium silencer to the consensus sequence CAGTTnCaAccACATTcCT which is located in both distal and proximal upstream modules. Fusion of either repressing element-containing module to the constitutive -92pSBP2 promoter suppresses GUS expression in the elongation zone of roots. Together our results demonstrate the unusual aspect of distal sequences negatively controlling tissue-specificity of a plant promoter. PMID:17710554

  3. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  4. Specific siRNA Downregulated TLR9 and Altered Cytokine Expression Pattern in Macrophage after CpG DNA Stimulation

    Institute of Scientific and Technical Information of China (English)

    Bin Qiao; Baohua Li; Xiuli Yang; Hongyong Zhang; Yiwei Chu; Ying Wang; Sidong Xiong

    2005-01-01

    Bacterial CpG DNA or synthetic oligonucleotides (ODNs) that contain unmethylated CpG motifs (CpG ODN) can directly activate antigen-presenting cells (APCs) to secrete various cytokines through the intracellular receptor TLR9. Cytokine profiles elicited by the actions of stimulatory CpG DNA on TLR9 expressed APCs are crucial to the subsequent immune responses. To date, cytokine profiles in APCs upon CpG ODN stimulation in vitro are not fully investigated. In the present study, vector-based siRNA was used to downregulate TLR9 expression. Cytokine profiles were observed in murine macrophage cell line RAW264.7 transfected with TLR9-siRNA plasmid upon CpG ODN stimulation. We found that not all the cytokine expressions by the macrophage were decreased while TLR9 was downregulated. IL-12, TNF-α, IFN-γ and IL-1β expressions were significantly decreased, but IL-6,IFN-β and IL-10 expressions were not affected. Interestingly, the level of IFN-α was even increased. This alteration of cytokines produced by TLR9-downregulated APCs upon CpG ODN stimulation might indicate that the role of CpG DNA is more complicated in the pathogenesis and prevention of diseases. Cellular & Molecular Immunology.2005;2(2):130-135.

  5. Specific siRNA Downregulated TLR9 and Altered Cytokine Expression Pattern in Macrophage after CpG DNA Stimulation

    Institute of Scientific and Technical Information of China (English)

    BinQiao; BaohuaLi; XiuliYang; HongyongZhang; YiweiChu; YingWang; SidongXiong

    2005-01-01

    Bacterial CpG DNA or synthetic oligonucleotides (ODNs) that contain unmethylated CpG motifs (CpG ODN) can directly activate antigen-presenting cells (APCs) to secrete various cytokines through the intraceilular receptor TL R9. Cytokine profiles elicited by the actions of stimulatory CpG DNA on TLR9 expressed APCs are crucial to the subsequent immune responses. To date, cytokine profiles in APCs upon CpG ODN stimulation in vitro are not fully investigated. In the present study, vector-based siRNA was used to downregulate TLR9 expression. Cytokine profiles were observed in murine macrophage cell line RAW264.7 transfected with TLR9-siRNA plasmid uponCpG ODN stimulation. We found that not all the cytokine expressions by the macrophage were decreased whileTLR9 was downregulated. IL-12, TNF-α, IFN-γ and IL-1β expressions were significantly decreased, but IL-6, IFN-β and IL-10 expressions were not affected. Interestingly, the level of IFN-α was even increased. This alteration of cytokines produced by TLR9-downregulated APCs upon CpG ODN stimulation might indicate that the role of CpG DNA is more complicated in the pathogenesis and prevention of diseases. Cellular & Molecular Immunology. 2005;2(2):130-135.

  6. DNA methylation is altered in B and NK lymphocytes in obese and type 2 diabetic human

    DEFF Research Database (Denmark)

    Simar, David; Versteyhe, Soetkin; Donkin, Ida;

    2014-01-01

    Objective Obesity is associated with low-grade inflammation and the infiltration of immune cells in insulin-sensitive tissues, leading to metabolic impairment. Epigenetic mechanisms control immune cell lineage determination, function and migration and are implicated in obesity and type 2 diabetes...... (T2D). The aim of this study was to determine the global DNA methylation profile of immune cells in obese and T2D individuals in a cell type-specific manner. Material and methods Fourteen obese subjects and 11 age-matched lean subjects, as well as 12 T2D obese subjects and 7 age-matched lean subjects...... were recruited. Global DNA methylation levels were measured in a cell type-specific manner by flow cytometry. We validated the assay against mass spectrometry measures of the total 5-methylcytosine content in cultured cells treated with the hypomethylation agent decitabine (r = 0.97, p < 0...

  7. Promoter DNA methylation regulates progranulin expression and is altered in FTLD

    OpenAIRE

    Banzhaf-Strathmann, Julia; Claus, Rainer; Mücke, Oliver; Rentzsch, Kristin; van der Zee, Julie; Engelborghs, Sebastiaan; De Deyn, Peter P.; Cruts, Marc; Van Broeckhoven, Christine; Plass, Christoph; Edbauer, Dieter

    2013-01-01

    Background Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of neurodegenerative diseases associated with personality changes and progressive dementia. Loss-of-function mutations in the growth factor progranulin (GRN) cause autosomal dominant FTLD, but so far the pathomechanism of sporadic FTLD is unclear. Results We analyzed whether DNA methylation in the GRN core promoter restricts GRN expression and, thus, might promote FTLD in the absence of GRN mutations. GRN expression ...

  8. DNA methylation alterations of AXIN2 in serrated adenomas and colon carcinomas with microsatellite instability

    OpenAIRE

    MUTO, YUTA; Maeda, Takafumi; Suzuki, Koichi; Kato, Takaharu; Watanabe, Fumiaki; KAMIYAMA, HIDENORI; Saito, Masaaki; Koizumi, Kei; Miyaki, Yuichiro; Konishi, Fumio; Alonso, Sergio; Perucho, Manuel; Rikiyama, Toshiki

    2014-01-01

    Background Recent work led to recognize sessile serrated adenomas (SSA) as precursor to many of the sporadic colorectal cancers with microsatellite instability (MSI). However, comprehensive analyses of DNA methylation in SSA and MSI cancer have not been conducted. Methods With an array-based methylation sensitive amplified fragment length polymorphism (MS-AFLP) method we analyzed 8 tubular (TA) and 19 serrated (SSA) adenomas, and 14 carcinomas with (MSI) and 12 without (MSS) microsatellite in...

  9. Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer

    OpenAIRE

    Wang Yu-Fen; Bai Ren-Kui; Liu Ling-Ling; Chang Julia; Tan Duan-Jun; Yeh Kun-Tu; Wong Lee-Jun C

    2006-01-01

    Abstract Background The roles of mitochondria in energy metabolism, the generation of ROS, aging, and the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in esophageal cancer. Methods The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18 esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma) of t...

  10. Alterations in the structure and DNA binding of Ah receptor in the presence of polyamines

    International Nuclear Information System (INIS)

    Polyamines, putrescine, spermidine, and spermine are organic cations present in all cells. They have multiple regulatory roles in cell growth and differentiation. 2,3,7,8-Tetrachlorodigenzo-p-dioxin (TCDD), and related polycyclic aromatic hydrocarbons exert their adverse effects by binding to an intracellular protein (Ah receptor). Interaction of Ah receptor with specific DNA sequences triggers gene regulatory effects of TCDD. The authors examined the effect of polyamines on the structure and DNA binding of Ah receptor isolated from a human squamous carcinoma cell line, A431. [3H]TCDD-labeled Hf receptor was sedimented in the 9S region of sucrose gradients in hypotenic buffer. Polyamines caused a concentration dependent condensation and precipitation of Ah receptor. In the presence of 1 mM spermine the receptor was completely precipitated which could be recovered from the bottom of the sucrose gradients. This precipitation did not occur with RNase-treated Ah receptor. Incubation of RNase-treated Ah receptor with 1 mM spermidine increased its DNA binding 10-fold compared to controls having equivalent ionic strength. These results suggest that endogenous polyamines may influence the structural organization and gene regulatory effects of TCDD

  11. Alteration in DNA binding pattern of conformationally locked NC(O)N system: A spectroscopic investigation.

    Science.gov (United States)

    Velappan, Anand Babu; Maity, Banibrata; Kasper, Benjamin; McKnight, Ruel E; Seth, Debabrata; Debnath, Joy

    2016-04-01

    The binding mode of a conformationally locked NC(O)N planar system with deoxyribonucleic acid (DNA) is investigated using various spectroscopic and enzymatic assays. Compound 1 and its four different salts (comp. 2-5) were prepared for this purpose. They showed certain changes in their respective DNA-compound complex at ground state and excited state as measured by UV-vis and fluorescence emission spectra. The Stern-Volmer quenching constant (KSV) for the neutral species (1) is found 8545M(-1), whereas, for its salts 2, 3, 4 and 5 the quenching constants were 33510M(-1), 11352M(-1), 19693M(-1) and 27270M(-1) respectively. Nevertheless, the binding constant values remain comparable in neutral and salt forms except for 5. To elucidate the reason we took their CD spectra and ran a topoisomerase I (Topo I) assay. These experimental data revel the fact that compound 1 (neutral form) binds at the minor groove of DNA, whereas, its salt (2) has an extended intercalating property. PMID:26791583

  12. Decreased heat shock protein 27 expression and altered autophagy in human cells harboring A8344G mitochondrial DNA mutation.

    Science.gov (United States)

    Chen, Chin-Yi; Chen, Hsueh-Fu; Gi, Siao-Jhen; Chi, Tang-Hao; Cheng, Che-Kun; Hsu, Chi-Fu; Ma, Yi-Shing; Wei, Yau-Huei; Liu, Chin-Shan; Hsieh, Mingli

    2011-09-01

    Mitochondrial DNA (mtDNA) mutations are responsible for human neuromuscular diseases caused by mitochondrial dysfunction. Myoclonus epilepsy associated with ragged-red fibers (MERRF) is a maternally inherited mitochondrial encephalomyopathy with various syndromes involving both muscular and nervous systems. The most common mutation in MERRF syndrome, A8344G mutation in mtDNA, has been associated with severe defects in protein synthesis. This defect impairs assembly of complexes in electron transport chain and results in decreased respiratory function of mitochondria. In this study, we showed a significant decrease of the heat shock protein 27 (Hsp27) in lymphoblastoid cells derived from a MERRF patient and in cybrid cells harboring MERRF A8344G mutation. However, normal cytoplasmic distributions of Hsp27 and normal heat shock responses were observed in both wild type and mutant cybrids. Furthermore, overexpression of wild type Hsp27 in mutant MERRF cybrids significantly decreased cell death under staurosporine (STS) treatment, suggesting a protective function of Hsp27 in cells harboring the A8344G mutation of mtDNA. Meanwhile, reverse transcriptase PCR showed no difference in the mRNA level between normal and mutant cybrids, indicating that alterations may occur at the protein level. Evidenced by the decreased levels of Hsp27 upon treatment with proteasome inhibitor, starvation and rapamycin and the accumulation of Hsp27 upon lysosomal inhibitor treatment; Hsp27 may be degraded by the autophagic pathway. In addition, the increased formation of LC3-II and autophagosomes was found in MERRF cybrids under the basal condition, indicating a constitutively-activated autophagic pathway. It may explain, at least partially, the faster turnover of Hsp27 in MERRF cybrids. This study provides information for us to understand that Hsp27 is degraded through the autophagic pathway and that Hsp27 may have a protective role in MERRF cells. Regulating Hsp27 and the autophagic pathway

  13. The first insight into the tissue specific taxus transcriptome via Illumina second generation sequencing.

    Directory of Open Access Journals (Sweden)

    Da Cheng Hao

    Full Text Available BACKGROUND: Illumina second generation sequencing is now an efficient route for generating enormous sequence collections that represent expressed genes and quantitate expression level. Taxus is a world-wide endangered gymnosperm genus and forms an important anti-cancer medicinal resource, but the large and complex genomes of Taxus have hindered the development of genomic resources. The research of its tissue-specific transcriptome is absent. There is also no study concerning the association between the plant transcriptome and metabolome with respect to the plant tissue type. METHODOLOGY/PRINCIPAL FINDINGS: We performed the de novo assembly of Taxus mairei transcriptome using Illumina paired-end sequencing technology. In a single run, we produced 13,737,528 sequencing reads corresponding to 2.03 Gb total nucleotides. These reads were assembled into 36,493 unique sequences. Based on similarity search with known proteins, 23,515 Unigenes were identified to have the Blast hit with a cut-off E-value above 10⁻⁵. Furthermore, we investigated the transcriptome difference of three Taxus tissues using a tag-based digital gene expression system. We obtained a sequencing depth of over 3.15 million tags per sample and identified a large number of genes associated with tissue specific functions and taxane biosynthetic pathway. The expression of the taxane biosynthetic genes is significantly higher in the root than in the leaf and the stem, while high activity of taxane-producing pathway in the root was also revealed via metabolomic analyses. Moreover, many antisense transcripts and novel transcripts were found; clusters with similar differential expression patterns, enriched GO terms and enriched metabolic pathways with regard to the differentially expressed genes were revealed for the first time. CONCLUSIONS/SIGNIFICANCE: Our data provides the most comprehensive sequence resource available for Taxus study and will help define mechanisms of tissue

  14. Nuclear DNA content affects the productivity of conifer forests by altering hydraulic architecture

    Science.gov (United States)

    Alday, Josu; Resco de Dios, Víctor

    2014-05-01

    Predictions of future global climate rely on feedbacks between terrestrial vegetation and the global carbon cycle, but the exact mechanisms underlying this relationship are still being discussed. One of the key knowledge gaps lies on the scaling of cellular processes to the ecosystem level. Here we examine whether an under-explored plant trait, inter-specific variation in the bulk amount of DNA in unreplicated somatic cells (2C DNA content), can explain inter-specific variation in the maximum productivity of conifer forests. We expected 2C DNA content to be negatively related to conifer productivity because: 1) it is positively correlated with cell volume (which, in turn, potentially affects structural features such as leaf mass area, a strong predictor of photosynthetic capacity); 2) it is positively correlated with stomatal size (with larger stomata leading to lower overall stomatal conductance and, by extension, lower CO2 uptake); and 3) larger genome sizes may reduce P availability in RNA (which has been hypothesized to slow growth). We present the results of regression and independent contrasts in different monospecific forests encompassing a 52º latitudinal gradient, each being dominated by 1 of 35 different conifer species. Contrary to expectations, we observed a positive correlation between genome size and maximum Gross Primary Productivity (R2 = 0.47) and also between genome size maximum tree height (R2 = 0.27). This correlation was apparently driven by the effects of genome size on stem hydraulics, since 2C DNA was positively correlated with wood density (R2 = 0.40) and also with resistance to cavitation (P50, R2 = 0.28). That is, increased genome sizes have a positive effect on the productivity of conifer forests by affecting the vascular tissues to increase their capacity for water transport. Our results shed a new light on the evolution of the vascular system of conifer forests and how they affect ecosystem productivity, and indicate the potential to

  15. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F. (Hagedorn Research Laboratory, Gentofte (Denmark))

    1988-09-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression.

  16. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    International Nuclear Information System (INIS)

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression

  17. Novel strong tissue specific promoter for gene expression in human germ cells

    Directory of Open Access Journals (Sweden)

    Kuzmin Denis

    2010-08-01

    Full Text Available Abstract Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102, where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter. To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1, whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293. In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X. The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12, and an important role - in the rest two cell lines.

  18. Tissue- Specific Expression Analysis of Anthocyanin Biosynthetic Genes in White- and Red-Fleshed Grape Cultivars

    OpenAIRE

    Sha Xie; Changzheng Song; Xingjie Wang; Meiying Liu; Zhenwen Zhang; Zhumei Xi

    2015-01-01

    Yan73, a teinturier (dyer) grape variety in China, is one of the few Vitis vinifera cultivars with red-coloured berry flesh. To examine the tissue-specific expression of genes associated with berry colour in Yan73, we analysed the differential accumulation of anthocyanins in the skin and flesh tissues of two red-skinned grape varieties with either red (Yan73) or white flesh (Muscat Hamburg) based on HPLC-MS analysis, as well as the differential expression of 18 anthocyanin biosynthesis genes ...

  19. Shade-induced stem elongation in rice seedlings: Implication of tissue-specific phytohormone regulation.

    Science.gov (United States)

    Liu, Huihui; Yang, Chuanwei; Li, Lin

    2016-07-01

    A better understanding of shade avoidance syndrome (SAS) is an urgent need because of its effect on energy reallocation. Leverage-related mechanism in crops is of potential economic interest for agricultural applications. Here we report the SAS phenotype at tissue level rice seedlings. Tissue-specific RNA-sequencing indicates auxin plays different roles between coleoptile and the first leaf. Phenotypes of wild type treated by gibberellin and brassinosteroid biosynthesis inhibitors and of related mutants suggest these two hormones positively regulate SAS. Our work reveals the diversity of hormone responses in different organs and different species in shade conditions. PMID:26888633

  20. Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development1[OPEN

    Science.gov (United States)

    Pattison, Richard J.; Csukasi, Fabiana; Zheng, Yi; Fei, Zhangjun; van der Knaap, Esther; Catalá, Carmen

    2015-01-01

    Fruit formation and early development involve a range of physiological and morphological transformations of the various constituent tissues of the ovary. These developmental changes vary considerably according to tissue type, but molecular analyses at an organ-wide level inevitably obscure many tissue-specific phenomena. We used laser-capture microdissection coupled to high-throughput RNA sequencing to analyze the transcriptome of ovaries and fruit tissues of the wild tomato species Solanum pimpinellifolium. This laser-capture microdissection-high-throughput RNA sequencing approach allowed quantitative global profiling of gene expression at previously unobtainable levels of spatial resolution, revealing numerous contrasting transcriptome profiles and uncovering rare and cell type-specific transcripts. Coexpressed gene clusters linked specific tissues and stages to major transcriptional changes underlying the ovary-to-fruit transition and provided evidence of regulatory modules related to cell division, photosynthesis, and auxin transport in internal fruit tissues, together with parallel specialization of the pericarp transcriptome in stress responses and secondary metabolism. Analysis of transcription factor expression and regulatory motifs indicated putative gene regulatory modules that may regulate the development of different tissues and hormonal processes. Major alterations in the expression of hormone metabolic and signaling components illustrate the complex hormonal control underpinning fruit formation, with intricate spatiotemporal variations suggesting separate regulatory programs. PMID:26099271

  1. Leber Hereditary Optic Neuropathy: Do Folate Pathway Gene Alterations Influence the Expression of Mitochondrial DNA Mutation?

    Directory of Open Access Journals (Sweden)

    A Aleyasin

    2010-09-01

    Full Text Available "nBackground: Leber hereditary optic neuropathy (LHON is an inherited form of bilateral optic atrophy leading to the loss of central vision.  The primary cause of vision loss is mutation in the mitochondrial DNA (mtDNA, however, unknown secon­dary genetic and/or epigenetic risk factors are suggested to influence its neuropathology.  In this study folate gene polymor­phisms were examined as a possible LHON secondary genetic risk factor in Iranian patients."nMethods: Common polymorphisms in the MTHFR (C677T and A1298C and MTRR (A66G genes were tested in 21 LHON patients and 150 normal controls."nResults:  Strong associations were observed between the LHON syndrome and C677T (P= 0.00 and A66G (P= 0.00 polymor­phisms.  However, no significant association was found between A1298C (P =0.69 and the LHON syndrome."nConclusion: This is the first study that shows MTHFR C677T and MTRR A66G polymorphisms play a role in the etiology of the LHON syndrome.  This finding may help in the better understanding of mechanisms involved in neural degeneration and vision loss by LHON and hence the better treatment of patients.

  2. The Role of Altered Nucleotide Excision Repair and UVB-Induced DNA Damage in Melanomagenesis

    Directory of Open Access Journals (Sweden)

    Timothy Budden

    2013-01-01

    Full Text Available UVB radiation is the most mutagenic component of the UV spectrum that reaches the earth’s surface and causes the development of DNA damage in the form of cyclobutane pyrimidine dimers and 6-4 photoproducts. UV radiation usually results in cellular death, but if left unchecked, it can affect DNA integrity, cell and tissue homeostasis and cause mutations in oncogenes and tumour-suppressor genes. These mutations, if unrepaired, can lead to abnormal cell growth, increasing the risk of cancer development. Epidemiological data strongly associates UV exposure as a major factor in melanoma development, but the exact biological mechanisms involved in this process are yet to be fully elucidated. The nucleotide excision repair (NER pathway is responsible for the repair of UV-induced lesions. Patients with the genetic disorder Xeroderma Pigmentosum have a mutation in one of eight NER genes associated with the XP complementation groups XP-A to XP-G and XP variant (XP-V. XP is characterized by diminished repair capacity, as well as a 1000-fold increase in the incidence of skin cancers, including melanoma. This has suggested a significant role for NER in melanoma development as a result of UVB exposure. This review discusses the current research surrounding UVB radiation and NER capacity and how further investigation of NER could elucidate the role of NER in avoiding UV-induced cellular death resulting in melanomagenesis.

  3. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans.

    Science.gov (United States)

    Houtepen, Lotte C; Vinkers, Christiaan H; Carrillo-Roa, Tania; Hiemstra, Marieke; van Lier, Pol A; Meeus, Wim; Branje, Susan; Heim, Christine M; Nemeroff, Charles B; Mill, Jonathan; Schalkwyk, Leonard C; Creyghton, Menno P; Kahn, René S; Joëls, Marian; Binder, Elisabeth B; Boks, Marco P M

    2016-01-01

    DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 × 10(-6)). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between childhood trauma and cortisol stress reactivity in the discovery sample (32% mediation). Its genomic location, a CpG island shore within an H3K27ac enhancer mark, and the correlation between methylation in the blood and prefrontal cortex provide further evidence that KITLG methylation is functionally relevant for the programming of stress reactivity in the human brain. Our results extend preclinical evidence for epigenetic regulation of stress reactivity to humans and provide leads to enhance our understanding of the neurobiological pathways underlying stress vulnerability. PMID:26997371

  4. Biliary and reticuloendothelial impairment in hepatocarcinogenesis: the diagnostic role of tissue-specific MR contrast media

    Energy Technology Data Exchange (ETDEWEB)

    Bartolozzi, Carlo; Crocetti, Laura; Lencioni, Riccardo; Cioni, Dania; Della Pina, Clotilde [University of Pisa, Division of Diagnostic and Interventional Radiology, Department of Oncology, Transplant and Advanced Technologies in Medicine, Pisa (Italy); Campani, Daniela [University of Pisa, Division of Pathology, Department of Oncology, Transplant and Advanced Technologies in Medicine, Pisa (Italy)

    2007-10-15

    The development and progression of a hepatocellular carcinoma (HCC) in a chronically diseased liver, i.e., the carcinogenesis, comprise a multistep and long-term process. Morphologically, this process is associated with the presence of distinct nodular lesions in the liver that are called 'preneoplastic lesions.' These preneoplastic lesions are associated with and can precede the growth and progression of well-differentiated HCCs. The characterization of nodular lesions and demonstration of the multistep development of HCC in the cirrhotic liver by imaging modalities represent a challenging issue. The arterial hypervascular supply, depicted by different dynamic studies, represents a fundamental radiological criterion for the diagnosis of HCC in cirrhosis. Magnetic resonance (MR) imaging performed with tissue-specific contrast media can help to investigate the ''grey area'' of carcinogenesis, in which significant histological changes are already present without any imaging evidence of neoangiogenesis. The purpose of this review is to provide information on the properties of tissue-specific MR contrast agents and on their usefulness in the demonstration of the pathologic changes that take place at the level of the biliary and reticuloendothelial systems during the carcinogenetic process in liver cirrhosis. (orig.)

  5. L1 Antisense Promoter Drives Tissue-Specific Transcription of Human Genes

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Transcription of transposable elements interspersed in the genome is controlled by complex interactions between their regulatory elements and host factors. However, the same regulatory elements may be occasionally used for the transcription of host genes. One such example is the human L1 retrotransposon, which contains an antisense promoter (ASP driving transcription into adjacent genes yielding chimeric transcripts. We have characterized 49 chimeric mRNAs corresponding to sense and antisense strands of human genes. Here we show that L1 ASP is capable of functioning as an alternative promoter, giving rise to a chimeric transcript whose coding region is identical to the ORF of mRNA of the following genes: KIAA1797, CLCN5, and SLCO1A2. Furthermore, in these cases the activity of L1 ASP is tissue-specific and may expand the expression pattern of the respective gene. The activity of L1 ASP is tissue-specific also in cases where L1 ASP produces antisense RNAs complementary to COL11A1 and BOLL mRNAs. Simultaneous assessment of the activity of L1 ASPs in multiple loci revealed the presence of L1 ASP-derived transcripts in all human tissues examined. We also demonstrate that L1 ASP can act as a promoter in vivo and predict that it has a heterogeneous transcription initiation site. Our data suggest that L1 ASP-driven transcription may increase the transcriptional flexibility of several human genes.

  6. Taurine protects DNA of lymphocytes against oxidative alteration in riding horses

    DEFF Research Database (Denmark)

    Sokól, Janusz Leszek; Sawosz, Ewa; Niemiec, Tomasz;

    2009-01-01

    The study aimed at evaluation the effect of dietary supplement of taurine on the oxidation-reduction status in riding horses, and especially on the extent of oxidative DNA degradation in lymphocytes. Ten Thoroughbred and half-bred geldings aged 6-13 years were classified according to breed and...... amount of work done into two groups - control (C, n=5) and experimental (E, n=5), the latter fed the diet with addition of 40 g taurine/horse/day. Blood samples were withdrawn from the horses' jugular vein before commencing the riding season and then after 30 days of working. In the blood some selected...... addition of taurine to feed caused smaller oxidative stress, manifested by lower concentration of TBA-RS in plasma and of 8-oxo-dG in lymphocytes. The taurine lowered the lipid peroxidation intensity that occurred in horses due to the oxidative stress caused by physical effort. Furthermore, taurine...

  7. Epigenetic alteration of DNA in mucosal wash fluid predicts invasiveness of colorectal tumors.

    Science.gov (United States)

    Kamimae, Seiko; Yamamoto, Eiichiro; Yamano, Hiro-o; Nojima, Masanori; Suzuki, Hiromu; Ashida, Masami; Hatahira, Tomo; Sato, Akiko; Kimura, Tomoaki; Yoshikawa, Kenjiro; Harada, Taku; Hayashi, Seiko; Takamaru, Hiroyuki; Maruyama, Reo; Kai, Masahiro; Nishiwaki, Morie; Sugai, Tamotsu; Sasaki, Yasushi; Tokino, Takashi; Shinomura, Yasuhisa; Imai, Kohzoh; Toyota, Minoru

    2011-05-01

    Although conventional colonoscopy is considered the gold standard for detecting colorectal tumors, accurate staging is often difficult because advanced histology may be present in small colorectal lesions. We collected DNA present in mucosal wash fluid from patients undergoing colonoscopy and then assessed the methylation levels of four genes frequently methylated in colorectal cancers to detect invasive tumors. We found that methylation levels in wash fluid were significantly higher in patients with invasive than those with noninvasive tumors. Cytologic and K-ras mutation analyses suggested that mucosal wash fluid from invasive tumors contained greater numbers of tumor cells than wash fluid from noninvasive tumors. Among the four genes, levels of mir-34b/c methylation had the greatest correlation with the invasion and showed the largest area under the receiver operating characteristic curve (AUC = 0.796). Using cutoff points of mir-34b/c methylation determined by efficiency considerations, the sensitivity/specificity were 0.861/0.657 for the 13.0% (high sensitivity) and 0.765/0.833 for the 17.8% (well-balanced) cutoffs. In the validation test set, the AUC was also very high (0.915), the sensitivity/specificity were 0.870/0.875 for 13.0% and 0.565/0.958 for 17.8%. Using the diagnostic tree constructed by an objective algorithm, the diagnostic accuracy of the invasiveness of colorectal cancer was 91.3% for the training set and 85.1% for the test set. Our results suggest that analysis of the methylation of DNA in mucosal wash fluid may be a good molecular marker for predicting the invasiveness of colorectal tumors. PMID:21543345

  8. Genomic DNA copy-number alterations of the let-7 family in human cancers.

    Directory of Open Access Journals (Sweden)

    Yanling Wang

    Full Text Available In human cancer, expression of the let-7 family is significantly reduced, and this is associated with shorter survival times in patients. However, the mechanisms leading to let-7 downregulation in cancer are still largely unclear. Since an alteration in copy-number is one of the causes of gene deregulation in cancer, we examined copy number alterations of the let-7 family in 2,969 cancer specimens from a high-resolution SNP array dataset. We found that there was a reduction in the copy number of let-7 genes in a cancer-type specific manner. Importantly, focal deletion of four let-7 family members was found in three cancer types: medulloblastoma (let-7a-2 and let-7e, breast cancer (let-7a-2, and ovarian cancer (let-7a-3/let-7b. For example, the genomic locus harboring let-7a-3/let-7b was deleted in 44% of the specimens from ovarian cancer patients. We also found a positive correlation between the copy number of let-7b and mature let-7b expression in ovarian cancer. Finally, we showed that restoration of let-7b expression dramatically reduced ovarian tumor growth in vitro and in vivo. Our results indicate that copy number deletion is an important mechanism leading to the downregulation of expression of specific let-7 family members in medulloblastoma, breast, and ovarian cancers. Restoration of let-7 expression in tumor cells could provide a novel therapeutic strategy for the treatment of cancer.

  9. Tissue-specific mRNA expression profiling in grape berry tissues

    Directory of Open Access Journals (Sweden)

    Cramer Grant R

    2007-06-01

    Full Text Available Abstract Background Berries of grape (Vitis vinifera contain three major tissue types (skin, pulp and seed all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin and mesocarp (pulp, not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell

  10. The role of germline alterations in the DNA damage response genes BRIP1 and BRCA2 in melanoma susceptibility.

    Science.gov (United States)

    Tuominen, Rainer; Engström, Pär G; Helgadottir, Hildur; Eriksson, Hanna; Unneberg, Per; Kjellqvist, Sanela; Yang, Muyi; Lindén, Diana; Edsgärd, Daniel; Hansson, Johan; Höiom, Veronica

    2016-07-01

    We applied a targeted sequencing approach to identify germline mutations conferring a moderately to highly increased risk of cutaneous and uveal melanoma. Ninety-two high-risk melanoma patients were screened for inherited variation in 120 melanoma candidate genes. Observed gene variants were filtered based on frequency in reference populations, cosegregation with melanoma in families and predicted functional effect. Several novel or rare genetic variants in genes involved in DNA damage response, cell-cycle regulation and transcriptional control were identified in melanoma patients. Among identified genetic alterations was an extremely rare variant (minor allele frequency of 0.00008) in the BRIP1 gene that was found to cosegregate with the melanoma phenotype. We also found a rare nonsense variant in the BRCA2 gene (rs11571833), previously associated with cancer susceptibility but not with melanoma, which showed weak association with melanoma susceptibility in the Swedish population. Our results add to the growing knowledge about genetic factors associated with melanoma susceptibility and also emphasize the role of DNA damage response as an important factor in melanoma etiology. © 2016 Wiley Periodicals, Inc. PMID:27074266

  11. Altered localization and functionality of TAR DNA Binding Protein 43 (TDP-43) in niemann- pick disease type C.

    Science.gov (United States)

    Dardis, A; Zampieri, S; Canterini, S; Newell, K L; Stuani, C; Murrell, J R; Ghetti, B; Fiorenza, M T; Bembi, B; Buratti, E

    2016-01-01

    Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by the occurrence of visceral and neurological symptoms. At present, the molecular mechanisms causing neurodegeneration in this disease are unknown. Here we report the altered expression and/or mislocalization of the TAR-DNA binding protein 43 (TDP-43) in both NPC mouse and in a human neuronal model of the disease. We also report the neuropathologic study of a NPC patient's brain, showing that while TDP-43 is below immunohistochemical detection in nuclei of cerebellar Purkinje cells, it has a predominant localization in the cytoplasm of these cells. From a functional point of view, the TDP-43 mislocalization, that occurs in a human experimental neuronal model system, is associated with specific alterations in TDP-43 controlled genes. Most interestingly, treatment with N-Acetyl-cysteine (NAC) or beta-cyclodextrin (CD) can partially restore TDP-43 nuclear localization. Taken together, the results of these studies extend the role of TDP-43 beyond the Amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD)/Alzheimer disease (AD) spectrum. These findings may open novel research/therapeutic avenues for a better understanding of both NPC disease and the TDP-43 proteinopathy disease mechanism. PMID:27193329

  12. DNA Methylation Alterations at 5′-CCGG Sites in the Interspecific and Intraspecific Hybridizations Derived from Brassica rapa and B. napus

    OpenAIRE

    Wanshan Xiong; Xiaorong Li; Donghui Fu; Jiaqin Mei; Qinfei Li; Guanyuan Lu; Lunwen Qian; Yin Fu; Joseph Onwusemu Disi; Jiana Li; Wei Qian

    2013-01-01

    DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5'-CCGG sites in seedlings and buds by methylation-...

  13. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  14. Distinct DNA methylomes of newborns and centenarians

    Science.gov (United States)

    Heyn, Holger; Li, Ning; Ferreira, Humberto J.; Moran, Sebastian; Pisano, David G.; Gomez, Antonio; Diez, Javier; Sanchez-Mut, Jose V.; Setien, Fernando; Carmona, F. Javier; Puca, Annibale A.; Sayols, Sergi; Pujana, Miguel A.; Serra-Musach, Jordi; Iglesias-Platas, Isabel; Formiga, Francesc; Fernandez, Agustin F.; Fraga, Mario F.; Heath, Simon C.; Valencia, Alfonso; Gut, Ivo G.; Wang, Jun; Esteller, Manel

    2012-01-01

    Human aging cannot be fully understood in terms of the constrained genetic setting. Epigenetic drift is an alternative means of explaining age-associated alterations. To address this issue, we performed whole-genome bisulfite sequencing (WGBS) of newborn and centenarian genomes. The centenarian DNA had a lower DNA methylation content and a reduced correlation in the methylation status of neighboring cytosine—phosphate—guanine (CpGs) throughout the genome in comparison with the more homogeneously methylated newborn DNA. The more hypomethylated CpGs observed in the centenarian DNA compared with the neonate covered all genomic compartments, such as promoters, exonic, intronic, and intergenic regions. For regulatory regions, the most hypomethylated sequences in the centenarian DNA were present mainly at CpG-poor promoters and in tissue-specific genes, whereas a greater level of DNA methylation was observed in CpG island promoters. We extended the study to a larger cohort of newborn and nonagenarian samples using a 450,000 CpG-site DNA methylation microarray that reinforced the observation of more hypomethylated DNA sequences in the advanced age group. WGBS and 450,000 analyses of middle-age individuals demonstrated DNA methylomes in the crossroad between the newborn and the nonagenarian/centenarian groups. Our study constitutes a unique DNA methylation analysis of the extreme points of human life at a single-nucleotide resolution level. PMID:22689993

  15. Mitochondrial DNA haplogroups modify the risk of osteoarthritis by altering mitochondrial function and intracellular mitochondrial signals.

    Science.gov (United States)

    Fang, Hezhi; Zhang, Fengjiao; Li, Fengjie; Shi, Hao; Ma, Lin; Du, Miaomiao; You, Yanting; Qiu, Ruyi; Nie, Hezhongrong; Shen, Lijun; Bai, Yidong; Lyu, Jianxin

    2016-04-01

    Haplogroup G predisposes one to an increased risk of osteoarthritis (OA) occurrence, while haplogroup B4 is a protective factor against OA onset. However, the underlying mechanism is not known. Here, by using trans-mitochondrial technology, we demonstrate that the activity levels of mitochondrial respiratory chain complex I and III are higher in G cybrids than in haplogroup B4. Increased mitochondrial oxidative phosphorylation (OXPHOS) promotes mitochondrial-related ATP generation in G cybrids, thereby shifting the ATP generation from glycolysis to OXPHOS. Furthermore, we found that lower glycolysis in G cybrids decreased cell viability under hypoxia (1% O2) compared with B4 cybrids. In contrast, G cybrids have a lower NAD(+)/NADH ratio and less generation of reactive oxygen species (ROS) under both hypoxic (1% O2) and normoxic (20% O2) conditions than B4 cybrids, indicating that mitochondrial-mediated signaling pathways (retrograde signaling) differ between these cybrids. Gene expression profiling of G and B4 cybrids using next-generation sequencing technology showed that 404 of 575 differentially expressed genes (DEGs) between G and B4 cybrids are enriched in 17 pathways, of which 11 pathways participate in OA. Quantitative reverse transcription PCR (qRT-PCR) analyses confirmed that G cybrids had lower glycolysis activity than B4 cybrids. In addition, we confirmed that the rheumatoid arthritis pathway was over-activated in G cybrids, although the remaining 9 pathways were not further tested by qRT-PCR. In conclusion, our findings indicate that mtDNA haplogroup G may increase the risk of OA by shifting the metabolic profile from glycolysis to OXPHOS and by over-activating OA-related signaling pathways. PMID:26705675

  16. Imatinib causes epigenetic alterations of PTEN gene via upregulation of DNA methyltransferases and polycomb group proteins

    International Nuclear Information System (INIS)

    We have recently reported the possible imatinib-resistant mechanism; long-term exposure of leukemia cells to imatinib downregulated levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) via hypermethylation of its promoter region (Leukemia 2010; 24: 1631). The present study explored the molecular mechanisms by which imatinib caused methylation on the promoter region of this tumor suppressor gene in leukemia cells. Real-time reverse transcription PCR found that long-term exposure of chronic eosinophilic leukemia EOL-1 cells expressing FIP1L1/platelet-derived growth factor receptor-α to imatinib induced expression of DNA methyltransferase 3A (DNMT3A) and histone-methyltransferase enhancer of zeste homolog 2 (EZH2), a family of polycomb group, thereby increasing methylation of the gene. Immunoprecipitation assay found the increased complex formation of DNMT3A and EZH2 proteins in these cells. Moreover, chromatin immunoprecipitation assay showed that amounts of both DNMT3A and EZH2 proteins bound around the promoter region of PTEN gene were increased in EOL-1 cells after exposure to imatinib. Furthermore, we found that levels of DNMT3A and EZH2 were strikingly increased in leukemia cells isolated from individuals with chronic myelogenous leukemia (n=1) and Philadelphia chromosome-positive acute lymphoblastic leukemia (n=2), who relapsed after treatment with imatinib compared with those isolated at their initial presentation. Taken together, imatinib could cause drug-resistance via recruitment of polycomb gene complex to the promoter region of the PTEN and downregulation of this gene's transcripts in leukemia patients

  17. Influence of inhibitors of poly(ADP-ribose) polymerase on DNA repair, chromosomal alterations, and mutations

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, A.T.; van Zeeland, A.A.; Zwanenburg, T.S.

    1983-01-01

    The influence of inhibitors of poly(ADP-ribose) polymerase such as 3-aminobenzamide (3AB) and benzamide (B) on the spontaneously occurring as well as mutagen induced chromosomal aberrations, sister chromatid exchanges (SCEs) and point mutations has been studied. In addition, the influence of 3AB on DNA repair was measured following treatment with physical and chemical mutagens. Post treatment of X-irradiated mammalian cells with 3AB increases the frequencies of induced chromosomal aberrations by a factor of 2 to 3. 3AB, when present in the medium containing bromodeoxyuridine(BrdUrd) during two cell cycles, increases the frequencies of SCEs in Chinese hamster ovary cells (CHO) in a concentration dependent manner leading to about a 10-fold increase at 10 mM concentration. The extent of increase in the frequencies of SCEs due to 1 mM 3AB in several human cell lines has been studied, including those derived from patients suffering from genetic diseases such as ataxia telangiectasia (A-T), Fanconi's anemia (FA), and Huntington's chorea. None of these syndromes showed any increased response when compared to normal cells. 3AB, however, increased the frequencies of spontaneously occurring chromosomal aberrations in A-T and FA cells. 3AB does not influence the frequencies of SCEs induced by UV or mitomycin C (MMC) in CHO cells. However, it increases the frequencies of SCEs induced by ethyl methanesulfonate (EMS) and methyl methanesulfonate (MMS). Under the conditions in which 3AB increases the frequencies of spontaneously occurring as well as induced SCEs, it does not increase the frequencies of point mutations in hypoxanthine-guanine phosphoribosyltransferase (HGPRT) locus. 3AB does not influence the amount of repair replication following dimethylsulphate (DMS) treatment of human fibroblasts, or UV irradiated human lymphocytes.

  18. Rodent Aanat: Intronic E-box sequences control tissue specificity but not rhythmic expression in the pineal gland

    OpenAIRE

    2007-01-01

    Rodent Aanat: Intronic E-box sequences control tissue specificity but not rhythmic expression in the pineal gland UNITED KINGDOM (Humphries, Ann) UNITED KINGDOM Received: 2006-12-30 Revised: 2007-02-07 Accepted: 2007-02-07

  19. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard;

    2013-01-01

    Phosphorylation of mitochondrial proteins in a variety of biological processes is increasingly being recognized and may contribute to the differences in function and energy demands observed in mitochondria from different tissues such as liver, heart, and skeletal muscle. Here, we used a combination...... of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC-MS/MS on isolated mitochondria to investigate the tissue-specific mitochondrial phosphoproteomes of rat liver, heart, and skeletal muscle. In total, we identified 899 phosphorylation sites in 354 different mitochondrial proteins including...... enrichment for phosphoproteins involved in amino acid and fatty acid metabolism in liver mitochondria, whereas heart and skeletal muscle were enriched for phosphoproteins involved in energy metabolism, in particular, tricarboxylic acid cycle and oxidative phosphorylation. Multiple tissue...

  20. Tissue Specific Effects of Loss of Estrogen During Menopause and Aging

    Directory of Open Access Journals (Sweden)

    Korinna eWend

    2012-02-01

    Full Text Available The roles of estrogens have been best studied in the breast, breast cancers and in the female reproductive tract. However, estrogens have important functions in almost every tissue in the body. Recent clinical trials such as the Women’s Health Initiative have highlighted both the importance of estrogens and how little we know about the molecular mechanism of estrogens in these other tissues. In this review, we illustrate the diverse functions of estrogens in the bone, adipose tissue, skin, hair, brain, skeletal muscle and cardiovascular system, and how the loss of estrogens during aging affects these tissues. Early transcriptional targets of estrogen are reviewed in each tissue. We also describe the tissue-specific effects of selective estrogen receptor modulators (SERMs used for the treatment of breast cancers and post-menopausal symptoms.

  1. Tissue-specific and substrate-specific mitochondrial bioenergetics in feline cardiac and skeletal muscles

    DEFF Research Database (Denmark)

    Christiansen, Liselotte Bruun; Dela, Flemming; Koch, Jørgen;

    2015-01-01

    No studies have investigated the mitochondrial function in permeabilized muscle fiber from cats. The aim of this study was to investigate tissue-specific and substrate-specific characteristics of mitochondrial oxidative phosphorylation (OXPHOS) capacity in feline permeabilized oxidative muscle...... fibers. Biopsies of left ventricular cardiac muscle and soleus muscle, a type I-rich oxidative skeletal muscle, were obtained from 15 healthy domestic cats. Enzymatic activity of citrate synthase (CS), a biomarker of mitochondrial content, was measured. Mitochondrial OXPHOS capacity with various kinds of...... non-fatty-acid substrates and fatty-acid substrate in permeabilized muscle fiber was measured by using high-resolution respirometry. CS activity in the heart was 3 times higher than in the soleus muscle. Mitochondrial state 3 respiration, ADP-stimulated respiration, with complex I-linked and complex I...

