WorldWideScience

Sample records for alter tissue-specific dna

  1. Identification of tissue-specific cell death using methylation patterns of circulating DNA

    Science.gov (United States)

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J.; Wasserfall, Clive H.; Schatz, Desmond A.; Greenbaum, Carla J.; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K.; Golan, Talia; Ben Sasson, Shmuel A.; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A. M. James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-01-01

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics. PMID:26976580

  2. Identification of tissue-specific cell death using methylation patterns of circulating DNA.

    Science.gov (United States)

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J; Wasserfall, Clive H; Schatz, Desmond A; Greenbaum, Carla J; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K; Golan, Talia; Ben Sasson, Shmuel A; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A M James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-03-29

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics.

  3. Tissue-specific alterations in expression and function of P-glycoprotein in streptozotocininduced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Lu-lu ZHANG; Guang-ji WANG; Lin XIE; Liang LU; Shi JIN; Xin-yue JING; Dan YAO; Nan HU; Li LIU; Ru DUAN; Xiao-dong LIU

    2011-01-01

    Aim: To investigate the changes of expression and function of P-glycoprotein (P-GP) in cerebral cortex, hippocampus, liver, intestinal mucosa and kidney of streptozocin-induced diabetic rats.Methods: Diabetic rats were prepared via a single dose of streptozocin (65 mg/kg, ip). Abcb1/P-GP mRNA and protein expression levels in tissues were evaluated using quantitative real time polymerase chain reaction (QRT-PCR) analysis and Western blot, respectively.P-GP function was investigated via measuring tissue-to-plasma concentration ratios and body fluid excretion percentages of rhodamine 123.Results: In 5- and 8-week diabetic rats, Abcb1a mRNA levels were significantly decreased in cerebral cortices and intestinal mucosa,but dramatically increased in hippocampus and kidney. In liver, the level was increased in 5-week diabetic rats, and decreased in 8-week diabetic rats. Abcb1b mRNA levels were increased in cerebral cortex, hippocampus and kidney, but reduced in liver and intestinal mucosa in the diabetic rats. Western blot results were in accordance with the alterations of Abcb1a mRNA levels in most tissues examined. P-GP activity was markedly decreased in most tissues of diabetic rats, except kidney tissues.Conclusion: Alterations in the expression and function of Abcb1/P-GP under diabetic conditions are tissue specific, Abcb1 specific and diabetic duration-dependent.

  4. Tissue-specific modulation of mitochondrial DNA segregation by a defect in mitochondrial division.

    Science.gov (United States)

    Jokinen, Riikka; Marttinen, Paula; Stewart, James B; Neil Dear, T; Battersby, Brendan J

    2016-02-15

    Mitochondria are dynamic organelles that divide and fuse by remodeling an outer and inner membrane in response to developmental, physiological and stress stimuli. These events are coordinated by conserved dynamin-related GTPases. The dynamics of mitochondrial morphology require coordination with mitochondrial DNA (mtDNA) to ensure faithful genome transmission, however, this process remains poorly understood. Mitochondrial division is linked to the segregation of mtDNA but how it affects cases of mtDNA heteroplasmy, where two or more mtDNA variants/mutations co-exist in a cell, is unknown. Segregation of heteroplasmic human pathogenic mtDNA mutations is a critical factor in the onset and severity of human mitochondrial diseases. Here, we investigated the coupling of mitochondrial morphology to the transmission and segregation of mtDNA in mammals by taking advantage of two genetically modified mouse models: one with a dominant-negative mutation in the dynamin-related protein 1 (Drp1 or Dnm1l) that impairs mitochondrial fission and the other, heteroplasmic mice segregating two neutral mtDNA haplotypes (BALB and NZB). We show a tissue-specific response to mtDNA segregation from a defect in mitochondrial fission. Only mtDNA segregation in the hematopoietic compartment is modulated from impaired Dnm1l function. In contrast, no effect was observed in other tissues arising from the three germ layers during development and in mtDNA transmission through the female germline. Our data suggest a robust organization of a heteroplasmic mtDNA segregating unit across mammalian cell types that can overcome impaired mitochondrial division to ensure faithful transmission of the mitochondrial genome. PMID:26681804

  5. Tissue-specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency

    NARCIS (Netherlands)

    J. Müller (Julia); S. Mayerl (Steffen); T.J. Visser (Ton); V.M. Darras (Veerle); A. Boelen (Anita); L. Frappart (Lucien); L. Mariotta (Luca); F. Verrey; H. Heuer (Heike)

    2014-01-01

    textabstractThe monocarboxylate transporter Mct10 (Slc16a10; T-type amino acid transporter) facilitates the cellular transport of thyroid hormone (TH) and shows an overlapping expression with the wellestablished TH transporter Mct8. Because Mct8 deficiency is associated with distinct tissue-specific

  6. Detection of neuronal tissue in meat using tissue specific DNA modifications

    Directory of Open Access Journals (Sweden)

    Harris N.

    2004-01-01

    Full Text Available A method has been developed to differentiate between non-muscle tissues such as liver, kidney and heart and that of muscle in meat samples using tissue specific DNA detection. Only muscle tissue is considered meat from the point of view of labelling (Food Labelling [Amendment] (England Regulations 2003 and Quantitative Ingredient Declaration (QUID, and also certain parts of the carcass are prohibited to be used in raw meat products (Meat Products [England] Regulations 2003. Included in the prohibited offal are brain and spinal cord. The described methodology has therefore been developed primarily to enforce labelling rules but also to contribute to the enforcement of BSE legislation on the detection of Central Nervous System (CNS tissue. The latter requires the removal of Specified Risk Material (SRM, such as bovine and ovine brain and spinal cord, from the food chain. Current methodologies for detection of CNS tissue include histological examination, analysis of cholesterol content and immunodetection. These can potentially be time consuming, less applicable to processed samples and may not be readily adapted to high throughput sample analysis. The objective of this work was therefore to develop a DNAbased detection assay that exploits the sensitivity and specificity of PCR and is potentially applicable to more highly processed food samples. For neuronal tissue, the DNA target selected was the promoter for Glial Fibrillary Acidic Protein (GFAP, a gene whose expression is restricted to astroglial cells within CNS tissue. The promoter fragments from both cattle and sheep have been isolated and key differences in the methylation patterns of certain CpG dinucleotides in the sequences from bovine and sheep brain and spinal cord and the corresponding skeletal muscle identified. These have been used to design a PCR assay exploiting Methylation Specific PCR (MSP to specifically amplify the neuronal tissue derived sequence and therefore identify the

  7. Dose-dependence, sex- and tissue-specificity, and persistence of radiation-induced genomic DNA methylation changes

    International Nuclear Information System (INIS)

    Radiation is a well-known genotoxic agent and human carcinogen that gives rise to a variety of long-term effects. Its detrimental influence on cellular function is actively studied nowadays. One of the most analyzed, yet least understood long-term effects of ionizing radiation is transgenerational genomic instability. The inheritance of genomic instability suggests the possible involvement of epigenetic mechanisms, such as changes of the methylation of cytosine residues located within CpG dinucleotides. In the current study we evaluated the dose-dependence of the radiation-induced global genome DNA methylation changes. We also analyzed the effects of acute and chronic high dose (5 Gy) exposure on DNA methylation in liver, spleen, and lung tissues of male and female mice and evaluated the possible persistence of the radiation-induced DNA methylation changes. Here we report that radiation-induced DNA methylation changes were sex- and tissue-specific, dose-dependent, and persistent. In parallel we have studied the levels of DNA damage in the exposed tissues. Based on the correlation between the levels of DNA methylation and DNA damage we propose that radiation-induced global genome DNA hypomethylation is DNA repair-related

  8. Tissue-specific expression and cDNA cloning of small nuclear ribonucleoprotein-associated polypeptide N

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, G.; Amara, S.G.; Lerner, M.R. (Yale Univ. School of Medicine, New Haven, CT (USA))

    1988-07-01

    Sera from some patients with systemic lupus erythematosus and other autoimmune diseases have antibodies against nuclear antigens. An example is anti-Sm sera, which recognize proteins associated with small nuclear RNA molecules (small nuclear ribonucleoprotein (snRNP) particles). In this paper anti-Sm sera were used to probe immunoblots of various rat tissues. A previously unidentified M{sub r} 28,000 polypeptide was recognized by these anti-Sm sera. This polypeptide, referred to as N, is expressed in a tissue-specific manner, being most abundant in rat brain, less so in heart, and undetectable in the other tissues examined. Immunoprecipitation experiments using antibodies directed against the cap structure of small nuclear RNAs have demonstrated that N is a snRNP-associated polypeptide. Anti-Sm serum was also used to isolate a partial cDNA clone ({lambda}rb91) from a rat brain phage {lambda}gt11 cDNA expression library. A longer cDNA clone was obtained by rescreening the library with {lambda}rb91. In vitro transcription and subsequent translation of this subcloned, longer insert (pGMA2) resulted in a protein product with the same electrophoretic and immunological properties as N, confirming that pGMA2 encodes N. The tissue distribution of N and the involvement of snRNP particles in nuclear pre-mRNA processing may imply a role for N in tissue-specific pre-mRNA splicing.

  9. Cloning, expression and characterization of human tissue-specific DNA polymerase λ2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    DNA polymerase (POL) λ plays an important role during DNA repair and DNA nonhomologous recom-bination processes. A novel POL λ variant was cloned from a human liver cDNA library and named POL λ2 (GenBank Accession No. AY302442). POL λ2 has 2206 base pairs in length with an open reading frame of 1452 base pairs encoding a 482-amino-acids protein. Bioinformatics analysis reveals that POL λ2 spans 7.9 kb on human chromosome 10q24 and is composed of 8 exons and 7 introns. It has the specific domain of DNA polymerase X family-POL Xc at the C-terminus and BRCT domain at the N-terminus. POL λ2 was localized predominantly in nucleus in transfected L0-2 cells. It was expressed abundantly in liver and testis, weakly in ovary, and undetectably in other tested human tissues. In comparison with the expression ratio between POL λ and POL λ2 in normal liver tissues and hepato-cellular carcinoma (HCC) adjacent tissues, the ratio was aberrant in 80% of those 15 HCC specimens examined due to the up-regulated expression of POL λ. This abnormality might be involved in hepato-carcinogenesis. The recombinant POL λ2 with His-tag was expressed as a soluble active protein in E. coli BL21 (DE3)CONDON Plus and purified by Ni-NTA resin and then desalted by Superdex-75 chro-matography in an FPLC system. The analysis using isotope α-32P-dCTP incorporation in vitro showed that the purified recombinant POL λ2 exhibited DNA polymerase activity.

  10. Cloning, expression and characterization of human tissue-specific DNA polymerase λ2

    Institute of Scientific and Technical Information of China (English)

    GU Fu; LI YuYang; L(U) Hong; YOU Chun; LIU JianPing; CHEN Ao; YU Yao; WANG Xiang; WAN DaFang; GU JianRen; YUAN HanYing

    2007-01-01

    DNA polymerase (POL) λ plays an important role during DNA repair and DNA nonhomologous recombination processes. A novel POL λ variant was cloned from a human liver cDNA library and named POL λ2 (GenBank Accession No. AY302442). POL λ2 has 2206 base pairs in length with an open reading frame of 1452 base pairs encoding a 482-amino-acids protein. Bioinformatics analysis reveals that POL λ2 spans 7.9 kb on human chromosome 10q24 and is composed of 8 exons and 7 introns. It has the specific domain of DNA polymerase X family-POL Xc at the C-terminus and BRCT domain at the N-terminus. POL λ2 was localized predominantly in nucleus in transfected L0-2 cells. It was expressed abundantly in liver and testis, weakly in ovary, and undetectably in other tested human tissues. In comparison with the expression ratio between POL λ and POL λ2 in normal liver tissues and hepatocellular carcinoma (HCC) adjacent tissues, the ratio was aberrant in 80% of those 15 HCC specimens examined due to the up-regulated expression of POL λ. This abnormality might be involved in hepatocarcinogenesis. The recombinant POL λ2 with His-tag was expressed as a soluble active protein in E.coli BL21 (DE3)CONDON Plus and purified by Ni-NTA resin and then desalted by Superdex-75 chromatography in an FPLC system. The analysis using isotope α-32p-dCTP incorporation in vitro showed that the purified recombinant POL λ2 exhibited DNA polymerase activity.

  11. Tissue-specific variation in DNA methylation levels along human chromosome 1

    Directory of Open Access Journals (Sweden)

    De Bustos Cecilia

    2009-06-01

    Full Text Available Abstract Background DNA methylation is a major epigenetic modification important for regulating gene expression and suppressing spurious transcription. Most methods to scan the genome in different tissues for differentially methylated sites have focused on the methylation of CpGs in CpG islands, which are concentrations of CpGs often associated with gene promoters. Results Here, we use a methylation profiling strategy that is predominantly responsive to methylation differences outside of CpG islands. The method compares the yield from two samples of size-selected fragments generated by a methylation-sensitive restriction enzyme. We then profile nine different normal tissues from two human donors relative to spleen using a custom array of genomic clones covering the euchromatic portion of human chromosome 1 and representing 8% of the human genome. We observe gross regional differences in methylation states across chromosome 1 between tissues from the same individual, with the most striking differences detected in the comparison of cerebellum and spleen. Profiles of the same tissue from different donors are strikingly similar, as are the profiles of different lobes of the brain. Comparing our results with published gene expression levels, we find that clones exhibiting extreme ratios reflecting low relative methylation are statistically enriched for genes with high expression ratios, and vice versa, in most pairs of tissues examined. Conclusion The varied patterns of methylation differences detected between tissues by our methylation profiling method reinforce the potential functional significance of regional differences in methylation levels outside of CpG islands.

  12. A novel rat genomic simple repeat DNA with RNA-homology shows triplex (H-DNA)-like structure and tissue-specific RNA expression

    International Nuclear Information System (INIS)

    Mammalian genome contains a wide variety of repetitive DNA sequences of relatively unknown function. We report a novel 227 bp simple repeat DNA (3.3 DNA) with a d {(GA) 7A (AG) 7} dinucleotide mirror repeat from the rat (Rattus norvegicus) genome. 3.3 DNA showed 75-85% homology with several eukaryotic mRNAs due to (GA/CU) n dinucleotide repeats by nBlast search and a dispersed distribution in the rat genome by Southern blot hybridization with [32P]3.3 DNA. The d {(GA) 7A (AG) 7} mirror repeat formed a triplex (H-DNA)-like structure in vitro. Two large RNAs of 9.1 and 7.5 kb were detected by [32P]3.3 DNA in rat brain by Northern blot hybridization indicating expression of such simple sequence repeats at RNA level in vivo. Further, several cDNAs were isolated from a rat cDNA library by [32P]3.3 DNA probe. Three such cDNAs showed tissue-specific RNA expression in rat. pRT 4.1 cDNA showed strong expression of a 2.39 kb RNA in brain and spleen, pRT 5.5 cDNA showed strong expression of a 2.8 kb RNA in brain and a 3.9 kb RNA in lungs, and pRT 11.4 cDNA showed weak expression of a 2.4 kb RNA in lungs. Thus, genomic simple sequence repeats containing d (GA/CT) n dinucleotides are transcriptionally expressed and regulated in rat tissues. Such d (GA/CT) n dinucleotide repeats may form structural elements (e.g., triplex) which may be sites for functional regulation of genomic coding sequences as well as RNAs. This may be a general function of such transcriptionally active simple sequence repeats widely dispersed in mammalian genome

  13. Bipartite recognition of DNA by TCF/Pangolin is remarkably flexible and contributes to transcriptional responsiveness and tissue specificity of wingless signaling.

    Directory of Open Access Journals (Sweden)

    Hilary C Archbold

    2014-09-01

    Full Text Available The T-cell factor (TCF family of transcription factors are major mediators of Wnt/β-catenin signaling in metazoans. All TCFs contain a High Mobility Group (HMG domain that possesses specific DNA binding activity. In addition, many TCFs contain a second DNA binding domain, the C-clamp, which binds to DNA motifs referred to as Helper sites. While HMG and Helper sites are both important for the activation of several Wnt dependent cis-regulatory modules (W-CRMs, the rules of what constitutes a functional HMG-Helper site pair are unknown. In this report, we employed a combination of in vitro binding, reporter gene analysis and bioinformatics to address this question, using the Drosophila family member TCF/Pangolin (TCF/Pan as a model. We found that while there were constraints for the orientation and spacing of HMG-Helper pairs, the presence of a Helper site near a HMG site in any orientation increased binding and transcriptional response, with some orientations displaying tissue-specific patterns. We found that altering an HMG-Helper site pair from a sub-optimal to optimal orientation/spacing dramatically increased the responsiveness of a W-CRM in several fly tissues. In addition, we used the knowledge gained to bioinformatically identify two novel W-CRMs, one that was activated by Wnt/β-catenin signaling in the prothoracic gland, a tissue not previously connected to this pathway. In sum, this work extends the importance of Helper sites in fly W-CRMs and suggests that the type of HMG-Helper pair is a major factor in setting the threshold for Wnt activation and tissue-responsiveness.

  14. Cold-Induced Browning Dynamically Alters the Expression Profiles of Inflammatory Adipokines with Tissue Specificity in Mice

    Directory of Open Access Journals (Sweden)

    Xiao Luo

    2016-05-01

    Full Text Available Cold exposure or β3-adrenoceptor agonist treatment induces the adipose tissues remodeling, relevant for beige adipogenesis within white adipose tissue (WAT. It remains unclear whether this process influences inflammatory adipokines expression in adipose tissues. We determine the temporal profile of cold or β3-adrenoceptor agonist (CL316,243-induced changes in the expression of inflammatory adipokines in adipose tissues in mice or primary mice adipocytes. Male C57BL/6J mice at eight weeks old were exposed to 4 °C for 1–5 days. Interscapular brown adipose tissue (iBAT, inguinal subcutaneous WAT (sWAT and epididymal WAT (eWAT were harvested for gene and protein expression analysis. In addition, cultured primary mice brown adipocyte (BA and white adipocyte (WA treated with or without CL316,243 were harvested for gene expression analysis. The inflammatory adipokines expressed significantly higher in WAT than BAT at baseline. They were rapidly changed in iBAT, while down-regulated in sWAT and up-regulated in eWAT during the cold acclimation. Upon CL316,243 treatment, detected inflammatory adipokines except Leptin were transiently increased in both BA and WA. Our in vivo and in vitro data demonstrate that the browning process alters the inflammatory adipokines expression in adipose tissues, which is acutely responded to in iBAT, dynamically decreased in sWAT whilst increased in eWAT for compensation.

  15. Different cis-Regulatory DNA Elements Mediate Developmental Stage- and Tissue-specific Expression of the Human COL2A1 Gene in Transgenic Mice

    OpenAIRE

    Leung, Keith K.H.; Ng, Ling Jim; Ho, Ken K.Y.; Tam, Patrick P L; Cheah, Kathryn S. E.

    1998-01-01

    Expression of the type II collagen gene (human COL2A1, mouse Col2a1) heralds the differentiation of chondrocytes. It is also expressed in progenitor cells of some nonchondrogenic tissues during embryogenesis. DNA sequences in the 5' flanking region and intron 1 are known to control tissue- specific expression in vitro, but the regulation of COL2A1 expression in vivo is not clearly understood. We have tested the regulatory activity of DNA sequences from COL2A1 on the expression of a lacZ repor...

  16. DNA extracted from saliva for methylation studies of psychiatric traits: evidence tissue specificity and relatedness to brain.

    Science.gov (United States)

    Smith, Alicia K; Kilaru, Varun; Klengel, Torsten; Mercer, Kristina B; Bradley, Bekh; Conneely, Karen N; Ressler, Kerry J; Binder, Elisabeth B

    2015-01-01

    DNA methylation has become increasingly recognized in the etiology of psychiatric disorders. Because brain tissue is not accessible in living humans, epigenetic studies are most often conducted in blood. Saliva is often collected for genotyping studies but is rarely used to examine DNA methylation because the proportion of epithelial cells and leukocytes varies extensively between individuals. The goal of this study was to evaluate whether saliva DNA is informative for studies of psychiatric disorders. DNA methylation (HumanMethylation450 BeadChip) was assessed in saliva and blood samples from 64 adult African Americans. Analyses were conducted using linear regression adjusted for appropriate covariates, including estimated cellular proportions. DNA methylation from brain tissues (cerebellum, frontal cortex, entorhinal cortex, and superior temporal gyrus) was obtained from a publically available dataset. Saliva and blood methylation was clearly distinguishable though there was positive correlation overall. There was little correlation in CpG sites within relevant candidate genes. Correlated CpG sites were more likely to occur in areas of low CpG density (i.e., CpG shores and open seas). There was more variability in CpG sites from saliva than blood, which may reflect its heterogeneity. Finally, DNA methylation in saliva appeared more similar to patterns from each of the brain regions examined overall than methylation in blood. Thus, this study provides a framework for using DNA methylation from saliva and suggests that DNA methylation of saliva may offer distinct opportunities for epidemiological and longitudinal studies of psychiatric traits.

  17. Evolution of tissue-specific keratins as deduced from novel cDNA sequences of the lungfish Protopterus aethiopicus.

    Science.gov (United States)

    Schaffeld, Michael; Bremer, Miriam; Hunzinger, Christian; Markl, Jürgen

    2005-03-01

    Lungfishes are possibly the closest extant relatives of the land vertebrates (tetrapods). We report here the cDNA and predicted amino acid sequences of 13 different keratins (ten type I and three type II) of the lungfish Protopterus aethiopicus. These keratins include the orthologs of human K8 and K18. The lungfish keratins were also identified in tissue extracts using two-dimensional polyacrylamide gel electrophoresis, keratin blot binding assays and immunoblotting. The identified keratin spots were analyzed by peptide mass fingerprinting which assigned seven sequences (inclusively Protopterus K8 and K18) to their respective protein spot. The peptide mass fingerprints also revealed the fact that the major epidermal type I and type II keratins of this lungfish have not yet been sequenced. Nevertheless, phylogenetic trees constructed from multiple sequence alignments of keratins from lungfish and distantly related vertebrates such as lamprey, shark, trout, frog, and human reveal new insights into the evolution of K8 and K18, and unravel a variety of independent keratin radiation events. PMID:15819414

  18. Identification of a proglucagon cDNA from Rana tigrina rugulosa that encodes two GLP-1s and that is alternatively spliced in a tissue-specific manner.

    Science.gov (United States)

    Yeung, C M; Chow, B K

    2001-11-01

    Glucagon plays a pivotal role in the regulation of metabolism. A glucagon receptor has been previously characterized in the frog, Rana tigrina rugulosa, and the frog and human glucagon receptors have been shown to possess similar binding affinities toward human glucagon. To study the structural evolution of glucagon peptide and its receptor in vertebrates, in the current study, a proglucagon cDNA from the same frog species was cloned. Interestingly, in contrast to the mammalian proglucagons that contain only one GLP-1 peptide, the frog proglucagon cDNA encodes two GLP-1 peptides (GLP-1A and GLP-1B) in addition to a glucagon peptide and a glucagon-like peptide 2 (GLP-2). By reverse transcriptase-PCR (RT-PCR) analysis, the proglucagon gene expression was widely detected in the brain, colon, small intestine, liver, lung, and pancreas, suggesting that the proglucagon-derived peptides have diverse functions in frogs. Moreover, tissue-specific alternative mRNA splicing was observed in the brain, colon, and pancreas. In these tissues, proglucagon transcripts with a 135 bp in frame deletion encoding GLP-1A were found. This splicing event in R. tigrina rugulosa is novel because it deletes a GLP-1 encoding sequence instead of the GLP-2 observed in other vertebrates. These findings should enhance understanding of the proglucagon evolution, structure, and expression in vertebrates. PMID:11703080

  19. Differential gene expression and characterization of tissue-specific cDNA clones in oil palm using mRNA differential display.

    Science.gov (United States)

    San, Cha Thye; Shah, Farida Habib

    2005-12-01

    The mRNA differential display method was utilized to study the differential expression and regulation of genes in two species of oil palm, the commercially grown variety Elaeis guineensis, var. tenera and the South American species, Elaeis oleifera. We demonstrated the differential expression of genes in the mesocarp and kernel at the week of active oil synthesis (15 week after anthesis) during fruit development as compare to the roots and leaves and the isolation of tissue-specific and species-specific cDNA clones. A total of eight specific cDNA clones were isolated and their specificities were confirmed by Northern hybridization and classified into three groups. Group one contains four clones (KT3, KT4, KT5 and KT6) that are kernel-specific for E. guineensis, tenera and E. oleifera. The second group represents clone FST1, which is mesocarp and kernel-specific for E. guineensis, tenera and E. oleifera. The third group represents clones MLT1, MLT2 and MLO1 that are mesocarp and leaf-specific. Northern analysis showed that their expressions were developmentally regulated. Nucleotide sequencing and homology search in GenBank data revealed that clones KT3 and KT4 encode for the same maturation protein PM3. While clones MLT1 and MLT2 encode for S-ribonuclease binding protein and fibrillin, respectively. The other clones (KT5, KT6, FST1 and MLO1) did not display any significant homology to any known protein. PMID:16328884

  20. Identification of tissue-specific DNA-protein binding sites by means of two-dimensional electrophoretic mobility shift assay display.

    Science.gov (United States)

    Chernov, Igor P; Timchenko, Kira A; Akopov, Sergey B; Nikolaev, Lev G; Sverdlov, Eugene D

    2007-05-01

    We developed a technique of differential electrophoretic mobility shift assay (EMSA) display allowing identification of tissue-specific protein-binding sites within long genomic sequences. Using this approach, we identified 10 cell type-specific protein-binding sites (protein target sites [PTSs]) within a 137-kb human chromosome 19 region. In general, tissue-specific binding of proteins from different nuclear extracts by individual PTSs did not follow the all-or-nothing principle. Most often, PTS-protein complexes were formed in all cases, but they were different for different nuclear extracts used. PMID:17359930

  1. Alterations of ultraviolet irradiated DNA

    International Nuclear Information System (INIS)

    Thymine dimers production has been studied in several DNA-3H irradiated at various wave lenght of U.V. Light. The influence of dimers on the hydrodynamic and optic properties, thermal structural stability and transformant capacity of DNA have been studied too. At last the recognition and excision of dimers by the DNA-UV-Endonuclease and DNA-Polimerase-I was also studied. (author)

  2. [Tissue-specific Changes in the Polymorphism of Simple Repeats in DNA of the Offspring of Different Sex Born from Irradiated Male or Female Mice].

    Science.gov (United States)

    Lomaeva, M G; Fomenko, L A; Vasil'eva, G V; Bezlepkin, V G

    2016-01-01

    Evidence is presented indicating the differences in the polymorphism of microsatellite (MCS) repeats in DNA of somatic tissues in the offspring of BALB/c mice of different sex born from preconceptionally irradiated males or females. Brother-sister groups of the offspring born by non-irradiated parental pairs were compared with the offspring obtained after the irradiation of one parent in the same pairs. The number of MCS repeats in DNA of somatic tissues of the offspring from irradiated males or females was compared by a polymerase chain reaction using an arbitrary primer. It was found that changes in the polymorphism of the number of MCS repeats in the offspring from the males irradiated at a dose of 2 Gy was insignificant as compared with the offspring from control animals. In the offspring born by the females irradiated at a dose of 2 Gy (which does not impair the reproductive capacity), a statistically significant increase in the polymorphism was observed. Changes in the polymorphism were different in the offspring of different sex. A higher level of polymorphism was revealed in the female offspring born from the females of the F0 generation after their irradiation at a dose of 2 Gy. The increase in the polymorphism of the number of MCS repeats in DNA was more pronounced in postmitotic tissues compared with proliferating tissues. PMID:27534065

  3. HA novel approach to investigate tissue-specific trinucleotide repeat instability

    Directory of Open Access Journals (Sweden)

    Boily Marie-Josee

    2010-03-01

    Full Text Available Abstract Background In Huntington's disease (HD, an expanded CAG repeat produces characteristic striatal neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could modify the disease process. Therefore, understanding the mechanisms underlying the tissue specificity of somatic instability may provide novel routes to therapies. However progress in this area has been hampered by the lack of sensitive high-throughput instability quantification methods and global approaches to identify the underlying factors. Results Here we describe a novel approach to gain insight into the factors responsible for the tissue specificity of somatic instability. Using accurate genetic knock-in mouse models of HD, we developed a reliable, high-throughput method to quantify tissue HD CAG repeat instability and integrated this with genome-wide bioinformatic approaches. Using tissue instability quantified in 16 tissues as a phenotype and tissue microarray gene expression as a predictor, we built a mathematical model and identified a gene expression signature that accurately predicted tissue instability. Using the predictive ability of this signature we found that somatic instability was not a consequence of pathogenesis. In support of this, genetic crosses with models of accelerated neuropathology failed to induce somatic instability. In addition, we searched for genes and pathways that correlated with tissue instability. We found that expression levels of DNA repair genes did not explain the tissue specificity of somatic instability. Instead, our data implicate other pathways, particularly cell cycle, metabolism and neurotransmitter pathways, acting in combination to generate tissue-specific patterns of instability. Conclusion Our study clearly demonstrates that multiple tissue factors reflect the level of

  4. Triple helix DNA alters nucleosomal histone-DNA interactions and acts as a nucleosome barrier.

    OpenAIRE

    Westin, L; Blomquist, P.; Milligan, J F; Wrange, O

    1995-01-01

    Oligonucleotides which form triple helical complexes on double-stranded DNA have been previously reported to selectively inhibit transcription both in vitro and in vivo by physically blocking RNA polymerase or transcription factor access to the DNA template. Here we show that a 16mer oligonucleotide, which forms triple helix DNA by binding to a 16 bp homopurine segment, alters the formation of histone-DNA contacts during in vitro nucleosome reconstitution. This effect was DNA sequence-specifi...

  5. DNA alterations photosensitized by tetracycline and some of its derivatives

    International Nuclear Information System (INIS)

    Bacteriophage M13 mp10 DNA were irradiated with near-UV light in the presence of tetracycline derivatives and primed with synthetic oligonucleotide to be used for DNA synthesis using Escherichia coli DNA polymerase. Chain terminations were observed by denaturing polyacrylamide gel electrophoresis and mapped precisely. All the synthesis stops occurred before or at the level of guanine residues, showing that the photoreaction mediated by tetracycline derivatives led to a preferential alteration of guanine residues. These lesions were demonstrated to be induced in DNA through a pathway involving singlet oxygen. Tetracycline derivatives also photoinduced the breakage of the DNA sugar-phosphate backbone monitored by the conversion of supercoiled phi X174 DNA to a relaxed form. This lesion was shown to be initiated by hydroxyl radicals. The production of this free radical has been confirmed by electron paramagnetic resonance (EPR) spin trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide as spin trap. In addition to the EPR signal due to OH radicals trapping another unassigned signal has been detected

  6. DNA methylation alterations in grade II- and anaplastic pleomorphic xanthoastrocytoma

    International Nuclear Information System (INIS)

    Pleomorphic xanthoastrocytoma (PXA) is a rare WHO grade II tumor accounting for less than 1% of all astrocytomas. Malignant transformation into PXA with anaplastic features, is unusual and correlates with poorer outcome of the patients. Using a DNA methylation custom array, we have quantified the DNA methylation level on the promoter sequence of 807 cancer-related genes of WHO grade II (n = 11) and III PXA (n = 2) and compared to normal brain tissue (n = 10) and glioblastoma (n = 87) samples. DNA methylation levels were further confirmed on independent samples by pyrosequencing of the promoter sequences. Increasing DNA promoter hypermethylation events were observed in anaplastic PXA as compared with grade II samples. We further validated differential hypermethylation of CD81, HCK, HOXA5, ASCL2 and TES on anaplastic PXA and grade II tumors. Moreover, these epigenetic alterations overlap those described in glioblastoma patients, suggesting common mechanisms of tumorigenesis. Even taking into consideration the small size of our patient populations, our data strongly suggest that epigenome-wide profiling of PXA is a valuable tool to identify methylated genes, which may play a role in the malignant progression of PXA. These methylation alterations may provide useful biomarkers for decision-making in those patients with low-grade PXA displaying a high risk of malignant transformation

  7. Construction of Midgut Tissue-Specific cDNA Library of Bombyx mandarina M. and Isolation and Sequence Analysis of Serine Protease Gene Fragment%野桑蚕中肠组织cDNA文库的构建及丝氨酸蛋白酶基因片段的克隆与序列分析

    Institute of Scientific and Technical Information of China (English)

    王燕红; 李兵; 王东; 朱莎; 赵华强; 卫正国; 沈卫德

    2008-01-01

    [Objective] The aim of the study is to construct cDNA library of midgut tissue of wild silkworm and isolate the serine protease gene. [Method] The midgut tissue-specific cDNA library of wild silkworm was constructed via cDNA Library Construction Kit (TaKaRa), then the serine protease gene was cloned via sequencing of the yielded cDNA library. [Result] The titer of cDNA library reached 6.2×105 pfu/ml, average insert size was about 1.2 kb. The serine protease gene cDNA fragment was obtained from colony sequencing (Accession No: EU672968). The nucleotide sequence of the cloned 854 bp fragment encodes 284 amino acid residues. Homology analyses showed some homology between putative amino acid sequence of the cloned fragment and amino acid sequences of serine proteases from other ten insects. [Conclusion] The results may avail to reveal the resistance of silkworm and wild silkworm to exotic intrusion.

  8. Positional bias of general and tissue-specific regulatory motifs in mouse gene promoters

    Directory of Open Access Journals (Sweden)

    Farré Domènec

    2007-12-01

    Full Text Available Abstract Background The arrangement of regulatory motifs in gene promoters, or promoter architecture, is the result of mutation and selection processes that have operated over many millions of years. In mammals, tissue-specific transcriptional regulation is related to the presence of specific protein-interacting DNA motifs in gene promoters. However, little is known about the relative location and spacing of these motifs. To fill this gap, we have performed a systematic search for motifs that show significant bias at specific promoter locations in a large collection of housekeeping and tissue-specific genes. Results We observe that promoters driving housekeeping gene expression are enriched in particular motifs with strong positional bias, such as YY1, which are of little relevance in promoters driving tissue-specific expression. We also identify a large number of motifs that show positional bias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specific motifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis, as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictions for 559 tissue-specific motifs in mouse gene promoters. Conclusion The study shows that motif positional bias is an important feature of mammalian proximal promoters and that it affects both general and tissue-specific motifs. Motif positional constraints define very distinct promoter architectures depending on breadth of expression and type of tissue.

  9. Evaluation of human sperm DNA alterations: comet assay

    International Nuclear Information System (INIS)

    Full text: Reactive oxygen species would be able to generate base oxidation and strand breaks at the sperm DNA. These alterations could impair the embryo development or the differentiation of any of the embryonic cellular progenies if the fertilization takes place. The aim of the study was to develop the method of single cell gel electrophoresis or comet assay, with slight modifications, in order to investigate the effects on human sperm DNA caused by the oxidative stress induced by H2O2 or the exposure to ionizing radiation. Motile spermatozoa from samples of normozoospermic donors were exposed to increasing concentrations of H2O2 (17,6 μM to 140,8 μM) or UV radiation (15 W for 1 h). Then, the sperm cells, included in 1% agarose gels, were electrophoresed under alkaline conditions (20 V for 5 min). The sperm DNA was stained with the silver method. The total length of sperm DNA migration for each treatment group was assessed using a microscope. The statistical analysis of the mean results among the different treatments was performed by the ANOVA test followed by the Dunn' test or by the Student t-test when only one treatment was applied. The results of the comet assays showed significant dose-dependent increases in sperm DNA migration for spermatozoa treated with H2O2 respect to controls (p 2O2 treatment, the UV radiation would cause the cross-linking of the nucleotides, which could explain the observed results. The comet assay appears to be a sensitive method to assess potential damages in human sperm DNA. (author)

  10. Tissue-specific splicing mutation in acute intermittent porphyria

    International Nuclear Information System (INIS)

    An inherited deficiency of porphobilinogen deaminase in humans is responsible for the autosomal dominant disease acute intermittent porphyria. Different classes of mutations have been described at the protein level suggesting that this is a heterogeneous disease. It was previously demonstrated that porphobilinogen deaminase is encoded by two distinct mRNA species expressed in a tissue-specific manner. Analysis of the genomic sequences indicated that these two mRNAs are transcribed from two promoters and only differ in their first exon. The first mutation identified in the human porphobilinogen deaminase gene is a single-base substitution (G → A) in the canonical 5' splice donor site of intron 1. This mutation leads to a particular subtype of acute intermittent porphyria characterized by the restriction of the enzymatic defect to nonerythropoietic tissues. Hybridization analysis using olignonucleotide probes after in vitro amplification of genomic DNA offers another possibility of detecting asymptomatic carriers of the mutation in affected families

  11. Altered DNA methylation in leukocytes with trisomy 21.

    Directory of Open Access Journals (Sweden)

    Kristi Kerkel

    2010-11-01

    Full Text Available The primary abnormality in Down syndrome (DS, trisomy 21, is well known; but how this chromosomal gain produces the complex DS phenotype, including immune system defects, is not well understood. We profiled DNA methylation in total peripheral blood leukocytes (PBL and T-lymphocytes from adults with DS and normal controls and found gene-specific abnormalities of CpG methylation in DS, with many of the differentially methylated genes having known or predicted roles in lymphocyte development and function. Validation of the microarray data by bisulfite sequencing and methylation-sensitive Pyrosequencing (MS-Pyroseq confirmed strong differences in methylation (p<0.0001 for each of 8 genes tested: TMEM131, TCF7, CD3Z/CD247, SH3BP2, EIF4E, PLD6, SUMO3, and CPT1B, in DS versus control PBL. In addition, we validated differential methylation of NOD2/CARD15 by bisulfite sequencing in DS versus control T-cells. The differentially methylated genes were found on various autosomes, with no enrichment on chromosome 21. Differences in methylation were generally stable in a given individual, remained significant after adjusting for age, and were not due to altered cell counts. Some but not all of the differentially methylated genes showed different mean mRNA expression in DS versus control PBL; and the altered expression of 5 of these genes, TMEM131, TCF7, CD3Z, NOD2, and NPDC1, was recapitulated by exposing normal lymphocytes to the demethylating drug 5-aza-2'deoxycytidine (5aza-dC plus mitogens. We conclude that altered gene-specific DNA methylation is a recurrent and functionally relevant downstream response to trisomy 21 in human cells.

  12. Methods to alter levels of a DNA repair protein

    Science.gov (United States)

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-10-17

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  13. Mitochondrial DNA alterations of peripheral lymphocytes in acute lymphoblastic leukemia patients undergoing total body irradiation therapy

    International Nuclear Information System (INIS)

    Mitochondrial DNA (mtDNA) alterations, including mtDNA copy number and mtDNA 4977 bp common deletion (CD), are key indicators of irradiation-induced damage. The relationship between total body irradiation (TBI) treatment and mtDNA alterations in vivo, however, has not been postulated yet. The aim of this study is to analyze mtDNA alterations in irradiated human peripheral lymphocytes from acute lymphoblastic leukemia (ALL) patients as well as to take them as predictors for radiation toxicity. Peripheral blood lymphocytes were isolated from 26 ALL patients 24 hours after TBI preconditioning (4.5 and 9 Gy, respectively). Extracted DNA was analyzed by real-time PCR method. Average 2.31 times mtDNA and 0.53 fold CD levels were observed after 4.5 Gy exposure compared to their basal levels. 9 Gy TBI produced a greater response of both mtDNA and CD levels than 4.5 Gy. Significant inverse correlation was found between mtDNA content and CD level at 4.5 and 9 Gy (P = 0.037 and 0.048). Moreover, mtDNA content of lymphocytes without irradiation was found to be correlated to age. mtDNA and CD content may be considered as predictive factors to radiation toxicity

  14. Mitochondrial DNA alterations of peripheral lymphocytes in acute lymphoblastic leukemia patients undergoing total body irradiation therapy

    Directory of Open Access Journals (Sweden)

    Ji Fuyun

    2011-10-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA alterations, including mtDNA copy number and mtDNA 4977 bp common deletion (CD, are key indicators of irradiation-induced damage. The relationship between total body irradiation (TBI treatment and mtDNA alterations in vivo, however, has not been postulated yet. The aim of this study is to analyze mtDNA alterations in irradiated human peripheral lymphocytes from acute lymphoblastic leukemia (ALL patients as well as to take them as predictors for radiation toxicity. Methods Peripheral blood lymphocytes were isolated from 26 ALL patients 24 hours after TBI preconditioning (4.5 and 9 Gy, respectively. Extracted DNA was analyzed by real-time PCR method. Results Average 2.31 times mtDNA and 0.53 fold CD levels were observed after 4.5 Gy exposure compared to their basal levels. 9 Gy TBI produced a greater response of both mtDNA and CD levels than 4.5 Gy. Significant inverse correlation was found between mtDNA content and CD level at 4.5 and 9 Gy (P = 0.037 and 0.048. Moreover, mtDNA content of lymphocytes without irradiation was found to be correlated to age. Conclusions mtDNA and CD content may be considered as predictive factors to radiation toxicity.

  15. Prognostic value of DNA alterations on chromosome 17p13.2 for intrahepatic cholangiocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Ubol Chuensumran; Sopit Wongkham; Chawalit Pairojkul; Siri Chauin; Songsak Petmitr

    2007-01-01

    AIM: To characterize and evaluate DNA alterations among intrahepatic cholangiocarcinoma (ICC) patients.METHODS: DNA from tumor and corresponding normal tissues of 52 patients was amplified with 33 arbitrary primers. The DNA fragment that alters most frequently in ICC was cloned, sequenced, and identified by comparison with known nucleotide sequences in the genome database (www.ncbi.nlm.nih.gov). The DNA copy numbers of the allelic alterations in cholangiocarcinoma were determined by quantitative real-time PCR and interpreted as allelic loss or DNA amplification by comparison with the reference gene. Associations between allelic imbalance and clinicopathological parameters of ICC patients were evaluated by x2-test.The Kaplan-Meier method was used to analyze survival rates.RESULTS: From 33 primers, an altered DNA fragment (518 bp) amplified from BC17 random primer was found frequently in the tumors analyzed and mapped to chromosome 17p13.2. Sixteen of 52 (31%) cases showed DNA amplification, while 7 (13%) showed allelic loss. Interestingly, DNA amplification on chromosome 17p13.2 was associated with a good prognosis, median survival time (wk) of amp vs no amp was 44.14 vs 24.14,P = 0.002; whereas allelic loss of this DNA sequence corresponded with a poor prognosis, median survival time (wk) of loss vs no loss was 18.00 vs 28.71, P =0.019). Moreover, Kaplan-Meier curves comparing the DNA alterations with survival depicted highly significant separation that the median survival time equal to DNA amplification, allelic loss, and normal was 44.14 wk,18.00 wk, and 24.29 wk, respectively (P = 0.005).CONCLUSION: Alterations in the DNA sequence on chromosome 17p13.2 may be involved in cholangiocarcinogenesis, and could be used as a prognostic marker in the treatment of ICC patients.

  16. Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hong Xian; Wen-Ming Cong; Shu-Hui Zhang; Meng-Chao Wu

    2005-01-01

    AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments.METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD)with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated,purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data.RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size,histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene.CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcinogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis.

  17. Mutations altering the interplay between GkDnaC helicase and DNA reveal an insight into helicase unwinding.

    Directory of Open Access Journals (Sweden)

    Yu-Hua Lo

    Full Text Available Replicative helicases are essential molecular machines that utilize energy derived from NTP hydrolysis to move along nucleic acids and to unwind double-stranded DNA (dsDNA. Our earlier crystal structure of the hexameric helicase from Geobacillus kaustophilus HTA426 (GkDnaC in complex with single-stranded DNA (ssDNA suggested several key residues responsible for DNA binding that likely play a role in DNA translocation during the unwinding process. Here, we demonstrated that the unwinding activities of mutants with substitutions at these key residues in GkDnaC are 2-4-fold higher than that of wild-type protein. We also observed the faster unwinding velocities in these mutants using single-molecule experiments. A partial loss in the interaction of helicase with ssDNA leads to an enhancement in helicase efficiency, while their ATPase activities remain unchanged. In strong contrast, adding accessory proteins (DnaG or DnaI to GkDnaC helicase alters the ATPase, unwinding efficiency and the unwinding velocity of the helicase. It suggests that the unwinding velocity of helicase could be modulated by two different pathways, the efficiency of ATP hydrolysis or protein-DNA interaction.