  2. Tissue-specific direct targets of Caenorhabditis elegans Rb/E2F dictate distinct somatic and germline programs

    OpenAIRE

    Kudron, Michelle; Niu, Wei; Lu, Zhi; Wang, Guilin; Gerstein, Mark; Snyder, Michael; Reinke, Valerie

    2013-01-01

    Background The tumor suppressor Rb/E2F regulates gene expression to control differentiation in multiple tissues during development, although how it directs tissue-specific gene regulation in vivo is poorly understood. Results We determined the genome-wide binding profiles for Caenorhabditis elegans Rb/E2F-like components in the germline, in the intestine and broadly throughout the soma, and uncovered highly tissue-specific binding patterns and target genes. Chromatin association by LIN-35, th...

  3. Tension of knotted surgical sutures shows tissue specific rapid loss in a rodent model

    Directory of Open Access Journals (Sweden)

    Klink Christian D

    2011-12-01

    Full Text Available Abstract Background Every surgical suture compresses the enclosed tissue with a tension that depends from the knotting force and the resistance of the tissue. The aim of this study was to identify the dynamic change of applied suture tension with regard to the tissue specific cutting reaction. Methods In rabbits we placed single polypropylene sutures (3/0 in skin, muscle, liver, stomach and small intestine. Six measurements for each single organ were determined by tension sensors for 60 minutes. We collected tissue specimens to analyse the connective tissue stability by measuring the collagen/protein content. Results We identified three phases in the process of suture loosening. The initial rapid loss of the first phase lasts only one minute. It can be regarded as cutting through damage of the tissue. The percentage of lost tension is closely related to the collagen content of the tissue (r = -0.424; p = 0.016. The second phase is characterized by a slower decrease of suture tension, reflecting a tissue specific plastic deformation. Phase 3 is characterized by a plateau representing the remaining structural stability of the tissue. The ratio of remaining tension to initial tension of phase 1 is closely related to the collagen content of the tissue (r = 0.392; p = 0.026. Conclusions Knotted non-elastic monofilament sutures rapidly loose tension. The initial phase of high tension may be narrowed by reduction of the surgeons' initial force of the sutures' elasticity to those of the tissue. Further studies have to confirm, whether reduced tissue compression and less local damage permits improved wound healing.

  4. Comparative Transcriptome Analysis Reveals Substantial Tissue Specificity in Human Aortic Valve

    Science.gov (United States)

    Wang, Jun; Wang, Ying; Gu, Weidong; Ni, Buqing; Sun, Haoliang; Yu, Tong; Gu, Wanjun; Chen, Liang; Shao, Yongfeng

    2016-01-01

    RNA sequencing (RNA-seq) has revolutionary roles in transcriptome identification and quantification of different types of tissues and cells in many organisms. Although numerous RNA-seq data derived from many types of human tissues and cell lines, little is known on the transcriptome repertoire of human aortic valve. In this study, we sequenced the total RNA prepared from two calcified human aortic valves and reported the whole transcriptome of human aortic valve. Integrating RNA-seq data of 13 human tissues from Human Body Map 2 Project, we constructed a transcriptome repertoire of human tissues, including 19,505 protein-coding genes and 4,948 long intergenic noncoding RNAs (lincRNAs). Among them, 263 lincRNAs were identified as novel noncoding transcripts in our data. By comparing transcriptome data among different human tissues, we observed substantial tissue specificity of RNA transcripts, both protein-coding genes and lincRNAs, in human aortic valve. Further analysis revealed that aortic valve-specific lincRNAs were more likely to be recently derived from repetitive elements in the primate lineage, but were less likely to be conserved at the nucleotide level. Expression profiling analysis showed significant lower expression levels of aortic valve-specific protein-coding genes and lincRNA genes, when compared with genes that were universally expressed in various tissues. Isoform-level expression analysis also showed that a majority of mRNA genes had a major isoform expressed in the human aortic valve. To our knowledge, this is the first comparative transcriptome analysis between human aortic valve and other human tissues. Our results are helpful to understand the transcriptome diversity of human tissues and the underlying mechanisms that drive tissue specificity of protein-coding genes and lincRNAs in human aortic valve. PMID:27493474

  5. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    Directory of Open Access Journals (Sweden)

    Helin Tan

    Full Text Available Canola (Brassica napus is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld, phloem-peeling (Pe, and selective silique darkening (Sd. Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA, organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms

  6. Tissue-specific and neural activity-regulated expression of human BDNF gene in BAC transgenic mice

    Directory of Open Access Journals (Sweden)

    Palm Kaia

    2009-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF is a small secreted protein that has important roles in the developing and adult nervous system. Altered expression or changes in the regulation of the BDNF gene have been implicated in a variety of human nervous system disorders. Although regulation of the rodent BDNF gene has been extensively investigated, in vivo studies regarding the human BDNF gene are largely limited to postmortem analysis. Bacterial artificial chromosome (BAC transgenic mice harboring the human BDNF gene and its regulatory flanking sequences constitute a useful tool for studying human BDNF gene regulation and for identification of therapeutic compounds modulating BDNF expression. Results In this study we have generated and analyzed BAC transgenic mice carrying 168 kb of the human BDNF locus modified such that BDNF coding sequence was replaced with the sequence of a fusion protein consisting of N-terminal BDNF and the enhanced green fluorescent protein (EGFP. The human BDNF-BAC construct containing all BDNF 5' exons preceded by different promoters recapitulated the expression of endogenous BDNF mRNA in the brain and several non-neural tissues of transgenic mice. All different 5' exon-specific BDNF-EGFP alternative transcripts were expressed from the transgenic human BDNF-BAC construct, resembling the expression of endogenous BDNF. Furthermore, BDNF-EGFP mRNA was induced upon treatment with kainic acid in a promotor-specific manner, similarly to that of the endogenous mouse BDNF mRNA. Conclusion Genomic region covering 67 kb of human BDNF gene, 84 kb of upstream and 17 kb of downstream sequences is sufficient to drive tissue-specific and kainic acid-induced expression of the reporter gene in transgenic mice. The pattern of expression of the transgene is highly similar to BDNF gene expression in mouse and human. This is the first study to show that human BDNF gene is regulated by neural activity.

  7. DNA methylation alterations in response to prenatal exposure of maternal cigarette smoking: A persistent epigenetic impact on health from maternal lifestyle?

    Science.gov (United States)

    Nielsen, Christina H; Larsen, Agnete; Nielsen, Anders L

    2016-02-01

    Despite increased awareness, maternal cigarette smoking during pregnancy continues to be a common habit causing risk for numerous documented negative health consequences in the exposed children. It has been proposed that epigenetic mechanisms constitute the link between prenatal exposure to maternal cigarette smoking (PEMCS) and the diverse pathologies arising in later life. We here review the current literature, focusing on DNA methylation. Alterations in the global DNA methylation patterns were observed after exposure to maternal smoking during pregnancy in placenta, cord blood and buccal epithelium tissue. Further, a number of specific genes exemplified by CYP1A1, AhRR, FOXP3, TSLP, IGF2, AXL, PTPRO, C11orf52, FRMD4A and BDNF are shown to have altered DNA methylation patterns in at least one of these tissue types due to PEMCS. Investigations showing persistence and indications of trans-generational inheritance of DNA methylation alterations induced by smoking exposure are also described. Further, smoking-induced epigenetic manifestations can be both tissue-dependent and gender-specific which show the importance of addressing the relevant sex, tissue and cell types in the future studies linking specific epigenetic alterations to disease development. Moreover, the effect of paternal cigarette smoking and second-hand smoke exposure is documented and accordingly not to be neglected in future investigations and data evaluations. We also outline possible directions for the future research to address how DNA methylation alterations induced by maternal lifestyle, exemplified by smoking, have direct consequences for fetal development and later in life health and behavior of the child. PMID:25480659

  8. Tissue-specific MR contrast agents. Impact on imaging diagnosis and future prospects

    International Nuclear Information System (INIS)

    Superparamagnetic iron oxide (SPIO) is the only tissue-specific MR agent currently available in Japan. It is quickly taken up by Kupffer cells at the first pass (either arterial or portal) and becomes clustered in the lysosome, providing characteristic T2* and T2 shortening effects that suppresses the signal of normal or non-tumorous liver tissue. SPIO has dramatically changed the diagnostic algorithm of liver metastasis in clinical practice, now serving as the gold standard instead of CT during arterial portography (CTAP). Its role in the diagnosis of hepatocellular carcinoma (HCC), however, is somewhat complicated, owing to its heterogeneous uptake by the background cirrhotic liver, as well as by some of the HCCs themselves. It has been shown to be useful in the diagnosis of pseudolesions (arterioportal shunts) and some benign hepatocellular lesions (focal nodular hyperplasia or adenoma) by their complete or partial uptake of SPIO, in contrast to an absence of uptake by true liver lesions. It has also been suggested that the histological grade of HCC affects the degree of SPIO uptake. Thus, SPIO serves as a complementary tool to the primary modalities of vascular survey, namely, dynamic CT/MR and CT during hepatic arteriography (CTHA)/CTAP, in the diagnosis of HCC. Gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) is a novel hepatobiliary contrast agent that is not yet available but is supposed to be approved by the Ministry of Health, Labour, and Welfare of Japan in the near future. It is taken up by hepatocytes and excreted into the bile, providing a T1-shortening effect that enhances the normal or non-tumorous liver tissue. It has also been shown to have the effect of positive enhancement of hypervascular liver tumors on the arterial phase, just like the usual extracellular contrast agent (gadopentetate dimeglumine: Gd-DTPA). Thus, Gd-EOB-DTPA was once thought to be an ideal contrast agent for liver tumors, providing information on both

  9. ARG1 (altered response to gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton

    Science.gov (United States)

    Sedbrook, J. C.; Chen, R.; Masson, P. H.

    1999-01-01

    Gravitropism allows plant organs to direct their growth at a specific angle from the gravity vector, promoting upward growth for shoots and downward growth for roots. Little is known about the mechanisms underlying gravitropic signal transduction. We found that mutations in the ARG1 locus of Arabidopsis thaliana alter root and hypocotyl gravitropism without affecting phototropism, root growth responses to phytohormones or inhibitors of auxin transport, or starch accumulation. The positional cloning of ARG1 revealed a DnaJ-like protein containing a coiled-coil region homologous to coiled coils found in cytoskeleton-interacting proteins. These data suggest that ARG1 participates in a gravity-signaling process involving the cytoskeleton. A combination of Northern blot studies and analysis of ARG1-GUS fusion-reporter expression in transgenic plants demonstrated that ARG1 is expressed in all organs. Ubiquitous ARG1 expression in Arabidopsis and the identification of an ortholog in Caenorhabditis elegans suggest that ARG1 is involved in other essential processes.

  10. Whole-organ isolation approach as a basis for tissue-specific analyses in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Steffen Hahnel

    Full Text Available BACKGROUND: Schistosomiasis is one of the most important parasitic diseases worldwide, second only to malaria. Schistosomes exhibit an exceptional reproductive biology since the sexual maturation of the female, which includes the differentiation of the reproductive organs, is controlled by pairing. Pathogenicity originates from eggs, which cause severe inflammation in their hosts. Elucidation of processes contributing to female maturation is not only of interest to basic science but also considering novel concepts combating schistosomiasis. METHODOLOGY/PRINCIPAL FINDINGS: To get direct access to the reproductive organs, we established a novel protocol using a combined detergent/protease-treatment removing the tegument and the musculature of adult Schistosoma mansoni. All steps were monitored by scanning electron microscopy (SEM and bright-field microscopy (BF. We focused on the gonads of adult schistosomes and demonstrated that isolated and purified testes and ovaries can be used for morphological and structural studies as well as sources for RNA and protein of sufficient amounts for subsequent analyses such as RT-PCR and immunoblotting. To this end, first exemplary evidence was obtained for tissue-specific transcription within the gonads (axonemal dynein intermediate chain gene SmAxDynIC; aquaporin gene SmAQP as well as for post-transcriptional regulation (SmAQP. CONCLUSIONS/SIGNIFICANCE: The presented method provides a new way of getting access to tissue-specific material of S. mansoni. With regard to many still unanswered questions of schistosome biology, such as elucidating the molecular processes involved in schistosome reproduction, this protocol provides opportunities for, e.g., sub-transcriptomics and sub-proteomics at the organ level. This will promote the characterisation of gene-expression profiles, or more specifically to complete knowledge of signalling pathways contributing to differentiation processes, so discovering involved

  11. Tissue-specific targeting of cell fate regulatory genes by E2f factors.

    Science.gov (United States)

    Julian, L M; Liu, Y; Pakenham, C A; Dugal-Tessier, D; Ruzhynsky, V; Bae, S; Tsai, S-Y; Leone, G; Slack, R S; Blais, A

    2016-04-01

    Cell cycle proteins are important regulators of diverse cell fate decisions, and in this capacity have pivotal roles in neurogenesis and brain development. The mechanisms by which cell cycle regulation is integrated with cell fate control in the brain and other tissues are poorly understood, and an outstanding question is whether the cell cycle machinery regulates fate decisions directly or instead as a secondary consequence of proliferative control. Identification of the genes targeted by E2 promoter binding factor (E2f) transcription factors, effectors of the pRb/E2f cell cycle pathway, will provide essential insights into these mechanisms. We identified the promoter regions bound by three neurogenic E2f factors in neural precursor cells in a genome-wide manner. Through bioinformatic analyses and integration of published genomic data sets we uncovered hundreds of transcriptionally active E2f-bound promoters corresponding to genes that control cell fate processes, including key transcriptional regulators and members of the Notch, fibroblast growth factor, Wnt and Tgf-β signaling pathways. We also demonstrate a striking enrichment of the CCCTC binding factor transcription factor (Ctcf) at E2f3-bound nervous system-related genes, suggesting a potential regulatory co-factor for E2f3 in controlling differentiation. Finally, we provide the first demonstration of extensive tissue specificity among E2f target genes in mammalian cells, whereby E2f3 promoter binding is well conserved between neural and muscle precursors at genes associated with cell cycle processes, but is tissue-specific at differentiation-associated genes. Our findings implicate the cell cycle pathway as a widespread regulator of cell fate genes, and suggest that E2f3 proteins control cell type-specific differentiation programs by regulating unique sets of target genes. This work significantly enhances our understanding of how the cell cycle machinery impacts cell fate and differentiation, and will

  12. Acanthus ilicifolius plant extract prevents DNA alterations in a transplantable Ehrlich ascites carcinoma-bearing murine model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the chemopreventive efficacy of the Indian medicinal plant Acanthus ilicifolius L Acanthaceae in a transplantable Ehrlich ascites carcinoma (EAC)-bearing murine model.METHODS: Male Swiss albino mice were divided into four groups: Group A was the untreated normal control; Group B was the EAC control mice group that received serial, intraperitoneal (ip) inoculations of rapidly proliferating 2 × 105 viable EAC cells in 0.2 mL of sterile phosphate buffered saline; Group C was the plant extract-treated group that received the aqueous leaf extract (ALE) of the plant at a dose of 2.5 mg/kg body weight by single ip injections, once daily for 10, 20 and 30 consecutive days following tumour inoculation (ALE control); and Group D was the EAC + ALE-treatment group. The chemopreventive potential of the ALE was evaluated in a murine model by studying various biological parameters and genotoxic markers,such as tumour cell count, mean survival of the animals,haematological indices, hepatocellular histology,immunohistochemical expression of liver metallothionein (MT) protein, sister-chromatid exchanges (SCEs), and DNA alterations.RESULTS: Treatment of the EAC-bearing mice with the ALE significantly (P < 0.001) reduced viable tumour cell count by 68.34% (228.7 × 106 ± 0.53) when compared to EAC control mice (72.4 × 106 ± 0.49), and restored body and organ weights almost to the normal values.ALE administration also increased (P < 0.001) mean survival of the hosts from 35 ± 3.46 d in EAC control mice to 83 ± 2.69 d in EAC + ALE-treated mice.Haematological indices also showed marked improvement with administration of ALE in EAC-bearing animals. There was a significant increase in RBC count (P < 0.001),hemoglobin percent (P < 0.001), and haematocrit value (P < 0.001) from 4.3 ± 0.12, 6.4 ± 0.93, and 17.63 ± 0.72 respectively in EAC control mice to 7.1 ± 0.13, 12.1 ±0.77, and 30.23 ± 0.57 respectively in EAC + ALE-treated group, along with

  13. Regulation of oxytocin receptor gene expression in sheep: tissue specificity, multiple transcripts and mRNA editing.

    Science.gov (United States)

    Feng, H C; Bhave, M; Fairclough, R J

    2000-09-01

    The increase in uterine oxytocin receptor concentrations over the late luteal phase of the oestrous cycle in sheep is thought to play an important role in the regulation of the duration of the cycle by facilitating the effect of oxytocin on uterine prostaglandin release. Experiments indicated that oxytocin receptor mRNA expression in the endometrium was high at oestrus compared with at days 2, 7 and 12 of the oestrous cycle. The amount of oxytocin receptor mRNA expression in the pituitary gland did not show any significant differences during the oestrous cycle. Oxytocin receptor cDNA was obtained and characterized from ovine uterine endometrium on day 15 of the oestrous cycle, using RT-PCR techniques, to study the mechanisms underlying the resolution of oxytocin receptor expression. The cDNA sequence for the oxytocin receptor gene in sheep was found to be similar to that described previously, except for a difference of seven nucleotides. These nucleotide differences resulted in changes in four of the deduced amino acids in the oxytocin receptor sequence. The heterogeneity of the different sized oxytocin receptor transcripts in sheep is due, at least in part, to the alternative use of polyadenylation sites. Northern hybridization confirmed that the oxytocin receptor gene is expressed in ovine corpus luteum. The investigations on oxytocin receptor gene expression indicate that the patten of oxytocin receptor gene expression in sheep is not only tissue-specific, but also highly function-related. Evidence was obtained of mRNA editing in both the coding and the 3'-untranslated (3'UTR) regions of oxytocin receptor gene transcripts in ovine endometrium; this was the first demonstration of this phenomenon for oxytocin receptor mRNA. The present results indicate that the observed differences in oxytocin receptor mRNA sequences for the different oxytocin receptor populations in endometrium are due to mRNA editing. mRNA editing of oxytocin receptor transcripts may be

  14. Verification, Characterization and Tissue-specific Expression of UreG, a Urease Accessory Protein Gene, from the Amphioxus Branchiostoma belcheri

    Institute of Scientific and Technical Information of China (English)

    Ji-Yu XUE; Shi-Cui ZHANG; Nai-Guo LIU; Zhen-Hui LIU

    2006-01-01

    UreG genes have been found in bacteria, fungi and plants but have not yet identified in animals,although a putative UreG-like gene has been documented in sea urchin. In the course of a large-scale sequencing of amphioxus gut cDNA library, we have identified a cDNA with high similarity to UreG genes. Both reverse transcription-polymerase chain reaction and nested polymerase chain reaction, as well as in situ hybridization histochemistry, verified that the cDNA represented an amphioxus UreG gene (AmphiUreG) rather than a microbial contaminant of the cDNA library. This is further supported by the presence of urease activity in amphioxus gut, gill and ovary. AmphiUreG encodes a deduced protein of 200 amino acid residues including a highly conserved P-loop, beating approximately 46%-49%, 44%-48%, and 29%-37% similarity to fungal,plant and bacterial UreG proteins, respectively. It shows a tissue-specific expression pattern in amphioxus,and is especially abundant in the digestive system. This is the first UreG gene identified in animal species.

  15. Tissue-Specific Ablation of Prkar1a Causes Schwannomas by Suppressing Neurofibromatosis Protein Production

    Directory of Open Access Journals (Sweden)

    Georgette N. Jones

    2008-11-01

    Full Text Available Signaling events leading to Schwann cell tumor initiation have been extensively characterized in the context of neurofibromatosis (NF. Similar tumors are also observed in patients with the endocrine neoplasia syndrome Carney complex, which results from inactivating mutations in PRKAR1A. Loss of PRKAR1A causes enhanced protein kinase A activity, although the pathways leading to tumorigenesis are not well characterized. Tissue-specific ablation of Prkar1a in neural crest precursor cells (TEC3KO mice causes schwannomas with nearly 80% penetrance by 10 months. These heterogeneous neoplasms were clinically characterized as genetically engineered mouse schwannomas, grades II and III. At the molecular level, analysis of the tumors revealed almost complete loss of both NF proteins, despite the fact that transcript levels were increased, implying posttranscriptional regulation. Although Erk and Akt signaling are typically enhanced in NF-associated tumors, we observed no activation of either of these pathways in TEC3KO tumors. Furthermore, the small G proteins Ras, Rac1, and RhoA are all known to be involved with NF signaling. In TEC3KO tumors, all three molecules showed modest increases in total protein, but only Rac1 showed significant activation. These data suggest that dysregulated protein kinase A activation causes tumorigenesis through pathways that overlap but are distinct from those described in NF tumorigenesis.

  16. An Arabidopsis tissue-specific RNAi method for studying genes essential to mitosis.

    Science.gov (United States)

    Burgos-Rivera, Brunilís; Dawe, R Kelly

    2012-01-01

    A large fraction of the genes in plants can be considered essential in the sense that when absent the plant fails to develop past the first few cell divisions. The fact that angiosperms pass through a haploid gametophyte stage can make it challenging to propagate such mutants even in the heterozygous condition. Here we describe a tissue-specific RNAi method that allows us to visualize cell division phenotypes in petals, which are large dispensable organs. Portions of the APETALA (AP3) and PISTILLATA (PI) promoters confer early petal-specific expression. We show that when either promoter is used to drive the expression of a beta-glucuronidase (GUS) RNAi transgene in plants uniformly expressing GUS, GUS expression is knocked down specifically in petals. We further tested the system by targeting the essential kinetochore protein CENPC and two different components of the Spindle Assembly Checkpoint (MAD2 and BUBR1). Plant lines expressing petal-specific RNAi hairpins targeting these genes exhibited an array of petal phenotypes. Cytological analyses of the affected flower buds confirmed that CENPC knockdown causes cell cycle arrest but provided no evidence that either MAD2 or BUBR1 are required for mitosis (although both genes are required for petal growth by this assay). A key benefit of the petal-specific RNAi method is that the phenotypes are not expressed in the lineages leading to germ cells, and the phenotypes are faithfully transmitted for at least four generations despite their pronounced effects on growth. PMID:23236491

  17. Nuclear factor 1 regulates adipose tissue-specific expression in the mouse GLUT4 gene

    International Nuclear Information System (INIS)

    Previous studies demonstrated that an adipose tissue-specific element(s) (ASE) of the murine GLUT4 gene is located between -551 and -506 in the 5'-flanking sequence and that a high-fat responsive element(s) for down-regulation of the GLUT4 gene is located between bases -701 and -552. A binding site for nuclear factor 1 (NF1), that mediates insulin and cAMP-induced repression of GLUT4 in 3T3-L1 adipocytes is located between bases -700 and -688. To examine the role of NF1 in the regulation of GLUT4 gene expression in white adipose tissues (WAT) in vivo, we created two types of transgenic mice harboring mutated either 5' or 3' half-site of NF1-binding sites in GLUT4 minigene constructs. In both cases, the GLUT4 minigene was not expressed in WAT, while expression was maintained in brown adipose tissue, skeletal muscle, and heart. This was an unexpected finding, since a -551 GLUT4 minigene that did not have the NF1-binding site was expressed in WAT. We propose a model that explains the requirement for both the ASE and the NF1-binding site for expression of GLUT4 in WAT

  18. Expression of PIN Genes in Rice (Oryza sativa L.):Tissue Specificity and Regulation by Hormones

    Institute of Scientific and Technical Information of China (English)

    Ji-Rong Wang; Han Hu; Gao-Hang Wang; Jing Li; Jie-Yu Chen; Ping Wu

    2009-01-01

    Twelve genes of the PIN family in rice were analyzed for gene and protein structures and an evolutionary relationship with reported AtPINs in Arabidopsis.Four members of PIN1 (designated as OsPIN1a-d),one gene paired with AtPIN2 (OsPIN2),three members of PIN5 (OsPIN5a-c),one gene paired with AtPIN8 (OsPIN8),and three monocot-specific PiNs (OsPINg,OsPIN10a,and b) were identified from the phylogenetic analysis.Tissue-specific expression patterns of nine PIN genes among them were investigated using RT-PCR and GUS reporter.The wide variations in the expression domain in different tissues of the PIN genes were observed.In general,PIN genes are up-regulated by exogenous auxin,while different responses of different PIN genes to other hormones were found.

  19. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  20. Tissue-specific concentrations and patterns of perfluoroalkyl carboxylates and sulfonates in East Greenland polar bears.

    Science.gov (United States)

    Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune; Born, Erik W

    2012-11-01

    Several perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) of varying chain length are bioaccumulative in biota. However, wildlife reports have focused on liver and with very little examination of other tissues, and thus there is a limited understanding of their distribution and potential effects in the mammalian body. In the present study, the comparative accumulation of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, and select precursors were examined in the liver, blood, muscle, adipose, and brain of 20 polar bears (Ursus maritimus) from Scoresby Sound, Central East Greenland. Overall, PFSA and PFCA concentrations were highest in liver followed by blood > brain > muscle ≈ adipose. Liver and blood samples contained proportionally more of the shorter/medium chain length (C(6) to C(11)) PFCAs, whereas adipose and brain samples were dominated by longer chain (C(13) to C(15)) PFCAs. PFCAs with lower lipophilicities accumulated more in the liver, whereas the brain accumulated PFCAs with higher lipophilicities. The concentration ratios (±SE) between perfluorooctane sulfonate and its precursor perfluorooctane sulfonamide varied among tissues from 9 (±1):1 (muscle) to 36 (±7):1 (liver). PFCA and PFSA patterns in polar bears indicate that the pharmacokinetics of these compounds are to some extent tissue-specific, and are the result of several factors that may include differing protein interactions throughout the body. PMID:23057644

  1. Generation and Characterization of a Tissue-Specific Centrosome Indicator Mouse Line.

    Science.gov (United States)

    Hirai, Maretoshi; Chen, Ju; Evans, Sylvia M

    2016-05-01

    Centrosomes are major microtubule organizing centers (MTOCs) that play an important role in chromosome segregation during cell division. Centrosomes provide a stable anchor for microtubules, constituting the centers of the spindle poles in mitotic cells, and determining the orientation of cell division. However, visualization of centrosomes is challenging because of their small size. Especially in mouse tissues, it has been extremely challenging to observe centrosomes belonging to a specific cell type of interest among multiple comingled cell types. To overcome this obstacle, we generated a tissue-specific centrosome indicator. In this mouse line, a construct containing a floxed neomyocin resistance gene with a triplicate polyA sequence followed by an EGFP-Centrin1 fusion cassette was knocked into the Rosa locus. Upon Cre-mediated excision, EGFP-Centrin1 was expressed under the control of the Rosa locus. Experiments utilizing mouse embryo fibroblasts (MEFs) demonstrated the feasibility of real-time imaging, and showed that EGFP-Centrin1 expression mirrored the endogenous centrosome cycle, undergoing precisely one round of duplication through the cell cycle. Moreover, experiments using embryo and adult mouse tissues demonstrated that EGFP-Centrin1 specifically mirrors the localization of endogenous centrosomes. genesis 54:286-296, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc. PMID:26990996

  2. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis.

    Science.gov (United States)

    Lindström, Nils O; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J Martin

    2011-01-01

    The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms' tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue-tissue interactions guiding multiple developmental processes. PMID:21167960

  3. Genome-wide Transcription Factor Gene Prediction and their Expressional Tissue-Specificities in Maize

    Institute of Scientific and Technical Information of China (English)

    Yi Jiang; Biao Zeng; Hainan Zhao; Mei Zhang; Shaojun Xie; Jinsheng Lai

    2012-01-01

    Transcription factors (TFs) are important regulators of gene expression.To better understand TFencoding genes in maize (Zea mays L.),a genome-wide TF prediction was performed using the updated B73 reference genome.A total of 2 298 TF genes were identified,which can be classified into 56 families.The largest family,known as the MYB superfamily,comprises 322 MYB and MYB-related TF genes.The expression patterns of 2014 (87.64%) TF genes were examined using RNA-seq data,which resulted in the identification of a subset of TFs that are specifically expressed in particular tissues (including root,shoot,leaf,ear,tassel and kernel).Similarly,98 kernel-specific TF genes were further analyzed,and it was observed that 29 of the kernel-specific genes were preferentially expressed in the early kernel developmental stage,while 69 of the genes were expressed in the late kernel developmental stage.Identification of these TFs,particularly the tissue-specific ones,provides important information for the understanding of development and transcriptional regulation of maize.

  4. Poly(A) code analyses reveal key determinants for tissue-specific mRNA alternative polyadenylation.

    Science.gov (United States)

    Weng, Lingjie; Li, Yi; Xie, Xiaohui; Shi, Yongsheng

    2016-06-01

    mRNA alternative polyadenylation (APA) is a critical mechanism for post-transcriptional gene regulation and is often regulated in a tissue- and/or developmental stage-specific manner. An ultimate goal for the APA field has been to be able to computationally predict APA profiles under different physiological or pathological conditions. As a first step toward this goal, we have assembled a poly(A) code for predicting tissue-specific poly(A) sites (PASs). Based on a compendium of over 600 features that have known or potential roles in PAS selection, we have generated and refined a machine-learning algorithm using multiple high-throughput sequencing-based data sets of tissue-specific and constitutive PASs. This code can predict tissue-specific PASs with >85% accuracy. Importantly, by analyzing the prediction performance based on different RNA features, we found that PAS context, including the distance between alternative PASs and the relative position of a PAS within the gene, is a key feature for determining the susceptibility of a PAS to tissue-specific regulation. Our poly(A) code provides a useful tool for not only predicting tissue-specific APA regulation, but also for studying its underlying molecular mechanisms. PMID:27095026

  5. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations

    International Nuclear Information System (INIS)

    Highlights: • We exposed three successive generations of Daphnia magna to chronic gamma radiation. • We examined DNA alterations and effects on survival, growth and reproduction. • DNA alterations were accumulated over a generation and transmitted to the progeny. • Effects on survival and reproduction, and delay in growth increased over generations. - Abstract: This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h−1). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h−1 increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h−1 in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h−1 in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h−1 in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h−1 in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h−1 at hatching to 0.007 mGy h−1 after ∼21 days) and from F0 to F2 (0.070 mGy h−1 at hatching to 0.007 mGy h−1 after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h−1 and DNA alterations significant at highest dose rates only. The study improved our understanding of long term

  6. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling.

    Science.gov (United States)

    Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe

    2015-06-01

    Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications. PMID:25514087

  7. Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities

    Energy Technology Data Exchange (ETDEWEB)

    Langland, Gregory T.; Yannone, Steven M.; Langland, Rachel A.; Nakao, Aki; Guan, Yinghui; Long, Sydney B.T.; Vonguyen, Lien; Chen, David J.; Gray, Joe W; Chen, Fanqing

    2009-09-07

    The variability of radiation responses in ovarian tumors and tumor-derived cell lines is poorly understood. Since both DNA repair capacity and p53 status can significantly alter radiation sensitivity, we evaluated these factors along with radiation sensitivity in a panel of sporadic human ovarian carcinoma cell lines. We observed a gradation of radiation sensitivity among these sixteen lines, with a five-fold difference in the LD50 between the most radiosensitive and the most radioresistant cells. The DNA-dependent protein kinase (DNA-PK) is essential for the repair of radiation induced DNA double-strand breaks in human somatic cells. Therefore, we measured gene copy number, expression levels, protein abundance, genomic copy and kinase activity for DNA-PK in all of our cell lines. While there were detectable differences in DNA-PK between the cell lines, there was no clear correlation with any of these differences and radiation sensitivity. In contrast, p53 function as determined by two independent methods, correlated well with radiation sensitivity, indicating p53 mutant ovarian cancer cells are typically radioresistant relative to p53 wild-type lines. These data suggest that the activity of regulatory molecules such as p53 may be better indicators of radiation sensitivity than DNA repair enzymes such as DNAPK in ovarian cancer.

  8. Differential Selective Constraints Shaping Codon Usage Pattern of Housekeeping and Tissue-specific Homologous Genes of Rice and Arabidopsis

    OpenAIRE

    Mukhopadhyay, Pamela; Basak, Surajit; Ghosh, Tapash Chandra

    2008-01-01

    Intra-genomic variation between housekeeping and tissue-specific genes has always been a study of interest in higher eukaryotes. To-date, however, no such investigation has been done in plants. Availability of whole genome expression data for both rice and Arabidopsis has made it possible to examine the evolutionary forces in shaping codon usage pattern in both housekeeping and tissue-specific genes in plants. In the present work, we have taken 4065 rice–Arabidopsis homologous gene pairs to s...

  9. Interference with virus and bacteria replication by the tissue specific expression of antibodies and interfering molecules.

    Science.gov (United States)

    Enjuanes, L; Sola, I; Izeta, A; Sánchez-Morgado, J M; González, J M; Alonso, S; Escors, D; Sánchez, C M

    1999-01-01

    Historically, protection against virus infections has relied on the use of vaccines, but the induction of an immune response requires several days and in certain situations, like in newborn animals that may be infected at birth and die in a few days, there is not sufficient time to elicit a protective immune response. Immediate protection in new born could be provided either by vectors that express virus-interfering molecules in a tissue specific form, or by the production of animals expressing resistance to virus replication. The mucosal surface is the largest body surface susceptible to virus infection that can serve for virus entry. Then, it is of high interest to develop strategies to prevent infections of these areas. Virus growth can be interfered intracellularly, extracellularly or both. The antibodies neutralize virus intra- and extracellularly and their molecular biology is well known. In addition, antibodies efficiently neutralize viruses in the mucosal areas. The autonomy of antibody molecules in virus neutralization makes them functional in cells different from those that produce the antibodies and in the extracellular medium. These properties have identified antibodies as very useful molecules to be expressed by vectors or in transgenic animals to provide resistance to virus infection. A similar role could be played by antimicrobial peptides in the case of bacteria. Intracellular interference with virus growth (intracellular immunity) can be mediated by molecules of very different nature: (i) full length or single chain antibodies; (ii) mutant viral proteins that strongly interfere with the replication of the wild type virus (dominant-negative mutants); (iii) antisense RNA and ribozyme sequences; and (iv) the product of antiviral genes such as the Mx proteins. All these molecules inhibiting virus replication may be used to obtain transgenic animals with resistance to viral infection built in their genomes. We have developed two strategies to target

  10. Tissue-specific gene expression in maize seeds during colonization by Aspergillus flavus and Fusarium verticillioides.

    Science.gov (United States)

    Shu, Xiaomei; Livingston, David P; Franks, Robert G; Boston, Rebecca S; Woloshuk, Charles P; Payne, Gary A

    2015-09-01

    Aspergillus flavus and Fusarium verticillioides are fungal pathogens that colonize maize kernels and produce the harmful mycotoxins aflatoxin and fumonisin, respectively. Management practice based on potential host resistance to reduce contamination by these mycotoxins has proven difficult, resulting in the need for a better understanding of the infection process by these fungi and the response of maize seeds to infection. In this study, we followed the colonization of seeds by histological methods and the transcriptional changes of two maize defence-related genes in specific seed tissues by RNA in situ hybridization. Maize kernels were inoculated with either A. flavus or F. verticillioides 21-22 days after pollination, and harvested at 4, 12, 24, 48, 72, 96 and 120 h post-inoculation. The fungi colonized all tissues of maize seed, but differed in their interactions with aleurone and germ tissues. RNA in situ hybridization showed the induction of the maize pathogenesis-related protein, maize seed (PRms) gene in the aleurone and scutellum on infection by either fungus. Transcripts of the maize sucrose synthase-encoding gene, shrunken-1 (Sh1), were observed in the embryo of non-infected kernels, but were induced on infection by each fungus in the aleurone and scutellum. By comparing histological and RNA in situ hybridization results from adjacent serial sections, we found that the transcripts of these two genes accumulated in tissue prior to the arrival of the advancing pathogens in the seeds. A knowledge of the patterns of colonization and tissue-specific gene expression in response to these fungi will be helpful in the development of resistance. PMID:25469958

  11. Tissue-specific promoters active in CD44+CD24-/low breast cancer cells.

    Science.gov (United States)

    Bauerschmitz, Gerd J; Ranki, Tuuli; Kangasniemi, Lotta; Ribacka, Camilla; Eriksson, Minna; Porten, Marius; Herrmann, Isabell; Ristimäki, Ari; Virkkunen, Pekka; Tarkkanen, Maija; Hakkarainen, Tanja; Kanerva, Anna; Rein, Daniel; Pesonen, Sari; Hemminki, Akseli

    2008-07-15

    It has been proposed that human tumors contain stem cells that have a central role in tumor initiation and posttreatment relapse. Putative breast cancer stem cells may reside in the CD44(+)CD24(-/low) population. Oncolytic adenoviruses are attractive for killing of these cells because they enter through infection and are therefore not susceptible to active and passive mechanisms that render stem cells resistant to many drugs. Although adenoviruses have been quite safe in cancer trials, preclinical work suggests that toxicity may eventually be possible with more active agents. Therefore, restriction of virus replication to target tissues with tissues-specific promoters is appealing for improving safety and can be achieved without loss of efficacy. We extracted CD44(+)CD24(-/low) cells from pleural effusions of breast cancer patients and found that modification of adenovirus type 5 tropism with the serotype 3 knob increased gene delivery to CD44(+)CD24(-/low) cells. alpha-Lactalbumin, cyclo-oxygenase 2, telomerase, and multidrug resistance protein promoters were studied for activity in CD44(+)CD24(-/low) cells, and a panel of oncolytic viruses was subsequently constructed. Each virus featured 5/3 chimerism of the fiber and a promoter controlling expression of E1A, which was also deleted in the Rb binding domain for additional tumor selectivity. Cell killing assays identified Ad5/3-cox2L-d24 and Ad5/3-mdr-d24 as the most active agents, and these viruses were able to completely eradicate CD44(+)CD24(-/low) cells in vitro. In vivo, these viruses had significant antitumor activity in CD44(+)CD24(-/low)-derived tumors. These findings may have relevance for elimination of cancer stem cells in humans. PMID:18632604

  12. Tissue-specific transcriptomics of the exotic invasive insect pest emerald ash borer (Agrilus planipennis.

    Directory of Open Access Journals (Sweden)

    Omprakash Mittapalli

    Full Text Available BACKGROUND: The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis, is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp. primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. METHODOLOGY AND PRINCIPAL FINDINGS: Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248and trypsin (98 domains; while the fat body sequences showed high occurrence of cytochrome P450s (85 and protein kinase (123 domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body and microsatellite loci (317 in midgut and 571 in fat body were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. CONCLUSIONS AND SIGNIFICANCE: To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis.

  13. Tissue specificity in rat peripheral nerve regeneration through combined skeletal muscle and vein conduit grafts.

    Science.gov (United States)

    Tos, P; Battiston, B; Geuna, S; Giacobini-Robecchi, M G; Hill, M A; Lanzetta, M; Owen, E R

    2000-01-01

    Diffusible factors from the distal stumps of transected peripheral nerves exert a neurotropic effect on regenerating nerves in vivo (specificity). This morphological study was designed to investigate the existence of tissue specificity in peripheral nerve fiber regeneration through a graft of vein filled with fresh skeletal muscle. This tubulization technique demonstrated experimental and clinical results similar to those obtained with traditional autologous nerve grafts. Specifically, we used Y-shaped grafts to assess the orientation pattern of regenerating axons in the distal stump tissue. Animal models were divided into four experimental groups. The proximal part of the Y-shaped conduit was sutured to a severed tibial nerve in all experiments. The two distal stumps were sutured to different targets: group A to two intact nerves (tibial and peroneal), group B to an intact nerve and an unvascularized tendon, group C to an intact nerve and a vascularized tendon, and group D to a nerve graft and an unvascularized tendon. Morphological evaluation by light and electron microscopy was conducted in the distal forks of the Y-shaped tube. Data showed that almost all regenerating nerve fibers spontaneously oriented towards the nerve tissue (attached or not to the peripheral innervation field), showing a good morphological pattern of regeneration in both the early and late phases of regeneration. When the distal choice was represented by a tendon (vascularized or not), very few nerve fibers were detected in the corresponding distal fork of the Y-shaped graft. These results show that, using the muscle-vein-combined grafting technique, regenerating axons are able to correctly grow and orientate within the basement membranes of the graft guided by the neurotropic lure of the distal nerve stump. PMID:10702739

  14. Tissue-Specific Transcriptome Profiling of Plutella Xylostella Third Instar Larval Midgut

    Directory of Open Access Journals (Sweden)

    Wen Xie, Yanyuan Lei, Wei Fu, Zhongxia Yang, Xun Zhu, Zhaojiang Guo, Qingjun Wu, Shaoli Wang, Baoyun Xu, Xuguo Zhou, Youjun Zhang

    2012-01-01

    Full Text Available The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut.Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416bp, and approximately half of the P. xylostella sequences (45.4%, 28,768 showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10-5. Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis indentified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense.As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In

  15. Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis)

    Science.gov (United States)

    Mittapalli, Omprakash; Bai, Xiaodong; Bonello, Pierluigi; Herms, Daniel A.

    2010-01-01

    Background The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. Methodology and Principal Findings Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. Conclusions and Significance To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis. PMID:21060843

  16. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    OpenAIRE

    Kiyoshi Mori; Sohei Kitazawa; Ryuma Haraguchi; Masayo Fujimoto; Yuka Idei; Takeshi Kondo; Sann Sanda Khin; Riko Kitazawa

    2011-01-01

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylati...

  17. EFS shows biallelic methylation in uveal melanoma with poor prognosis as well as tissue-specific methylation

    International Nuclear Information System (INIS)

    Uveal melanoma (UM) is a rare eye tumor. There are two classes of UM, which can be discriminated by the chromosome 3 status or global mRNA expression profile. Metastatic progression is predominantly originated from class II tumors or from tumors showing loss of an entire chromosome 3 (monosomy 3). We performed detailed EFS (embryonal Fyn-associated substrate) methylation analyses in UM, cultured uveal melanocytes and normal tissues, to explore the role of the differentially methylated EFS promoter region CpG island in tumor classification and metastatic progression. EFS methylation was determined by direct sequencing of PCR products from bisulfite-treated DNA or by sequence analysis of individual cloned PCR products. The results were associated with clinical features of tumors and tumor-related death of patients. Analysis of 16 UM showed full methylation of the EFS CpG island in 8 (50%), no methylation in 5 (31%) and partial methylation in 3 (19%) tumors. Kaplan-Meier analysis revealed a higher risk of metastatic progression for tumors with EFS methylation (p = 0.02). This correlation was confirmed in an independent set of 24 randomly chosen tumors. Notably, only UM with EFS methylation gave rise to metastases. Real-time quantitative RT-PCR expression analysis revealed a significant inverse correlation of EFS mRNA expression with EFS methylation in UM. We further found that EFS methylation is tissue-specific with full methylation in peripheral blood cells, and no methylation in sperm, cultured primary fibroblasts and fetal muscle, kidney and brain. Adult brain samples, cultured melanocytes from the uveal tract, fetal liver and 3 of 4 buccal swab samples showed partial methylation. EFS methylation always affects both alleles in normal and tumor samples. Biallelic EFS methylation is likely to be the result of a site-directed methylation mechanism. Based on partial methylation as observed in cultured melanocytes we hypothesize that there might be methylated and

  18. DNA Methylation Landscapes of Human Fetal Development.

    Science.gov (United States)

    Slieker, Roderick C; Roost, Matthias S; van Iperen, Liesbeth; Suchiman, H Eka D; Tobi, Elmar W; Carlotti, Françoise; de Koning, Eelco J P; Slagboom, P Eline; Heijmans, Bastiaan T; Chuva de Sousa Lopes, Susana M

    2015-10-01

    Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA methylation landscape using the 450k array of four human tissues (amnion, muscle, adrenal and pancreas) during the first and second trimester of gestation (9,18 and 22 weeks). We show that a tissue-specific signature, constituted by tissue-specific hypomethylated CpG sites, was already present at 9 weeks of gestation (W9). Furthermore, we report large-scale remodelling of DNA methylation from W9 to W22. Gain of DNA methylation preferentially occurred near genes involved in general developmental processes, whereas loss of DNA methylation mapped to genes with tissue-specific functions. Dynamic DNA methylation was associated with enhancers, but not promoters. Comparison of our data with external fetal adrenal, brain and liver revealed striking similarities in the trajectory of DNA methylation during fetal development. The analysis of gene expression data indicated that dynamic DNA methylation was associated with the progressive repression of developmental programs and the activation of genes involved in tissue-specific processes. The DNA methylation landscape of human fetal development provides insight into regulatory elements that guide tissue specification and lead to organ functionality. PMID:26492326

  19. Demethoxycurcumin alters gene expression associated with DNA damage, cell cycle and apoptosis in human lung cancer NCI-H460 cells in vitro.

    Science.gov (United States)

    Ko, Yang-Ching; Hsu, Shu-Chun; Liu, Hsin-Chung; Hsiao, Yung-Ting; Hsia, Te-Chun; Yang, Su-Tso; Hsu, Wu-Huei; Chung, Jing-Gung

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths and new lung cancer cases are continuously emerging around the globe; however, treatment of lung cancer remains unsatisfactory. Demethoxycurcumin (DMC) has been shown to exert cytotoxic effects in human cancer cells via induction of apoptosis. However, the effects of DMC on genetic mechanisms associated with these actions have not been yet elucidated. Human lung cancer NCI-H460 cells were incubated with or without 35 μM of DMC for 24 h and total RNA was extracted for cDNA synthesis labeling and microarray hybridization, followed by fluor-labeled cDNA hybridization on chip. Expression Console software with default Robust Multichip Analysis (RMA) parameters were used for detecting and quantitating the localized concentrations of fluorescent molecules. The GeneGo software was used for investigating key genes involved and their possible interaction pathways. Genes associated with DNA damage and repair, cell-cycle check point and apoptosis could be altered by DMC; in particular, 144 genes were found up-regulated and 179 genes down-regulated in NCI-H460 cells after exposure to DMC. In general, DMC-altered genes may offer information to understand the cytotoxic mechanism of this agent at the genetic level since gene alterations can be useful biomarkers or targets for the diagnosis and treatment of human lung cancer in the future. PMID:25600535

  20. Inhibitors of DNA topoisomerase or β-(but not α-) DNA polymerases alter the incision response of repair-deficient human cells after UV- or mnng-treatment

    International Nuclear Information System (INIS)

    Two types of repair-deficient human cells, those incapable of incision after UV irradiation (XPA or XPD) and those that fail to do so after incubation with MNNG (Al336 Mer/sup -/ cells), incised their DNA after treatment with UV or MNNG and incubation a) with inhibitors of DNA topoisomerase II (novobiocin) or b) with dideoxythymidine or at 450C (both inhibitory to β polymerase). This result was not produced by ara C or aphidicolin, specific inhibitors of α DNA polymerase. Thymidine incorporation in these cell lines was refractory to the β but not to the α polymerase inhibitors, although Al336 cells had normal in vitro β DNA polymerase activity with normal sensitivity to dideoxythymidine triphosphate. Thus, modulation of this activity in the cells prevented its inhibition. These results could be produced by allosteric interactions among components of an enzyme complex, similar to the ''replitase,'' that carries out DNA repair. The authors propose that DNA topoisomerase, β-DNA polymerase, a specific damage recognition protein (or proteins), and DNA nicking activity are part of this complex

  1. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells.

    Science.gov (United States)

    Matthews, Gideon D; Gur, Noa; Koopman, Werner J H; Pines, Ophry; Vardimon, Lily

    2010-02-01

    Evolution of the uricotelic system for ammonia detoxification required a mechanism for tissue-specific subcellular localization of glutamine synthetase (GS). In uricotelic vertebrates, GS is mitochondrial in liver cells and cytoplasmic in brain. Because these species contain a single copy of the GS gene, it is not clear how tissue-specific subcellular localization is achieved. Here we show that in chicken, which utilizes the uricotelic system, the GS transcripts of liver and brain cells are identical and, consistently, there is no difference in the amino acid sequence of the protein. The N-terminus of GS, which constitutes a 'weak' mitochondrial targeting signal (MTS), is sufficient to direct a chimeric protein to the mitochondria in hepatocytes and to the cytoplasm in astrocytes. Considering that a weak MTS is dependent on a highly negative mitochondrial membrane potential (DeltaPsi) for import, we examined the magnitude of DeltaPsi in hepatocytes and astrocytes. Our results unexpectedly revealed that DeltaPsi in hepatocytes is considerably more negative than that of astrocytes and that converting the targeting signal into 'strong' MTS abolished the capability to confer tissue-specific subcellular localization. We suggest that evolutional selection of weak MTS provided a tool for differential targeting of an identical protein by taking advantage of tissue-specific differences in DeltaPsi. PMID:20053634

  2. A comparative approach to understanding tissue-specific expression of uncoupling protein 1 expression in adipose tissue

    Directory of Open Access Journals (Sweden)

    Andrew eShore

    2013-01-01

    Full Text Available The thermoregulatory function of brown adipose tissue (BAT is due to the tissue-specific expression of uncoupling protein 1 (UCP1 which is thought to have evolved in early mammals. We report that a CpG island close to the UCP1 transcription start site is highly conserved in all 29 vertebrates examined apart from the mouse and xenopus. Using methylation sensitive restriction digest and bisulphite mapping we show that the CpG island in both the bovine and human is largely un-methylated and is not related to differences in UCP1 expression between white and brown adipose tissue. Tissue-specific expression of UCP1 has been proposed to be regulated by a conserved 5’ distal enhancer which has been reported to be absent in marsupials. We demonstrate that the enhancer, is also absent in 5 eutherians as well as marsupials, monotremes, amphibians and fish, is present in pigs despite UCP1 having become a pseudogene, and that absence of the enhancer element does not relate to brown adipose tissue-specific UCP1 expression. We identify an additional putative 5’ regulatory unit which is conserved in 14 eutherian species but absent in other eutherians and vertebrates, but again unrelated to UCP1 expression. We conclude that despite clear evidence of conservation of regulatory elements in the UCP1 5’ untranslated region, this does not appear to be related to species or tissues-specific expression of UCP1.

  3. Cloning and study of adult-tissue-specific expression of Sox9 in Cyprinus carpio

    Indian Academy of Sciences (India)

    Du Qi-Yan; Wang Feng-Yu; Hua Hui-Ying; Chang Zhong-Jie

    2007-08-01

    The Sox9 gene is one of the important transcription factors in the development of many tissues and organs, particularly in sex determination and chondrogenesis. We amplified the genomic DNA of Cyprinus carpio using degenerate primers, and found that there were two versions of Sox9 in this species: Sox9a and Sox9b, that differ in having an intron of different length (704 bp and 616 bp, respectively) in the conserved HMG box region that codes for identical amino acid sequences. We used a two-phase rapid amplification of cDNA ends (RACE) for the isolation of full-length cDNA of Sox9b. Sequence analyses revealed a 2447-bp cDNA containing 233-bp 5′ untranslated region, a 927-bp 3′ untranslated region, including poly(A), and a 1287 bp open reading frame (ORF) encoding a protein of 428 amino acids. The HMG box of 79 amino acid motif was confirmed from positions 96–174. Sequence alignment showed that the identity of amino acids of Sox9 among ten animal species, including C. carpio, is 75%, indicating that the Sox9 gene is evolutionarily quite conserved. The expression level of Sox9b gene varied among several organs of adult C. carpio, with the level of expression being highest in the brain and testis.

  4. Preferential DNA repair in expressed genes.

    Science.gov (United States)

    Hanawalt, P C

    1987-01-01

    Potentially deleterious alterations to DNA occur nonrandomly within the mammalian genome. These alterations include the adducts produced by many chemical carcinogens, but not the UV-induced cyclobutane pyrimidine dimer, which may be an exception. Recent studies in our laboratory have shown that the excision repair of pyrimidine dimers and certain other lesions is nonrandom in the mammalian genome, exhibiting a distinct preference for actively transcribed DNA sequences. An important consequence of this fact is that mutagenesis and carcinogenesis may be determined in part by the activities of the relevant genes. Repair may also be processive, and a model is proposed in which excision repair is coupled to transcription at the nuclear matrix. Similar but freely diffusing repair complexes may account for the lower overall repair efficiencies in the silent domains of the genome. Risk assessment in relation to chemical carcinogenesis requires assays that determine effective levels of DNA damage for producing malignancy. The existence of nonrandom repair in the genome casts into doubt the reliability of overall indicators of DNA binding and lesion repair for such determinations. Furthermore, some apparent differences between the intragenomic repair heterogeneity in rodent cells and that in human cells mandate a reevaluation of rodent test systems for human risk assessment. Tissue-specific and cell-specific differences in the coordinate regulation of gene expression and DNA repair may account for corresponding differences in the carcinogenic response. Images FIGURE 1. FIGURE 1. PMID:3447906

  5. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    Directory of Open Access Journals (Sweden)

    Hong Lu

    Full Text Available BACKGROUND: Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. METHODOLOGY/PRINCIPAL FINDINGS: To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. CONCLUSIONS/SIGNIFICANCE: Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major

  6. Altered Response Hierarchy and Increased T-Cell Breadth upon HIV-1 Conserved Element DNA Vaccination in Macaques

    OpenAIRE

    Viraj Kulkarni; Antonio Valentin; Margherita Rosati; Candido Alicea; Singh, Ashish K; Rashmi Jalah; Broderick, Kate E.; Sardesai, Niranjan Y.; Sylvie Le Gall; Beatriz Mothe; Christian Brander; Morgane Rolland; Mullins, James I.; Pavlakis, George N.; Felber, Barbara K.

    2014-01-01

    HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24(gag) elements (CE) induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55(gag) increased both magnitude o...

  7. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    International Nuclear Information System (INIS)

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair

  8. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Aluru, Neelakanteswar, E-mail: naluru@whoi.edu [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Kuo, Elaine [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Helfrich, Lily W. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Northwestern University, 633 Clark St, Evanston, IL 60208 (United States); Karchner, Sibel I. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Linney, Elwood A. [Department of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3020, Durham, NC 27710 (United States); Pais, June E. [New England Biolabs, 240 County Road, Ipswich, MA 01938 (United States); Franks, Diana G. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2015-04-15

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  9. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit K.; Bhattacharya, Saikat; Khan, Shafqat A.; Khade, Bharat; Gupta, Sanjay, E-mail: sgupta@actrec.gov.in

    2015-03-15

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair.

  10. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  11. Array-based comparative genomic hybridization for genomic-wide screening of DNA copy number alterations in aggressive bone tumors

    Directory of Open Access Journals (Sweden)

    Kanamori Masahiko

    2012-11-01

    Full Text Available Abstract Background The genetic pathways of aggressive changes of bone tumors are still poorly understood. It is very important to analyze DNA copy number alterations (DCNAs, to identify the molecular events in the step of progression to the aggressive change of bone tissue. Methods Genome-wide array-based comparative genomic hybridization (array CGH was used to investigate DCNAs of 14 samples from 13 aggressive bone tumors, such as giant cell tumors (GCTs and osteosarcoma (OS, etc. Results Primary aggressive bone tumors had copy number gains of 17.8±12.7% in the genome, and losses of 17.3±11.4% in 287 target clones (threshold for each DCNA: ≦085, 1.15≦. Genetic unstable cases, which were defined by the total DCNAs aberration ≧30%, were identified in 9 of 13 patients (3 of 7 GCTs and all malignant tumors. High-level amplification of TGFβ2, CCND3, WI-6509, SHGC-5557, TCL1A, CREBBP, HIC1, THRA, AFM217YD10, LAMA3, RUNX1 and D22S543, were commonly observed in aggressive bone tumors. On the other hand, NRAS, D2S447, RAF1, ROBO1, MYB, MOS, FGFR2, HRAS, D13S319, D13S327, D18S552, YES1 and DCC, were commonly low. We compared genetic instability between a primary OS and its metastatic site in Case #13. Metastatic lesion showed increased 9 DCNAs of remarkable change (m/p ratio ≧1.3 folds, compared to a primary lesion. D1S214, D1S1635, EXT1, AFM137XA11, 8 M16/SP6, CCND2, IGH, 282 M15/SP6, HIC1 and LAMA3, were overexpressed. We gave attention to HIC1 (17p13.3, which was common high amplification in this series. Conclusion Our results may provide several entry points for the identification of candidate genes associated with aggressive change of bone tumors. Especially, the locus 17p11-13 including HIC1 close to p53 was common high amplification in this series and review of the literature.

  12. {sup 99m}Tc-pertechnetate uptake in hepatoma cells due to tissue-specific human sodium iodide symporter gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Chen Libo [Department of Nuclear Medicine, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, 200233 Shanghai (China); Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ) and Heidelberg University, 69120 Heidelberg (Germany); Altman, Annette [Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ) and Heidelberg University, 69120 Heidelberg (Germany); Mier, Walter [Department of Nuclear Medicine, University of Heidelberg, 69120 Heidelberg (Germany); Lu Hankui [Department of Nuclear Medicine, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, 200233 Shanghai (China); Zhu Ruisen [Department of Nuclear Medicine, Shanghai Sixth People' s Hospital, Shanghai Jiao Tong University, 200233 Shanghai (China); Haberkorn, Uwe [Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ) and Heidelberg University, 69120 Heidelberg (Germany) and Department of Nuclear Medicine, University of Heidelberg, 69120 Heidelberg (Germany)]. E-mail: uwe_haberkorn@med.uni-heidelberg.de

    2006-05-15

    The sodium iodide symporter (NIS) gene could be used as an ideal reporter gene as well as a promising therapeutic gene. {sup 99m}Tc-pertechnetate has proven to be more advantageous than {sup 131}I-iodide with respect to image quality, procedure and radiation dose in examination of thyroid uptake and scintigraphy. Herein, we investigated the feasibility of monitoring human sodium iodide symporter (hNIS) gene expression with {sup 99m}Tc-pertechnetate in hepatoma cells (MH3924A) following tissue-specific expression. Methods: MH3924A cells were stably transfected with the recombinant retroviral vector, in which hNIS cDNA was driven by murine albumin enhancer/promoter (mAlb) and coupled to hygromycin resistance gene using an internal ribosomal entry site. Functional NIS expression in hepatoma cells was confirmed by an {sup 125}I{sup -} uptake assay. The dynamic uptake and efflux of {sup 99m}Tc-pertechnetate was determined both in vitro and in vivo. Results: The {sup 99m}Tc-pertechnetate was up to 254-fold higher in stably transfected MH3924A cells than in wild-type cells. However, the in vitro efflux of {sup 99m}Tc-pertechnetate out of recombinant cells was rapid with a half-life of less than 2 min. Further, the in vivo studies yielded clear images and quantitative data of mAlbhNIS-infected tumor xenografts using {sup 99m}Tc-pertechnetate and {gamma} camera. Conclusion: The current study demonstrates enhanced {sup 99m}Tc-pertechnetate uptake in hepatoma cells in vitro and in vivo following tissue-specific gene transfer using a recombinant retrovirus with the albumin enhancer/promoter and the hNIS gene. It is feasible to monitor hNIS gene expression noninvasively and quantitatively using conventional {gamma} camera and {sup 99m}Tc-pertechnetate.

  13. Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome.

    Science.gov (United States)

    Wu, Shi-Bei; Ma, Yi-Shing; Wu, Yu-Ting; Chen, Yin-Chiu; Wei, Yau-Huei

    2010-06-01

    Myoclonic epilepsy and ragged-red fibers (MERRF) syndrome is a rare disorder characterized by myoclonus, muscle weakness, cerebellar ataxia, heart conduction block, and dementia. It has been documented that 80-90% of the patients with MERRF syndrome are caused by the A8344G mutation in the tRNA(Lys) gene of mitochondrial DNA (mtDNA). We and other investigators have reported that the mtDNA mutation results in not only inefficient generation of adenosine triphosphate but also increased production of reactive oxygen species (ROS) in cultured cells harboring A8344G mutation of mtDNA. In addition, we found an imbalance in the gene expression of antioxidant enzymes in the skin fibroblasts of MERRF patients. The mRNA, protein, and enzyme activity levels of manganese-superoxide dismutase were increased, but those of Cu,Zn-SOD, catalase, and glutathione peroxidase did not show significant changes. Recently, we showed that the excess ROS could damage voltage-dependent anion channel, prohibitin, Lon protease, and aconitase in the MERRF cells. Moreover, there was a dramatic increase in the gene expression and activity of matrix metalloproteinase 1, which may contribute to the cytoskeleton remodeling involved in the weakness and atrophy of muscle commonly seen in MERRF patients. Taken together, we suggest that mtDNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression are involved in the pathogenesis and progression of MERRF syndrome. PMID:20411357

  14. Aging and DNA repair capability. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Tice, R R

    1977-01-01

    A review of the literature on DNA repair processes in relation to aging is presented under the following headings: DNA repair processes; age-related occurrence of unrepaired DNA lesions; DNA repair capability as a function of age; tissue-specific DNA repair capability; acceleration of the aging process by exposure to DNA damaging agents; human genetic syndromes; and longevity and DNA repair processes. (HLW)

  15. 脂肪组织特异性表达载体的构建%Construction of Adipose Tissue - specific Expression Vector

    Institute of Scientific and Technical Information of China (English)

    华晓敏; 许登高; 潘庆杰

    2012-01-01

    采用PCR技术克隆了小鼠脂肪组织特异表达的脂肪酸结合蛋白ap2基因增强子和启动子,通过DNA重组技术将该基因增强子和启动子重组于pEGFP - N1真核表达载体上,构建pEGFP - N1 - ap2重组质粒,通过PCR扩增、酶切电泳分析和测序的方法对重组质粒进行鉴定,并转染小鼠前脂肪细胞,通过荧光素酶活性检测特异性表达强度.结果表明,本实验克隆的ap2基因增强子和启动子的碱基组成与GenBank中的ap2基因序列完全一致,通过DNA重组技术将该基因增强子和启动子重组于pEGFP- N1真核表达载体上,成功构建了脂肪组织特异表达的重组质粒.为以后的转基因动物的研究奠定了基础.%The mouse adipose tissue -specific fatty acid binding protein ap2 gene enhancer /promoter was amplified by PCR amplification, and it was recombined into pEGFP - Nl eukaryotic expression vector by recombinant DNA technology, to obtain pEGFP - Nl - ap2 recombinant plasmid, which was identified by PCR amplification, enzyme digestion and DNA sequencing and infected with mouse pre - adipocytes, and its expression was detected by the fluorescence detection of the enzyme activity specific expression strength. The results showed that, cloned gene enhancer and promoter is consistent with the ap2 gene sequences in GenBank. The enhancer / promoter was recombined into pEGFP - Nl eukaryotic expression vector by recombinant DNA technology. The construction of the adipose tissue - specific expression vector was successfully constructed, which can provide a necessary basis for further study.

  16. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    International Nuclear Information System (INIS)

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression

  17. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β) Signaling in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Khin, Sann Sanda [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Pathology Research Unit, Department of Medical Research (Central Myanmar), Naypyitaw, Union of (Myanmar); Kitazawa, Riko [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Kondo, Takeshi; Idei, Yuka; Fujimoto, Masayo [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Haraguchi, Ryuma [Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan); Mori, Kiyoshi [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Kitazawa, Sohei, E-mail: kitazawa@m.ehime-u.ac.jp [Kobe University Graduate School of Medicine, Division of Diagnostic Molecular Pathology, Kobe 650-0017 (Japan); Ehime University Graduate School of Medicine, Toon 791-0295, Ehime (Japan)

    2011-03-03

    Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP) do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β), induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  18. Epigenetic Alteration by DNA Promoter Hypermethylation of Genes Related to Transforming Growth Factor-β (TGF-β Signaling in Cancer

    Directory of Open Access Journals (Sweden)

    Kiyoshi Mori

    2011-03-01

    Full Text Available Epigenetic alterations in cancer, especially DNA methylation and histone modification, exert a significant effect on the deregulated expression of cancer-related genes and lay an epigenetic pathway to carcinogenesis and tumor progression. Global hypomethylation and local hypermethylation of CpG islands in the promoter region, which result in silencing tumor suppressor genes, constitute general and major epigenetic modification, the hallmark of the neoplastic epigenome. Additionally, methylation-induced gene silencing commonly affects a number of genes and increases with cancer progression. Indeed, cancers with a high degree of methylation (CpG island methylator phenotype/CIMP do exist and represent a distinct subset of certain cancers including colorectal, bladder and kidney. On the other hand, signals from the microenvironment, especially those from transforming growth factor-β (TGF-β, induce targeted de novo epigenetic alterations of cancer-related genes. While TGF-β signaling has been implicated in two opposite roles in cancer, namely tumor suppression and tumor promotion, its deregulation is also partly induced by epigenetic alteration itself. Although the epigenetic pathway to carcinogenesis and cancer progression has such reciprocal complexity, the important issue is to identify genes or signaling pathways that are commonly silenced in various cancers in order to find early diagnostic and therapeutic targets. In this review, we focus on the epigenetic alteration by DNA methylation and its role in molecular modulations of the TGF-β signaling pathway that cause or underlie altered cancer-related gene expression in both phases of early carcinogenesis and late cancer progression.

  19. Effects of altered gravity on a distribution of rDNA and nucleolar proteins and the expression of nucleolar proteins in plants

    Science.gov (United States)

    Sobol, Margaryta; Kordyum, Elizabeth; Medina, Francisco Javier

    The nucleolus is an inner nuclear organelle originated from the activity of hundreds of rRNA genes, typically spanning several megabases. It morphologically reflects the functional events leading to ribosome biogenesis, from the transcription of rDNA through the processing of nascent pre-rRNA to the assembly of pre-ribosomes. A typical nucleolus consists of three major elements, namely fibrillar centers (FCs), the dense fibrillar component (DFC), and granular component (GC). The rate of ribosome biosynthesis and the subnucleolar structure are reliable monitors of the general level of cell metabolism and, consequently, of the rate of cellular growth, being influenced with many external factors, among which altered gravity could be included. Thus, we can hypothesize that the structural organization of the nucleolar subcomponents and the level, distribution and quantitative/qualitative characteristics of the nucleolar proteins would be changed under conditions of altered gravity. To confirm our hypothesis, we applied parallel procedures, such as cytochemistry, immunofluorescence, confocal laser microscopy, immunogold electron microscopy, monoand bi-dimensional electrophoresis and immunoblotting in root meristematic cells from two-day cress seedlings grown under slow horizontal clinorotation (2 rpm) and in stationary control. The complex model of the ultrastructural organization and functions of the nucleolus was created based on the location of rDNA and the nucleolar proteins fibrillarin, NhL90 and NhL68, these latter being cress nucleolin homologues. The principal stages of ribosome biogenesis, namely ribosomal gene activation, rDNA transcription and pre-rRNA processing were reflected in this model. Compared to the pattern shown in control ground gravity conditions, we found firstly a redistribution of both rDNA and nucleolar proteins in nucleolar subcomponents, induced by clinorotation. Under the conditions of altered gravity, nucleolar DNA concentrated

  20. Characterization, Evolution and Tissue-specific Expression of AmphiCalbin, a Novel Gene Encoding EF-hand Calcium-binding Protein in Amphioxus Branchiostoma belcheri

    Institute of Scientific and Technical Information of China (English)

    Jing LUAN; Shicui ZHANG; Zhenhui LIU; Chunxin FAN; Guangdong JI; Lei LI

    2007-01-01

    An amphioxus full-length cDNA, AmphiCalbin, encoding a novel EF-hand calcium-binding protein (EFCaBP), was isolated from the gut cDNA library of amphioxus Branchiostoma belcheri. It consists of 1321 bp with a 636 bp open reading frame encoding a protein of 211 amino acids with a molecular mass of approximately 24.5 kDa. The phylogenetic analysis offers two interesting inferences. First, AmphiCalbin clusters with a group of unnamed EFCaBPs that are differentiated from other identified EFCaBPs. Second,AmphiCalbin falls at the base of the vertebrate unnamed EFCaBPs clade, probably representing their prototype.This is also corroborated by the fact that AmphiCalbin has an exon-intron organization identical to that of vertebrate unnamed EFCaBP genes. Both tissue-section in situ hybridization and whole-mount in situ hybridization prove a tissue-specific expression pattern of AmphiCalbin, with high levels of expression in the digestive system and gonads. It is proposed that AmphiCalbin might play a role in the digestive system and gonads. These observations lay the foundation for further understanding of the function of the unnamed EFCaBPs.

  1. Common 4977 bp deletion and novel alterations in mitochondrial DNA in Vietnamese patients with breast cancer.

    Science.gov (United States)

    Dimberg, Jan; Hong, Thai Trinh; Nguyen, Linh Tu Thi; Skarstedt, Marita; Löfgren, Sture; Matussek, Andreas

    2015-01-01

    Mitochondrial DNA (mtDNA) has been proposed to be involved in carcinogenesis and ageing. The mtDNA 4977 bp deletion is one of the most frequently observed mtDNA mutations in human tissues and may play a role in breast cancer (BC). The aim of this study was to investigate the frequency of mtDNA 4977 bp deletion in BC tissue and its association with clinical factors. We determined the presence of the 4977 bp common deletion in cancer and normal paired tissue samples from 106 Vietnamese patients with BC by sequencing PCR products. The mtDNA 4977 bp deletion was significantly more frequent in normal tissue in comparison with paired cancer tissue. Moreover, the incidence of the 4977 bp deletion in BC tissue was significantly higher in patients with estrogen receptor (ER) positive as compared with ER negative BC tissue. Preliminary results showed, in cancerous tissue, a significantly higher incidence of novel deletions in the group of patients with lymph node metastasis in comparison with the patients with no lymph node metastasis. We have found 4977 bp deletion in mtDNA to be a common event in BC and with special reference to ER positive BC. In addition, the novel deletions were shown to be related to lymph node metastasis. Our finding may provide complementary information in prediction of clinical outcome including metastasis, recurrence and survival of patients with BC. PMID:25674508

  2. Presymptomatic Alterations in Amino Acid Metabolism and DNA Methylation in the Cerebellum of a Murine Model of Niemann-Pick Type C Disease.

    Science.gov (United States)

    Kennedy, Barry E; Hundert, Amos S; Goguen, Donna; Weaver, Ian C G; Karten, Barbara

    2016-06-01

    The fatal neurodegenerative disorder Niemann-Pick type C (NPC) is caused in most cases by mutations in NPC1, which encodes the late endosomal NPC1 protein. Loss of NPC1 disrupts cholesterol trafficking from late endosomes to the endoplasmic reticulum and plasma membrane, causing cholesterol accumulation in late endosomes/lysosomes. Neurons are particularly vulnerable to this cholesterol trafficking defect, but the pathogenic mechanisms through which NPC1 deficiency causes neuronal dysfunction remain largely unknown. Herein, we have investigated amino acid metabolism in cerebella of NPC1-deficient mice at different stages of NPC disease. Imbalances in amino acid metabolism were evident from increased branched chain amino acid and asparagine levels and altered expression of key enzymes of glutamine/glutamate metabolism in presymptomatic and early symptomatic NPC1-deficient cerebellum. Increased levels of several amino acid intermediates of one-carbon metabolism indicated disturbances in folate and methylation pathways. Alterations in DNA methylation were apparent in decreased expression of DNA methyltransferase 3a and methyl-5'-cytosine-phosphodiester-guanine-domain binding proteins, reduced 5-methylcytosine immunoreactivity in the molecular and Purkinje cell layers, demethylation of genome-wide repetitive LINE-1 elements, and hypermethylation in specific promoter regions of single-copy genes in NPC1-deficient cerebellum at early stages of the disease. Alterations in amino acid metabolism and epigenetic changes in the cerebellum at presymptomatic stages of NPC disease represent previously unrecognized mechanisms of NPC pathogenesis. PMID:27083515

  3. Tissue-specific transcription enhancement of the fibroin gene characterized by cell-free systems.

    OpenAIRE

    Suzuki, Y.; Tsuda, M.; Takiya, S; Hirose, S; Suzuki, E; Kameda, M; Ninaki, O

    1986-01-01

    Six cell-free extracts have been used to characterize the nature of DNA signals and trans-acting factors responsible for the transcription enhancement of the Bombyx mori fibroin gene. The upstream element of the fibroin gene involved in the enhancement can be divided into two regions. The proximal region, -72 to -32, is recognized as a common enhancing signal by all B. mori extracts from the posterior silk gland, the middle silk gland, the ovarian tissue, and an embryonic cell line. It is wea...

  4. Starvation resistance and tissue-specific gene expression of stress-related genes in a naturally inbred ant population.

    Science.gov (United States)

    Bos, Nick; Pulliainen, Unni; Sundström, Liselotte; Freitak, Dalial

    2016-04-01

    Starvation is one of the most common and severe stressors in nature. Not only does it lead to death if not alleviated, it also forces the starved individual to allocate resources only to the most essential processes. This creates energetic trade-offs which can lead to many secondary challenges for the individual. These energetic trade-offs could be exacerbated in inbred individuals, which have been suggested to have a less efficient metabolism. Here, we studied the effect of inbreeding on starvation resistance in a natural population of Formica exsecta ants, with a focus on survival and tissue-specific expression of stress, metabolism and immunity-related genes. Starvation led to large tissue-specific changes in gene expression, but inbreeding had little effect on most of the genes studied. Our results illustrate the importance of studying stress responses in different tissues instead of entire organisms. PMID:27152219

  5. Differences in mtDNA haplogroup distribution among 3 Jewish populations alter susceptibility to T2DM complications

    Directory of Open Access Journals (Sweden)

    Dadon Sarah

    2008-04-01

    Full Text Available Abstract Background Recent genome-wide association studies searching for candidate susceptibility loci for common complex diseases such as type 2 diabetes mellitus (T2DM and its common complications have uncovered novel disease-associated genes. Nevertheless these large-scale population screens often overlook the tremendous variation in the mitochondrial genome (mtDNA and its involvement in complex disorders. Results We have analyzed the mitochondrial DNA (mtDNA genetic variability in Ashkenazi (Ash, Sephardic (Seph and North African (NAF Jewish populations (total n = 1179. Our analysis showed significant differences (p Conclusion Our findings support the possibility that recent bottleneck events leading to over-representation of minor mtDNA alleles in specific genetic isolates, could result in population-specific susceptibility loci to complex disorders.

  6. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues.

    OpenAIRE

    Croop, J M; Raymond, M; Haber, D; Devault, A; Arceci, R. J.; Gros, P.; Housman, D.E.

    1989-01-01

    The gene responsible for multidrug resistance (mdr), which encodes the P-glycoprotein, is a member of a multigene family. We have identified distinct mdr gene transcripts encoded by three separate mdr genes in the mouse. Expression levels of each mdr gene are dramatically different in various mouse tissues. Specific mdr RNA transcripts of approximately 4.5, 5, and 6 kilobases have been detected. Each of the mdr genes has a specific RNA transcript pattern. These results should be considered in...

  7. Reversal of DNA methylation with 5-azacytidine alters chromosome replication patterns in human lymphocyte and fibroblast cultures.

    OpenAIRE

    Shafer, D A; Priest, J H

    1984-01-01

    Prior studies demonstrated that developmental or induced methylation of DNA can inactivate associated gene loci. Such DNA methylation can be reversed and specific genes reactivated by treatment with 5-azacytidine (5- azaC ). The present cytogenetic studies using replication banding methods show that 5- azaC treatment also results in an increase or decrease in replication staining at one or more band locations in human lymphocyte and fibroblast chromosomes. New replication band locations are n...

  8. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations

    Energy Technology Data Exchange (ETDEWEB)

    Parisot, Florian [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, St Paul-lez-Durance 13115 (France); Bourdineaud, Jean-Paul [UMR 5805 EPOC – OASU, Station marine d’Arcachon, Université Bordeaux 1, Arcachon 33120 (France); Plaire, Delphine; Adam-Guillermin, Christelle [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, St Paul-lez-Durance 13115 (France); Alonzo, Frédéric, E-mail: frederic.alonzo@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, St Paul-lez-Durance 13115 (France)

    2015-06-15

    Highlights: • We exposed three successive generations of Daphnia magna to chronic gamma radiation. • We examined DNA alterations and effects on survival, growth and reproduction. • DNA alterations were accumulated over a generation and transmitted to the progeny. • Effects on survival and reproduction, and delay in growth increased over generations. - Abstract: This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h{sup −1}). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h{sup −1} increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h{sup −1} in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h{sup −1} in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h{sup −1} in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h{sup −1} in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h{sup −1} at hatching to 0.007 mGy h{sup −1} after ∼21 days) and from F0 to F2 (0.070 mGy h{sup −1} at hatching to 0.007 mGy h{sup −1} after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h{sup −1} and DNA alterations significant at highest

  9. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells.

    Science.gov (United States)

    Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-08-01

    α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro. PMID:25075043

  10. Sperm DNA methylation analysis in swine reveals conserved and species-specific methylation patterns and highlights an altered methylation at the GNAS locus in infertile boars.

    Science.gov (United States)

    Congras, Annabelle; Yerle-Bouissou, Martine; Pinton, Alain; Vignoles, Florence; Liaubet, Laurence; Ferchaud, Stéphane; Acloque, Hervé

    2014-12-01

    Male infertility is an increasing health issue in today's society for both human and livestock populations. In livestock, male infertility slows the improvement of animal selection programs and agricultural productivity. There is increasing evidence that epigenetic marks play an important role in the production of good-quality sperm. We therefore screened for specific or common epigenetic signatures of livestock infertility. To do so, we compared DNA methylation level in sperm DNA from fertile and infertile boars. We evaluated first the global level of sperm DNA methylation and found no difference between the two groups of boars. We then selected 42 loci of interest, most of them known to be imprinted in human or mice, and assessed the imprinting status of five of them not previously described in swine tissues: WT1, CNTN3, IMPACT, QPCT, and GRB10. DNA methylation level was then quantified in fertile and infertile boars at these 42 loci. Results from fertile boars indicated that the methylation level of the selected loci is highly conserved between pig, human, and mice, with a few exceptions, including the POU5F1 (OCT4) promoter and RTL1. Comparison between fertile and infertile boars revealed that one imprinted region, the GNAS locus, shows an increase in sperm DNA methylation in three out of eight infertile boars with low semen quality. This increase in DNA methylation is associated with an altered expression of the genes belonging to the GNAS locus, suggesting a new role for GNAS in the proper formation of functional gametes. PMID:25320151

  11. Specific expression of bioluminescence reporter gene in cardiomyocyte regulated by tissue specific promoter

    International Nuclear Information System (INIS)

    As the human heart is not capable of regenerating the great numbers of cardiac cells that are lost after myocardial infarction, impaired cardiac function is the inevitable result of ischemic disease. Recently, human embryonic stem cells (hESCs) have gained popularity as a potentially ideal cell candidate for tissue regeneration. In particular, hESCs are capable of cardiac lineage-specific differentiation and confer improvement of cardiac function following transplantation into animal models. Although such data are encouraging, the specific strategy for in vivo and non-invasive detection of differentiated cardiac lineage is still limited. Therefore, in the present study, we established the gene construction in which the optical reporter gene Firefly luciferase was controlled by Myosin Heavy Chain promoter for specific expressing in heart cells. The vector consisting of - MHC promoter and a firefly luciferase coding sequence flanked by full-length bovine growth hormone (BGH) 3'-polyadenylation sequence based on pcDNA3.1- vector backbone. To test the specific transcription of this promoter in g of MHC-Fluc or CMV-Flue (for control) plasmid DNA in myocardial tissue, 20 phosphate-buffered saline was directly injected into mouse myocardium through a midline sternotomy and liver. After 1 week of injection, MHC-Fluc expression was detected from heart region which was observed under cooled CCD camera of in vivo imaging system but not from liver. In control group injected with CMV-Flue, the bioluminescence was detected from all these organs. The expression of Flue under control of Myosin Heavy Chain promoter may become a suitable optical reporter gene for stem cell-derived cardiac lineage differentiation study

  12. Specific expression of bioluminescence reporter gene in cardiomyocyte regulated by tissue specific promoter

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vu Hong; Tae, Seong Ho; Le, Nguyen Uyen Chi; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    As the human heart is not capable of regenerating the great numbers of cardiac cells that are lost after myocardial infarction, impaired cardiac function is the inevitable result of ischemic disease. Recently, human embryonic stem cells (hESCs) have gained popularity as a potentially ideal cell candidate for tissue regeneration. In particular, hESCs are capable of cardiac lineage-specific differentiation and confer improvement of cardiac function following transplantation into animal models. Although such data are encouraging, the specific strategy for in vivo and non-invasive detection of differentiated cardiac lineage is still limited. Therefore, in the present study, we established the gene construction in which the optical reporter gene Firefly luciferase was controlled by Myosin Heavy Chain promoter for specific expressing in heart cells. The vector consisting of - MHC promoter and a firefly luciferase coding sequence flanked by full-length bovine growth hormone (BGH) 3'-polyadenylation sequence based on pcDNA3.1- vector backbone. To test the specific transcription of this promoter in g of MHC-Fluc or CMV-Flue (for control) plasmid DNA in myocardial tissue, 20 phosphate-buffered saline was directly injected into mouse myocardium through a midline sternotomy and liver. After 1 week of injection, MHC-Fluc expression was detected from heart region which was observed under cooled CCD camera of in vivo imaging system but not from liver. In control group injected with CMV-Flue, the bioluminescence was detected from all these organs. The expression of Flue under control of Myosin Heavy Chain promoter may become a suitable optical reporter gene for stem cell-derived cardiac lineage differentiation study.

  13. Genetic study of a membrane protein: DNA sequence alterations due to 17 lamB point mutations affecting adsorption of phage lambda.

    OpenAIRE

    Clément, J M; Lepouce, E; Marchal, C.; Hofnung, M

    1983-01-01

    Gene lamB encodes the outer membrane receptor for phage lambda in Escherichia coli K12. We have determined the DNA sequence alterations of 17 lamB point mutations which result in resistance to phage lambda h+. The mutations correspond to four phenotypic classes according to the pattern of growth of three phages which use the lambda receptor: lambda h (a one-step host-range derivative of lambda h+), lambda hh* (a two-step host-range derivative of lambda h+) and K10 (another lambdoid phage). Fo...

  14. Post-factum detection of radiation treatment of meat and fish by means of DNA alterations identified by gas chromatography-mass spectrometry or pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    The doctoral thesis explains methods and experiments for post-factum detection of radiation-induced alterations of DNA. There are various manifestations of such alterations. Ionizing radiation can directly alter the bases and/or sugar component, or can indirectly induce DNA damage by way of forming water radicals. Both mechanisms result in base derivatives, released for some part from the DNA strand, or formed by alterations of the 2-deoxyribose, inducing strand breaks ( single and double strand breaks). The first part of the thesis explains the approach applying GC-MS for detection of radiation-induced base derivatives, using herring sperm DNA as a model DNA. Some typical types of base derivatives were identified (thymine glycol, 5-hydroxycytosine).Some base derivatives were also found in DNA samples derived from poultry meat. These base derivatives are known to be indicators of food processing with ionizing radiation, but surprisingly were also found in non-irradiated controls, although in minor amounts. The second part discusses the identification of strand breaks applying the pused-field gel electrophoresis. This method is capable of producing evidence that irradiation markedly enhances the short-chain DNA molecules as compared to non-irradiated controls. DNA molecules of a size of approx. 2.2 million base pairs are almost completely broken into short-chain fragments. The method reliably detects radiation treatments down to 1500 Gy, even if applied long ago. (orig./MG)

  15. Modulation of DNA damage and alteration of gene expression during aflatoxicosis via dietary supplementation of Spirulina (Arthrospira) and Whey protein concentrate.

    Science.gov (United States)

    Hassan, Aziza M; Abdel-Aziem, Sekena H; Abdel-Wahhab, Mosaad A

    2012-05-01

    Spirulina (SPN) and Whey protein (WPC) are being touted as functional foods with a number of health benefits. SPN is blue green algae while WPC is a protein complex derived from milk and both have strong antioxidant activity and provoke a free radical scavenging enzyme system. The aim of the present study was to evaluate the antioxidant potentials of SPN and WPC to regulate the alteration of genes' expression and counteract oxidative stress in rats during aflatoxecosis. Eighty male Sprague-Dawley rats were divided into eight groups, which included the control group, the group fed with aflatoxins (AFs)-contaminated diet (2.5 mg/kg diet) for 30 day, the group treated orally with WPC (300 mg/kg b.w.), the group treated orally with SPN (50 mg/kg b.w), the group treated orally with WPC plus SPN and the groups fed with AFs-contaminated diet and treated orally with WPC, SPN and/or WPC. Oxidative stress markers and gene expression were assayed in liver and testis and the damage of DNA was evaluated by DNA fragmentation and micronucleus tests. The results demonstrated that supplementation of SPN and/or WPC reduced the oxidative stress induced by AFs as indicated by decreased lipid peroxidation level, increased glutathione content and up-regulated PHGPx gene expression. Both agents succeed to inhibit DNA damage as indicated by the down-regulation of Fas gene expression, and decreased the percentage of DNA fragmentation and micronucleated erythrocytes. Moreover, WPC was found to be effective than SPN and the combined treatment was more effective than the single treatment. It could be concluded that both SPN and WPC induced a protective action and regulated the alteration of genes expression induced by AFs; however, the combined treatment may be useful than the single treatment. PMID:22325339

  16. Inhibition of DNA methylation alters chromatin organization, nuclear positioning and activity of 45S rDNA loci in cycling cells of Q. robur.