  18. Altered radiation recovery by DNA double-strand break inducers

    International Nuclear Information System (INIS)

    Identical biphasic time-dependent profiles of cell survival were obtained in V79 fibroblasts exposed to a split-dose protocol consisting of a fixed dose of γ-rays followed, at a variable time interval, either by a second exposure to radiation, or by contact with an equi-toxic amount of antitumor drugs acting to produce DNA double-strand breaks. The drugs used in this context were the neocarcinostatin antibiotic (NCS), which preferentially cleaves DNA in the linker region of nucleosomes, and etoposide (VP), whose major target is topoisomerase IIα, a nuclear matrix fraction-linked enzyme acting to relieve topological constraints in replicating DNA and mitotic chromosomes. Radiation-induced DNA strand break rejoining was not inhibited by either drug. The initial number of DNA strand breaks was consistently found o depend only on the radiation dose and/or on the drug concentration. However, the cytotoxicity they induced in combined treatment was determined in essence by the time elapsed after the first radiation exposure. While resistance to NCS and VP in non-irradiated, synchronized cells peaks in G2 phase of the cell cycle, enhanced drug susceptibility was observed within the radiation-induced G2 block. Concomitant exposure to drug and radiation also resulted in supra-additive cytotoxic interaction. Our data suggest that impaired split-dose radiation recovery dose not proceed from inhibition of DNA damage repair, but rather from additional double-strand breaks produced by drug or radiation during the time cells are in the dynamic process of DNA repair; a time range characterized by a dynamic DNA fragility. (authors)

  19. Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing.

    Directory of Open Access Journals (Sweden)

    Maria Gutierrez-Arcelus

    2015-01-01

    Full Text Available Understanding how genetic variation affects distinct cellular phenotypes, such as gene expression levels, alternative splicing and DNA methylation levels, is essential for better understanding of complex diseases and traits. Furthermore, how inter-individual variation of DNA methylation is associated to gene expression is just starting to be studied. In this study, we use the GenCord cohort of 204 newborn Europeans' lymphoblastoid cell lines, T-cells and fibroblasts derived from umbilical cords. The samples were previously genotyped for 2.5 million SNPs, mRNA-sequenced, and assayed for methylation levels in 482,421 CpG sites. We observe that methylation sites associated to expression levels are enriched in enhancers, gene bodies and CpG island shores. We show that while the correlation between DNA methylation and gene expression can be positive or negative, it is very consistent across cell-types. However, this epigenetic association to gene expression appears more tissue-specific than the genetic effects on gene expression or DNA methylation (observed in both sharing estimations based on P-values and effect size correlations between cell-types. This predominance of genetic effects can also be reflected by the observation that allele specific expression differences between individuals dominate over tissue-specific effects. Additionally, we discover genetic effects on alternative splicing and interestingly, a large amount of DNA methylation correlating to alternative splicing, both in a tissue-specific manner. The locations of the SNPs and methylation sites involved in these associations highlight the participation of promoter proximal and distant regulatory regions on alternative splicing. Overall, our results provide high-resolution analyses showing how genome sequence variation has a broad effect on cellular phenotypes across cell-types, whereas epigenetic factors provide a secondary layer of variation that is more tissue-specific. Furthermore

  20. Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish.

    Science.gov (United States)

    Gombeau, Kewin; Pereira, Sandrine; Ravanat, Jean-Luc; Camilleri, Virginie; Cavalie, Isabelle; Bourdineaud, Jean-Paul; Adam-Guillermin, Christelle

    2016-04-01

    We examined the effects of chronic exposure to different concentrations (2 and 20 μg L(-)(1)) of environmentally relevant waterborne depleted uranium (DU) on the DNA methylation patterns both at HpaII restriction sites (5'-CCGG-3') and across the whole genome in the zebrafish brain, gonads, and eyes. We first identified sex-dependent differences in the methylation level of HpaII sites after exposure. In males, these effects were present as early as 7 days after exposure to 20 μg L(-)(1) DU, and were even more pronounced in the brain, gonads, and eyes after 24 days. However, in females, hypomethylation was only observed in the gonads after exposure to 20 μg L(-)(1) DU for 24 days. Sex-specific effects of DU were also apparent at the whole-genome level, because in males, exposure to 20 μg L(-)(1) DU for 24 days resulted in cytosine hypermethylation in the brain and eyes and hypomethylation in the gonads. In contrast, in females, hypermethylation was observed in the brain after exposure to both concentrations of DU for 7 days. Based on our current knowledge of uranium toxicity, several hypotheses are proposed to explain these findings, including the involvement of oxidative stress, alteration of demethylation enzymes and the calcium signaling pathway. This study reports, for the first time, the sex- and tissue-specific epigenetic changes that occur in a nonhuman organism after exposure to environmentally relevant concentrations of uranium, which could induce transgenerational epigenetic effects. PMID:26829549

  1. Tissue-specific tagging of endogenous loci in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kate Koles

    2016-01-01

    Full Text Available Fluorescent protein tags have revolutionized cell and developmental biology, and in combination with binary expression systems they enable diverse tissue-specific studies of protein function. However these binary expression systems often do not recapitulate endogenous protein expression levels, localization, binding partners and/or developmental windows of gene expression. To address these limitations, we have developed a method called T-STEP (tissue-specific tagging of endogenous proteins that allows endogenous loci to be tagged in a tissue specific manner. T-STEP uses a combination of efficient CRISPR/Cas9-enhanced gene targeting and tissue-specific recombinase-mediated tag swapping to temporally and spatially label endogenous proteins. We have employed this method to GFP tag OCRL (a phosphoinositide-5-phosphatase in the endocytic pathway and Vps35 (a Parkinson's disease-implicated component of the endosomal retromer complex in diverse Drosophila tissues including neurons, glia, muscles and hemocytes. Selective tagging of endogenous proteins allows, for the first time, cell type-specific live imaging and proteomics in complex tissues.

  2. RNA-Cleaving DNA Enzymes with Altered Regio- or Enantioselectivity

    Science.gov (United States)

    Ordoukhanian, Phillip; Joyce, Gerald F.

    2002-01-01

    In vitro evolution methods were used to obtain DNA enzymes that cleave either a 2',5' - phosphodiester following a wibonucleotide or a 3',5' -phosphodiester following an L-ribonucleotide. Both enzymes can operate in an intermolecular reaction format with multiple turnover. The DNA enzyme that cleaves a 2',5' -phosphodiester exhibits a k(sub cat) of approx. 0.01/ min and catalytic efficiency, k(sub cat)/k(sub m) of approx. 10(exp 5)/ M min. The enzyme that cleaves an L-ribonudeotide is about 10-fold slower and has a catalytic efficiency of approx. 4 x 10(exp 5)/ M min. Both enzymes require a divalent metal cation for their activity and have optimal catalytic rate at pH 7-8 and 35-50 C. In a comparison of each enzyme s activity with either its corresponding substrate that contains an unnatural ribonudeotide or a substrate that instead contains a standard ribonucleotide, the 2',5' -phosphodiester-deaving DNA enzyme exhibited a regioselectivity of 6000- fold, while the L-ribonucleotide-cleaving DNA enzyme exhibited an enantioselectivity of 50-fold. These molecules demonstrate how in vitro evolution can be used to obtain regio- and enantioselective catalysts that exhibit specificities for nonnatural analogues of biological compounds.

  3. Epigenetic alterations in gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    In-Seon CHOI; Tsung-Teh WU

    2005-01-01

    Gastric cancer is believed to result in part from the accumulation of multiple genetic alterations leading to oncogene overexpression and tumor suppressor loss. Epigenetic alterations as a distinct and crucial mechanism to silence a variety of methylated tissue-specific and imprinted genes, have been extensively studied in gastric carcinoma and play important roles in gastric carcinogenesis. This review will briefly discuss the basic aspects of DNA methylation and CpG island methylation, in particular the epigenetic alterations of certain critical genes implicated in gastric carcinogenesis and its relevance of clinical implications.

  4. Housekeeping and tissue-specific genes in mouse tissues

    OpenAIRE

    St-Amand Jonny; Yoshioka Mayumi; Cadrin-Girard Jean F; Nishida Yuichiro; Kouadjo Kouame E

    2007-01-01

    Abstract Background This study aims to characterize the housekeeping and tissue-specific genes in 15 mouse tissues by using the serial analysis of gene expression (SAGE) strategy which indicates the relative level of expression for each transcript matched to the tag. Results Here, we identified constantly expressed housekeeping genes, such as eukaryotic translation elongation factor 2, which is expressed in all tissues without significant difference in expression levels. Moreover, most of the...

  5. Housekeeping and tissue-specific genes in mouse tissues

    Directory of Open Access Journals (Sweden)

    St-Amand Jonny

    2007-05-01

    Full Text Available Abstract Background This study aims to characterize the housekeeping and tissue-specific genes in 15 mouse tissues by using the serial analysis of gene expression (SAGE strategy which indicates the relative level of expression for each transcript matched to the tag. Results Here, we identified constantly expressed housekeeping genes, such as eukaryotic translation elongation factor 2, which is expressed in all tissues without significant difference in expression levels. Moreover, most of these genes were not regulated by experimental conditions such as steroid hormones, adrenalectomy and gonadectomy. In addition, we report previously postulated housekeeping genes such as peptidyl-prolyl cis-trans isomerase A, glyceraldehyde-3-phosphate dehydrogenase and beta-actin, which are expressed in all the tissues, but with significant difference in their expression levels. We have also identified genes uniquely detected in each of the 15 tissues and other tissues from public databases. Conclusion These identified housekeeping genes could represent appropriate controls for RT-PCR and northern blot when comparing the expression levels of genes in several tissues. The results reveal several tissue-specific genes highly expressed in testis and pituitary gland. Furthermore, the main function of tissue-specific genes expressed in liver, lung and bone is the cell defence, whereas several keratins involved in cell structure function are exclusively detected in skin and vagina. The results from this study can be used for example to target a tissue for agent delivering by using the promoter of tissue-specific genes. Moreover, this study could be used as basis for further researches on physiology and pathology of these tissues.

  6. Tissue-specific splicing factor gene expression signatures

    OpenAIRE

    Grosso, A. R.; Gomes, Anita; Barbosa-Morais, Nuno; Caldeira, Sandra; Thorne, Natalie; Grech, Godfrey; Lindern, Marieke; Carmo-Fonseca, Maria

    2008-01-01

    textabstractThe alternative splicing code that controls and coordinates the transcriptome in complex multicellular organisms remains poorly understood. It has long been argued that regulation of alternative splicing relies on combinatorial interactions between multiple proteins, and that tissue-specific splicing decisions most likely result from differences in the concentration and/or activity of these proteins. However, large-scale data to systematically address this issue have just recently...

  7. Predicting Tissue-Specific Enhancers in the Human Genome

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Loots, Gabriela G.; Nobrega, Marcelo A.; Ovcharenko, Ivan

    2006-07-01

    Determining how transcriptional regulatory signals areencoded in vertebrate genomes is essential for understanding the originsof multi-cellular complexity; yet the genetic code of vertebrate generegulation remains poorly understood. In an attempt to elucidate thiscode, we synergistically combined genome-wide gene expression profiling,vertebrate genome comparisons, and transcription factor binding siteanalysis to define sequence signatures characteristic of candidatetissue-specific enhancers in the human genome. We applied this strategyto microarray-based gene expression profiles from 79 human tissues andidentified 7,187 candidate enhancers that defined their flanking geneexpression, the majority of which were located outside of knownpromoters. We cross-validated this method for its ability to de novopredict tissue-specific gene expression and confirmed its reliability in57 of the 79 available human tissues, with an average precision inenhancer recognition ranging from 32 percent to 63 percent, and asensitivity of 47 percent. We used the sequence signatures identified bythis approach to assign tissue-specific predictions to ~;328,000human-mouse conserved noncoding elements in the human genome. Byoverlapping these genome-wide predictions with a large in vivo dataset ofenhancers validated in transgenic mice, we confirmed our results with a28 percent sensitivity and 50 percent precision. These results indicatethe power of combining complementary genomic datasets as an initialcomputational foray into the global view of tissue-specific generegulation in vertebrates.

  8. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    Science.gov (United States)

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  9. Flow cytometric analysis of oil palm: a preliminary analysis for cultivars and genomic DNA alteration

    Directory of Open Access Journals (Sweden)

    Warawut Chuthammathat

    2005-12-01

    Full Text Available DNA contents of oil palm (Elaeis guineensis Jacq. cultivars were analyzed by flow cytometry using different external reference plant species. Analysis using corn (Zea mays line CE-777 as a reference plant gave the highest DNA content of oil palm (4.72±0.23 pg 2C-1 whereas the DNA content was found to be lower when using soybean (Glycine max cv. Polanka (3.77±0.09 pg 2C-1 or tomato (Lycopersicon esculentum cv. Stupicke (4.25±0.09 pg 2C-1 as a reference. The nuclear DNA contents of Dura (D109, Pisifera (P168 and Tenera (T38 cultivars were 3.46±0.04, 3.24±0.03 and 3.76±0.04 pg 2C-1 nuclei, respectively, using soybean as a reference. One haploid genome of oil palm therefore ranged from 1.56 to 1.81±109 base pairs. DNA contents from one-year-old calli and cell suspension of oil palm were found to be significantly different from those of seedlings. It thus should be noted that genomic DNA alteration occurred in these cultured tissues. We therefore confirm that flow cytometric analysis could verify cultivars, DNA content and genomic DNA alteration of oil palm using soybean as an external reference standard.

  10. Altered Specificity of DNA-Binding Proteins with Transition Metal Dimerization Domains

    Science.gov (United States)

    Cuenoud, Bernard; Schepartz, Alanna

    1993-01-01

    The bZIP motif is characterized by a leucine zipper domain that mediates dimerization and a basic domain that contacts DNA. A series of transition metal dimerization domains were used to alter systematically the relative orientation of basic domain peptides. Both the affinity and the specificity of the peptide-DNA interaction depend on domain orientation. These results indicate that the precise configuration linking the domains is important; dimerization is not always sufficient for DNA binding. This approach to studying the effect of orientation on protein function complements mutagenesis and could be used in many systems.

  11. Predicting tissue-specific expressions based on sequence characteristics

    KAUST Repository

    Paik, Hyojung

    2011-04-30

    In multicellular organisms, including humans, understanding expression specificity at the tissue level is essential for interpreting protein function, such as tissue differentiation. We developed a prediction approach via generated sequence features from overrepresented patterns in housekeeping (HK) and tissue-specific (TS) genes to classify TS expression in humans. Using TS domains and transcriptional factor binding sites (TFBSs), sequence characteristics were used as indices of expressed tissues in a Random Forest algorithm by scoring exclusive patterns considering the biological intuition; TFBSs regulate gene expression, and the domains reflect the functional specificity of a TS gene. Our proposed approach displayed better performance than previous attempts and was validated using computational and experimental methods.

  12. AID to overcome the limitations of genomic information by introducing somatic DNA alterations.

    Science.gov (United States)

    Honjo, Tasuku; Muramatsu, Masamichi; Nagaoka, Hitoshi; Kinoshita, Kazuo; Shinkura, Reiko

    2006-05-01

    The immune system has adopted somatic DNA alterations to overcome the limitations of the genomic information. Activation induced cytidine deaminase (AID) is an essential enzyme to regulate class switch recombination (CSR), somatic hypermutation (SHM) and gene conversion (GC) of the immunoglobulin gene. AID is known to be required for DNA cleavage of S regions in CSR and V regions in SHM. However, its molecular mechanism is a focus of extensive debate. RNA editing hypothesis postulates that AID edits yet unknown mRNA, to generate specific endonucleases for CSR and SHM. By contrast, DNA deamination hypothesis assumes that AID deaminates cytosine in DNA, followed by DNA cleavage by base excision repair enzymes. We summarize the basic knowledge for molecular mechanisms for CSR and SHM and then discuss the importance of AID not only in the immune regulation but also in the genome instability. PMID:25873751

  13. Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants.

    Directory of Open Access Journals (Sweden)

    Rui Wu

    Full Text Available BACKGROUND: Grafting has been extensively used to enhance the performance of horticultural crops. Since Charles Darwin coined the term "graft hybrid" meaning that asexual combination of different plant species may generate products that are genetically distinct, highly discrepant opinions exist supporting or against the concept. Recent studies have documented that grafting enables exchanges of both RNA and DNA molecules between the grafting partners, thus providing a molecular basis for grafting-induced genetic variation. DNA methylation is known as prone to alterations as a result of perturbation of internal and external conditions. Given characteristics of grafting, it is interesting to test whether the process may cause an alteration of this epigenetic marker in the grafted organismal products. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed relative global DNA methylation levels and locus-specific methylation patterns by the MSAP marker and locus-specific bisulfite-sequencing in the seed plants (wild-type controls, self- and hetero-grafted scions/rootstocks, selfed progenies of scions and their seed-plant controls, involving three Solanaceae species. We quantified expression of putative genes involved in establishing and/or maintaining DNA methylation by q-(RT-PCR. We found that (1 hetero-grafting caused extensive alteration of DNA methylation patterns in a locus-specific manner, especially in scions, although relative methylation levels remain largely unaltered; (2 the altered methylation patterns in the hetero-grafting-derived scions could be inherited to sexual progenies with some sites showing further alterations or revisions; (3 hetero-grafting caused dynamic changes in steady-state transcript abundance of genes encoding for a set of enzymes functionally relevant to DNA methylation. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that inter-species grafting in plants could produce extensive and heritable alterations in DNA methylation. We

  14. Tissue-specific sparse deconvolution for brain CT perfusion.

    Science.gov (United States)

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain.

  15. Laminin Mediates Tissue-specific Gene Expression in Mammary Epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Streuli, Charles H; Schmidhauser, Christian; Bailey, Nina; Yurchenco, Peter; Skubitz, Amy P. N.; Roskelley, Calvin; Bissell, Mina J

    1995-04-01

    Tissue-specific gene expression in mammary epithelium is dependent on the extracellular matrix as well as hormones. There is good evidence that the basement membrane provides signals for regulating beta-casein expression, and that integrins are involved in this process. Here, we demonstrate that in the presence of lactogenic hormones, laminin can direct expression of the beta-casein gene. Mouse mammary epithelial cells plated on gels of native laminin or laminin-entactin undergo functional differentiation. On tissue culture plastic, mammary cells respond to soluble basement membrane or purified laminin, but not other extracellular matrix components, by synthesizing beta-casein. In mammary cells transfected with chloramphenicol acetyl transferase reporter constructs, laminin activates transcription from the beta-casein promoter through a specific enhancer element. The inductive effect of laminin on casein expression was specifically blocked by the E3 fragment of the carboxy terminal region of the alpha 1 chain of laminin, by antisera raised against the E3 fragment, and by a peptide corresponding to a sequence within this region. Our results demonstrate that laminin can direct tissue-specific gene expression in epithelial cells through its globular domain.

  16. Tissue-specific sparse deconvolution for brain CT perfusion.

    Science.gov (United States)

    Fang, Ruogu; Jiang, Haodi; Huang, Junzhou

    2015-12-01

    Enhancing perfusion maps in low-dose computed tomography perfusion (CTP) for cerebrovascular disease diagnosis is a challenging task, especially for low-contrast tissue categories where infarct core and ischemic penumbra usually occur. Sparse perfusion deconvolution has been recently proposed to effectively improve the image quality and diagnostic accuracy of low-dose perfusion CT by extracting the complementary information from the high-dose perfusion maps to restore the low-dose using a joint spatio-temporal model. However the low-contrast tissue classes where infarct core and ischemic penumbra are likely to occur in cerebral perfusion CT tend to be over-smoothed, leading to loss of essential biomarkers. In this paper, we propose a tissue-specific sparse deconvolution approach to preserve the subtle perfusion information in the low-contrast tissue classes. We first build tissue-specific dictionaries from segmentations of high-dose perfusion maps using online dictionary learning, and then perform deconvolution-based hemodynamic parameters estimation for block-wise tissue segments on the low-dose CTP data. Extensive validation on clinical datasets of patients with cerebrovascular disease demonstrates the superior performance of our proposed method compared to state-of-art, and potentially improve diagnostic accuracy by increasing the differentiation between normal and ischemic tissues in the brain. PMID:26055434

  17. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications

    Science.gov (United States)

    Sas, Kelli M.; Kayampilly, Pradeep; Byun, Jaeman; Nair, Viji; Hinder, Lucy M.; Zhang, Hongyu; Lin, Chengmao; Qi, Nathan R.; Michailidis, George; Groop, Per-Henrik; Nelson, Robert G.; Darshi, Manjula; Sharma, Kumar; Schelling, Jeffrey R.; Sedor, John R.; Pop-Busui, Rodica; Weinberg, Joel M.; Soleimanpour, Scott A.; Abcouwer, Steven F.; Gardner, Thomas W.; Burant, Charles F.; Feldman, Eva L.; Kretzler, Matthias; Brosius, Frank C.

    2016-01-01

    Diabetes is associated with altered cellular metabolism, but how altered metabolism contributes to the development of diabetic complications is unknown. We used the BKS db/db diabetic mouse model to investigate changes in carbohydrate and lipid metabolism in kidney cortex, peripheral nerve, and retina. A systems approach using transcriptomics, metabolomics, and metabolic flux analysis identified tissue-specific differences, with increased glucose and fatty acid metabolism in the kidney, a moderate increase in the retina, and a decrease in the nerve. In the kidney, increased metabolism was associated with enhanced protein acetylation and mitochondrial dysfunction. To confirm these findings in human disease, we analyzed diabetic kidney transcriptomic data and urinary metabolites from a cohort of Southwestern American Indians. The urinary findings were replicated in 2 independent patient cohorts, the Finnish Diabetic Nephropathy and the Family Investigation of Nephropathy and Diabetes studies. Increased concentrations of TCA cycle metabolites in urine, but not in plasma, predicted progression of diabetic kidney disease, and there was an enrichment of pathways involved in glycolysis and fatty acid and amino acid metabolism. Our findings highlight tissue-specific changes in metabolism in complication-prone tissues in diabetes and suggest that urinary TCA cycle intermediates are potential prognostic biomarkers of diabetic kidney disease progression. PMID:27699244

  18. Tissue-specific metabolic reprogramming drives nutrient flux in diabetic complications

    Science.gov (United States)

    Sas, Kelli M.; Kayampilly, Pradeep; Byun, Jaeman; Nair, Viji; Hinder, Lucy M.; Zhang, Hongyu; Lin, Chengmao; Qi, Nathan R.; Michailidis, George; Groop, Per-Henrik; Nelson, Robert G.; Darshi, Manjula; Sharma, Kumar; Schelling, Jeffrey R.; Sedor, John R.; Pop-Busui, Rodica; Weinberg, Joel M.; Soleimanpour, Scott A.; Abcouwer, Steven F.; Gardner, Thomas W.; Burant, Charles F.; Feldman, Eva L.; Kretzler, Matthias; Brosius, Frank C.

    2016-01-01

    Diabetes is associated with altered cellular metabolism, but how altered metabolism contributes to the development of diabetic complications is unknown. We used the BKS db/db diabetic mouse model to investigate changes in carbohydrate and lipid metabolism in kidney cortex, peripheral nerve, and retina. A systems approach using transcriptomics, metabolomics, and metabolic flux analysis identified tissue-specific differences, with increased glucose and fatty acid metabolism in the kidney, a moderate increase in the retina, and a decrease in the nerve. In the kidney, increased metabolism was associated with enhanced protein acetylation and mitochondrial dysfunction. To confirm these findings in human disease, we analyzed diabetic kidney transcriptomic data and urinary metabolites from a cohort of Southwestern American Indians. The urinary findings were replicated in 2 independent patient cohorts, the Finnish Diabetic Nephropathy and the Family Investigation of Nephropathy and Diabetes studies. Increased concentrations of TCA cycle metabolites in urine, but not in plasma, predicted progression of diabetic kidney disease, and there was an enrichment of pathways involved in glycolysis and fatty acid and amino acid metabolism. Our findings highlight tissue-specific changes in metabolism in complication-prone tissues in diabetes and suggest that urinary TCA cycle intermediates are potential prognostic biomarkers of diabetic kidney disease progression.

  19. Tissue-specific assimilation, depuration and toxicity of nickel in Mytilus edulis

    International Nuclear Information System (INIS)

    The tissue-specific accumulation and time-dependent depuration of radioactive 63Ni by the byssus, gut, foot, gills, kidney, adductor muscle and faeces of Mytilus edulis has been investigated using a pulse-chase technique. The rate and extent of depuration of 63Ni varied between tissues and, after 168 h, the concentration factors and assimilation efficiencies ranged from 1 to 35 L kg−1 and 5%–13%, respectively. Mussels were also exposed to a range of environmentally-realistic concentrations of dissolved Ni, prior to the analysis of biological endpoints. The clearance rate was concentration-dependent and at the highest concentration decreased by 30%. Neutral red retention (NRR) assays indicated a cytotoxic response and DNA strand breaks were observed in the haemocytes. The association of DNA damage with that of physiological and cytotoxic effects suggests that Ni exerts a significant impact on Mytilus edulis at cellular and genetic levels. - Highlights: ► Tissue-specific accumulation and depuration of nickel by marine mussels was evaluated. ► Concentration factors for nickel in mussel tissues were lower than recommended values. ► Cytotoxic and genotoxic effects were detected in mussel haemocytes in the presence of dissolved nickel. ► Nickel exerts a significant effect on mussels at cellular and genetic levels. - Nickel is accumulated preferentially in the byssus and gut of marine mussels and it exerts a cytotoxic and genotoxic response in their haemocytes.

  20. A hierarchy of ECM-mediated signalling tissue-specific gene expression regulates tissue-specific gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Roskelley, Calvin D; Srebrow, Anabella; Bissell, Mina J

    1995-10-07

    A dynamic and reciprocal flow of information between cells and the extracellular matrix contributes significantly to the regulation of form and function in developing systems. Signals generated by the extracellular matrix do not act in isolation. Instead, they are processed within the context of global signalling hierarchies whose constituent inputs and outputs are constantly modulated by all the factors present in the cell's surrounding microenvironment. This is particularly evident in the mammary gland, where the construction and subsequent destruction of such a hierarchy regulates changes in tissue-specific gene expression, morphogenesis and apoptosis during each developmental cycle of pregnancy, lactation and involution.

  1. DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies.

    Directory of Open Access Journals (Sweden)

    Nadine Schuler

    Full Text Available PURPOSE: In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. METHODS AND MATERIALS: In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. RESULTS: Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. CONCLUSIONS: Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies.

  2. Do Alterations in Mitochondrial DNA Play a Role in Breast Carcinogenesis?

    Directory of Open Access Journals (Sweden)

    Thomas E. Rohan

    2010-01-01

    Full Text Available A considerable body of evidence supports a role for oxidative stress in breast carcinogenesis. Due to their role in producing energy via oxidative phosphorylation, the mitochondria are a major source of production of reactive oxygen species, which may damage DNA. The mitochondrial genome may be particularly susceptible to oxidative damage leading to mitochondrial dysfunction. Genetic variants in mtDNA and nuclear DNA may also contribute to mitochondrial dysfunction. In this review, we address the role of alterations in mtDNA in the etiology of breast cancer. Several studies have shown a relatively high frequency of mtDNA mutations in breast tumor tissue in comparison with mutations in normal breast tissue. To date, several studies have examined the association of genetic variants in mtDNA and breast cancer risk. The G10398A mtDNA polymorphism has received the most attention and has been shown to be associated with increased risk in some studies. Other variants have generally been examined in only one or two studies. Genome-wide association studies may help identify new mtDNA variants which modify breast cancer risk. In addition to assessing the main effects of specific variants, gene-gene and gene-environment interactions are likely to explain a greater proportion of the variability in breast cancer risk.

  3. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  4. Tissue specific metal characterization of selected fish species in Pakistan.

    Science.gov (United States)

    Ahmed, Mukhtiar; Ahmad, Taufiq; Liaquat, Muhammad; Abbasi, Kashif Sarfraz; Farid, Ibrahim Bayoumi Abdel; Jahangir, Muhammad

    2016-04-01

    Concentration of various metals, i.e., zinc (Zn), copper (Cu), lead (Pb), nickel (Ni), iron (Fe), manganese (Mn), chromium (Cr), and silver (Ag), was evaluated in five indigenous fish species (namely, silver carp, common carp, mahseer, thela fish, and rainbow trout), by using atomic absorption spectrophotometer. It is proved from this study that, overall, mahseer and rainbow trout had high amount of zinc, whereas thela fish and silver carp had high concentration of copper, chromium, silver, nickel, and lead, while common carp had highest amount of iron contents. Furthermore, a tissue-specific discrimination among various fish species was observed, where higher metal concentrations were noticed in fish liver, with decreasing concentration in other organs like skin, gills, and finally the least contents in fish muscle. Multivariate data analysis showed not only a variation in heavy metals among the tissues but also discrimination among the selected fish species.

  5. Repressor-mediated tissue-specific gene expression in plants

    Science.gov (United States)

    Meagher, Richard B.; Balish, Rebecca S.; Tehryung, Kim; McKinney, Elizabeth C.

    2009-02-17

    Plant tissue specific gene expression by way of repressor-operator complexes, has enabled outcomes including, without limitation, male sterility and engineered plants having root-specific gene expression of relevant proteins to clean environmental pollutants from soil and water. A mercury hyperaccumulation strategy requires that mercuric ion reductase coding sequence is strongly expressed. The actin promoter vector, A2pot, engineered to contain bacterial lac operator sequences, directed strong expression in all plant vegetative organs and tissues. In contrast, the expression from the A2pot construct was restricted primarily to root tissues when a modified bacterial repressor (LacIn) was coexpressed from the light-regulated rubisco small subunit promoter in above-ground tissues. Also provided are analogous repressor operator complexes for selective expression in other plant tissues, for example, to produce male sterile plants.

  6. Tissue specificity of the heat-shock response in maize.

    Science.gov (United States)

    Cooper, P; Ho, T H; Hauptmann, R M

    1984-06-01

    The tissue specificity of the heat-shock response in maize was investigated. The ability to synthesize heat shock proteins (hsp) at 40 degrees C, as well as the intensity and duration of that synthesis, was analyzed in coleoptiles, scutella, green and etiolated leaves, suspension-cultured cells, germinating pollen grains, and primary root sections at different stages of development. One-dimensional sodium dodecyl sulfate gel electrophoresis of extracted proteins revealed that most of the tissues synthesized the typical set of 10 hsp, but that the exact characteristics of the response depended upon the tissue type. While elongating portions of the primary root exhibited a strong heat shock response, the more mature portions showed a reduced ability to synthesize hsp. Leaves, whether green or etiolated, excised or intact, constitutively synthesized a low level of hsp at 25 degrees C, and high levels could be induced at 40 degrees C. Suspension-cultures of Black Mexican sweet corn synthesized, besides the typical set of hsp, two additional polypeptides. In contrast to all the other tissues, germinating pollen grains could not be induced to synthesize the typical set of hsp but did synthesize two new polypeptides of 92 and 56 kD molecular weight.The heat shock response was transient for most of the tissues which synthesized the standard set of hsp. Hsp synthesis was detected up to 2 to 3 hours, but not at 10 hours of continuous 40 degrees C treatment. The exception was suspension cultured cells, in which hsp synthesis showed only a slight reduction after 10 hours at 40 degrees C. Tissue-specific differences in the heat-shock response suggest that there are differences in the way a given tissue is able to adapt to high temperature.We have confirmed the previous suggestion that maize hsp do not accumulate in substantial quantities. Using two-dimensional gel analysis, hsp could be detected by autoradiography but not by sensitive silver staining techniques. PMID:16663639

  7. Single cell analysis reveals gametic and tissue-specific instability of the SCA1 CAG repeat

    Energy Technology Data Exchange (ETDEWEB)

    Chong, S.S.; McCall, A.E.; Cota, J. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Spinocerebellar ataxia type 1 is an autosomal dominant neurodegenerative disease caused by expansion of a CAG trinucleotide repeat within the SCA1 gene on chromosome 6p22-23. We performed a comparative analysis of the SCA1 CAG repeat from blood and sperm of an affected male. Genomic amplification revealed a broader smear of the SCA1 allele product from sperm compared to that from peripheral blood leukocytes (PBL). To resolve this observed difference, we analyzed single sperm directly and demonstrate that the SCA1 allele in PBL is also heterogeneous, although the range of variability in allele sizes is much less than that observed in sperm. Limited genome analysis was also performed on PBL DNA from an unaffected individual with an upper normal allele of 36 repeats in parallel with an affected individual with an expanded allele of 40 repeats. The 36 repeat normal allele, which contains a CAT interruption, was completely stable compared to the uninterrupted repeat of the SCA1 allele, demonstrating a direct correlation between absence of a CAT interruption and somatic instability of the repeat. We also analyzed the size of the CAG repeat in tissues derived from various brain regions from a patient with juvenile-onset disease to determine if the size of the expansion correlated with the site of neuropathology. The results clearly show tissue-specific differences in mosaicism of repeat length. More importantly, the pattern of tissue-specific differences in repeat-length mosaicism in SCA1 within the brain parallels those seen in Huntington disease. In both disorders the expanded alleles are smaller in cerebellar tissue. These results suggest that the observed tissue-specific differences in instability of the SCA1 CAG repeat, either within the brain or between blood and sperm, are a function of the intracellular milieu or the intrinsic replicative potential of the various celltypes.

  8. Global DNA methylation is altered by neoadjuvant chemoradiotherapy in rectal cancer and may predict response to treatment - A pilot study.

    LENUS (Irish Health Repository)

    Tsang, J S

    2014-07-28

    In rectal cancer, not all tumours display a response to neoadjuvant treatment. An accurate predictor of response does not exist to guide patient-specific treatment. DNA methylation is a distinctive molecular pathway in colorectal carcinogenesis. Whether DNA methylation is altered by neoadjuvant treatment and a potential response predictor is unknown. We aimed to determine whether DNA methylation is altered by neoadjuvant chemoradiotherapy (CRT) and to determine its role in predicting response to treatment.

  9. Alterations in radioresistance of eucaryotic cells after the transfer of genomic wildtype DNA and metallothionein genes

    International Nuclear Information System (INIS)

    The presented paper describes experiments concerning the alteration of radiosensitivity of eucaryotic cells after gene transfer. Ionizing radiation (γ- or X-ray) induces DNA single- or double strand breaks, which are religated by an unknown repair system. Repair deficient cells are highly sensitive to ionizing radiation. In the experiments described, cells from a patient with the heritable disease Ataxia telangiectasia were used as well as two X-ray sensitive CHO mutant cell lines. After gene transfer of an intact human DNA repair gene or a metallothionein gene the cells should regain radioresistance. (orig.)

  10. Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging.

    Directory of Open Access Journals (Sweden)

    W Edward Visser

    Full Text Available DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/- or intermediate (Ercc1-/Δ-7 progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging.

  11. Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging

    Science.gov (United States)

    Visser, W. Edward; Barnhoorn, Sander; Ottaviani, Alexandre; van der Pluijm, Ingrid; Brandt, Renata; Kaptein, Ellen; van Heerebeek, Ramona; van Toor, Hans; Garinis, George A.; Peeters, Robin P.; Medici, Marco; van Ham, Willy; Vermeij, Wilbert P.; de Waard, Monique C.; de Krijger, Ronald R.; Boelen, Anita; Kwakkel, Joan; Kopchick, John J.; List, Edward O.; Melis, Joost P. M.; Darras, Veerle M.; Dollé, Martijn E. T.; van der Horst, Gijsbertus T. J.; Hoeijmakers, Jan H. J.; Visser, Theo J.

    2016-01-01

    DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging. PMID:26953569

  12. Tissue-Specific Suppression of Thyroid Hormone Signaling in Various Mouse Models of Aging.

    Science.gov (United States)

    Visser, W Edward; Bombardieri, Cíntia R; Zevenbergen, Chantal; Barnhoorn, Sander; Ottaviani, Alexandre; van der Pluijm, Ingrid; Brandt, Renata; Kaptein, Ellen; van Heerebeek, Ramona; van Toor, Hans; Garinis, George A; Peeters, Robin P; Medici, Marco; van Ham, Willy; Vermeij, Wilbert P; de Waard, Monique C; de Krijger, Ronald R; Boelen, Anita; Kwakkel, Joan; Kopchick, John J; List, Edward O; Melis, Joost P M; Darras, Veerle M; Dollé, Martijn E T; van der Horst, Gijsbertus T J; Hoeijmakers, Jan H J; Visser, Theo J

    2016-01-01

    DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging. PMID:26953569

  13. Tissue-specific accelerated aging in nucleotide excision repair deficiency

    OpenAIRE

    Laura J. Niedernhofer

    2008-01-01

    Nucleotide excision repair (NER) is a multi-step DNA repair mechanism that removes helix-distorting modified nucleotides from the genome. NER is divided into two subpathways depending on the location of DNA damage in the genome and how it is first detected. Global genome NER identifies and repairs DNA lesions throughout the genome. This subpathway of NER primarily protects against the accumulation of mutations in the genome. Transcription-coupled (TC) NER rapidly repairs lesions in the transc...

  14. Tissue-specific patterning of host innate immune responses by Staphylococcus aureus α-toxin.

    Science.gov (United States)

    Becker, Russell E N; Berube, Bryan J; Sampedro, Georgia R; DeDent, Andrea C; Bubeck Wardenburg, Juliane

    2014-01-01

    Immunomodulatory cytotoxins are prominent virulence factors produced by Staphylococcus aureus, a leading cause of bacterial sepsis, skin infection, and pneumonia. S. aureus α-toxin is a pore-forming toxin that utilizes a widely expressed receptor, ADAM10, to injure the host epithelium, endothelium, and immune cells. As each host tissue is characterized by a unique composition of resident cells and recruited immune cells, the outcome of α-toxin-mediated injury may depend on the infected tissue environment. Utilizing myeloid lineage-specific Adam10 knockout mice, we show that α-toxin exerts tissue-specific effects on innate immunity to staphylococcal infection. Loss of ADAM10 expression exacerbates skin infection, yet affords protection against lethal pneumonia. These diverse outcomes are not related to altered immune cell recruitment, but rather correlate with a defect in toxin-induced IL-1β production. Extension of these studies through analysis of ADAM10 double-knockout mice affecting both the myeloid lineage and either the skin or lung epithelium highlight the prominence of toxin-induced injury to the epithelium in governing the outcome of infection. Together, these studies provide evidence of tissue specificity of pore-forming cytotoxin action in the modulation of host immunity, and illustrate that the outcome of infection is a collective manifestation of all effects of the toxin within the tissue microenvironment.

  15. VISTA Enhancer Browser--A Database of Tissue-Specific HumanEnhancers

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Minovitsky, Simon; Dubchak, Inna; Pennacchio, Len A.

    2006-08-01

    Despite the known existence of distant-acting cis-regulatoryelements in the human genome, only a small fraction of these elements hasbeen identified and experimentally characterized in vivo. This paucity ofenhancer collections with defined activities has thus hinderedcomputational approaches for the genome-wide prediction of enhancers andtheir functions. To fill this void, we utilize comparative genomeanalysis to identify candidate enhancer elements in the human genomecoupled with the experimental determination of their in vivo enhanceractivity in transgenic mice (1). These data are available through theVISTA Enhancer Browser (http://enhancer.lbl.gov). This growing databasecurrently contains over 250 experimentally tested DNA fragments, of whichmore than 100 have been validated as tissue-specific enhancers. For eachpositive enhancer, we provide digital images of whole-mount embryostaining at embryonic day 11.5 and an anatomical description of thereporter gene expression pattern. Users can retrieve elements near singlegenes of interest, search for enhancers that target reporter geneexpression to a particular tissue, or download entire collections ofenhancers with a defined tissue specificity or conservation depth. Theseexperimentally validated training sets are expected to provide a basisfor a wide range of downstream computational and functional studies ofenhancer function.

  16. Cell type-specific properties and environment shape tissue specificity of cancer genes.

    Science.gov (United States)

    Schaefer, Martin H; Serrano, Luis

    2016-02-09

    One of the biggest mysteries in cancer research remains why mutations in certain genes cause cancer only at specific sites in the human body. The poor correlation between the expression level of a cancer gene and the tissues in which it causes malignant transformations raises the question of which factors determine the tissue-specific effects of a mutation. Here, we explore why some cancer genes are associated only with few different cancer types (i.e., are specific), while others are found mutated in a large number of different types of cancer (i.e., are general). We do so by contrasting cellular functions of specific-cancer genes with those of general ones to identify properties that determine where in the body a gene mutation is causing malignant transformations. We identified different groups of cancer genes that did not behave as expected (i.e., DNA repair genes being tissue specific, immune response genes showing a bimodal specificity function or strong association of generally expressed genes to particular cancers). Analysis of these three groups demonstrates the importance of environmental impact for understanding why certain cancer genes are only involved in the development of some cancer types but are rarely found mutated in other types of cancer.

  17. Tissue-specific mutation accumulation in human adult stem cells during life

    Science.gov (United States)

    Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben

    2016-10-01

    The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.

  18. Impact of DNA mismatch repair system alterations on human fertility and related treatments.

    Science.gov (United States)

    Hu, Min-hao; Liu, Shu-yuan; Wang, Ning; Wu, Yan; Jin, Fan

    2016-01-01

    DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA homeostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cell cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between alterations of the MMR system and human fertility and related treatments, and potential effects on the next generation.

  19. Tissue specific regulation of lipogenesis by thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Blennemann, B.; Freake, H. (Univ. of Connecticut, Storrs (United States))

    1990-02-26

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone.

  20. Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila

    Directory of Open Access Journals (Sweden)

    Peter Smibert

    2012-03-01

    Full Text Available We analyzed the usage and consequences of alternative cleavage and polyadenylation (APA in Drosophila melanogaster by using >1 billion reads of stranded mRNA-seq across a variety of dissected tissues. Beyond demonstrating that a majority of fly transcripts are subject to APA, we observed broad trends for 3′ untranslated region (UTR shortening in the testis and lengthening in the central nervous system (CNS; the latter included hundreds of unannotated extensions ranging up to 18 kb. Extensive northern analyses validated the accumulation of full-length neural extended transcripts, and in situ hybridization indicated their spatial restriction to the CNS. Genes encoding RNA binding proteins (RBPs and transcription factors were preferentially subject to 3′ UTR extensions. Motif analysis indicated enrichment of miRNA and RBP sites in the neural extensions, and their termini were enriched in canonical cis elements that promote cleavage and polyadenylation. Altogether, we reveal broad tissue-specific patterns of APA in Drosophila and transcripts with unprecedented 3′ UTR length in the nervous system.

  1. Unique association between global DNA hypomethylation and chromosomal alterations in human hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Naoshi Nishida

    Full Text Available Global DNA hypomethylation is a characteristic feature of cancer cells that closely associates with chromosomal instability (CIN. However, the association between these characteristics during hepatocarcinogenesis remains unclear. Herein, we determined the relationship between hypomethylation and CIN in human hepatocellular carcinoma (HCC by analyzing 179 HCCs, 178 matched non-tumor livers and 23 normal liver tissues. Hypomethylation at three different repetitive DNA (rDNA sequences and hypermethylation of 12 CpG loci, including 11 tumor suppressor gene (TSG promoters, were quantified using MethyLight or combined bisulfite restriction analysis. Fractional allelic loss (FAL was used as a marker for CIN, calculated by analyzing 400 microsatellite markers. Gains and losses at each chromosome were also determined using semi-quantitative microsatellite analysis. The associations between rDNA hypomethylation and FAL, as well as between TSG hypermethylation and FAL were investigated. Significantly more hypomethylation was observed in HCC tissues than in normal liver samples. Progression of hypomethylation during carcinogenesis was more prominent in hepatitis C virus (HCV-negative cases, which was in contrast to our previous reports of significantly increased TSG methylation levels in HCV-positive tumors. Absence of liver cirrhosis and higher FAL scores were identified as independent contributors to significant hypomethylation of rDNA in HCC. Among the chromosomal alterations frequently observed in HCC, loss of 8p, which was unique in the earliest stages of hepatocarcinogenesis, was significantly associated with hypomethylation of rDNA by multivariable analysis (p=0.0153. rDNA hypomethylation was also associated with a high FAL score regardless of tumor differentiation (p=0.0011, well-differentiated; p=0.0089, moderately/poorly-differentiated HCCs. We conclude that DNA hypomethylation is an important cause of CIN in the earliest step of HCC, especially

  2. STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function

    Science.gov (United States)

    Bhattacharjee, Anukana; Stewart, Jason; Chaiken, Mary; Price, Carolyn M.

    2016-01-01

    Mammalian CST (CTC1-STN1-TEN1) participates in multiple aspects of telomere replication and genome-wide recovery from replication stress. CST resembles Replication Protein A (RPA) in that it binds ssDNA and STN1 and TEN1 are structurally similar to RPA2 and RPA3. Conservation between CTC1 and RPA1 is less apparent. Currently the mechanism underlying CST action is largely unknown. Here we address CST mechanism by using a DNA-binding mutant, (STN1 OB-fold mutant, STN1-OBM) to examine the relationship between DNA binding and CST function. In vivo, STN1-OBM affects resolution of endogenous replication stress and telomere duplex replication but telomeric C-strand fill-in and new origin firing after exogenous replication stress are unaffected. These selective effects indicate mechanistic differences in CST action during resolution of different replication problems. In vitro binding studies show that STN1 directly engages both short and long ssDNA oligonucleotides, however STN1-OBM preferentially destabilizes binding to short substrates. The finding that STN1-OBM affects binding to only certain substrates starts to explain the in vivo separation of function observed in STN1-OBM expressing cells. CST is expected to engage DNA substrates of varied length and structure as it acts to resolve different replication problems. Since STN1-OBM will alter CST binding to only some of these substrates, the mutant should affect resolution of only a subset of replication problems, as was observed in the STN1-OBM cells. The in vitro studies also provide insight into CST binding mechanism. Like RPA, CST likely contacts DNA via multiple OB folds. However, the importance of STN1 for binding short substrates indicates differences in the architecture of CST and RPA DNA-protein complexes. Based on our results, we propose a dynamic DNA binding model that provides a general mechanism for CST action at diverse forms of replication stress. PMID:27690379

  3. Turning on Myogenin in Muscle: A Paradigm for Understanding Mechanisms of Tissue-Specific Gene Expression

    Directory of Open Access Journals (Sweden)

    Herve Faralli

    2012-01-01

    Full Text Available Expression of the myogenin (Myog gene is restricted to skeletal muscle cells where the transcriptional activator turns on a gene expression program that permits the transition from proliferating myoblasts to differentiating myotubes. The strict temporal and spatial regulation on Myog expression in the embryo makes it an ideal gene to study the developmental regulation of tissue-specific expression. Over the last 20 years, our knowledge of the regulation of Myog expression has evolved from the identification of the minimal promoter elements necessary for the gene to be transcribed in muscle, to a mechanistic understanding of how the proteins that bind these DNA elements work together to establish transcriptional competence. Here we present our current understanding of the developmental regulation of gene expression gained from studies of the Myog gene.

  4. Multiple novel nesprin-1 and nesprin-2 variants act as versatile tissue-specific intracellular scaffolds.

    Directory of Open Access Journals (Sweden)

    Dipen Rajgor

    Full Text Available BACKGROUND: Nesprins (Nuclear envelope spectrin-repeat proteins are a novel family of giant spectrin-repeat containing proteins. The nesprin-1 and nesprin-2 genes consist of 146 and 116 exons which encode proteins of ∼1mDa and ∼800 kDa is size respectively when all the exons are utilised in translation. However emerging data suggests that the nesprins have multiple alternative start and termination sites throughout their genes allowing the generation of smaller isoforms. RESULTS: In this study we set out to identify novel alternatively transcribed nesprin variants by screening the EST database and by using RACE analysis to identify cDNA ends. These two methods provided potential hits for alternative start and termination sites that were validated by PCR and DNA sequencing. We show that these alternative sites are not only expressed in a tissue specific manner but by combining different sites together it is possible to create a wide array of nesprin variants. By cloning and expressing small novel nesprin variants into human fibroblasts and U2OS cells we show localization to actin stress-fibres, focal adhesions, microtubules, the nucleolus, nuclear matrix and the nuclear envelope (NE. Furthermore we show that the sub-cellular localization of individual nesprin variants can vary depending on the cell type, suggesting any single nesprin variant may have different functions in different cell types. CONCLUSIONS: These studies suggest nesprins act as highly versatile tissue specific intracellular protein scaffolds and identify potential novel functions for nesprins beyond cytoplasmic-nuclear coupling. These alternate functions may also account for the diverse range of disease phenotypes observed when these genes are mutated.

  5. The constant region affects antigen binding of antibodies to DNA by altering secondary structure.

    Science.gov (United States)

    Xia, Yumin; Janda, Alena; Eryilmaz, Ertan; Casadevall, Arturo; Putterman, Chaim

    2013-11-01

    We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype-switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens.

  6. Inhibiting DNA methylation alters olfactory extinction but not acquisition learning in Apis cerana and Apis mellifera.

    Science.gov (United States)

    Gong, Zhiwen; Wang, Chao; Nieh, James C; Tan, Ken

    2016-07-01

    DNA methylation plays a key role in invertebrate acquisition and extinction memory. Honey bees have excellent olfactory learning, but the role of DNA methylation in memory formation has, to date, only been studied in Apis mellifera. We inhibited DNA methylation by inhibiting DNA methyltransferase (DNMT) with zebularine (zeb) and studied the resulting effects upon olfactory acquisition and extinction memory in two honey bee species, Apis cerana and A. mellifera. We used the proboscis extension reflex (PER) assay to measure memory. We provide the first demonstration that DNA methylation is also important in the olfactory extinction learning of A. cerana. DNMT did not reduce acquisition learning in either species. However, zeb bidirectionally and differentially altered extinction learning in both species. In particular, zeb provided 1h before acquisition learning improved extinction memory retention in A. mellifera, but reduced extinction memory retention in A. cerana. The reasons for these differences are unclear, but provide a basis for future studies to explore species-specific differences in the effects of methylation on memory formation.

  7. Inhibiting DNA methylation alters olfactory extinction but not acquisition learning in Apis cerana and Apis mellifera.

    Science.gov (United States)

    Gong, Zhiwen; Wang, Chao; Nieh, James C; Tan, Ken

    2016-07-01

    DNA methylation plays a key role in invertebrate acquisition and extinction memory. Honey bees have excellent olfactory learning, but the role of DNA methylation in memory formation has, to date, only been studied in Apis mellifera. We inhibited DNA methylation by inhibiting DNA methyltransferase (DNMT) with zebularine (zeb) and studied the resulting effects upon olfactory acquisition and extinction memory in two honey bee species, Apis cerana and A. mellifera. We used the proboscis extension reflex (PER) assay to measure memory. We provide the first demonstration that DNA methylation is also important in the olfactory extinction learning of A. cerana. DNMT did not reduce acquisition learning in either species. However, zeb bidirectionally and differentially altered extinction learning in both species. In particular, zeb provided 1h before acquisition learning improved extinction memory retention in A. mellifera, but reduced extinction memory retention in A. cerana. The reasons for these differences are unclear, but provide a basis for future studies to explore species-specific differences in the effects of methylation on memory formation. PMID:27262427

  8. Nuclear and Mitochondrial DNA Alterations in Newborns with Prenatal Exposure to Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Francesca Pirini

    2015-01-01

    Full Text Available Newborns exposed to maternal cigarette smoke (CS in utero have an increased risk of developing chronic diseases, cancer, and acquiring decreased cognitive function in adulthood. Although the literature reports many deleterious effects associated with maternal cigarette smoking on the fetus, the molecular alterations and mechanisms of action are not yet clear. Smoking may act directly on nuclear DNA by inducing mutations or epigenetic modifications. Recent studies also indicate that smoking may act on mitochondrial DNA by inducing a change in the number of copies to make up for the damage caused by smoking on the respiratory chain and lack of energy. In addition, individual genetic susceptibility plays a significant role in determining the effects of smoking during development. Furthermore, prior exposure of paternal and maternal gametes to cigarette smoke may affect the health of the developing individual, not only the in utero exposure. This review examines the genetic and epigenetic alterations in nuclear and mitochondrial DNA associated with smoke exposure during the most sensitive periods of development (prior to conception, prenatal and early postnatal and assesses how such changes may have consequences for both fetal growth and development.

  9. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  10. Altered gravity influences rDNA and NopA100 localization in nucleoli

    Science.gov (United States)

    Sobol, M. A.; Kordyum, E. L.

    Fundamental discovery of gravisensitivity of cells no specified to gravity perception focused increasing attention on an elucidation of the mechanisms involved in altered gravity effects at the cellular and subcellular levels. The nucleolus is the transcription site of rRNA genes as well as the site of processing and initial packaging of their transcripts with ribosomal and nonribosomal proteins. The mechanisms inducing the changes in the subcomponents of the nucleolus that is morphologically defined yet highly dynamic structure are still unknown in detail. To understand the functional organization of the nucleolus as in the control as under altered gravity conditions it is essential to determine both the precise location of rDNA and the proteins playing the key role in rRNA processing. Lepidium sativum seeds were germinated in 1% agar medium on the slow horizontal clinostat (2 rpm) and in the stationary conditions. We investigated the root meristematic cells dissected from the seedlings grown in darkness for two days. The investigations were carried out with anti-DNA and anti-NopA100 antibodies labeling as well as with TdT procedure, and immunogold electron microscopy. In the stationary growth conditions, the anti-DNA antibody as well TdT procedure were capable of detecting fibrillar centers (FCs) and the dense fibrillar component (DFC) in the nucleolus. In FCs, gold particles were revealed on the condensed chromatin inclusions, internal fibrils of decondensed rDNA and the transition zone FC-DFC. Quantitatively, FCs appeared 1,5 times more densely labeled than DFC. NopA100 was localized in FCs and in DFC. In FCs, the most of protein was revealed in the transition zone FC-DFC. After a quantitative study, FCs and the transition zone FC-DFC appeared to contain NopA100 1,7 times more than DFC. Under the conditions of altered gravity, quantitative data clearly showed a redistribution of nucleolar DNA and NopA100 between FCs and DFC in comparison with the control. In

  11. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, Jana; Janda, Jaroslav [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States); Sligh, James E, E-mail: jsligh@azcc.arizona.edu [Southern Arizona VA Healthcare System, Department of Medicine, Dermatology Division and Arizona Cancer Center, University of Arizona, 1515 N Campbell Avenue, Tucson, AZ 857 24 (United States)

    2012-10-15

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear

  12. Using a cDNA microarray to study cellular gene expression altered by Mycobacterium tuberculosis

    Institute of Scientific and Technical Information of China (English)

    徐永忠; 谢建平; 李瑶; 乐军; 陈建平; 淳于利娟; 王洪海

    2003-01-01

    Objective To examine the global effects of Mycobacterium tuberculosis (M.tuberculosis) infection on macrophages. Methods The gene expression profiling of macrophage U937, in response to infection with M.tuberculosis H37Ra, was monitored using a high-density cDNA microarray. Results M.tuberculosis infection caused 463 differentially expressed genes, of which 366 genes are known genes registered in the Gene Bank. These genes function in various cellular processes including intracellular signalling, cytoskeletal rearrangement, apoptosis, transcriptional regulation, cell surface receptors, cell-mediated immunity as well as a variety of cellular metabolic pathways, and may play key roles in M.tuberculosis infection and intracellular survival. Conclusions M.tuberculosis infection alters the expression of host-cell genes, and these genes will provide a foundation for understanding the infection process of M.tuberculosis. The cDNA microarray is a powerful tool for studying pathogen-host cell interaction.

  13. MicroRNA and DNA methylation alterations mediating retinoic acid induced neuroblastoma cell differentiation.

    Science.gov (United States)

    Stallings, Raymond L; Foley, Niamh H; Bray, Isabella M; Das, Sudipto; Buckley, Patrick G

    2011-10-01

    Many neuroblastoma cell lines can be induced to differentiate into a mature neuronal cell type with retinoic acid and other compounds, providing an important model system for elucidating signalling pathways involved in this highly complex process. Recently, it has become apparent that miRNAs, which act as regulators of gene expression at a post-transcriptional level, are differentially expressed in differentiating cells and play important roles governing many aspects of this process. This includes the down-regulation of DNA methyltransferases that cause the de-methylation and transcriptional activation of numerous protein coding gene sequences. The purpose of this article is to review involvement of miRNAs and DNA methylation alterations in the process of neuroblastoma cell differentiation. A thorough understanding of miRNA and genetic pathways regulating neuroblastoma cell differentiation potentially could lead to targeted therapies for this disease.

  14. Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death.

    Directory of Open Access Journals (Sweden)

    Mohamed I Husseiny

    Full Text Available The onset of metabolic dysregulation in type 1 diabetes (T1D occurs after autoimmune destruction of the majority of pancreatic insulin-producing beta cells. We previously demonstrated that the DNA encoding the insulin gene is uniquely unmethylated in these cells and then developed a methylation-specific PCR (MSP assay to identify circulating beta cell DNA in streptozotocin-treated mice prior to the rise in blood glucose. The current study extends to autoimmune non-obese diabetic (NOD mice and humans, showing in NOD mice that beta cell death occurs six weeks before the rise in blood sugar and coincides with the onset of islet infiltration by immune cells, demonstrating the utility of MSP for monitoring T1D. We previously reported unique patterns of methylation of the human insulin gene, and now extend this to other human tissues. The methylation patterns of the human insulin promoter, intron 1, exon 2, and intron 2 were determined in several normal human tissues. Similar to our previous report, the human insulin promoter was unmethylated in beta cells, but methylated in all other tissues tested. In contrast, intron 1, exon 2 and intron 2 did not exhibit any tissue-specific DNA methylation pattern. Subsequently, a human MSP assay was developed based on the methylation pattern of the insulin promoter and human islet DNA was successfully detected in circulation of T1D patients after islet transplantation therapy. Signal levels of normal controls and pre-transplant samples were shown to be similar, but increased dramatically after islet transplantation. In plasma the signal declines with time but in whole blood remains elevated for at least two weeks, indicating that association of beta cell DNA with blood cells prolongs the signal. This assay provides an effective method to monitor beta cell destruction in early T1D and in islet transplantation therapy.

  15. Tissue-Specific Methylation of Human Insulin Gene and PCR Assay for Monitoring Beta Cell Death

    Science.gov (United States)

    Husseiny, Mohamed I.; Kaye, Alexander; Zebadua, Emily; Kandeel, Fouad; Ferreri, Kevin

    2014-01-01

    The onset of metabolic dysregulation in type 1 diabetes (T1D) occurs after autoimmune destruction of the majority of pancreatic insulin-producing beta cells. We previously demonstrated that the DNA encoding the insulin gene is uniquely unmethylated in these cells and then developed a methylation-specific PCR (MSP) assay to identify circulating beta cell DNA in streptozotocin-treated mice prior to the rise in blood glucose. The current study extends to autoimmune non-obese diabetic (NOD) mice and humans, showing in NOD mice that beta cell death occurs six weeks before the rise in blood sugar and coincides with the onset of islet infiltration by immune cells, demonstrating the utility of MSP for monitoring T1D. We previously reported unique patterns of methylation of the human insulin gene, and now extend this to other human tissues. The methylation patterns of the human insulin promoter, intron 1, exon 2, and intron 2 were determined in several normal human tissues. Similar to our previous report, the human insulin promoter was unmethylated in beta cells, but methylated in all other tissues tested. In contrast, intron 1, exon 2 and intron 2 did not exhibit any tissue-specific DNA methylation pattern. Subsequently, a human MSP assay was developed based on the methylation pattern of the insulin promoter and human islet DNA was successfully detected in circulation of T1D patients after islet transplantation therapy. Signal levels of normal controls and pre-transplant samples were shown to be similar, but increased dramatically after islet transplantation. In plasma the signal declines with time but in whole blood remains elevated for at least two weeks, indicating that association of beta cell DNA with blood cells prolongs the signal. This assay provides an effective method to monitor beta cell destruction in early T1D and in islet transplantation therapy. PMID:24722187

  16. Atomic Insight into the Altered O6-Methylguanine-DNA Methyltransferase Protein Architecture in Gastric Cancer.

    Directory of Open Access Journals (Sweden)

    Naveed Anjum Chikan

    Full Text Available O6-methylguanine-DNA methyltransferase (MGMT is one of the major DNA repair protein that counteracts the alkalyting agent-induced DNA damage by replacing O6-methylguanine (mutagenic lesion back to guanine, eventually suppressing the mismatch errors and double strand crosslinks. Exonic alterations in the form of nucleotide polymorphism may result in altered protein structure that in turn can lead to the loss of function. In the present study, we focused on the population feared for high exposure to alkylating agents owing to their typical and specialized dietary habits. To this end, gastric cancer patients pooled out from the population were selected for the mutational screening of a specific error prone region of MGMT gene. We found that nearly 40% of the studied neoplastic samples harbored missense mutation at codon151 resulting into Serine to Isoleucine variation. This variation resulted in bringing about the structural disorder, subsequently ensuing into a major stoichiometric variance in recognition domain, substrate binding and selectivity loop of the active site of the MGMT protein, as observed under virtual microscope of molecular dynamics simulation (MDS. The atomic insight into MGMT protein by computational approach showed a significant change in the intra molecular hydrogen bond pattern, thus leading to the observed structural anomalies. To further examine the mutational implications on regulatory plugs of MGMT that holds the protein in a DNA-Binding position, a MDS based analysis was carried out on, all known physically interacting amino acids essentially clustered into groups based on their position and function. The results generated by physical-functional clustering of protein indicated that the identified mutation in the vicinity of the active site of MGMT protein causes the local and global destabilization of a protein by either eliminating the stabilizing salt bridges in cluster C3, C4, and C5 or by locally destabilizing the

  17. Methamidophos alters sperm function and DNA at different stages of spermatogenesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Urióstegui-Acosta, Mayrut; Hernández-Ochoa, Isabel [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico); Sánchez-Gutiérrez, Manuel [Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Hidalgo (Mexico); Piña-Guzmán, Belem [Instituto Politécnico Nacional-UPIBI, D.F. (Mexico); Rafael-Vázquez, Leticia; Solís-Heredia, M.J.; Martínez-Aguilar, Gerardo [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico); Quintanilla-Vega, Betzabet, E-mail: mquintan@cinvestav.mx [Departamento de Toxicología, CINVESTAV-IPN, D.F. (Mexico)

    2014-09-15

    Methamidophos (MET) is a highly toxic organophosphate (OP) pesticide that is widely used in developing countries. MET has male reproductive effects, including decreased fertility. We evaluated MET effects on sperm quality, fertilization and DNA integrity, exploring the sensitivity of different stages of spermatogenesis. Adult male mice received MET (3.75 or 5 mg/kg-bw/ip/day/4 days) and were euthanized 1, 28 or 45 days post-treatment (dpt) to evaluate MET's effects on epididymal maturation, meiosis or mitosis, respectively. Spermatozoa were obtained from the cauda epididymis–vas deferens and were evaluated for sperm quality, acrosome reaction (AR; Coomassie staining), mitochondrial membrane potential (by JC-1), DNA damage (comet assay), oxidative damage (malondialdehyde (MDA) production), in vitro fertilization and protein phosphorylation (immunodetection), and erythrocyte acetylcholinesterase (AChE) activity. At 1-dpt, MET inhibited AChE (43–57%) and increased abnormal cells (6%). While at 28- and 45-dpt, sperm motility and viability were significantly reduced with an increasing MET dose, and abnormal morphology increased at 5 mg/kg/day/4 days. MDA and mitochondrial activity were not affected at any dose or time. DNA damage (OTM and %DNA) was observed at 5 mg/kg/day/4 days in a time-dependent manner, whereas both parameters were altered in cells from mice exposed to 3.75 mg/kg/day/4 days only at 28-dpt. Depending on the time of collection, initial-, spontaneous- and induced-AR were altered at 5 mg/kg/day/4 days, and the fertilization capacity also decreased. Sperm phosphorylation (at serine and tyrosine residues) was observed at all time points. Data suggest that meiosis and mitosis are the more sensitive stages of spermatogenesis for MET reproductive toxicity compared to epididymal maturation. - Highlights: • Methamidophos alters sperm cell function at different stages of spermatogenesis. • Testicular stages of spermatogenesis are more sensitive to

  18. GABA transporter 1 transcriptional starting site exhibiting tissue specific difference

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    GABA transporter 1(GAT1)takes important roles in multiple physiological processes through the uptake and release of GABA,but the regulation of GAT1 gene expression in different tissues is rarely known.To address the question,first,5' Rapid amplification of cDNA end(RACE)was used to determine GAT1 transcriptional starting sites in neonatal mouse cerebral cortex and intestine,adult mouse brain and adult rat testis.The products of 5'RACE were confirmed by DNA sequencing.We found that the transcript of GAT1 in neonatal mouse cerebral cortex and adult mouse brain starts at the same site(inside of exon 1),while in mouse intestine,GAT1 starts transcription in intron 1,and in rat testis,the transcript of GAT1 has an additional untranslation exon to the 5' direction.

  19. TISSUE SPECIFIC RESPONSES ALTER THE BIOMASS ACCUMULATION IN WHEAT UNDER GRADUAL AND SUDDEN SALT STRESS

    OpenAIRE

    Yumurtaci A.; Uncuoglu A. A.

    2012-01-01

    Salinity is one the major limiting environmental factors which has negative side effects on crop production. The purpose of this study was to investigate the differences between the gradual and sudden salt stress effects on biomass accumulation associated with whole plant development in three different tissues of two wheat species ( Triticum aestivum and Triticum durum) under hydroponic conditions in the long term. Considering the effects of sudden and gradual stress for biomass accumulation,...

  20. Tissue specific responses alter the biomass accumulation in wheat under gradual and sudden salt stress

    Directory of Open Access Journals (Sweden)

    Yumurtaci A.

    2012-11-01

    Full Text Available Salinity is one the major limiting environmental factors which has negative side effects on crop production. The purpose of this study was to investigate the differences between the gradual and sudden salt stress effects on biomass accumulation associated with whole plant development in three different tissues of two wheat species ( Triticum aestivum and Triticum durum under hydroponic conditions in the long term. Considering the effects of sudden and gradual stress for biomass accumulation, while importance of salinity x genotype interaction for fresh weights was 5%, association for salinity x tissue type was found as 1% important. Interestingly, root branching and development of lateral roots were much more negatively affected by gradual stress rather than sudden salt application. Our results demonstrated that root and leaf were both critical tissues to test the salt tolerance by physiologically but sheath tissue might be used as an alternative source of variation for solving the interactions between root and leaves in wheat.

  1. Metabolic profiling of the tissue-specific responses in mussel Mytilus galloprovincialis towards Vibrio harveyi challenge.

    Science.gov (United States)

    Liu, Xiaoli; Ji, Chenglong; Zhao, Jianmin; Wang, Qing; Li, Fei; Wu, Huifeng

    2014-08-01

    Mussel Mytilus galloprovincialis is a marine aquaculture shellfish distributing widely along the coast in north China. In this work, we studied the differential metabolic responses induced by Vibrio harveyi in digestive gland and gill tissues from M. galloprovincialis using NMR-based metabolomics. The differential metabolic responses in the two tissue types were detected, except the similarly altered taurine and betaine. These metabolic responses suggested that V. harveyi mainly induced osmotic disruption and reduced energy demand via the metabolic pathways of glucose synthesis and ATP/AMP conversion in mussel digestive gland. In mussel gill tissues, V. harveyi basically caused osmotic stress and possible reduced energy demand as shown by the elevated phosphocholine that is involved in one of the metabolic pathways of ATP synthesis from ADP and phosphocholine. The altered mRNA expression levels of related genes (superoxide dismutase with copper and zinc, heat shock protein 90, defensin and lysozyme) suggested that V. harveyi induced clear oxidative and immune stresses in both digestive gland and gill tissues. However, the mRNA expression levels of both lysozyme and defensin in digestive gland were more significantly up-regulated than those in gill from V. harveyi-challenged mussel M. galloprovincialis, meaning that the immune organ, digestive gland, was more sensitive than gill. Overall, our results indicated that V. harveyi could induce tissue-specific metabolic responses in mussel M. galloprovincialis.

  2. Regulating expressin of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, R N; Dai, Shunhong

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  3. Regulating expression of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N; Dai, Shunhong

    2010-06-14

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Rice bZIP transcription factors RF2a, RF2b and RLP1 play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV), through their interactions with the Box II essential cis element located in the promoter (Dai et al., 2006., Dai et al., 2004., Yin et al., 1997). RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. It is equally as important to recognize that these proteins control plant development by regulating differentiation and/or function of the vascular tissues. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins will not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants. We have proposed characterize the function domains of RF2a, RF2b and RLP1 and explore the biological function of the transcription repressor RLP1.

  4. Sex- and Tissue-Specific Methylome Changes in Brains of Mice Perinatally Exposed to Lead

    Science.gov (United States)

    Sánchez-Martín, Francisco Javier; Lindquist, Diana M.; Landero-Figueroa, Julio; Zhang, Xiang; Chen, Jing; Cecil, Kim M.; Medvedovic, Mario; Puga, Alvaro

    2014-01-01

    Changes in DNA methylation and subsequent changes in gene expression regulation are the hallmarks of age- and tissue-dependent epigenetic drift and plasticity resulting from the combinatorial integration of genetic determinants and environmental cues. To determine whether perinatal lead exposure caused persistent DNA methylation changes in target tissues, we exposed mouse dams to 0, 3 or 30 ppm of lead acetate in drinking water for a period extending from 2 months prior to mating, through gestation, until weaning of pups at postnatal day-21, and analyzed whole-genome DNA methylation in brain cortex and hippocampus of 2-month old exposed and unexposed progeny. Lead exposure resulted in hypermethylation of three differentially methylated regions in the hippocampus of females, but not males. These regions mapped to Rn4.5s, Sfi1, and Rn45s loci in mouse chromosomes 2, 11 and 17, respectively. At a conservative fdr<0.001, 1,623 additional CpG sites were differentially methylated in female hippocampus, corresponding to 117 unique genes. Sixty of these genes were tested for mRNA expression and showed a trend towards negative correlation between mRNA expression and methylation in exposed females but not males. No statistically significant methylome changes were detected in male hippocampus or in cortex of either sex. We conclude that exposure to lead during embryonic life, a time when the organism is most sensitive to environmental cues, appears to have a sex- and tissue-specific effect on DNA methylation that may produce pathological or physiological deviations from the epigenetic plasticity operative in unexposed mice. PMID:25530354

  5. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model.

    Directory of Open Access Journals (Sweden)

    Heidi Marjonen

    Full Text Available The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v ethanol for the first 8 days of gestation (GD 0.5-8.5. Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60: we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in

  6. Construction and analyses of human large-scale tissue specific networks.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Construction and analyses of tissue specific networks is crucial to unveil the function and organizational structure of biological systems. As a direct method to detect protein dynamics, human proteome-wide expression data provide an valuable resource to investigate the tissue specificity of proteins and interactions. By integrating protein expression data with large-scale interaction network, we constructed 30 tissue/cell specific networks in human and analyzed their properties and functions. Rather than the tissue specificity of proteins, we mainly focused on the tissue specificity of interactions to distill tissue specific networks. Through comparing our tissue specific networks with those inferred from gene expression data, we found our networks have larger scales and higher reliability. Furthermore, we investigated the similar extent of multiple tissue specific networks, which proved that tissues with similar functions tend to contain more common interactions. Finally, we found that the tissue specific networks differed from the static network in multiple topological properties. The proteins in tissue specific networks are interacting looser and the hubs play more important roles than those in the static network.

  7. De novo assembly and analysis of tissue-specific transcriptomes revealed the tissue-specific genes and profile of immunity from Strongylocentrotus intermedius.

    Science.gov (United States)

    Chen, Yadong; Chang, Yaqing; Wang, Xiuli; Qiu, Xuemei; Liu, Yang

    2015-10-01

    Strongylocentrotus intermedius is an important marine species in north China and Japan. Recent years, diseases are threating the sea urchin aquaculture industry seriously. To provide a genetic resource for S. intermedius as well as overview the immune-related genes of S. intermedius, we performed transcriptome sequencing of three cDNA libraries representing three tissues, coelomocytes, gut and peristomial membrane respectively. In total 138,421 contigs were assembled from all sequencing data. 96,764 contigs were annotated according to bioinformatics databases, including NT, nr, Swiss-Prot, KEGG, COG. 49,336 Contigs were annotated as CDS. In this study, we obtained 24,778 gene families from S. intermedius transcriptome. The gene expression analysis revealed that more genes were expressed in gut, more high expression level genes in coelomocytes when compared with other tissues. Specific expressed contigs in coelomocytes, gut, and peristomial membrane were 546, 1136, and 1012 respectively. Pathway analysis suggested 25, 17 and 36 potential specifically pathways may specific progressed in peristomial membrane, gut and coelomocytes respectively. Similarities and differences between S. intermedius and other echinoderms were analyzed. S. intermedius was more homology to Strongylocentrotus purpuratus than others sea urchin. Of 24,778 genes, 1074 genes are immune-related, immune genes were expressed with a higher level in coelomocytes than other tissues. Complement system may be the most important immune system in sea urchin. We also identified 2438 SSRs and 16,236 SNPs for S. intermedius. These results provide a transcriptome resource and foundation to study molecular mechanisms of sea urchin immune system.

  8. De novo assembly and analysis of tissue-specific transcriptomes revealed the tissue-specific genes and profile of immunity from Strongylocentrotus intermedius.

    Science.gov (United States)

    Chen, Yadong; Chang, Yaqing; Wang, Xiuli; Qiu, Xuemei; Liu, Yang

    2015-10-01

    Strongylocentrotus intermedius is an important marine species in north China and Japan. Recent years, diseases are threating the sea urchin aquaculture industry seriously. To provide a genetic resource for S. intermedius as well as overview the immune-related genes of S. intermedius, we performed transcriptome sequencing of three cDNA libraries representing three tissues, coelomocytes, gut and peristomial membrane respectively. In total 138,421 contigs were assembled from all sequencing data. 96,764 contigs were annotated according to bioinformatics databases, including NT, nr, Swiss-Prot, KEGG, COG. 49,336 Contigs were annotated as CDS. In this study, we obtained 24,778 gene families from S. intermedius transcriptome. The gene expression analysis revealed that more genes were expressed in gut, more high expression level genes in coelomocytes when compared with other tissues. Specific expressed contigs in coelomocytes, gut, and peristomial membrane were 546, 1136, and 1012 respectively. Pathway analysis suggested 25, 17 and 36 potential specifically pathways may specific progressed in peristomial membrane, gut and coelomocytes respectively. Similarities and differences between S. intermedius and other echinoderms were analyzed. S. intermedius was more homology to Strongylocentrotus purpuratus than others sea urchin. Of 24,778 genes, 1074 genes are immune-related, immune genes were expressed with a higher level in coelomocytes than other tissues. Complement system may be the most important immune system in sea urchin. We also identified 2438 SSRs and 16,236 SNPs for S. intermedius. These results provide a transcriptome resource and foundation to study molecular mechanisms of sea urchin immune system. PMID:26253994

  9. Common DNA methylation alterations of Alzheimer's disease and aging in peripheral whole blood

    Science.gov (United States)

    Li, Hongdong; Guo, Zheng; Guo, You; Li, Mengyao; Yan, Haidan; Cheng, Jun; Wang, Chenguang; Hong, Guini

    2016-01-01

    Alzheimer's disease (AD) is a common aging-related neurodegenerative illness. Recently, many studies have tried to identify AD- or aging-related DNA methylation (DNAm) biomarkers from peripheral whole blood (PWB). However, the origin of PWB biomarkers is still controversial. In this study, by analyzing 2565 DNAm profiles for PWB and brain tissue, we showed that aging-related DNAm CpGs (Age-CpGs) and AD-related DNAm CpGs (AD-CpGs) observable in PWB both mainly reflected DNAm alterations intrinsic in leukocyte subtypes rather than methylation differences introduced by the increased ratio of myeloid to lymphoid cells during aging or AD progression. The PWB Age-CpGs and AD-CpGs significantly overlapped 107 sites (P-value = 2.61×10−12) and 97 had significantly concordant methylation alterations in AD and aging (P-value nervous system development, neuron differentiation and neurogenesis. More than 60.8% of these 97 concordant sites were found to be significantly correlated with age in normal peripheral CD4+ T cells and CD14+ monocytes as well as in four brain regions, and 44 sites were also significantly differentially methylated in different regions of AD brain tissue. Taken together, the PWB DNAm alterations related to both aging and AD could be exploited for identification of AD biomarkers. PMID:26943045

  10. Acetylation Mimics Within a Single Nucleosome Alter Local DNA Accessibility In Compacted Nucleosome Arrays

    Science.gov (United States)

    Mishra, Laxmi N.; Pepenella, Sharon; Rogge, Ryan; Hansen, Jeffrey C.; Hayes, Jeffrey J.

    2016-01-01

    The activation of a silent gene locus is thought to involve pioneering transcription factors that initiate changes in the local chromatin structure to increase promoter accessibility and binding of downstream effectors. To better understand the molecular requirements for the first steps of locus activation, we investigated whether acetylation of a single nucleosome is sufficient to alter DNA accessibility within a condensed 25-nucleosome array. We found that acetylation mimics within the histone H4 tail domain increased accessibility of the surrounding linker DNA, with the increased accessibility localized to the immediate vicinity of the modified nucleosome. In contrast, acetylation mimics within the H3 tail had little effect, but were able to synergize with H4 tail acetylation mimics to further increase accessibility. Moreover, replacement of the central nucleosome with a nucleosome free region also resulted in increased local, but not global DNA accessibility. Our results indicate that modification or disruption of only a single target nucleosome results in significant changes in local chromatin architecture and suggest that very localized chromatin modifications imparted by pioneer transcription factors are sufficient to initiate a cascade of events leading to promoter activation. PMID:27708426

  11. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis.

    Directory of Open Access Journals (Sweden)

    Nieves Ayllón

    2015-03-01

    Full Text Available Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic

  12. Select Prenatal Environmental Exposures and Subsequent Alterations of Gene-Specific and Repetitive Element DNA Methylation in Fetal Tissues.

    Science.gov (United States)

    Green, Benjamin B; Marsit, Carmen J

    2015-06-01

    Strong evidence implicates maternal environmental exposures in contributing to adverse outcomes during pregnancy and later in life through the developmental origins of health and disease hypothesis. Recent research suggests these effects are mediated through the improper regulation of DNA methylation in offspring tissues, specifically placental tissue, which plays a critical role in fetal development. This article reviews the relevant literature relating DNA methylation in multiple tissues at or near delivery to several prenatal environmental toxicants and stressors, including cigarette smoke, endocrine disruptors, heavy metals, as well as maternal diet. These human studies expand upon previously reported outcomes in animal model interventions and include effects on both imprinted and non-imprinted genes. We have also noted some of the strengths and limitations in the approaches used, and consider the appropriate interpretation of these findings in terms of their effect size and their relationship to differential gene expression and potential health outcomes. The studies suggest an important role of DNA methylation in mediating the effects of the intrauterine environment on children's health and a need for additional research to better clarify the role of this epigenetic mechanism as well as others. PMID:26231362

  13. Tissue-Specific Gain of RTK Signalling Uncovers Selective Cell Vulnerability during Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Yannan Fan

    Full Text Available The successive events that cells experience throughout development shape their intrinsic capacity to respond and integrate RTK inputs. Cellular responses to RTKs rely on different mechanisms of regulation that establish proper levels of RTK activation, define duration of RTK action, and exert quantitative/qualitative signalling outcomes. The extent to which cells are competent to deal with fluctuations in RTK signalling is incompletely understood. Here, we employ a genetic system to enhance RTK signalling in a tissue-specific manner. The chosen RTK is the hepatocyte growth factor (HGF receptor Met, an appropriate model due to its pleiotropic requirement in distinct developmental events. Ubiquitously enhanced Met in Cre/loxP-based Rosa26(stopMet knock-in context (Del-R26(Met reveals that most tissues are capable of buffering enhanced Met-RTK signalling thus avoiding perturbation of developmental programs. Nevertheless, this ubiquitous increase of Met does compromise selected programs such as myoblast migration. Using cell-type specific Cre drivers, we genetically showed that altered myoblast migration results from ectopic Met expression in limb mesenchyme rather than in migrating myoblasts themselves. qRT-PCR analyses show that ectopic Met in limbs causes molecular changes such as downregulation in the expression levels of Notum and Syndecan4, two known regulators of morphogen gradients. Molecular and functional studies revealed that ectopic Met expression in limb mesenchyme does not alter HGF expression patterns and levels, but impairs HGF bioavailability. Together, our findings show that myoblasts, in which Met is endogenously expressed, are capable of buffering increased RTK levels, and identify mesenchymal cells as a cell type vulnerable to ectopic Met-RTK signalling. These results illustrate that embryonic cells are sensitive to alterations in the spatial distribution of RTK action, yet resilient to fluctuations in signalling levels of an

  14. Singlet Oxygen-Mediated Oxidation during UVA Radiation Alters the Dynamic of Genomic DNA Replication.

    Directory of Open Access Journals (Sweden)

    Dany Graindorge

    Full Text Available UVA radiation (320-400 nm is a major environmental agent that can exert its deleterious action on living organisms through absorption of the UVA photons by endogenous or exogenous photosensitizers. This leads to the production of reactive oxygen species (ROS, such as singlet oxygen (1O2 and hydrogen peroxide (H2O2, which in turn can modify reversibly or irreversibly biomolecules, such as lipids, proteins and nucleic acids. We have previously reported that UVA-induced ROS strongly inhibit DNA replication in a dose-dependent manner, but independently of the cell cycle checkpoints activation. Here, we report that the production of 1O2 by UVA radiation leads to a transient inhibition of replication fork velocity, a transient decrease in the dNTP pool, a quickly reversible GSH-dependent oxidation of the RRM1 subunit of ribonucleotide reductase and sustained inhibition of origin firing. The time of recovery post irradiation for each of these events can last from few minutes (reduction of oxidized RRM1 to several hours (replication fork velocity and origin firing. The quenching of 1O2 by sodium azide prevents the delay of DNA replication, the decrease in the dNTP pool and the oxidation of RRM1, while inhibition of Chk1 does not prevent the inhibition of origin firing. Although the molecular mechanism remains elusive, our data demonstrate that the dynamic of replication is altered by UVA photosensitization of vitamins via the production of singlet oxygen.

  15. Rarity of DNA sequence alterations in the promoter region of the human androgen receptor gene

    Directory of Open Access Journals (Sweden)

    D.F. Cabral

    2004-12-01

    Full Text Available The human androgen receptor (AR gene promoter lies in a GC-rich region containing two principal sites of transcription initiation and a putative Sp1 protein-binding site, without typical "TATA" and "CAAT" boxes. It has been suggested that mutations within the 5'untranslated region (5'UTR may contribute to the development of prostate cancer by changing the rates of gene transcription and/or translation. In order to investigate this question, the aim of the present study was to search for the presence of mutations or polymorphisms at the AR-5'UTR in 92 prostate cancer patients, where histological diagnosis of adenocarcinoma was established in specimens obtained from transurethral resection or after prostatectomy. The AR-5'UTR was amplified by PCR from genomic DNA samples of the patients and of 100 healthy male blood donors, included as controls. Conformation-sensitive gel electrophoresis was used for DNA sequence alteration screening. Only one band shift was detected in one individual from the blood donor group. Sequencing revealed a new single nucleotide deletion (T in the most conserved portion of the promoter region at position +36 downstream from the transcription initiation site I. Although the effect of this specific mutation remains unknown, its rarity reveals the high degree of sequence conservation of the human androgen promoter region. Moreover, the absence of detectable variation within the critical 5'UTR in prostate cancer patients indicates a low probability of its involvement in prostate cancer etiology.

  16. Intermittent fasting results in tissue-specific changes in bioenergetics and redox state.

    Directory of Open Access Journals (Sweden)

    Bruno Chausse

    Full Text Available Intermittent fasting (IF is a dietary intervention often used as an alternative to caloric restriction (CR and characterized by 24 hour cycles alternating ad libitum feeding and fasting. Although the consequences of CR are well studied, the effects of IF on redox status are not. Here, we address the effects of IF on redox state markers in different tissues in order to uncover how changes in feeding frequency alter redox balance in rats. IF rats displayed lower body mass due to decreased energy conversion efficiency. Livers in IF rats presented increased mitochondrial respiratory capacity and enhanced levels of protein carbonyls. Surprisingly, IF animals also presented an increase in oxidative damage in the brain that was not related to changes in mitochondrial bioenergetics. Conversely, IF promoted a substantial protection against oxidative damage in the heart. No difference in mitochondrial bioenergetics or redox homeostasis was observed in skeletal muscles of IF animals. Overall, IF affects redox balance in a tissue-specific manner, leading to redox imbalance in the liver and brain and protection against oxidative damage in the heart.

  17. Characterization and tissue-specific expression patterns of the Plasmodium chabaudi cir multigene family

    Directory of Open Access Journals (Sweden)

    Krücken Jürgen

    2011-09-01

    Full Text Available Abstract Background Variant antigens expressed on the surface of parasitized red blood cells (pRBCs are important virulence factors of malaria parasites. Whereas Plasmodium falciparum erythrocyte membrane proteins 1 (PfEMP1 are responsible for sequestration of mature parasites, little is known about putative ligands mediating cytoadherence to host receptors in other Plasmodium species. Candidates include members of the pir superfamily found in the human parasite Plasmodium vivax (vir, in the simian pathogen Plasmodium knowlesi (kir and in the rodent malarias Plasmodium yoelii (yir, Plasmodium berghei (bir and Plasmodium chabaudi (cir. The aim of this study was to reveal a potential involvement of cir genes in P. chabaudi sequestration. Methods Subfamilies of cir genes were identified by bioinformatic analyses of annotated sequence data in the Plasmodium Genome Database. In order to examine tissue-specific differences in the expression of cir mRNAs, RT-PCR with subfamily-specific primers was used. In total, 432 cDNA clones derived from six different tissues were sequenced to characterize the transcribed cir gene repertoire. To confirm differences in transcription profiles of cir genes, restriction fragment length polymorphism (RFLP analyses were performed to compare different host tissues and to identify changes during the course of P. chabaudi infections in immunocompetent mice. Results The phylogenetic analysis of annotated P. chabaudi putative CIR proteins identified two major subfamilies. Comparison of transcribed cir genes from six different tissues revealed significant differences in the frequency clones belonging to individual cir gene subgroups were obtained from different tissues. Further hints of difference in the transcription of cir genes in individual tissues were obtained by RFLP. Whereas only minimal changes in the transcription pattern of cir genes could be detected during the developmental cycle of the parasites, switching to

  18. Epigenomic footprints across 111 reference epigenomes reveal tissue-specific epigenetic regulation of lincRNAs.

    Science.gov (United States)

    Amin, Viren; Harris, R Alan; Onuchic, Vitor; Jackson, Andrew R; Charnecki, Tim; Paithankar, Sameer; Lakshmi Subramanian, Sai; Riehle, Kevin; Coarfa, Cristian; Milosavljevic, Aleksandar

    2015-02-18

    Tissue-specific expression of lincRNAs suggests developmental and cell-type-specific functions, yet tissue specificity was established for only a small fraction of lincRNAs. Here, by analysing 111 reference epigenomes from the NIH Roadmap Epigenomics project, we determine tissue-specific epigenetic regulation for 3,753 (69% examined) lincRNAs, with 54% active in one of the 14 cell/tissue clusters and an additional 15% in two or three clusters. A larger fraction of lincRNA TSSs is marked in a tissue-specific manner by H3K4me1 than by H3K4me3. The tissue-specific lincRNAs are strongly linked to tissue-specific pathways and undergo distinct chromatin state transitions during cellular differentiation. Polycomb-regulated lincRNAs reside in the bivalent state in embryonic stem cells and many of them undergo H3K27me3-mediated silencing at early stages of differentiation. The exquisitely tissue-specific epigenetic regulation of lincRNAs and the assignment of a majority of them to specific tissue types will inform future studies of this newly discovered class of genes.