    Science.gov (United States)

    Bočkor, Vedrana Vičić; Barišić, Darko; Horvat, Tomislav; Maglica, Željka; Vojta, Aleksandar; Zoldoš, Vlatka

    2014-01-01

    Around 2200 copies of genes encoding ribosomal RNA (rRNA) in pedunculate oak, Quercus robur, are organized into two rDNA loci, the major (NOR-1) and the minor (NOR-2) locus. We present the first cytogenetic evidence indicating that the NOR-1 represents the active nucleolar organizer responsible for rRNA synthesis, while the NOR-2 probably stays transcriptionally silent and does not participate in the formation of the nucleolus in Q. robur, which is a situation resembling the well-known phenomenon of nucleolar dominance. rDNA chromatin topology analyses in cycling root tip cells by light and electron microscopy revealed the minor locus to be highly condensed and located away from the nucleolus, while the major locus was consistently associated with the nucleolus and often exhibited different levels of condensation. In addition, silver precipitation was confined exclusively to the NOR-1 locus. Also, NOR-2 was highly methylated at cytosines and rDNA chromatin was marked with histone modifications characteristic for repressive state. After treatment of the root cells with the methylation inhibitor 5-aza-2'-deoxycytidine, we observed an increase in the total level of rRNA transcripts and a decrease in DNA methylation level at the NOR-2 locus. Also, NOR-2 sites relocalized with respect to the nuclear periphery/nucleolus, however, the relocation did not affect the contribution of this locus to nucleolar formation, nor did it affect rDNA chromatin decondensation, strongly suggesting that NOR-2 has lost the function of rRNA synthesis and nucleolar organization. PMID:25093501

  17. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations.

    Science.gov (United States)

    Parisot, Florian; Bourdineaud, Jean-Paul; Plaire, Delphine; Adam-Guillermin, Christelle; Alonzo, Frédéric

    2015-06-01

    This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h(-1)). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h(-1) increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h(-1) in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h(-1) in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h(-1) in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h(-1) in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h(-1) at hatching to 0.007 mGy h(-1) after ∼21 days) and from F0 to F2 (0.070 mGy h(-1) at hatching to 0.007 mGy h(-1) after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h(-1) and DNA alterations significant at highest dose rates only. The study improved our understanding of long term responses to low doses of radiation at the molecular and organismic levels in a non-human species for a better radioprotection of aquatic ecosystems. PMID:25840277

  18. Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Song; Cai, Qingsong [The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416 (United States); Chibli, Hicham [Department of Biomedical Engineering, McGill University, Montréal, QC H3A 2B4 (Canada); Allagadda, Vinay [The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416 (United States); Nadeau, Jay L. [Department of Biomedical Engineering, McGill University, Montréal, QC H3A 2B4 (Canada); Mayer, Gregory D., E-mail: greg.mayer@ttu.edu [The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416 (United States)

    2013-10-15

    Increasing use of quantum dots (QDs) makes it necessary to evaluate their toxicological impacts on aquatic organisms, since their contamination of surface water is inevitable. This study compares the genotoxic effects of ionic Cd versus CdTe nanocrystals in zebrafish hepatocytes. After 24 h of CdSO{sub 4} or CdTe QD exposure, zebrafish liver (ZFL) cells showed a decreased number of viable cells, an accumulation of Cd, an increased formation of reactive oxygen species (ROS), and an induction of DNA strand breaks. Measured levels of stress defense and DNA repair genes were elevated in both cases. However, removal of bulky DNA adducts by nucleotide excision repair (NER) was inhibited with CdSO{sub 4} but not with CdTe QDs. The adverse effects caused by acute exposure of CdTe QDs might be mediated through differing mechanisms than those resulting from ionic cadmium toxicity, and studying the effects of metallic components may be not enough to explain QD toxicities in aquatic organisms. - Highlights: • Both CdSO{sub 4} and CdTe QDs lead to cell death and Cd accumulation. • Both CdSO{sub 4} and CdTe QDs induce cellular ROS generation and DNA strand breaks. • Both CdSO{sub 4} and CdTe QDs induce the expressions of stress defense and DNA repair genes. • NER repair capacity was inhibited with CdSO{sub 4} but not with CdTe QDs.

  19. Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells

    International Nuclear Information System (INIS)

    Increasing use of quantum dots (QDs) makes it necessary to evaluate their toxicological impacts on aquatic organisms, since their contamination of surface water is inevitable. This study compares the genotoxic effects of ionic Cd versus CdTe nanocrystals in zebrafish hepatocytes. After 24 h of CdSO4 or CdTe QD exposure, zebrafish liver (ZFL) cells showed a decreased number of viable cells, an accumulation of Cd, an increased formation of reactive oxygen species (ROS), and an induction of DNA strand breaks. Measured levels of stress defense and DNA repair genes were elevated in both cases. However, removal of bulky DNA adducts by nucleotide excision repair (NER) was inhibited with CdSO4 but not with CdTe QDs. The adverse effects caused by acute exposure of CdTe QDs might be mediated through differing mechanisms than those resulting from ionic cadmium toxicity, and studying the effects of metallic components may be not enough to explain QD toxicities in aquatic organisms. - Highlights: • Both CdSO4 and CdTe QDs lead to cell death and Cd accumulation. • Both CdSO4 and CdTe QDs induce cellular ROS generation and DNA strand breaks. • Both CdSO4 and CdTe QDs induce the expressions of stress defense and DNA repair genes. • NER repair capacity was inhibited with CdSO4 but not with CdTe QDs

  20. Mutagenesis by site-specific arylamine adducts in plasmid DNA: Enhancing replication of the adducted strand alters mutation frequency

    International Nuclear Information System (INIS)

    Site specifically modified plasmids were used to determine the mutagenic effects of single arylamine adducts in bacterial cells. A synthetic heptadecamer bearing a single N-(guanin-8-yl)-2-aminofluorene (AF) or N-(guanin-8-yl)-2-(acetylamino)fluorene (AAF) adduct was used to introduce the adducts into a specific site in plasmid DNA that contained a 17-base single-stranded region complementary to the modified oligonucleotide. Following transformation of bacterial cells with the adduct-bearing DNA, putative mutants were detected by colony hybridization techniques that allowed unbiased detection of all mutations at or near the site of the adduct. The site-specific AF or AAF adducts were also placed into plasmid DNA that contained uracil residues on the strand opposite that bearing the lesions. The presence of uracil in one strand of the DNA decreases the ability of the bacterial replication system to use the uracil-containing strand, thereby favoring the use of the strand bearing the adducts. In a comparison of the results obtained with site specifically modified DNA, either with or without uracil, the presence of the uracil increased the mutation frequencies of the AF adduct by >7-fold to 2.9% and of the AAF adduct by >12-fold to 0.75%. The AF adduct produced primarily single-base deletions in the absence of uracil but only base substitutions in the uracil-containing constructs. The AAF adduct produced mutations only in the uracil-containing DNA, which included both frame shifts and base substitutions. Mutations produced by both adducts were SOS dependent

  1. Trans-generational study of DNA alterations and their consequences on life history traits and energy budget of Daphnia magna exposed to depleted uranium

    International Nuclear Information System (INIS)

    Understanding how toxicants affect species at various levels of biological organization is a major research goal in both ecotoxicology and radioecology. As part of IRSN program ENVIRHOM, which aims to assess environmental risks related to the presence of radionuclides in the environment, this PhD work explored how depleted uranium alters DNA and affects life history traits (survival, growth and reproduction) of an aquatic invertebrate, Daphnia magna. To answer to this problematic, an experimental approach and a modeling approach are conducted. An experimental study is performed to evaluate DNA accumulation and transmission during an uranium exposure (0; 2; 9.9; 22.2 and 50 μg.L-1) over two successive generations (F0 and F1). Different exposures scenarios (continuous, post-hatching and embryo exposure) are achieved to test the specific sensitivity of several life stages to uranium. Genotoxic effects are estimated using random amplified DNA technique combined with PCR (PCR-RAPD). In continuous and post-hatching exposure scenarios, results highlighted an accumulation and a transmission of DNA damage across generations with an increase in effect severity. DNA alterations are reported at hatching of the F1 generation at a concentration as low as 2 μg.L-1. Effects on growth and reproduction are stronger when the embryo stage is exposed and remain visible at 9.9 μg.L-1 despite a return in a clean medium at hatching. Results suggest that DNA damage could be used as early indicators of future effects on life history traits. A mechanistic analysis of experimental results is conducted using a DEBtox model (dynamic energy budget applied to toxicology) to better understand the causes of the increase in effect severity across generations. A model with two stress factors (one correlated to external concentration and another correlated to a damage level) is developed. Results of fits suggest the involvement of one second mode of action to explain immediate effects of uranium on

  2. Cloning and Characterization of Porcine TSARG7 Gene and Analysis of Its Tissue-Specific Expression

    Institute of Scientific and Technical Information of China (English)

    LI Mei-li; LI Gui-qiang; FANG Wei; WANG Wei; SONG Xiao-guang; LI Er-lin; JIA Chao; XU Yin-xue

    2009-01-01

    TSARG7 is a novel member of the acyltransferase family since its sequence possesses the highly conserved phosphate acyltransferase (PIsC) domain existing in all acyltransferase-like proteins. The porcine TSARG7 had been identified by cloning in silico but had not been confirmed experimentally. The full-length mRNA of porcine TSARG7 gene was sequenced and two splice variants were discovered. The full-length cDNA of TSARG7 variant 1 was 2 513 bp and variant 2 was 2 634 bp. The putative porcine TSARG7 proteins, which were located in the cytoplasm, encoded 458 and 456 amino acids, respectively. Real-time PCR analysis showed that TSARG7 gene was expressed in various tissues, but at different levels. The expression levels of this gene were higher in the skeletal muscle, heart, and testis than that in other tissues, suggesting that the TSARG7 gene played a role in procine skeletal muscle, heart, and testis functions.

  3. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation

    Directory of Open Access Journals (Sweden)

    Patil NA

    2016-09-01

    epigenetic alteration in response to metal oxide NPs and that this effect was dose-dependent. Keywords: nanotoxicity, epigenetics, global DNA methylation, 5-mC, DNA methyltransferase, Dnmt

  4. Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Lengauer Thomas

    2007-02-01

    Full Text Available Abstract Background Alterations of chromosome 8 and hypomethylation of LINE-1 retrotransposons are common alterations in advanced prostate carcinoma. In a former study including many metastatic cases, they strongly correlated with each other. To elucidate a possible interaction between the two alterations, we investigated their relationship in less advanced prostate cancers. Results In 50 primary tumor tissues, no correlation was observed between chromosome 8 alterations determined by comparative genomic hybridization and LINE-1 hypomethylation measured by Southern blot hybridization. The discrepancy towards the former study, which had been dominated by advanced stage cases, suggests that both alterations converge and interact during prostate cancer progression. Therefore, interaction analysis was performed on microarray-based expression profiles of cancers harboring both alterations, only one, or none. Application of a novel bioinformatic method identified Gene Ontology (GO groups related to innate immunity, cytoskeletal organization and cell adhesion as common targets of both alterations. Many genes targeted by their interaction were involved in type I and II interferon signaling and several were functionally related to hereditary prostate cancer genes. In addition, the interaction appeared to influence a switch in the expression pattern of EPB41L genes encoding 4.1 cytoskeleton proteins. Real-time RT-PCR revealed GADD45A, MX1, EPB41L3/DAL1, and FBLN1 as generally downregulated in prostate cancer, whereas HOXB13 and EPB41L4B were upregulated. TLR3 was downregulated in a subset of the cases and associated with recurrence. Downregulation of EPB41L3, but not of GADD45A, was associated with promoter hypermethylation, which was detected in 79% of carcinoma samples. Conclusion Alterations of chromosome 8 and DNA hypomethylation in prostate cancer probably do not cause each other, but converge during progression. The present analysis implicates their

  5. Inhibition of fried meat-induced rectal DNA damage and altered systemic genotoxicity in humans by crucifera, chlorophyllin, and yogurt

    Science.gov (United States)

    Dietary exposures implicated as reducing or causing risk for colorectal cancer may reduce or cause DNA damage in colon tissue; however, no one has assessed this hypothesis directly in humans. Thus, we enrolled 16 healthy volunteers in a 4-week controlled feeding study where 8 sub...

  6. MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman; Gao, Shan; Hulf, Toby;

    2011-01-01

    MicroRNA (miRNA) expression is broadly altered in cancer, but few studies have investigated miRNA deregulation in oral squamous cell carcinoma (OSCC). Epigenetic mechanisms are involved in the regulation of >30 miRNA genes in a range of tissues, and we aimed to investigate this further in OSCC....

  7. A conserved tissue-specific homeodomain-less isoform of MEIS1 is downregulated in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Richard C Crist

    Full Text Available Colorectal cancer is one of the most common cancers in developed nations and is the result of both environmental and genetic factors. Many of the genetic lesions observed in colorectal cancer alter expression of homeobox genes, which encode homeodomain transcription factors. The MEIS1 homeobox gene is known to be involved in several hematological malignancies and solid tumors and recent evidence suggests that expression of the MEIS1 transcript is altered in colorectal cancer. Despite this potential connection, little is known about the role of the gene in the intestines. We probed murine gastrointestinal tissue samples with an N-terminal Meis1 antibody, revealing expression of two previously described isoforms, as well as two novel Meis1 products. A 32 kD Meis1 product was expressed in the nuclei of non-epithelial cells in the stomach and colon, while a 27 kD product was expressed in the cytoplasm of epithelial cells in the proximal colon. Our data suggest that the 27 kD and 32 kD Meis1 proteins are both forms of the Meis1d protein, a homeodomain-less isoform whose transcript was previously identified in cDNA screens. Both the MEIS1D transcript and protein were expressed in human colon mucosa. Expression of the MEIS1D protein was downregulated in 83% (10/12 of primary colorectal cancer samples compared to matched normal mucosa, indicating that MEIS1D is a biomarker of colorectal tumorigenesis. The decreased expression of MEIS1D in colon tumors also suggests that this conserved homeodomain-less isoform may act as a tumor suppressor in human colorectal cancer.

  8. Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD.

    Science.gov (United States)

    Softic, Samir; Boucher, Jeremie; Solheim, Marie H; Fujisaka, Shiho; Haering, Max-Felix; Homan, Erica P; Winnay, Jonathon; Perez-Atayde, Antonio R; Kahn, C Ronald

    2016-08-01

    Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels. PMID:27207510

  9. Use of mouse models to understand the molecular basis of tissue-specific tumorigenesis in the Carney complex.

    Science.gov (United States)

    Kirschner, L S

    2009-07-01

    Carney complex (CNC) is an autosomal dominant, multiple endocrine neoplasia syndrome comprised of spotty skin pigmentation, myxomatosis, endocrine tumours and schwannomas. The majority of cases are due to inactivating mutations in PRKAR1A, the gene encoding the type 1A regulatory subunit of the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase, PKA (protein kinase A). In order to understand the molecular basis for tumorigenesis associated with PRKAR1A mutations, we have developed conventional and conditional Prkar1a knockout (KO) mice as well as primary cell culture models corresponding to these genetic manipulations. At the biochemical level, removal of Prkar1a from cells causes enhanced PKA activity, the same effect which has been observed in tumours isolated from CNC patients. Mice heterozygous for Prkar1a mutations (the exact genetic model for CNC patients) are born at expected frequencies and are tumour prone, developing neoplasms in cAMP-responsive cell types such as Schwann cells, osteoblasts and thyrocytes. In order to understand the basis of tissue-specific tumour formation, we have created tissue-specific KOs of the gene from three different tissues: the neural crest (Schwann cells), the pituitary gland and the heart. In the neural crest and the pituitary, ablation of Prkar1a leads to excess proliferation and tumorigenesis, whereas the same manipulation in developing cardiomyocytes leads to reduced proliferation and embryonic demise. The KO hearts also exhibit myxomatous changes suggesting a connection between PKA activation and myxomagenesis, although the nature of this relationship has not yet been determined. This work confirms the role of Prkar1a as a tissue-specific tumour suppressor, and ongoing work is focused on identifying the key downstream signalling targets affected by dysregulation of PKA. PMID:19522826

  10. High-fat diet leads to tissue-specific changes reflecting risk factors for diseases in DBA/2J mice

    OpenAIRE

    Hageman, Rachael S.; Wagener, Asja; Hantschel, Claudia; Svenson, Karen L.; Churchill, Gary A; Brockmann, Gudrun A., 1958-

    2010-01-01

    The aim of this study was to characterize the responses of individual tissues to high-fat feeding as a function of mass, fat composition, and transcript abundance. We examined a panel of eight tissues [5 white adipose tissues (WAT), brown adipose tissue (BAT), liver, muscle] obtained from DBA/2J mice on either a standard breeding diet (SBD) or a high-fat diet (HFD). HFD led to weight gain, decreased insulin sensitivity, and tissue-specific responses, including inflammation, in these mice. The...

  11. Epigenetic Modifications of Distinct Sequences of the p1 Regulatory Gene Specify Tissue-Specific Expression Patterns in Maize

    OpenAIRE

    Sekhon, Rajandeep S.; Peterson, Thomas; Chopra, Surinder

    2007-01-01

    Tandemly repeated endogenous genes are common in plants, but their transcriptional regulation is not well characterized. In maize, the P1-wr allele of pericarp color1 is composed of multiple copies arranged in a head-to-tail fashion. P1-wr confers a white kernel pericarp and red cob glume pigment phenotype that is stably inherited over generations. To understand the molecular mechanisms that regulate tissue-specific expression of P1-wr, we have characterized P1-wr*, a spontaneous loss-of-func...

  12. Diverse and Tissue Specific Mitochondrial Respiratory Response in A Mouse Model of Sepsis-Induced Multiple Organ Failure

    DEFF Research Database (Denmark)

    Karlsson, Michael; Hara, Naomi; Morata, Saori;

    2016-01-01

    -production was detected.Liver homogenate from the septic mice displayed a significant increase of the respiratory control ratio at 6 hours. In the 24-hour group, the rate of maximal oxidative phosphorylation, as well as LEAK respiration, was significantly increased compared to controls and the resultant respiratory...... control ratio was also significantly increased. Maximal Protonophore-induced respiratory (uncoupled) capacity was similar between the two treatment groups.The present study suggests a diverse and tissue specific mitochondrial respiratory response to sepsis. The brain displayed an early impaired...... mitochondrial respiratory efficiency. In the liver the primary finding was a substantial activation of the maximal phosphorylating capacity....

  13. High-Resolution Analysis of Gene Copy Number Alterations in Human Prostate Cancer Using CGH on cDNA Microarrays: Impact of Copy Number on Gene Expression

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2004-05-01

    Full Text Available Identification of target genes for genetic rearrangements in prostate cancer and the impact of copy number changes on gene expression are currently not well understood. Here, we applied high-resolution comparative genomic hybridization (CGH on cDNA microarrays for analysis of prostate cancer cell lines. CGH microarrays identified most of the alterations detected by classical chromosomal CGH, as well as a number of previously unreported alterations. Specific recurrent regions of gain (28 and loss (18 were found, their boundaries defined with sub-megabasepair accuracy. The most common changes included copy number decreases at 13% and gains at iq and 5p. Refined mapping identified several sites, such as at 13q (33-44, 49-51, 74-76 Mbp from the p-telomere, which matched with minimal regions of loss seen in extensive loss of heterozygosity mapping studies of large numbers of tumors. Previously unreported recurrent changes were found at 2p, 2q, 3p, 17q (losses, at 3q, 5p, 6p (gains. Integration of genomic and transcriptomic data revealed the role of individual candidate target genes for genomic alterations as well as a highly significant (P < .0001 overall association between copy number levels and the percentage of differentially expressed genes. Across the genome, the overall impact of copy number on gene expression levels was, to a large extent, attributable to low-level gains and losses of copy number, corresponding to common deletions and gains of often large chromosomal regions.

  14. Therapy and progression – induced O6-methylguanine-DNA methyltransferase and mismatch repair alterations in recurrent glioblastoma multiforme

    OpenAIRE

    Agarwal, S.; Suri, V.; M C Sharma; C. Sarkar

    2015-01-01

    Despite multimodality treatment protocol including surgical resection, radiotherapy, and chemotherapy in patients with glioblastoma multiforme (GBM), most suffer from treatment failure and tumor recurrence within a few months of initial surgery. The effectiveness of temozolomide (TMZ), the most commonly used chemotherapeutic agent, is largely dependent on the methylation status of the promoter of the gene O6-methylguanine-DNA methyltransferase (MGMT) and the integrity of the mismatch repair (...

  15. Maternal Cocaine Administration in Mice Alters DNA Methylation and Gene Expression in Hippocampal Neurons of Neonatal and Prepubertal Offspring

    OpenAIRE

    Novikova, Svetlana I.; He, Fang; Bai, Jie; Cutrufello, Nicholas J.; Lidow, Michael S.; Undieh, Ashiwel S.

    2008-01-01

    Previous studies documented significant behavioral changes in the offspring of cocaine-exposed mothers. We now explore the hypothesis that maternal cocaine exposure could alter the fetal epigenetic machinery sufficiently to cause lasting neurochemical and functional changes in the offspring. Pregnant CD1 mice were administered either saline or 20 mg/kg cocaine twice daily on gestational days 8–19. Male pups from each of ten litters of the cocaine and control groups were analyzed at 3 (P3) or ...

  16. Altered mitochondrial dynamics and response to insulin in cybrid cells harboring a diabetes-susceptible mitochondrial DNA haplogroup.

    Science.gov (United States)

    Kuo, Hsiao-Mei; Weng, Shao-Wen; Chang, Alice Y W; Huang, Hung-Tu; Lin, Hung-Yu; Chuang, Jiin-Haur; Lin, Tsu-Kung; Liou, Chia-Wei; Tai, Ming-Hong; Lin, Ching-Yi; Wang, Pei-Wen

    2016-07-01

    The advantage of using a cytoplasmic hybrid (cybrid) model to study the genetic effects of mitochondria is that the cells have the same nuclear genomic background. We previously demonstrated the independent role of mitochondria in the pathogenesis of insulin resistance (IR) and pro-inflammation in type 2 diabetes. In this study, we compared mitochondrial dynamics and related physiological functions between cybrid cells harboring diabetes-susceptible (B4) and diabetes-protective (D4) mitochondrial haplogroups, especially the responses before and after insulin stimulation. Cybrid B4 showed a more fragmented mitochondrial network, impaired mitochondrial biogenesis and bioenergetics, increased apoptosis and ineffective mitophagy and a low expression of fusion-related molecules. Upon insulin stimulation, increases in network formation, mitochondrial DNA (mtDNA) content, and ATP production were observed only in cybrid D4. Insulin promoted a pro-fusion dynamic status in both cybrids, but the trend was greater in cybrid D4. In cybrid B4, the imbalance of mitochondrial dynamics and impaired biogenesis and bioenergetics, and increased apoptosis were significantly improved in response to antioxidant treatment. We concluded that diabetes-susceptible mtDNA variants are themselves resistant to insulin. PMID:27107769

  17. Amelioration of radiation induced DNA damage and biochemical alterations by Punica Granatum (L) extracts and synthetic ellagic acid in Swiss albino mice

    International Nuclear Information System (INIS)

    Radiation therapy has been used in cancer treatment for many decades; Although effective in killing tumor cells, ROS produced in radiotherapy threaten the integrity and survival of surrounding normal cells. ROS are scavenged by radioprotectors before they can interact with biochemical molecules, thus reducing harmful effects of radiation. The pomegranate, Punica granatum L., an ancient, mystical, and highly distinctive fruit, is the predominant member of the Punicaceae family. It is used in several systems of medicine for a variety of ailments. The objective of the present study was to investigate the protective effects of ethanolic extracts of pomegranate whole fruit (EPWF) and seeds (EPS) and Synthetic Ellagic acid (EA) against Electron Beam Radiation (EBR) induced DNA damage and biochemical alterations in Swiss Albino mice. The extracts and synthetic compound were assessed for its radical scavenging property by DPPH radical scavenging and Ferric Reducing Antioxidant Power assays. The animals were treated with 200 mg/kg body wt. of pomegranate extracts and Ellagic acid for 15 days before exposure to 6 Gy of EBR. Radiation induced DNA damage was assessed by comet assay in the peripheral blood lymphocytes of mice. The biochemical estimations were carried out in the serum and RBC lysate of the animals. The plant extracts and synthetic compound exhibited good radical scavenging and reducing properties.The pretreated animals before irradiation caused a reduction in the comet length, olive tail moment, % DNA in tail when compared to irradiated group. The biochemical parameters such as lipid peroxidation was significantly depleted in the treated groups when compared to irradiated group followed by significant elevation in reduced glutathione. Our findings indicate the ameliorating effects of pomegranate extracts and synthetic ellagic acid on radiation induced DNA damage and biochemical changes in mice may be due to its free radical scavenging and increased antioxidant

  18. Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus)

    International Nuclear Information System (INIS)

    Congener patterns of the major organohalogen contaminant classes of PCBs, PBDEs and their metabolites and/or by-products (OH-PCBs, MeSO2-PCBs, OH-PBDEs and MeO-PBDEs) were examined in adipose tissue, liver, brain and blood of East Greenland polar bears (Ursus maritimus). PCB, OH-PCB, MeSO2-PCB and PBDE congener patterns showed significant differences (p ≤ 0.05) mainly in the liver and the brain relative to the adipose tissue and the blood. OH-PBDEs and MeO-PBDEs were not detected in the brain and liver, but had different patterns in blood versus the adipose tissue. Novel OH-polybrominated biphenyls (OH-PBBs), one tri- and two tetra-brominated OH-PBBs were detected in all tissues and blood. Congener pattern differences among tissues and blood are likely due to a combination of factors, e.g., biotransformation and retention in the liver, retention in the blood and blood-brain barrier transport. Our findings suggest that different congener pattern exposures to these classes of contaminants should be considered with respect to potential target tissue-specific effects in East Greenland polar bears. - Tissues-specific (adipose tissue, liver, brain and blood) differences exist for the congener patterns of PCBs, PBDEs and their metabolites/degradation products in East Greenland polar bears

  19. Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus)

    Energy Technology Data Exchange (ETDEWEB)

    Gebbink, Wouter A. [National Wildlife Research Centre, Science and Technology Branch, Environment Canada, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Sonne, Christian; Dietz, Rune; Kirkegaard, Maja; Riget, Frank F. [Department of Arctic Environment, National Environmental Research Institute, University of Aarhus, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Born, Erik W. [Greenland Institute of Natural Resources, P.O. Box 570, DK-3900 Nuuk, Greenland (Denmark); Muir, Derek C.G. [Water Science and Technology Directorate, Environment Canada, Burlington, Ontario L7R 4A6 (Canada); Letcher, Robert J. [National Wildlife Research Centre, Science and Technology Branch, Environment Canada, Carleton University, Ottawa, Ontario K1S 5B6 (Canada); Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6 (Canada)], E-mail: robert.letcher@ec.gc.ca

    2008-04-15

    Congener patterns of the major organohalogen contaminant classes of PCBs, PBDEs and their metabolites and/or by-products (OH-PCBs, MeSO{sub 2}-PCBs, OH-PBDEs and MeO-PBDEs) were examined in adipose tissue, liver, brain and blood of East Greenland polar bears (Ursus maritimus). PCB, OH-PCB, MeSO{sub 2}-PCB and PBDE congener patterns showed significant differences (p {<=} 0.05) mainly in the liver and the brain relative to the adipose tissue and the blood. OH-PBDEs and MeO-PBDEs were not detected in the brain and liver, but had different patterns in blood versus the adipose tissue. Novel OH-polybrominated biphenyls (OH-PBBs), one tri- and two tetra-brominated OH-PBBs were detected in all tissues and blood. Congener pattern differences among tissues and blood are likely due to a combination of factors, e.g., biotransformation and retention in the liver, retention in the blood and blood-brain barrier transport. Our findings suggest that different congener pattern exposures to these classes of contaminants should be considered with respect to potential target tissue-specific effects in East Greenland polar bears. - Tissues-specific (adipose tissue, liver, brain and blood) differences exist for the congener patterns of PCBs, PBDEs and their metabolites/degradation products in East Greenland polar bears.

  20. Tissue-Specific Contributions of Paternally Expressed Gene 3 in Lactation and Maternal Care of Mus musculus.

    Directory of Open Access Journals (Sweden)

    Wesley D Frey

    Full Text Available Paternally Expressed Gene 3 (Peg3 is an imprinted gene that controls milk letdown and maternal-caring behaviors. In this study, a conditional knockout allele has been developed in Mus musculus to further characterize these known functions of Peg3 in a tissue-specific manner. The mutant line was first crossed with a germline Cre. The progeny of this cross displayed growth retardation phenotypes. This is consistent with those seen in the previous mutant lines of Peg3, confirming the usefulness of the new mutant allele. The mutant line was subsequently crossed individually with MMTV- and Nkx2.1-Cre lines to test Peg3's roles in the mammary gland and hypothalamus, respectively. According to the results, the milk letdown process was impaired in the nursing females with the Peg3 mutation in the mammary gland, but not in the hypothalamus. This suggests that Peg3's roles in the milk letdown process are more critical in the mammary gland than in the hypothalamus. In contrast, one of the maternal-caring behaviors, nest-building, was interrupted in the females with the mutation in both MMTV- and Nkx2.1-driven lines. Overall, this is the first study to introduce a conditional knockout allele of Peg3 and to further dissect its contribution to mammalian reproduction in a tissue-specific manner.

  1. Tissue-specific metallothionein gene expression in liver and intestine by dexamethasone, interleukin-1α and elevated zinc status

    International Nuclear Information System (INIS)

    Intestinal metallothionein has been implicated in the regulation of zinc absorption. Glucocorticoids and cytokines mediate hepatic metallothionein gene expression but the effects of these hormones in the small intestine are unclear. In this experiment, rats were injected ip with dexamethasone (DEX), recombinant human interleukin-1α (ILK-1), or ZnSO4. Data collected 0. 3, 6,9, or 12 hour post-injection showed tissue specific regulation of metallothionein gene expression. Liver metallothionein mRNA (determined by hybridization analysis) were increased by DEX, IL-1 and ZnSO4. In contrast, the intestine was completely refractory to IL-1. DEX did not affect intestinal metallothionein but did enhance mucosal accumulation of 65Zn by ligated duodenal loops. Absorption of 65Zn was not affected by IL-1 or DEX but was inversely related to elevated intestinal metallothionein protein induced in response to ZnSO. Plasma zinc was depressed by DEX and IL-1 and elevated in rats injected with ZnSO4 but was not related to 54Zn absorption. Tissue-specific induction of metallothionein may constitute a mechanism for independently regulating both tissue zinc distribution and zinc absorption

  2. Tissue Discrimination by Uncorrected Autofluorescence Spectra: A Proof-of-Principle Study for Tissue-Specific Laser Surgery

    Directory of Open Access Journals (Sweden)

    Katja Tangermann-Gerk

    2013-10-01

    Full Text Available Laser surgery provides a number of advantages over conventional surgery. However, it implies large risks for sensitive tissue structures due to its characteristic non-tissue-specific ablation. The present study investigates the discrimination of nine different ex vivo tissue types by using uncorrected (raw autofluorescence spectra for the development of a remote feedback control system for tissue-selective laser surgery. Autofluorescence spectra (excitation wavelength 377 ± 50 nm were measured from nine different ex vivo tissue types, obtained from 15 domestic pig cadavers. For data analysis, a wavelength range between 450 nm and 650 nm was investigated. Principal Component Analysis (PCA and Quadratic Discriminant Analysis (QDA were used to discriminate the tissue types. ROC analysis showed that PCA, followed by QDA, could differentiate all investigated tissue types with AUC results between 1.00 and 0.97. Sensitivity reached values between 93% and 100% and specificity values between 94% and 100%. This ex vivo study shows a high differentiation potential for physiological tissue types when performing autofluorescence spectroscopy followed by PCA and QDA. The uncorrected autofluorescence spectra are suitable for reliable tissue discrimination and have a high potential to meet the challenges necessary for an optical feedback system for tissue-specific laser surgery.

  3. Tissue-specific bioaccumulation and oxidative stress responses in juvenile Japanese flounder (Paralichthys olivaceus) exposed to mercury

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei; CAO Liang; YE Zhenjiang; LIN Longshan; CHEN Quanzhen; DOU Shuozeng

    2012-01-01

    To understand mercury (Hg) toxicity in marine fish,we measured Hg accumulation in juvenile Japanese flounder (Paralichthys olivaceus) and assessed the effects on growth and antioxidant responses.After Hg exposure (control,5,40,and 160 μg/L Hg) for 28 d,fish growth was significantly reduced.The accumulation of Hg in fish was dose-dependent and tissue-specific,with the maximum accumulation in kidney and liver,followed by gills,bone,and muscle.Different antioxidants responded differently to Hg exposure to cope with the induction of lipid peroxidation (LPO),which was also tissue-specific and dosedependent.As Hg concentration increased,superoxide dismutase (SOD) and catalase (CAT) activities increased significantly,whereas glutathione S-transferase (GST) activity and glutathione (GSH) levels decreased significantly in the gills.SOD and glutathione peroxidase (GPx) activities and the GSH level increased significantly in the liver.SOD activity and GSH levels increased significantly,but CAT activity decreased significantly with an increase in Hg concentration in the kidney.LPO was induced significantly by elevated Hg in the gills and kidney but was least affected in the liver.Therefore,oxidative stress biomarkers in gills were more sensitive than those in the liver and kidney to Hg exposure.Thus,the gills have potential as bioindicators for evaluating Hg toxicity in juvenile flounder.

  4. The Prp19/Pso4 Core complex Undergoes Ubiquitylation and Structural Alterations in Response to DNA Damage

    OpenAIRE

    Lu, Xiaoyan; Legerski, Randy J.

    2007-01-01

    Prp19/Pso4, a U-box containing E3 ligase, has a demonstrated role in pre-mRNA splicing, but has also been implicated in both yeast and mammalian cells as having a direct role in DNA damage processing. In this report we provide further evidence in support of this latter assertion. We show that hPrp19 forms an ubiquitylated oligomeric species that is resistant to disruption by SDS gel electrophoresis under nonreducing conditions suggesting that is mediated by a thiolester between ubiquitin and ...

  5. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders.

    Science.gov (United States)

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  6. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders

    Science.gov (United States)

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  7. Genome-Wide Screening of Genes Showing Altered Expression in Liver Metastases of Human Colorectal Cancers by cDNA Microarray

    Directory of Open Access Journals (Sweden)

    Rempei Yanagawa

    2001-01-01

    Full Text Available In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions.

  8. Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-β and Runx2 in bone is required for hearing

    OpenAIRE

    Chang, Jolie L; Brauer, Delia S.; Johnson, Jacob; Chen, Carol G.; Akil, Omar; Balooch, Guive; Humphrey, Mary Beth; Chin, Emily N.; Porter, Alexandra E.; Butcher, Kristin; Ritchie, Robert O.; Schneider, Richard A; Lalwani, Anil; Derynck, Rik; Marshall, Grayson W.

    2010-01-01

    By investigating the role of bone quality in hearing, this study provides evidence that signaling pathways and lineage-specific transcription factors cooperate to define the tissue-specific and functionally essential material properties of the extracellular matrix.

  9. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity.

    Science.gov (United States)

    Hu, Yuxiang; Blair, John D; Yuen, Ryan K C; Robinson, Wendy P; von Dadelszen, Peter

    2015-05-01

    Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility. PMID:25697377

  10. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure

    Science.gov (United States)

    Chater-Diehl, Eric J.; Castellani, Christina A.; Alberry, Bonnie L.; Singh, Shiva M.

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse’s lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as “Free radical scavenging”. We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was “Peroxisome biogenesis”; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  11. Differences between liver gap junction protein and lens MIP 26 from rat: implications for tissue specificity of gap junctions.

    Science.gov (United States)

    Nicholson, B J; Takemoto, L J; Hunkapiller, M W; Hood, L E; Revel, J P

    1983-03-01

    Liver gap junctions and gap-junction-like structures from eye lenses are each comprised of a single major protein (Mr 28,000 and 26,000, respectively). These proteins display different two-dimensional peptide fingerprints, distinct amino acid compositions, nonhomologous N-terminal amino acid sequences and different sensitivities to proteases when part of the intact junction. However, the junctional protein of each tissue is well conserved between species, as demonstrated previously for lens and now for liver in several mammalian species. The possiblity of tissue-specific gap junction proteins is discussed in the light of data suggesting that rat heart gap junctions are comprised of yet a third protein. PMID:6299583

  12. Gambogic Acid Is a Tissue-Specific Proteasome Inhibitor In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Xiaofen Li

    2013-01-01

    Full Text Available Gambogic acid (GA is a natural compound derived from Chinese herbs that has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients; however, its molecular targets have not been thoroughly studied. Here, we report that GA inhibits tumor proteasome activity, with potency comparable to bortezomib but much less toxicity. First, GA acts as a prodrug and only gains proteasome-inhibitory function after being metabolized by intracellular CYP2E1. Second, GA-induced proteasome inhibition is a prerequisite for its cytotoxicity and anticancer effect without off-targets. Finally, because expression of the CYP2E1 gene is very high in tumor tissues but low in many normal tissues, GA could therefore produce tissue-specific proteasome inhibition and tumor-specific toxicity, with clinical significance for designing novel strategies for cancer treatment.

  13. Tissue-specific down-regulation of RIPK 2 in Mycobacterium leprae-infected nu/nu mice

    Directory of Open Access Journals (Sweden)

    Gue-Tae Chae

    1992-01-01

    Full Text Available RIPK 2 is adapter molecule in the signal pathway involved in Toll-like receptors. However, there has been no reported association between receptor-interacting serine/threonine kinase 2 (RIPK 2 expression and the infectious diseases involving mycobacterial infection. This study found that its expression was down-regulated in the footpads and skin but was up-regulated in the liver of Mycobacterium leprae-infected nu/nu mice compared with those of the M. leprae non-infected nu/nu mice. It was observed that the interlukin-12p40 and interferon-γ genes involved in the susceptibility of M. leprae were down-regulated in the skin but were up-regulated in the liver. Overall, this suggests that regulation of RIPK 2 expression is tissue-specifically associated with M. leprae infection.

  14. Medullary Epithelial Cells of the Human Thymus Express a Highly Diverse Selection of Tissue-specific Genes Colocalized in Chromosomal Clusters

    OpenAIRE

    Gotter, Jörn; Brors, Benedikt; Hergenhahn, Manfred; Kyewski, Bruno

    2004-01-01

    Promiscuous expression of tissue-specific self-antigens in the thymus imposes T cell tolerance and protects from autoimmune diseases, as shown in animal studies. Analysis of promiscuous gene expression in purified stromal cells of the human thymus at the single and global gene level documents the species conservation of this phenomenon. Medullary thymic epithelial cells overexpress a highly diverse set of genes (>400) including many tissue-specific antigens, disease-associated autoantigens, a...

  15. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks

    OpenAIRE

    Liu Wei-chung; Lin Wen-hsien; Hwang Ming-jing

    2009-01-01

    Abstract Background Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein ...

  16. Tissue specific diurnal rhythms of metabolites and their regulation during herbivore attack in a native tobacco, Nicotiana attenuata.

    Directory of Open Access Journals (Sweden)

    Sang-Gyu Kim

    Full Text Available Ecological performance is all about timing and the endogenous clock that allows the entrainment of rhythms and anticipation of fitness-determining events is being rapidly characterized. How plants anticipate daily abiotic stresses, such as cold in early mornings and drought at noon, as well as biotic stresses, such as the timing of pathogen infections, is being explored, but little is known about the clock's role in regulating responses to insect herbivores and mutualists, whose behaviors are known to be strongly diurnally regulated and whose attack is known to reconfigure plant metabolomes. We developed a liquid chromatography-mass spectrometry procedure and analyzed its output with model-based peak picking algorithms to identify metabolites with diurnal accumulation patterns in sink/source leaves and roots in an unbiased manner. The response of metabolites with strong diurnal patterns to simulated attack from the specialist herbivore, Manduca sexta larvae was analyzed and annotated with in-house and public databases. Roots and leaves had largely different rhythms and only 10 ions of 182 oscillating ions in leaves and 179 oscillating ions in roots were rhythmic in both tissues: root metabolites mainly peaked at dusk or night, while leaf metabolites peaked during the day. Many oscillating metabolites showed tissue-specific regulation by simulated herbivory of which systemic responses in unattacked tissues were particularly pronounced. Diurnal and herbivory-elicited accumulation patterns of disaccharide, phenylalanine, tyrosine, lyciumoside I, coumaroyl tyramine, 12-oxophytodienoic acid and jasmonic acid and those of their related biosynthetic transcripts were examined in detail. We conclude that oscillating metabolites of N. attenuata accumulate in a highly tissue-specific manner and the patterns reveal pronounced diurnal rhythms in the generalized and specialized metabolism that mediates the plant's responses to herbivores and mutualists. We

  17. Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1.

    Science.gov (United States)

    Stiburek, Lukas; Vesela, Katerina; Hansikova, Hana; Pecina, Petr; Tesarova, Marketa; Cerna, Leona; Houstek, Josef; Zeman, Jiri

    2005-12-15

    The biogenesis of eukaryotic COX (cytochrome c oxidase) requires several accessory proteins in addition to structural subunits and prosthetic groups. We have analysed the assembly state of COX and SCO2 protein levels in various tissues of six patients with mutations in SCO2 and SURF1. SCO2 is a copper-binding protein presumably involved in formation of the Cu(A) centre of the COX2 subunit. The function of SURF1 is unknown. Immunoblot analysis of native gels demonstrated that COX holoenzyme is reduced to 10-20% in skeletal muscle and brain of SCO2 and SURF1 patients and to 10-30% in heart of SCO2 patients, whereas liver of SCO2 patients' contained normal holoenzyme levels. The steady-state levels of mutant SCO2 protein ranged from 0 to 20% in different SCO2 patient tissues. In addition, eight distinct COX subcomplexes and unassembled subunits were found, some of them identical with known assembly intermediates of the human enzyme. Heart, brain and skeletal muscle of SCO2 patients contained accumulated levels of the COX1.COX4.COX5A subcomplex, three COX1-containing subcomplexes, a COX4.COX5A subcomplex and two subcomplexes composed of only COX4 or COX5A. The accumulation of COX1.COX4.COX5A subcomplex, along with the virtual absence of free COX2, suggests that the lack of the Cu(A) centre may result in decreased stability of COX2. The appearance of COX4.COX5A subcomplex indicates that association of these nucleus-encoded subunits probably precedes their addition to COX1 during the assembly process. Finally, the consequences of SCO2 and SURF1 mutations suggest the existence of tissue-specific functional differences of these proteins that may serve different tissue-specific requirements for the regulation of COX biogenesis. PMID:16083427

  18. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

    Science.gov (United States)

    Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit

    2015-11-01

    Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance. PMID:26475187

  19. Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome

    Directory of Open Access Journals (Sweden)

    Nurminsky Dmitry I

    2011-05-01

    Full Text Available Abstract Background Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven. Results Microarray-based study and qRT-PCR analyses show that the dynamics of gene expression during testis development are very similar between X-linked and autosomal genes, with both showing transcriptional activation concomitant with meiosis. However, the genes showing at least ten-fold expression bias toward testis are significantly underrepresented on the X chromosome. Intriguingly, the genes with similar expression bias toward tissues other than testis, even those not apparently associated with reproduction, are also strongly underrepresented on the X. Bioinformatics analysis shows that while tissue-specific genes often bind silencing-associated factors in embryonic and cultured cells, this trend is less prominent for the X-linked genes. Conclusions Our data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila. Paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue-biased genes on this chromosome. Our analyses suggest that the activation/repression switch mechanisms that probably orchestrate the highly-biased expression of tissue-specific genes are generally not efficient on the X chromosome. This effect, probably caused by dosage compensation counteracting repression of the X-linked genes, may be the cause of the exodus of highly tissue-biased genes to the autosomes.