  19. Tissue-specific changes of glutamine synthetase activity in oats after rhizosphere infestation by Pseudomonas syringae pv. tabaci. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knight, T.J. [Univ. of Southern Maine, Portland, ME (United States); Temple, S.; Sengupta-Gopalan, C. [New Mexico State Univ., Las Curces, NM (United States)] [and others

    1996-05-15

    Oats (Avena sativa L. lodi) tolerant of rhizosphere infestation by Pseudomonas syringae pv. tabaci when challenged by the pathogen experience tissue-specific alterations of ammonia assimilatory capabilities. Altered ammonia assimilatory potentials between root and leaf tissue result from selective inactivation of glutamine synthetase (GS) by the toxin Tabtoxinine-B-lactam (TBL). Root GS is sensitive and leaf GSs are resistant to TBL inactivation. With prolonged challenge by the pathogen root GS activity decreases but leaf GS specific activity increase. Higher leaf GS activity is due to decreased rates of degradation rather than increased GS synthesis. Higher leaf GS activity and elevated levels of GS polypeptide appear to result from a limited interaction between GS and TBL leading to the accumulation of a less active but more stable GS holoenzyme. Tolerant challenged oats besides surviving rhizosphere infestation, experience enhanced growth. A strong correlation exists between leaf GS activity and whole plant fresh weight, suggesting that tissue-specific changes in ammonia assimilatory capability provides the plant a more efficient mechanism for uptake and utilization of nitrogen.

  20. Alterations of mtDNA number and 4977 bp deletion induced by ionizing radiation in human peripheral blood

    International Nuclear Information System (INIS)

    Alterations of mitochondria DNA (mtDNA) 4977 bp common deletion (CD) and mtDNA copy number induced by ionizing radiation were observed in human different cell lines and total body irradiation patients. However, only few experiments have evaluated the levels of the CD and mtDNA copy number in human peripheral blood exposed to ionizing radiation till now. The aim of this study is to analyze the mtDNA alterations in irradiated human peripheral blood from healthy donors as well as to explore their feasibility as biomarkers for constructing new biodosimeter. Peripheral blood samples were collected from six healthy donors, and exposed to 60Co gamma ray with the doses of 0 Gy, 1 Gy, 2 Gy, 3 Gy, 4 Gy and 5 Gy. Levels of the CD and mtDNA copy number in irradiated samples after 2h or 24 h incubation were detected using TaqMan real-time PCR, and the CD ratio was calculated. The results showed that the mean of the CD ratio and the CD copy number exhibited a dose-dependent increase 2 h in the dose range from 0-5 Gy, and of the mtDNA copy number significantly increased 24 h in irradiated groups compared with 0 Gy group after irradiation. It indicates that the parameters in human peripheral blood may be considered as molecular biomarkers to applying construction of new biodosimeter. (authors)

  1. Effects of Benzo[a]pyrene on DNA Damage and Histological alterations in Gonad of Scallop Chlamys farreri

    OpenAIRE

    Jing-Jing, Miao; Lu-Qing, Pan; Jing, Liu; Lin, Zhang

    2008-01-01

    Effects of Benzo[a]pyrene on DNA Damage and Histological alterations in Gonad of Scallop Chlamys farreri correspondence: Corresponding author. (Lu-qing, Pan) (Lu-qing, Pan) The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China - No. 5--> , Yushan Road--> , Qingdao--> - CHINA (Jing-jing, Miao) The Key Laboratory of Mariculture, Ministry of Education, Ocean University ...

  2. Mutagenesis and ultraviolet inactivation of transforming DNA of ``Haemophilus influenzae`` complexed with a ``Bacillus subtilis`` protein that alter DNA conformation

    Energy Technology Data Exchange (ETDEWEB)

    Setlow, Jane K. [Brookhaven National Lab., Upton, NY (United States); Setlow, Barbara C.; Setlow, Peter [Connecticut Univ., Farmington, CT (United States)

    1996-12-31

    The wild-type ``Bacillus subtilis`` spore protein, SspC{sup wt}, binds to DNA ``in vitro`` and ``in vivo`` and changes the conformation of DNA from B to A. Synthesis of the cloned SspC{sup wt} gene in ``Escherichia coli`` also causes large increases in mutation frequency. Binding of SspC{sup wt} to transforming DNA from ``Haemophilus influenzae`` made the DNA resistant to ultraviolet (UV) radiation. The mutant protein, SspC{sup ala}, which does not bind DNA, did not change the UV resistance. The UV sensitivity of the DNA/SspC{sup wt} complex was not increased when the recipients of the DNA were defective in excision of pyrimidine dimers. These data indicate that the ``H. influenzae`` excision mechanism does not operate on the spore photoproduct formed by UV irradiation of the complex. Selection for the streptomycin- or erythromycin-resistance markers on the transforming DNA evidenced significant mutations at loci closely linked to these, but not at other loci. SspC{sup wt} apparently entered the cell attached to the transforming DNA, and caused mutations in adjacent loci. The amount of such mutations decreased when the transforming DNA was UV irradiated, because UV unlinks linked markers. (author). 22 refs, 4 figs, 4 tabs.

  3. Genome-wide de Novo Prediction of Proximal and Distal Tissue-Specific Enhancers

    Energy Technology Data Exchange (ETDEWEB)

    Loots, G G; Ovcharenko, I V

    2005-11-03

    Determining how transcriptional regulatory networks are encoded in the human genome is essential for understanding how cellular processes are directed. Here, we present a novel approach for systematically predicting tissue specific regulatory elements (REs) that blends genome-wide expression profiling, vertebrate genome comparisons, and pattern analysis of transcription factor binding sites. This analysis yields 4,670 candidate REs in the human genome with distinct tissue specificities, the majority of which reside far away from transcription start sites. We identify key transcription factors (TFs) for 34 distinct tissues and demonstrate that tissue-specific gene expression relies on multiple regulatory pathways employing similar, but different cohorts of interacting TFs. The methods and results we describe provide a global view of tissue specific gene regulation in humans, and propose a strategy for deciphering the transcriptional regulatory code in eukaryotes.

  4. A comprehensive functional analysis of tissue specificity of human gene expression

    OpenAIRE

    Guryanov Alexey; Brennan Richard J; Rakhmatulin Eugene; Bugrim Andrej; Dosymbekov Damir; Serebriyskaya Tatiana; Shi Weiwei; Sviridov Evgeny; Nikolsky Yuri; Dezső Zoltán (1947-) (fizikus); Li Kelly; Blake Julie; Samaha Raymond R; Nikolskaya Tatiana

    2008-01-01

    Abstract Background In recent years, the maturation of microarray technology has allowed the genome-wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping') genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues. Results We measured whole genome expression in 31 human ti...

  5. DNA content alterations in Tetrahymena pyriformis macronucleus after exposure to food preservatives sodium nitrate and sodium benzoate.

    Science.gov (United States)

    Loutsidou, Ariadni C; Hatzi, Vasiliki I; Chasapis, C T; Terzoudi, Georgia I; Spiliopoulou, Chara A; Stefanidou, Maria E

    2012-12-01

    The toxicity, in terms of changes in the DNA content, of two food preservatives, sodium nitrate and sodium benzoate was studied on the protozoan Tetrahymena pyriformis using DNA image analysis technology. For this purpose, selected doses of both food additives were administered for 2 h to protozoa cultures and DNA image analysis of T. pyriformis nuclei was performed. The analysis was based on the measurement of the Mean Optical Density which represents the cellular DNA content. The results have shown that after exposure of the protozoan cultures to doses equivalent to ADI, a statistically significant increase in the macronuclear DNA content compared to the unexposed control samples was observed. The observed increase in the macronuclear DNA content is indicative of the stimulation of the mitotic process and the observed increase in MOD, accompanied by a stimulation of the protozoan proliferation activity is in consistence with this assumption. Since alterations at the DNA level such as DNA content and uncontrolled mitogenic stimulation have been linked with chemical carcinogenesis, the results of the present study add information on the toxicogenomic profile of the selected chemicals and may potentially lead to reconsideration of the excessive use of nitrates aiming to protect public health.

  6. Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2 defects predicts differential effects on aminoacylation

    Directory of Open Access Journals (Sweden)

    Liliya eEuro

    2015-02-01

    Full Text Available The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19 is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations.The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change p.R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes.

  7. Tissue specific responses to cadmium-based quantum dots in the marine mussel Mytilus galloprovincialis.

    Science.gov (United States)

    Rocha, Thiago Lopes; Gomes, Tânia; Mestre, Nélia C; Cardoso, Cátia; Bebianno, Maria João

    2015-12-01

    In recent years, Cd-based quantum dots (QDs) have generated interest from the life sciences community due to their potential applications in nanomedicine, biology and electronics. However, these engineered nanomaterials can be released into the marine environment, where their environmental health hazards remain unclear. This study investigated the tissue-specific responses related to alterations in the antioxidant defense system induced by CdTe QDs, in comparison with its dissolved counterpart, using the marine mussel Mytilus galloprovincialis. Mussels were exposed to CdTe QDs and dissolved Cd for 14 days at 10 μgCd L(-1) and biomarkers of oxidative stress [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (total, Se-independent and Se-dependent GPx) and glutathione-S-transferase (GST) activities] were analyzed along with Cd accumulation in the gills and digestive gland of mussels. Results show that both Cd forms changed mussels' antioxidant responses with distinct modes of action (MoA). There were tissue- and time-dependent differences in the biochemical responses to each Cd form, wherein QDs are more pro-oxidant when compared to dissolved Cd. The gills are the main tissue affected by QDs, with effects related to the increase of SOD, GST and GPx activities, while those of dissolved Cd was associated to the increase of CAT activity, Cd accumulation and exposure time. Digestive gland is a main tissue for accumulation of both Cd forms, but changes in antioxidant enzyme activities are smaller than in gills. A multivariate analysis revealed that the antioxidant patterns are tissue dependent, indicating nano-specific effects possibly associated to oxidative stress and changes in redox homeostasis.

  8. Tissue-specific expression of monocarboxylate transporters during fasting in mice.

    Science.gov (United States)

    Schutkowski, Alexandra; Wege, Nicole; Stangl, Gabriele I; König, Bettina

    2014-01-01

    Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs). Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4), thyroid hormones (MCT8, -10) and aromatic amino acids (MCT10). Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR)-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT) and PPARα knockout (KO) mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1-4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms. PMID:25390336

  9. The random amplified polymorphic DNA (RAPD) assay to determine DNA alterations, repair and transgenerational effects in B(a)P exposed Daphnia magna.

    Science.gov (United States)

    Atienzar, Franck A; Jha, Awadhesh N

    2004-08-18

    The random amplified polymorphic DNA (RAPD) is a useful assay for the detection of genotoxin-induced DNA damage and mutations. In this study, we have further evaluated the potential of this assay to measure benzo(a)pyrene [B(a)P]-induced DNA changes, and repair (in kinetic experiments) as well as transgenerational effects in the water fleas, Daphnia magna. The organisms, which reproduce parthenogenetically, were exposed to 50 microg L(-1) B(a)P for 3 or 6 days and were allowed to recover in clean medium for 12 or 9 days, respectively. Qualitative and quantitative changes were observed in RAPD profiles generated not only from the B(a)P exposed Daphnia but also from previously treated organisms during the recovery experiments. The fact that some of the RAPD changes disappeared at the end of both recovery experiments suggested that the DNA effects were fully repaired or reversed. In addition, some of the B(a)P-induced RAPD alterations detected in parental D. magna were also observed in the offspring patterns. This suggested that DNA alterations that occurred in germ cells were probably transmitted to the next cohorts. The present study shows that the RAPD method can be useful to qualitatively assess the kinetics of DNA changes, repair and transgenerational effects and such effects could potentially be linked to survival and reproductive success at higher levels of biological organisation. In addition, the water fleas have efficient capabilities to repair or reverse B(a)P-induced DNA effects. Finally, unrepaired or misrepaired genetic damage induced by genotoxins such as B(a)P could be transmitted to next generations in these parthenogenetically reproducing organisms. PMID:15288546

  10. Splicing reporter mice revealed the evolutionally conserved switching mechanism of tissue-specific alternative exon selection.

    Directory of Open Access Journals (Sweden)

    Akihide Takeuchi

    Full Text Available Since alternative splicing of pre-mRNAs is essential for generating tissue-specific diversity in proteome, elucidating its regulatory mechanism is indispensable to understand developmental process or tissue-specific functions. We have been focusing on tissue-specific regulation of mutually exclusive selection of alternative exons because this implies the typical molecular mechanism of alternative splicing regulation and also can be good examples to elicit general rule of "splice code". So far, mutually exclusive splicing regulation has been explained by the outcome from the balance of multiple regulators that enhance or repress either of alternative exons discretely. However, this "balance" model is open to questions of how to ensure the selection of only one appropriate exon out of several candidates and how to switch them. To answer these questions, we generated an original bichromatic fluorescent splicing reporter system for mammals using fibroblast growth factor-receptor 2 (FGFR2 gene as model. By using this splicing reporter, we demonstrated that FGFR2 gene is regulated by the "switch-like" mechanism, in which key regulators modify the ordered splice-site recognition of two mutually exclusive exons, eventually ensure single exon selection and their distinct switching. Also this finding elucidated the evolutionally conserved "splice code," in which combination of tissue-specific and broadly expressed RNA binding proteins regulate alternative splicing of specific gene in a tissue-specific manner. These findings provide the significant cue to understand how a number of spliced genes are regulated in various tissue-specific manners by a limited number of regulators, eventually to understand developmental process or tissue-specific functions.

  11. A comprehensive functional analysis of tissue specificity of human gene expression

    Directory of Open Access Journals (Sweden)

    Guryanov Alexey

    2008-11-01

    Full Text Available Abstract Background In recent years, the maturation of microarray technology has allowed the genome-wide analysis of gene expression patterns to identify tissue-specific and ubiquitously expressed ('housekeeping' genes. We have performed a functional and topological analysis of housekeeping and tissue-specific networks to identify universally necessary biological processes, and those unique to or characteristic of particular tissues. Results We measured whole genome expression in 31 human tissues, identifying 2374 housekeeping genes expressed in all tissues, and genes uniquely expressed in each tissue. Comprehensive functional analysis showed that the housekeeping set is substantially larger than previously thought, and is enriched with vital processes such as oxidative phosphorylation, ubiquitin-dependent proteolysis, translation and energy metabolism. Network topology of the housekeeping network was characterized by higher connectivity and shorter paths between the proteins than the global network. Ontology enrichment scoring and network topology of tissue-specific genes were consistent with each tissue's function and expression patterns clustered together in accordance with tissue origin. Tissue-specific genes were twice as likely as housekeeping genes to be drug targets, allowing the identification of tissue 'signature networks' that will facilitate the discovery of new therapeutic targets and biomarkers of tissue-targeted diseases. Conclusion A comprehensive functional analysis of housekeeping and tissue-specific genes showed that the biological function of housekeeping and tissue-specific genes was consistent with tissue origin. Network analysis revealed that tissue-specific networks have distinct network properties related to each tissue's function. Tissue 'signature networks' promise to be a rich source of targets and biomarkers for disease treatment and diagnosis.

  12. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  13. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure.

    Directory of Open Access Journals (Sweden)

    Colm E Nestor

    2014-01-01

    Full Text Available Altered DNA methylation patterns in CD4(+ T-cells indicate the importance of epigenetic mechanisms in inflammatory diseases. However, the identification of these alterations is complicated by the heterogeneity of most inflammatory diseases. Seasonal allergic rhinitis (SAR is an optimal disease model for the study of DNA methylation because of its well-defined phenotype and etiology. We generated genome-wide DNA methylation (N(patients = 8, N(controls = 8 and gene expression (N(patients = 9, Ncontrols = 10 profiles of CD4(+ T-cells from SAR patients and healthy controls using Illumina's HumanMethylation450 and HT-12 microarrays, respectively. DNA methylation profiles clearly and robustly distinguished SAR patients from controls, during and outside the pollen season. In agreement with previously published studies, gene expression profiles of the same samples failed to separate patients and controls. Separation by methylation (N(patients = 12, N(controls = 12, but not by gene expression (N(patients = 21, N(controls = 21 was also observed in an in vitro model system in which purified PBMCs from patients and healthy controls were challenged with allergen. We observed changes in the proportions of memory T-cell populations between patients (N(patients = 35 and controls (N(controls = 12, which could explain the observed difference in DNA methylation. Our data highlight the potential of epigenomics in the stratification of immune disease and represents the first successful molecular classification of SAR using CD4(+ T cells.

  14. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 430C and 450C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 450C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 370C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 410C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  15. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Ian Hare

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs, the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16 at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.

  16. Suppression of Recj Exonuclease Mutants of Escherichia Coli by Alterations in DNA Helicases II (Uvrd) and IV (Held)

    OpenAIRE

    Lovett, S T; Sutera-Jr., V. A.

    1995-01-01

    The recJ gene encodes a single-strand DNA-specific exonuclease involved in homologous recombination. We have isolated a pseudorevertant strain in which recJ mutant phenotypes were alleviated. Suppression of recJ was due to at least three mutations, two of which we have identified as alterations in DNA helicase genes. A recessive amber mutation, ``uvrD517(am),'' at codon 503 of the gene encoding helicase II was sufficient to suppress recJ partially. The uvrD517(am) mutation does not eliminate ...

  17. Motif Discovery in Tissue-Specific Regulatory Sequences Using Directed Information

    Directory of Open Access Journals (Sweden)

    James Douglas Engel

    2007-12-01

    Full Text Available Motif discovery for the identification of functional regulatory elements underlying gene expression is a challenging problem. Sequence inspection often leads to discovery of novel motifs (including transcription factor sites with previously uncharacterized function in gene expression. Coupled with the complexity underlying tissue-specific gene expression, there are several motifs that are putatively responsible for expression in a certain cell type. This has important implications in understanding fundamental biological processes such as development and disease progression. In this work, we present an approach to the identification of motifs (not necessarily transcription factor sites and examine its application to some questions in current bioinformatics research. These motifs are seen to discriminate tissue-specific gene promoter or regulatory regions from those that are not tissue-specific. There are two main contributions of this work. Firstly, we propose the use of directed information for such classification constrained motif discovery, and then use the selected features with a support vector machine (SVM classifier to find the tissue specificity of any sequence of interest. Such analysis yields several novel interesting motifs that merit further experimental characterization. Furthermore, this approach leads to a principled framework for the prospective examination of any chosen motif to be discriminatory motif for a group of coexpressed/coregulated genes, thereby integrating sequence and expression perspectives. We hypothesize that the discovery of these motifs would enable the large-scale investigation for the tissue-specific regulatory role of any conserved sequence element identified from genome-wide studies.

  18. Motif Discovery in Tissue-Specific Regulatory Sequences Using Directed Information

    Directory of Open Access Journals (Sweden)

    States David

    2007-01-01

    Full Text Available Motif discovery for the identification of functional regulatory elements underlying gene expression is a challenging problem. Sequence inspection often leads to discovery of novel motifs (including transcription factor sites with previously uncharacterized function in gene expression. Coupled with the complexity underlying tissue-specific gene expression, there are several motifs that are putatively responsible for expression in a certain cell type. This has important implications in understanding fundamental biological processes such as development and disease progression. In this work, we present an approach to the identification of motifs (not necessarily transcription factor sites and examine its application to some questions in current bioinformatics research. These motifs are seen to discriminate tissue-specific gene promoter or regulatory regions from those that are not tissue-specific. There are two main contributions of this work. Firstly, we propose the use of directed information for such classification constrained motif discovery, and then use the selected features with a support vector machine (SVM classifier to find the tissue specificity of any sequence of interest. Such analysis yields several novel interesting motifs that merit further experimental characterization. Furthermore, this approach leads to a principled framework for the prospective examination of any chosen motif to be discriminatory motif for a group of coexpressed/coregulated genes, thereby integrating sequence and expression perspectives. We hypothesize that the discovery of these motifs would enable the large-scale investigation for the tissue-specific regulatory role of any conserved sequence element identified from genome-wide studies.

  19. Leukocyte Mitochondrial DNA Alteration in Systemic Lupus Erythematosus and Its Relevance to the Susceptibility to Lupus Nephritis

    Directory of Open Access Journals (Sweden)

    Yau-Huei Wei

    2012-07-01

    Full Text Available The role of mitochondrial DNA (mtDNA alterations in the pathophysiology of systemic lupus erythematosus (SLE remains unclear. We investigated sequence variations in the D310 region and copy number change of mtDNA in 85 SLE patients and 45 normal subjects. Leukocyte DNA and RNA were extracted from leukocytes of the peripheral venous blood. The D310 sequence variations and copy number of mtDNA, and mRNA expression levels of mtDNA-encoded genes in leukocytes were determined by quantitative real-time polymerase chain reaction (Q-PCR and PCR-based direct sequencing, respectively. We found that leukocyte mtDNA in SLE patients exhibited higher frequency of D310 heteroplasmy (69.4% vs. 48.9%, p = 0.022 and more D310 variants (2.2 vs. 1.7, p = 0.014 than those found in controls. Among normal controls and patients with low, medium or high SLE disease activity index (SLEDAI, an ever-increasing frequency of D310 heteroplasmy was observed (p = 0.021. Leukocyte mtDNA copy number tended to be low in patients of high SLEDAI group (p = 0.068, especially in those harboring mtDNA with D310 heteroplasmy (p = 0.020. Moreover, the mtDNA copy number was positively correlated with the mRNA level of mtDNA-encoded ND1 (NADH dehydrogenase subunit 1 (p = 0.041 and ATPase 6 (ATP synthase subunit 6 (p = 0.030 genes. Patients with more D310 variants were more susceptible to lupus nephritis (p = 0.035. Taken together, our findings suggest that decrease in the mtDNA copy number and increase in D310 heteroplasmy of mtDNA are related to the development and progression of SLE, and that the patients harboring more D310 variants of mtDNA are more susceptible to lupus nephritis.

  20. Findings on sperm alterations and DNA fragmentation, nutritional, hormonal and antioxidant status in an elite triathlete. Case report

    Directory of Open Access Journals (Sweden)

    D. Vaamonde

    2014-12-01

    Conclusions: In this high-intensity endurance athlete, sperm parameters, mainly sperm morphology and DNA fragmentation, are altered. Further knowledge is needed with regards nutritional antioxidant intake and other dietetic strategies oriented toward avoiding oxidative damage in semen of high-performance triathletes. Moreover, adequate nutritional strategies must be found and nutritional advice given to athletes so as to palliate or dampen the effects of exercise on semen quality.

  1. Presence of intestinal Mycobacterium avium subspecies paratuberculosis (MAP DNA is not associated with altered MMP expression in ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Halwe Jörg M

    2011-04-01

    Full Text Available Abstract Background Mycobacterium avium subspecies paratuberculosis (MAP is suspected to be a causative agent in human Crohn's disease (CD. Recent evidence suggests that pathogenic mycobacteria and MAP can induce the expression of Matrix Metalloproteinases (MMP, which are the main proteases in the pathogenesis of mucosal ulcerations in inflammatory bowel disease (IBD. Within this study we assessed the prevalence of intestinal MAP specific DNA in patients with Crohn's disease, ulcerative colitis (UC, and healthy controls. We further analysed regulation patterns of MMPs in mucosal tissues of UC patients with and without intestinal MAP DNA detection. Methods Colonic biopsy samples were obtained from 63 Norwegian and German IBD patients and 21 healthy controls. RNA was quantified by quantitative real-time polymerase chain reaction (PCR to study MMP gene expression in both pathological and healthy mucosal specimens. The presence of MAP DNA in colonic mucosa was examined using MAP specific PCR. Results MAP DNA was detected in 20% of UC patients and 33% of healthy controls but only in 7% of patients with CD. UC patients treated with corticosteroids exhibited a significantly increased frequency of intestinal MAP DNA compared to those not receiving corticosteroids. Expression of MMP-1, -2, -7, -9, -13, -19, -28 and TNF-α did not differ between UC patients with presence of intestinal MAP DNA compared to those without. MMP-2, MMP-9 and MMP-13 were significantly decreased in UC patients receiving corticosteroids. Conclusions The presence of intestinal MAP specific DNA is not associated with altered MMP expression in UC in vivo. Corticosteroids are associated with increased detection of intestinal MAP DNA and decreased expression of certain MMPs. Frequent detection of MAP DNA in healthy controls might be attributable to the wide environmental distribution of MAP and its presence in the food-chain.

  2. A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures.

    Science.gov (United States)

    Wong, Michael Thomas; Ong, David Eng Hui; Lim, Frances Sheau Huei; Teng, Karen Wei Weng; McGovern, Naomi; Narayanan, Sriram; Ho, Wen Qi; Cerny, Daniela; Tan, Henry Kun Kiaang; Anicete, Rosslyn; Tan, Bien Keem; Lim, Tony Kiat Hon; Chan, Chung Yip; Cheow, Peng Chung; Lee, Ser Yee; Takano, Angela; Tan, Eng-Huat; Tam, John Kit Chung; Tan, Ern Yu; Chan, Jerry Kok Yen; Fink, Katja; Bertoletti, Antonio; Ginhoux, Florent; Curotto de Lafaille, Maria Alicia; Newell, Evan William

    2016-08-16

    Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body. PMID:27521270

  3. A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures.

    Science.gov (United States)

    Wong, Michael Thomas; Ong, David Eng Hui; Lim, Frances Sheau Huei; Teng, Karen Wei Weng; McGovern, Naomi; Narayanan, Sriram; Ho, Wen Qi; Cerny, Daniela; Tan, Henry Kun Kiaang; Anicete, Rosslyn; Tan, Bien Keem; Lim, Tony Kiat Hon; Chan, Chung Yip; Cheow, Peng Chung; Lee, Ser Yee; Takano, Angela; Tan, Eng-Huat; Tam, John Kit Chung; Tan, Ern Yu; Chan, Jerry Kok Yen; Fink, Katja; Bertoletti, Antonio; Ginhoux, Florent; Curotto de Lafaille, Maria Alicia; Newell, Evan William

    2016-08-16

    Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body.

  4. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    International Nuclear Information System (INIS)

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  5. Prediction of tissue-specific cis-regulatory modules using Bayesian networks and regression trees

    Directory of Open Access Journals (Sweden)

    Chen Xiaoyu

    2007-12-01

    Full Text Available Abstract Background In vertebrates, a large part of gene transcriptional regulation is operated by cis-regulatory modules. These modules are believed to be regulating much of the tissue-specificity of gene expression. Results We develop a Bayesian network approach for identifying cis-regulatory modules likely to regulate tissue-specific expression. The network integrates predicted transcription factor binding site information, transcription factor expression data, and target gene expression data. At its core is a regression tree modeling the effect of combinations of transcription factors bound to a module. A new unsupervised EM-like algorithm is developed to learn the parameters of the network, including the regression tree structure. Conclusion Our approach is shown to accurately identify known human liver and erythroid-specific modules. When applied to the prediction of tissue-specific modules in 10 different tissues, the network predicts a number of important transcription factor combinations whose concerted binding is associated to specific expression.

  6. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration.

    Science.gov (United States)

    Hall, A E; Lu, W-T; Godfrey, J D; Antonov, A V; Paicu, C; Moxon, S; Dalmay, T; Wilczynska, A; Muller, P A J; Bushell, M

    2016-01-01

    The integrity of the genome is maintained by a host of surveillance and repair mechanisms that are pivotal for cellular function. The tumour suppressor protein p53 is a major component of the DNA damage response pathway and plays a vital role in the maintenance of cell-cycle checkpoints. Here we show that a microRNA, miR-486, and its host gene ankyrin-1 (ANK1) are induced by p53 following DNA damage. Strikingly, the cytoskeleton adaptor protein ankyrin-1 was induced over 80-fold following DNA damage. ANK1 is upregulated in response to a variety of DNA damage agents in a range of cell types. We demonstrate that miR-486-5p is involved in controlling G1/S transition following DNA damage, whereas the induction of the ankyrin-1 protein alters the structure of the actin cytoskeleton and sustains limited cell migration during DNA damage. Importantly, we found that higher ANK1 expression correlates with decreased survival in cancer patients. Thus, these observations highlight ANK1 as an important effector downstream of the p53 pathway. PMID:27054339

  7. Search for Genomic Alterations in Monozygotic Twins Discordant for Cleft Lip and/or Palate

    DEFF Research Database (Denmark)

    Kimani, Jane W; Yoshiura, Koh-Ichiro; Shi, Min;

    2009-01-01

    consisting of 1,536 SNPs, to scan for genomic alterations in a sample of monozygotic twin pairs with discordant cleft lip and/or palate phenotypes. Paired analysis for deletions, amplifications and loss of heterozygosity, along with sequence verification of SNPs with discordant genotype calls did not reveal...... any genomic discordance between twin pairs in lymphocyte DNA samples. Our results demonstrate that postzygotic genomic alterations are not a common cause of monozygotic twin discordance for isolated cleft lip and/or palate. However, rare or balanced genomic alterations, tissue-specific events...

  8. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques.

    Directory of Open Access Journals (Sweden)

    Viraj Kulkarni

    Full Text Available HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24(gag elements (CE induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55(gag increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist.

  9. Identification of an mtDNA mutation hot spot in UV-induced mouse skin tumors producing altered cellular biochemistry.

    Science.gov (United States)

    Jandova, Jana; Eshaghian, Alex; Shi, Mingjian; Li, Meiling; King, Lloyd E; Janda, Jaroslav; Sligh, James E

    2012-02-01

    There is increasing awareness of the role of mtDNA alterations in the development of cancer, as mtDNA point mutations are found at high frequency in a variety of human tumors. To determine the biological effects of mtDNA mutations in UV-induced skin tumors, hairless mice were irradiated to produce tumors, and the tumor mtDNAs were screened for single-nucleotide changes using temperature gradient capillary electrophoresis (TGCE), followed by direct sequencing. A mutation hot spot (9821insA) in the mitochondrially encoded tRNA arginine (mt-Tr) locus (tRNA(Arg)) was discovered in approximately one-third of premalignant and malignant skin tumors. To determine the functional relevance of this particular mutation in vitro, cybrid cell lines containing different mt-Tr (tRNA(Arg)) alleles were generated. The resulting cybrid cell lines contained the same nuclear genotype and differed only in their mtDNAs. The biochemical analysis of the cybrids revealed that the mutant haplotype is associated with diminished levels of complex I protein (CI), resulting in lower levels of baseline oxygen consumption and lower cellular adenosine triphosphate (ATP) production. We hypothesize that this specific mtDNA mutation alters cellular biochemistry, supporting the development of keratinocyte neoplasia.

  10. DNA Methylation Alterations at 5'-CCGG Sites in the Interspecific and Intraspecific Hybridizations Derived from Brassica rapa and B. napus.

    Directory of Open Access Journals (Sweden)

    Wanshan Xiong

    Full Text Available DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5'-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5'-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.

  11. The N(2)-Furfuryl-deoxyguanosine Adduct Does Not Alter the Structure of B-DNA.

    Science.gov (United States)

    Ghodke, Pratibha P; Gore, Kiran R; Harikrishna, S; Samanta, Biswajit; Kottur, Jithesh; Nair, Deepak T; Pradeepkumar, P I

    2016-01-15

    N(2)-Furfuryl-deoxyguanosine (fdG) is carcinogenic DNA adduct that originates from furfuryl alcohol. It is also a stable structural mimic of the damage induced by the nitrofurazone family of antibiotics. For the structural and functional studies of this model N(2)-dG adduct, reliable and rapid access to fdG-modified DNAs are warranted. Toward this end, here we report the synthesis of fdG-modified DNAs using phosphoramidite chemistry involving only three steps. The functional integrity of the modified DNA has been verified by primer extension studies with DNA polymerases I and IV from E. coli. Introduction of fdG into a DNA duplex decreases the Tm by ∼1.6 °C/modification. Molecular dynamics simulations of a DNA duplex bearing the fdG adduct revealed that though the overall B-DNA structure is maintained, this lesion can disrupt W-C H-bonding, stacking interactions, and minor groove hydrations to some extent at the modified site, and these effects lead to slight variations in the local base pair parameters. Overall, our studies show that fdG is tolerated at the minor groove of the DNA to a better extent compared with other bulky DNA damages, and this property will make it difficult for the DNA repair pathways to detect this adduct. PMID:26650891

  12. Mitochondria DNA mutations cause sex-dependent development of hypertension and alterations in cardiovascular function

    OpenAIRE

    Golob, Mark J.; Tian, Lian; Wang, Zhijie; Zimmerman, Todd A.; Caneba, Christine A.; Hacker, Timothy A.; Song, Guoqing; Chesler, Naomi C.

    2014-01-01

    Aging is associated with conduit artery stiffening that is a risk factor for and can precede hypertension and ventricular dysfunction. Increases in mitochondria DNA (mtDNA) frequency have been correlated with aging. Mice with a mutation in the encoding domain (D257A) of a proof-reading deficient version of mtDNA polymerase-γ (POLG) have musculoskeletal features of premature aging and a shortened lifespan. However, few studies using these mice have investigated the effects of mtDNA mutations o...

  13. Altered Mitochondrial Function, Mitochondrial DNA and Reduced Metabolic Flexibility in Patients With Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Anna Czajka

    2015-06-01

    Full Text Available The purpose of this study was to determine if mitochondrial dysfunction plays a role in diabetic nephropathy (DN, a kidney disease which affects >100 million people worldwide and is a leading cause of renal failure despite therapy. A cross-sectional study comparing DN with diabetes patients without kidney disease (DC and healthy controls (HCs; and renal mesangial cells (HMCs grown in normal and high glucose, was carried out. Patients with diabetes (DC had increased circulating mitochondrial DNA (MtDNA, and HMCs increased their MtDNA within 24 h of hyperglycaemia. The increased MtDNA content in DCs and HMCs was not functional as transcription was unaltered/down-regulated, and MtDNA damage was present. MtDNA was increased in DC compared to HC, conversely, patients with DN had lower MtDNA than DC. Hyperglycaemic HMCs had fragmented mitochondria and TLR9 pathway activation, and in diabetic patients, mitophagy was reduced. Despite MtDNA content and integrity changing within 4 days, hyperglycaemic HMCs had a normal bio-energetic profile until 8 days, after which mitochondrial metabolism was progressively impaired. Peripheral blood mononuclear cells (PBMCs from DN patients had reduced reserve capacity and maximal respiration, loss of metabolic flexibility and reduced Bioenergetic Health Index (BHI compared to DC. Our data show that MtDNA changes precede bioenergetic dysfunction and that patients with DN have impaired mitochondrial metabolism compared to DC, leading us to propose that systemic mitochondrial dysfunction initiated by glucose induced MtDNA damage may be involved in the development of DN. Longitudinal studies are needed to define a potential cause–effect relationship between changes in MtDNA and bioenergetics in DN.

  14. Tissue-specific expression of insulin-like growth factor II mRNAs with distinct 5' untranslated regions

    International Nuclear Information System (INIS)

    The authors have used RNA from human hypothalamus as template for the production of cDNAs encoding insulin-like growth factor II (IGF-II). The prohormone coding sequence of brain IGF-II RNA is identical to that found in liver; however, the 5' untranslated sequence of the brain cDNA has no homology to the 5' untranslated sequence of the previously reported liver cDNAs. By using hybridization to specific probes as well as a method based on the properties of RNase H, they found that the human IGF-II gene has at least three exons that encode alternative 5' untranslated regions and that are expressed in a tissue-specific manner. A probe specific to the brain cDNA 5' untranslated region hybridizes to a 6.0-kilobase transcript present in placenta, hypothalamus, adrenal gland, kidney, Wilms tumor, and a pheochromocytoma. The 5' untranslated sequence of the brain cDNA does not hybridize to a 5.3-kilobase transcript found in liver or to a 5.0-kb transcript found in pheochromocytoma. By using RNase H to specifically fragment the IGF-II transcripts into 3' and 5' fragments, they found that the RNAs vary in size due to differences in the 5' end but not the 3' end

  15. Genetic alteration andmutation proifling ofcirculating cell-free tumor DNA (cfDNA) fordiagnosis andtargeted therapy ofgastrointestinal stromal tumors

    Institute of Scientific and Technical Information of China (English)

    WeixinYan; AiguoZhang; MichaelJPowell

    2016-01-01

    Gastrointestinal stromal tumors (GISTs) have been recognized as a biologically distinctive type of tumor, different from smooth muscle and neural tumors of the gastrointestinal tract. The identiifcation of genetic aberrations in proto-oncogenes that drive the growth of GISTs is critical for improving the effcacy of cancer therapy by match-ing targeted drugs to speciifc mutations. Research into the oncogenic mechanisms of GISTs has found that these tumors frequently contain activating gene mutations in either platelet-derived growth factor receptor A (PDGFRA) or a receptor tyrosine protein associated with a mast cell growth factor receptor encoded by theKIT gene. Mutant cancer subpopulations have the potential to disrupt durable patient responses to molecularly targeted therapy for GISTs, yet the prevalence and size of subpopulations remain largely unexplored. Detection of the cancer subpopulations that harbor low-frequency mutant alleles of target proto-oncogenes through the use of molecular genetic methods, such as polymerase chain reaction (PCR) target ampliifcation technology, is hampered by the high abundance of wild-type alleles, which limit the sensitivity of detection of these minor mutant alleles. This is especially true in the case of mutant tumor DNA derived “driver” and “drug-resistant” alleles that are present in the circulating cell-free tumor DNA (cfDNA) in the peripheral blood circulation of GIST patients. So-called “liquid biopsy” allows for the dynamic monitor-ing of the patients’ tumor status during treatment using minimally invasive sampling. New methodologies, such as a technology that employs a xenonucleic acid (XNA) clamping probe to block the PCR ampliifcation of wild-type templates, have allowed improved molecular detection of these low-frequency alleles both in tissue biopsy samples and in cfDNA. These new methodologies could be widely applied for minimally invasive molecular testing in the therapeutic management of GISTs.

  16. Enhancing the prioritization of disease-causing genes through tissue specific protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Oded Magger

    Full Text Available The prioritization of candidate disease-causing genes is a fundamental challenge in the post-genomic era. Current state of the art methods exploit a protein-protein interaction (PPI network for this task. They are based on the observation that genes causing phenotypically-similar diseases tend to lie close to one another in a PPI network. However, to date, these methods have used a static picture of human PPIs, while diseases impact specific tissues in which the PPI networks may be dramatically different. Here, for the first time, we perform a large-scale assessment of the contribution of tissue-specific information to gene prioritization. By integrating tissue-specific gene expression data with PPI information, we construct tissue-specific PPI networks for 60 tissues and investigate their prioritization power. We find that tissue-specific PPI networks considerably improve the prioritization results compared to those obtained using a generic PPI network. Furthermore, they allow predicting novel disease-tissue associations, pointing to sub-clinical tissue effects that may escape early detection.

  17. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  18. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  19. The DNA replication program is altered at the FMR1 locus in fragile X embryonic stem cells.

    Science.gov (United States)

    Gerhardt, Jeannine; Tomishima, Mark J; Zaninovic, Nikica; Colak, Dilek; Yan, Zi; Zhan, Qiansheng; Rosenwaks, Zev; Jaffrey, Samie R; Schildkraut, Carl L

    2014-01-01

    Fragile X syndrome (FXS) is caused by a CGG repeat expansion in the FMR1 gene that appears to occur during oogenesis and during early embryogenesis. One model proposes that repeat instability depends on the replication fork direction through the repeats such that (CNG)n hairpin-like structures form, causing DNA polymerase to stall and slip. Examining DNA replication fork progression on single DNA molecules at the endogenous FMR1 locus revealed that replication forks stall at CGG repeats in human cells. Furthermore, replication profiles of FXS human embryonic stem cells (hESCs) compared to nonaffected hESCs showed that fork direction through the repeats is altered at the FMR1 locus in FXS hESCs, such that predominantly the CCG strand serves as the lagging-strand template. This is due to the absence of replication initiation that would typically occur upstream of FMR1, suggesting that altered replication origin usage combined with fork stalling promotes repeat instability during early embryonic development.

  20. Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer

    Directory of Open Access Journals (Sweden)

    Wang Yu-Fen

    2006-04-01

    Full Text Available Abstract Background The roles of mitochondria in energy metabolism, the generation of ROS, aging, and the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in esophageal cancer. Methods The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18 esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma of tumor/surrounding normal tissue of esophageal cancers, using temporal temperature gradient gel electrophoresis (TTGE, followed by direct DNA sequencing to identify the mutations. Results Fourteen somatic mtDNA mutations were identified in 55% (11/20 of tumors analyzed, including 2 novel missense mutations and a frameshift mutation in ND4L, ATP6 subunit, and ND4 genes respectively. Nine mutations (64% were in the D-loop region. Numerous germline variations were found, at least 10 of them were novel and five were missense mutations, some of them occurred in evolutionarily conserved domains. Using real-time quantitative PCR analysis, the mtDNA content was found to increase in some tumors and decrease in others. Analysis of molecular and other clinicopathological findings does not reveal significant correlation between somatic mtDNA mutations and mtDNA content, or between mtDNA content and metastatic status. Conclusion Our results demonstrate that somatic mtDNA mutations in esophageal cancers are frequent. Some missense and frameshift mutations may play an important role in the tumorigenesis of esophageal carcinoma. More extensive biochemical and molecular studies will be necessary to determine the pathological significance of these somatic mutations.

  1. DNA methylation patterns of Brachypodium distachyon chromosomes and their alteration by 5-azacytidine treatment

    OpenAIRE

    Borowska, Natalia; Idziak, Dominika; Hasterok, Robert

    2011-01-01

    Sequential immunolocalisation of 5-methylcytosine (5-MeC) and fluorescence in situ hybridisation with chromosome-specific BAC clones were performed on Brachypodium distachyon mitotic metaphase chromosomes to determine specific DNA methylation patterns of each chromosome in the complement. In the majority of cells examined, chromosomes Bd4 and Bd5, which bear the loci of 5S and 35S ribosomal DNA, respectively, had characteristic 5-MeC patterns. In contrast, the distribution of 5-MeC along the ...

  2. DNA-repair, chromosome alterations and chromatin structure under environmental pollutions

    International Nuclear Information System (INIS)

    54 abstracts, 20 of which are within the INIS scope, are presented. The papers are dealing with the influence of some chemicals, environmental pollutants as well as drugs, on the process of DNA repair after ionizing irradiation. Some advanced techniques of detecting genotoxic properties and some papers on the influence of DNA repair on cell differentiation were presented. Genetic changes in man, animals and plants as a consequence of the Chernobylsk accident were described

  3. Exome-wide somatic microsatellite variation is altered in cells with DNA repair deficiencies.

    Directory of Open Access Journals (Sweden)

    Zalman Vaksman

    Full Text Available Microsatellites (MST, tandem repeats of 1-6 nucleotide motifs, are mutational hot-spots with a bias for insertions and deletions (INDELs rather than single nucleotide polymorphisms (SNPs. The majority of MST instability studies are limited to a small number of loci, the Bethesda markers, which are only informative for a subset of colorectal cancers. In this paper we evaluate non-haplotype alleles present within next-gen sequencing data to evaluate somatic MST variation (SMV within DNA repair proficient and DNA repair defective cell lines. We confirm that alleles present within next-gen data that do not contribute to the haplotype can be reliably quantified and utilized to evaluate the SMV without requiring comparisons of matched samples. We observed that SMV patterns found in DNA repair proficient cell lines without DNA repair defects, MCF10A, HEK293 and PD20 RV:D2, had consistent patterns among samples. Further, we were able to confirm that changes in SMV patterns in cell lines lacking functional BRCA2, FANCD2 and mismatch repair were consistent with the different pathways perturbed. Using this new exome sequencing analysis approach we show that DNA instability can be identified in a sample and that patterns of instability vary depending on the impaired DNA repair mechanism, and that genes harboring minor alleles are strongly associated with cancer pathways. The MST Minor Allele Caller used for this study is available at https://github.com/zalmanv/MST_minor_allele_caller.

  4. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

    Science.gov (United States)

    Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J

    2013-05-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.

  5. De novo assembly and characterization of tissue-specific transcriptome in the endangered golden mahseer, Tor putitora

    Directory of Open Access Journals (Sweden)

    Ashoktaru Barat

    2016-02-01

    Full Text Available The golden mahseer (Tor putitora graces most of the Himalayan Rivers of India and neighboring South Asian countries. Despite its several importance as a research model, as food, and in sport fishing, knowledge on transcriptome database is nil. Therefore, it was targeted to develop reference transcriptome databases of the species using next-generation sequencing. In the present study, 100,540,130 high-quality paired-end reads were obtained from six cDNA libraries of spleen, liver, gill, kidney, muscle, and brain with 28.4 GB data using Illumina paired-end sequencing technology. Tissue-specific transcriptomes as well as complete transcriptome assembly were analyzed for concise representation of the study. In brief, the de novo assembly of individual tissue resulted in an average of 31,829 (18,512–46,348 contigs per sample, while combined transcriptome comprised 77,907 unique transcript fragments (unigenes assembled from reads of six tissues. Approximately 75,407 (96.8% unigenes could be annotated according to their homology matches in the nr, SwisseProt, GO, or KEGG databases. Comparative analysis showed that 84% of the unigenes have significant similarity to zebra fish RefSeq proteins. Tissue-specific-dominated genes were also identified to hypothesize their localization and expression in individual tissue. In addition, 2485 simple sequence repeats (SSRs were detected from 77,907 transcripts in the combined transcriptome of the golden mahseer. This study has generated organ-specific transcriptome profiles, which will be helpful to understand the local adaptation, genome evolution, and also future functional studies on immune system of the golden mahseer.

  6. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients

    DEFF Research Database (Denmark)

    Kirchner, Henriette; Sinha, Indranil; Gao, Hui;

    2016-01-01

    in four of these genes in liver of severely obese non-diabetic and type 2 diabetic patients, suggesting epigenetic regulation of transcription by altered ATF-DNA binding. CONCLUSION: Severely obese non-diabetic and type 2 diabetic patients have distinct alterations in the hepatic methylome...... and transcriptome, with hypomethylation of several genes controlling glucose metabolism within the ATF-motif regulatory site. Obesity appears to shift the epigenetic program of the liver towards increased glycolysis and lipogenesis, which may exacerbate the development of insulin resistance.......OBJECTIVE: Epigenetic modifications contribute to the etiology of type 2 diabetes. METHOD: We performed genome-wide methylome and transcriptome analysis in liver from severely obese men with or without type 2 diabetes and non-obese men to discover aberrant pathways underlying the development...

  7. In vitro characterization of DNA gyrase inhibition by microcin B17 analogs with altered bisheterocyclic sites.

    Science.gov (United States)

    Zamble, D B; Miller, D A; Heddle, J G; Maxwell, A; Walsh, C T; Hollfelder, F

    2001-07-01

    Microcin B17 (MccB17) is a 3.1-kDa Escherichia coli antibiotic that contains thiazole and oxazole heterocycles in a peptide backbone. MccB17 inhibits its cellular target, DNA gyrase, by trapping the enzyme in a complex that is covalently bound to double-strand cleaved DNA, in a manner similar to the well-known quinolone drugs. The identification of gyrase as the target of MccB17 provides an opportunity to analyze the relationship between the structure of this unusual antibiotic and its activity. In this report, steady-state parameters are used to describe the induction of the cleavable complex by MccB17 analogs containing modified bisheterocyclic sites. The relative potency of these analogs corresponds to the capacity of the compounds to prevent growth of sensitive cells. In contrast to previously reported experiments, inhibition of DNA gyrase supercoiling activity by wild-type MccB17 also was observed. These results suggest that DNA gyrase is the main intracellular target of MccB17. This study probes the structure-function relationship of a new class of gyrase inhibitors and demonstrates that these techniques could be used to analyze compounds in the search for clinically useful antibiotics that block DNA gyrase.

  8. The human insulin gene linked polymorphic region exhibits an altered DNA structure

    Energy Technology Data Exchange (ETDEWEB)

    Hammond-Kosack, M.C.U.; Docherty, K.; Kilpatrick, M.W. (Univ. of Birmingham (United Kingdom)); Dobrinski, B.; Lurz, R. (Max-Planck-Inst., Berlin (West Germany))

    1992-01-25

    Regulation of transcription of the human insulin gene appears to involve a series of DNA sequences in the 5{prime} region. Hypersensitivity to DNA structural probes has previously been demonstrated in regulatory regions of cloned genomic DNA fragments, and been correlated with gene activity. To investigate the structure of the DNA in the human insulin gene, bromoacetaldehyde and S1 nuclease were reacted with a supercoiled plasmid containing a 5kb genomic insulin fragment. Both probes revealed the human insulin gene linked polymorphic region (ILPR), a region ({minus}363) upstream of the transcriptional start site which contains multiple repeats of a 14-15mer oligonucleotide with the consensus sequence ACAGGGGT(G/C)(T/C)GGGG, as the major hypersensitive site. Fine mapping and electron microscopic analysis both show a very different behavior of the two DNA strands in the region of the ILPR and suggest the G-rich strand may be adopting a highly structured conformation with the complementary strand remaining largely single stranded.

  9. Altered Mitochondrial DNA Methylation Pattern in Alzheimer Disease-Related Pathology and in Parkinson Disease.

    Science.gov (United States)

    Blanch, Marta; Mosquera, Jose Luis; Ansoleaga, Belén; Ferrer, Isidre; Barrachina, Marta

    2016-02-01

    Mitochondrial dysfunction is linked with the etiopathogenesis of Alzheimer disease and Parkinson disease. Mitochondria are intracellular organelles essential for cell viability and are characterized by the presence of the mitochondrial (mt)DNA. DNA methylation is a well-known epigenetic mechanism that regulates nuclear gene transcription. However, mtDNA methylation is not the subject of the same research attention. The present study shows the presence of mitochondrial 5-methylcytosine in CpG and non-CpG sites in the entorhinal cortex and substantia nigra of control human postmortem brains, using the 454 GS FLX Titanium pyrosequencer. Moreover, increased mitochondrial 5-methylcytosine levels are found in the D-loop region of mtDNA in the entorhinal cortex in brain samples with Alzheimer disease-related pathology (stages I to II and stages III to IV of Braak and Braak; n = 8) with respect to control cases. Interestingly, this region shows a dynamic pattern in the content of mitochondrial 5-methylcytosine in amyloid precursor protein/presenilin 1 mice along with Alzheimer disease pathology progression (3, 6, and 12 months of age). Finally, a loss of mitochondrial 5-methylcytosine levels in the D-loop region is found in the substantia nigra in Parkinson disease (n = 10) with respect to control cases. In summary, the present findings suggest mtDNA epigenetic modulation in human brain is vulnerable to neurodegenerative disease states.

  10. Genome-wide DNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and large-scale epigenomic alterations localized to telomeric regions

    NARCIS (Netherlands)

    P.G. Buckley; S. Das; K. Bryan; K.M. Watters; L. Alcock; J. Koster; R. Versteeg; R.L. Stallings

    2011-01-01

    The downregulation of specific genes through DNA hypermethylation is a major hallmark of cancer, although the extent and genomic distribution of hypermethylation occurring within cancer genomes is poorly understood. We report on the first genome-wide analysis of DNA methylation alterations in differ

  11. Altered DNA repair, oxidative stress and antioxidant status in coronary artery disease

    Indian Academy of Sciences (India)

    A Supriya Simon; V Chithra; Anoop Vijayan; Roy D Dinesh; T Vijayakumar

    2013-06-01

    Coronary artery disease (CAD) is a multifactorial disease caused by the interplay of environmental risk factors with multiple predisposing genes. The present study was undertaken to evaluate the role of DNA repair efficiency and oxidative stress and antioxidant status in CAD patients. Malonaldehyde (MDA), which is an indicator of oxidative stress, and mean break per cell (b/c) values, which is an indicator of decreased DNA repair efficiency, were found to be significantly increased in patients compared to normal controls ( < 0.05) whereas ascorbic acid and GSH were found to be lower among patients than the control group. It has been found that elevated oxidative stress decreased antioxidant level and decreased DNA repair efficiency can contribute to the development of CAD. This study also showed that high MDA, low ascorbic acid and GSH were significantly associated with high b/c value.

  12. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    DEFF Research Database (Denmark)

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.;

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes...... involved in the Mendelian disorder long QT syndrome (LOTS). We integrated the LOTS network with GWAS loci from the corresponding common complex trait, QT-interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LOTS protein...... to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics....

  13. Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast

    OpenAIRE

    LU, Jian; Liu, Yie

    2009-01-01

    Telomeres consist of short guanine-rich repeats. Guanine can be oxidized to 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). 8-oxoguanine DNA glycosylase (Ogg1) repairs these oxidative guanine lesions through the base excision repair (BER) pathway. Here we show that in Saccharomyces cerevisiae ablation of Ogg1p leads to an increase in oxidized guanine level in telomeric DNA. The ogg1 deletion (ogg1Δ) strain shows telomere lengthening that is dependent...

  14. Screening of tissue-specific genes and promoters in tomato by comparing genome wide expression profiles of Arabidopsis orthologues.

    Science.gov (United States)

    Lim, Chan Ju; Lee, Ha Yeon; Kim, Woong Bom; Lee, Bok-Sim; Kim, Jungeun; Ahmad, Raza; Kim, Hyun A; Yi, So Young; Hur, Cheol-Goo; Kwon, Suk-Yoon

    2012-07-01

    Constitutive overexpression of transgenes occasionally interferes with normal growth and developmental processes in plants. Thus, the development of tissue-specific promoters that drive transgene expression has become agriculturally important. To identify tomato tissue-specific promoters, tissue-specific genes were screened using a series of in silico-based and experimental procedures, including genome-wide orthologue searches of tomato and Arabidopsis databases, isolation of tissue-specific candidates using an Arabidopsis microarray database, and validation of tissue specificity by reverse transcription-polymerase chain reaction (RT-PCR) analysis and promoter assay. Using these procedures, we found 311 tissue-specific candidate genes and validated 10 tissue-specific genes by RT-PCR. Among these identified genes, histochemical analysis of five isolated promoter::GUS transgenic tomato and Arabidopsis plants revealed that their promoters have different but distinct tissue-specific activities in anther, fruit, and root, respectively. Therefore, it appears these in silico-based screening approaches in addition to the identification of new tissue-specific genes and promoters will be helpful for the further development of tailored crop development.

  15. Research Resource: Tissue-Specific Transcriptomics and Cistromics of Nuclear Receptor Signaling: A Web Research Resource

    OpenAIRE

    Ochsner, Scott A.; Watkins, Christopher M.; LaGrone, Benjamin S.; Steffen, David L.; McKenna, Neil J

    2010-01-01

    Nuclear receptors (NRs) are ligand-regulated transcription factors that recruit coregulators and other transcription factors to gene promoters to effect regulation of tissue-specific transcriptomes. The prodigious rate at which the NR signaling field has generated high content gene expression and, more recently, genome-wide location analysis datasets has not been matched by a committed effort to archiving this information for routine access by bench and clinical scientists. As a first step to...

  16. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples

    Science.gov (United States)

    Gorelick, Daniel A.; Iwanowicz, Luke R.; Hung, Alice L.; Blazer, Vicki; Halpern, Marnie E.

    2014-01-01

    Background: Environmental endocrine disruptors (EED) are exogenous chemicals that mimic endogenous hormones, such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ER) in the larval heart compared to the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit similar tissue-specific effects as BPA and genistein or why some compounds preferentially target receptors in the heart. Methods: We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of estrogen receptor genes by RNA in situ hybridization. Results: Selective patterns of ER activation were observed in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue-specificity in ER activation is due to differences in the expression of estrogen receptor subtypes. ERα is expressed in developing heart valves but not in the liver, whereas ERβ2 has the opposite profile. Accordingly, subtype-specific ER agonists activate the reporter in either the heart valves or the liver. Conclusion: The use of 5xERE:GFP transgenic zebrafish has revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero is associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  17. Tissue-Specific Immune Gene Expression in the Migratory Locust, Locusta Migratoria

    Directory of Open Access Journals (Sweden)

    Tamara Pulpitel

    2015-04-01

    Full Text Available The ability of hosts to respond to infection involves several complex immune recognition pathways. Broadly conserved pathogen-associated molecular patterns (PAMPs allow individuals to target a range of invading microbes. Recently, studies on insect innate immunity have found evidence that a single pathogen can activate different immune pathways across species. In this study, expression changes in immune genes encoding peptidoglycan-recognition protein SA (PGRP-SA, gram-negative binding protein 1 (GNBP1 and prophenoloxidase (ProPO were investigated in Locusta migratoria, following an immune challenge using injected lipopolysaccharide (LPS solution from Escherichia coli. Since immune activation might also be tissue-specific, gene expression levels were followed across a range of tissue types. For PGRP-SA, expression increased in response to LPS within all seven of the tissue-types assayed and differed significantly between tissues. Expression of GNBP1 similarly varied across tissue types, yet showed no clear expression difference between LPS-injected and uninfected locusts. Increases in ProPO expression in response to LPS, however, could only be detected in the gut sections. This study has revealed tissue-specific immune response to add a new level of complexity to insect immune studies. In addition to variation in recognition pathways identified in previous works, tissue-specificity should be carefully considered in similar works.

  18. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.

    Science.gov (United States)

    Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto

    2014-07-24

    The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment.

  19. miTALOS v2: Analyzing Tissue Specific microRNA Function.

    Science.gov (United States)

    Preusse, Martin; Theis, Fabian J; Mueller, Nikola S

    2016-01-01

    MicroRNAs are involved in almost all biological processes and have emerged as regulators of signaling pathways. We show that miRNA target genes and pathway genes are not uniformly expressed across human tissues. To capture tissue specific effects, we developed a novel methodology for tissue specific pathway analysis of miRNAs. We incorporated the most recent and highest quality miRNA targeting data (TargetScan and StarBase), RNA-seq based gene expression data (EBI Expression Atlas) and multiple new pathway data sources to increase the biological relevance of the predicted miRNA-pathway associations. We identified new potential roles of miR-199a-3p, miR-199b-3p and the miR-200 family in hepatocellular carcinoma, involving the regulation of metastasis through MAPK and Wnt signaling. Also, an association of miR-571 and Notch signaling in liver fibrosis was proposed. To facilitate data update and future extensions of our tool, we developed a flexible database backend using the graph database neo4j. The new backend as well as the novel methodology were included in the updated miTALOS v2, a tool that provides insights into tissue specific miRNA regulation of biological pathways. miTALOS v2 is available at http://mips.helmholtz-muenchen.de/mitalos. PMID:26998997

  20. Taurine protects DNA of lymphocytes against oxidative alteration in riding horses

    DEFF Research Database (Denmark)

    Sokól, Janusz Leszek; Sawosz, Ewa; Niemiec, Tomasz;

    2009-01-01

    The study aimed at evaluation the effect of dietary supplement of taurine on the oxidation-reduction status in riding horses, and especially on the extent of oxidative DNA degradation in lymphocytes. Ten Thoroughbred and half-bred geldings aged 6-13 years were classified according to breed and am...

  1. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  2. DNA methylation is altered in B and NK lymphocytes in obese and type 2 diabetic human

    DEFF Research Database (Denmark)

    Simar, David; Versteyhe, Soetkin; Donkin, Ida;

    2014-01-01

    were recruited. Global DNA methylation levels were measured in a cell type-specific manner by flow cytometry. We validated the assay against mass spectrometry measures of the total 5-methylcytosine content in cultured cells treated with the hypomethylation agent decitabine (r = 0.97, p

  3. Genome-wide alterations of the DNA replication program during tumor progression

    Science.gov (United States)

    Arneodo, A.; Goldar, A.; Argoul, F.; Hyrien, O.; Audit, B.

    2016-08-01

    Oncogenic stress is a major driving force in the early stages of cancer development. Recent experimental findings reveal that, in precancerous lesions and cancers, activated oncogenes may induce stalling and dissociation of DNA replication forks resulting in DNA damage. Replication timing is emerging as an important epigenetic feature that recapitulates several genomic, epigenetic and functional specificities of even closely related cell types. There is increasing evidence that chromosome rearrangements, the hallmark of many cancer genomes, are intimately associated with the DNA replication program and that epigenetic replication timing changes often precede chromosomic rearrangements. The recent development of a novel methodology to map replication fork polarity using deep sequencing of Okazaki fragments has provided new and complementary genome-wide replication profiling data. We review the results of a wavelet-based multi-scale analysis of genomic and epigenetic data including replication profiles along human chromosomes. These results provide new insight into the spatio-temporal replication program and its dynamics during differentiation. Here our goal is to bring to cancer research, the experimental protocols and computational methodologies for replication program profiling, and also the modeling of the spatio-temporal replication program. To illustrate our purpose, we report very preliminary results obtained for the chronic myelogeneous leukemia, the archetype model of cancer. Finally, we discuss promising perspectives on using genome-wide DNA replication profiling as a novel efficient tool for cancer diagnosis, prognosis and personalized treatment.

  4. Tissue specific promoters improve the localization of radiation-inducible gene expression

    International Nuclear Information System (INIS)

    expression was quantified in vascular endothelial cells from large vessel (HUVEC) and small vessels (HMEC). We found cell-type specificity of radiation-induction. The promoter region from the ELAM gene gave no expression in cells that were not of endothelial cell origin and x-ray-induction of ELAM in the endothelium required the NFkB binding cis-acting element. ELAM induction was achieved at doses as low as 1 Gy, whereas induction of other radiation inducible genes required 5 to 10 Gy. Cells transfected with the minimal promoter (plasmid pTK-CAT) demonstrated no radiation induction. Expression of the CMV-LacZ genetic construct that was used as a negative control in each transfection was not altered by x-irradiation. Moreover, intravenous administration of liposomes containing a reporter gene linked to the ELAM promoter and a transcriptional amplification system were induced specifically at sites of x-irradiation in an animal model. Conclusions: Activation of transcription of the ELAM-1 promoter by ionizing radiation is a means of activating gene therapy within the vascular endothelium and demonstrates the feasibility of treating vascular lesions with noninvasive procedures. Tissue specific promoters (e. g., ELAM-1) combined with radiation inducible gene therapy improves the localization of gene therapy expression. These results have applications in intravascular brachytherapy for the prevention of blood vessel restenosis

  5. Cells determine cell density using a small protein bound to a unique tissue-specific phospholipid

    Directory of Open Access Journals (Sweden)

    Christopher J. Petzold

    2013-10-01

    bone cofactor was identified as a lipid containing a ceramide phosphate, a single chained glycerol lipid and a linker. Tendon uses a different cofactor made up of two fatty acid chains linked directly to the phosphate yielding a molecule about half the size. Moreover, adding the tendon factor/cofactor to osteosarcoma cells causes them to stop growing, which is opposite to its role with tendon cells. Thus, the cofactor is cell type specific both in composition and in the triggered response. Further support of its proposed role came from frozen sections from 5 week old mice where an antibody to the factor stained strongly at the growing ends of the tendon as predicted. In conclusion, the molecule needed for cell density signaling is a small protein bound to a unique, tissue-specific phospholipid yielding a membrane associated but diffusible molecule. Signal transduction is postulated to occur by an increased ordering of the plasma membrane as the concentration of this protein/lipid increases with cell density.

  6. Inhibition of fried meat-induced colorectal DNA damage and altered systemic genotoxicity in humans by crucifera, chlorophyllin, and yogurt.

    Directory of Open Access Journals (Sweden)

    Daniel T Shaughnessy

    Full Text Available Dietary exposures implicated as reducing or causing risk for colorectal cancer may reduce or cause DNA damage in colon tissue; however, no one has assessed this hypothesis directly in humans. Thus, we enrolled 16 healthy volunteers in a 4-week controlled feeding study where 8 subjects were randomly assigned to dietary regimens containing meat cooked at either low (100°C or high temperature (250°C, each for 2 weeks in a crossover design. The other 8 subjects were randomly assigned to dietary regimens containing the high-temperature meat diet alone or in combination with 3 putative mutagen inhibitors: cruciferous vegetables, yogurt, and chlorophyllin tablets, also in a crossover design. Subjects were nonsmokers, at least 18 years old, and not currently taking prescription drugs or antibiotics. We used the Salmonella assay to analyze the meat, urine, and feces for mutagenicity, and the comet assay to analyze rectal biopsies and peripheral blood lymphocytes for DNA damage. Low-temperature meat had undetectable levels of heterocyclic amines (HCAs and was not mutagenic, whereas high-temperature meat had high HCA levels and was highly mutagenic. The high-temperature meat diet increased the mutagenicity of hydrolyzed urine and feces compared to the low-temperature meat diet. The mutagenicity of hydrolyzed urine was increased nearly twofold by the inhibitor diet, indicating that the inhibitors enhanced conjugation. Inhibitors decreased significantly the mutagenicity of un-hydrolyzed and hydrolyzed feces. The diets did not alter the levels of DNA damage in non-target white blood cells, but the inhibitor diet decreased nearly twofold the DNA damage in target colorectal cells. To our knowledge, this is the first demonstration that dietary factors can reduce DNA damage in the target tissue of fried-meat associated carcinogenesis.ClinicalTrials.gov NCT00340743.

  7. Altered metaphase chromosome structure in xrs-5 cells is not related to its radiation sensitivity or defective DNA break rejoining

    International Nuclear Information System (INIS)

    The Chinese hamster ovary (CHO) cell line xrs-5 is a radiation-sensitive derivative of CHO-K1 cells. The xrs-5 cells have a defect in DNA double-strand break rejoining and show alterations in chromosome structure and nuclear morphology. The relationship between radiation sensitivity and metaphase chromosome morphology was examined in 12 'revertant' xrs-5 clones isolated following treatment with 5-azacytidine. Nine of the clones were radioresistant while the other three retained xrs-5-like radiation sensitivity. Chromosome morphology reverted to CHO-K1-like characteristics in three of the radioresistant clones and one of the radiosensitive clones suggesting that the over-condensed metaphase chromosome morphology of xrs-5 cells does not underlie its radiation sensitivity. Radiation sensitivity did correlate with DNA double-strand break rejoining ability. The radioresistant clones showing the over-condensed xrs-5-like chromosome morphology were also slightly more sensitive to the topoisomerase II inhibitor etoposide (VP-16) than CHO-K1, suggesting that the over-condensed morphology might be due to alterations in the phosphorylation of chromatin proteins

  8. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  9. MBD3 expression and DNA binding patterns are altered in a rat model of temporal lobe epilepsy.

    Science.gov (United States)

    Bednarczyk, Joanna; Dębski, Konrad J; Bot, Anna M; Lukasiuk, Katarzyna

    2016-01-01

    The aim of the present study was to examine involvement of MBD3 (methyl-CpG-binding domain protein 3), a protein involved in reading DNA methylation patterns, in epileptogenesis and epilepsy. We used a well-characterized rat model of temporal lobe epilepsy that is triggered by status epilepticus, evoked by electrical stimulation of the amygdala. Stimulated and sham-operated animals were sacrificed 14 days after stimulation. We found that MBD3 transcript was present in neurons, oligodendrocytes, and astrocytes in both control and epileptic animals. We detected the nuclear localization of MBD3 protein in neurons, mature oligodendrocytes, and a subpopulation of astrocytes but not in microglia. Amygdala stimulation significantly increased the level of MBD3 immunofluorescence. Immunoprecipitation followed by mass spectrometry and Western blot revealed that MBD3 in the adult brain assembles the NuRD complex, which also contains MTA2, HDAC2, and GATAD2B. Using chromatin immunoprecipitation combined with deep sequencing, we observed differences in the occupancy of DNA regions by MBD3 protein between control and stimulated animals. This was not followed by subsequent changes in the mRNA expression levels of selected MBD3 targets. Our data demonstrate for the first time alterations in the MBD3 expression and DNA occupancy in the experimental model of epilepsy. PMID:27650712

  10. Specific siRNA Downregulated TLR9 and Altered Cytokine Expression Pattern in Macrophage after CpG DNA Stimulation

    Institute of Scientific and Technical Information of China (English)

    Bin Qiao; Baohua Li; Xiuli Yang; Hongyong Zhang; Yiwei Chu; Ying Wang; Sidong Xiong

    2005-01-01

    Bacterial CpG DNA or synthetic oligonucleotides (ODNs) that contain unmethylated CpG motifs (CpG ODN) can directly activate antigen-presenting cells (APCs) to secrete various cytokines through the intracellular receptor TLR9. Cytokine profiles elicited by the actions of stimulatory CpG DNA on TLR9 expressed APCs are crucial to the subsequent immune responses. To date, cytokine profiles in APCs upon CpG ODN stimulation in vitro are not fully investigated. In the present study, vector-based siRNA was used to downregulate TLR9 expression. Cytokine profiles were observed in murine macrophage cell line RAW264.7 transfected with TLR9-siRNA plasmid upon CpG ODN stimulation. We found that not all the cytokine expressions by the macrophage were decreased while TLR9 was downregulated. IL-12, TNF-α, IFN-γ and IL-1β expressions were significantly decreased, but IL-6,IFN-β and IL-10 expressions were not affected. Interestingly, the level of IFN-α was even increased. This alteration of cytokines produced by TLR9-downregulated APCs upon CpG ODN stimulation might indicate that the role of CpG DNA is more complicated in the pathogenesis and prevention of diseases. Cellular & Molecular Immunology.2005;2(2):130-135.

  11. Persistent DNA damage-induced premature senescence alters the functional features of human bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Minieri, Valentina; Saviozzi, Silvia; Gambarotta, Giovanna; Lo Iacono, Marco; Accomasso, Lisa; Cibrario Rocchietti, Elisa; Gallina, Clara; Turinetto, Valentina; Giachino, Claudia

    2015-04-01

    Human mesenchymal stem cells (hMSCs) are adult multipotent stem cells located in various tissues, including the bone marrow. In contrast to terminally differentiated somatic cells, adult stem cells must persist and function throughout life to ensure tissue homeostasis and repair. For this reason, they must be equipped with DNA damage responses able to maintain genomic integrity while ensuring their lifelong persistence. Evaluation of hMSC response to genotoxic insults is of great interest considering both their therapeutic potential and their physiological functions. This study aimed to investigate the response of human bone marrow MSCs to the genotoxic agent Actinomycin D (ActD), a well-known anti-tumour drug. We report that hMSCs react by undergoing premature senescence driven by a persistent DNA damage response activation, as hallmarked by inhibition of DNA synthesis, p21 and p16 protein expression, marked Senescent Associated β-galactosidase activity and enlarged γH2AX foci co-localizing with 53BP1 protein. Senescent hMSCs overexpress several senescence-associated secretory phenotype (SASP) genes and promote motility of lung tumour and osteosarcoma cell lines in vitro. Our findings disclose a multifaceted consequence of ActD treatment on hMSCs that on the one hand helps to preserve this stem cell pool and prevents damaged cells from undergoing neoplastic transformation, and on the other hand alters their functional effects on the surrounding tissue microenvironment in a way that might worsen their tumour-promoting behaviour.

  12. Specific siRNA Downregulated TLR9 and Altered Cytokine Expression Pattern in Macrophage after CpG DNA Stimulation

    Institute of Scientific and Technical Information of China (English)

    BinQiao; BaohuaLi; XiuliYang; HongyongZhang; YiweiChu; YingWang; SidongXiong

    2005-01-01

    Bacterial CpG DNA or synthetic oligonucleotides (ODNs) that contain unmethylated CpG motifs (CpG ODN) can directly activate antigen-presenting cells (APCs) to secrete various cytokines through the intraceilular receptor TL R9. Cytokine profiles elicited by the actions of stimulatory CpG DNA on TLR9 expressed APCs are crucial to the subsequent immune responses. To date, cytokine profiles in APCs upon CpG ODN stimulation in vitro are not fully investigated. In the present study, vector-based siRNA was used to downregulate TLR9 expression. Cytokine profiles were observed in murine macrophage cell line RAW264.7 transfected with TLR9-siRNA plasmid uponCpG ODN stimulation. We found that not all the cytokine expressions by the macrophage were decreased whileTLR9 was downregulated. IL-12, TNF-α, IFN-γ and IL-1β expressions were significantly decreased, but IL-6, IFN-β and IL-10 expressions were not affected. Interestingly, the level of IFN-α was even increased. This alteration of cytokines produced by TLR9-downregulated APCs upon CpG ODN stimulation might indicate that the role of CpG DNA is more complicated in the pathogenesis and prevention of diseases. Cellular & Molecular Immunology. 2005;2(2):130-135.

  13. Alterations in DNA methylation and genome structure in two rice mutant lines induced by high pressure

    Institute of Scientific and Technical Information of China (English)

    SHEN; Sile; WANG; Zhenwei; SHAN; Xiaohui; WANG; Hua; LI; Ling; LIN; Xuyun; LONG; Likun; WENG; Kenan; LIU; Bao; ZOU; Guangtian

    2006-01-01

    By using high-pressure treatment, two mutant lines were obtained from a genetically stable japonica rice cultivar Bijing38. Genomic DNA of the mutant lines, together with the original line (Bijing38), was either undigested or digested by Hpa II/Msp I, and then subjected to molecular analysis using two markers, ISSR and RAPD. Results indicated that changes in the PCR amplification profiles of both markers are apparent in the two mutant lines compared with the original rice cultivar, suggesting that there had been both sequence changes and DNA methylation modifications in the mutant lines. Southern blot analysis using diverse sequences, including two cellular genes (S2 and S3), a set of retrotransposons (Osr7, Osr36, Tos19 and more), and a MITE transposon family (mPing and Pong), confirmed the results, and indicated that changes in DNA methylation pattern, genomic structure, and possible activation of some transposons indeed occurred in the mutant lines. Moreover, these changes are stably maintained through selfed generations and in different organs. Thus, our results indicate that it is possible to obtain stable mutants in rice by high pressure treatments, and the molecular basis of the mutants may include both genetic and epigenetic changes. Therefore, high hydrostatic pressure seems a promising approach for plant mutagenesis.

  14. Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice.

    Science.gov (United States)

    Kanzleiter, Timo; Jähnert, Markus; Schulze, Gunnar; Selbig, Joachim; Hallahan, Nicole; Schwenk, Robert Wolfgang; Schürmann, Annette

    2015-05-15

    The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P 5%, coverage >10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training.

  15. A large-scale analysis of tissue-specific pathology and gene expression of human disease genes and complexes

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Hansen, Niclas Tue; Karlberg, Erik, Olof, Linnart;

    2008-01-01

    Heritable diseases are caused by germ-line mutations that, despite tissuewide presence, often lead to tissue-specific pathology. Here, we make a systematic analysis of the link between tissue-specific gene expression and pathological manifestations in many human diseases and cancers. Diseases wer...

  16. Nuclear DNA content affects the productivity of conifer forests by altering hydraulic architecture

    Science.gov (United States)

    Alday, Josu; Resco de Dios, Víctor

    2014-05-01

    Predictions of future global climate rely on feedbacks between terrestrial vegetation and the global carbon cycle, but the exact mechanisms underlying this relationship are still being discussed. One of the key knowledge gaps lies on the scaling of cellular processes to the ecosystem level. Here we examine whether an under-explored plant trait, inter-specific variation in the bulk amount of DNA in unreplicated somatic cells (2C DNA content), can explain inter-specific variation in the maximum productivity of conifer forests. We expected 2C DNA content to be negatively related to conifer productivity because: 1) it is positively correlated with cell volume (which, in turn, potentially affects structural features such as leaf mass area, a strong predictor of photosynthetic capacity); 2) it is positively correlated with stomatal size (with larger stomata leading to lower overall stomatal conductance and, by extension, lower CO2 uptake); and 3) larger genome sizes may reduce P availability in RNA (which has been hypothesized to slow growth). We present the results of regression and independent contrasts in different monospecific forests encompassing a 52º latitudinal gradient, each being dominated by 1 of 35 different conifer species. Contrary to expectations, we observed a positive correlation between genome size and maximum Gross Primary Productivity (R2 = 0.47) and also between genome size maximum tree height (R2 = 0.27). This correlation was apparently driven by the effects of genome size on stem hydraulics, since 2C DNA was positively correlated with wood density (R2 = 0.40) and also with resistance to cavitation (P50, R2 = 0.28). That is, increased genome sizes have a positive effect on the productivity of conifer forests by affecting the vascular tissues to increase their capacity for water transport. Our results shed a new light on the evolution of the vascular system of conifer forests and how they affect ecosystem productivity, and indicate the potential to

  17. The first insight into the tissue specific taxus transcriptome via Illumina second generation sequencing.

    Directory of Open Access Journals (Sweden)

    Da Cheng Hao

    Full Text Available BACKGROUND: Illumina second generation sequencing is now an efficient route for generating enormous sequence collections that represent expressed genes and quantitate expression level. Taxus is a world-wide endangered gymnosperm genus and forms an important anti-cancer medicinal resource, but the large and complex genomes of Taxus have hindered the development of genomic resources. The research of its tissue-specific transcriptome is absent. There is also no study concerning the association between the plant transcriptome and metabolome with respect to the plant tissue type. METHODOLOGY/PRINCIPAL FINDINGS: We performed the de novo assembly of Taxus mairei transcriptome using Illumina paired-end sequencing technology. In a single run, we produced 13,737,528 sequencing reads corresponding to 2.03 Gb total nucleotides. These reads were assembled into 36,493 unique sequences. Based on similarity search with known proteins, 23,515 Unigenes were identified to have the Blast hit with a cut-off E-value above 10⁻⁵. Furthermore, we investigated the transcriptome difference of three Taxus tissues using a tag-based digital gene expression system. We obtained a sequencing depth of over 3.15 million tags per sample and identified a large number of genes associated with tissue specific functions and taxane biosynthetic pathway. The expression of the taxane biosynthetic genes is significantly higher in the root than in the leaf and the stem, while high activity of taxane-producing pathway in the root was also revealed via metabolomic analyses. Moreover, many antisense transcripts and novel transcripts were found; clusters with similar differential expression patterns, enriched GO terms and enriched metabolic pathways with regard to the differentially expressed genes were revealed for the first time. CONCLUSIONS/SIGNIFICANCE: Our data provides the most comprehensive sequence resource available for Taxus study and will help define mechanisms of tissue

  18. Porcine tissue-specific regulatory networks derived from meta-analysis of the transcriptome.

    Science.gov (United States)

    Pérez-Montarelo, Dafne; Hudson, Nicholas J; Fernández, Ana I; Ramayo-Caldas, Yuliaxis; Dalrymple, Brian P; Reverter, Antonio

    2012-01-01

    The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF) responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF) metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species.

  19. Porcine tissue-specific regulatory networks derived from meta-analysis of the transcriptome.

    Directory of Open Access Journals (Sweden)

    Dafne Pérez-Montarelo

    Full Text Available The processes that drive tissue identity and differentiation remain unclear for most tissue types. So are the gene networks and transcription factors (TF responsible for the differential structure and function of each particular tissue, and this is particularly true for non model species with incomplete genomic resources. To better understand the regulation of genes responsible for tissue identity in pigs, we have inferred regulatory networks from a meta-analysis of 20 gene expression studies spanning 480 Porcine Affymetrix chips for 134 experimental conditions on 27 distinct tissues. We developed a mixed-model normalization approach with a covariance structure that accommodated the disparity in the origin of the individual studies, and obtained the normalized expression of 12,320 genes across the 27 tissues. Using this resource, we constructed a network, based on the co-expression patterns of 1,072 TF and 1,232 tissue specific genes. The resulting network is consistent with the known biology of tissue development. Within the network, genes clustered by tissue and tissues clustered by site of embryonic origin. These clusters were significantly enriched for genes annotated in key relevant biological processes and confirm gene functions and interactions from the literature. We implemented a Regulatory Impact Factor (RIF metric to identify the key regulators in skeletal muscle and tissues from the central nervous systems. The normalization of the meta-analysis, the inference of the gene co-expression network and the RIF metric, operated synergistically towards a successful search for tissue-specific regulators. Novel among these findings are evidence suggesting a novel key role of ERCC3 as a muscle regulator. Together, our results recapitulate the known biology behind tissue specificity and provide new valuable insights in a less studied but valuable model species.

  20. Leber Hereditary Optic Neuropathy: Do Folate Pathway Gene Alterations Influence the Expression of Mitochondrial DNA Mutation?

    Directory of Open Access Journals (Sweden)

    A Aleyasin

    2010-09-01

    Full Text Available "nBackground: Leber hereditary optic neuropathy (LHON is an inherited form of bilateral optic atrophy leading to the loss of central vision.  The primary cause of vision loss is mutation in the mitochondrial DNA (mtDNA, however, unknown secon­dary genetic and/or epigenetic risk factors are suggested to influence its neuropathology.  In this study folate gene polymor­phisms were examined as a possible LHON secondary genetic risk factor in Iranian patients."nMethods: Common polymorphisms in the MTHFR (C677T and A1298C and MTRR (A66G genes were tested in 21 LHON patients and 150 normal controls."nResults:  Strong associations were observed between the LHON syndrome and C677T (P= 0.00 and A66G (P= 0.00 polymor­phisms.  However, no significant association was found between A1298C (P =0.69 and the LHON syndrome."nConclusion: This is the first study that shows MTHFR C677T and MTRR A66G polymorphisms play a role in the etiology of the LHON syndrome.  This finding may help in the better understanding of mechanisms involved in neural degeneration and vision loss by LHON and hence the better treatment of patients.

  1. The Role of Altered Nucleotide Excision Repair and UVB-Induced DNA Damage in Melanomagenesis

    Directory of Open Access Journals (Sweden)

    Timothy Budden

    2013-01-01

    Full Text Available UVB radiation is the most mutagenic component of the UV spectrum that reaches the earth’s surface and causes the development of DNA damage in the form of cyclobutane pyrimidine dimers and 6-4 photoproducts. UV radiation usually results in cellular death, but if left unchecked, it can affect DNA integrity, cell and tissue homeostasis and cause mutations in oncogenes and tumour-suppressor genes. These mutations, if unrepaired, can lead to abnormal cell growth, increasing the risk of cancer development. Epidemiological data strongly associates UV exposure as a major factor in melanoma development, but the exact biological mechanisms involved in this process are yet to be fully elucidated. The nucleotide excision repair (NER pathway is responsible for the repair of UV-induced lesions. Patients with the genetic disorder Xeroderma Pigmentosum have a mutation in one of eight NER genes associated with the XP complementation groups XP-A to XP-G and XP variant (XP-V. XP is characterized by diminished repair capacity, as well as a 1000-fold increase in the incidence of skin cancers, including melanoma. This has suggested a significant role for NER in melanoma development as a result of UVB exposure. This review discusses the current research surrounding UVB radiation and NER capacity and how further investigation of NER could elucidate the role of NER in avoiding UV-induced cellular death resulting in melanomagenesis.

  2. Novel strong tissue specific promoter for gene expression in human germ cells

    Directory of Open Access Journals (Sweden)

    Kuzmin Denis

    2010-08-01

    Full Text Available Abstract Background Tissue specific promoters may be utilized for a variety of applications, including programmed gene expression in cell types, tissues and organs of interest, for developing different cell culture models or for use in gene therapy. We report a novel, tissue-specific promoter that was identified and engineered from the native upstream regulatory region of the human gene NDUFV1 containing an endogenous retroviral sequence. Results Among seven established human cell lines and five primary cultures, this modified NDUFV1 upstream sequence (mNUS was active only in human undifferentiated germ-derived cells (lines Tera-1 and EP2102, where it demonstrated high promoter activity (~twice greater than that of the SV40 early promoter, and comparable to the routinely used cytomegaloviral promoter. To investigate the potential applicability of the mNUS promoter for biotechnological needs, a construct carrying a recombinant cytosine deaminase (RCD suicide gene under the control of mNUS was tested in cell lines of different tissue origin. High cytotoxic effect of RCD with a cell-death rate ~60% was observed only in germ-derived cells (Tera-1, whereas no effect was seen in a somatic, kidney-derived control cell line (HEK293. In further experiments, we tested mNUS-driven expression of a hyperactive Sleeping Beauty transposase (SB100X. The mNUS-SB100X construct mediated stable transgene insertions exclusively in germ-derived cells, thereby providing further evidence of tissue-specificity of the mNUS promoter. Conclusions We conclude that mNUS may be used as an efficient promoter for tissue-specific gene expression in human germ-derived cells in many applications. Our data also suggest that the 91 bp-long sequence located exactly upstream NDUFV1 transcriptional start site plays a crucial role in the activity of this gene promoter in vitro in the majority of tested cell types (10/12, and an important role - in the rest two cell lines.

  3. Biotransformation of tissue-specific hormone tibolone with fungal culture Trichothecium roseum

    Science.gov (United States)

    Shah, Syed Adnan Ali; Sultan, Sadia; Zaimi bin Mohd Noor, M.

    2013-06-01

    Whole cells based biotransformation is an important tool for bioconversion of steroids. It can be used to synthesize biologically potent compounds with diverse structures. Biotransformation of tissue-specific hormone tibolone (1) with Trichothecium roseum (ATCC 13411) has being carried out for the first time. Two new and three known metabolites 2-6 were isolated from fermentation of tibolone (1) with Trichothecium roseum and their structures were characterized by 2D NMR spectroscopy and mass spectrometry. The relative stereochemistry of new metabolites 5 and 6 was deduced by 2D NOESY experiments. The effect of cultures on tibolone structural modifications and time-course studies has also been conducted.

  4. Shade-induced stem elongation in rice seedlings: Implication of tissue-specific phytohormone regulation.

    Science.gov (United States)

    Liu, Huihui; Yang, Chuanwei; Li, Lin

    2016-07-01

    A better understanding of shade avoidance syndrome (SAS) is an urgent need because of its effect on energy reallocation. Leverage-related mechanism in crops is of potential economic interest for agricultural applications. Here we report the SAS phenotype at tissue level rice seedlings. Tissue-specific RNA-sequencing indicates auxin plays different roles between coleoptile and the first leaf. Phenotypes of wild type treated by gibberellin and brassinosteroid biosynthesis inhibitors and of related mutants suggest these two hormones positively regulate SAS. Our work reveals the diversity of hormone responses in different organs and different species in shade conditions. PMID:26888633

  5. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, O.D.; Andersen, L.C.; Michelsen, B.; Owerbach, D.; Larsson, L.I.; Lernmark, A.; Steiner, D.F. (Hagedorn Research Laboratory, Gentofte (Denmark))

    1988-09-01

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression.

  6. Tissue-specific expression of transfected human insulin genes in pluripotent clonal rat insulinoma lines induced during passage in vivo

    International Nuclear Information System (INIS)

    The pluripotent rat islet tumor cell line MSL-G2 expresses primarily glucagon or cholecystokinin and not insulin in vitro but changes phenotype completely after prolonged in vivo cultivation to yield small-sized hypoglycemic tumors composed almost entirely of insulin-producing beta cells. When a genomic DNA fragment containing the coding and upstream regulatory regions of the human insulin gene was stably transfected into MSL-G2 cells no measurable amounts of insulin or insulin mRNA were detected in vitro. However, successive transplantation of two transfected clones resulted in hypoglycemic tumors that efficiently coexpressed human and rat insulin as determined by human C-peptide-specific immunoreagents. These results demonstrate that cis-acting tissue-specific insulin gene enhancer elements are conserved between rat and human insulin genes. The authors propose that the in vivo differentiation of MSL-G2 cells and transfected subclones into insulin-producing cells reflects processes of natural beta-cell ontogeny leading to insulin gene expression

  7. Genomic DNA copy-number alterations of the let-7 family in human cancers.

    Directory of Open Access Journals (Sweden)

    Yanling Wang

    Full Text Available In human cancer, expression of the let-7 family is significantly reduced, and this is associated with shorter survival times in patients. However, the mechanisms leading to let-7 downregulation in cancer are still largely unclear. Since an alteration in copy-number is one of the causes of gene deregulation in cancer, we examined copy number alterations of the let-7 family in 2,969 cancer specimens from a high-resolution SNP array dataset. We found that there was a reduction in the copy number of let-7 genes in a cancer-type specific manner. Importantly, focal deletion of four let-7 family members was found in three cancer types: medulloblastoma (let-7a-2 and let-7e, breast cancer (let-7a-2, and ovarian cancer (let-7a-3/let-7b. For example, the genomic locus harboring let-7a-3/let-7b was deleted in 44% of the specimens from ovarian cancer patients. We also found a positive correlation between the copy number of let-7b and mature let-7b expression in ovarian cancer. Finally, we showed that restoration of let-7b expression dramatically reduced ovarian tumor growth in vitro and in vivo. Our results indicate that copy number deletion is an important mechanism leading to the downregulation of expression of specific let-7 family members in medulloblastoma, breast, and ovarian cancers. Restoration of let-7 expression in tumor cells could provide a novel therapeutic strategy for the treatment of cancer.