  20. Tissue-specific populations of leukocytes in semen-producing organs of the normal, hemicastrated, and vasectomized mouse.

    Science.gov (United States)

    Mullen, Thomas E; Kiessling, Rachel L; Kiessling, Ann A

    2003-03-01

    Semen HIV is separate and distinct from blood HIV and work has revealed that seminal plasma HIV particles do not arise from infected cells in semen. These findings indicate that semen-producing organs contain multiple, separate populations of HIV host cells. To test this hypothesis, we have examined leukocytes in semen-producing organs of male mice. Cells expressing F4/80 (tissue-specific macrophage marker) were abundant in testicular interstitium and as dendritic-like cells in the lumenal epithelium of the epididymis, especially the initial segment. Cells expressing CD45 (panleukocyte marker) were found rarely in the testicular interstitium, commonly in epididymal epithelium, were most abundant in the interstitium of the epididymis, and were more readily released from minced tissues than were F4/80(+) cells. Unlike the testis and epididymis, F4/80(+) cells in seminal vesicles also appeared to be CD45(+). Seminal vesicle leukocytes were restricted to the epithelium surrounding the lumen and were not released by mincing. CD11b (monocyte/B cell marker) was detected in testicular and seminal vesicle interstitium, but not in the epididymis. Hemicastration and vasectomy caused a limited redistribution of the leukocytes. These findings confirm the existence of tissue-specific populations of leukocytes in semen-producing organs and indicate that some populations are highly tissue adherent. The regionalized, tissue-adherent macrophages in the testicular interstitium, the initial segment of the caput epididymis, and the seminal vesicle epithelium suggest the existence of reservoirs of HIV-infected cells in humans that could contribute virus particles, but not infected cells, to semen and possibly blood. PMID:12689416

  1. Exploring Genome-wide DNA Methylation Profiles Altered in Kashin-Beck Disease Using Infinium Human Methylation 450 Bead Chips.

    Science.gov (United States)

    Shi, Xiao Wei; Shi, Bo Hui; Lyu, Ai Li; Zhang, Feng; Zhou, Tian Tian; Guo, Xiong

    2016-07-01

    To understand how differentially methylated genes (DMGs) might affect the pathogenesis of Kashin-Beck disease (KBD). Genome-wide methylation profiling of whole blood from 12 matched KBD and controls pairs was performed using a high-resolution Infinium 450 K methylation array. In total, 97 CpG sites were differentially methylated in KBD compared to the normal controls; of these sites, 36 sites were significantly hypermethylated (covering 22 genes) and 61 sites were significantly hypomethylated (covering 34 genes). Of these genes, 14 significant pathways were identified, the most significant P value pathway was type I diabetes mellitus pathway and pathways associated with autoimmune diseases and inflammatory diseases were included in this study. Subsequently, 4 CpG sites in HLA-DRB1 were validated using bisulfite sequencing polymerase chain reaction (BSP) in articular cartilage, and the results showed significant differences in the methylation status between KBD and controls, consistent with the results of the high-resolution array. These results suggested that differences in genome-wide DNA methylation exist between KBD and the controls, and the biological pathways support the autoimmune disease and inflammatory disease hypothesis of KBD. PMID:27554126

  2. Therapy and progression--induced O6-methylguanine-DNA methyltransferase and mismatch repair alterations in recurrent glioblastoma multiforme.

    Science.gov (United States)

    Agarwal, S; Suri, V; Sharma, M C; Sarkar, C

    2015-01-01

    Despite multimodality treatment protocol including surgical resection, radiotherapy, and chemotherapy in patients with glioblastoma multiforme (GBM), most suffer from treatment failure and tumor recurrence within a few months of initial surgery. The effectiveness of temozolomide (TMZ), the most commonly used chemotherapeutic agent, is largely dependent on the methylation status of the promoter of the gene O6-methylguanine-DNA methyltransferase (MGMT) and the integrity of the mismatch repair (MMR) system. Changes in these regulatory mechanisms at the time of recurrence may influence response to therapy. Deciphering the molecular mechanisms of resistance to these drugs may in future lead to improvised patient management. In this article, we provide an update of the spectrum of molecular changes that occur in recurrent GBMs, and thus may have an impact on patient survival and treatment response. For review, electronic search for the keywords "Recurrent GBM", "Recurrent GBM AND MGMT" "Recurrent glioma AND MGMT", "Recurrent GBM AND MMR" and "Recurrent glioma AND MMR", "Recurrent GBM AND MMR" and "Recurrent glioma AND MMR" was done on PubMed and relevant citations were screened including cross-references. PMID:26960480

  3. Therapy and progression – induced O6-methylguanine-DNA methyltransferase and mismatch repair alterations in recurrent glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    S Agarwal

    2015-01-01

    Full Text Available Despite multimodality treatment protocol including surgical resection, radiotherapy, and chemotherapy in patients with glioblastoma multiforme (GBM, most suffer from treatment failure and tumor recurrence within a few months of initial surgery. The effectiveness of temozolomide (TMZ, the most commonly used chemotherapeutic agent, is largely dependent on the methylation status of the promoter of the gene O6-methylguanine-DNA methyltransferase (MGMT and the integrity of the mismatch repair (MMR system. Changes in these regulatory mechanisms at the time of recurrence may influence response to therapy. Deciphering the molecular mechanisms of resistance to these drugs may in future lead to improvised patient management. In this article, we provide an update of the spectrum of molecular changes that occur in recurrent GBMs, and thus may have an impact on patient survival and treatment response. For review, electronic search for the keywords “Recurrent GBM”, “Recurrent GBM AND MGMT” “Recurrent glioma AND MGMT”, “Recurrent GBM AND MMR” and “Recurrent glioma AND MMR”, “Recurrent GBM AND MMR” and “Recurrent glioma AND MMR” was done on PubMed and relevant citations were screened including cross-references.

  4. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway.

    Directory of Open Access Journals (Sweden)

    Courtney A Lovejoy

    Full Text Available The Alternative Lengthening of Telomeres (ALT pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ALT in pancreatic neuroendocrine cancers, pediatric glioblastomas, and other tumors of the central nervous system, suggesting that these mutations might contribute to the activation of the ALT pathway in these cancers. We have taken a comprehensive approach to deciphering ALT by applying genomic, molecular biological, and cell biological approaches to a panel of 22 ALT cell lines, including cell lines derived in vitro. Here we show that loss of ATRX protein and mutations in the ATRX gene are hallmarks of ALT-immortalized cell lines. In addition, ALT is associated with extensive genome rearrangements, marked micronucleation, defects in the G2/M checkpoint, and altered double-strand break (DSB repair. These attributes will facilitate the diagnosis and treatment of ALT positive human cancers.

  5. Tissue-specific differences in the spatial interposition of X-chromosome and 3R chromosome regions in the malaria mosquito Anopheles messeae Fall.

    Directory of Open Access Journals (Sweden)

    Gleb Artemov

    Full Text Available Spatial organization of a chromosome in a nucleus is very important in biology but many aspects of it are still generally unresolved. We focused on tissue-specific features of chromosome architecture in closely related malaria mosquitoes, which have essential inter-specific differences in polytene chromosome attachments in nurse cells. We showed that the region responsible for X-chromosome attachment interacts with nuclear lamina stronger in nurse cells, then in salivary glands cells in Anopheles messeae Fall. The inter-tissue differences were demonstrated more convincingly in an experiment of two distinct chromosomes interposition in the nucleus space of cells from four tissues. Microdissected DNA-probes from nurse cells X-chromosome (2BC and 3R chromosomes (32D attachment regions were hybridized with intact nuclei of nurse cells, salivary gland cells, follicle epithelium cells and imaginal disсs cells in 3D-FISH experiments. We showed that only salivary gland cells and follicle epithelium cells have no statistical differences in the interposition of 2BC and 32D. Generally, the X-chromosome and 3R chromosome are located closer to each other in cells of the somatic system in comparison with nurse cells on average. The imaginal disсs cell nuclei have an intermediate arrangement of chromosome interposition, similar to other somatic cells and nurse cells. In spite of species-specific chromosome attachments there are no differences in interposition of nurse cells chromosomes in An. messeae and An. atroparvus Thiel. Nurse cells have an unusual chromosome arrangement without a chromocenter, which could be due to the special mission of generative system cells in ontogenesis and evolution.

  6. Cadmium sulfide nanoparticles trigger DNA alterations and modify the bioturbation activity of tubificidae worms exposed through the sediment.

    Science.gov (United States)

    Dedeh, Amina; Ciutat, Aurélie; Lecroart, Pascal; Treguer-Delapierre, Mona; Bourdineaud, Jean-Paul

    2016-04-01

    To address the impact of cadmium sulfide nanoparticles (CdS NPs) in freshwater ecosystems, aquatic oligochaete Tubifex tubifex were exposed through the sediment to a low dose (0.52 mg of 8 nm in size of CdS NPs/kg) for 20 days using microcosms. Cadmium (Cd) was released from the CdS NPs-contaminated sediment to the water column, and during this period the average concentrations of Cd in the filtered water fraction were 0.026 ± 0.006 µg/L in presence of oligochaetes. Similar experiments with microparticular CdS and cadmium chloride (CdCl2) were simultaneously performed for comparative purposes. CdS NPs exposure triggered various effects on Tubifex worms compared to control, microsized and ionic reference, including modification of genome composition as assessed using RAPD-PCR genotoxicity tests. Bioaccumulation levels showed that CdS NPs were less bioavailable than CdCl2 to oligochaetes and reached 0.08 ± 0.01 µg Cd/g for CdS NPs exposure versus 0.76 ± 0.3 µg Cd/g for CdCl2 exposure (fresh weight). CdS NPs altered worm's behavior by decreasing significantly the bioturbation activity as assessed after the exposure period using conservative fluorescent particulate tracers. This study demonstrated the high potential harm of the CdS nanoparticular form despite its lower bioavailability for Tubifex worms. PMID:26618487

  7. Structural evolution and tissue-specific expression of tetrapod-specific second isoform of secretory pathway Ca2+-ATPase

    International Nuclear Information System (INIS)

    Highlights: ► Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. ► ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. ► Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. ► Subcellular localization of SPCA2 may depend on tissue type. ► In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2), the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2 gene radiated from ATP2C1 (encoding SPCA1) during adaptation of tetrapod ancestors to terrestrial habitats.

  8. Tissue-specific B-cell dysfunction and generalized memory B-cell loss during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Sandrine Peruchon

    Full Text Available BACKGROUND: Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART. Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV mac251-infected Cynomolgus macaques. METHODS AND FINDINGS: Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.. We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD(-CD27(+ B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8(+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus-B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. CONCLUSIONS: These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid

  9. The role of human cytochrome P4503A4 in biotransformation of tissue-specific derivatives of 7H-dibenzo[c,g]carbazole

    International Nuclear Information System (INIS)

    The environmental pollutant 7H-dibenzo[c,g]carbazole (DBC) and its derivative, 5,9-dimethylDBC (DiMeDBC), produced significant and dose-dependent levels of micronuclei followed by a substantial increase in the frequency of apoptotic cells in the V79MZh3A4 cell line stably expressing the human cytochrome P450 (hCYP) 3A4. In contrast, neither micronuclei nor apoptosis were found in cells exposed to the sarcomagenic carcinogen, N-methylDBC (N-MeDBC). A slight but significant level of gene mutations and DNA adducts detected in V79MZh3A4 cells treated with N-MeDBC, only at the highest concentration (30 μM), revealed that this sarcomagenic carcinogen was also metabolized by hCYP3A4. Surprisingly, DBC increased the frequency of 6-thioguanine resistant (6-TGr) mutations only at the highest concentration (30 μM), while DiMeDBC failed to increase the frequency of these mutations. The resistance to 6-thioguanine is caused by the mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) gene. The molecular analysis of the coding region of Hprt gene showed a deletion of the entire exon 8 in DiMeDBC-induced 6-TGr mutants, while no changes in the nucleotide sequences were identified in 6-TGr mutants produced by DBC and N-MeDBC. Based on our results, we suggest that hCYP3A4 is involved in the metabolism of DBC and its tissue-specific derivatives. While hCYP3A4 probably plays an important role in biotransformation of the liver carcinogens, DBC and DiMeDBC, it might only have a marginal function in N-MeDBC metabolism. - Highlights: → DBC activation via CYP3A4 resulted in micronuclei, DNA adduct formation and mutations in V79MZh3A4 cells. → The CYP3A4-mediated DiMeDBC activation caused micronuclei followed by apoptosis in V79MZh3A4 cells. → The genotoxic effects produced by N-MeDBC in V79MZh3A4 cells were negligible. → The hCYP3A4 may play an important role in DBC and DiMeDBC metabolism. → The CYP3A4 might only have a marginal function in N-MeDBC metabolism.

  10. 5-Azacytidine enhances the radiosensitivity of CNE2 and SUNE1 cells in vitro and in vivo possibly by altering DNA methylation.

    Science.gov (United States)

    Jiang, Wei; Li, Ying-Qin; Liu, Na; Sun, Ying; He, Qing-Mei; Jiang, Ning; Xu, Ya-Fei; Chen, Lei; Ma, Jun

    2014-01-01

    The radioresistance of tumor cells remains a major cause of treatment failure in nasopharyngeal carcinoma (NPC). Recently, several reports have highlighted the importance of epigenetic changes in radiation-induced responses. Here, we investigated whether the demethylating agent 5-azacytidine (5-azaC) enhances the radiosensitivity of NPC cells. The NPC cell lines CNE2 and SUNE1 were treated with 1 μmol/L 5-azaC for 24 h before irradiation (IR); clonogenic survival was then assessed. Tumor growth was investigated in a mouse xenograft model in vivo. The apoptosis, cell cycle progression and DNA damage repair were examined using flow cytometry, immunofluorescent staining and western blotting. Promoter methylation and the expression of four genes epigenetically silenced during the development of NPC were evaluated by pyrosequencing and real-time PCR. We found that pretreatment with 5-azaC significantly decreased clonogenic survival after IR compared to IR alone; the sensitivity-enhancement ratio of 5-azaC was 1.4 and 1.2 for CNE2 and SUNE1 cells, respectively. The combined administration of 5-azaC and IR significantly inhibited tumor growth in the mouse xenograft model, and enhanced radiation-induced apoptosis in vitro compared to 5-azaC alone or IR alone. 5-AzaC also decreased promoter methylation and upregulated the expression of genes which are epigenetically silenced both in vitro and in vivo in NPC. Thus, 5-azaC enhance the radiosensitivity of both the CNE2 and SUNE1 cell lines, possibly by altering DNA methylation levels and increasing the ability of irradiated cells to undergo apoptosis. The use of 5-azaC combined with IR maybe represent an attractive strategy for the treatment of NPC. PMID:24691157

  11. 5-Azacytidine Enhances the Radiosensitivity of CNE2 and SUNE1 Cells In Vitro and In Vivo Possibly by Altering DNA Methylation

    Science.gov (United States)

    Sun, Ying; He, Qing-Mei; Jiang, Ning; Xu, Ya-Fei; Chen, Lei; Ma, Jun

    2014-01-01

    The radioresistance of tumor cells remains a major cause of treatment failure in nasopharyngeal carcinoma (NPC). Recently, several reports have highlighted the importance of epigenetic changes in radiation-induced responses. Here, we investigated whether the demethylating agent 5-azacytidine (5-azaC) enhances the radiosensitivity of NPC cells. The NPC cell lines CNE2 and SUNE1 were treated with 1 μmol/L 5-azaC for 24 h before irradiation (IR); clonogenic survival was then assessed. Tumor growth was investigated in a mouse xenograft model in vivo. The apoptosis, cell cycle progression and DNA damage repair were examined using flow cytometry, immunofluorescent staining and western blotting. Promoter methylation and the expression of four genes epigenetically silenced during the development of NPC were evaluated by pyrosequencing and real-time PCR. We found that pretreatment with 5-azaC significantly decreased clonogenic survival after IR compared to IR alone; the sensitivity-enhancement ratio of 5-azaC was 1.4 and 1.2 for CNE2 and SUNE1 cells, respectively. The combined administration of 5-azaC and IR significantly inhibited tumor growth in the mouse xenograft model, and enhanced radiation-induced apoptosis in vitro compared to 5-azaC alone or IR alone. 5-AzaC also decreased promoter methylation and upregulated the expression of genes which are epigenetically silenced both in vitro and in vivo in NPC. Thus, 5-azaC enhance the radiosensitivity of both the CNE2 and SUNE1 cell lines, possibly by altering DNA methylation levels and increasing the ability of irradiated cells to undergo apoptosis. The use of 5-azaC combined with IR maybe represent an attractive strategy for the treatment of NPC. PMID:24691157

  12. 5-Azacytidine enhances the radiosensitivity of CNE2 and SUNE1 cells in vitro and in vivo possibly by altering DNA methylation.

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    Full Text Available The radioresistance of tumor cells remains a major cause of treatment failure in nasopharyngeal carcinoma (NPC. Recently, several reports have highlighted the importance of epigenetic changes in radiation-induced responses. Here, we investigated whether the demethylating agent 5-azacytidine (5-azaC enhances the radiosensitivity of NPC cells. The NPC cell lines CNE2 and SUNE1 were treated with 1 μmol/L 5-azaC for 24 h before irradiation (IR; clonogenic survival was then assessed. Tumor growth was investigated in a mouse xenograft model in vivo. The apoptosis, cell cycle progression and DNA damage repair were examined using flow cytometry, immunofluorescent staining and western blotting. Promoter methylation and the expression of four genes epigenetically silenced during the development of NPC were evaluated by pyrosequencing and real-time PCR. We found that pretreatment with 5-azaC significantly decreased clonogenic survival after IR compared to IR alone; the sensitivity-enhancement ratio of 5-azaC was 1.4 and 1.2 for CNE2 and SUNE1 cells, respectively. The combined administration of 5-azaC and IR significantly inhibited tumor growth in the mouse xenograft model, and enhanced radiation-induced apoptosis in vitro compared to 5-azaC alone or IR alone. 5-AzaC also decreased promoter methylation and upregulated the expression of genes which are epigenetically silenced both in vitro and in vivo in NPC. Thus, 5-azaC enhance the radiosensitivity of both the CNE2 and SUNE1 cell lines, possibly by altering DNA methylation levels and increasing the ability of irradiated cells to undergo apoptosis. The use of 5-azaC combined with IR maybe represent an attractive strategy for the treatment of NPC.

  13. Tissue-specific laser microdissection of the Brassica napus funiculus improves gene discovery and spatial identification of biological processes

    Science.gov (United States)

    Chan, Ainsley C.; Khan, Deirdre; Girard, Ian J.; Becker, Michael G.; Millar, Jenna L.; Sytnik, David; Belmonte, Mark F.

    2016-01-01

    The three primary tissue systems of the funiculus each undergo unique developmental programs to support the growth and development of the filial seed. To understand the underlying transcriptional mechanisms that orchestrate development of the funiculus at the globular embryonic stage of seed development, we used laser microdissection coupled with RNA-sequencing to produce a high-resolution dataset of the mRNAs present in the epidermis, cortex, and vasculature of the Brassica napus (canola) funiculus. We identified 7761 additional genes in these tissues compared with the whole funiculus organ alone using this technology. Differential expression and enrichment analyses were used to identify several biological processes associated with each tissue system. Our data show that cell wall modification and lipid metabolism are prominent in the epidermis, cell growth and modification occur in the cortex, and vascular tissue proliferation and differentiation occur in the central vascular strand. We provide further evidence that each of the three tissue systems of the globular stage funiculus are involved in specific biological processes that all co-ordinate to support seed development. The identification of genes and gene regulators responsible for tissue-specific developmental processes of the canola funiculus now serves as a valuable resource for seed improvement research. PMID:27194740

  14. Promoter complexity and tissue-specific expression of stress response components in Mytilus galloprovincialis, a sessile marine invertebrate species.

    Directory of Open Access Journals (Sweden)

    Chrysa Pantzartzi

    Full Text Available The mechanisms of stress tolerance in sessile animals, such as molluscs, can offer fundamental insights into the adaptation of organisms for a wide range of environmental challenges. One of the best studied processes at the molecular level relevant to stress tolerance is the heat shock response in the genus Mytilus. We focus on the upstream region of Mytilus galloprovincialis Hsp90 genes and their structural and functional associations, using comparative genomics and network inference. Sequence comparison of this region provides novel evidence that the transcription of Hsp90 is regulated via a dense region of transcription factor binding sites, also containing a region with similarity to the Gamera family of LINE-like repetitive sequences and a genus-specific element of unknown function. Furthermore, we infer a set of gene networks from tissue-specific expression data, and specifically extract an Hsp class-associated network, with 174 genes and 2,226 associations, exhibiting a complex pattern of expression across multiple tissue types. Our results (i suggest that the heat shock response in the genus Mytilus is regulated by an unexpectedly complex upstream region, and (ii provide new directions for the use of the heat shock process as a biosensor system for environmental monitoring.

  15. Changes in levels of tissue-specific aldolases following whole-body x-irradiation of rat

    International Nuclear Information System (INIS)

    Effects of whole-body X-irradiation (600 R) of rat on the levels of tissue-specific forms of fructose-1, 6-biphosphate (FDP) aldolase have been investigated. Aldolase activities of type A from muscle, heart and spleen were relatively more susceptible than those from brain (A-C), liver (B) and kidney (A-B). While aldolase activities from brain and kidney showed losses after exposure of rat to 1000 R, that from liver remained unaffected. Effects on muscle aldolase were most pronounced. In muscle, though aldolase showed reduction in activity with FDP as substrate, no change was observed towards fructose-1-phosphate (F-1-P); consequently FDP/F-1-P activity ratio was reduced. Post-irradiation structural changes in muscle aldolase were suggested by the appearance of an extra band with aldolase activity in the gel electrophoresis pattern of muscle extract of irradiated rat. Incubation of muscle extract of control rat with that from irradiated animal at pH 6.0 resulted in loss of aldolase activity, and the presence of EDTA and -SH agents enhanced the loss. A similar loss of crystalline rabbit muscle aldolase was also seen upon incubation with muscle extract from irradiated rat and iodoacetamide protected against such loss. The results indicated involvement of catheptic enzymes of lysosomal origin in the inactivation of aldolase in rat muscle. Incorporation of DL-[1-14C] leucine into the muscle proteins of rat was inhibited by 80-90% upon administration of cycloheximide or puromycin. (author)

  16. Adipocyte dysfunction in a mouse model of polycystic ovary syndrome (PCOS: evidence of adipocyte hypertrophy and tissue-specific inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph S Marino

    Full Text Available Clinical research shows an association between polycystic ovary syndrome (PCOS and chronic inflammation, a pathological state thought to contribute to insulin resistance. The underlying pathways, however, have not been defined. The purpose of this study was to characterize the inflammatory state of a novel mouse model of PCOS. Female mice lacking leptin and insulin receptors in pro-opiomelanocortin neurons (IR/LepR(POMC mice and littermate controls were evaluated for estrous cyclicity, ovarian and adipose tissue morphology, and body composition by QMR and CT scan. Tissue-specific macrophage infiltration and cytokine mRNA expression were measured, as well as circulating cytokine levels. Finally, glucose regulation during pregnancy was evaluated as a measure of risk for diabetes development. Forty-five percent of IR/LepR(POMC mice showed reduced or absent ovulation. IR/LepR(POMC mice also had increased fat mass and adipocyte hypertrophy. These traits accompanied elevations in macrophage accumulation and inflammatory cytokine production in perigonadal adipose tissue, liver, and ovary. These mice also exhibited gestational hyperglycemia as predicted. This report is the first to show the presence of inflammation in IR/LepR(POMC mice, which develop a PCOS-like phenotype. Thus, IR/LepR(POMC mice may serve as a new mouse model to clarify the involvement of adipose and liver tissue in the pathogenesis and etiology of PCOS, allowing more targeted research on the development of PCOS and potential therapeutic interventions.

  17. Long-range looping of a locus control region drives tissue-specific chromatin packing within a multigene cluster.

    Science.gov (United States)

    Tsai, Yu-Cheng; Cooke, Nancy E; Liebhaber, Stephen A

    2016-06-01

    The relationships of higher order chromatin organization to mammalian gene expression remain incompletely defined. The human Growth Hormone (hGH) multigene cluster contains five gene paralogs. These genes are selectively activated in either the pituitary or the placenta by distinct components of a remote locus control region (LCR). Prior studies have revealed that appropriate activation of the placental genes is dependent not only on the actions of the LCR, but also on the multigene composition of the cluster itself. Here, we demonstrate that the hGH LCR 'loops' over a distance of 28 kb in primary placental nuclei to make specific contacts with the promoters of the two GH genes in the cluster. This long-range interaction sequesters the GH genes from the three hCS genes which co-assemble into a tightly packed 'hCS chromatin hub'. Elimination of the long-range looping, via specific deletion of the placental LCR components, triggers a dramatic disruption of the hCS chromatin hub. These data reveal a higher-order structural pathway by which long-range looping from an LCR impacts on local chromatin architecture that is linked to tissue-specific gene regulation within a multigene cluster. PMID:26893355

  18. Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules

    Science.gov (United States)

    Nassiri, Isar; Lombardo, Rosario; Lauria, Mario; Morine, Melissa J.; Moyseos, Petros; Varma, Vijayalakshmi; Nolen, Greg T.; Knox, Bridgett; Sloper, Daniel; Kaput, Jim; Priami, Corrado

    2016-07-01

    The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-determined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules.

  19. A Systematic Phenotypic Screen of F-box Genes Through a Tissue-specific RNAi-based Approach in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Wen Dui; Wei Lu; Jun Ma; Renjie Jiao

    2012-01-01

    F-box proteins are components of the SCF (SkpA-Cullin 1-F-box) E3 ligase complexes,acting as the specificity-determinants in targeting substrate proteins for ubiquitination and degradation.In humans,at least 22 out of 75 F-box proteins have experimentally documented substrates,whereas in Drosophila 12 F-box proteins have been characterized with known substrates.To systematically investigate the genetic and molecular functions of F-box proteins in Drosophila,we performed a survey of the literature and databases.We identified 45 Drosophila genes that encode proteins containing at least one F-box domain.We collected publically available RNAi lines against these genes and used them in a tissue-specific RNAi-based phenotypic screen.Here,we present our systematic phenotypic dataset from the eye,the wing and the notum.This dataset is the first of its kind and represents a useful resource for future studies of the molecular and genetic functions of F-box genes in Drosophila.Our results show that,as expected,F-box genes in Drosophila have regulatory roles in a diverse array of processes including cell proliferation,cell growth,signal transduction,and cellular and animal survival.

  20. Identification and tissue-specific distribution of sulfated glycosaminoglycans in the blood-sucking bug Rhodnius prolixus (Linnaeus).

    Science.gov (United States)

    Costa-Filho, Adilson; Souza, Maisa L S; Martins, Rita C L; dos Santos, André V F; Silva, Gabriela V; Comaru, Michele W; Moreira, Mônica F; Atella, Georgia C; Allodi, Silvana; Nasciutti, Luiz E; Masuda, Hatisaburo; Silva, Luiz-Claudio F

    2004-03-01

    We have previously characterized heparan sulfate (HS) as the major ovarian sulfated glycosaminoglycan (GAG) in females of Rhodnius prolixus, while chondroitin sulfate (CS) was the minor component. Using histochemical procedures we found that GAGs were concentrated in the ovarian tissue but not found inside the oocytes. Here, we extend our initial observations of GAG expression in R. prolixus by characterizing these molecules in other organs: the fat body, intestinal tract, and the reproductive tracts. Only HS and CS were found in the three organs analyzed, however CS was the major GAG species in these tissues. We also determined the compartmental distribution of GAGs in these organs by histochemical analysis using 1,9-dimethylmethylene blue, and evaluated the specific distribution of CS within both male and female reproductive tracts by immunohistochemistry using an anti-CS antibody. We also determined the GAG composition in eggs at days 0 and 6 of embryonic development. Only HS and CS were found in eggs at day 6, while no sulfated GAGs were detected at day 0. Our results demonstrate that HS and CS are the only sulfated GAG species expressed in the fat body and in the intestinal and reproductive tracts of Rhodnius male and female adults. Both sulfated GAGs were also identified in Rhodnius embryos. Altogether, these results show no qualitative differences in the sulfated GAG composition regarding tissue-specific or development-specific distribution. PMID:14871621

  1. Nonsyntenic Genes Drive Tissue-Specific Dynamics of Differential, Nonadditive, and Allelic Expression Patterns in Maize Hybrids.

    Science.gov (United States)

    Baldauf, Jutta A; Marcon, Caroline; Paschold, Anja; Hochholdinger, Frank

    2016-06-01

    Distantly related maize (Zea mays) inbred lines display an exceptional degree of genomic diversity. F1 progeny of such inbred lines are often more vigorous than their parents, a phenomenon known as heterosis. In this study, we investigated how the genetic divergence of the maize inbred lines B73 and Mo17 and their F1 hybrid progeny is reflected in differential, nonadditive, and allelic expression patterns in primary root tissues. In pairwise comparisons of the four genotypes, the number of differentially expressed genes between the two parental inbred lines significantly exceeded those of parent versus hybrid comparisons in all four tissues under analysis. No differentially expressed genes were detected between reciprocal hybrids, which share the same nuclear genome. Moreover, hundreds of nonadditive and allelic expression ratios that were different from the expression ratios of the parents were observed in the reciprocal hybrids. The overlap of both nonadditive and allelic expression patterns in the reciprocal hybrids significantly exceeded the expected values. For all studied types of expression - differential, nonadditive, and allelic - substantial tissue-specific plasticity was observed. Significantly, nonsyntenic genes that evolved after the last whole genome duplication of a maize progenitor from genes with synteny to sorghum (Sorghum bicolor) were highly overrepresented among differential, nonadditive, and allelic expression patterns compared with the fraction of these genes among all expressed genes. This observation underscores the role of nonsyntenic genes in shaping the transcriptomic landscape of maize hybrids during the early developmental manifestation of heterosis in root tissues of maize hybrids. PMID:27208302

  2. Tissue-specific expression of GFP reporter gene in germline driven by GATA-2 promoter and enhancers in zebrafish

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    GATA-2,a transcription factor,is expressed in several types of blood cells and in the central nervous system (CNS),and regulates the differentiation of these cells.We have obtained five zebrafish transgenic germlines that carry and express the green fluorescent protein (GFP) gene ligated to various 5′flanking sequences of zebrafish GATA-2 gene.The spatial pattern of GFP expression varies,mainly depending on which regulatory sequence is used,among the germlines.In some of the germlines,the expression of GFP is restricted to the CNS and the enveloping layer (EVL) cells,while in some other lines GFP is observed only in the CNS.It is noted that the intensity of GFP in the transgenic fish remain unchanged after a six-generation passage of the transgenes.The transgenic fish could find its uses in the future in generating tissue-specific,even cellspecific mutant fish and in functional study of related genes through transgenesis.

  3. Expression of ZmGA20ox cDNA alters plant morphology and increases biomass production of switchgrass (Panicum virgatum L.).

    Science.gov (United States)

    Do, Phat T; De Tar, Joann R; Lee, Hyeyoung; Folta, Michelle K; Zhang, Zhanyuan J

    2016-07-01

    Switchgrass (Panicum virgatum L.) is considered a model herbaceous energy crop for the USA, for its adaptation to marginal land, low rainfall and nutrient-deficient soils; however, its low biomass yield is one of several constraints, and this might be rectified by modulating plant growth regulator levels. In this study, we have determined whether the expression of the Zea mays gibberellin 20-oxidase (ZmGA20ox) cDNA in switchgrass will improve biomass production. The ZmGA20ox gene was placed under the control of constitutive CaMV35S promoter with a strong TMV omega enhancer, and introduced into switchgrass via Agrobacterium-mediated transformation. The transgene integration and expression levels of ZmGA20ox in T0 plants were analysed using Southern blot and qRT-PCR. Under glasshouse conditions, selected transgenic plants exhibited longer leaves, internodes and tillers, which resulted in twofold increased biomass. These phenotypic alterations correlated with the levels of transgene expression and the particular gibberellin content. Expression of ZmGA20ox also affected the expression of genes coding for key enzymes in lignin biosynthesis. Our results suggest that the employment of ectopic ZmGA20ox and selection for natural variants with high level expression of endogenous GA20ox are appropriate approaches to increase biomass production of switchgrass and other monocot biofuel crops. PMID:26801525

  4. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA.

    OpenAIRE

    Streuli, M; Saito, H

    1989-01-01

    Tissue-specific alternative splicing is an important mechanism for controlling gene expression. Exons 4, 5 and 6 of the human leukocyte common antigen (LCA) gene are included in B cell mRNA but excluded from thymocyte mRNA by differential splicing. In order to study this tissue-specific alternative splicing, we constructed mini-genes that contain only a few of the LCA exons and the SV40 promoter. Mouse B cells and thymocytes were transfected with these mini-gene constructs and the structures ...

  5. DNA glue

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.;

    2008-01-01

    Significant alterations in thermal stability of parallel DNA triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in the structure of phenylmethylglycerol inserted as a bulge into DNA (TINA). Insertions of two ortho-TINAs as a pseudo...

  6. A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Crisanti Andrea

    2011-06-01

    Full Text Available Abstract Background The mosquito, Anopheles gambiae, is the primary vector of human malaria, a disease responsible for millions of deaths each year. To improve strategies for controlling transmission of the causative parasite, Plasmodium falciparum, we require a thorough understanding of the developmental mechanisms, physiological processes and evolutionary pressures affecting life-history traits in the mosquito. Identifying genes expressed in particular tissues or involved in specific biological processes is an essential part of this process. Results In this study, we present transcription profiles for ~82% of annotated Anopheles genes in dissected adult male and female tissues. The sensitivity afforded by examining dissected tissues found gene activity in an additional 20% of the genome that is undetected when using whole-animal samples. The somatic and reproductive tissues we examined each displayed patterns of sexually dimorphic and tissue-specific expression. By comparing expression profiles with Drosophila melanogaster we also assessed which genes are well conserved within the Diptera versus those that are more recently evolved. Conclusions Our expression atlas and associated publicly available database, the MozAtlas (http://www.tissue-atlas.org, provides information on the relative strength and specificity of gene expression in several somatic and reproductive tissues, isolated from a single strain grown under uniform conditions. The data will serve as a reference for other mosquito researchers by providing a simple method for identifying where genes are expressed in the adult, however, in addition our resource will also provide insights into the evolutionary diversity associated with gene expression levels among species.

  7. Tissue-specific increases in 11beta-hydroxysteroid dehydrogenase type 1 in normal weight postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Therése Andersson

    Full Text Available With age and menopause there is a shift in adipose distribution from gluteo-femoral to abdominal depots in women. Associated with this redistribution of fat are increased risks of type 2 diabetes and cardiovascular disease. Glucocorticoids influence body composition, and 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1 which converts inert cortisone to active cortisol is a putative key mediator of metabolic complications in obesity. Increased 11betaHSD1 in adipose tissue may contribute to postmenopausal central obesity. We hypothesized that tissue-specific 11betaHSD1 gene expression and activity are up-regulated in the older, postmenopausal women compared to young, premenopausal women. Twenty-three pre- and 23 postmenopausal, healthy, normal weight women were recruited. The participants underwent a urine collection, a subcutaneous adipose tissue biopsy and the hepatic 11betaHSD1 activity was estimated by the serum cortisol response after an oral dose of cortisone. Urinary (5alpha-tetrahydrocortisol+5beta-tetrahydrocortisol/tetrahydrocortisone ratios were higher in postmenopausal women versus premenopausal women in luteal phase (P<0.05, indicating an increased whole-body 11betaHSD1 activity. Postmenopausal women had higher 11betaHSD1 gene expression in subcutaneous fat (P<0.05. Hepatic first pass conversion of oral cortisone to cortisol was also increased in postmenopausal women versus premenopausal women in follicular phase of the menstrual cycle (P<0.01, at 30 min post cortisone ingestion, suggesting higher hepatic 11betaHSD1 activity. In conclusion, our results indicate that postmenopausal normal weight women have increased 11betaHSD1 activity in adipose tissue and liver. This may contribute to metabolic dysfunctions with menopause and ageing in women.

  8. Assessment of tissue-specific accumulation and effects of cadmium in a marine fish fed contaminated commercially produced diet

    International Nuclear Information System (INIS)

    Commercially produced fish diet is now widely used in fish farming but it often contains elevated levels of cadmium (Cd). However, the adverse effects on fish are poorly understood. In this study, farm-raised marine grunts, Terapon jarbua, were fed Cd-contaminated diet or exposed to waterborne Cd for 4 weeks. Tissue-specific Cd bioaccumulation and its effects were subsequently examined. We found that Cd was accumulated in different fish tissues (digestive tracts, gills or livers). At the end of the exposure, Cd accumulation peaked in the fishes' livers (5.0-6.3 μg g-1), followed by the digestive tracts (0.83-3.16 μg g-1) and gills (0.27-2.74 μg g-1). Endpoints such as the survival rate, specific growth rate, condition factor, and superoxide dismutase activity were not significantly affected by Cd exposure. In contrast, metallothionein (MT) induction and subcellular Cd distribution indicated that there were possible sublethal effects of Cd exposure. MT was induced in response to Cd accumulation, but it returned to the control levels after a longer exposure period, except for hepatic MT induction resulting from waterborne or low dietary Cd exposure. The Cd percentage in the metallothionein-like protein (MTLP) fraction increased over exposure time, and it accounted for more than 57% Cd in the fishes' livers and 80% Cd in their digestive tracts by the end of the exposure period. Overall, although Cd in commercial fish diet did not have significant lethality to T. jarbua, sensitive responses such as hepatic MT induction and subcellular Cd distribution revealed that the Cd-induced storage and detoxification in T. jarbua may increase fish's tolerance to toxic metals.

  9. Tissue-specific expression of a gene encoding a cell wall-localized lipid transfer protein from Arabidopsis.

    Science.gov (United States)

    Thoma, S; Hecht, U; Kippers, A; Botella, J; De Vries, S; Somerville, C

    1994-05-01

    Nonspecific lipid transfer proteins (LTPs) from plants are characterized by their ability to stimulate phospholipid transfer between membranes in vitro. However, because these proteins are generally located outside of the plasma membrane, it is unlikely that they have a similar role in vivo. As a step toward identifying the function of these proteins, one of several LTP genes from Arabidoposis has been cloned and the expression pattern of the gene has been examined by analysis of the tissue specificity of beta-glucuronidase (GUS) activity in transgenic plants containing LTP promoter-GUS fusions and by in situ mRNA localization. The LTP1 promoter was active early in development in protoderm cells of embryos, vascular tissues, lignified tips of cotyledons, shoot meristem, and stipules. In adult plants, the gene was expressed in epidermal cells of young leaves and the stem. In flowers, expression was observed in the epidermis of all developing influorescence and flower organ primordia, the epidermis of the siliques and the outer ovule wall, the stigma, petal tips, and floral nectaries of mature flowers, and the petal/sepal abscission zone of mature siliques. The presence of GUS activity in guard cells, lateral roots, pollen grains, leaf vascular tissue, and internal cells of stipules and nectaries was not confirmed by in situ hybridizations, supporting previous observations that suggest that the reporter gene is subject to artifactual expression. These results are consistent with a role for the LTP1 gene product in some aspect of secretion or deposition of lipophilic substances in the cell walls of expanding epidermal cells and certain secretory tissues. The LTP1 promoter region contained sequences homologous to putative regulatory elements of genes in the phenylpropanoid biosynthetic pathway, suggesting that the expression of the LTP1 gene may be regulated by the same or similar mechanisms as genes in the phenylpropanoid pathway. PMID:8029357

  10. Assessment of tissue-specific accumulation and effects of cadmium in a marine fish fed contaminated commercially produced diet

    Energy Technology Data Exchange (ETDEWEB)

    Dang Fei [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2009-11-27

    Commercially produced fish diet is now widely used in fish farming but it often contains elevated levels of cadmium (Cd). However, the adverse effects on fish are poorly understood. In this study, farm-raised marine grunts, Terapon jarbua, were fed Cd-contaminated diet or exposed to waterborne Cd for 4 weeks. Tissue-specific Cd bioaccumulation and its effects were subsequently examined. We found that Cd was accumulated in different fish tissues (digestive tracts, gills or livers). At the end of the exposure, Cd accumulation peaked in the fishes' livers (5.0-6.3 {mu}g g{sup -1}), followed by the digestive tracts (0.83-3.16 {mu}g g{sup -1}) and gills (0.27-2.74 {mu}g g{sup -1}). Endpoints such as the survival rate, specific growth rate, condition factor, and superoxide dismutase activity were not significantly affected by Cd exposure. In contrast, metallothionein (MT) induction and subcellular Cd distribution indicated that there were possible sublethal effects of Cd exposure. MT was induced in response to Cd accumulation, but it returned to the control levels after a longer exposure period, except for hepatic MT induction resulting from waterborne or low dietary Cd exposure. The Cd percentage in the metallothionein-like protein (MTLP) fraction increased over exposure time, and it accounted for more than 57% Cd in the fishes' livers and 80% Cd in their digestive tracts by the end of the exposure period. Overall, although Cd in commercial fish diet did not have significant lethality to T. jarbua, sensitive responses such as hepatic MT induction and subcellular Cd distribution revealed that the Cd-induced storage and detoxification in T. jarbua may increase fish's tolerance to toxic metals.

  11. Identification of the interactome between fish plasma proteins and Edwardsiella tarda reveals tissue-specific strategies against bacterial infection.