  8. Epigenetic alteration of DNA in mucosal wash fluid predicts invasiveness of colorectal tumors.

    Science.gov (United States)

    Kamimae, Seiko; Yamamoto, Eiichiro; Yamano, Hiro-o; Nojima, Masanori; Suzuki, Hiromu; Ashida, Masami; Hatahira, Tomo; Sato, Akiko; Kimura, Tomoaki; Yoshikawa, Kenjiro; Harada, Taku; Hayashi, Seiko; Takamaru, Hiroyuki; Maruyama, Reo; Kai, Masahiro; Nishiwaki, Morie; Sugai, Tamotsu; Sasaki, Yasushi; Tokino, Takashi; Shinomura, Yasuhisa; Imai, Kohzoh; Toyota, Minoru

    2011-05-01

    Although conventional colonoscopy is considered the gold standard for detecting colorectal tumors, accurate staging is often difficult because advanced histology may be present in small colorectal lesions. We collected DNA present in mucosal wash fluid from patients undergoing colonoscopy and then assessed the methylation levels of four genes frequently methylated in colorectal cancers to detect invasive tumors. We found that methylation levels in wash fluid were significantly higher in patients with invasive than those with noninvasive tumors. Cytologic and K-ras mutation analyses suggested that mucosal wash fluid from invasive tumors contained greater numbers of tumor cells than wash fluid from noninvasive tumors. Among the four genes, levels of mir-34b/c methylation had the greatest correlation with the invasion and showed the largest area under the receiver operating characteristic curve (AUC = 0.796). Using cutoff points of mir-34b/c methylation determined by efficiency considerations, the sensitivity/specificity were 0.861/0.657 for the 13.0% (high sensitivity) and 0.765/0.833 for the 17.8% (well-balanced) cutoffs. In the validation test set, the AUC was also very high (0.915), the sensitivity/specificity were 0.870/0.875 for 13.0% and 0.565/0.958 for 17.8%. Using the diagnostic tree constructed by an objective algorithm, the diagnostic accuracy of the invasiveness of colorectal cancer was 91.3% for the training set and 85.1% for the test set. Our results suggest that analysis of the methylation of DNA in mucosal wash fluid may be a good molecular marker for predicting the invasiveness of colorectal tumors. PMID:21543345

  9. Biliary and reticuloendothelial impairment in hepatocarcinogenesis: the diagnostic role of tissue-specific MR contrast media

    Energy Technology Data Exchange (ETDEWEB)

    Bartolozzi, Carlo; Crocetti, Laura; Lencioni, Riccardo; Cioni, Dania; Della Pina, Clotilde [University of Pisa, Division of Diagnostic and Interventional Radiology, Department of Oncology, Transplant and Advanced Technologies in Medicine, Pisa (Italy); Campani, Daniela [University of Pisa, Division of Pathology, Department of Oncology, Transplant and Advanced Technologies in Medicine, Pisa (Italy)

    2007-10-15

    The development and progression of a hepatocellular carcinoma (HCC) in a chronically diseased liver, i.e., the carcinogenesis, comprise a multistep and long-term process. Morphologically, this process is associated with the presence of distinct nodular lesions in the liver that are called 'preneoplastic lesions.' These preneoplastic lesions are associated with and can precede the growth and progression of well-differentiated HCCs. The characterization of nodular lesions and demonstration of the multistep development of HCC in the cirrhotic liver by imaging modalities represent a challenging issue. The arterial hypervascular supply, depicted by different dynamic studies, represents a fundamental radiological criterion for the diagnosis of HCC in cirrhosis. Magnetic resonance (MR) imaging performed with tissue-specific contrast media can help to investigate the ''grey area'' of carcinogenesis, in which significant histological changes are already present without any imaging evidence of neoangiogenesis. The purpose of this review is to provide information on the properties of tissue-specific MR contrast agents and on their usefulness in the demonstration of the pathologic changes that take place at the level of the biliary and reticuloendothelial systems during the carcinogenetic process in liver cirrhosis. (orig.)

  10. Tissue specificity of enhancer and promoter activities of a HERV-K(HML-2) LTR.

    Science.gov (United States)

    Ruda, V M; Akopov, S B; Trubetskoy, D O; Manuylov, N L; Vetchinova, A S; Zavalova, L L; Nikolaev, L G; Sverdlov, E D

    2004-08-01

    Transient expression of a luciferase reporter gene was used to evaluate tissue-specific promoter and enhancer activities of a solitary extraviral long terminal repeat (LTR) of the human endogenous retrovirus K (HERV-K) in several human and CHO cell lines. The promoter activity of the LTR varied from virtually not detectable (GS and Jurkat cells) to as high as that of the SV40 early promoter (Tera-1 human testicular embryonal carcinoma cells). The negative regulatory element (NRE) of the LTR retained its activity in all cell lines where the LTR could act as a promoter, and was also capable of binding host cell nuclear proteins. The enhancer activity of the LTR towards the SV40 early promoter was detected only in Tera-1 cells and was not observed in a closely related human testicular embryonal carcinoma cell line of different origin, NT2/D1. A comparison of proteins bound to central part of the LTR in nuclear extracts from Tera-1 and NT2/D1 by electrophoretic mobility shift assay revealed striking differences that could be determined by different LTR enhancer activities in these cells. Tissue specificity of the SV40 early promoter activity was also revealed.

  11. Tissue-specific mRNA expression profiling in grape berry tissues

    Directory of Open Access Journals (Sweden)

    Cramer Grant R

    2007-06-01

    Full Text Available Abstract Background Berries of grape (Vitis vinifera contain three major tissue types (skin, pulp and seed all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin and mesocarp (pulp, not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell

  12. Altered localization and functionality of TAR DNA Binding Protein 43 (TDP-43) in niemann- pick disease type C.

    Science.gov (United States)

    Dardis, A; Zampieri, S; Canterini, S; Newell, K L; Stuani, C; Murrell, J R; Ghetti, B; Fiorenza, M T; Bembi, B; Buratti, E

    2016-01-01

    Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by the occurrence of visceral and neurological symptoms. At present, the molecular mechanisms causing neurodegeneration in this disease are unknown. Here we report the altered expression and/or mislocalization of the TAR-DNA binding protein 43 (TDP-43) in both NPC mouse and in a human neuronal model of the disease. We also report the neuropathologic study of a NPC patient's brain, showing that while TDP-43 is below immunohistochemical detection in nuclei of cerebellar Purkinje cells, it has a predominant localization in the cytoplasm of these cells. From a functional point of view, the TDP-43 mislocalization, that occurs in a human experimental neuronal model system, is associated with specific alterations in TDP-43 controlled genes. Most interestingly, treatment with N-Acetyl-cysteine (NAC) or beta-cyclodextrin (CD) can partially restore TDP-43 nuclear localization. Taken together, the results of these studies extend the role of TDP-43 beyond the Amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD)/Alzheimer disease (AD) spectrum. These findings may open novel research/therapeutic avenues for a better understanding of both NPC disease and the TDP-43 proteinopathy disease mechanism. PMID:27193329

  13. DNA Methylation Alterations at 5′-CCGG Sites in the Interspecific and Intraspecific Hybridizations Derived from Brassica rapa and B. napus

    OpenAIRE

    Wanshan Xiong; Xiaorong Li; Donghui Fu; Jiaqin Mei; Qinfei Li; Guanyuan Lu; Lunwen Qian; Yin Fu; Joseph Onwusemu Disi; Jiana Li; Wei Qian

    2013-01-01

    DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5'-CCGG sites in seedlings and buds by methylation-...

  14. Evaluation of cell proliferation, apoptosis, and dna-repair genes as potential biomarkers for ethanol-induced cns alterations

    Directory of Open Access Journals (Sweden)

    Hicks Steven D

    2012-10-01

    Full Text Available Abstract Background Alcohol use disorders (AUDs lead to alterations in central nervous system (CNS architecture along with impaired learning and memory. Previous work from our group and that of others suggests that one mechanism underlying these changes is alteration of cell proliferation, apoptosis, and DNA-repair in neural stem cells (NSCs produced as a consequence of ethanol-induced effects on the expression of genes related to p53-signaling. This study tests the hypothesis that changes in the expression of p53-signaling genes represent biomarkers of ethanol abuse which can be identified in the peripheral blood of rat drinking models and human AUD subjects and posits that specific changes may be correlated with differences in neuropsychological measures and CNS structure. Results Remarkably, microarray analysis of 350 genes related to p53-signaling in peripheral blood leukocytes (PBLs of binge-drinking rats revealed 190 genes that were significantly altered after correcting for multiple testing. Moreover, 40 of these genes overlapped with those that we had previously observed to be changed in ethanol-exposed mouse NSCs. Expression changes in nine of these genes were tested for independent confirmation by a custom QuantiGene Plex (QGP assay for a subset of p53-signaling genes, where a consistent trend for decreased expression of mitosis-related genes was observed. One mitosis-related gene (Pttg1 was also changed in human lymphoblasts cultured with ethanol. In PBLs of human AUD subjects seven p53-signaling genes were changed compared with non-drinking controls. Correlation and principal components analysis were then used to identify significant relationships between the expression of these seven genes and a set of medical, demographic, neuropsychological and neuroimaging measures that distinguished AUD and control subjects. Two genes (Ercc1 and Mcm5 showed a highly significant correlation with AUD-induced decreases in the volume of the left

  15. Imatinib causes epigenetic alterations of PTEN gene via upregulation of DNA methyltransferases and polycomb group proteins

    International Nuclear Information System (INIS)

    We have recently reported the possible imatinib-resistant mechanism; long-term exposure of leukemia cells to imatinib downregulated levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) via hypermethylation of its promoter region (Leukemia 2010; 24: 1631). The present study explored the molecular mechanisms by which imatinib caused methylation on the promoter region of this tumor suppressor gene in leukemia cells. Real-time reverse transcription PCR found that long-term exposure of chronic eosinophilic leukemia EOL-1 cells expressing FIP1L1/platelet-derived growth factor receptor-α to imatinib induced expression of DNA methyltransferase 3A (DNMT3A) and histone-methyltransferase enhancer of zeste homolog 2 (EZH2), a family of polycomb group, thereby increasing methylation of the gene. Immunoprecipitation assay found the increased complex formation of DNMT3A and EZH2 proteins in these cells. Moreover, chromatin immunoprecipitation assay showed that amounts of both DNMT3A and EZH2 proteins bound around the promoter region of PTEN gene were increased in EOL-1 cells after exposure to imatinib. Furthermore, we found that levels of DNMT3A and EZH2 were strikingly increased in leukemia cells isolated from individuals with chronic myelogenous leukemia (n=1) and Philadelphia chromosome-positive acute lymphoblastic leukemia (n=2), who relapsed after treatment with imatinib compared with those isolated at their initial presentation. Taken together, imatinib could cause drug-resistance via recruitment of polycomb gene complex to the promoter region of the PTEN and downregulation of this gene's transcripts in leukemia patients

  16. Lung Cancer Signature Biomarkers: tissue specific semantic similarity based clustering of Digital Differential Display (DDD data

    Directory of Open Access Journals (Sweden)

    Srivastava Mousami

    2012-11-01

    Full Text Available Abstract Background The tissue-specific Unigene Sets derived from more than one million expressed sequence tags (ESTs in the NCBI, GenBank database offers a platform for identifying significantly and differentially expressed tissue-specific genes by in-silico methods. Digital differential display (DDD rapidly creates transcription profiles based on EST comparisons and numerically calculates, as a fraction of the pool of ESTs, the relative sequence abundance of known and novel genes. However, the process of identifying the most likely tissue for a specific disease in which to search for candidate genes from the pool of differentially expressed genes remains difficult. Therefore, we have used ‘Gene Ontology semantic similarity score’ to measure the GO similarity between gene products of lung tissue-specific candidate genes from control (normal and disease (cancer sets. This semantic similarity score matrix based on hierarchical clustering represents in the form of a dendrogram. The dendrogram cluster stability was assessed by multiple bootstrapping. Multiple bootstrapping also computes a p-value for each cluster and corrects the bias of the bootstrap probability. Results Subsequent hierarchical clustering by the multiple bootstrapping method (α = 0.95 identified seven clusters. The comparative, as well as subtractive, approach revealed a set of 38 biomarkers comprising four distinct lung cancer signature biomarker clusters (panel 1–4. Further gene enrichment analysis of the four panels revealed that each panel represents a set of lung cancer linked metastasis diagnostic biomarkers (panel 1, chemotherapy/drug resistance biomarkers (panel 2, hypoxia regulated biomarkers (panel 3 and lung extra cellular matrix biomarkers (panel 4. Conclusions Expression analysis reveals that hypoxia induced lung cancer related biomarkers (panel 3, HIF and its modulating proteins (TGM2, CSNK1A1, CTNNA1, NAMPT/Visfatin, TNFRSF1A, ETS1, SRC-1, FN1, APLP2, DMBT1

  17. Rodent Aanat: Intronic E-box sequences control tissue specificity but not rhythmic expression in the pineal gland

    OpenAIRE

    2007-01-01

    Rodent Aanat: Intronic E-box sequences control tissue specificity but not rhythmic expression in the pineal gland UNITED KINGDOM (Humphries, Ann) UNITED KINGDOM Received: 2006-12-30 Revised: 2007-02-07 Accepted: 2007-02-07

  18. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle

    DEFF Research Database (Denmark)

    Bak, Steffen; León, Ileana R; Jensen, Ole Nørregaard;

    2013-01-01

    enrichment for phosphoproteins involved in amino acid and fatty acid metabolism in liver mitochondria, whereas heart and skeletal muscle were enriched for phosphoproteins involved in energy metabolism, in particular, tricarboxylic acid cycle and oxidative phosphorylation. Multiple tissue......Phosphorylation of mitochondrial proteins in a variety of biological processes is increasingly being recognized and may contribute to the differences in function and energy demands observed in mitochondria from different tissues such as liver, heart, and skeletal muscle. Here, we used a combination...... of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC-MS/MS on isolated mitochondria to investigate the tissue-specific mitochondrial phosphoproteomes of rat liver, heart, and skeletal muscle. In total, we identified 899 phosphorylation sites in 354 different mitochondrial proteins including...

  19. Tissue Specific Effects of Loss of Estrogen During Menopause and Aging

    Directory of Open Access Journals (Sweden)

    Korinna eWend

    2012-02-01

    Full Text Available The roles of estrogens have been best studied in the breast, breast cancers and in the female reproductive tract. However, estrogens have important functions in almost every tissue in the body. Recent clinical trials such as the Women’s Health Initiative have highlighted both the importance of estrogens and how little we know about the molecular mechanism of estrogens in these other tissues. In this review, we illustrate the diverse functions of estrogens in the bone, adipose tissue, skin, hair, brain, skeletal muscle and cardiovascular system, and how the loss of estrogens during aging affects these tissues. Early transcriptional targets of estrogen are reviewed in each tissue. We also describe the tissue-specific effects of selective estrogen receptor modulators (SERMs used for the treatment of breast cancers and post-menopausal symptoms.

  20. MECHANISMS IN ENDOCRINOLOGY: Tissue-specific activation of cortisol in Cushing's syndrome.

    Science.gov (United States)

    Morgan, Stuart A; Hassan-Smith, Zaki K; Lavery, Gareth G

    2016-08-01

    Glucocorticoids are widely prescribed for their anti-inflammatory properties, but have 'Cushingoid' side effects including visceral obesity, muscle myopathy, hypertension, insulin resistance, type 2 diabetes mellitus, osteoporosis, and hepatic steatosis. These features are replicated in patients with much rarer endogenous glucocorticoid (GC) excess (Cushing's syndrome), which has devastating consequences if left untreated. Current medical therapeutic options that reverse the tissue-specific consequences of hypercortisolism are limited. In this article, we review the current evidence that local GC metabolism via the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) plays a central role in mediating the adverse metabolic complications associated with circulatory GC excess - challenging our current view that simple delivery of active GCs from the circulation represents the most important mode of GC action. Furthermore, we explore the potential for targeting this enzyme as a novel therapeutic strategy for the treatment of both endogenous and exogenous Cushing's syndrome.

  1. Tissue Specific Roles of Dynein Light Chain 1 in Regulating Germ Cell Apoptosis in Ceanorhabditis elegans

    DEFF Research Database (Denmark)

    Morthorst, Tine Hørning

    2015-01-01

    Apoptosis is the process in which external or internal cues activate certain killing pathways in a cell to induce self-elimination. Apoptosis is a conserved key process required to modulate embryogenesis and for removal of damaged or superfluous cells. Dysregulation of apoptosis is implicated...... in the etiology of many diseases, including cancer, neurodegenerative, cardiovascular and autoimmune diseases. Several of the first genes found to regulate apoptosis were discovered in the nematode Caenorhabditis elegans. In this project, two different and tissue specific roles of C. elegans dynein light chain 1...... (dlc-1) in apoptosis are described. DLC-1 is a part of the motor complex dynein, which moves along microtubules inside the cell. DLC-1 has been demonstrated to have both dynein dependent and independent functions in mammalian cells, which is also apparent from the studies presented here. Specifically...

  2. Distinct DNA methylomes of newborns and centenarians

    Science.gov (United States)

    Heyn, Holger; Li, Ning; Ferreira, Humberto J.; Moran, Sebastian; Pisano, David G.; Gomez, Antonio; Diez, Javier; Sanchez-Mut, Jose V.; Setien, Fernando; Carmona, F. Javier; Puca, Annibale A.; Sayols, Sergi; Pujana, Miguel A.; Serra-Musach, Jordi; Iglesias-Platas, Isabel; Formiga, Francesc; Fernandez, Agustin F.; Fraga, Mario F.; Heath, Simon C.; Valencia, Alfonso; Gut, Ivo G.; Wang, Jun; Esteller, Manel

    2012-01-01

    Human aging cannot be fully understood in terms of the constrained genetic setting. Epigenetic drift is an alternative means of explaining age-associated alterations. To address this issue, we performed whole-genome bisulfite sequencing (WGBS) of newborn and centenarian genomes. The centenarian DNA had a lower DNA methylation content and a reduced correlation in the methylation status of neighboring cytosine—phosphate—guanine (CpGs) throughout the genome in comparison with the more homogeneously methylated newborn DNA. The more hypomethylated CpGs observed in the centenarian DNA compared with the neonate covered all genomic compartments, such as promoters, exonic, intronic, and intergenic regions. For regulatory regions, the most hypomethylated sequences in the centenarian DNA were present mainly at CpG-poor promoters and in tissue-specific genes, whereas a greater level of DNA methylation was observed in CpG island promoters. We extended the study to a larger cohort of newborn and nonagenarian samples using a 450,000 CpG-site DNA methylation microarray that reinforced the observation of more hypomethylated DNA sequences in the advanced age group. WGBS and 450,000 analyses of middle-age individuals demonstrated DNA methylomes in the crossroad between the newborn and the nonagenarian/centenarian groups. Our study constitutes a unique DNA methylation analysis of the extreme points of human life at a single-nucleotide resolution level. PMID:22689993

  3. Tension of knotted surgical sutures shows tissue specific rapid loss in a rodent model

    Directory of Open Access Journals (Sweden)

    Klink Christian D

    2011-12-01

    Full Text Available Abstract Background Every surgical suture compresses the enclosed tissue with a tension that depends from the knotting force and the resistance of the tissue. The aim of this study was to identify the dynamic change of applied suture tension with regard to the tissue specific cutting reaction. Methods In rabbits we placed single polypropylene sutures (3/0 in skin, muscle, liver, stomach and small intestine. Six measurements for each single organ were determined by tension sensors for 60 minutes. We collected tissue specimens to analyse the connective tissue stability by measuring the collagen/protein content. Results We identified three phases in the process of suture loosening. The initial rapid loss of the first phase lasts only one minute. It can be regarded as cutting through damage of the tissue. The percentage of lost tension is closely related to the collagen content of the tissue (r = -0.424; p = 0.016. The second phase is characterized by a slower decrease of suture tension, reflecting a tissue specific plastic deformation. Phase 3 is characterized by a plateau representing the remaining structural stability of the tissue. The ratio of remaining tension to initial tension of phase 1 is closely related to the collagen content of the tissue (r = 0.392; p = 0.026. Conclusions Knotted non-elastic monofilament sutures rapidly loose tension. The initial phase of high tension may be narrowed by reduction of the surgeons' initial force of the sutures' elasticity to those of the tissue. Further studies have to confirm, whether reduced tissue compression and less local damage permits improved wound healing.

  4. Cooperative activation of tissue-specific genes by pRB and E2F1.

    Science.gov (United States)

    Flowers, Stephen; Xu, Fuhua; Moran, Elizabeth

    2013-04-01

    The retinoblastoma tumor suppressor protein pRB is conventionally regarded as an inhibitor of the E2F family of transcription factors. Conversely, pRB is also recognized as an activator of tissue-specific gene expression along various lineages including osteoblastogenesis. During osteoblast differentiation, pRB directly targets Alpl and Bglap, which encode the major markers of osteogenesis alkaline phosphatase and osteocalcin. Surprisingly, p130 and repressor E2Fs were recently found to cooccupy and repress Alpl and Bglap in proliferating osteoblast precursors before differentiation. This raises the further question of whether these genes convert to E2F activation targets when differentiation begins, which would constitute a remarkable situation wherein pRB and E2F would be cotargeting genes for activation. Chromatin immunoprecipitation analysis in an osteoblast differentiation model shows that Alpl and Bglap are indeed targeted by an activator E2F, i.e., is E2F1. Promoter occupation of Alpl and Bglap by E2F1 occurs specifically during activation, and depletion of E2F1 severely impairs their induction. Mechanistically, promoter occupation by E2F1 and pRB is mutually dependent, and without this cooperative effect, activation steps previously shown to be dependent on pRB, including recruitment of RNA polymerase II, are impaired. Myocyte- and adipocyte-specific genes are also cotargeted by E2F1 and pRB during differentiation along their respective lineages. The finding that pRB and E2F1 cooperate to activate expression of tissue-specific genes is a paradigm distinct from the classical concept of pRB as an inhibitor of E2F1, but is consistent with the observed roles of these proteins in physiological models.

  5. Comparative Transcriptome Analysis Reveals Substantial Tissue Specificity in Human Aortic Valve

    Science.gov (United States)

    Wang, Jun; Wang, Ying; Gu, Weidong; Ni, Buqing; Sun, Haoliang; Yu, Tong; Gu, Wanjun; Chen, Liang; Shao, Yongfeng

    2016-01-01

    RNA sequencing (RNA-seq) has revolutionary roles in transcriptome identification and quantification of different types of tissues and cells in many organisms. Although numerous RNA-seq data derived from many types of human tissues and cell lines, little is known on the transcriptome repertoire of human aortic valve. In this study, we sequenced the total RNA prepared from two calcified human aortic valves and reported the whole transcriptome of human aortic valve. Integrating RNA-seq data of 13 human tissues from Human Body Map 2 Project, we constructed a transcriptome repertoire of human tissues, including 19,505 protein-coding genes and 4,948 long intergenic noncoding RNAs (lincRNAs). Among them, 263 lincRNAs were identified as novel noncoding transcripts in our data. By comparing transcriptome data among different human tissues, we observed substantial tissue specificity of RNA transcripts, both protein-coding genes and lincRNAs, in human aortic valve. Further analysis revealed that aortic valve-specific lincRNAs were more likely to be recently derived from repetitive elements in the primate lineage, but were less likely to be conserved at the nucleotide level. Expression profiling analysis showed significant lower expression levels of aortic valve-specific protein-coding genes and lincRNA genes, when compared with genes that were universally expressed in various tissues. Isoform-level expression analysis also showed that a majority of mRNA genes had a major isoform expressed in the human aortic valve. To our knowledge, this is the first comparative transcriptome analysis between human aortic valve and other human tissues. Our results are helpful to understand the transcriptome diversity of human tissues and the underlying mechanisms that drive tissue specificity of protein-coding genes and lincRNAs in human aortic valve. PMID:27493474

  6. Tissue-specific direct targets of Caenorhabditis elegans Rb/E2F dictate distinct somatic and germline programs

    OpenAIRE

    Kudron, Michelle; Niu, Wei; Lu, Zhi; Wang, Guilin; Gerstein, Mark; Snyder, Michael; Reinke, Valerie

    2013-01-01

    Background The tumor suppressor Rb/E2F regulates gene expression to control differentiation in multiple tissues during development, although how it directs tissue-specific gene regulation in vivo is poorly understood. Results We determined the genome-wide binding profiles for Caenorhabditis elegans Rb/E2F-like components in the germline, in the intestine and broadly throughout the soma, and uncovered highly tissue-specific binding patterns and target genes. Chromatin association by LIN-35, th...

  7. Tissue-specific and neural activity-regulated expression of human BDNF gene in BAC transgenic mice

    Directory of Open Access Journals (Sweden)

    Palm Kaia

    2009-06-01

    Full Text Available Abstract Background Brain-derived neurotrophic factor (BDNF is a small secreted protein that has important roles in the developing and adult nervous system. Altered expression or changes in the regulation of the BDNF gene have been implicated in a variety of human nervous system disorders. Although regulation of the rodent BDNF gene has been extensively investigated, in vivo studies regarding the human BDNF gene are largely limited to postmortem analysis. Bacterial artificial chromosome (BAC transgenic mice harboring the human BDNF gene and its regulatory flanking sequences constitute a useful tool for studying human BDNF gene regulation and for identification of therapeutic compounds modulating BDNF expression. Results In this study we have generated and analyzed BAC transgenic mice carrying 168 kb of the human BDNF locus modified such that BDNF coding sequence was replaced with the sequence of a fusion protein consisting of N-terminal BDNF and the enhanced green fluorescent protein (EGFP. The human BDNF-BAC construct containing all BDNF 5' exons preceded by different promoters recapitulated the expression of endogenous BDNF mRNA in the brain and several non-neural tissues of transgenic mice. All different 5' exon-specific BDNF-EGFP alternative transcripts were expressed from the transgenic human BDNF-BAC construct, resembling the expression of endogenous BDNF. Furthermore, BDNF-EGFP mRNA was induced upon treatment with kainic acid in a promotor-specific manner, similarly to that of the endogenous mouse BDNF mRNA. Conclusion Genomic region covering 67 kb of human BDNF gene, 84 kb of upstream and 17 kb of downstream sequences is sufficient to drive tissue-specific and kainic acid-induced expression of the reporter gene in transgenic mice. The pattern of expression of the transgene is highly similar to BDNF gene expression in mouse and human. This is the first study to show that human BDNF gene is regulated by neural activity.

  8. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    Directory of Open Access Journals (Sweden)

    Helin Tan

    Full Text Available Canola (Brassica napus is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld, phloem-peeling (Pe, and selective silique darkening (Sd. Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA, organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms

  9. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Bryan C. Au

    2016-02-01

    Full Text Available Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag-specific responses through direct injections of recombinant lentivectors (LVs that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months—the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an “off-the-shelf” anti-cancer vaccine that could be made at large scale and injected into patients—even on an out-patient basis.

  10. A high-resolution tissue-specific proteome and phosphoproteome atlas of maize primary roots reveals functional gradients along the root axes.

    Science.gov (United States)

    Marcon, Caroline; Malik, Waqas Ahmed; Walley, Justin W; Shen, Zhouxin; Paschold, Anja; Smith, Laurie G; Piepho, Hans-Peter; Briggs, Steven P; Hochholdinger, Frank

    2015-05-01

    A high-resolution proteome and phosphoproteome atlas of four maize (Zea mays) primary root tissues, the cortex, stele, meristematic zone, and elongation zone, was generated. High-performance liquid chromatography coupled with tandem mass spectrometry identified 11,552 distinct nonmodified and 2,852 phosphorylated proteins across the four root tissues. Two gradients reflecting the abundance of functional protein classes along the longitudinal root axis were observed. While the classes RNA, DNA, and protein peaked in the meristematic zone, cell wall, lipid metabolism, stress, transport, and secondary metabolism culminated in the differentiation zone. Functional specialization of tissues is underscored by six of 10 cortex-specific proteins involved in flavonoid biosynthesis. Comparison of this data set with high-resolution seed and leaf proteome studies revealed 13% (1,504/11,552) root-specific proteins. While only 23% of the 1,504 root-specific proteins accumulated in all four root tissues, 61% of all 11,552 identified proteins accumulated in all four root tissues. This suggests a much higher degree of tissue-specific functionalization of root-specific proteins. In summary, these data illustrate the remarkable plasticity of the proteomic landscape of maize primary roots and thus provide a starting point for gaining a better understanding of their tissue-specific functions.

  11. Acanthus ilicifolius plant extract prevents DNA alterations in a transplantable Ehrlich ascites carcinoma-bearing murine model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate the chemopreventive efficacy of the Indian medicinal plant Acanthus ilicifolius L Acanthaceae in a transplantable Ehrlich ascites carcinoma (EAC)-bearing murine model.METHODS: Male Swiss albino mice were divided into four groups: Group A was the untreated normal control; Group B was the EAC control mice group that received serial, intraperitoneal (ip) inoculations of rapidly proliferating 2 × 105 viable EAC cells in 0.2 mL of sterile phosphate buffered saline; Group C was the plant extract-treated group that received the aqueous leaf extract (ALE) of the plant at a dose of 2.5 mg/kg body weight by single ip injections, once daily for 10, 20 and 30 consecutive days following tumour inoculation (ALE control); and Group D was the EAC + ALE-treatment group. The chemopreventive potential of the ALE was evaluated in a murine model by studying various biological parameters and genotoxic markers,such as tumour cell count, mean survival of the animals,haematological indices, hepatocellular histology,immunohistochemical expression of liver metallothionein (MT) protein, sister-chromatid exchanges (SCEs), and DNA alterations.RESULTS: Treatment of the EAC-bearing mice with the ALE significantly (P < 0.001) reduced viable tumour cell count by 68.34% (228.7 × 106 ± 0.53) when compared to EAC control mice (72.4 × 106 ± 0.49), and restored body and organ weights almost to the normal values.ALE administration also increased (P < 0.001) mean survival of the hosts from 35 ± 3.46 d in EAC control mice to 83 ± 2.69 d in EAC + ALE-treated mice.Haematological indices also showed marked improvement with administration of ALE in EAC-bearing animals. There was a significant increase in RBC count (P < 0.001),hemoglobin percent (P < 0.001), and haematocrit value (P < 0.001) from 4.3 ± 0.12, 6.4 ± 0.93, and 17.63 ± 0.72 respectively in EAC control mice to 7.1 ± 0.13, 12.1 ±0.77, and 30.23 ± 0.57 respectively in EAC + ALE-treated group, along with

  12. Whole-organ isolation approach as a basis for tissue-specific analyses in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Steffen Hahnel

    Full Text Available BACKGROUND: Schistosomiasis is one of the most important parasitic diseases worldwide, second only to malaria. Schistosomes exhibit an exceptional reproductive biology since the sexual maturation of the female, which includes the differentiation of the reproductive organs, is controlled by pairing. Pathogenicity originates from eggs, which cause severe inflammation in their hosts. Elucidation of processes contributing to female maturation is not only of interest to basic science but also considering novel concepts combating schistosomiasis. METHODOLOGY/PRINCIPAL FINDINGS: To get direct access to the reproductive organs, we established a novel protocol using a combined detergent/protease-treatment removing the tegument and the musculature of adult Schistosoma mansoni. All steps were monitored by scanning electron microscopy (SEM and bright-field microscopy (BF. We focused on the gonads of adult schistosomes and demonstrated that isolated and purified testes and ovaries can be used for morphological and structural studies as well as sources for RNA and protein of sufficient amounts for subsequent analyses such as RT-PCR and immunoblotting. To this end, first exemplary evidence was obtained for tissue-specific transcription within the gonads (axonemal dynein intermediate chain gene SmAxDynIC; aquaporin gene SmAQP as well as for post-transcriptional regulation (SmAQP. CONCLUSIONS/SIGNIFICANCE: The presented method provides a new way of getting access to tissue-specific material of S. mansoni. With regard to many still unanswered questions of schistosome biology, such as elucidating the molecular processes involved in schistosome reproduction, this protocol provides opportunities for, e.g., sub-transcriptomics and sub-proteomics at the organ level. This will promote the characterisation of gene-expression profiles, or more specifically to complete knowledge of signalling pathways contributing to differentiation processes, so discovering involved

  13. Tissue-specific targeting of cell fate regulatory genes by E2f factors.

    Science.gov (United States)

    Julian, L M; Liu, Y; Pakenham, C A; Dugal-Tessier, D; Ruzhynsky, V; Bae, S; Tsai, S-Y; Leone, G; Slack, R S; Blais, A

    2016-04-01

    Cell cycle proteins are important regulators of diverse cell fate decisions, and in this capacity have pivotal roles in neurogenesis and brain development. The mechanisms by which cell cycle regulation is integrated with cell fate control in the brain and other tissues are poorly understood, and an outstanding question is whether the cell cycle machinery regulates fate decisions directly or instead as a secondary consequence of proliferative control. Identification of the genes targeted by E2 promoter binding factor (E2f) transcription factors, effectors of the pRb/E2f cell cycle pathway, will provide essential insights into these mechanisms. We identified the promoter regions bound by three neurogenic E2f factors in neural precursor cells in a genome-wide manner. Through bioinformatic analyses and integration of published genomic data sets we uncovered hundreds of transcriptionally active E2f-bound promoters corresponding to genes that control cell fate processes, including key transcriptional regulators and members of the Notch, fibroblast growth factor, Wnt and Tgf-β signaling pathways. We also demonstrate a striking enrichment of the CCCTC binding factor transcription factor (Ctcf) at E2f3-bound nervous system-related genes, suggesting a potential regulatory co-factor for E2f3 in controlling differentiation. Finally, we provide the first demonstration of extensive tissue specificity among E2f target genes in mammalian cells, whereby E2f3 promoter binding is well conserved between neural and muscle precursors at genes associated with cell cycle processes, but is tissue-specific at differentiation-associated genes. Our findings implicate the cell cycle pathway as a widespread regulator of cell fate genes, and suggest that E2f3 proteins control cell type-specific differentiation programs by regulating unique sets of target genes. This work significantly enhances our understanding of how the cell cycle machinery impacts cell fate and differentiation, and will

  14. Genome-wide Transcription Factor Gene Prediction and their Expressional Tissue-Specificities in Maize

    Institute of Scientific and Technical Information of China (English)

    Yi Jiang; Biao Zeng; Hainan Zhao; Mei Zhang; Shaojun Xie; Jinsheng Lai

    2012-01-01

    Transcription factors (TFs) are important regulators of gene expression.To better understand TFencoding genes in maize (Zea mays L.),a genome-wide TF prediction was performed using the updated B73 reference genome.A total of 2 298 TF genes were identified,which can be classified into 56 families.The largest family,known as the MYB superfamily,comprises 322 MYB and MYB-related TF genes.The expression patterns of 2014 (87.64%) TF genes were examined using RNA-seq data,which resulted in the identification of a subset of TFs that are specifically expressed in particular tissues (including root,shoot,leaf,ear,tassel and kernel).Similarly,98 kernel-specific TF genes were further analyzed,and it was observed that 29 of the kernel-specific genes were preferentially expressed in the early kernel developmental stage,while 69 of the genes were expressed in the late kernel developmental stage.Identification of these TFs,particularly the tissue-specific ones,provides important information for the understanding of development and transcriptional regulation of maize.

  15. ChIP-seq Accurately Predicts Tissue-Specific Activity of Enhancers

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Blow, Matthew J.; Li, Zirong; Zhang, Tao; Akiyama, Jennifer A.; Holt, Amy; Plajzer-Frick, Ingrid; Shoukry, Malak; Wright, Crystal; Chen, Feng; Afzal, Veena; Ren, Bing; Rubin, Edward M.; Pennacchio, Len A.

    2009-02-01

    A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover since they are scattered amongst the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here, we performed chromatin immunoprecipitation with the enhancer-associated protein p300, followed by massively-parallel sequencing, to map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain, and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases revealed reproducible enhancer activity in those tissues predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities and suggest that such datasets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.

  16. Tissue-Specific Ablation of Prkar1a Causes Schwannomas by Suppressing Neurofibromatosis Protein Production

    Directory of Open Access Journals (Sweden)

    Georgette N. Jones

    2008-11-01

    Full Text Available Signaling events leading to Schwann cell tumor initiation have been extensively characterized in the context of neurofibromatosis (NF. Similar tumors are also observed in patients with the endocrine neoplasia syndrome Carney complex, which results from inactivating mutations in PRKAR1A. Loss of PRKAR1A causes enhanced protein kinase A activity, although the pathways leading to tumorigenesis are not well characterized. Tissue-specific ablation of Prkar1a in neural crest precursor cells (TEC3KO mice causes schwannomas with nearly 80% penetrance by 10 months. These heterogeneous neoplasms were clinically characterized as genetically engineered mouse schwannomas, grades II and III. At the molecular level, analysis of the tumors revealed almost complete loss of both NF proteins, despite the fact that transcript levels were increased, implying posttranscriptional regulation. Although Erk and Akt signaling are typically enhanced in NF-associated tumors, we observed no activation of either of these pathways in TEC3KO tumors. Furthermore, the small G proteins Ras, Rac1, and RhoA are all known to be involved with NF signaling. In TEC3KO tumors, all three molecules showed modest increases in total protein, but only Rac1 showed significant activation. These data suggest that dysregulated protein kinase A activation causes tumorigenesis through pathways that overlap but are distinct from those described in NF tumorigenesis.

  17. Tissue-specific Differentiation Potency of Mesenchymal Stromal Cells from Perinatal Tissues.

    Science.gov (United States)

    Kwon, Ahlm; Kim, Yonggoo; Kim, Myungshin; Kim, Jiyeon; Choi, Hayoung; Jekarl, Dong Wook; Lee, Seungok; Kim, Jung Min; Shin, Jong-Chul; Park, In Yang

    2016-04-05

    Human perinatal tissue is an abundant source of mesenchymal stromal cells(MSCs) and lacks the ethical concerns. Perinatal MSCs can be obtained from various tissues as like amnion, chorion, and umbilical cord. Still, little is known of the distinct nature of each MSC type. In this study, we successfully isolated and cultured MSCs from amnion(AMSCs), chorion(CMSCs), and umbilical cord(UC-MSCs). Proliferation potential was different among them, that AMSCs revealed the lowest proliferation rate due to increased Annexin V and senescence-associated β-galactosidase positive cells. We demonstrated distinct characteristic gene expression according to the source of the original tissue using microarray. In particular, genes associated with apoptosis and senescence including CDKN2A were up-regulated in AMSCs. In CMSCs, genes associated with heart morphogenesis and blood circulation including HTR2B were up-regulated. Genes associated with neurological system processes including NPY were up-regulated in UC-MSCs. Quantitative RT-PCR confirmed the gene expression data. And in vitro differentiation of MSCs demonstrated that CMSCs and UC-MSCs had a more pronounced ability to differentiate into cardiomyocyte and neural cells, respectively. This study firstly demonstrated the innate tissue-specific differentiation potency of perinatal MSCs which can be helpful in choosing more adequate cell sources for better outcome in a specific disease.

  18. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits.

    Science.gov (United States)

    Katter, Katharina; Geurts, Aron M; Hoffmann, Orsolya; Mátés, Lajos; Landa, Vladimir; Hiripi, László; Moreno, Carol; Lazar, Jozef; Bashir, Sanum; Zidek, Vaclav; Popova, Elena; Jerchow, Boris; Becker, Katja; Devaraj, Anantharam; Walter, Ingrid; Grzybowksi, Michael; Corbett, Molly; Filho, Artur Rangel; Hodges, Matthew R; Bader, Michael; Ivics, Zoltán; Jacob, Howard J; Pravenec, Michal; Bosze, Zsuzsanna; Rülicke, Thomas; Izsvák, Zsuzsanna

    2013-03-01

    Germline transgenesis is an important procedure for functional investigation of biological pathways, as well as for animal biotechnology. We have established a simple, nonviral protocol in three important biomedical model organisms frequently used in physiological studies. The protocol is based on the hyperactive Sleeping Beauty transposon system, SB100X, which reproducibly promoted generation of transgenic founders at frequencies of 50-64, 14-72, and 15% in mice, rats, and rabbits, respectively. The SB100X-mediated transgene integrations are less prone to genetic mosaicism and gene silencing as compared to either the classical pronuclear injection or to lentivirus-mediated transgenesis. The method was successfully applied to a variety of transgenes and animal models, and can be used to generate founders with single-copy integrations. The transposon vector also allows the generation of transgenic lines with tissue-specific expression patterns specified by promoter elements of choice, exemplified by a rat reporter strain useful for tracking serotonergic neurons. As a proof of principle, we rescued an inborn genetic defect in the fawn-hooded hypertensive rat by SB100X transgenesis. A side-by-side comparison of the SB100X- and piggyBac-based protocols revealed that the two systems are complementary, offering new opportunities in genome manipulation.

  19. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rebecca Lyons

    Full Text Available Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant.

  20. An Arabidopsis tissue-specific RNAi method for studying genes essential to mitosis.

    Directory of Open Access Journals (Sweden)

    Brunilís Burgos-Rivera

    Full Text Available A large fraction of the genes in plants can be considered essential in the sense that when absent the plant fails to develop past the first few cell divisions. The fact that angiosperms pass through a haploid gametophyte stage can make it challenging to propagate such mutants even in the heterozygous condition. Here we describe a tissue-specific RNAi method that allows us to visualize cell division phenotypes in petals, which are large dispensable organs. Portions of the APETALA (AP3 and PISTILLATA (PI promoters confer early petal-specific expression. We show that when either promoter is used to drive the expression of a beta-glucuronidase (GUS RNAi transgene in plants uniformly expressing GUS, GUS expression is knocked down specifically in petals. We further tested the system by targeting the essential kinetochore protein CENPC and two different components of the Spindle Assembly Checkpoint (MAD2 and BUBR1. Plant lines expressing petal-specific RNAi hairpins targeting these genes exhibited an array of petal phenotypes. Cytological analyses of the affected flower buds confirmed that CENPC knockdown causes cell cycle arrest but provided no evidence that either MAD2 or BUBR1 are required for mitosis (although both genes are required for petal growth by this assay. A key benefit of the petal-specific RNAi method is that the phenotypes are not expressed in the lineages leading to germ cells, and the phenotypes are faithfully transmitted for at least four generations despite their pronounced effects on growth.

  1. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis.

    Science.gov (United States)

    Lindström, Nils O; Neves, Carlos; McIntosh, Rebecca; Miedzybrodzka, Zosia; Vargesson, Neil; Collinson, J Martin

    2011-01-01

    The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms' tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue-tissue interactions guiding multiple developmental processes. PMID:21167960

  2. Expression of PIN Genes in Rice (Oryza sativa L.):Tissue Specificity and Regulation by Hormones

    Institute of Scientific and Technical Information of China (English)

    Ji-Rong Wang; Han Hu; Gao-Hang Wang; Jing Li; Jie-Yu Chen; Ping Wu

    2009-01-01

    Twelve genes of the PIN family in rice were analyzed for gene and protein structures and an evolutionary relationship with reported AtPINs in Arabidopsis.Four members of PIN1 (designated as OsPIN1a-d),one gene paired with AtPIN2 (OsPIN2),three members of PIN5 (OsPIN5a-c),one gene paired with AtPIN8 (OsPIN8),and three monocot-specific PiNs (OsPINg,OsPIN10a,and b) were identified from the phylogenetic analysis.Tissue-specific expression patterns of nine PIN genes among them were investigated using RT-PCR and GUS reporter.The wide variations in the expression domain in different tissues of the PIN genes were observed.In general,PIN genes are up-regulated by exogenous auxin,while different responses of different PIN genes to other hormones were found.

  3. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish.

    Science.gov (United States)

    Ablain, Julien; Durand, Ellen M; Yang, Song; Zhou, Yi; Zon, Leonard I

    2015-03-23

    CRISPR/Cas9 technology of genome editing has greatly facilitated the targeted inactivation of genes in vitro and in vivo in a wide range of organisms. In zebrafish, it allows the rapid generation of knockout lines by simply injecting a guide RNA (gRNA) and Cas9 mRNA into one-cell stage embryos. Here, we report a simple and scalable CRISPR-based vector system for tissue-specific gene inactivation in zebrafish. As proof of principle, we used our vector with the gata1 promoter driving Cas9 expression to silence the urod gene, implicated in heme biosynthesis, specifically in the erythrocytic lineage. Urod targeting yielded red fluorescent erythrocytes in zebrafish embryos, recapitulating the phenotype observed in the yquem mutant. While F0 embryos displayed mosaic gene disruption, the phenotype appeared very penetrant in stable F1 fish. This vector system constitutes a unique tool to spatially control gene knockout and greatly broadens the scope of loss-of-function studies in zebrafish.

  4. Comparative analysis of human tissue interactomes reveals factors leading to tissue-specific manifestation of hereditary diseases.