    Science.gov (United States)

    Li, Hui; Huang, Xiaoyan; Zeng, Zaohai; Peng, Xuan-Xian; Peng, Bo

    2016-09-01

    Elucidating the complex pathogen-host interaction is essential for a comprehensive understanding of how these remarkable agents invade their hosts and how the hosts defend against these invaders. During the infection, pathogens interact intensively with host to enable their survival, which can be revealed through their interactome. Edwardsiella tarda is a Gram-negative bacterial pathogen causing huge economic loss in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. E. tarda is an ideal model for host-pathogen investigation as it infects fish in three distinct steps: entering the host, circulating through the blood and establishing infection. We adopted a previous established proteomic approach that inactivated E. tarda cells and covalent crosslink fish plasma proteins were used to capture plasma proteins and bacterial outer membrane proteins, respectively. By the combinatorial use of proteomic and biochemical approaches, six plasma proteins and seven outer membrane proteins (OMPs) were identified. Interactions among these proteins were validated with protein-array, far-Western blotting and co-immunoprecipitation. At last, seventeen plasma protein-bacteria protein-protein interaction were confirmed to be involved in the interaction network, forming a complex interactome. Compared to our previous results, different host proteins were detected, whereas some of the bacterial proteins were similar, which indicates that hosts adopt tissue-specific strategies to cope with the same pathogen during infection. Thus, our results provide a robust demonstration of both bacterial initiators and host receptors or interacting proteins to further explore infection and anti-infective mechanisms between hosts and microbes. PMID:27458055

  12. Common inversion polymorphism at 17q21.31 affects expression of multiple genes in tissue-specific manner

    Directory of Open Access Journals (Sweden)

    de Jong Simone

    2012-09-01

    Full Text Available Abstract Background Chromosome 17q21.31 contains a common inversion polymorphism of approximately 900 kb in populations with European ancestry. Two divergent MAPT haplotypes, H1 and H2 are described with distinct linkage disequilibrium patterns across the region reflecting the inversion status at this locus. The MAPT H1 haplotype has been associated with progressive supranuclear palsy, corticobasal degeneration, Parkinson’s disease and Alzheimer’s disease, while the H2 is linked to recurrent deletion events associated with the 17q21.31 microdeletion syndrome, a disease characterized by developmental delay and learning disability. Results In this study, we investigate the effect of the inversion on the expression of genes in the 17q21.31 region. We find the expression of several genes in and at the borders of the inversion to be affected; specific either to whole blood or different regions of the human brain. The H1 haplotype was found to be associated with an increased expression of LRRC37A4, PLEKH1M and MAPT. In contrast, a decreased expression of MGC57346, LRRC37A and CRHR1 was associated with H1. Conclusions Studies thus far have focused on the expression of MAPT in the inversion region. However, our results show that the inversion status affects expression of other genes in the 17q21.31 region as well. Given the link between the inversion status and different neurological diseases, these genes may also be involved in disease pathology, possibly in a tissue-specific manner.

  13. Combinatorial binding leads to diverse regulatory responses: Lmd is a tissue-specific modulator of Mef2 activity.

    Directory of Open Access Journals (Sweden)

    Paulo M F Cunha

    2010-07-01

    Full Text Available Understanding how complex patterns of temporal and spatial expression are regulated is central to deciphering genetic programs that drive development. Gene expression is initiated through the action of transcription factors and their cofactors converging on enhancer elements leading to a defined activity. Specific constellations of combinatorial occupancy are therefore often conceptualized as rigid binding codes that give rise to a common output of spatio-temporal expression. Here, we assessed this assumption using the regulatory input of two essential transcription factors within the Drosophila myogenic network. Mutations in either Myocyte enhancing factor 2 (Mef2 or the zinc-finger transcription factor lame duck (lmd lead to very similar defects in myoblast fusion, yet the underlying molecular mechanism for this shared phenotype is not understood. Using a combination of ChIP-on-chip analysis and expression profiling of loss-of-function mutants, we obtained a global view of the regulatory input of both factors during development. The majority of Lmd-bound enhancers are co-bound by Mef2, representing a subset of Mef2's transcriptional input during these stages of development. Systematic analyses of the regulatory contribution of both factors demonstrate diverse regulatory roles, despite their co-occupancy of shared enhancer elements. These results indicate that Lmd is a tissue-specific modulator of Mef2 activity, acting as both a transcriptional activator and repressor, which has important implications for myogenesis. More generally, this study demonstrates considerable flexibility in the regulatory output of two factors, leading to additive, cooperative, and repressive modes of co-regulation.

  14. A new method to determine tissue specific tissue factor thrombomodulin activities: endotoxin and particulate air pollution induced disbalance

    Directory of Open Access Journals (Sweden)

    Gerlofs-Nijland Miriam E

    2008-10-01

    Full Text Available Abstract Background Increase in tissue factor (TF and loss in thrombomodulin (TM antigen levels has been described in various inflammatory disorders. The functional consequences of such changes in antigen concentrations in the coagulation balance are, however, not known. This study was designed to assess the consequences of inflammation-driven organ specific functional properties of the procoagulant response. Methods Tissue specific procoagulant activity was assessed by adding tissue homogenate to normal human pool plasma and recording of the thrombin generation curve. The new technique was subsequently applied on two inflammation driven animal models: 1 mouse lipopolysaccharide (LPS induced endotoxemia and 2 spontaneously hypertensive rats exposed to environmental air pollution (particulate matter (PM. Results Addition of lung tissue from untreated animals to human plasma suppressed the endogenous thrombin potential (ETP (175 ± 61 vs. 1437 ± 112 nM.min for control. This inhibitory effect was due to TM, because a it was absent in protein C deficient plasma and b lungs from TMpro/pro mice allowed full thrombin generation (ETP: 1686 ± 209 nM.min. The inhibitory effect of TM was lost after LPS administration to mice, which induced TF activity in lungs of C57Bl/6 mice as well as increased the ETP (941 ± 523 vs. 194 ± 159 nM.min for control. Another pro-inflammatory stimulus, PM dose-dependently increased TF in the lungs of spontaneously hypertensive rats at 4 and 48 hours after PM exposure. The ETP increased up to 48 hours at the highest concentration of PM (1441 ± 289 nM.min vs. saline: 164 ± 64 nM.min, p Conclusion Inflammation associated procoagulant effects in tissues are dependent on variations in activity of the TF-TM balance. The application of these novel organ specific functional assays is a useful tool to monitor inflammation-driven shifts in the coagulation balance within animal or human tissues.

  15. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis.

    Science.gov (United States)

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang; Zhao, Zhongying

    2016-06-10

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development. PMID:27056332

  16. Interstitial tissue-specific gene expression in mouse testis by intra-tunica albuguineal injection of recombinant baculovirus

    Institute of Scientific and Technical Information of China (English)

    Hyun Jung Park; Won Young Lee; Jin Hoi Kim; Jae Hwan Kim; Hun Jong Jung; Nam Hyung Kim; Bo Kyung Kim; Hyuk Song

    2009-01-01

    The purpose of this study is to establish a gene delivery system for interstitial tissue-specific protein expression in mice testes using modified recombinant baculovirus. Green fluorescent protein (GFP)-expressing recombinant bacuiovirus (GFP-baculovirus), in which the insect cell-specific polyhedron promoter was replaced by the cytomegalovirus (CMV)-IE promoter, was used to transfect testicular cells in vitro, and for intra-tunica albuguineai injection of the interstitial tissue of the testis. GFP expression was monitored in frozen testes sections by fluorescence microscopy. Expression of GFP in testicular tissues was also assessed by reverse transcription polymerase chain reaction (RT-PCR), and protein expression was assessed by Western blot. Testicular cells in vitro were infected efficiently by modified recombinant GFP-baculovirus. Intra-tunica albuguineal injection of GFP-baculovirus into the mouse testis resulted in a high level of GFP expression in the interstitial tissues. RT-PCR analysis clearly showed GFP gene expression in the testis, particularly interstitial tissues. Intra-tunica albuguineal injection of a modified baculovirus that encoded recombinant rat insulin-like growth factor binding protein (IGFBP)-5 resulted in an increase in IGFBP-5 in testis and semen. In conclusion, we have developed an efficient delivery system for gene expression in vivo in testicular cells, particularly cells of the interstitial tissue using intra-tunica albuguineal injection of a modified recombinant baculovirus. This method will be particularly relevant for application that requires gene delivery and protein expression in the testicular cells of the outer seminiferous tubule of the testis.

  17. Cleaving DNA with DNA

    Science.gov (United States)

    Carmi, Nir; Balkhi, Shameelah R.; Breaker, Ronald R.

    1998-03-01

    A DNA structure is described that can cleave single-stranded DNA oligonucleotides in the presence of ionic copper. This ``deoxyribozyme'' can self-cleave or can operate as a bimolecular complex that simultaneously makes use of duplex and triplex interactions to bind and cleave separate DNA substrates. Bimolecular deoxyribozyme-mediated strand scission proceeds with a kobs of 0.2 min-1, whereas the corresponding uncatalyzed reaction could not be detected. The duplex and triplex recognition domains can be altered, making possible the targeted cleavage of single-stranded DNAs with different nucleotide sequences. Several small synthetic DNAs were made to function as simple ``restriction enzymes'' for the site-specific cleavage of single-stranded DNA.

  18. Characterization of a tissue-specific CDP/Cux isoform, p75, activated in breast tumor cells.

    Science.gov (United States)

    Goulet, Brigitte; Watson, Peter; Poirier, Madeleine; Leduy, Lam; Bérubé, Ginette; Meterissian, Sarkis; Jolicoeur, Paul; Nepveu, Alain

    2002-11-15

    Two isoforms of the CCAAT-displacement protein/cut homeobox (CDP/Cux) transcription factor have been characterized thus far. The full length protein, p200, which contains four DNA binding domains, transiently binds to DNA and carries the CCAAT-displacement activity. The p110 isoform is generated by proteolytic processing at the G1-S transition and is capable of stable interaction with DNA. Here we demonstrate the existence of a shorter CDP/Cux isoform, p75, which contains only two DNA binding domains, Cut repeat 3 and the Cut homeodomain, and binds more stably to DNA. CDP/Cux p75 was able to repress a reporter carrying the promoter for the cyclin-dependent kinase inhibitor p21 gene and to activate a DNA polymerase alpha gene reporter. Expression of CDP/Cux p75 involved a novel mechanism: transcription initiation within intron 20. The intron 20-initiated mRNA (I20-mRNA) was expressed at higher level in the thymus and in CD4+/CD8+ and CD4+ T cells. I20-mRNA was expressed only weakly or not at all in normal human mammary epithelial cells and normal breast tissues but was detected in many breast tumor cells lines and breast tumors. In invasive tumors a significant association was established between higher I20-mRNA expression and a diffuse infiltrative growth pattern (n = 41, P = 0.0137). In agreement with these findings, T47D breast cancer cells stably expressing p75 could not form tubule structures in collagen but rather developed as solid undifferentiated aggregates of cells. Taken together, these results suggest that aberrant expression of the CDP/Cux p75 isoform in mammary epithelial cells may be associated with the process of tumorigenesis in breast cancer. PMID:12438259

  19. The effects on DNA migration of altering parameters in the comet assay protocol such as agarose density, electrophoresis conditions and durations of the enzyme or the alkaline treatments

    OpenAIRE

    Ersson, C.; MOLLER, L.

    2011-01-01

    The single cell gel electrophoresis (comet assay) is a popular method for measuring DNA migration as an estimate of DNA damage. No standardised comet assay protocol exists, which make comparisons between studies complicated. In a previous inter-laboratory validation study of the comet assay, we identified important parameters in the protocol that might affect DNA migration. The aim of this study was to assess how different comet assay protocols affect DNA migration. The results in this study ...

  20. Genomic alterations in DNA repair and chromatin remodeling genes in estrogen receptor-positive metastatic breast cancer patients with exceptional responses to capecitabine

    International Nuclear Information System (INIS)

    We analyzed the genomic and phosphoproteomic profiles of breast cancer tissue obtained from six patients with estrogen receptor (ER)-positive, HER2-negative metastatic breast cancer who had highly durable (≥5 years) and, in some cases, ongoing clinical responses with capecitabine. Formalin-fixed, paraffin-embedded tissue samples from patients’ primary (n = 4) or metastatic (n = 2) breast cancers were utilized for targeted next-generation sequencing and reversed phase protein microarray. Two patients received capecitabine monotherapy. Four patients received capecitabine in combination with paclitaxel; three of these continued single-agent capecitabine after stopping paclitaxel. Capecitabine was discontinued for progressive disease after a mean of 66 months in four patients (range 54–86 months), and two patients remain on therapy, having received capecitabine for >91 months and >122 months, respectively. Three patients’ cancers (50%) had likely functional alterations in DNA repair and chromatin remodeling genes, while three other patients’ cancers had variants of unknown significance in these pathways. Mutations in PIK3CA, amplifications of FGFR1 or ZNF703, or phosphorylation of HER family receptors and their downstream proteins did not preclude exceptional responses to capecitabine. None of the patients’ tumors harbored TP53 or PTEN mutations. Four of the patients had breast cancer tissue available for PTEN immunohistochemistry, and all four patients’ cancers were positive for PTEN. These surprising findings in a group of phenotypically similar patients with ER-positive, endocrine therapy-pretreated, HER2-negative metastases, are supported by preclinical data showing that sensitivity to 5-fluorouracil is enhanced by deficiencies in chromatin remodeling and homologous recombination genes. Our findings suggest that mutations that inactivate homologous recombination and/or chromatin remodeling genes within ER-positive, HER2-negative breast cancers may

  1. [11C]-metformin distribution in the liver and small intestine using dynamic PET in mice demonstrates tissue-specific transporter dependency

    DEFF Research Database (Denmark)

    Jensen, Jonas B; Sundelin, Elias I; Jakobsen, Steen;

    2016-01-01

    ) including Multidrug and Toxin Extrusion proteins (MATE) are essential for transport of metformin across membranes, but tissue-specific activity of these transporters in vivo is incompletely understood. Here, we use dynamic PET with C11-labelled metformin ([11C]-metformin) in mice to investigate the role of...

  2. Persistent foot-and-mouth disease virus infection in the nasopharynx of cattle: tissue-specific distribution and local cytokine expression

    Science.gov (United States)

    Tissues obtained post-mortem from cattle persistently infected with foot-and-mouth disease virus (FMDV) were analyzed to characterize the tissue-specific localization of FMDV and partial transcriptome profiles for selected immunoregulatory cytokines. Analysis of 28 distinct anatomic sites from 21 st...

  3. Complementarity of medium-throughput in situ RNA hybridization and tissue-specific transcriptomics: case study of Arabidopsis seed development kinetics.

    Science.gov (United States)

    Francoz, Edith; Ranocha, Philippe; Pernot, Clémentine; Ru, Aurélie Le; Pacquit, Valérie; Dunand, Christophe; Burlat, Vincent

    2016-01-01

    The rationale of this study is to compare and integrate two heterologous datasets intended to unravel the spatiotemporal specificities of gene expression in a rapidly growing and complex organ. We implemented medium-throughput RNA in situ hybridization (ISH) for 39 genes mainly corresponding to cell wall proteins for which we have particular interest, selected (i) on their sequence identity (24 class III peroxidase multigenic family members and 15 additional genes used as positive controls) and (ii) on their expression levels in a publicly available Arabidopsis thaliana seed tissue-specific transcriptomics study. The specificity of the hybridization signals was carefully studied, and ISH results obtained for the 39 selected genes were systematically compared with tissue-specific transcriptomics for 5 seed developmental stages. Integration of results illustrates the complementarity of both datasets. The tissue-specific transcriptomics provides high-throughput possibilities whereas ISH provides high spatial resolution. Moreover, depending on the tissues and the developmental stages considered, one or the other technique appears more sensitive than the other. For each tissue/developmental stage, we finally determined tissue-specific transcriptomic threshold values compatible with the spatiotemporally-specific detection limits of ISH for lists of hundreds to tens-of-thousands of genes. PMID:27095274

  4. Mining tissue specificity, gene connectivity and disease association to reveal a set of genes that modify the action of disease causing genes

    Directory of Open Access Journals (Sweden)

    Reverter Antonio

    2008-09-01

    Full Text Available Abstract Background The tissue specificity of gene expression has been linked to a number of significant outcomes including level of expression, and differential rates of polymorphism, evolution and disease association. Recent studies have also shown the importance of exploring differential gene connectivity and sequence conservation in the identification of disease-associated genes. However, no study relates gene interactions with tissue specificity and disease association. Methods We adopted an a priori approach making as few assumptions as possible to analyse the interplay among gene-gene interactions with tissue specificity and its subsequent likelihood of association with disease. We mined three large datasets comprising expression data drawn from massively parallel signature sequencing across 32 tissues, describing a set of 55,606 true positive interactions for 7,197 genes, and microarray expression results generated during the profiling of systemic inflammation, from which 126,543 interactions among 7,090 genes were reported. Results Amongst the myriad of complex relationships identified between expression, disease, connectivity and tissue specificity, some interesting patterns emerged. These include elevated rates of expression and network connectivity in housekeeping and disease-associated tissue-specific genes. We found that disease-associated genes are more likely to show tissue specific expression and most frequently interact with other disease genes. Using the thresholds defined in these observations, we develop a guilt-by-association algorithm and discover a group of 112 non-disease annotated genes that predominantly interact with disease-associated genes, impacting on disease outcomes. Conclusion We conclude that parameters such as tissue specificity and network connectivity can be used in combination to identify a group of genes, not previously confirmed as disease causing, that are involved in interactions with disease causing

  5. Identification of FXYD Protein Genes in a Teleost: Tissue-specific Expression and Response to Salinity Change

    DEFF Research Database (Denmark)

    Tipsmark, Christian Kølbæk

    2008-01-01

    It is increasingly clear, that alterations in Na(+),K(+)-ATPase kinetics to fit the demands in specialized cell types, is vital for the enzyme to execute its different physiological roles in diverse tissues. In addition to tissue dependent expression of isoforms of the conventional subunits, alpha...

  6. Tissue-specific expression of the human alpha 1-antitrypsin gene is controlled by multiple cis-regulatory elements.

    OpenAIRE

    Shen, R F; Li, Y.; Sifers, R N; Wang, H.; Hardick, C; Tsai, S. Y.; Woo, S L

    1987-01-01

    Human alpha 1-antitrypsin (AAT) is expressed in the liver, and a 318 bp fragment immediately flanking the CAP site of the gene was found to be sufficient to drive the expression of a reporter gene (CAT) specifically in hepatoma cells. The enhancing activity however, was orientation-dependent. The DNA fragment was separated into a distal region and a proximal region. A "core enhancer" sequence GTGGTTTC is present within the distal region and is capable of activity enhancement in both orientati...

  7. Tissue-specific posttranscriptional downregulation of expression of the S100A4(mts1) gene in transgenic animals

    DEFF Research Database (Denmark)

    Ambartsumian, N; Klingelhöfer, Jörg; Grigorian, M;

    1998-01-01

    The S100A4(mts1) is a gene associated with generation of metastatic disease. In order to analyze the consequences of alteration of the pattern of expression of the S100A4(mts1) gene we obtained strains of transgenic mice bearing the S100A4(mts1) gene under the control of a ubiquitous and constitu....../or posttranslational degradation....

  8. Mitochondrial DNA alterations correlate with the pathological status and the immunological ER, PR, HER-2/neu, p53 and Ki-67 expression in breast invasive ductal carcinoma.

    Science.gov (United States)

    Lin, Chen-Sung; Chang, Shi-Chuan; Ou, Liang-Hung; Chen, Chien-Ming; Hsieh, Sophie Swen-Wan; Chung, Yu-Ping; King, Kuang-Liang; Lin, Shoei-Loong; Wei, Yau-Huei

    2015-06-01

    We analyzed the changes in mitochondrial DNA (mtDNA) copy numbers and the shifting of mtDNA D310 sequence variations (D310 mutation) with their relationships to pathological status and the expression levels of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER-2/neu), tumor-suppressor protein p53 and cellular proliferation protein Ki-67 in breast invasive ductal carcinoma (BIDC), respectively. Fifty-one paraffin-embedded BIDCs and their paired non-cancerous breast tissues were dissected for DNA extraction. The mtDNA copy number and mtDNA D310 sequence variations were determined by quantitative real-time polymerase chain reaction (q-PCR) and PCR-based direct sequencing, respectively. The expression levels of ER, PR, HER-2/neu, p53 and Ki-67 were determined by immunohistochemical (IHC) staining. Compared to the paired non-cancerous breast tissues, 24 (47.1%) BIDCs had elevated mtDNA copy numbers and 29 (56.9%) harbored mtDNA D310 mutations. Advanced T-status (p=0.056), negative-ER (p=0.005), negative-PR (p=0.007), positive-p53 (p=0.050) and higher Ki-67 (p=0.004) expressions were related to a higher mtDNA copy ratio. In addition, advanced T-status (p=0.019) and negative-HER-2/neu expression (p=0.061) were associated with mtDNA D310 mutations. In conclusion, higher mtDNA copy ratio and D310 mutations may be relevant biomarkers correlated with pathological T-status and the expression levels of ER, PR, HER-2/neu, p53 and Ki-67 in BIDCs. PMID:25845386

  9. Multiple POU-binding motifs, recognized by tissue-specific nuclear factors, are important for Dll1 gene expression in neural stem cells

    International Nuclear Information System (INIS)

    We cloned the 5'-flanking region of the mouse homolog of the Delta gene (Dll1) and demonstrated that the sequence between nucleotide position -514 and -484 in the 5'-flanking region of Dll1 played a critical role in the regulation of its tissue-specific expression in neural stem cells (NSCs). Further, we showed that multiple POU-binding motifs, located within this short sequence of 30 bp, were essential for transcriptional activation of Dll1 and also that multiple tissue-specific nuclear factors recognized these POU-binding motifs in various combinations through differentiation of NSCs. Thus, POU-binding factors may play an important role in Dll1 expression in developing NSCs

  10. Tissue-specific and plasma microRNA profiles could be promising biomarkers of histological classification and TNM stage in non-small cell lung cancer.

    Science.gov (United States)

    Pu, Qiang; Huang, Yuchuan; Lu, Yanrong; Peng, Yong; Zhang, Jie; Feng, Guanglin; Wang, Changguo; Liu, Lunxu; Dai, Ya

    2016-04-26

    In a previous study, we determined that plasma miRNAs are potential biomarkers for cigarette smoking-related lung fibrosis. Herein, we determine whether tissue-specific and plasma miRNA profiles could be promising biomarkers for histological classification and TNM stage in non-small cell lung cancer (NSCLC). Plasma miRNA profiling preoperatively and seven days postoperatively, and cancer and normal tissue miRNA profiling were performed in NSCLC patients and matched healthy controls. There was a > twofold change for all signature miRNAs between the NSCLC patients and controls, with P values of staging lung squamous cell carcinoma, and miR-3613-3p, miR-3675-3p, and miR-5571-5p were promising biomarkers of different staging lung adenocarcinoma. These results suggest that tissue-specific and plasma miRNAs could be potential biomarkers of histological classification and TNM stage in NSCLC. PMID:27148421

  11. Tissue-specific expression of the human alpha 1-antitrypsin gene is controlled by multiple cis-regulatory elements.

    Science.gov (United States)

    Shen, R F; Li, Y; Sifers, R N; Wang, H; Hardick, C; Tsai, S Y; Woo, S L

    1987-10-26

    Human alpha 1-antitrypsin (AAT) is expressed in the liver, and a 318 bp fragment immediately flanking the CAP site of the gene was found to be sufficient to drive the expression of a reporter gene (CAT) specifically in hepatoma cells. The enhancing activity however, was orientation-dependent. The DNA fragment was separated into a distal region and a proximal region. A "core enhancer" sequence GTGGTTTC is present within the distal region and is capable of activity enhancement in both orientations when complemented by the proximal region in the sense orientation. The results strongly suggest that there are multiple cis-acting elements in the human AAT gene that confer cell specificity for its expression. Nuclear proteins prepared from the hepatoma cells bound specifically to the proximal region in a band-shifting assay that was resistant to competition by the globin promoter DNA. Foot-printing analysis showed a protected domain within the proximal region that contains a nearly perfect palindromic sequence TGGTTAATATTCACCA, which may be important in the regulation of AAT expression in the liver. PMID:2823229

  12. Tissue-specific incorporation and genotoxicity of different forms of tritium in the marine mussel, Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Jaeschke, Benedict C., E-mail: ben@ecology.su.s [Ecotoxicology Research and Innovation Centre, School of Biomedical and Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Millward, Geoffrey E. [Consolidated Radio-isotope Facility, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Moody, A. John; Jha, Awadhesh N. [Ecotoxicology Research and Innovation Centre, School of Biomedical and Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2011-01-15

    Marine mussels (Mytilus edulis) were exposed to seawater spiked with tritiated water (HTO) at a dose rate of 122 and 79 {mu}Gy h{sup -1} for 7 and 14 days, respectively, and tritiated glycine (T-Gly) at a dose rate of 4.9 {mu}Gy h{sup -1} over 7 days. This was followed by depuration in clean seawater for 21 days. Tissues (foot, gills, digestive gland, mantle, adductor muscle and byssus) and DNA extracts from tissues were analysed for their tritium activity concentrations. All tissues demonstrated bio-accumulation of tritium from HTO and T-Gly. Tritium from T-Gly showed increased incorporation into DNA compared to HTO. About 90% of the initial activity from HTO was depurated within one day, whereas T-Gly was depurated relatively slowly, indicating that tritium may be bound with different affinities in tissues. Both forms of tritium caused a significant induction of micronuclei in the haemocytes of mussels. Our findings identify significant differential impacts on Mytilus edulis of the two chemical forms of tritium and emphasise the need for a separate classification and control of releases of tritiated compounds, to adequately protect the marine ecosystem. - Tritium from tritiated glycine demonstrates greater accumulation and persistence in tissues and enhanced genotoxicity in haemocytes of marine mussels, compared to tritium from tritiated water.

  13. Tissue-specific incorporation and genotoxicity of different forms of tritium in the marine mussel, Mytilus edulis

    International Nuclear Information System (INIS)

    Marine mussels (Mytilus edulis) were exposed to seawater spiked with tritiated water (HTO) at a dose rate of 122 and 79 μGy h-1 for 7 and 14 days, respectively, and tritiated glycine (T-Gly) at a dose rate of 4.9 μGy h-1 over 7 days. This was followed by depuration in clean seawater for 21 days. Tissues (foot, gills, digestive gland, mantle, adductor muscle and byssus) and DNA extracts from tissues were analysed for their tritium activity concentrations. All tissues demonstrated bio-accumulation of tritium from HTO and T-Gly. Tritium from T-Gly showed increased incorporation into DNA compared to HTO. About 90% of the initial activity from HTO was depurated within one day, whereas T-Gly was depurated relatively slowly, indicating that tritium may be bound with different affinities in tissues. Both forms of tritium caused a significant induction of micronuclei in the haemocytes of mussels. Our findings identify significant differential impacts on Mytilus edulis of the two chemical forms of tritium and emphasise the need for a separate classification and control of releases of tritiated compounds, to adequately protect the marine ecosystem. - Tritium from tritiated glycine demonstrates greater accumulation and persistence in tissues and enhanced genotoxicity in haemocytes of marine mussels, compared to tritium from tritiated water.

  14. Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes

    DEFF Research Database (Denmark)

    Nilsson, Emma; Jansson, Per Anders; Perfilyev, Alexander; Volkov, Petr; Pedersen, Maria; Svensson, Maria K; Poulsen, Pernille; Ribel-Madsen, Rasmus; Pedersen, Nancy L; Almgren, Peter; Fadista, João; Rönn, Tina; Klarlund Pedersen, Bente; Scheele, Camilla; Vaag, Allan; Ling, Charlotte

    2014-01-01

    to the genome-wide DNA methylation variability in twins. Differences in methylation between monozygotic twin pairs discordant for T2D were subsequently modest. However, 15,627 sites, representing 7,046 genes including PPARG, KCNQ1, TCF7L2, and IRS1, showed differential DNA methylation in adipose...

  15. Tissue-specific activation of mitogen-activated protein kinases for expression of transthyretin by phenylalanine and its metabolite, phenylpyruvic acid

    OpenAIRE

    Park, Joo-Won; Lee, Mi Hee; Choi, Jin-Ok; Park, Hae-Young; Jung, Sung-Chul

    2009-01-01

    Phenylketonuria is an autosomal recessive disorder caused by a deficiency of phenylalanine hydroxylase. Transthyretin has been implicated as an indicator of nutritional status in phenylketonuria patients. In this study, we report that phenylalanine and its metabolite, phenylpyruvic acid, affect MAPK, changing transthyretin expression in a cell- and tissue-specific manner. Treatment of HepG2 cells with phenylalanine or phenylpyruvic acid decreased transcription of the TTR gene and decreased th...

  16. Tissue specific analysis reveals a differential organization and regulation of both ethylene biosynthesis and E8 during climacteric ripening of tomato

    OpenAIRE

    Van de Poel, Bram; Vandenzavel, Nick; Smet, Cindy; Nicolay, Toon; Bulens, Inge; Mellidou, Ifigeneia; Vandoninck, Sandy; Hertog, Maarten LATM; Derua, Rita; Spaepen, Stijn; Vanderleyden, Jos; Waelkens, Etienne; De Proft, Maurice P; Nicolai, Bart M.; Geeraerd, Annemie H

    2014-01-01

    Background: Solanum lycopersicum or tomato is extensively studied with respect to the ethylene metabolism during climacteric ripening, focusing almost exclusively on fruit pericarp. In this work the ethylene biosynthesis pathway was examined in all major tomato fruit tissues: pericarp, septa, columella, placenta, locular gel and seeds. The tissue specific ethylene production rate was measured throughout fruit development, climacteric ripening and postharvest storage. All ethylene intermediate...

  17. Astrocyte- and hepatocyte-specific expression of genes from the distal serpin subcluster at 14q32.1 associates with tissue-specific chromatin structures

    OpenAIRE

    Gopalan, Sunita; Kasza, Aneta; Xu, Weili; Kiss, Daniel L.; Wilczynska, Katarzyna M.; Rydel, Russell E.; Kordula, Tomasz

    2005-01-01

    The distal serpin subcluster contains genes encoding α1-antichymotrypsin (ACT), protein C inhibitor (PCI), kallistatin (KAL), and the KAL-like protein that are expressed in hepatocytes but only the act gene is expressed in astrocytes. We show here that the tissue-specific expression of these genes associates with astrocyte- and hepatocyte-specific chromatin structures. In hepatocytes, we identified twelve DNase I-hypersenitive sites (DHS) that were distributed throughout the entire subcluster...

  18. The L84F polymorphic variant of human O6-methylguanine-DNA methyltransferase alters stability in U87MG glioma cells but not temozolomide sensitivity

    OpenAIRE

    Remington, Maya; Chtchetinin, Jana; Ancheta, Karen; Nghiemphu, Phioanh Leia; Cloughesy, Timothy; Lai, Albert

    2009-01-01

    First-line therapy for patients with glioblastoma multiforme includes treatment with radiation and temozolomide (TMZ), an oral DNA alkylating chemotherapy. Sensitivity of glioma cells to TMZ is dependent on the level of cellular O6-methylguanine-DNA methyltransferase (MGMT) repair activity. Several common coding- region polymorphisms in the MGMT gene (L84F and the linked pair I143V/K178R) modify functional characteristics of MGMT and cancer risk. To determine whether these polymorphic changes...

  19. Selective metal binding to Cys-78 within endonuclease V causes an inhibition of catalytic activities without altering nontarget and target DNA binding

    International Nuclear Information System (INIS)

    T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer

  20. Altered DNA methylation patterns of the H19 differentially methylated region and the DAZL gene promoter are associated with defective human sperm.

    Directory of Open Access Journals (Sweden)

    Bo Li

    Full Text Available DNA methylation disturbance is associated with defective human sperm. However, oligozoospermia (OZ and asthenozoospermia (AZ usually present together, and the relationship between the single-phenotype defects in human sperm and DNA methylation is poorly understood. In this study, 20 infertile OZ patients and 20 infertile AZ patients were compared with 20 fertile normozoospermic men. Bisulfate-specific PCR was used to analyze DNA methylation of the H19-DMR and the DAZL promoter in these subjects. A similar DNA methylation pattern of the H19-DMR was detected in AZ and NZ(control, with only complete methylation and mild hypomethylation(0.05. However, the methylation pattern of severe hypomethylation (>50% unmethylated CpGs and complete unmethylation was only detected in 5 OZ patients, and the occurrence of these two methylation patterns was 8.54±10.86% and 9±6.06%, respectively. Loss of DNA methylation of the H19-DMR in the OZ patients was found to mainly occur in CTCF-binding site 6, with occurrence of 18.15±14.71%, which was much higher than that in patients with NZ (0.84±2.05% and AZ (0.58±1.77% (P20% methylated clones in the DAZL promoter only in infertile patients, there was no significant difference between the AZ and OZ patients in the proportion of moderately-to-severely hypermethylated clones (p>0.05. In all cases, global sperm genome methylation analyses, using LINE1 transposon as the indicator, showed that dysregulation of DNA methylation is specifically associated with the H19-DMR and DAZL promoter. Therefore, abnormal DNA methylation status of H19-DMR, especially at the CTCF-binding site 6, is closely associated with OZ. Abnormal DNA methylation of the DAZL promoter might represent an epigenetic marker of male infertility.

  1. Brief Report: Alternative Splicing of Extra Domain A (EIIIA) of Fibronectin Plays a Tissue-Specific Role in Hematopoietic Homeostasis.

    Science.gov (United States)

    Malara, Alessandro; Gruppi, Cristian; Celesti, Giuseppe; Romano, Bina; Laghi, Luigi; De Marco, Luigi; Muro, Andrés F; Balduini, Alessandra

    2016-08-01

    Fibronectin (FN) is a major extracellular matrix protein implicated in cell adhesion and differentiation in the bone marrow (BM) environment. Alternative splicing of FN gene results in the generation of protein variants containing an additional EIIIA domain that sustains cell proliferation or differentiation during physiological or pathological tissue remodeling. To date its expression and role in adult hematopoiesis has not been explored. In our research, we demonstrate that during physiological hematopoiesis a small fraction of BM derived FN contains the EIIIA domain and that mice constitutively including (EIIIA(+/+) ) or excluding (EIIIA(-/-) ) the EIIIA exon present comparable levels of hematopoietic stem cells, myeloid and lymphoid progenitors within BM. Moreover, only minor alterations were detected in blood parameters and in hematopoietic frequencies of BM granulocytes/monocytes and B cells. As opposed to other tissues, unique compensatory mechanisms, such as increased FN accumulation and variable expression of the EIIIA receptors, Toll like receptor-4 and alpha9 integrin subunit, characterized the BM of these mice. Our data demonstrate that FN is a fundamental component of the hematopoietic tissue and that the EIIIA exon may play a key role in modulating hematopiesis in conditions of BM stress or diseases. Stem Cells 2016;34:2263-2268. PMID:27090359

  2. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats.

    Directory of Open Access Journals (Sweden)

    Asmita Kulkarni

    Full Text Available Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B(12 are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B(12 deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B(12 deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B(12 lowers plasma and placental DHA levels (p<0.05 and reduces global DNA methylation levels (p<0.05. When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.

  3. The role of vascular endothelial growth factor in the tissue specific in vivo growth of prostate cancer cells.

    Science.gov (United States)

    Krupski, T; Harding, M A; Herce, M E; Gulding, K M; Stoler, M H; Theodorescu, D

    2001-01-01

    Despite the fact that cancer cells can be found in many vascular beds, continued growth of the metastatic tumor focus exhibits a significant degree of 'organ tropism', with only certain organs exhibiting the ravages of metastatic disease. Since a limiting factor to the growth of metastases beyond 2 mm in diameter, may be a lack of angiogenesis, we sought to determine whether tumor overexpression of vascular endothelial growth factor (VEGF), a potent angiogenic factor related to prostate cancer metastasis, is causally related to organ specific tumor growth in a prostate cancer xenograft model. LnCaP-C4-2 is a subline of the human prostate cancer cell line LnCaP which unlike its parent, has a predilection for growth in bone, a common site for human prostate cancer metastasis. LnCaP-C4-2, is tumorigenic when injected intrafemorally in mice but requires co-injection of stromal components (Matrigel) to be tumorigenic in the subcutaneous site. Because of this site-specific tumorigenicity profile and relatively low VEGF mRNA and protein expression, this line was transfected with a full length cDNA encoding the 165 isoform of VEGF. Cells either overexpressing or not expressing the transfected gene were selected for study in vivo and in vitro. Overexpression of VEGF did not seem to affect in vitro cell growth. Such overexpression did affect tumorigenicity and in vivo tumor growth rates when cells were inoculated in the subcutaneus site. Interestingly, the dependency of subcutaneous tumorigenicity on Matrigel co-inoculation was still observed in cells overexpressing VEGF. In contrast to the impact that VEGF overexpression has on subcutaneous tumorigenicity, no such effect was observed when cells were inoculated in orthotopic/prostate (primary) or intrafemoral (metastatic) sites. In view of the importance of tumor-stromal interactions in growth of xenografts, we sought to determine if the host strain is important to the observed tumorigenicity effects of VEGF overexpression

  4. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Rouzbeh Taghizadeh

    Full Text Available A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+.We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone.The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  5. hSAGEing: an improved SAGE-based software for identification of human tissue-specific or common tumor markers and suppressors.

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    Full Text Available BACKGROUND: SAGE (serial analysis of gene expression is a powerful method of analyzing gene expression for the entire transcriptome. There are currently many well-developed SAGE tools. However, the cross-comparison of different tissues is seldom addressed, thus limiting the identification of common- and tissue-specific tumor markers. METHODOLOGY/PRINCIPAL FINDINGS: To improve the SAGE mining methods, we propose a novel function for cross-tissue comparison of SAGE data by combining the mathematical set theory and logic with a unique "multi-pool method" that analyzes multiple pools of pair-wise case controls individually. When all the settings are in "inclusion", the common SAGE tag sequences are mined. When one tissue type is in "inclusion" and the other types of tissues are not in "inclusion", the selected tissue-specific SAGE tag sequences are generated. They are displayed in tags-per-million (TPM and fold values, as well as visually displayed in four kinds of scales in a color gradient pattern. In the fold visualization display, the top scores of the SAGE tag sequences are provided, along with cluster plots. A user-defined matrix file is designed for cross-tissue comparison by selecting libraries from publically available databases or user-defined libraries. CONCLUSIONS/SIGNIFICANCE: The hSAGEing tool provides a combination of friendly cross-tissue analysis and an interface for comparing SAGE libraries for the first time. Some up- or down-regulated genes with tissue-specific or common tumor markers and suppressors are identified computationally. The tool is useful and convenient for in silico cancer transcriptomic studies and is freely available at http://bio.kuas.edu.tw/hSAGEing.

  6. Tissue-Specific Signatures in the Transcriptional Response to Anaplasma phagocytophilum Infection of Ixodes scapularis and Ixodes ricinus Tick Cell Lines

    Science.gov (United States)

    Alberdi, Pilar; Mansfield, Karen L.; Manzano-Román, Raúl; Cook, Charlotte; Ayllón, Nieves; Villar, Margarita; Johnson, Nicholas; Fooks, Anthony R.; de la Fuente, José

    2016-01-01

    Anaplasma phagocytophilum are transmitted by Ixodes spp. ticks and have become one of the most common and relevant tick-borne pathogens due to their impact on human and animal health. Recent results have increased our understanding of the molecular interactions between Ixodes scapularis and A. phagocytophilum through the demonstration of tissue-specific molecular pathways that ensure pathogen infection, development and transmission by ticks. However, little is known about the Ixodes ricinus genes and proteins involved in the response to A. phagocytophilum infection. The tick species I. scapularis and I. ricinus are evolutionarily closely related and therefore similar responses are expected in A. phagocytophilum-infected cells. However, differences may exist between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cells associated with tissue-specific signatures of these cell lines. To address this hypothesis, the transcriptional response to A. phagocytophilum infection was characterized by RNA sequencing and compared between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cell lines. The transcriptional response to infection of I. scapularis ISE6 cells resembled that of tick hemocytes while the response in I. ricinus IRE/CTVM20 cells was more closely related to that reported previously in infected tick midguts. The inhibition of cell apoptosis by A. phagocytophilum appears to be a key adaptation mechanism to facilitate infection of both vertebrate and tick cells and was used to investigate further the tissue-specific response of tick cell lines to pathogen infection. The results supported a role for the intrinsic pathway in the inhibition of cell apoptosis by A. phagocytophilum infection of I. scapularis ISE6 cells. In contrast, the results in I. ricinus IRE/CTVM20 cells were similar to those obtained in tick midguts and suggested a role for the JAK/STAT pathway in the inhibition of apoptosis in tick cells infected with A. phagocytophilum. Nevertheless, tick

  7. Altered Function of the DnaJ Family Cochaperone DNJ-17 Modulates Locomotor Circuit Activity in a Caenorhabditis elegans Seizure Model

    Science.gov (United States)

    Takayanagi-Kiya, Seika; Jin, Yishi

    2016-01-01

    The highly conserved cochaperone DnaJ/Hsp40 family proteins are known to interact with molecular chaperone Hsp70, and can regulate many cellular processes including protein folding, translocation, and degradation. In studies of Caenorhabditis elegans locomotion mutants, we identified a gain-of-function (gf) mutation in dnj-17 closely linked to the widely used e156 null allele of C. elegans GAD (glutamic acid decarboxylase) unc-25. dnj-17 encodes a DnaJ protein orthologous to human DNAJA5. In C. elegans DNJ-17 is a cytosolic protein and is broadly expressed in many tissues. dnj-17(gf) causes a single amino acid substitution in a conserved domain, and behaves as a hypermorphic mutation. The effect of this dnj-17(gf) is most prominent in mutants lacking GABA synaptic transmission. In a seizure model caused by a mutation in the ionotropic acetylcholine receptor acr-2(gf), dnj-17(gf) exacerbates the convulsion phenotype in conjunction with absence of GABA. Null mutants of dnj-17 show mild resistance to aldicarb, while dnj-17(gf) is hypersensitive. These results highlight the importance of DnaJ proteins in regulation of C. elegans locomotor circuit, and provide insights into the in vivo roles of DnaJ proteins in humans. PMID:27185401

  8. Detecting chromosomal alterations at 1p and 19q by FISH and DNA fragment analysis - a comparative study in human gliomas

    DEFF Research Database (Denmark)

    Broholm, H.; Born, P.W.; Guterbaum, D.;

    2008-01-01

    often only small formalin-fixed paraffin-embedded samples are available. Commercial DNA and normal cortex were used for comparison. The material comprised 41 glial tumors including 10 oligodendrogliomas (WHO Grades II and III, 5 each), 10 mixed oligoastrocytomas (WHO Grades II and III, 5 each), 10...

  9. Replacement of the C-terminal tetrapeptide (314PAPV317 to 314SSSM317) in interferon regulatory factor-2 alters its N-terminal DNA-binding activity

    Indian Academy of Sciences (India)

    Krishna Prakash; Pramod C Rath

    2010-12-01

    Interferon regulatory factor-2 (IRF-2) is an important transcription factor involved in cell growth regulation, immune response and cancer. IRF-2 can function as a transcriptional repressor and activator depending on its DNA-binding activity and protein–protein interactions. We compared the amino acid sequences of IRF-2 and found a C-terminal tetrapeptide (314PAPV317) of mouse IRF-2 to be different (314SSSM317) from human IRF-2. Recombinant GST-IRF-2 with 314PAPV317 (wild type) and 314SSSM317 (mutant) expressed in Escherichia coli were assessed for DNA-binding activity with 32P-(GAAAGT)4 by electrophoretic mobility shift assay (EMSA). Wild type- and mutant GST-IRF-2 showed similar expression patterns and immunoreactivities but different DNA-binding activities. Mutant (mt) IRF-2 formed higher-molecular-mass, more and stronger DNA–protein complexes in comparison to wild type (wt) IRF-2. Anti-IRF-2 antibody stabilized the DNA–protein complexes formed by both wt IRF-2 and mt IRF-2, resolving the differences. This suggests that PAPV and SSSM sequences at 314-317 in the C-terminal region of mouse and human IRF-2 contribute to conformation of IRF-2 and influence DNA-binding activity of the N-terminal region, indicating intramolecular interactions. Thus, evolution of IRF-2 from murine to human genome has resulted in subtle differences in C-terminal amino acid motifs, which may contribute to qualitative changes in IRF-2-dependent DNA-binding activity and gene expression.