    Directory of Open Access Journals (Sweden)

    Ruth Barshir

    2014-06-01

    Full Text Available An open question in human genetics is what underlies the tissue-specific manifestation of hereditary diseases, which are caused by genomic aberrations that are present in cells across the human body. Here we analyzed this phenomenon for over 300 hereditary diseases by using comparative network analysis. We created an extensive resource of protein expression and interactions in 16 main human tissues, by integrating recent data of gene and protein expression across tissues with data of protein-protein interactions (PPIs. The resulting tissue interaction networks (interactomes shared a large fraction of their proteins and PPIs, and only a small fraction of them were tissue-specific. Applying this resource to hereditary diseases, we first show that most of the disease-causing genes are widely expressed across tissues, yet, enigmatically, cause disease phenotypes in few tissues only. Upon testing for factors that could lead to tissue-specific vulnerability, we find that disease-causing genes tend to have elevated transcript levels and increased number of tissue-specific PPIs in their disease tissues compared to unaffected tissues. We demonstrate through several examples that these tissue-specific PPIs can highlight disease mechanisms, and thus, owing to their small number, provide a powerful filter for interrogating disease etiologies. As two thirds of the hereditary diseases are associated with these factors, comparative tissue analysis offers a meaningful and efficient framework for enhancing the understanding of the molecular basis of hereditary diseases.

  5. Comparative analysis of human tissue interactomes reveals factors leading to tissue-specific manifestation of hereditary diseases.

    Science.gov (United States)

    Barshir, Ruth; Shwartz, Omer; Smoly, Ilan Y; Yeger-Lotem, Esti

    2014-06-01

    An open question in human genetics is what underlies the tissue-specific manifestation of hereditary diseases, which are caused by genomic aberrations that are present in cells across the human body. Here we analyzed this phenomenon for over 300 hereditary diseases by using comparative network analysis. We created an extensive resource of protein expression and interactions in 16 main human tissues, by integrating recent data of gene and protein expression across tissues with data of protein-protein interactions (PPIs). The resulting tissue interaction networks (interactomes) shared a large fraction of their proteins and PPIs, and only a small fraction of them were tissue-specific. Applying this resource to hereditary diseases, we first show that most of the disease-causing genes are widely expressed across tissues, yet, enigmatically, cause disease phenotypes in few tissues only. Upon testing for factors that could lead to tissue-specific vulnerability, we find that disease-causing genes tend to have elevated transcript levels and increased number of tissue-specific PPIs in their disease tissues compared to unaffected tissues. We demonstrate through several examples that these tissue-specific PPIs can highlight disease mechanisms, and thus, owing to their small number, provide a powerful filter for interrogating disease etiologies. As two thirds of the hereditary diseases are associated with these factors, comparative tissue analysis offers a meaningful and efficient framework for enhancing the understanding of the molecular basis of hereditary diseases. PMID:24921629

  6. Identification of Tissue-Specific Protein-Coding and Noncoding Transcripts across 14 Human Tissues Using RNA-seq.

    Science.gov (United States)

    Zhu, Jinhang; Chen, Geng; Zhu, Sibo; Li, Suqing; Wen, Zhuo; Bin Li; Zheng, Yuanting; Shi, Leming

    2016-06-22

    Many diseases and adverse drug reactions exhibit tissue specificity. To better understand the tissue-specific expression characteristics of transcripts in different human tissues, we deeply sequenced RNA samples from 14 different human tissues. After filtering many lowly expressed transcripts, 24,729 protein-coding transcripts and 1,653 noncoding transcripts were identified. By analyzing highly expressed tissue-specific protein-coding transcripts (TSCTs) and noncoding transcripts (TSNTs), we found that testis expressed the highest numbers of TSCTs and TSNTs. Brain, monocytes, ovary, and heart expressed more TSCTs than the rest tissues, whereas brain, placenta, heart, and monocytes expressed more TSNTs than other tissues. Co-expression network constructed based on the TSCTs and TSNTs showed that each hub TSNT was co-expressed with several TSCTs, allowing functional annotation of TSNTs. Important biological processes and KEGG pathways highly related to the specific functions or diseases of each tissue were enriched with the corresponding TSCTs. These TSCTs and TSNTs may participate in the tissue-specific physiological or pathological processes. Our study provided a unique data set and systematic analysis of expression characteristics and functions of both TSCTs and TSNTs based on 14 distinct human tissues, and could facilitate future investigation of the mechanisms behind tissue-specific diseases and adverse drug reactions.

  7. Poly(A) code analyses reveal key determinants for tissue-specific mRNA alternative polyadenylation.

    Science.gov (United States)

    Weng, Lingjie; Li, Yi; Xie, Xiaohui; Shi, Yongsheng

    2016-06-01

    mRNA alternative polyadenylation (APA) is a critical mechanism for post-transcriptional gene regulation and is often regulated in a tissue- and/or developmental stage-specific manner. An ultimate goal for the APA field has been to be able to computationally predict APA profiles under different physiological or pathological conditions. As a first step toward this goal, we have assembled a poly(A) code for predicting tissue-specific poly(A) sites (PASs). Based on a compendium of over 600 features that have known or potential roles in PAS selection, we have generated and refined a machine-learning algorithm using multiple high-throughput sequencing-based data sets of tissue-specific and constitutive PASs. This code can predict tissue-specific PASs with >85% accuracy. Importantly, by analyzing the prediction performance based on different RNA features, we found that PAS context, including the distance between alternative PASs and the relative position of a PAS within the gene, is a key feature for determining the susceptibility of a PAS to tissue-specific regulation. Our poly(A) code provides a useful tool for not only predicting tissue-specific APA regulation, but also for studying its underlying molecular mechanisms. PMID:27095026

  8. Verification, Characterization and Tissue-specific Expression of UreG, a Urease Accessory Protein Gene, from the Amphioxus Branchiostoma belcheri

    Institute of Scientific and Technical Information of China (English)

    Ji-Yu XUE; Shi-Cui ZHANG; Nai-Guo LIU; Zhen-Hui LIU

    2006-01-01

    UreG genes have been found in bacteria, fungi and plants but have not yet identified in animals,although a putative UreG-like gene has been documented in sea urchin. In the course of a large-scale sequencing of amphioxus gut cDNA library, we have identified a cDNA with high similarity to UreG genes. Both reverse transcription-polymerase chain reaction and nested polymerase chain reaction, as well as in situ hybridization histochemistry, verified that the cDNA represented an amphioxus UreG gene (AmphiUreG) rather than a microbial contaminant of the cDNA library. This is further supported by the presence of urease activity in amphioxus gut, gill and ovary. AmphiUreG encodes a deduced protein of 200 amino acid residues including a highly conserved P-loop, beating approximately 46%-49%, 44%-48%, and 29%-37% similarity to fungal,plant and bacterial UreG proteins, respectively. It shows a tissue-specific expression pattern in amphioxus,and is especially abundant in the digestive system. This is the first UreG gene identified in animal species.

  9. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations

    International Nuclear Information System (INIS)

    Highlights: • We exposed three successive generations of Daphnia magna to chronic gamma radiation. • We examined DNA alterations and effects on survival, growth and reproduction. • DNA alterations were accumulated over a generation and transmitted to the progeny. • Effects on survival and reproduction, and delay in growth increased over generations. - Abstract: This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h−1). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h−1 increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h−1 in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h−1 in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h−1 in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h−1 in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h−1 at hatching to 0.007 mGy h−1 after ∼21 days) and from F0 to F2 (0.070 mGy h−1 at hatching to 0.007 mGy h−1 after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h−1 and DNA alterations significant at highest dose rates only. The study improved our understanding of long term

  10. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling.

    Science.gov (United States)

    Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe

    2015-06-01

    Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.

  11. Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities

    Energy Technology Data Exchange (ETDEWEB)

    Langland, Gregory T.; Yannone, Steven M.; Langland, Rachel A.; Nakao, Aki; Guan, Yinghui; Long, Sydney B.T.; Vonguyen, Lien; Chen, David J.; Gray, Joe W; Chen, Fanqing

    2009-09-07

    The variability of radiation responses in ovarian tumors and tumor-derived cell lines is poorly understood. Since both DNA repair capacity and p53 status can significantly alter radiation sensitivity, we evaluated these factors along with radiation sensitivity in a panel of sporadic human ovarian carcinoma cell lines. We observed a gradation of radiation sensitivity among these sixteen lines, with a five-fold difference in the LD50 between the most radiosensitive and the most radioresistant cells. The DNA-dependent protein kinase (DNA-PK) is essential for the repair of radiation induced DNA double-strand breaks in human somatic cells. Therefore, we measured gene copy number, expression levels, protein abundance, genomic copy and kinase activity for DNA-PK in all of our cell lines. While there were detectable differences in DNA-PK between the cell lines, there was no clear correlation with any of these differences and radiation sensitivity. In contrast, p53 function as determined by two independent methods, correlated well with radiation sensitivity, indicating p53 mutant ovarian cancer cells are typically radioresistant relative to p53 wild-type lines. These data suggest that the activity of regulatory molecules such as p53 may be better indicators of radiation sensitivity than DNA repair enzymes such as DNAPK in ovarian cancer.

  12. Differential Selective Constraints Shaping Codon Usage Pattern of Housekeeping and Tissue-specific Homologous Genes of Rice and Arabidopsis

    OpenAIRE

    Mukhopadhyay, Pamela; Basak, Surajit; Ghosh, Tapash Chandra

    2008-01-01

    Intra-genomic variation between housekeeping and tissue-specific genes has always been a study of interest in higher eukaryotes. To-date, however, no such investigation has been done in plants. Availability of whole genome expression data for both rice and Arabidopsis has made it possible to examine the evolutionary forces in shaping codon usage pattern in both housekeeping and tissue-specific genes in plants. In the present work, we have taken 4065 rice–Arabidopsis homologous gene pairs to s...

  13. Tissue-Specific Transcriptomics of the Exotic Invasive Insect Pest Emerald Ash Borer (Agrilus planipennis)

    Science.gov (United States)

    Mittapalli, Omprakash; Bai, Xiaodong; Bonello, Pierluigi; Herms, Daniel A.

    2010-01-01

    Background The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis), is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp.) primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. Methodology and Principal Findings Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs) for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248)and trypsin (98) domains; while the fat body sequences showed high occurrence of cytochrome P450s (85) and protein kinase (123) domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body) and microsatellite loci (317 in midgut and 571 in fat body) were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. Conclusions and Significance To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis. PMID:21060843

  14. Tissue-specific transcriptomics of the exotic invasive insect pest emerald ash borer (Agrilus planipennis.

    Directory of Open Access Journals (Sweden)

    Omprakash Mittapalli

    Full Text Available BACKGROUND: The insect midgut and fat body represent major tissue interfaces that deal with several important physiological functions including digestion, detoxification and immune response. The emerald ash borer (Agrilus planipennis, is an exotic invasive insect pest that has killed millions of ash trees (Fraxinus spp. primarily in the Midwestern United States and Ontario, Canada. However, despite its high impact status little knowledge exists for A. planipennis at the molecular level. METHODOLOGY AND PRINCIPAL FINDINGS: Newer-generation Roche-454 pyrosequencing was used to obtain 126,185 reads for the midgut and 240,848 reads for the fat body, which were assembled into 25,173 and 37,661 high quality expressed sequence tags (ESTs for the midgut and the fat body of A. planipennis larvae, respectively. Among these ESTs, 36% of the midgut and 38% of the fat body sequences showed similarity to proteins in the GenBank nr database. A high number of the midgut sequences contained chitin-binding peritrophin (248and trypsin (98 domains; while the fat body sequences showed high occurrence of cytochrome P450s (85 and protein kinase (123 domains. Further, the midgut transcriptome of A. planipennis revealed putative microbial transcripts encoding for cell-wall degrading enzymes such as polygalacturonases and endoglucanases. A significant number of SNPs (137 in midgut and 347 in fat body and microsatellite loci (317 in midgut and 571 in fat body were predicted in the A. planipennis transcripts. An initial assessment of cytochrome P450s belonging to various CYP clades revealed distinct expression patterns at the tissue level. CONCLUSIONS AND SIGNIFICANCE: To our knowledge this study is one of the first to illuminate tissue-specific gene expression in an invasive insect of high ecological and economic consequence. These findings will lay the foundation for future gene expression and functional studies in A. planipennis.

  15. Tissue-Specific Transcriptome Profiling of Plutella Xylostella Third Instar Larval Midgut

    Directory of Open Access Journals (Sweden)

    Wen Xie, Yanyuan Lei, Wei Fu, Zhongxia Yang, Xun Zhu, Zhaojiang Guo, Qingjun Wu, Shaoli Wang, Baoyun Xu, Xuguo Zhou, Youjun Zhang

    2012-01-01

    Full Text Available The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut.Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416bp, and approximately half of the P. xylostella sequences (45.4%, 28,768 showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10-5. Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis indentified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense.As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In

  16. Genetic Dissection of Tissue-Specific Apolipoprotein E Function for Hypercholesterolemia and Diet-Induced Obesity.

    Directory of Open Access Journals (Sweden)

    Tobias Wagner

    Full Text Available ApoE deficiency in mice (Apoe-/- results in severe hypercholesterolemia and atherosclerosis. In diet-induced obesity, Apoe-/- display steatohepatitis but reduced accumulation of triacylglycerides and enhanced insulin sensitivity in white adipose tissue (WAT. Although the vast majority of apoE is expressed by hepatocytes apoE is also abundantly expressed in WAT. As liver and adipose tissue play important roles for metabolism, this study aims to outline functions of both hepatocyte- and adipocyte-derived apoE separately by investigating a novel mouse model of tissue-specific apoE deficiency. Therefore we generated transgenic mice carrying homozygous floxed Apoe alleles. Mice lacking apoE either in hepatocytes (ApoeΔHep or in adipose tissue (ApoeΔAT were fed experimental diets. ApoeΔHep exhibited slightly higher body weights, adiposity and liver weights on diabetogenic high fat diet (HFD. Accordingly, hepatic steatosis and markers of inflammation were more pronounced compared to controls. Hypercholesterolemia evoked by lipoprotein remnant accumulation was present in ApoeΔHep mice fed a Western type diet (WTD. Lipidation of VLDL particles and tissue uptake of VLDL were disturbed in ApoeΔHep while the plasma clearance rate remained unaltered. ApoeΔAT did not display any detectable phenotype, neither on HFD nor on WTD. In conclusion, our novel conditional apoE deletion model has proven here the role of hepatocyte apoE for VLDL production and diet-induced dyslipidemia. Specific deletion of apoE in adipocytes cannot reproduce the adipose phenotype of global Apoe-/- mice, suggesting that apoE produced in other cell types than hepatocytes or adipocytes explains the lean and insulin-sensitive phenotype described for Apoe-/- mice.

  17. Tissue-specific promoters active in CD44+CD24-/low breast cancer cells.

    Science.gov (United States)

    Bauerschmitz, Gerd J; Ranki, Tuuli; Kangasniemi, Lotta; Ribacka, Camilla; Eriksson, Minna; Porten, Marius; Herrmann, Isabell; Ristimäki, Ari; Virkkunen, Pekka; Tarkkanen, Maija; Hakkarainen, Tanja; Kanerva, Anna; Rein, Daniel; Pesonen, Sari; Hemminki, Akseli

    2008-07-15

    It has been proposed that human tumors contain stem cells that have a central role in tumor initiation and posttreatment relapse. Putative breast cancer stem cells may reside in the CD44(+)CD24(-/low) population. Oncolytic adenoviruses are attractive for killing of these cells because they enter through infection and are therefore not susceptible to active and passive mechanisms that render stem cells resistant to many drugs. Although adenoviruses have been quite safe in cancer trials, preclinical work suggests that toxicity may eventually be possible with more active agents. Therefore, restriction of virus replication to target tissues with tissues-specific promoters is appealing for improving safety and can be achieved without loss of efficacy. We extracted CD44(+)CD24(-/low) cells from pleural effusions of breast cancer patients and found that modification of adenovirus type 5 tropism with the serotype 3 knob increased gene delivery to CD44(+)CD24(-/low) cells. alpha-Lactalbumin, cyclo-oxygenase 2, telomerase, and multidrug resistance protein promoters were studied for activity in CD44(+)CD24(-/low) cells, and a panel of oncolytic viruses was subsequently constructed. Each virus featured 5/3 chimerism of the fiber and a promoter controlling expression of E1A, which was also deleted in the Rb binding domain for additional tumor selectivity. Cell killing assays identified Ad5/3-cox2L-d24 and Ad5/3-mdr-d24 as the most active agents, and these viruses were able to completely eradicate CD44(+)CD24(-/low) cells in vitro. In vivo, these viruses had significant antitumor activity in CD44(+)CD24(-/low)-derived tumors. These findings may have relevance for elimination of cancer stem cells in humans. PMID:18632604

  18. A tissue-specific approach to the analysis of metabolic changes in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jürgen Hench

    Full Text Available The majority of metabolic principles are evolutionarily conserved from nematodes to humans. Caenorhabditis elegans has widely accelerated the discovery of new genes important to maintain organismic metabolic homeostasis. Various methods exist to assess the metabolic state in worms, yet they often require large animal numbers and tend to be performed as bulk analyses of whole worm homogenates, thereby largely precluding a detailed studies of metabolic changes in specific worm tissues. Here, we have adapted well-established histochemical methods for the use on C. elegans fresh frozen sections and demonstrate their validity for analyses of morphological and metabolic changes on tissue level in wild type and various mutant strains. We show how the worm presents on hematoxylin and eosin (H&E stained sections and demonstrate their usefulness in monitoring and the identification of morphological abnormalities. In addition, we demonstrate how Oil-Red-O staining on frozen worm cross-sections permits quantification of lipid storage, avoiding the artifact-prone fixation and permeabilization procedures of traditional whole-mount protocols. We also adjusted standard enzymatic stains for respiratory chain subunits (NADH, SDH, and COX to monitor metabolic states of various C. elegans tissues. In summary, the protocols presented here provide technical guidance to obtain robust, reproducible and quantifiable tissue-specific data on worm morphology as well as carbohydrate, lipid and mitochondrial energy metabolism that cannot be obtained through traditional biochemical bulk analyses of worm homogenates. Furthermore, analysis of worm cross-sections overcomes the common problem with quantification in three-dimensional whole-mount specimens.

  19. N-glycans of human protein C inhibitor: tissue-specific expression and function.

    Directory of Open Access Journals (Sweden)

    Wei Sun

    Full Text Available Protein C inhibitor (PCI is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s and the NH₂-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9 had a composition of Fuc₃Hex₅HexNAc₄, consistent with a core fucosylated bi-antennary glycan with terminal Lewis(x. A major serine protease in semen, prostate specific antigen (PSA, was used to evaluate the effects of N-glycans and the NH₂-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M⁻¹ s⁻¹ for the natural full-length PCI and a form lacking six amino acids at the NH₂-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M⁻¹ s⁻¹ for the corresponding PNGase F-treated forms. The 7-8-fold higher rate constants obtained when both the N-glycans and the NH₂-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA.

  20. N-glycans of Human Protein C Inhibitor: Tissue-Specific Expression and Function

    Science.gov (United States)

    Engström, Åke; Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Hreinsson, Julius; Wånggren, Kjell; Clark, Gary F.; Dell, Anne; Schedin-Weiss, Sophia

    2011-01-01

    Protein C inhibitor (PCI) is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s) and the NH2-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9) had a composition of Fuc3Hex5HexNAc4, consistent with a core fucosylated bi-antennary glycan with terminal Lewisx. A major serine protease in semen, prostate specific antigen (PSA), was used to evaluate the effects of N-glycans and the NH2-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M−1s−1 for the natural full-length PCI and a form lacking six amino acids at the NH2-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M−1s−1 for the corresponding PNGase F-treated forms. The 7–8-fold higher rate constants obtained when both the N-glycans and the NH2-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA. PMID:22205989

  1. Tissue-specific gene expression in maize seeds during colonization by Aspergillus flavus and Fusarium verticillioides.

    Science.gov (United States)

    Shu, Xiaomei; Livingston, David P; Franks, Robert G; Boston, Rebecca S; Woloshuk, Charles P; Payne, Gary A

    2015-09-01

    Aspergillus flavus and Fusarium verticillioides are fungal pathogens that colonize maize kernels and produce the harmful mycotoxins aflatoxin and fumonisin, respectively. Management practice based on potential host resistance to reduce contamination by these mycotoxins has proven difficult, resulting in the need for a better understanding of the infection process by these fungi and the response of maize seeds to infection. In this study, we followed the colonization of seeds by histological methods and the transcriptional changes of two maize defence-related genes in specific seed tissues by RNA in situ hybridization. Maize kernels were inoculated with either A. flavus or F. verticillioides 21-22 days after pollination, and harvested at 4, 12, 24, 48, 72, 96 and 120 h post-inoculation. The fungi colonized all tissues of maize seed, but differed in their interactions with aleurone and germ tissues. RNA in situ hybridization showed the induction of the maize pathogenesis-related protein, maize seed (PRms) gene in the aleurone and scutellum on infection by either fungus. Transcripts of the maize sucrose synthase-encoding gene, shrunken-1 (Sh1), were observed in the embryo of non-infected kernels, but were induced on infection by each fungus in the aleurone and scutellum. By comparing histological and RNA in situ hybridization results from adjacent serial sections, we found that the transcripts of these two genes accumulated in tissue prior to the arrival of the advancing pathogens in the seeds. A knowledge of the patterns of colonization and tissue-specific gene expression in response to these fungi will be helpful in the development of resistance.

  2. Demethoxycurcumin alters gene expression associated with DNA damage, cell cycle and apoptosis in human lung cancer NCI-H460 cells in vitro.

    Science.gov (United States)

    Ko, Yang-Ching; Hsu, Shu-Chun; Liu, Hsin-Chung; Hsiao, Yung-Ting; Hsia, Te-Chun; Yang, Su-Tso; Hsu, Wu-Huei; Chung, Jing-Gung

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths and new lung cancer cases are continuously emerging around the globe; however, treatment of lung cancer remains unsatisfactory. Demethoxycurcumin (DMC) has been shown to exert cytotoxic effects in human cancer cells via induction of apoptosis. However, the effects of DMC on genetic mechanisms associated with these actions have not been yet elucidated. Human lung cancer NCI-H460 cells were incubated with or without 35 μM of DMC for 24 h and total RNA was extracted for cDNA synthesis labeling and microarray hybridization, followed by fluor-labeled cDNA hybridization on chip. Expression Console software with default Robust Multichip Analysis (RMA) parameters were used for detecting and quantitating the localized concentrations of fluorescent molecules. The GeneGo software was used for investigating key genes involved and their possible interaction pathways. Genes associated with DNA damage and repair, cell-cycle check point and apoptosis could be altered by DMC; in particular, 144 genes were found up-regulated and 179 genes down-regulated in NCI-H460 cells after exposure to DMC. In general, DMC-altered genes may offer information to understand the cytotoxic mechanism of this agent at the genetic level since gene alterations can be useful biomarkers or targets for the diagnosis and treatment of human lung cancer in the future. PMID:25600535

  3. Demethoxycurcumin alters gene expression associated with DNA damage, cell cycle and apoptosis in human lung cancer NCI-H460 cells in vitro.

    Science.gov (United States)

    Ko, Yang-Ching; Hsu, Shu-Chun; Liu, Hsin-Chung; Hsiao, Yung-Ting; Hsia, Te-Chun; Yang, Su-Tso; Hsu, Wu-Huei; Chung, Jing-Gung

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths and new lung cancer cases are continuously emerging around the globe; however, treatment of lung cancer remains unsatisfactory. Demethoxycurcumin (DMC) has been shown to exert cytotoxic effects in human cancer cells via induction of apoptosis. However, the effects of DMC on genetic mechanisms associated with these actions have not been yet elucidated. Human lung cancer NCI-H460 cells were incubated with or without 35 μM of DMC for 24 h and total RNA was extracted for cDNA synthesis labeling and microarray hybridization, followed by fluor-labeled cDNA hybridization on chip. Expression Console software with default Robust Multichip Analysis (RMA) parameters were used for detecting and quantitating the localized concentrations of fluorescent molecules. The GeneGo software was used for investigating key genes involved and their possible interaction pathways. Genes associated with DNA damage and repair, cell-cycle check point and apoptosis could be altered by DMC; in particular, 144 genes were found up-regulated and 179 genes down-regulated in NCI-H460 cells after exposure to DMC. In general, DMC-altered genes may offer information to understand the cytotoxic mechanism of this agent at the genetic level since gene alterations can be useful biomarkers or targets for the diagnosis and treatment of human lung cancer in the future.

  4. Inhibitors of DNA topoisomerase or β-(but not α-) DNA polymerases alter the incision response of repair-deficient human cells after UV- or mnng-treatment

    International Nuclear Information System (INIS)

    Two types of repair-deficient human cells, those incapable of incision after UV irradiation (XPA or XPD) and those that fail to do so after incubation with MNNG (Al336 Mer/sup -/ cells), incised their DNA after treatment with UV or MNNG and incubation a) with inhibitors of DNA topoisomerase II (novobiocin) or b) with dideoxythymidine or at 450C (both inhibitory to β polymerase). This result was not produced by ara C or aphidicolin, specific inhibitors of α DNA polymerase. Thymidine incorporation in these cell lines was refractory to the β but not to the α polymerase inhibitors, although Al336 cells had normal in vitro β DNA polymerase activity with normal sensitivity to dideoxythymidine triphosphate. Thus, modulation of this activity in the cells prevented its inhibition. These results could be produced by allosteric interactions among components of an enzyme complex, similar to the ''replitase,'' that carries out DNA repair. The authors propose that DNA topoisomerase, β-DNA polymerase, a specific damage recognition protein (or proteins), and DNA nicking activity are part of this complex

  5. Impact of tissue-specific stem cells on lineage-specific differentiation: a focus on the musculoskeletal system.

    Science.gov (United States)

    Pizzute, Tyler; Lynch, Kevin; Pei, Ming

    2015-02-01

    Tissue-specific stem cells are found throughout the body and, with proper intervention and environmental cues, these stem cells exercise their capabilities for differentiation into several lineages to form cartilage, bone, muscle, and adipose tissue in vitro and in vivo. Interestingly, it has been widely demonstrated that they do not differentiate with the same efficacy during lineage-specific differentiation studies, as the tissue-specific stem cells are generally more effective when differentiating toward the tissues from which they were derived. This review focuses on four mesodermal lineages for tissue-specific stem cell differentiation: adipogenesis, chondrogenesis, myogenesis, and osteogenesis. It is intended to give insight into current multilineage differentiation and comparative research, highlight and contrast known trends regarding differentiation, and introduce supporting evidence which demonstrates particular tissue-specific stem cells' superiority in lineage-specific differentiation, along with their resident tissue origins and natural roles. In addition, some epigenetic and transcriptomic differences between stem cells which may explain the observed trends are discussed.

  6. A comparative approach to understanding tissue-specific expression of uncoupling protein 1 expression in adipose tissue

    Directory of Open Access Journals (Sweden)

    Andrew eShore

    2013-01-01

    Full Text Available The thermoregulatory function of brown adipose tissue (BAT is due to the tissue-specific expression of uncoupling protein 1 (UCP1 which is thought to have evolved in early mammals. We report that a CpG island close to the UCP1 transcription start site is highly conserved in all 29 vertebrates examined apart from the mouse and xenopus. Using methylation sensitive restriction digest and bisulphite mapping we show that the CpG island in both the bovine and human is largely un-methylated and is not related to differences in UCP1 expression between white and brown adipose tissue. Tissue-specific expression of UCP1 has been proposed to be regulated by a conserved 5’ distal enhancer which has been reported to be absent in marsupials. We demonstrate that the enhancer, is also absent in 5 eutherians as well as marsupials, monotremes, amphibians and fish, is present in pigs despite UCP1 having become a pseudogene, and that absence of the enhancer element does not relate to brown adipose tissue-specific UCP1 expression. We identify an additional putative 5’ regulatory unit which is conserved in 14 eutherian species but absent in other eutherians and vertebrates, but again unrelated to UCP1 expression. We conclude that despite clear evidence of conservation of regulatory elements in the UCP1 5’ untranslated region, this does not appear to be related to species or tissues-specific expression of UCP1.

  7. Metabolic, anabolic, and mitogenic insulin responses: A tissue-specific perspective for insulin receptor activators

    Science.gov (United States)

    Insulin acts as the major regulator of the fasting-to-fed metabolic transition by altering substrate metabolism, promoting energy storage, and helping activate protein synthesis. In addition to its glucoregulatory and other metabolic properties, insulin can also act as a growth factor. The metabolic...

  8. Cloning and study of adult-tissue-specific expression of Sox9 in Cyprinus carpio

    Indian Academy of Sciences (India)

    Du Qi-Yan; Wang Feng-Yu; Hua Hui-Ying; Chang Zhong-Jie

    2007-08-01

    The Sox9 gene is one of the important transcription factors in the development of many tissues and organs, particularly in sex determination and chondrogenesis. We amplified the genomic DNA of Cyprinus carpio using degenerate primers, and found that there were two versions of Sox9 in this species: Sox9a and Sox9b, that differ in having an intron of different length (704 bp and 616 bp, respectively) in the conserved HMG box region that codes for identical amino acid sequences. We used a two-phase rapid amplification of cDNA ends (RACE) for the isolation of full-length cDNA of Sox9b. Sequence analyses revealed a 2447-bp cDNA containing 233-bp 5′ untranslated region, a 927-bp 3′ untranslated region, including poly(A), and a 1287 bp open reading frame (ORF) encoding a protein of 428 amino acids. The HMG box of 79 amino acid motif was confirmed from positions 96–174. Sequence alignment showed that the identity of amino acids of Sox9 among ten animal species, including C. carpio, is 75%, indicating that the Sox9 gene is evolutionarily quite conserved. The expression level of Sox9b gene varied among several organs of adult C. carpio, with the level of expression being highest in the brain and testis.

  9. Altered Response Hierarchy and Increased T-Cell Breadth upon HIV-1 Conserved Element DNA Vaccination in Macaques

    OpenAIRE

    Viraj Kulkarni; Antonio Valentin; Margherita Rosati; Candido Alicea; Singh, Ashish K; Rashmi Jalah; Broderick, Kate E.; Sardesai, Niranjan Y.; Sylvie Le Gall; Beatriz Mothe; Christian Brander; Morgane Rolland; Mullins, James I.; Pavlakis, George N.; Felber, Barbara K.

    2014-01-01

    HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24(gag) elements (CE) induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55(gag) increased both magnitude o...

  10. Array-based comparative genomic hybridization for genomic-wide screening of DNA copy number alterations in aggressive bone tumors

    Directory of Open Access Journals (Sweden)

    Kanamori Masahiko

    2012-11-01

    Full Text Available Abstract Background The genetic pathways of aggressive changes of bone tumors are still poorly understood. It is very important to analyze DNA copy number alterations (DCNAs, to identify the molecular events in the step of progression to the aggressive change of bone tissue. Methods Genome-wide array-based comparative genomic hybridization (array CGH was used to investigate DCNAs of 14 samples from 13 aggressive bone tumors, such as giant cell tumors (GCTs and osteosarcoma (OS, etc. Results Primary aggressive bone tumors had copy number gains of 17.8±12.7% in the genome, and losses of 17.3±11.4% in 287 target clones (threshold for each DCNA: ≦085, 1.15≦. Genetic unstable cases, which were defined by the total DCNAs aberration ≧30%, were identified in 9 of 13 patients (3 of 7 GCTs and all malignant tumors. High-level amplification of TGFβ2, CCND3, WI-6509, SHGC-5557, TCL1A, CREBBP, HIC1, THRA, AFM217YD10, LAMA3, RUNX1 and D22S543, were commonly observed in aggressive bone tumors. On the other hand, NRAS, D2S447, RAF1, ROBO1, MYB, MOS, FGFR2, HRAS, D13S319, D13S327, D18S552, YES1 and DCC, were commonly low. We compared genetic instability between a primary OS and its metastatic site in Case #13. Metastatic lesion showed increased 9 DCNAs of remarkable change (m/p ratio ≧1.3 folds, compared to a primary lesion. D1S214, D1S1635, EXT1, AFM137XA11, 8 M16/SP6, CCND2, IGH, 282 M15/SP6, HIC1 and LAMA3, were overexpressed. We gave attention to HIC1 (17p13.3, which was common high amplification in this series. Conclusion Our results may provide several entry points for the identification of candidate genes associated with aggressive change of bone tumors. Especially, the locus 17p11-13 including HIC1 close to p53 was common high amplification in this series and review of the literature.

  11. Acquisition and evolution of plant pathogenesis-associated gene clusters and candidate determinants of tissue-specificity in xanthomonas.

    Directory of Open Access Journals (Sweden)

    Hong Lu

    Full Text Available BACKGROUND: Xanthomonas is a large genus of plant-associated and plant-pathogenic bacteria. Collectively, members cause diseases on over 392 plant species. Individually, they exhibit marked host- and tissue-specificity. The determinants of this specificity are unknown. METHODOLOGY/PRINCIPAL FINDINGS: To assess potential contributions to host- and tissue-specificity, pathogenesis-associated gene clusters were compared across genomes of eight Xanthomonas strains representing vascular or non-vascular pathogens of rice, brassicas, pepper and tomato, and citrus. The gum cluster for extracellular polysaccharide is conserved except for gumN and sequences downstream. The xcs and xps clusters for type II secretion are conserved, except in the rice pathogens, in which xcs is missing. In the otherwise conserved hrp cluster, sequences flanking the core genes for type III secretion vary with respect to insertion sequence element and putative effector gene content. Variation at the rpf (regulation of pathogenicity factors cluster is more pronounced, though genes with established functional relevance are conserved. A cluster for synthesis of lipopolysaccharide varies highly, suggesting multiple horizontal gene transfers and reassortments, but this variation does not correlate with host- or tissue-specificity. Phylogenetic trees based on amino acid alignments of gum, xps, xcs, hrp, and rpf cluster products generally reflect strain phylogeny. However, amino acid residues at four positions correlate with tissue specificity, revealing hpaA and xpsD as candidate determinants. Examination of genome sequences of xanthomonads Xylella fastidiosa and Stenotrophomonas maltophilia revealed that the hrp, gum, and xcs clusters are recent acquisitions in the Xanthomonas lineage. CONCLUSIONS/SIGNIFICANCE: Our results provide insight into the ancestral Xanthomonas genome and indicate that differentiation with respect to host- and tissue-specificity involved not major

  12. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  13. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    International Nuclear Information System (INIS)

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair

  14. Dynamic alteration in H3 serine 10 phosphorylation is G1-phase specific during ionization radiation induced DNA damage response in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ajit K.; Bhattacharya, Saikat; Khan, Shafqat A.; Khade, Bharat; Gupta, Sanjay, E-mail: sgupta@actrec.gov.in

    2015-03-15

    Highlights: • Loss of H3S10P in response to DNA damage is a universal phenomenon from G1 cells. • The loss happens predominantly from histone H3.3, a transcription activation mark. • Compaction of chromatin occurs during repair stage of DDR. • The alteration of H3S10P shows an inverse correlation with γH2AX. - Abstract: Chromatin acts as a natural barrier in DNA-damage recognition and repair. Histones undergo differential post-translational modification(s) to facilitate DNA damage response (DDR). Importance of modifications like phosphorylation of histone variant H2A.X in DNA repair is very well understood, however, ambiguous results exist in literature regarding the levels of certain histone modifications and their possible role in repair. In the present study, we have investigated in depth the alteration in the level of the highly dynamic histone mark H3S10P as it plays a dual role in different phases of the cell cycle. We show here that H3S10P decreases specifically from irradiated G1-enriched cells irrespective of the damaging agent or the cell line used in the study. Interestingly, the loss occurs predominantly from H3.3 variant which is a transcription activation mark like H3S10P itself, suggesting that the alteration might be implicated in transcription repression. The decrease in other transcription marks like H3K9Ac, H3K14Ac, H3K56Ac and H3S28P along with the occurrence of chromatin condensation in response to DNA damage in G1 phase strengthens the hypothesis. In addition, the alteration in the level of H3S10P shows an inverse correlation with that of γH2AX in a dose-dependent manner and probably occurs from the same mononucleosome. We propose that the drop in the levels of histone H3S10 phosphorylation is a universal phenomenon in response to DNA damage and is a trigger to induce transcription repressive state to facilitate repair.

  15. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Aluru, Neelakanteswar, E-mail: naluru@whoi.edu [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Kuo, Elaine [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Helfrich, Lily W. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Northwestern University, 633 Clark St, Evanston, IL 60208 (United States); Karchner, Sibel I. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Linney, Elwood A. [Department of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3020, Durham, NC 27710 (United States); Pais, June E. [New England Biolabs, 240 County Road, Ipswich, MA 01938 (United States); Franks, Diana G. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2015-04-15

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  16. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation.

    Directory of Open Access Journals (Sweden)

    Jean-François Gautier

    Full Text Available Fetal exposure to hyperglycemia impacts negatively kidney development and function.Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring.Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D (case group were matched with 28 offspring of T1D fathers (control group for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium. In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR and Effective Renal Plasma Flow (ERPF at baseline and during vasodilatation produced by amino acid infusion.Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1--a key enzyme involved in gene expression during early development--was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls.Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function.

  17. Effects of altered gravity on a distribution of rDNA and nucleolar proteins and the expression of nucleolar proteins in plants

    Science.gov (United States)

    Sobol, Margaryta; Kordyum, Elizabeth; Medina, Francisco Javier

    The nucleolus is an inner nuclear organelle originated from the activity of hundreds of rRNA genes, typically spanning several megabases. It morphologically reflects the functional events leading to ribosome biogenesis, from the transcription of rDNA through the processing of nascent pre-rRNA to the assembly of pre-ribosomes. A typical nucleolus consists of three major elements, namely fibrillar centers (FCs), the dense fibrillar component (DFC), and granular component (GC). The rate of ribosome biosynthesis and the subnucleolar structure are reliable monitors of the general level of cell metabolism and, consequently, of the rate of cellular growth, being influenced with many external factors, among which altered gravity could be included. Thus, we can hypothesize that the structural organization of the nucleolar subcomponents and the level, distribution and quantitative/qualitative characteristics of the nucleolar proteins would be changed under conditions of altered gravity. To confirm our hypothesis, we applied parallel procedures, such as cytochemistry, immunofluorescence, confocal laser microscopy, immunogold electron microscopy, monoand bi-dimensional electrophoresis and immunoblotting in root meristematic cells from two-day cress seedlings grown under slow horizontal clinorotation (2 rpm) and in stationary control. The complex model of the ultrastructural organization and functions of the nucleolus was created based on the location of rDNA and the nucleolar proteins fibrillarin, NhL90 and NhL68, these latter being cress nucleolin homologues. The principal stages of ribosome biogenesis, namely ribosomal gene activation, rDNA transcription and pre-rRNA processing were reflected in this model. Compared to the pattern shown in control ground gravity conditions, we found firstly a redistribution of both rDNA and nucleolar proteins in nucleolar subcomponents, induced by clinorotation. Under the conditions of altered gravity, nucleolar DNA concentrated

  18. 脂肪组织特异性表达载体的构建%Construction of Adipose Tissue - specific Expression Vector

    Institute of Scientific and Technical Information of China (English)

    华晓敏; 许登高; 潘庆杰

    2012-01-01

    采用PCR技术克隆了小鼠脂肪组织特异表达的脂肪酸结合蛋白ap2基因增强子和启动子,通过DNA重组技术将该基因增强子和启动子重组于pEGFP - N1真核表达载体上,构建pEGFP - N1 - ap2重组质粒,通过PCR扩增、酶切电泳分析和测序的方法对重组质粒进行鉴定,并转染小鼠前脂肪细胞,通过荧光素酶活性检测特异性表达强度.结果表明,本实验克隆的ap2基因增强子和启动子的碱基组成与GenBank中的ap2基因序列完全一致,通过DNA重组技术将该基因增强子和启动子重组于pEGFP- N1真核表达载体上,成功构建了脂肪组织特异表达的重组质粒.为以后的转基因动物的研究奠定了基础.%The mouse adipose tissue -specific fatty acid binding protein ap2 gene enhancer /promoter was amplified by PCR amplification, and it was recombined into pEGFP - Nl eukaryotic expression vector by recombinant DNA technology, to obtain pEGFP - Nl - ap2 recombinant plasmid, which was identified by PCR amplification, enzyme digestion and DNA sequencing and infected with mouse pre - adipocytes, and its expression was detected by the fluorescence detection of the enzyme activity specific expression strength. The results showed that, cloned gene enhancer and promoter is consistent with the ap2 gene sequences in GenBank. The enhancer / promoter was recombined into pEGFP - Nl eukaryotic expression vector by recombinant DNA technology. The construction of the adipose tissue - specific expression vector was successfully constructed, which can provide a necessary basis for further study.

  19. Presymptomatic Alterations in Amino Acid Metabolism and DNA Methylation in the Cerebellum of a Murine Model of Niemann-Pick Type C Disease.

    Science.gov (United States)

    Kennedy, Barry E; Hundert, Amos S; Goguen, Donna; Weaver, Ian C G; Karten, Barbara

    2016-06-01

    The fatal neurodegenerative disorder Niemann-Pick type C (NPC) is caused in most cases by mutations in NPC1, which encodes the late endosomal NPC1 protein. Loss of NPC1 disrupts cholesterol trafficking from late endosomes to the endoplasmic reticulum and plasma membrane, causing cholesterol accumulation in late endosomes/lysosomes. Neurons are particularly vulnerable to this cholesterol trafficking defect, but the pathogenic mechanisms through which NPC1 deficiency causes neuronal dysfunction remain largely unknown. Herein, we have investigated amino acid metabolism in cerebella of NPC1-deficient mice at different stages of NPC disease. Imbalances in amino acid metabolism were evident from increased branched chain amino acid and asparagine levels and altered expression of key enzymes of glutamine/glutamate metabolism in presymptomatic and early symptomatic NPC1-deficient cerebellum. Increased levels of several amino acid intermediates of one-carbon metabolism indicated disturbances in folate and methylation pathways. Alterations in DNA methylation were apparent in decreased expression of DNA methyltransferase 3a and methyl-5'-cytosine-phosphodiester-guanine-domain binding proteins, reduced 5-methylcytosine immunoreactivity in the molecular and Purkinje cell layers, demethylation of genome-wide repetitive LINE-1 elements, and hypermethylation in specific promoter regions of single-copy genes in NPC1-deficient cerebellum at early stages of the disease. Alterations in amino acid metabolism and epigenetic changes in the cerebellum at presymptomatic stages of NPC disease represent previously unrecognized mechanisms of NPC pathogenesis. PMID:27083515

  20. Aging and DNA repair capability. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Tice, R R

    1977-01-01

    A review of the literature on DNA repair processes in relation to aging is presented under the following headings: DNA repair processes; age-related occurrence of unrepaired DNA lesions; DNA repair capability as a function of age; tissue-specific DNA repair capability; acceleration of the aging process by exposure to DNA damaging agents; human genetic syndromes; and longevity and DNA repair processes. (HLW)

  1. Characterization, Evolution and Tissue-specific Expression of AmphiCalbin, a Novel Gene Encoding EF-hand Calcium-binding Protein in Amphioxus Branchiostoma belcheri

    Institute of Scientific and Technical Information of China (English)

    Jing LUAN; Shicui ZHANG; Zhenhui LIU; Chunxin FAN; Guangdong JI; Lei LI

    2007-01-01

    An amphioxus full-length cDNA, AmphiCalbin, encoding a novel EF-hand calcium-binding protein (EFCaBP), was isolated from the gut cDNA library of amphioxus Branchiostoma belcheri. It consists of 1321 bp with a 636 bp open reading frame encoding a protein of 211 amino acids with a molecular mass of approximately 24.5 kDa. The phylogenetic analysis offers two interesting inferences. First, AmphiCalbin clusters with a group of unnamed EFCaBPs that are differentiated from other identified EFCaBPs. Second,AmphiCalbin falls at the base of the vertebrate unnamed EFCaBPs clade, probably representing their prototype.This is also corroborated by the fact that AmphiCalbin has an exon-intron organization identical to that of vertebrate unnamed EFCaBP genes. Both tissue-section in situ hybridization and whole-mount in situ hybridization prove a tissue-specific expression pattern of AmphiCalbin, with high levels of expression in the digestive system and gonads. It is proposed that AmphiCalbin might play a role in the digestive system and gonads. These observations lay the foundation for further understanding of the function of the unnamed EFCaBPs.