  10. Bufalin Alters Gene Expressions Associated DNA Damage, Cell Cycle, and Apoptosis in Human Lung Cancer NCI-H460 Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Shin-Hwar Wu

    2014-05-01

    Full Text Available Lung cancer is the leading cause of cancer related death and there is no effective treatment to date. Bufalin has been shown effective in inducing apoptosis and DNA damage in lung cancer cells. However, the genetic mechanisms underlying these actions have not been elucidated yet. Cultured NCI-H460 cells were treated with or without 2 μM of bufalin for 24 h. The total RNA was extracted from each treatment for cDNA synthesis and labeling, microarray hybridization, and then followed by flour-labeled cDNA hybridized on chip. The localized concentrations of fluorescent molecules were detected and quantitated and analyzed by Expression Console software (Affymetrix with default RMA parameters. The key genes involved and their possible interaction pathways were mapped by GeneGo software. About 165 apoptosis-related genes were affected. CASP9 was up-regulated by 5.51 fold and THAP1 by 2.75-fold while CCAR1 was down-regulated by 2.24 fold. 107 genes related to DNA damage/repair were affected. MDC1 was down-regulated by 2.22-fold, DDIT4 by 2.52 fold while GADD45B up-regulated by 3.72 fold. 201 genes related to cell cycles were affected. CCPG1 was down-regulated by 2.11 fold and CDCA7L by 2.71 fold. Many genes about apoptosis, cell cycle regulation and DNA repair are changed significantly following bufalin treatment in NCI-H460 cells. These changes provide an in depth understanding of cytotoxic mechanism of bufalin in genetic level and also offer many potentially useful biomarkers for diagnosis and treatment of lung cancer in future.

  11. Influence of elevated alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance in fathead minnows during chronic, multi-trophic exposures to a metal mine effluent.

    Science.gov (United States)

    Ouellet, Jacob D; Dubé, Monique G; Niyogi, Som

    2013-09-01

    Metal bioavailability in aquatic organisms is known to be influenced by various water chemistry parameters. The present study examined the influence of alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance of fathead minnows (Pimephales promelas) during environmentally relevant chronic exposures to a metal mine effluent (MME). Sodium bicarbonate (NaHCO3) or NOM (as commercial humic acid) were added to a Canadian MME [45 percent process water effluent (PWE)] in order to evaluate whether increases in alkalinity (3-4 fold) or NOM (~1.5-3mg/L dissolved organic carbon) would reduce metal accumulation and mitigate reproductive toxicity in fathead minnows during a 21-day multi-trophic exposure. Eleven metals (barium, boron, cobalt, copper, lithium, manganese, molybdenum, nickel, rubidium, selenium, and strontium) were elevated in the 45 percent PWE relative to the reference water. Exposure to the unmodified 45 percent PWE resulted in a decrease of fathead minnow egg production (~300 fewer eggs/pair) relative to the unmodified reference water, over the 21-day exposure period. Water chemistry modifications produced a modest decrease in free ion activity of some metals (as shown by MINTEQ, Version 3) in the 45 percent PWE exposure water, but did not alter the metal burden in the treatment-matched larval Chironomus dilutus (the food source of fish during exposure). The tissue-specific metal accumulation increased in fish exposed to the 45 percent PWE relative to the reference water, irrespective of water chemistry modifications, and the tissue metal concentrations were found to be similar between fish in the unmodified and modified 45 percent PWE (higher alkalinity or NOM) treatments. Interestingly however, increased alkalinity and NOM markedly improved fish egg production both in the reference water (~500 and ~590 additional eggs/pair, respectively) and 45 percent PWE treatments (~570 and ~260 additional eggs

  12. Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein 4.1) genes facilitates expression of diverse tissue-specific isoforms

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Marilyn; Gee, Sherry; Chan, Nadine; Ryaboy, Dmitriy; Dubchak, Inna; Narla, Mohandas; Gascard, Philippe D.; Conboy, John G.

    2004-07-15

    The EPB41 (protein 4.1) genes epitomize the resourcefulness of the mammalian genome to encode a complex proteome from a small number of genes. By utilizing alternative transcriptional promoters and tissue-specific alternative pre-mRNA splicing, EPB41, EPB41L2, EPB41L3, and EPB41L1 encode a diverse array of structural adapter proteins. Comparative genomic and transcript analysis of these 140kb-240kb genes indicates several unusual features: differential evolution of highly conserved exons encoding known functional domains, interspersed with unique exons whose size and sequence variations contribute substantially to intergenic diversity: alternative first exons, most of which map far upstream of the coding regions; and complex tissue-specific alternative pre-mRNA splicing that facilitates synthesis of functionally different complements of 4.1 proteins in various cells. Understanding the splicing regulatory networks that control protein 4.1 expression will be critical to a full appreciation of the many roles of 4.1 proteins in normal cell biology and their proposed roles in human cancer.

  13. sek-1 is important in tissue-specific regulation of innate immunity during the Xoo infection in the model host Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Y Bai

    2014-08-01

    Full Text Available Xanthomonas oryzae pv. Oryzae (Xoo are plant pathogenic bacteria that can cause serious blight of rice. We have demonstrated that Xoo can infect the model organism C. elegans and p38 MAPK pathway plays specific roles in defense against the pathogen in our previous paper. Based on that p38 MAPK pathway can be activated in a range of tissues, it is intriguing to compare the tissue-specific activities of this pathway in host innate immunity. Here, transgenic worms that sek-1 expressed specifically in neurons system, ciliated sensory neurons, and intestine respectively are used to determine the nematode survival and transcriptional levels of immune-related genes. We report that SEK-1 and TOL-1 are not involved in C. elegans avoidance behavior, and ingestion of nematodes is related to the aversion and also the characteristics of bacteria. In addition, tol-1 and sek-1 participate the immune response to the infection by Xoo; sek-1 also exhibits tissue-specific activities in host innate immunity. Our findings suggest that overlapping immune effect may exist between the tol-1 and sek-1.

  14. DNA damage and repair in plants

    International Nuclear Information System (INIS)

    The biological impact of any DNA damaging agent is a combined function of the chemical nature of the induced lesions and the efficiency and accuracy of their repair. Although much has been learned frommicrobes and mammals about both the repair of DNA damage and the biological effects of the persistence of these lesions, much remains to be learned about the mechanism and tissue-specificity of repair in plants. This review focuses on recent work on the induction and repair of DNA damage in higher plants, with special emphasis on UV-induced DNA damage products. (author)

  15. Alterations in benzo(A)pyrene metabolism and in vivo binding to hepatic DNA in rats red diets containing menhaden oil

    Energy Technology Data Exchange (ETDEWEB)

    Wade, A.E.; Dharwadkar, S.

    1987-01-01

    Polyunsaturated fatty acids of the omega-6 type have been shown to support the mixed function oxidases (MFO) responsible for carcinogen activation and to promote tumorigenesis in laboratory animals. The omega-3 fatty acids contained in menhaden oil (MO) have been shown to enhance MFO activity and increase the binding of Benzo(a)pyrene (B(a)P) metabolites to calf thymus DNA in an in vitro microsomal system. Rats fed two levels of MO (0.5% and 20%) for 11 days received a single i.p. dose of (/sup 3/H)B(a)P (5 m Ci/kg) dissolved in DMSO. At selected time intervals thereafter rats were killed, blood withdrawn, livers removed and DNA extracted. Hepatic microsomes were recovered from control rats on each diet at the time of B(a)P administration to assess MFO activities. Binding of B(a)P to DNA was higher in rats fed the 20% MO diet suggesting an increased rate of B(a)P activation. Blood levels of B(a)P were elevated at 16 and 24 hours post B(a)P, however no differences in urine concentrations were observed. Elevations in concentration of cytochrome P-450, ethoxycoumarin dealkylase, and glutathione S-transferase suggest that omega-3 fatty acids of menhaden fish oil support MFO related reactions not unlike the omega-6 fatty acids.

  16. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    Science.gov (United States)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm‑2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  17. α-Fetoprotein promoter-driven Cre/LoxP-switched RNA interference for hepatocellular carcinoma tissue-specific target therapy.

    Directory of Open Access Journals (Sweden)

    Yuan-Fei Peng

    Full Text Available BACKGROUND: RNA interference (RNAi has recently emerged as a potential treatment modality for hepatocellular carcinoma (HCC therapy, but the lack of cellular targets and sustained efficacy limits its application. The purpose of this study is to develop an HCC tissue-specific RNAi system and investigate its possibility for HCC treatment. METHODS: Two different HCC-specific RNAi systems in which therapeutic miRNA or shRNA against target gene (Beclin 1 was directly or indirectly driven by alpha-fetoprotein promoter (AFP-miRNA and AFP-Cre/LoxP-shRNA were constructed. Human HCC cell lines (HepG2, Hep3B and HCCLM3 and non-HCC cell lines (L-02, Hela and SW1116 were infected with the systems. The effectiveness and tissue-specificity of the systems were examined by Q-PCR and western blot analysis. The efficacy of the systems was further tested in mouse model of HCC by intravenous or intratumoral administration. The feasibility of the system for HCC treatment was evaluated by applying the system as adjuvant therapy to enhance sorafenib treatment. An AFP-Cre/LoxP-shRNA system targeting Atg5 gene (AFP-Cre/LoxP-shRNA-Atg5 was constructed and its efficacy in sensitizing HCC cells (MHCC97L/PLC to sorafenib treatment was examined by apoptosis assay in vitro and tumorigenesis assay in vivo. RESULTS: The AFP-miRNA system could silence target gene (Beclin 1 but required a high titer which was lethal to target cells. The AFP-Cre/LoxP-shRNA system could efficiently knockdown target gene while maintain high HCC specificity. Intratumoral injection of the AFP-Cre/LoxP-shRNA system could efficiently silence target gene (Beclin 1 in vivo while intravenous administration could not. The AFP-Cre/LoxP-shRNA system target Atg5 gene could significantly sensitize MHCC97L/PLC cells to sorafenib-induced apoptosis in vitro and tumor growth suppression in vivo. CONCLUSIONS: An efficient HCC tissue-specific RNAi system (AFP-Cre/LoxP-shRNA was successfully established. The system

  18. The alteration in the architecture of a T-DNA insertion rice mutant osmtd1 is caused by up-regulation of MicroRNA156f

    Institute of Scientific and Technical Information of China (English)

    Qing Liu; and Langtao Xiao; Gezhi Shen; Keqin Peng; Zhigang Huang; Jianhua Tong; Mohammed Humayun Kabir; Jianhui Wang; Jingzhe Zhang; Genji Qin

    2015-01-01

    Plant architecture is an important factor for crop production. Some members of microRNA156 (miR156) and their target genes SQUAMOSA Promoter-Binding Protein-Like (SPL) were identified to play essential roles in the establish-ment of plant architecture. However, the roles and regulation of miR156 is not well understood yet. Here, we identified a T-DNA insertion mutant Osmtd1 (Oryza sativa multi-tillering and dwarf mutant). Osmtd1 produced more tillers and displayed short stature phenotype. We determined that the dramatic morphological changes were caused by a single T-DNA insertion in Osmtd1. Further analysis revealed that the T-DNA insertion was located in the gene Os08g34258 encoding a putative inhibitor I family protein. Os08g34258 was knocked out and OsmiR156f was significantly upregulated in Osmtd1. Overexpression of Os08g34258 in Osmtd1 com-plemented the defects of the mutant architecture, while overexpression of OsmiR156f in wild-type rice phenocopied Osmtd1. We showed that the expression of OsSPL3, OsSPL12, and OsSPL14 were significantly downregulated in Osmtd1 or OsmiR156f overexpressed lines, indicating that OsSPL3, OsSPL12, and OsSPL14 were possibly direct target genes of OsmiR156f. Our results suggested that OsmiR156f controlled plant architecture by mediating plant stature and tiller outgrowth and may be regulated by an unknown protease inhibitor I family protein.

  19. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site.

    Science.gov (United States)

    Le François, Brice; Soo, Jeremy; Millar, Anne M; Daigle, Mireille; Le Guisquet, Anne-Marie; Leman, Samuel; Minier, Frédéric; Belzung, Catherine; Albert, Paul R

    2015-10-01

    The serotonin 1A receptor (5-HT1A), a critical regulator of the brain serotonergic tone, is implicated in major depressive disorder (MDD) where it is often found to be dys-regulated. However, the extent to which stress and antidepressant treatment impact 5-HT1A expression in adults remains unclear. To address this issue, we subjected adult male BALB/c mice to unpredictable chronic mild stress (UCMS) to induce a depression-like phenotype that was reversed by chronic treatment with the antidepressant imipramine. In prefrontal cortex (PFC) and midbrain tissue, UCMS increased 5-HT1A RNA and protein levels, changes that are expected to decrease the brain serotonergic activity. The stress-induced increase in 5-HT1A expression was paralleled by a specific increase in DNA methylation of the conserved -681 CpG promoter site, located within a Sp1-like element. We show that the -681 CpG site is recognized and repressed by Sp4, the predominant neuronal Sp1-like factor and that Sp4-induced repression is attenuated by DNA methylation, despite a stress-induced increase in PFC Sp4 levels. These results indicate that adult life stress induces DNA methylation of a conserved promoter site, antagonizing Sp4 repression to increase 5-HT1A expression. Chronic imipramine treatment fully reversed the UCMS-induced increase in methylation of the -681 CpG site in the PFC but not midbrain of stressed animals and also increased 5-HT1A expression in the PFC of control animals. Incomplete reversal by imipramine of stress-induced changes in 5-HT1A methylation and expression indicates a persistence of stress vulnerability, and that sustained reversal of behavioral impairments may require additional pathways. PMID:26188176

  20. Epigenetic reversion of breast carcinoma phenotype is accompaniedby DNA sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sandal, Tone; Valyi-Nagy, Klara; Spencer, Virginia A.; Folberg,Robert; Bissell, Mina J.; Maniotis, Andrew J.

    2006-07-19

    The importance of microenvironment and context in regulation of tissue-specific genes is finally well established. DNA exposure to, or sequestration from, nucleases can be used to detect differences in higher order chromatin structure in intact cells without disturbing cellular or tissue architecture. To investigate the relationship between chromatin organization and tumor phenotype, we utilized an established 3-D assay where normal and malignant human breast cells can be easily distinguished by the morphology of the structures they make (acinus-like vs tumor-like, respectively). We show that these phenotypes can be distinguished also by sensitivity to AluI digestion where the malignant cells are resistant to digestion relative to non-malignant cells. Reversion of the T4-2 breast cancer cells by either cAMP analogs, or a phospatidylinositol 3-kinase (P13K) inhibitor not only reverted the phenotype, but also the chromatin sensitivity to AluI. By using different cAMP-analogs, we show that the cAMP-induced phenotypic reversion, polarization, and shift in DNA organization act through a cAMP-dependent-protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to fibronectin also reverted the malignant phenotype, polarized the acini, and changed chromatin sequestration. These experiments show not only that modifying the tumor microenvironment can alter the organization of tumor cells but also that architecture of the tissues and the global chromatin organization are coupled and yet highly plastic.

  1. Identification of CTLA2A, DEFB29, WFDC15B, SERPINA1F and MUP19 as Novel Tissue-Specific Secretory Factors in Mouse.

    Directory of Open Access Journals (Sweden)

    Jibin Zhang

    Full Text Available Secretory factors in animals play an important role in communication between different cells, tissues and organs. Especially, the secretory factors with specific expression in one tissue may reflect important functions and unique status of that tissue in an organism. In this study, we identified potential tissue-specific secretory factors in the fat, muscle, heart, lung, kidney and liver in the mouse by analyzing microarray data from NCBI's Gene Expression Omnibus (GEO public repository and searching and predicting their subcellular location in GeneCards and WoLF PSORT, and then confirmed tissue-specific expression of the genes using semi-quantitative PCR reactions. With this approach, we confirmed 11 lung, 7 liver, 2 heart, 1 heart and muscle, 7 kidney and 2 adipose and liver-specific secretory factors. Among these genes, 1 lung-specific gene--CTLA2A (cytotoxic T lymphocyte-associated protein 2 alpha, 3 kidney-specific genes--SERPINA1F (serpin peptidase inhibitor, Clade A, member 1F, WFDC15B (WAP four-disulfide core domain 15B and DEFB29 (defensin beta 29 and 1 liver-specific gene--MUP19 (major urinary protein 19 have not been reported as secretory factors. These genes were tagged with hemagglutinin at the 3'end and then transiently transfected to HEK293 cells. Through protein detection in cell lysate and media using Western blotting, we verified secretion of the 5 genes and predicted the potential pathways in which they may participate in the specific tissue through data analysis of GEO profiles. In addition, alternative splicing was detected in transcripts of CTLA2A and SERPINA1F and the corresponding proteins were found not to be secreted in cell culture media. Identification of novel secretory factors through the current study provides a new platform to explore novel secretory factors and a general direction for further study of these genes in the future.

  2. From food to offspring down: tissue-specific discrimination and turn-over of stable isotopes in herbivorous waterbirds and other avian foraging guilds.

    Science.gov (United States)

    Hahn, Steffen; Hoye, Bethany J; Korthals, Harry; Klaassen, Marcel

    2012-01-01

    Isotopic discrimination and turn-over are fundamental to the application of stable isotope ecology in animals. However, detailed information for specific tissues and species are widely lacking, notably for herbivorous species. We provide details on tissue-specific carbon and nitrogen discrimination and turn-over times from food to blood, feathers, claws, egg tissues and offspring down feathers in four species of herbivorous waterbirds. Source-to-tissue discrimination factors for carbon (δ¹³C) and nitrogen stable isotope ratios (δ¹⁵N) showed little variation across species but varied between tissues. Apparent discrimination factors ranged between -0.5 to 2.5‰ for δ¹³C and 2.8 to 5.2‰ for δ¹⁵N, and were more similar between blood components than between keratinous tissues or egg tissue. Comparing these results with published data from other species we found no effect of foraging guild on discrimination factors for carbon but a significant foraging-guild effect for nitrogen discrimination factors.Turn-over of δ¹³C in tissues was most rapid in blood plasma, with a half-life of 4.3 d, whereas δ¹³C in blood cells had a half-life of approximately 32 d. Turn-over times for albumen and yolk in laying females were similar to those of blood plasma, at 3.2 and 6.0 d respectively. Within yolk, we found decreasing half-life times of δ¹³C from inner yolk (13.3 d) to outer yolk (3.1 d), related to the temporal pattern of tissue formation.We found similarities in tissue-specific turn-over times across all avian species studied to date. Yet, while generalities regarding discrimination factors and tissue turn-over times can be made, a large amount of variation remains unexplained. PMID:22312422

  3. Alterations in [3H] thymidine incorporation into DNA and [3H] uridine incorporation into RNA induced by 5-azacytidine in vivo

    International Nuclear Information System (INIS)

    Administration in vivo 5-azacytidine (5-aza-CR) caused suppression of [3H] thymidine ([3H]TdR) incorporation into DNA of bone marrow and gastrointestinal mucosa of mice and a more prolonged suppression of L1210 ascites tumor. Single doses of 5-aza-CR caused a modest and short-lived suppression of incorporation of [3H] uridine ([3H]UR) into nuclear RNA of L1210 ascites tumor cells. No suppression of [3H]UR incorporation into RNA of bone marrow or gastrointestinal mucosa was observed. L1210 tumor cells resistant to the other active cytidine analogue, cytosine arabinoside, demonstrated less disruption of [3H]TdR incorporation after exposure to 5-aza-CR, suggesting some cross resistance in the effects of these two drugs on DNA synthesis. Survival studies carried out in mice bearing both the sensitive and resistant L1210 tumor cell lines confirmed cross resistance of the anti-tumor effects of the two cytidine analogues. Second doses of 5-aza-CR, with the timing of administration based upon the differing patterns of recovery of [3H]TdR incorporation between normal tissues and tumor cells, led to a prolongation of survival in mice bearing the sensitive L1210 ascites tumor. (author)

  4. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression.

    Science.gov (United States)

    Paugh, Steven W; Coss, David R; Bao, Ju; Laudermilk, Lucas T; Grace, Christy R; Ferreira, Antonio M; Waddell, M Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F; Panetta, John C; Wilkinson, Mark R; Pui, Ching-Hon; Naeve, Clayton W; Uberbacher, Edward C; Bonten, Erik J; Evans, William E

    2016-02-01

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, ptriplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769

  5. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression.

    Directory of Open Access Journals (Sweden)

    Steven W Paugh

    2016-02-01

    Full Text Available MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10(-16 for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.

  6. Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation.

    Science.gov (United States)

    Bam, Marpe; Yang, Xiaoming; Zumbrun, Elizabeth E; Zhong, Yin; Zhou, Juhua; Ginsberg, Jay P; Leyden, Quinne; Zhang, Jiajia; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2016-01-01

    Post-traumatic stress disorder patients experience chronic systemic inflammation. However, the molecular pathways involved and mechanisms regulating the expression of genes involved in inflammatory pathways in PTSD are reported inadequately. Through RNA sequencing and miRNA microarray, we identified 326 genes and 190 miRNAs that were significantly different in their expression levels in the PBMCs of PTSD patients. Expression pairing of the differentially expressed genes and miRNAs indicated an inverse relationship in their expression. Functional analysis of the differentially expressed genes indicated their involvement in the canonical pathways specific to immune system biology. DNA methylation analysis of differentially expressed genes also showed a gradual trend towards differences between control and PTSD patients, again indicating a possible role of this epigenetic mechanism in PTSD inflammation. Overall, combining data from the three techniques provided a holistic view of several pathways in which the differentially expressed genes were impacted through epigenetic mechanisms, in PTSD. Thus, analysis combining data from RNA-Seq, miRNA array and DNA methylation, can provide key evidence about dysregulated pathways and the controlling mechanism in PTSD. Most importantly, the present study provides further evidence that inflammation in PTSD could be epigenetically regulated. PMID:27510991

  7. Alteration of Gene Expression Profile in Kidney of Spontaneously Hypertensive Rats Treated with Protein Hydrolysate of Blue Mussel (Mytilus edulis) by DNA Microarray Analysis.

    Science.gov (United States)

    Feng, Junli; Dai, Zhiyuan; Zhang, Yanping; Meng, Lu; Ye, Jian; Ma, Xuting

    2015-01-01

    Marine organisms are rich sources of bioactive components, which are often reported to have antihypertensive effects. However, the underlying mechanisms have yet to be fully identified. The aim of this study was to investigate the antihypertensive effect of enzymatic hydrolysis of blue mussel protein (HBMP) in rats. Peptides with in vitro ACE inhibitory activity were purified from HBMP by ultrafiltration, gel filtration chromatography and reversed-phase high performance liquid chromatography. And the amino acid sequences of isolated peptides were estimated to be Val-Trp, Leu-Gly-Trp, and Met-Val-Trp-Thr. To study its in vivo action, spontaneously hypertensive rats (SHRs) were orally administration with high- or low-dose of HBMP for 28 days. Major components of the renin-angiotensin (RAS) system in serum of SHRs from different groups were analyzed, and gene expression profiling were performed in the kidney of SHRs, using the Whole Rat Genome Oligonucleotide Microarray. Results indicated although genes involved in RAS system were not significantly altered, those related to blood coagulation system, cytokine and growth factor, and fatty acids metabolism were remarkablely changed. Several genes which were seldom reported to be implicated in pathogenesis of hypertension also showed significant expression alterations after oral administration of HBMP. These data provided valuable information for our understanding of the molecular mechanisms that underlie the potential antihypertensive activities of HBMP, and will contribute towards increased value-added utilization of blue mussel protein. PMID:26517713

  8. The Cell Death Inhibitor ARC Is Induced in a Tissue-Specific Manner by Deletion of the Tumor Suppressor Gene Men1, but Not Required for Tumor Development and Growth.

    Directory of Open Access Journals (Sweden)

    Wendy M McKimpson

    Full Text Available Multiple endocrine neoplasia type 1 (MEN1 is a genetic disorder characterized by tissue-specific tumors in the endocrine pancreas, parathyroid, and pituitary glands. Although tumor development in these tissues is dependent upon genetic inactivation of the tumor suppressor Men1, loss of both alleles of this gene is not sufficient to induce these cancers. Men1 encodes menin, a nuclear protein that influences transcription. A previous ChIP on chip analysis suggested that menin binds promoter sequences of nol3, encoding ARC, which is a cell death inhibitor that has been implicated in cancer pathogenesis. We hypothesized that ARC functions as a co-factor with Men1 loss to induce the tissue-restricted distribution of tumors seen in MEN1. Using mouse models that recapitulate this syndrome, we found that biallelic deletion of Men1 results in selective induction of ARC expression in tissues that develop tumors. Specifically, loss of Men1 in all cells of the pancreas resulted in marked increases in ARC mRNA and protein in the endocrine, but not exocrine, pancreas. Similarly, ARC expression increased in the parathyroid with inactivation of Men1 in that tissue. To test if ARC contributes to MEN1 tumor development in the endocrine pancreas, we generated mice that lacked none, one, or both copies of ARC in the context of Men1 deletion. Studies in a cohort of 126 mice demonstrated that, although mice lacking Men1 developed insulinomas as expected, elimination of ARC in this context did not significantly alter tumor load. Cellular rates of proliferation and death in these tumors were also not perturbed in the absence of ARC. These results indicate that ARC is upregulated by loss Men1 in the tissue-restricted distribution of MEN1 tumors, but that ARC is not required for tumor development in this syndrome.

  9. Targeted Expression of Stromelysin-1 in Mammary Gland Provides Evidence for a Role of Proteinases in Branching Morphogenesis and the Requirement for an Intact Basement Membrane for Tissue-specific Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Talhouk, Rabih S; Alexander, Caroline M; Chin, Jennie R; Cliff, Shirley M; Bissell, Mina J; Werb, Zena

    1994-05-01

    The extracellular matrix (ECM) is an important regulator of the differentiated phenotype of mammary epithelial cells in culture. Despite the fact that ECM-degrading enzymes have been implicated in morphogenesis and tissue remodeling, there is little evidence for a direct role for such regulation in vivo. We generated transgenic mice that express autoactivated isoforms of the matrix metalloproteinase stromelysin-1, under the control of the whey acidic protein gene promoter, to examine the effect of inappropriate expression of this enzyme. Stromelysin-1 is implicated as the primary player in the loss of basement membrane and loss of function in the mammary gland during involution. The transgene was expressed at low levels in mammary glands of virgin female mice, leading to an unexpected phenotype: The primary ducts had supernumerary branches and showed precocious development of alveoli that expressed beta-casein at levels similar to that of an early- to mid-pregnant gland. Lactating glands showed high levels of transgene expression, with accumulation at the basement membrane, and a decrease in laminin and collagen IV, resulting in a loss of basement membrane integrity; this was accompanied by a dramatic alteration of alveolar morphology, with decreased size and shrunken lumina containing little beta-casein. During pregnancy, expression of endogenous whey acidic protein and beta-casein was reduced in transgenic glands, confirming the observed dependence of milk protein transcription of ECM in mammary epithelial cells in culture. These data provide direct evidence that stromelysin-1 activity can be morphogenic for mammary epithelial cells, inducing hyperproliferation and differentiation in virgin animals, and that its lytic activity can, indeed, disrupt membrane integrity and reduce mammary-specific function. We conclude that the balance of ECM-degrading enzymes with their inhibitors, and the associated regulation of ECM structure, is crucial for tissue-specific gene

  10. A Chrysobalanus icaco extract alters the plasmid topology and the effects of stannous chloride on the DNA of plasmids Um extrato de Chrysobalanus icaco altera a topologia de plasmídios e os efeitos do cloreto estanoso sobre o DNA de plasmídios

    Directory of Open Access Journals (Sweden)

    Giuseppe A. Presta

    2007-09-01

    Full Text Available Chrysobalanus icaco (C. icaco leaves are used in folk medicine (known as Abajeru in Brazil to control the glycaemia in diabetic patients. Stannous chloride (SnCl2 is a powerful reducing agent used for different purposes and presents cytotoxic and genotoxic effects. The aim of this work was to investigate the effect of an aqueous C. icaco extract on the plasmid DNA topology and on the effects of the stannous chloride on DNA plasmid. Plasmid pBSK was incubated with a C. icaco extract in the presence or absence of SnCl2 (200 mg/mL, after that, the agarose gel electrophoresis procedure was carried out. Plasmid incubated only SnCl2 was used as positive control and, as negative control, plasmid incubated with Tris buffer. The gels were stained with ethidium bromide, DNA bands were semiquantified by densitometry. The data showed that C. icaco extract alters the electrophoretic profile and decreases significantly (p Folhas de Chrysobalanus icaco (C. icaco são usadas na medicina popular (conhecido como Abajeru no Brasil para controlar a glicemia em pacientes diabéticos. Cloreto estanoso (SnCl2 é um agente redutor potente usado para diferentes propostas e apresenta efeitos citotóxico e genotóxico. O objetivo deste trabalho foi investigar os efeitos de um extrato aquoso de C. icaco na topologia de DNA plasmidial e nos efeitos do cloreto estanoso sobre o DNA plasmidial. Plasmídios pBSK foram incubados com um extrato de C. icaco na presença ou ausência do SnCl2 (200 mg/mL, em seguida, o procedimento de eletroforese em gel de agarose foi realizado. Plasmídios incubados somente com SnCl2 foram usados como controle positivo e, como controle negativo, plasmídios incubados com tampão Tris. Os géis foram corados com brometo de etídio e as bandas de DNA foram semiquantificadas por densitometria. Os dados mostraram que o extrato de C. icaco altera o perfil eletroforético e diminui significativamente (p < 0,05 os efeitos do SnCl2 sobre DNA plasmidial

  11. Chronic exposure to MDMA (ecstasyinduces DNA damage, impairs functional antioxidant cellular defenses, enhances the lipid peroxidation process and alters testes histopathology in male rat

    Directory of Open Access Journals (Sweden)

    Nadia Gamal Zaki, ** Laila Abdel Kawy

    2013-04-01

    Full Text Available Background : 3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy" is consumed mainly by young population. For this reason, it is especially relevant to take into consideration the effects on the reproductive system. The influence of MDMA on the fertility and reproduction of the male rat was assessed in this study. Material and methods: MDMA was administered orally at 0 mg/kg (control, 10 and 30 mg/kg to male rats for 15,30,45 consecutive days followed by 15 days withdrawal. Hormonal, biochemical, histological and testicular were evaluated in the rats. The present study aimed to investigate if daily oral administration of ecstasy at low doses(10mg for 45 days has any deleterious effects on reproductive functions of male rats. Animals were randomly divided into four groups of ten rats each, assigned as control rats, or(0mg ecstasy, rats treated with 10mg ecstasy for, (15,30,45 days, rats treated with 30mg/kg body weight ecstasy for(,15,30,45days by oral gavage. The third group(45 days was followed by 15 withdrawal period(W15. Results: The activities of superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase in testicular homogenate were decreased while the levels of lipid peroxidation increased significantly in the treated rats as compared with the corresponding group of control animals. In group 30mg, only, arachidonic acid was significantly elevated in the testicular homogenate while linoleic acid was decresed when compared to control. Testis DNA fragmentation was observed in 30mg group, but not 10.mg. It is concluded that low doses of ecstasy exposure(10 mg/Kg had moderate detrimental effects on reproductive organ system and more severe effects are likely to be observed at higher dose levels. These results indicate that ecstasy is directly toxic to primary Leydig cells, and that the decreased percentage of normal cells and the increased level of DNA damage in ecstasy -exposed Leydig cells may be responsible for

  12. An improved method with a wider applicability to isolate plant mitochondria for mtDNA extraction

    OpenAIRE

    Ahmed, Zaheer; Fu, Yong-Bi

    2015-01-01

    Background Mitochondria perform a principal role in eukaryotic cells. Mutations in mtDNA can cause mitochondrial dysfunction and are frequently associated with various abnormalities during plant development. Extraction of plant mitochondria and mtDNA is the basic requirement for the characterization of mtDNA mutations and other molecular studies. However, currently available methods for mitochondria isolation are either tissue specific or species specific. Extracted mtDNA may contain substant...

  13. Structural evolution and tissue-specific expression of tetrapod-specific second isoform of secretory pathway Ca{sup 2+}-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Pestov, Nikolay B., E-mail: korn@mail.ibch.ru [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Dmitriev, Ruslan I.; Kostina, Maria B. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Korneenko, Tatyana V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Shakhparonov, Mikhail I. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Modyanov, Nikolai N., E-mail: nikolai.modyanov@utoledo.edu [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. Black-Right-Pointing-Pointer ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. Black-Right-Pointing-Pointer Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. Black-Right-Pointing-Pointer Subcellular localization of SPCA2 may depend on tissue type. Black-Right-Pointing-Pointer In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2), the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2

  14. Physiology and Pathophysiology of Mitochondrial DNA

    OpenAIRE

    Li, Hongzhi; Liu, Danhui; Lu, Jianxin; Bai, Yidong

    2012-01-01

    Mitochondria are the only organelles in animal cells which possess their own genomes. Mitochondrial DNA (mtDNA) alterations have been associated with various human conditions. Yet, their role in pathogenesis remains largely unclear. This review focuses on several major features of mtDNA: (1) mtDNA haplogroup, (2) mtDNA common deletion, (3) mtDNA mutations in the control region or D-loop, (4) mtDNA copy number alterations, (5) mtDNA mutations in translational machinery, (6) mtDNA mutations in ...

  15. Long-Term Boron-Excess-Induced Alterations of Gene Profiles in Roots of Two Citrus Species Differing in Boron-Tolerance Revealed by cDNA-AFLP

    Science.gov (United States)

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Ye, Xin; Huang, Jing-Hao; Chen, Li-Song

    2016-01-01

    Boron (B) toxicity is observed in some citrus orchards in China. However, limited data are available on the molecular mechanisms of citrus B-toxicity and B-tolerance. Using cDNA-AFLP, we identified 20 up- and 52 down-regulated genes, and 44 up- and 66 down-regulated genes from excess B-treated Citrus sinensis and Citrus grandis roots, respectively, thereby demonstrating that gene expression profiles were more affected in the latter. In addition, phosphorus and total soluble protein concentrations were lowered only in excess B-treated C. grandis roots. Apparently, C. sinensis had higher B-tolerance than C. grandis. Our results suggested that the following several aspects were responsible for the difference in the B-tolerance between the two citrus species including: (a) B-excess induced Root Hair Defective 3 expression in C. sinensis roots, and repressed villin4 expression in C. grandis roots; accordingly, root growth was less inhibited by B-excess in the former; (b) antioxidant systems were impaired in excess B-treated C. grandis roots, hence accelerating root senescence; (c) genes related to Ca2+ signals were inhibited (induced) by B-excess in C. grandis (C. sinensis) roots. B-excess-responsive genes related to energy (i.e., alternative oxidase and cytochrome P450), lipid (i.e., Glycerol-3-phosphate acyltransferase 9 and citrus dioxygenase), and nucleic acid (i.e., HDA19, histone 4, and ribonucleotide reductase RNR1 like protein) metabolisms also possibly accounted for the difference in the B-tolerance between the two citrus species. These data increased our understanding of the mechanisms on citrus B-toxicity and B-tolerance at transcriptional level. PMID:27446128

  16. Fine-mapping analysis revealed complex pleiotropic effect and tissue-specific regulatory mechanism of TNFSF15 in primary biliary cholangitis, Crohn's disease and leprosy.

    Science.gov (United States)

    Sun, Yonghu; Irwanto, Astrid; Toyo-Oka, Licht; Hong, Myunghee; Liu, Hong; Andiappan, Anand Kumar; Choi, Hyunchul; Hitomi, Yuki; Yu, Gongqi; Yu, Yongxiang; Bao, Fangfang; Wang, Chuan; Fu, Xian; Yue, Zhenhua; Wang, Honglei; Zhang, Huimin; Kawashima, Minae; Kojima, Kaname; Nagasaki, Masao; Nakamura, Minoru; Yang, Suk-Kyun; Ye, Byong Duk; Denise, Yosua; Rotzschke, Olaf; Song, Kyuyoung; Tokunaga, Katsushi; Zhang, Furen; Liu, Jianjun

    2016-01-01

    Genetic polymorphism within the 9q32 locus is linked with increased risk of several diseases, including Crohn's disease (CD), primary biliary cholangitis (PBC) and leprosy. The most likely disease-causing gene within 9q32 is TNFSF15, which encodes the pro-inflammatory cytokine TNF super-family member 15, but it was unknown whether these disparate diseases were associated with the same genetic variance in 9q32, and how variance within this locus might contribute to pathology. Using genetic data from published studies on CD, PBC and leprosy we revealed that bearing a T allele at rs6478108/rs6478109 (r(2) = 1) or rs4979462 was significantly associated with increased risk of CD and decreased risk of leprosy, while the T allele at rs4979462 was associated with significantly increased risk of PBC. In vitro analyses showed that the rs6478109 genotype significantly affected TNFSF15 expression in cells from whole blood of controls, while functional annotation using publicly-available data revealed the broad cell type/tissue-specific regulatory potential of variance at rs6478109 or rs4979462. In summary, we provide evidence that variance within TNFSF15 has the potential to affect cytokine expression across a range of tissues and thereby contribute to protection from infectious diseases such as leprosy, while increasing the risk of immune-mediated diseases including CD and PBC. PMID:27507062

  17. [11C]-Labeled Metformin Distribution in the Liver and Small Intestine Using Dynamic Positron Emission Tomography in Mice Demonstrates Tissue-Specific Transporter Dependency.

    Science.gov (United States)

    Jensen, Jonas B; Sundelin, Elias I; Jakobsen, Steen; Gormsen, Lars C; Munk, Ole L; Frøkiær, Jørgen; Jessen, Niels

    2016-06-01

    Metformin is the most commonly prescribed oral antidiabetic drug, with well-documented beneficial preventive effects on diabetic complications. Despite being in clinical use for almost 60 years, the underlying mechanisms for metformin action remain elusive. Organic cation transporters (OCT), including multidrug and toxin extrusion proteins (MATE), are essential for transport of metformin across membranes, but tissue-specific activity of these transporters in vivo is incompletely understood. Here, we use dynamic positron emission tomography with [(11)C]-labeled metformin ([(11)C]-metformin) in mice to investigate the role of OCT and MATE in a well-established target tissue, the liver, and a putative target of metformin, the small intestine. Ablation of OCT1 and OCT2 significantly reduced the distribution of metformin in the liver and small intestine. In contrast, inhibition of MATE1 with pyrimethamine caused accumulation of metformin in the liver but did not affect distribution in the small intestine. The demonstration of OCT-mediated transport into the small intestine provides evidence of direct effects of metformin in this tissue. OCT and MATE have important but separate roles in uptake and elimination of metformin in the liver, but this is not due to changes in biliary secretion. [(11)C]-Metformin holds great potential as a tool to determine the pharmacokinetic properties of metformin in clinical studies. PMID:26993065

  18. The tissue-specific Rep8/UBXD6 tethers p97 to the endoplasmic reticulum membrane for degradation of misfolded proteins.

    Directory of Open Access Journals (Sweden)

    Louise Madsen

    Full Text Available The protein known as p97 or VCP in mammals and Cdc48 in yeast is a versatile ATPase complex involved in several biological functions including membrane fusion, protein folding, and activation of membrane-bound transcription factors. In addition, p97 plays a central role in degradation of misfolded secretory proteins via the ER-associated degradation pathway. This functional diversity of p97 depends on its association with various cofactors, and to further our understanding of p97 function it is important that these cofactors are identified and analyzed. Here, we isolate and characterize the human protein named Rep8 or Ubxd6 as a new cofactor of p97. Mouse Rep8 is highly tissue-specific and abundant in gonads. In testes, Rep8 is expressed in post-meiotic round spermatids, whereas in ovaries Rep8 is expressed in granulosa cells. Rep8 associates directly with p97 via its UBX domain. We show that Rep8 is a transmembrane protein that localizes to the ER membrane with its UBX domain facing the cytoplasm. Knock-down of Rep8 expression in human cells leads to a decreased association of p97 with the ER membrane and concomitantly a retarded degradation of misfolded ER-derived proteasome substrates. Thus, Rep8 tethers p97 to the ER membrane for efficient ER-associated degradation.

  19. Persistent Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Cattle; Tissue-Specific Distribution and Local Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Juan M Pacheco

    Full Text Available Tissues obtained post-mortem from cattle persistently infected with foot-and-mouth disease virus (FMDV were analyzed to characterize the tissue-specific localization of FMDV and partial transcriptome profiles for selected immunoregulatory cytokines. Analysis of 28 distinct anatomic sites from 21 steers infected with FMDV serotype A, O or SAT2, had the highest prevalence of overall viral detection in the dorsal nasopharynx (80.95% and dorsal soft palate (71.43%. FMDV was less frequently detected in laryngeal mucosal tissues, oropharyngeal mucosal sites, and lymph nodes draining the pharynx. Immunomicroscopy indicated that within persistently infected mucosal tissues, FMDV antigens were rarely detectable within few epithelial cells in regions of mucosa-associated lymphoid tissue (MALT. Transcriptome analysis of persistently infected pharyngeal tissues by qRT-PCR for 14 cytokine genes indicated a general trend of decreased mRNA levels compared to uninfected control animals. Although, statistically significant differences were not observed, greatest suppression of relative expression (RE was identified for IP-10 (RE = 0.198, IFN-β (RE = 0.269, IL-12 (RE = 0.275, and IL-2 (RE = 0.312. Increased relative expression was detected for IL-6 (RE = 2.065. Overall, this data demonstrates that during the FMDV carrier state in cattle, viral persistence is associated with epithelial cells of the nasopharynx in the upper respiratory tract and decreased levels of mRNA for several immunoregulatory cytokines in the infected tissues.

  20. Tissue-specific expression of glutathione S-transferases induced by 2-tridecanone or quercetin in cotton bollworms, Helicoverpa armigera (Hübner)

    Institute of Scientific and Technical Information of China (English)

    TANG Fang; LIANG Pei; GAO Xiwu

    2005-01-01

    The tissue-specific expression of glutathione S-transferases (GSTs) in the cotton bollworm and the expression level induced by 2-tridecanone and quercetin were examined using the methods of biochemistry and the quantitative PCR. The relative expression level of GST mRNA was unanimous with the GSTs activity conjugaging with 1-chloro-2, 4-dimitro-benzene (CDNB) in fat bodies,midguts, heads and integuments of cotton bollworms. The GSTs activity in fat bodies was the highest, then midguts, heads and integuments in turn, which was in consistent with the relative expression level of GST mRNA. The specific activity of GSTs and the relative expression level of GST mRNA could be significantly induced by 2-tridecanone and quercetin, and after the induction the order of the GSTs activity and the relative expression level of GST mRNA in the above four tissues in cotton bollworms was not different from the control.The induction of GSTs by 2-tridecanone was stronger than by quercetin in all four tissues, which was in accordance with the relative expression level of GST mRNA. It suggested that the increase of GSTs activity induced by plant allelochemicals was associated with the elevated expression of GST mRNA in cotton bollworms.

  1. Species-and tissue-specific mercury bioaccumulation in five fish species from Laizhou Bay in the Bohai Sea of China

    Institute of Scientific and Technical Information of China (English)

    LIU Jinhu; CAO Liang; HUANG Wei; DOU Shuozeng

    2013-01-01

    Mercury (Hg) concentrations in the tissues (muscle,stomach,liver,gills,skin,and gonads)of five fish species (mullet Liza haematocheilus,flathead fish Platycephalus indicus,sea bass Lateolabrax japonicus,mackerel Scomberomorus niphonius and silver pomfret Pampus argenteus) collected from Laizhou Bay in the Bohai Sea of China were investigated.The results indicate that Hg bioaccumulation in the five fish was tissue-specific,with the highest levels in the muscle and liver,followed by the stomach and gonads.The lowest levels were found in the gills and skin.Fish at higher trophic levels (flathead fish and sea bass) exhibited higher Hg concentrations than consumers at lower trophic levels.Mercury bioaccumulation tended to be positively correlated with fish length in mullet,silver pomfret,mackerel,and flathead fish,but was negatively correlated with fish length in sea bass.The Hg concentrations in the muscles of all fish species in Laizhou Bay were within the permissible limits of food safety set by national and international criteria.However,the suggesting maximum consumption of sea bass is 263 g per week for human health.

  2. Temporal and tissue specific regulation of RP-associated splicing factor genes PRPF3, PRPF31 and PRPC8--implications in the pathogenesis of RP.

    Directory of Open Access Journals (Sweden)

    Huibi Cao

    Full Text Available BACKGROUND: Genetic mutations in several ubiquitously expressed RNA splicing genes such as PRPF3, PRP31 and PRPC8, have been found to cause retina-specific diseases in humans. To understand this intriguing phenomenon, most studies have been focused on testing two major hypotheses. One hypothesis assumes that these mutations interrupt retina-specific interactions that are important for RNA splicing, implying that there are specific components in the retina interacting with these splicing factors. The second hypothesis suggests that these mutations have only a mild effect on the protein function and thus affect only the metabolically highly active cells such as retinal photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS: We examined the second hypothesis using the PRPF3 gene as an example. We analyzed the spatial and temporal expression of the PRPF3 gene in mice and found that it is highly expressed in retinal cells relative to other tissues and its expression is developmentally regulated. In addition, we also found that PRP31 and PRPC8 as well as snRNAs are highly expressed in retinal cells. CONCLUSIONS/SIGNIFICANCE: Our data suggest that the retina requires a relatively high level of RNA splicing activity for optimal tissue-specific physiological function. Because the RP18 mutation has neither a debilitating nor acute effect on protein function, we suggest that retinal degeneration is the accumulative effect of decades of suboptimal RNA splicing due to the mildly impaired protein.

  3. Breaking-off tissue specific activity of the oil palm metallothionein-like gene promoter in T(1) seedlings of tomato exposed to metal ions.

    Science.gov (United States)

    Kamaladini, Hossein; Nor Akmar Abdullah, Siti; Aziz, Maheran Abdul; Ismail, Ismanizan Bin; Haddadi, Fatemeh

    2013-02-15

    Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the β-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T(0)). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T(1)) produced the highest GUS activity when treated with 150 μM Cu(2+) compared to the control (without Cu(2+)). However, Zn(2+) and Fe(2+) treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T(1) seedlings of tomato when subjected to Cu(2+) ions. PMID:23290536

  4. Regulation of tissue-specific expression of SPATULA, a bHLH gene involved in carpel development, seedling germination, and lateral organ growth in Arabidopsis.

    Science.gov (United States)

    Groszmann, Michael; Bylstra, Yasmin; Lampugnani, Edwin R; Smyth, David R

    2010-03-01

    SPATULA is a bHLH transcription factor that promotes growth of tissues arising from the carpel margins, including the septum and transmitting tract. It is also involved in repressing germination of newly harvested seeds, and in inhibiting cotyledon, leaf, and petal expansion. Using a reporter gene construct, its expression profile was fully defined. Consistent with its known functions, SPT was expressed in developing carpel margin tissues, and in the hypocotyls and cotyledons of germinating seedlings, and in developing leaves and petals. It was also strongly expressed in tissues where no functions have been identified to date, including the dehiscence zone of fruits, developing anthers, embryos, and in the epidermal initials and new stele of root tips. The promoter region of SPT was dissected by truncation and deletion, and two main regions occupied by tissue-specific enhancers were identified. These were correlated with eight regions conserved between promoter regions of Arabidopsis, Brassica oleracea, and Brassica rapa. When transformed into Arabidopsis, the B. oleracea promoter drove expression in reproductive tissues mostly comparable to the equivalent Arabidopsis promoter. There is genetic evidence that SPT function in the gynoecium is associated with the perception of auxin. However, site-directed mutagenesis of three putative auxin-response elements had no detectable effect on SPT expression patterns. Even so, disruption of a putative E-box variant adjacent to one of these resulted in a loss of valve dehiscence zone expression. This expression was also specifically lost in mutants of another bHLH gene INDEHISCENT, indicating that IND may directly regulate SPT expression through this variant E-box. PMID:20176890

  5. Tissue-specific root ion profiling reveals essential roles of the CAX and ACA calcium transport systems in response to hypoxia in Arabidopsis.

    Science.gov (United States)

    Wang, Feifei; Chen, Zhong-Hua; Liu, Xiaohui; Colmer, Timothy David; Zhou, Meixue; Shabala, Sergey

    2016-06-01

    Waterlogging is a major abiotic stress that limits the growth of plants. The crucial role of Ca(2+) as a second messenger in response to abiotic and biotic stimuli has been widely recognized in plants. However, the physiological and molecular mechanisms of Ca(2+) distribution within specific cell types in different root zones under hypoxia is poorly understood. In this work, whole-plant physiological and tissue-specific Ca(2+) changes were studied using several ACA (Ca(2+)-ATPase) and CAX (Ca(2+)/proton exchanger) knock-out Arabidopsis mutants subjected to waterlogging treatment. In the wild-type (WT) plants, several days of hypoxia decreased the expression of ACA8, CAX4, and CAX11 by 33% and 50% compared with the control. The hypoxic treatment also resulted in an up to 11-fold tissue-dependent increase in Ca(2+) accumulation in root tissues as revealed by confocal microscopy. The increase was much higher in stelar cells in the mature zone of Arabidopsis mutants with loss of function for ACA8, ACA11, CAX4, and CAX11 In addition, a significantly increased Ca(2+) concentration was found in the cytosol of stelar cells in the mature zone after hypoxic treatment. Three weeks of waterlogging resulted in dramatic loss of shoot biomass in cax11 plants (67% loss in shoot dry weight), while in the WT and other transport mutants this decline was only 14-22%. These results were also consistent with a decline in leaf chlorophyll fluorescence (F v/F m). It is suggested that CAX11 plays a key role in maintaining cytosolic Ca(2+) homeostasis and/or signalling in root cells under hypoxic conditions. PMID:26889007

  6. Interactive effects of chronic waterborne copper and cadmium exposure on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas).

    Science.gov (United States)

    Driessnack, Melissa K; Matthews, Amber L; Raine, Jason C; Niyogi, Som

    2016-01-01

    The present study was carried out to examine the interactive effects of chronic waterborne copper (Cu) and cadmium (Cd) on tissue-specific metal accumulation and reproduction in fathead minnow (Pimephales promelas). Trios (1 male: 2 female; n=5) of fish were exposed for 21days to: (i) control (no added Cu or Cd), (ii) waterborne Cu (75μg/L), (iii) waterborne Cd (5μg/L), and (iv) Cu and Cd mixture (75 and 5μg/L, respectively). Reproductive output (cumulative egg production) was significantly reduced by Cu but not by Cd. Interestingly however, no spawning occurred in fish exposed to the mixture of waterborne Cu and Cd. In general, both Cu and Cd accumulation in target tissues (gill, liver, gonad and carcass) increased significantly in fish exposed to Cu and Cd mixture, and no interaction between Cu and Cd accumulation was observed in any tissues, except in the liver where Cu accumulation was significantly reduced by Cd. The expression of female hepatic estrogen receptor genes (ER-α and ER-β) was most significantly elevated in fish exposed to Cu and Cd mixture, whereas vitellogenin gene expression was reduced maximally in the same exposure. Similarly, the hepatic expression of the metallothionein gene was most significantly upregulated in fish exposed to Cu and Cd mixture. Moreover, the circulating estradiol level in females was significantly decreased only during the co-exposure of waterborne Cu and Cd. Overall, the present study indicates that the interaction of chronic waterborne Cu and Cd exposure may elicit greater than additive effect on reproductive output in fish. PMID:26498072

  7. Calcium-insensitive splice variants of mammalian E1 subunit of 2-oxoglutarate dehydrogenase complex with tissue-specific patterns of expression.

    Science.gov (United States)

    Denton, Richard M; Pullen, Timothy J; Armstrong, Craig T; Heesom, Kate J; Rutter, Guy A

    2016-05-01

    The 2-oxoglutarate dehydrogenase (OGDH) complex is an important control point in vertebrate mitochondrial oxidative metabolism, including in the citrate cycle and catabolism of alternative fuels including glutamine. It is subject to allosteric regulation by NADH and the ATP/ADP ratio, and by Ca(2+) through binding to the E1 subunit. The latter involves a unique Ca(2+)-binding site which includes D(114)ADLD (site 1). Here, we describe three splice variants of E1 in which either the exon expressing this site is replaced with another exon (loss of site 1, LS1) or an additional exon is expressed leading to the insertion of 15 amino acids just downstream of site 1 (Insert), or both changes occur together (LS1/Insert). We show that all three variants are essentially Ca(2+)-insensitive. Comparison of massive parallel sequence (RNA-Seq) databases demonstrates predominant expression of the Ca(2+)-sensitive archetype form in heart and skeletal muscle, but substantial expression of the Ca(2+)-insensitive variants in brain, pancreatic islets and other tissues. Detailed proteomic and activity studies comparing OGDH complexes from rat heart and brain confirmed the substantial difference in expression between these tissues. The evolution of OGDH variants was explored using bioinformatics, and this indicated that Ca(2+)-sensitivity arose with the emergence of chordates. In all species examined, this was associated with the co-emergence of Ca(2+)-insensitive variants suggesting a retained requirement for the latter in some settings. Tissue-specific expression of OGDH splice variants may thus provide a mechanism that tunes the control of the enzyme to the specialized metabolic and signalling needs of individual cell types. PMID:26936970

  8. Effect of tissue-specific acetylcholinesterase inhibitor C-547 on α3β4 and αβεδ acetylcholine receptors in COS cells.

    Science.gov (United States)

    Lindovský, Jiří; Petrov, Konstantin; Krůšek, Jan; Reznik, Vladimir S; Nikolsky, Eugeny E; Vyskočil, František

    2012-08-01

    The C-547 is the most effective muscle and tissue-specific anticholinesterase among alkylammonium derivatives of 6-methyluracil (ADEMS) acting in nanomolar concentrations on locomotor muscles but not on respiratory muscles, smooth muscles and heart and brain acetylcholine esterases (AChE). When applied systematically it could influence peripheral acetylcholine receptors. The aim of the present study was to investigate the effect of C-547 on rat α3β4 (ganglionic type) and αβεδ (muscle type) nicotinic receptors expressed in COS cells. Currents evoked by rapid application of acetylcholine or nicotine were recorded in whole-cell mode by electrophysiological patch-clamp technique 2-4 days after cell transfection by plasmids coding the α3β4 or αβεδ combination of receptor subunits. In cells sensitive to acetylcholine, the application of C-547 evoked no responses. When acetylcholine was applied during an already running application of C-547, acetylcholine responses were only inhibited at concentrations higher than 10(-7)M. This inhibition is not voltage-dependent, but is accompanied by an increased rate of desensitization. Thus in both types of receptors, effective doses are approximately 100 times higher than those inhibiting AChE in leg muscles and similar to those inhibiting respiratory diaphragm muscles and external intercostal muscles. These observations show that C-547 can be considered for symptomatic treatment of myasthenia gravis and other congenital myasthenic syndromes as an inhibitor of AChE in leg muscles at concentrations much lower than those inhibiting muscle and ganglion types of acetylcholine receptors. PMID:22634638

  9. Tissue-specific direct microtransfer of nanomaterials into Drosophila embryos as a versatile in vivo test bed for nanomaterial toxicity assessment

    Directory of Open Access Journals (Sweden)

    Vega-Alvarez S

    2014-04-01

    Full Text Available Sasha Vega-Alvarez,1 Adriana Herrera,2 Carlos Rinaldi,2–4 Franklin A Carrero-Martínez1,5 1Department of Biology, 2Department of Chemical Engineering, University of Puerto Rico-Mayagüez, Mayagüez, Puerto Rico; 3J Crayton Pruitt Family Department of Biomedical Engineering, 4Department of Chemical Engineering, University of Florida, Gainesville, FL, USA; 5Department of Anatomy and Neuroscience, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico Abstract: Nanomaterials are the subject of intense research, focused on their synthesis, modification, and biomedical applications. Increased nanomaterial production and their wide range of applications imply a higher risk of human and environmental exposure. Unfortunately, neither environmental effects nor toxicity of nanomaterials to organisms are fully understood. Cost-effective, rapid toxicity assays requiring minimal amounts of materials are needed to establish both their biomedical potential and environmental safety standards. Drosophila exemplifies an efficient and cost-effective model organism with a vast repertoire of in vivo tools and techniques, all with high-throughput scalability and screening feasibility throughout its life cycle. Here we report tissue specific nanomaterial assessment through direct microtransfer into target tissues. We tested several nanomaterials with potential biomedical applications such as single-wall carbon nanotubes, multiwall carbon nanotubes, silver, gold, titanium dioxide, and iron oxide nanoparticles. Assessment of nanomaterial toxicity was conducted by evaluating progression through developmental morphological milestones in Drosophila. This cost-effective assessment method is amenable to high-throughput screening. Keywords: nanotoxicity, Drosophila, microtransfer, nanoparticle, iron oxide, silver, gold, titanium dioxide, carbon nanotube

  10. Post-Mortem Stability of RNA in Skeletal Muscle and Adipose Tissue and the Tissue-Specific Expression of Myostatin, Perilipin and Associated Factors in the Horse

    Science.gov (United States)

    Morrison, Philippa K.; Bing, Chen; Harris, Patricia A.; Maltin, Charlotte A.; Grove-White, Dai; Argo, Caroline McG.

    2014-01-01

    Obesity, a major concern for equine welfare, is highly prevalent in the leisure horse population. Skeletal-muscle and adipose tissues are important determinants of maintenance energy requirements. The myostatin and perilipin pathways play key roles in the regulation of muscle mass and lipolysis respectively and have both been associated with obesity predisposition in other mammalian species. High quality samples, suitable for molecular biology, are an essential prerequisite for detailed investigations of gene and protein expression. Hence, this study has evaluated a) the post-mortem stability of RNA extracted from skeletal-muscle and adipose-tissues collected under commercial conditions and b) the tissue-specific presence of myostatin, the moystatin receptor (activin receptor IIB, ActRIIB), follistatin and perilipin, genes and proteins across a range of equine tissues. Objectives were addressed using tissues from 7 Thoroughbred horses presented for slaughter at a commercial abattoir; a) samples were collected at 7 time-points from Masseter muscle and perirenal adipose from 5 minutes to 6 hours post-mortem. Extracted RN was appraised by Optical Density analysis and agarose-gel electrophoresis. b) Quantitative real time PCR and Western Blotting were used to evaluate gene and protein expression in anatomically-defined samples collected from 17 tissues (6 organs, 4 skeletal muscles and 7 discrete adipose depots). The results indicate that, under the present collection conditions, intact, good quality RNA could be extracted from skeletal-muscle for up to 2 hours post-mortem. However, RNA from adipose tissue may be more susceptible to degradation/contamination and samples should be collected no later than 30 minutes post-mortem. The data also show that myostatin and ActRIIB genes and proteins were almost exclusively expressed in skeletal muscle. The follistatin gene showed a more diverse gene expression profile, with expression evident in several organs, adipose tissue

  11. Tensor GSVD of patient- and platform-matched tumor and normal DNA copy-number profiles uncovers chromosome arm-wide patterns of tumor-exclusive platform-consistent alterations encoding for cell transformation and predicting ovarian cancer survival.

    Science.gov (United States)

    Sankaranarayanan, Preethi; Schomay, Theodore E; Aiello, Katherine A; Alter, Orly

    2015-01-01

    The number of large-scale high-dimensional datasets recording different aspects of a single disease is growing, accompanied by a need for frameworks that can create one coherent model from multiple tensors of matched columns, e.g., patients and platforms, but independent rows, e.g., probes. We define and prove the mathematical properties of a novel tensor generalized singular value decomposition (GSVD), which can simultaneously find the similarities and dissimilarities, i.e., patterns of varying relative significance, between any two such tensors. We demonstrate the tensor GSVD in comparative modeling of patient- and platform-matched but probe-independent ovarian serous cystadenocarcinoma (OV) tumor, mostly high-grade, and normal DNA copy-number profiles, across each chromosome arm, and combination of two arms, separately. The modeling uncovers previously unrecognized patterns of tumor-exclusive platform-consistent co-occurring copy-number alterations (CNAs). We find, first, and validate that each of the patterns across only 7p and Xq, and the combination of 6p+12p, is correlated with a patient's prognosis, is independent of the tumor's stage, the best predictor of OV survival to date, and together with stage makes a better predictor than stage alone. Second, these patterns include most known OV-associated CNAs that map to these chromosome arms, as well as several previously unreported, yet frequent focal CNAs. Third, differential mRNA, microRNA, and protein expression consistently map to the DNA CNAs. A coherent picture emerges for each pattern, suggesting roles for the CNAs in OV pathogenesis and personalized therapy. In 6p+12p, deletion of the p21-encoding CDKN1A and p38-encoding MAPK14 and amplification of RAD51AP1 and KRAS encode for human cell transformation, and are correlated with a cell's immortality, and a patient's shorter survival time. In 7p, RPA3 deletion and POLD2 amplification are correlated with DNA stability, and a longer survival. In Xq, PABPC5

  12. Tensor GSVD of patient- and platform-matched tumor and normal DNA copy-number profiles uncovers chromosome arm-wide patterns of tumor-exclusive platform-consistent alterations encoding for cell transformation and predicting ovarian cancer survival.

    Directory of Open Access Journals (Sweden)

    Preethi Sankaranarayanan

    Full Text Available The number of large-scale high-dimensional datasets recording different aspects of a single disease is growing, accompanied by a need for frameworks that can create one coherent model from multiple tensors of matched columns, e.g., patients and platforms, but independent rows, e.g., probes. We define and prove the mathematical properties of a novel tensor generalized singular value decomposition (GSVD, which can simultaneously find the similarities and dissimilarities, i.e., patterns of varying relative significance, between any two such tensors. We demonstrate the tensor GSVD in comparative modeling of patient- and platform-matched but probe-independent ovarian serous cystadenocarcinoma (OV tumor, mostly high-grade, and normal DNA copy-number profiles, across each chromosome arm, and combination of two arms, separately. The modeling uncovers previously unrecognized patterns of tumor-exclusive platform-consistent co-occurring copy-number alterations (CNAs. We find, first, and validate that each of the patterns across only 7p and Xq, and the combination of 6p+12p, is correlated with a patient's prognosis, is independent of the tumor's stage, the best predictor of OV survival to date, and together with stage makes a better predictor than stage alone. Second, these patterns include most known OV-associated CNAs that map to these chromosome arms, as well as several previously unreported, yet frequent focal CNAs. Third, differential mRNA, microRNA, and protein expression consistently map to the DNA CNAs. A coherent picture emerges for each pattern, suggesting roles for the CNAs in OV pathogenesis and personalized therapy. In 6p+12p, deletion of the p21-encoding CDKN1A and p38-encoding MAPK14 and amplification of RAD51AP1 and KRAS encode for human cell transformation, and are correlated with a cell's immortality, and a patient's shorter survival time. In 7p, RPA3 deletion and POLD2 amplification are correlated with DNA stability, and a longer survival

  13. Characterization of A-11, a newly discovered X-chromosomal gene that is under both single-active-X control and tissue-specific control

    International Nuclear Information System (INIS)

    The A-11 transcript is present in fibroblasts, but is not normally expressed in B- or T-lymphoblastoid cells. The regulation of the A-11 loci on both the active and inactive X chromosomes is very easily perturbed. The A-11 locus on the fibroblast-derived inactive X in a hybrid cell is reactivated at a very high rate by 5-azacytidine, an inhibitor of DNA methylation, while the A-11 locus on the active X in B-lymphoblastoid cells is derepressed at a very high rate after gamma irradiation. The A-11 gene codes for a mature transcript of about 1.9 kb. The A-11 cDNA clone is incomplete, and contains 753 bases from the 3' end of the gene. A genomic clone that contains about 17 kb of human DNA and hybridizes to the A-11 cDNA was isolated. This clone contains at least the last exon of the A-11 gene, as determined by Northern blotting, nuclease protection experiments, and DNA sequencing. When the genomic clone is transferred into mouse cells. A-11 transcripts of both normal and abnormal sizes are produced, indicating that it is possible that the genomic clone contains the entire locus. However, at this time, the 5' end of the gene has not been located

  14. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  15. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  16. Small RNA and degradome deep sequencing reveals drought-and tissue-specific micrornas and their important roles in drought-sensitive and drought-tolerant tomato genotypes.

    Science.gov (United States)

    Candar-Cakir, Bilgin; Arican, Ercan; Zhang, Baohong

    2016-08-01

    Drought stress has adverse impacts on plant production and productivity. MicroRNAs (miRNAs) are one class of noncoding RNAs regulating gene expression post-transcriptionally. In this study, we employed small RNA and degradome sequencing to systematically investigate the tissue-specific miRNAs responsible to drought stress, which are understudied in tomato. For this purpose, root and upground tissues of two different drought-responsive tomato genotypes (Lycopersicon esculentum as sensitive and L. esculentum var. cerasiforme as tolerant) were subjected to stress with 5% polyethylene glycol for 7 days. A total of 699 conserved miRNAs belonging to 578 families were determined and 688 miRNAs were significantly differentially expressed between different treatments, tissues and genotypes. Using degradome sequencing, 44 target genes were identified associated with 36 miRNA families. Drought-related miRNAs and their targets were enriched functionally by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Totally, 53 miRNAs targeted 23 key drought stress- and tissue development-related genes, including DRP (dehydration-responsive protein), GTs (glycosyltransferases), ERF (ethylene responsive factor), PSII (photosystem II) protein, HD-ZIP (homeodomain-leucine zipper), MYB and NAC-domain transcription factors. miR160, miR165, miR166, miR171, miR398, miR408, miR827, miR9472, miR9476 and miR9552 were the key miRNAs functioning in regulation of these genes and involving in tomato response to drought stress. Additionally, plant hormone signal transduction pathway genes were differentially regulated by miR169, miR172, miR393, miR5641, miR5658 and miR7997 in both tissues of both sensitive and tolerant genotypes. These results provide new insight into the regulatory role of miRNAs in drought response with plant hormone signal transduction and drought-tolerant tomato breeding. PMID:26857916

  17. LIR1基因在水稻中的组织特异性表达%Tissue-specific expression of LIR1 gene in rice

    Institute of Scientific and Technical Information of China (English)

    岳彩黎; 王贵学; 黄俊丽; 胡锋; 秦峰

    2012-01-01

    水稻LIR1是LIR( light-induced rice)蛋白家族的一员,受光与生物钟的调节,在植物光反应及生物节律性调控方面有重要作用.为了研究水稻LIR1的生理功能,利用半定量RT-PCR技术对水稻‘珍汕97B’LIR1基因做了根、叶鞘、叶片及穗的组织特异性表达分析,同时构建了启动子的GUS基因融合表达载体LIR1::GUS转化烟草,利用GUS组织化学染色检测GUS基因在烟草组织器官中的表达情况.研究结果表明:LIR1基因在水稻叶片中的表达量较高,而在叶鞘、穗与根中表达量较低;GUS染色主要集中在叶片组织及茎中,而在植株的根部不显色.%Rice LIR1 ,a member of LrR(light-induced,rice)protein family,regulated by light and the biological clock,plays an important role for photosynthesis and biorhythm. In order to study the physiological functions of LIR1 , the tissue-specific expression analysis of UR1 gene in root, leaf sheath, young leaves, mature leaves and young panicle was carried out by RT-PCR, and the fusion binary expression vector LIR1 :: GUS was constructed to study the expression of GUS in transgenic tobacco plants. The results demonstrated that the expression level of LIR1 gene was much higher in leaf than that in leaf sheath, young panicle and root, and GUS expression was mainly concentrated in the stem,the major veins of leaf and the mesophyll presenting uneven distribution,but not in root.

  18. The Critical Role of DNA Extraction for Detection of Mycobacteria in Tissues

    OpenAIRE

    Radomski, Nicolas; Kreitmann, Louis; McIntosh, Fiona; Behr, Marcel A.

    2013-01-01

    Background Nucleic acid-based methods offer promise for both targeted and exploratory investigations of microbes in tissue samples. As the starting material for such studies is a mixture of host and microbial DNA, we have critically evaluated the DNA extraction step to determine the quantitative and qualitative parameters that permit faithful molecular detection of mycobacteria in infected tissue. Specifically, we assessed: 1) tissue disruption procedures; 2) DNA extraction protocols; and 3) ...

  19. Smectite alteration

    International Nuclear Information System (INIS)

    This report contains the proceedings of a second workshop in Washington DC December 8-9, 1983 on the alteration of smectites intended for use as buffer materials in the long-term containment of nuclear wastes. It includes extended summaries of all presentations and a transcript of the detailed scientific discussion. The discussions centered on three main questions: What is the prerequisite for and what is the precise mechanism by which smectite clays may be altered to illite. What are likly sources of potassium with respect to the KBS project. Is it likely that the conversion of smectite to illite will be of importance in the 10 5 to the 10 6 year time frame. The workshop was convened to review considerations and conclusions in connection to these questions and also to broaden the discussion to consider the use of smectite clays as buffer materials for similar applications in different geographical and geological settings. SKBF/KBS technical report 83-03 contains the proceedings from the first workshop on these matters that was held at the State University of New York, Buffalo May 26-27, 1982. (Author)

  20. 猪I-FABP基因的分子克隆与组织特异性表达分析%Molecular Cloning and Tissue-specific Expression of Intestinal-type Fatty Acid Binding Protein in Porcine

    Institute of Scientific and Technical Information of China (English)

    姜延志; 李学伟

    2006-01-01

    小肠型脂肪酸结合蛋白对长链脂肪酸具有高度的亲和力,参与脂肪酸的吸收和细胞内转运.利用cDNA末端快速扩增(RACE)技术并结合同源克隆策略,克隆到了编码猪小肠型脂肪酸结合蛋白基因(I-FABP)的全长cDNA序列(GenBank接受号:AY960624),并对系统发育关系等进行了生物信息学分析.猪I-FABP基因的cDNA序列全长614 bp,其中包括399 bp的开放式读码框(ORF),43 bp的5'末端非编码区(5'URT)和172 bp的3'末端非编码区(3'URT),编码132个氨基酸残基蛋白,在氨基酸水平上与其他物种的I-FABP具有高度的同源性.以邻接法(Neigbor-Joining,NJ)所构建的系统发育关系表明,猪I-FABP与其他物种的I-FABP属于同一类群,且与人的遗传距离最近.Northern杂交和半定量RT-PCR分析发现,猪I-FABP在猪体组织中出现约620 bp大小的转录本,且在猪体组织中广泛存在,但在小肠组织中表达量最为丰富.%The intestinal fatty acid-binding protein (I-FABP) shows binding specificity for long-chain fatty acids and is proposed to be involved in the uptake of dietary fatty acids and their intracellular transport. In this study, the full-length cDNA of I-FABP was cloned from pig intestine by homology cloning approach combined with 3' and 5' RACE. Sequence analysis and bioinformatics study showed that this cDNA contained 614 nucleotides, with a 399 bp open reading frame (ORF) flanked by a 43 bp 5' UTR and a172 bp 3' UTR. The encoded 132 amino acids of pig I-FABP with a molecular weight of approximately 15 kDa shared a high sequence identity of 68%-85% with those of other species. In addition, the phylogenetical analysis also indicated that the pig I-FABP was in the same branch with those of other species. The tissue-specific expression of pig I-FABP was measured by Northern hybridization and semi-quantitative RT-PCR. The results demonstrated that pig I-FABP mRNA was extensively present in various tissues, but I-FABP transcript of

  1. Mitochondrial DNA copy number and biogenesis in different tissues of early- and late-lactating dairy cows.

    Science.gov (United States)

    Laubenthal, L; Hoelker, M; Frahm, J; Dänicke, S; Gerlach, K; Südekum, K-H; Sauerwein, H; Häussler, S

    2016-02-01

    genes related to mitochondrial biogenesis changed in a tissue-specific manner when comparing early versus late lactation. The mtDNA copy number was associated with transcriptional factors only in AT, suggesting nontranscriptional regulation of mtDNA in the other tissues. We detected strong correlations between peripheral blood mtDNA and tissue mtDNA content in early lactation. Peripheral blood forms an appropriate medium to display the cellular content of mtDNA copy numbers and consequently the cellular energy status of tissues during early lactation. PMID:26686730

  2. An intronic enhancer containing an N-box motif is required for synapse- and tissue-specific expression of the acetylcholinesterase gene in skeletal muscle fibers

    OpenAIRE

    Chan, Roxanne Y. Y.; Boudreau-Larivière, Céline; Angus, Lindsay M.; Mankal, Fawzi A.; Jasmin, Bernard J.

    1999-01-01

    mRNAs encoding acetylcholinesterase (AChE; EC 3.1.1.7) are highly concentrated within the postsynaptic sarcoplasm of adult skeletal muscle fibers, where their expression is markedly influenced by nerve-evoked electrical activity and trophic factors. To determine whether transcriptional regulatory mechanisms account for the synaptic accumulation of AChE transcripts at the mammalian neuromuscular synapse, we cloned a 5.3-kb DNA fragment that contained the 5′ regulatory region of the rat AChE ge...

  3. Temporal and Tissue-Specific Control of Gene Expression in the Peri-Implantation Mouse Embryo Through Electroporation of dsRNA

    Science.gov (United States)

    Soares, Miguel L.; Torres-Padilla, Maria-Elena

    The delivery of nucleic acids into embryos — either DNA molecules for transient expression or double-stranded RNA for gene silencing by RNA interference (RNAi) — remains a challenging aspect of functional studies on live organisms. Electroporation has long been a standard method for the active transfer of the nega tively charged nucleic acids into mammalian cells (Andreason and Evans, 1988). This technique employs electric pulses to create transient pores in the cytoplasmic membrane through which the nucleic acids are actively delivered. It was not until the conditions for culture of whole embryos became consistent, however, that it has been applied successfully for transfection of mouse concepti.

  4. Forensic DNA methylation profiling from evidence material for investigative leads.

    Science.gov (United States)

    Lee, Hwan Young; Lee, Soong Deok; Shin, Kyoung-Jin

    2016-07-01

    DNA methylation is emerging as an attractive marker providing investigative leads to solve crimes in forensic genetics. The identification of body fluids that utilizes tissue-specific DNA methylation can contribute to solving crimes by predicting activity related to the evidence material. The age estimation based on DNA methylation is expected to reduce the number of potential suspects, when the DNA profile from the evidence does not match with any known person, including those stored in the forensic database. Moreover, the variation in DNA implicates environmental exposure, such as cigarette smoking and alcohol consumption, thereby suggesting the possibility to be used as a marker for predicting the lifestyle of potential suspect. In this review, we describe recent advances in our understanding of DNA methylation variations and the utility of DNA methylation as a forensic marker for advanced investigative leads from evidence materials. [BMB Reports 2016; 49(7): 359-369]. PMID:27099236

  5. DNA-PK assay

    Science.gov (United States)

    Anderson, Carl W.; Connelly, Margery A.

    2004-10-12

    The present invention provides a method for detecting DNA-activated protein kinase (DNA-PK) activity in a biological sample. The method includes contacting a biological sample with a detectably-labeled phosphate donor and a synthetic peptide substrate defined by the following features to provide specific recognition and phosphorylation by DNA-PK: (1) a phosphate-accepting amino acid pair which may include serine-glutamine (Ser-Gln) (SQ), threonine-glutamine (Thr-Gln) (TQ), glutamine-serine (Gln-Ser) (QS), or glutamine-threonine (Gln-Thr) (QT); (2) enhancer amino acids which may include glutamic acid or glutamine immediately adjacent at the amino- or carboxyl- side of the amino acid pair and forming an amino acid pair-enhancer unit; (3) a first spacer sequence at the amino terminus of the amino acid pair-enhancer unit; (4) a second spacer sequence at the carboxyl terminus of the amino acid pair-enhancer unit, which spacer sequences may include any combination of amino acids that does not provide a phosphorylation site consensus sequence motif; and, (5) a tag moiety, which may be an amino acid sequence or another chemical entity that permits separating the synthetic peptide from the phosphate donor. A compostion and a kit for the detection of DNA-PK activity are also provided. Methods for detecting DNA, protein phosphatases and substances that alter the activity of DNA-PK are also provided. The present invention also provides a method of monitoring protein kinase and DNA-PK activity in living cells. -A composition and a kit for monitoring protein kinase activity in vitro and a composition and a kit for monitoring DNA-PK activities in living cells are also provided. A method for identifying agents that alter protein kinase activity in vitro and a method for identifying agents that alter DNA-PK activity in living cells are also provided.

  6. Time-Dependent and Organ-Specific Changes in Mitochondrial Function, Mitochondrial DNA Integrity, Oxidative Stress and Mononuclear Cell Infiltration in a Mouse Model of Burn Injury.

    Directory of Open Access Journals (Sweden)

    Bartosz Szczesny

    Full Text Available Severe thermal injury induces a pathophysiological response that affects most of the organs within the body; liver, heart, lung, skeletal muscle among others, with inflammation and hyper-metabolism as a hallmark of the post-burn damage. Oxidative stress has been implicated as a key component in development of inflammatory and metabolic responses induced by burn. The goal of the current study was to evaluate several critical mitochondrial functions in a mouse model of severe burn injury. Mitochondrial bioenergetics, measured by Extracellular Flux Analyzer, showed a time dependent, post-burn decrease in basal respiration and ATP-turnover but enhanced maximal respiratory capacity in mitochondria isolated from the liver and lung of animals subjected to burn injury. Moreover, we detected a tissue-specific degree of DNA damage, particularly of the mitochondrial DNA, with the most profound effect detected in lungs and hearts of mice subjected to burn injury. Increased mitochondrial biogenesis in lung tissue in response to burn injury was also observed. Burn injury also induced time dependent increases in oxidative stress (measured by amount of malondialdehyde and neutrophil infiltration (measured by myeloperoxidase activity, particularly in lung and heart. Tissue mononuclear cell infiltration was also confirmed by immunohistochemistry. The amount of poly(ADP-ribose polymers decreased in the liver, but increased in the heart in later time points after burn. All of these biochemical changes were also associated with histological alterations in all three organs studied. Finally, we detected a significant increase in mitochondrial DNA fragments circulating in the blood immediately post-burn. There was no evidence of systemic bacteremia, or the presence of bacterial DNA fragments at any time after burn injury. The majority of the measured parameters demonstrated a sustained elevation even at 20-40 days post injury suggesting a long-lasting effect of thermal

  7. Exploring function of conserved non-coding DNA in its chromosomal context

    OpenAIRE

    Grant, Delores J.; Shakes, Leighcraft A.; Wolf, Hope M; Norford, Derek C; Chatterjee, Pradeep K

    2015-01-01

    There is renewed interest in understanding expression of vertebrate genes in their chromosomal context because regulatory sequences that confer tissue-specific expression are often distributed over large distances along the DNA from the gene. One approach inserts a universal sensor/reporter-gene into the mouse or zebrafish genome to identify regulatory sequences in highly conserved non-coding DNA in the vicinity of the integrated reporter-gene. However detailed mechanisms of interaction of th...

  8. Maintenance of respiratory chain function in mouse hearts with severely impaired mtDNA transcription

    OpenAIRE

    Freyer, Christoph; Park, Chan Bae; Ekstrand, Mats I.; Shi, Yonghong; Khvorostova, Julia; Wibom, Rolf; Falkenberg, Maria; Gustafsson, Claes M.; Larsson, Nils-Göran

    2010-01-01

    The basal mitochondrial transcription machinery is essential for biogenesis of the respiratory chain and consists of mitochondrial RNA polymerase, mitochondrial transcription factor A (TFAM) and mitochondrial transcription factor B2. This triad of proteins is sufficient and necessary for mtDNA transcription initiation. Abolished mtDNA transcription caused by tissue-specific knockout of TFAM in the mouse heart leads to early onset of a severe mitochondrial cardiomyopathy with lethality within ...

  9. All Things in Moderation: Prevention of Intestinal Adenomas by DNA Hypomethylation.

    Science.gov (United States)

    Lee, Kwang-Ho; Laird, Peter W

    2016-07-01

    DNA hypomethylation can prevent intestinal tumorigenesis, presumably by reducing epigenetic silencing of tumor-suppressor genes. A study in this issue by Sheaffer and colleagues challenges this notion by showing that severe DNA hypomethylation by tissue-specific Dnmt1 knockout can actually promote intestinal adenoma formation. Cancer Prev Res; 9(7); 509-11. ©2016 AACRSee related article by Sheaffer, et al., p. 534. PMID:27190044

  10. DNA-PK contributes to the phosphorylation of AIRE: Importance in transcriptional activity

    OpenAIRE

    Liiv, Ingrid; Rebane, Ana; Org, Tõnis; Saare, Mario; Maslovskaja, Julia; Kisand, Kai; Juronen, Erkki; Valmu, Leena; Bottomley, Matthew James; Kalkkinen, Nisse; Peterson, Pärt

    2008-01-01

    The autoimmune regulator (AIRE) protein is a key mediator of the central tolerance for tissue specific antigens and is involved in transcriptional control of many antigens in thymic medullary epithelial cells (mTEC). Mutations in the AIRE gene cause a rare disease named autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Here we report using GST pull-down assay, mass-spectrometry and co-immunoprecipitation that a heterotrimeric complex of DNA-Dependent Protein Kinase (DNA...

  11. Engineered DNA Polymerases in Biotechnology

    OpenAIRE

    Kranaster, Ramon; Marx, Andreas

    2010-01-01

    DNA polymerases are the enzymes that catalyse all DNA synthesis in Nature often with astounding speed and accuracy. Consequently, their features as molecular machines are exploited in a wide range of biotechnological applications. Some features are highlighted in the following. For example, DNA polymerases are useful enzymes to detect genomic alterations that can lead to the development of certain diseases such as cancer or to promote toxic side effects of drugs. Methods for the detection of ...

  12. An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic arabidopsis and tobacco plants.

    Directory of Open Access Journals (Sweden)

    Joydeep Banerjee

    Full Text Available On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985 are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85 showed stronger expression (about 3.5 fold compared to the At4g35987 promoter (P87. The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications.

  13. DNA Book

    OpenAIRE

    Kawai, Jun; Hayashizaki, Yoshihide

    2003-01-01

    We propose herein a new method of DNA distribution, whereby DNA clones or PCR products are printed directly onto the pages of books and delivered to users along with relevant scientific information. DNA sheets, comprising water-soluble paper onto which DNA is spotted, can be bound into books. Readers can easily extract the DNA fragments from DNA sheets and amplify them using PCR. We show that DNA sheets can withstand various conditions that may be experienced during bookbinding and deli...

  14. Optical tweezers reveal how proteins alter replication

    Science.gov (United States)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic

  15. Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human colon cancer cells in a p53- and DNMT1(DNA methyltransferase 1)-independent manner

    OpenAIRE

    Jin, Lihua; Hanigan, Christin L.; Wu, Yu; Wang, Wei; Park, Ben Ho; Woster, Patrick M.; Casero, Robert A.

    2012-01-01

    Epigenetic silencing of gene expression is important in cancer. Aberrant DNA CpG island hypermethylation and histone modifications are involved in the aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) is a H3K4 (histone H3 Lys4) demethylase associated with gene repression and is overexpressed in multiple cancer types. LSD1 has also been implicated in targeting p53 and DNMT1 (DNA methyltransferase 1), with data suggesting that the demethylating activity of LSD...

  16. DNA methylation dynamics in muscle development and disease

    Directory of Open Access Journals (Sweden)

    Monica Suelves

    2015-03-01

    Full Text Available DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis

  17. DNA methylation dynamics in muscle development and disease.

    Science.gov (United States)

    Carrió, Elvira; Suelves, Mònica

    2015-01-01

    DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis. PMID:25798107

  18. Ethanol extract of Hedyotis diffusa willd upregulates G0/G1 phase arrest and induces apoptosis in human leukemia cells by modulating caspase cascade signaling and altering associated genes expression was assayed by cDNA microarray.

    Science.gov (United States)

    Kuo, Yu-Jui; Yang, Jai-Sing; Lu, Chi-Cheng; Chiang, Su-Yin; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-09-01

    The authors' previous study has shown that water extract of Hedyotis diffusa Willd (HDW) promoted immune response and exhibited anti-leukemic activity in BALB/c leukemic mice in vivo. In this study, the anti-proliferation effects of ethanol extract of H. diffusa Willd (EEHDW) on lung cancer cell lines (A549, H1355, and LLC), leukemia cell lines (HL-60, WEHI-3), and a mouse melanoma cell line (B16F10) in vitro were investigated. The results demonstrated that EEHDW suppressed the cell proliferation of A549, H1355, HL-60, WEHI-3, and B16F10 cells as well as reduced cell viability in a concentration-dependent manner. We found that EEHDW inhibited the cell proliferation of HL-60 cells in concentration-dependent manner. In addition, EEHDW triggered an arrest of HL-60 cells at G0/G1 phase and sub-G1 population (apoptotic cells). EEHDW provoked DNA condensation and DNA damage in HL-60 cells. The activities of caspase-3, caspase-8, and caspase-9 were elevated in EEHDW-treated HL-60 cells. DNA microarray to investigate and display the gene levels related to cell growth, signal transduction, apoptosis, cell adhesion, cell cycle, DNA damage and repair, transcription and translation was also used. These findings suggest that EEHDW may be a potential herbal medicine and therapeutic agent for the treatment of leukemia. PMID:24677