  2. Coat protein promoter from cotton leaf curl virus is not a tissue-specifically expressed promoter

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Geminivirus is a kind of single-stranded DNA virus. Experimental results from tomato golden mosaic virus (TGMV) showed that expression pattern of coat protein gene (cp) promoter was phloem specifically expressed. In this note, the studies on cp promoter of cotton leaf curl virus (CLCuV) which is found and identified recently suggest that the promoter is not phloem specifically expressed. The expressing activity of gus gene driven by the promoter exists not only in phloem but also in mesophyll tissues and root tip meristem. Transient expression suggests that cp promoter transactivated by AC2 shows expressing activity in mesophyll and vascular tissue of leaf vein.

  3. Reversal of DNA methylation with 5-azacytidine alters chromosome replication patterns in human lymphocyte and fibroblast cultures.

    OpenAIRE

    Shafer, D A; Priest, J H

    1984-01-01

    Prior studies demonstrated that developmental or induced methylation of DNA can inactivate associated gene loci. Such DNA methylation can be reversed and specific genes reactivated by treatment with 5-azacytidine (5- azaC ). The present cytogenetic studies using replication banding methods show that 5- azaC treatment also results in an increase or decrease in replication staining at one or more band locations in human lymphocyte and fibroblast chromosomes. New replication band locations are n...

  4. Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers.

    Science.gov (United States)

    Farley, Emma K; Olson, Katrina M; Zhang, Wei; Rokhsar, Daniel S; Levine, Michael S

    2016-06-01

    Transcriptional enhancers are short segments of DNA that switch genes on and off in response to a variety of intrinsic and extrinsic signals. Despite the discovery of the first enhancer more than 30 y ago, the relationship between primary DNA sequence and enhancer activity remains obscure. In particular, the importance of "syntax" (the order, orientation, and spacing of binding sites) is unclear. A high-throughput screen identified synthetic notochord enhancers that are activated by the combination of ZicL and ETS transcription factors in Ciona embryos. Manipulation of these enhancers elucidated a "regulatory code" of sequence and syntax features for notochord-specific expression. This code enabled in silico discovery of bona fide notochord enhancers, including those containing low-affinity binding sites that would be excluded by standard motif identification methods. One of the newly identified enhancers maps upstream of the known enhancer that regulates Brachyury (Ci-Bra), a key determinant of notochord specification. This newly identified Ci-Bra shadow enhancer contains binding sites with very low affinity, but optimal syntax, and therefore mediates surprisingly strong expression in the notochord. Weak binding sites are compensated by optimal syntax, whereas enhancers containing high-affinity binding affinities possess suboptimal syntax. We suggest this balance has obscured the importance of regulatory syntax, as noncanonical binding motifs are typically disregarded by enhancer detection methods. As a result, enhancers with low binding affinities but optimal syntax may be a vastly underappreciated feature of the regulatory genome.

  5. Comparative analysis of human tissue interactomes reveals factors leading to tissue-specific manifestation of hereditary diseases.

    OpenAIRE

    Ruth Barshir; Omer Shwartz; Smoly, Ilan Y.; Esti Yeger-Lotem

    2014-01-01

    An open question in human genetics is what underlies the tissue-specific manifestation of hereditary diseases, which are caused by genomic aberrations that are present in cells across the human body. Here we analyzed this phenomenon for over 300 hereditary diseases by using comparative network analysis. We created an extensive resource of protein expression and interactions in 16 main human tissues, by integrating recent data of gene and protein expression across tissues with data of protein-...

  6. Comparative Analysis of Human Tissue Interactomes Reveals Factors Leading to Tissue-Specific Manifestation of Hereditary Diseases

    OpenAIRE

    Barshir, Ruth; Shwartz, Omer; Smoly, Ilan Y.; Yeger-Lotem, Esti

    2014-01-01

    An open question in human genetics is what underlies the tissue-specific manifestation of hereditary diseases, which are caused by genomic aberrations that are present in cells across the human body. Here we analyzed this phenomenon for over 300 hereditary diseases by using comparative network analysis. We created an extensive resource of protein expression and interactions in 16 main human tissues, by integrating recent data of gene and protein expression across tissues with data of protein-...

  7. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues.

    OpenAIRE

    Croop, J M; Raymond, M; Haber, D; Devault, A; Arceci, R. J.; Gros, P.; Housman, D.E.

    1989-01-01

    The gene responsible for multidrug resistance (mdr), which encodes the P-glycoprotein, is a member of a multigene family. We have identified distinct mdr gene transcripts encoded by three separate mdr genes in the mouse. Expression levels of each mdr gene are dramatically different in various mouse tissues. Specific mdr RNA transcripts of approximately 4.5, 5, and 6 kilobases have been detected. Each of the mdr genes has a specific RNA transcript pattern. These results should be considered in...

  8. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations

    Energy Technology Data Exchange (ETDEWEB)

    Parisot, Florian [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, St Paul-lez-Durance 13115 (France); Bourdineaud, Jean-Paul [UMR 5805 EPOC – OASU, Station marine d’Arcachon, Université Bordeaux 1, Arcachon 33120 (France); Plaire, Delphine; Adam-Guillermin, Christelle [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, St Paul-lez-Durance 13115 (France); Alonzo, Frédéric, E-mail: frederic.alonzo@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, St Paul-lez-Durance 13115 (France)

    2015-06-15

    Highlights: • We exposed three successive generations of Daphnia magna to chronic gamma radiation. • We examined DNA alterations and effects on survival, growth and reproduction. • DNA alterations were accumulated over a generation and transmitted to the progeny. • Effects on survival and reproduction, and delay in growth increased over generations. - Abstract: This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h{sup −1}). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h{sup −1} increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h{sup −1} in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h{sup −1} in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h{sup −1} in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h{sup −1} in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h{sup −1} at hatching to 0.007 mGy h{sup −1} after ∼21 days) and from F0 to F2 (0.070 mGy h{sup −1} at hatching to 0.007 mGy h{sup −1} after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h{sup −1} and DNA alterations significant at highest

  9. α-Phellandrene alters expression of genes associated with DNA damage, cell cycle, and apoptosis in murine leukemia WEHI-3 cells.

    Science.gov (United States)

    Lin, Jen-Jyh; Yu, Chien-Chih; Lu, Kung-Wen; Chang, Shu-Jen; Yu, Fu-Shun; Liao, Ching-Lung; Lin, Jaung-Geng; Chung, Jing-Gung

    2014-08-01

    α-phellandrene (α-PA) is a cyclic monoterpene, present in natural plants such as Schinus molle L. α-PA promotes immune responses in mice in vivo. However, there is no available information on whether α-PA affects gene expression in leukemia cells. The present study determined effects of α-PA on expression levels of genes associated with DNA damage, cell cycle and apoptotic cell death in mouse leukemia WEHI-3 cells. WEHI-3 cells were treated with 10 μM α-PA for 24 h, cells were harvested and total RNA was extracted, and gene expression was analyzed by cDNA microarray. Results indicated that α-PA up-regulated 10 genes 4-fold, 13 by over 3-fold and 175 by over 2-fold; 21 genes were down-regulated by over 4-fold, 26 genes by over 3-fold and expression of 204 genes was altered by at leas 2-fold compared with the untreated control cells. DNA damage-associated genes such as DNA damage-inducer transcript 4 and DNA fragmentation factor were up-regulated by 4-fold and over 2-fold, respectively; cell-cycle check point genes such as cyclin G2 and cyclin-dependent kinases inhibitor 2D and IA (p21) were up-regulated by over 3-fold and over 2-fold, respectively; apoptosis-associated genes such as BCL2/adenovirus EIB interacting protein 3, XIAP-associated factor 1, BCL2 modifying factor, caspase-8 and FADD-like apoptosis regulator were over 2-fold up-regulated. Furthermore, DNA damage-associated gene TATA box binding protein was over 4-fold down-regulated, and D19Ertd652c (DNA segment) over 2-fold down-regulated; cell cycle-associated gene cyclin E2 was over 2-fold down-regulated; apoptosis associated gene growth arrest-specific 5 was over 9-fold down-regulated, Gm5426 (ATP synthase) was over 3-fold down-regulated, and death box polypeptide 33 was over 2-fold down-regulated. Based on these observations, α-PA altered gene expression in WEHI-3 cells in vitro. PMID:25075043

  10. Genome-wide DNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and large-scale epigenomic alterations localized to telomeric regions.

    Science.gov (United States)

    Buckley, Patrick G; Das, Sudipto; Bryan, Kenneth; Watters, Karen M; Alcock, Leah; Koster, Jan; Versteeg, Rogier; Stallings, Raymond L

    2011-05-15

    The downregulation of specific genes through DNA hypermethylation is a major hallmark of cancer, although the extent and genomic distribution of hypermethylation occurring within cancer genomes is poorly understood. We report on the first genome-wide analysis of DNA methylation alterations in different neuroblastic tumor subtypes and cell lines, revealing higher order organization and clinically relevant alterations of the epigenome. The methylation status of 33,485 discrete loci representing all annotated CpG islands and RefSeq gene promoters was assessed in primary neuroblastic tumors and cell lines. A comparison of genes that were hypermethylated exclusively in the clinically favorable ganglioneuroma/ganglioneuroblastoma tumors revealed that nine genes were associated with poor clinical outcome when overexpressed in the unfavorable neuroblastoma (NB) tumors. Moreover, an integrated DNA methylation and copy number analysis identified 80 genes that were recurrently concomitantly deleted and hypermethylated in NB, with 37 reactivated by 5-aza-deoxycytidine. Lower expression of four of these genes was correlated with poor clinical outcome, further implicating their inactivation in aggressive disease pathogenesis. Analysis of genome-wide hypermethylation patterns revealed 70 recurrent large-scale blocks of contiguously hypermethylated promoters/CpG islands, up to 590 kb in length, with a distribution bias toward telomeric regions. Genome-wide hypermethylation events in neuroblastic tumors are extensive and frequently occur in large-scale blocks with a significant bias toward telomeric regions, indicating that some methylation alterations have occurred in a coordinated manner. Our results indicate that methylation contributes toward the clinicopathological features of neuroblastic tumors, revealing numerous genes associated with poor patient survival in NB.

  11. Random DNA fragmentation allows detection of single-copy, single-exon alterations of copy number by oligonucleotide array CGH in clinical FFPE samples.

    Science.gov (United States)

    Hostetter, Galen; Kim, Su Young; Savage, Stephanie; Gooden, Gerald C; Barrett, Michael; Zhang, Jian; Alla, Lalitamba; Watanabe, April; Einspahr, Janine; Prasad, Anil; Nickoloff, Brian J; Carpten, John; Trent, Jeffrey; Alberts, David; Bittner, Michael

    2010-01-01

    Genomic technologies, such as array comparative genomic hybridization (aCGH), increasingly offer definitive gene dosage profiles in clinical samples. Historically, copy number profiling was limited to large fresh-frozen tumors where intact DNA could be readily extracted. Genomic analyses of pre-neoplastic tumors and diagnostic biopsies are often limited to DNA processed by formalin-fixation and paraffin-embedding (FFPE). We present specialized protocols for DNA extraction and processing from FFPE tissues utilizing DNase processing to generate randomly fragmented DNA. The protocols are applied to FFPE clinical samples of varied tumor types, from multiple institutions and of varied block age. Direct comparative analyses with regression coefficient were calculated on split-sample (portion fresh/portion FFPE) of colorectal tumor samples. We show equal detection of a homozygous loss of SMAD4 at the exon-level in the SW480 cell line and gene-specific alterations in the split tumor samples. aCGH application to a set of archival FFPE samples of skin squamous cell carcinomas detected a novel hemizygous deletion in INPP5A on 10q26.3. Finally we present data on derivative of log ratio, a particular sensitive detector of measurement variance, for 216 sequential hybridizations to assess protocol reliability over a wide range of FFPE samples.

  12. Specific expression of bioluminescence reporter gene in cardiomyocyte regulated by tissue specific promoter

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vu Hong; Tae, Seong Ho; Le, Nguyen Uyen Chi; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    As the human heart is not capable of regenerating the great numbers of cardiac cells that are lost after myocardial infarction, impaired cardiac function is the inevitable result of ischemic disease. Recently, human embryonic stem cells (hESCs) have gained popularity as a potentially ideal cell candidate for tissue regeneration. In particular, hESCs are capable of cardiac lineage-specific differentiation and confer improvement of cardiac function following transplantation into animal models. Although such data are encouraging, the specific strategy for in vivo and non-invasive detection of differentiated cardiac lineage is still limited. Therefore, in the present study, we established the gene construction in which the optical reporter gene Firefly luciferase was controlled by Myosin Heavy Chain promoter for specific expressing in heart cells. The vector consisting of - MHC promoter and a firefly luciferase coding sequence flanked by full-length bovine growth hormone (BGH) 3'-polyadenylation sequence based on pcDNA3.1- vector backbone. To test the specific transcription of this promoter in g of MHC-Fluc or CMV-Flue (for control) plasmid DNA in myocardial tissue, 20 phosphate-buffered saline was directly injected into mouse myocardium through a midline sternotomy and liver. After 1 week of injection, MHC-Fluc expression was detected from heart region which was observed under cooled CCD camera of in vivo imaging system but not from liver. In control group injected with CMV-Flue, the bioluminescence was detected from all these organs. The expression of Flue under control of Myosin Heavy Chain promoter may become a suitable optical reporter gene for stem cell-derived cardiac lineage differentiation study.

  13. Specific expression of bioluminescence reporter gene in cardiomyocyte regulated by tissue specific promoter

    International Nuclear Information System (INIS)

    As the human heart is not capable of regenerating the great numbers of cardiac cells that are lost after myocardial infarction, impaired cardiac function is the inevitable result of ischemic disease. Recently, human embryonic stem cells (hESCs) have gained popularity as a potentially ideal cell candidate for tissue regeneration. In particular, hESCs are capable of cardiac lineage-specific differentiation and confer improvement of cardiac function following transplantation into animal models. Although such data are encouraging, the specific strategy for in vivo and non-invasive detection of differentiated cardiac lineage is still limited. Therefore, in the present study, we established the gene construction in which the optical reporter gene Firefly luciferase was controlled by Myosin Heavy Chain promoter for specific expressing in heart cells. The vector consisting of - MHC promoter and a firefly luciferase coding sequence flanked by full-length bovine growth hormone (BGH) 3'-polyadenylation sequence based on pcDNA3.1- vector backbone. To test the specific transcription of this promoter in g of MHC-Fluc or CMV-Flue (for control) plasmid DNA in myocardial tissue, 20 phosphate-buffered saline was directly injected into mouse myocardium through a midline sternotomy and liver. After 1 week of injection, MHC-Fluc expression was detected from heart region which was observed under cooled CCD camera of in vivo imaging system but not from liver. In control group injected with CMV-Flue, the bioluminescence was detected from all these organs. The expression of Flue under control of Myosin Heavy Chain promoter may become a suitable optical reporter gene for stem cell-derived cardiac lineage differentiation study

  14. Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells

    International Nuclear Information System (INIS)

    Increasing use of quantum dots (QDs) makes it necessary to evaluate their toxicological impacts on aquatic organisms, since their contamination of surface water is inevitable. This study compares the genotoxic effects of ionic Cd versus CdTe nanocrystals in zebrafish hepatocytes. After 24 h of CdSO4 or CdTe QD exposure, zebrafish liver (ZFL) cells showed a decreased number of viable cells, an accumulation of Cd, an increased formation of reactive oxygen species (ROS), and an induction of DNA strand breaks. Measured levels of stress defense and DNA repair genes were elevated in both cases. However, removal of bulky DNA adducts by nucleotide excision repair (NER) was inhibited with CdSO4 but not with CdTe QDs. The adverse effects caused by acute exposure of CdTe QDs might be mediated through differing mechanisms than those resulting from ionic cadmium toxicity, and studying the effects of metallic components may be not enough to explain QD toxicities in aquatic organisms. - Highlights: • Both CdSO4 and CdTe QDs lead to cell death and Cd accumulation. • Both CdSO4 and CdTe QDs induce cellular ROS generation and DNA strand breaks. • Both CdSO4 and CdTe QDs induce the expressions of stress defense and DNA repair genes. • NER repair capacity was inhibited with CdSO4 but not with CdTe QDs

  15. Cadmium sulfate and CdTe-quantum dots alter DNA repair in zebrafish (Danio rerio) liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Song; Cai, Qingsong [The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416 (United States); Chibli, Hicham [Department of Biomedical Engineering, McGill University, Montréal, QC H3A 2B4 (Canada); Allagadda, Vinay [The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416 (United States); Nadeau, Jay L. [Department of Biomedical Engineering, McGill University, Montréal, QC H3A 2B4 (Canada); Mayer, Gregory D., E-mail: greg.mayer@ttu.edu [The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79416 (United States)

    2013-10-15

    Increasing use of quantum dots (QDs) makes it necessary to evaluate their toxicological impacts on aquatic organisms, since their contamination of surface water is inevitable. This study compares the genotoxic effects of ionic Cd versus CdTe nanocrystals in zebrafish hepatocytes. After 24 h of CdSO{sub 4} or CdTe QD exposure, zebrafish liver (ZFL) cells showed a decreased number of viable cells, an accumulation of Cd, an increased formation of reactive oxygen species (ROS), and an induction of DNA strand breaks. Measured levels of stress defense and DNA repair genes were elevated in both cases. However, removal of bulky DNA adducts by nucleotide excision repair (NER) was inhibited with CdSO{sub 4} but not with CdTe QDs. The adverse effects caused by acute exposure of CdTe QDs might be mediated through differing mechanisms than those resulting from ionic cadmium toxicity, and studying the effects of metallic components may be not enough to explain QD toxicities in aquatic organisms. - Highlights: • Both CdSO{sub 4} and CdTe QDs lead to cell death and Cd accumulation. • Both CdSO{sub 4} and CdTe QDs induce cellular ROS generation and DNA strand breaks. • Both CdSO{sub 4} and CdTe QDs induce the expressions of stress defense and DNA repair genes. • NER repair capacity was inhibited with CdSO{sub 4} but not with CdTe QDs.

  16. DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations.

    Science.gov (United States)

    Parisot, Florian; Bourdineaud, Jean-Paul; Plaire, Delphine; Adam-Guillermin, Christelle; Alonzo, Frédéric

    2015-06-01

    This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h(-1)). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h(-1) increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h(-1) in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h(-1) in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h(-1) in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h(-1) in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h(-1) at hatching to 0.007 mGy h(-1) after ∼21 days) and from F0 to F2 (0.070 mGy h(-1) at hatching to 0.007 mGy h(-1) after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h(-1) and DNA alterations significant at highest dose rates only. The study improved our understanding of long term responses to low doses of radiation at the molecular and organismic levels in a non-human species for a better radioprotection of aquatic ecosystems. PMID:25840277

  17. Post-factum detection of radiation treatment of meat and fish by means of DNA alterations identified by gas chromatography-mass spectrometry or pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    The doctoral thesis explains methods and experiments for post-factum detection of radiation-induced alterations of DNA. There are various manifestations of such alterations. Ionizing radiation can directly alter the bases and/or sugar component, or can indirectly induce DNA damage by way of forming water radicals. Both mechanisms result in base derivatives, released for some part from the DNA strand, or formed by alterations of the 2-deoxyribose, inducing strand breaks ( single and double strand breaks). The first part of the thesis explains the approach applying GC-MS for detection of radiation-induced base derivatives, using herring sperm DNA as a model DNA. Some typical types of base derivatives were identified (thymine glycol, 5-hydroxycytosine).Some base derivatives were also found in DNA samples derived from poultry meat. These base derivatives are known to be indicators of food processing with ionizing radiation, but surprisingly were also found in non-irradiated controls, although in minor amounts. The second part discusses the identification of strand breaks applying the pused-field gel electrophoresis. This method is capable of producing evidence that irradiation markedly enhances the short-chain DNA molecules as compared to non-irradiated controls. DNA molecules of a size of approx. 2.2 million base pairs are almost completely broken into short-chain fragments. The method reliably detects radiation treatments down to 1500 Gy, even if applied long ago. (orig./MG)

  18. Altered mitochondrial DNA copy number contributes to human cancer risk: evidence from an updated meta-analysis

    Science.gov (United States)

    Hu, Liwen; Yao, Xinyue; Shen, Yi

    2016-01-01

    Accumulating epidemiological evidence indicates that the quantitative changes in human mitochondrial DNA (mtDNA) copy number could affect the genetic susceptibility of malignancies in a tumor-specific manner, but the results are still elusive. To provide a more precise estimation on the association between mtDNA copy number and risk of diverse malignancies, a meta-analysis was conducted by calculating the pooled odds ratios (OR) and the 95% confidence intervals (95% CI). A total of 36 case-control studies involving 11,847 cases and 15,438 controls were finally included in the meta-analysis. Overall analysis of all studies suggested no significant association between mtDNA content and cancer risk (OR = 1.044, 95% CI = 0.866–1.260, P = 0.651). Subgroup analyses by cancer types showed an obvious positive association between mtDNA content and lymphoma and breast cancer (OR = 1.645, 95% CI = 1.117–2.421, P = 0.012; OR = 1.721, 95% CI = 1.130–2.622, P = 0.011, respectively), and a negative association for hepatic carcinoma. Stratified analyses by other confounding factors also found increased cancer risk in people with drinking addiction. Further analysis using studies of quartiles found that populations with the highest mtDNA content may be under more obvious risk of melanoma and that Western populations were more susceptible than Asians. PMID:27775013

  19. Trans-generational study of DNA alterations and their consequences on life history traits and energy budget of Daphnia magna exposed to depleted uranium

    International Nuclear Information System (INIS)

    Understanding how toxicants affect species at various levels of biological organization is a major research goal in both ecotoxicology and radioecology. As part of IRSN program ENVIRHOM, which aims to assess environmental risks related to the presence of radionuclides in the environment, this PhD work explored how depleted uranium alters DNA and affects life history traits (survival, growth and reproduction) of an aquatic invertebrate, Daphnia magna. To answer to this problematic, an experimental approach and a modeling approach are conducted. An experimental study is performed to evaluate DNA accumulation and transmission during an uranium exposure (0; 2; 9.9; 22.2 and 50 μg.L-1) over two successive generations (F0 and F1). Different exposures scenarios (continuous, post-hatching and embryo exposure) are achieved to test the specific sensitivity of several life stages to uranium. Genotoxic effects are estimated using random amplified DNA technique combined with PCR (PCR-RAPD). In continuous and post-hatching exposure scenarios, results highlighted an accumulation and a transmission of DNA damage across generations with an increase in effect severity. DNA alterations are reported at hatching of the F1 generation at a concentration as low as 2 μg.L-1. Effects on growth and reproduction are stronger when the embryo stage is exposed and remain visible at 9.9 μg.L-1 despite a return in a clean medium at hatching. Results suggest that DNA damage could be used as early indicators of future effects on life history traits. A mechanistic analysis of experimental results is conducted using a DEBtox model (dynamic energy budget applied to toxicology) to better understand the causes of the increase in effect severity across generations. A model with two stress factors (one correlated to external concentration and another correlated to a damage level) is developed. Results of fits suggest the involvement of one second mode of action to explain immediate effects of uranium on

  20. Cloning and Characterization of Porcine TSARG7 Gene and Analysis of Its Tissue-Specific Expression

    Institute of Scientific and Technical Information of China (English)

    LI Mei-li; LI Gui-qiang; FANG Wei; WANG Wei; SONG Xiao-guang; LI Er-lin; JIA Chao; XU Yin-xue

    2009-01-01

    TSARG7 is a novel member of the acyltransferase family since its sequence possesses the highly conserved phosphate acyltransferase (PIsC) domain existing in all acyltransferase-like proteins. The porcine TSARG7 had been identified by cloning in silico but had not been confirmed experimentally. The full-length mRNA of porcine TSARG7 gene was sequenced and two splice variants were discovered. The full-length cDNA of TSARG7 variant 1 was 2 513 bp and variant 2 was 2 634 bp. The putative porcine TSARG7 proteins, which were located in the cytoplasm, encoded 458 and 456 amino acids, respectively. Real-time PCR analysis showed that TSARG7 gene was expressed in various tissues, but at different levels. The expression levels of this gene were higher in the skeletal muscle, heart, and testis than that in other tissues, suggesting that the TSARG7 gene played a role in procine skeletal muscle, heart, and testis functions.

  1. Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Lengauer Thomas

    2007-02-01

    Full Text Available Abstract Background Alterations of chromosome 8 and hypomethylation of LINE-1 retrotransposons are common alterations in advanced prostate carcinoma. In a former study including many metastatic cases, they strongly correlated with each other. To elucidate a possible interaction between the two alterations, we investigated their relationship in less advanced prostate cancers. Results In 50 primary tumor tissues, no correlation was observed between chromosome 8 alterations determined by comparative genomic hybridization and LINE-1 hypomethylation measured by Southern blot hybridization. The discrepancy towards the former study, which had been dominated by advanced stage cases, suggests that both alterations converge and interact during prostate cancer progression. Therefore, interaction analysis was performed on microarray-based expression profiles of cancers harboring both alterations, only one, or none. Application of a novel bioinformatic method identified Gene Ontology (GO groups related to innate immunity, cytoskeletal organization and cell adhesion as common targets of both alterations. Many genes targeted by their interaction were involved in type I and II interferon signaling and several were functionally related to hereditary prostate cancer genes. In addition, the interaction appeared to influence a switch in the expression pattern of EPB41L genes encoding 4.1 cytoskeleton proteins. Real-time RT-PCR revealed GADD45A, MX1, EPB41L3/DAL1, and FBLN1 as generally downregulated in prostate cancer, whereas HOXB13 and EPB41L4B were upregulated. TLR3 was downregulated in a subset of the cases and associated with recurrence. Downregulation of EPB41L3, but not of GADD45A, was associated with promoter hypermethylation, which was detected in 79% of carcinoma samples. Conclusion Alterations of chromosome 8 and DNA hypomethylation in prostate cancer probably do not cause each other, but converge during progression. The present analysis implicates their

  2. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation

    Directory of Open Access Journals (Sweden)

    Patil NA

    2016-09-01

    epigenetic alteration in response to metal oxide NPs and that this effect was dose-dependent. Keywords: nanotoxicity, epigenetics, global DNA methylation, 5-mC, DNA methyltransferase, Dnmt

  3. Impact of DNA mismatch repair system alterations on human fertility and related treatments%DNA 错配修复系统的改变对人类生育能力及相关治疗的影响

    Institute of Scientific and Technical Information of China (English)

    Min-hao HU; Shu-yuan LIU; Ning WANG; Yan WU; Fan JIN‡

    2016-01-01

    概简要概括 DNA损伤修复系统在人体中的作用和机制,并探讨其改变与人类生殖能力以及通过辅助生殖技术诞生的子代之间的相互影响。希望更多相关工作的进行能够为人类不孕症的预防、诊断和治疗工作建立一个更好的医疗体系。%DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA home-ostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cel cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between altera-tions of the MMR system and human fertility and related treatments, and potential effects on the next generation.

  4. MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman; Gao, Shan; Hulf, Toby;

    2011-01-01

    MicroRNA (miRNA) expression is broadly altered in cancer, but few studies have investigated miRNA deregulation in oral squamous cell carcinoma (OSCC). Epigenetic mechanisms are involved in the regulation of >30 miRNA genes in a range of tissues, and we aimed to investigate this further in OSCC....

  5. Inhibition of fried meat-induced rectal DNA damage and altered systemic genotoxicity in humans by crucifera, chlorophyllin, and yogurt

    Science.gov (United States)

    Dietary exposures implicated as reducing or causing risk for colorectal cancer may reduce or cause DNA damage in colon tissue; however, no one has assessed this hypothesis directly in humans. Thus, we enrolled 16 healthy volunteers in a 4-week controlled feeding study where 8 sub...

  6. MSH1 is a plant organellar DNA binding and thylakoid protein under precise spatial regulation to alter development

    Science.gov (United States)

    As metabolic centers, plant organelles participate in maintenance, defense and signaling. MSH1 is a plant-specific protein involved in organellar genome stability in mitochondria and plastids. Plastid depletion of MSH1 causes heritable, non-genetic changes in development and DNA methylation. We inve...

  7. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling.

    Directory of Open Access Journals (Sweden)

    Erhong Meng

    Full Text Available OBJECTIVE: Aldehyde dehydrogenase (ALDH expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. METHODS: Isogenic ovarian cancer cell lines for platinum sensitivity (A2780 and platinum resistant (A2780/CP70 as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. RESULTS: ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01. ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ and replication checkpoint (pS317 Chk1 were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. CONCLUSION: This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling.

  8. Lipodystrophy Due to Adipose Tissue-Specific Insulin Receptor Knockout Results in Progressive NAFLD.

    Science.gov (United States)

    Softic, Samir; Boucher, Jeremie; Solheim, Marie H; Fujisaka, Shiho; Haering, Max-Felix; Homan, Erica P; Winnay, Jonathon; Perez-Atayde, Antonio R; Kahn, C Ronald

    2016-08-01

    Ectopic lipid accumulation in the liver is an almost universal feature of human and rodent models of generalized lipodystrophy and is also a common feature of type 2 diabetes, obesity, and metabolic syndrome. Here we explore the progression of fatty liver disease using a mouse model of lipodystrophy created by a fat-specific knockout of the insulin receptor (F-IRKO) or both IR and insulin-like growth factor 1 receptor (F-IR/IGFRKO). These mice develop severe lipodystrophy, diabetes, hyperlipidemia, and fatty liver disease within the first weeks of life. By 12 weeks of age, liver demonstrated increased reactive oxygen species, lipid peroxidation, histological evidence of balloon degeneration, and elevated serum alanine aminotransferase and aspartate aminotransferase levels. In these lipodystrophic mice, stored liver lipids can be used for energy production, as indicated by a marked decrease in liver weight with fasting and increased liver fibroblast growth factor 21 expression and intact ketogenesis. By 52 weeks of age, liver accounted for 25% of body weight and showed continued balloon degeneration in addition to inflammation, fibrosis, and highly dysplastic liver nodules. Progression of liver disease was associated with improvement in blood glucose levels, with evidence of altered expression of gluconeogenic and glycolytic enzymes. However, these mice were able to mobilize stored glycogen in response to glucagon. Feeding F-IRKO and F-IR/IGFRKO mice a high-fat diet for 12 weeks accelerated the liver injury and normalization of blood glucose levels. Thus, severe fatty liver disease develops early in lipodystrophic mice and progresses to advanced nonalcoholic steatohepatitis with highly dysplastic liver nodules. The liver injury is propagated by lipotoxicity and is associated with improved blood glucose levels. PMID:27207510

  9. A conserved tissue-specific homeodomain-less isoform of MEIS1 is downregulated in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Richard C Crist

    Full Text Available Colorectal cancer is one of the most common cancers in developed nations and is the result of both environmental and genetic factors. Many of the genetic lesions observed in colorectal cancer alter expression of homeobox genes, which encode homeodomain transcription factors. The MEIS1 homeobox gene is known to be involved in several hematological malignancies and solid tumors and recent evidence suggests that expression of the MEIS1 transcript is altered in colorectal cancer. Despite this potential connection, little is known about the role of the gene in the intestines. We probed murine gastrointestinal tissue samples with an N-terminal Meis1 antibody, revealing expression of two previously described isoforms, as well as two novel Meis1 products. A 32 kD Meis1 product was expressed in the nuclei of non-epithelial cells in the stomach and colon, while a 27 kD product was expressed in the cytoplasm of epithelial cells in the proximal colon. Our data suggest that the 27 kD and 32 kD Meis1 proteins are both forms of the Meis1d protein, a homeodomain-less isoform whose transcript was previously identified in cDNA screens. Both the MEIS1D transcript and protein were expressed in human colon mucosa. Expression of the MEIS1D protein was downregulated in 83% (10/12 of primary colorectal cancer samples compared to matched normal mucosa, indicating that MEIS1D is a biomarker of colorectal tumorigenesis. The decreased expression of MEIS1D in colon tumors also suggests that this conserved homeodomain-less isoform may act as a tumor suppressor in human colorectal cancer.

  10. Use of mouse models to understand the molecular basis of tissue-specific tumorigenesis in the Carney complex.

    Science.gov (United States)

    Kirschner, L S

    2009-07-01

    Carney complex (CNC) is an autosomal dominant, multiple endocrine neoplasia syndrome comprised of spotty skin pigmentation, myxomatosis, endocrine tumours and schwannomas. The majority of cases are due to inactivating mutations in PRKAR1A, the gene encoding the type 1A regulatory subunit of the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase, PKA (protein kinase A). In order to understand the molecular basis for tumorigenesis associated with PRKAR1A mutations, we have developed conventional and conditional Prkar1a knockout (KO) mice as well as primary cell culture models corresponding to these genetic manipulations. At the biochemical level, removal of Prkar1a from cells causes enhanced PKA activity, the same effect which has been observed in tumours isolated from CNC patients. Mice heterozygous for Prkar1a mutations (the exact genetic model for CNC patients) are born at expected frequencies and are tumour prone, developing neoplasms in cAMP-responsive cell types such as Schwann cells, osteoblasts and thyrocytes. In order to understand the basis of tissue-specific tumour formation, we have created tissue-specific KOs of the gene from three different tissues: the neural crest (Schwann cells), the pituitary gland and the heart. In the neural crest and the pituitary, ablation of Prkar1a leads to excess proliferation and tumorigenesis, whereas the same manipulation in developing cardiomyocytes leads to reduced proliferation and embryonic demise. The KO hearts also exhibit myxomatous changes suggesting a connection between PKA activation and myxomagenesis, although the nature of this relationship has not yet been determined. This work confirms the role of Prkar1a as a tissue-specific tumour suppressor, and ongoing work is focused on identifying the key downstream signalling targets affected by dysregulation of PKA. PMID:19522826

  11. High-fat diet leads to tissue-specific changes reflecting risk factors for diseases in DBA/2J mice.

    Science.gov (United States)

    Hageman, Rachael S; Wagener, Asja; Hantschel, Claudia; Svenson, Karen L; Churchill, Gary A; Brockmann, Gudrun A

    2010-06-01

    The aim of this study was to characterize the responses of individual tissues to high-fat feeding as a function of mass, fat composition, and transcript abundance. We examined a panel of eight tissues [5 white adipose tissues (WAT), brown adipose tissue (BAT), liver, muscle] obtained from DBA/2J mice on either a standard breeding diet (SBD) or a high-fat diet (HFD). HFD led to weight gain, decreased insulin sensitivity, and tissue-specific responses, including inflammation, in these mice. The dietary fatty acids were partially metabolized and converted in both liver and fat tissues. Saturated fatty acids (SFA) were converted in the liver to monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and oleic acid (C18:1) was the preferred MUFA for storage of excess energy in all tissues of HFD-fed mice. Transcriptional changes largely reflected the tissue-specific fat deposition. SFA were negatively correlated with genes in the collagen family and processes involving the extracellular matrix. We propose a novel role of the tryptophan hydroxylase 2 (Tph2) gene in adipose tissues of diet-induced obesity. Tissue-specific responses to HFD were identified. Liver steatosis was evident in HFD-fed mice. Gonadal, retroperitoneal and subcutaneous adipose tissue and BAT exhibited severe inflammatory and immune responses. Mesenteric adipose tissue was the most metabolically active adipose tissue. Gluteal adipose tissue had the highest mass gain but was sluggish in its metabolism. In HFD conditions, BAT functioned largely like WAT in its role as a depot for excess energy, whereas WAT played a role in thermogenesis.

  12. Curcumin alters gene expression-associated DNA damage, cell cycle, cell survival and cell migration and invasion in NCI-H460 human lung cancer cells in vitro.

    Science.gov (United States)

    Chiang, I-Tsang; Wang, Wei-Shu; Liu, Hsin-Chung; Yang, Su-Tso; Tang, Nou-Ying; Chung, Jing-Gung

    2015-10-01

    Lung cancer is the most common cause of cancer mortality and new cases are on the increase worldwide. However, the treatment of lung cancer remains unsatisfactory. Curcumin has been shown to induce cell death in many human cancer cells, including human lung cancer cells. However, the effects of curcumin on genetic mechanisms associated with these actions remain unclear. Curcumin (2 µM) was added to NCI-H460 human lung cancer cells and the cells were incubated for 24 h. Total RNA was extracted from isolated cells for cDNA synthesis, labeling, microarray hybridization and flour‑labeled cDNA hybridized on chip. Localized concentrations of fluorescent molecules were detected and quantified using Expression Console software (Affymetrix) with default RMA parameters. GeneGo software was used for the key genes involved and their possible interaction pathways. The results showed that ~170 genes were significantly upregulated and 577 genes were significantly downregulated in curcumin‑treated cells. Specifically, the up‑ and downregulated genes included CCNE2, associated with DNA damage; ID3, associated with cell survival and 146 genes with a >2- to 3-fold change including the TP53INP1 gene, associated with DNA damage; CDC6, CDCA5, TAKMIP2, CDK14, CDK5, CDCA76, CDC25A, CDC5L and SKP2, associated with cell cycle; the CARD6, ID1 and ID2 genes, associated with cell survival and the BRMS1L, associated with cell migration and invasion. Additionally, 59 downregulated genes exhibited a >4-fold change, including the DDIT3 gene, associated with DNA damage; while 97 genes had a >3- to 4-fold change including the DDIT4 gene, associated with DNA damage; the CCPG1 gene, associated with cell cycle and 321 genes with a >2- to 3-fold including the GADD45A and CGREF1 genes, associated with DNA damage; the CCPG1 gene, associated with cell cycle, the TNFRSF10B, GAS5, TSSC1 and TNFRSF11B gene, associated with cell survival and the ARHAP29 and CADM2 genes, associated with cell migration

  13. Altered expression of mitochondrial related genes in the native Tibetan placents by mitochondrial cDNA array analysis

    Institute of Scientific and Technical Information of China (English)

    Luo Yongjun; Gao Wenxiang; Zhao Xiuxin; Suo Lang; Chen Li; Liu Fuyu; Song Tonglin; Chen Jian; Gao Yuqi

    2009-01-01

    Objective: To explore the mechanism of native Tibetan fetuses adaptation to hypoxia, we tried to find the different expression genes about mitochondrial function in the native Tibetan placents. Methods: In this study, the placents of native Tibetan and the high-altitude Han (ha-Han) were collected. After the total RNA extraction, the finally synthesized cDNAs were hybridized to mitochondrial array to find the altered expression genes between them. Then, the cytochrome c oxidase 17 (Coxl7), dynactin 2 (DCTN2, also known as p50), and vascular endothelial growth factor receptor (VEGFR, also known as KDR) were chosen from the altered expression genes to further verify the array results using the SYBR Green real-time PCR. Because the altered expression genes (such as Cybb and Coxl 7) in the array results related to the activities of COXI and COXIV, the placental mitochondria activities of COXI and COXIV were measured to find their changes in the hypoxia. Results: By a standard of >1.5 or <0.67, there were 24 different expressed genes between the native Tibetan and the ha-Han placents, including 3 up-regulated genes and 21 down-regulated genes. These genes were related to energy metabolism, signal transduction, cell proliferation, electron transport, cell adhesion, nucleotide-excision repair. The array results of Coxl7, DCTN2 and KDR were further verified by the real-time RT-PCR. Through the mitochondria respiration measurements, the activity of COXI in the native Tibetan placents were higher than that of ha-Han, there was no difference in COXIV activity between them. Conclusion: The altered mitochondrial related genes in the native Tibetan placents may have a role in the high altitude adaptation for fetuses through changing the activity of mitochondrial COX.

  14. Therapy and progression – induced O6-methylguanine-DNA methyltransferase and mismatch repair alterations in recurrent glioblastoma multiforme

    OpenAIRE

    Agarwal, S.; Suri, V.; M C Sharma; C. Sarkar

    2015-01-01

    Despite multimodality treatment protocol including surgical resection, radiotherapy, and chemotherapy in patients with glioblastoma multiforme (GBM), most suffer from treatment failure and tumor recurrence within a few months of initial surgery. The effectiveness of temozolomide (TMZ), the most commonly used chemotherapeutic agent, is largely dependent on the methylation status of the promoter of the gene O6-methylguanine-DNA methyltransferase (MGMT) and the integrity of the mismatch repair (...

  15. Ecstasy (MDMA) Alters Cardiac Gene Expression and DNA Methylation: Implications for Circadian Rhythm Dysfunction in the Heart.

    Science.gov (United States)

    Koczor, Christopher A; Ludlow, Ivan; Hight, Robert S; Jiao, Zhe; Fields, Earl; Ludaway, Tomika; Russ, Rodney; Torres, Rebecca A; Lewis, William

    2015-11-01

    MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMA's acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy. MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10- or 35-day MDMA, or daily 10-day MDMA followed by 25-day saline washout (10 + 25 days). MDMA treatment caused differential gene expression (p 1.5) in 752 genes following 10 days, 558 genes following 35 days, and 113 genes following 10-day MDMA + 25-day saline washout. Changes in MAPK and circadian rhythm gene expression were identified as early as 10 days. After 35 days, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) persisted to be differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was found to be 71% at 10 days, 68% at 35 days, and 91% at 10 + 25 days washout. Differential gene expression paralleled DNA methylation in 22% of genes at 10-day treatment, 17% at 35 days, and 48% at 10 + 25 days washout. We show here that MDMA induced cardiac epigenetic changes in DNA methylation where hypermethylation predominated. Moreover, MDMA induced gene expression of key elements of circadian rhythm regulatory genes. This suggests a fundamental organism-level event to explain some of the etiologies of MDMA dysfunction in the heart.

  16. High-Resolution Analysis of Gene Copy Number Alterations in Human Prostate Cancer Using CGH on cDNA Microarrays: Impact of Copy Number on Gene Expression

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2004-05-01

    Full Text Available Identification of target genes for genetic rearrangements in prostate cancer and the impact of copy number changes on gene expression are currently not well understood. Here, we applied high-resolution comparative genomic hybridization (CGH on cDNA microarrays for analysis of prostate cancer cell lines. CGH microarrays identified most of the alterations detected by classical chromosomal CGH, as well as a number of previously unreported alterations. Specific recurrent regions of gain (28 and loss (18 were found, their boundaries defined with sub-megabasepair accuracy. The most common changes included copy number decreases at 13% and gains at iq and 5p. Refined mapping identified several sites, such as at 13q (33-44, 49-51, 74-76 Mbp from the p-telomere, which matched with minimal regions of loss seen in extensive loss of heterozygosity mapping studies of large numbers of tumors. Previously unreported recurrent changes were found at 2p, 2q, 3p, 17q (losses, at 3q, 5p, 6p (gains. Integration of genomic and transcriptomic data revealed the role of individual candidate target genes for genomic alterations as well as a highly significant (P < .0001 overall association between copy number levels and the percentage of differentially expressed genes. Across the genome, the overall impact of copy number on gene expression levels was, to a large extent, attributable to low-level gains and losses of copy number, corresponding to common deletions and gains of often large chromosomal regions.

  17. Novel Insights into the Role of Caveolin-2 in Cell- and Tissue-Specific Signaling and Function

    Directory of Open Access Journals (Sweden)

    Grzegorz Sowa

    2011-01-01

    Full Text Available Caveolin-2 is one of the major protein components of cholesterol- and glycosphingolipid-rich flask-shaped invaginations of plasma membrane caveolae. A new body of evidence suggests that caveolin-2 plays an important, and often more direct, role than caveolin-1 in regulating signaling and function in a cell- and tissue type-specific manner. The purpose of this paper is to primarily focus on discussing how these recent discoveries may help better understand the specific contribution of caveolin-2 to lipid raft- and caveolae-regulated cell/tissue-specific signaling and functions.

  18. Epigenetic Modifications of Distinct Sequences of the p1 Regulatory Gene Specify Tissue-Specific Expression Patterns in Maize

    OpenAIRE

    Sekhon, Rajandeep S.; Peterson, Thomas; Chopra, Surinder

    2007-01-01

    Tandemly repeated endogenous genes are common in plants, but their transcriptional regulation is not well characterized. In maize, the P1-wr allele of pericarp color1 is composed of multiple copies arranged in a head-to-tail fashion. P1-wr confers a white kernel pericarp and red cob glume pigment phenotype that is stably inherited over generations. To understand the molecular mechanisms that regulate tissue-specific expression of P1-wr, we have characterized P1-wr*, a spontaneous loss-of-func...

  19. Altered mitochondrial dynamics and response to insulin in cybrid cells harboring a diabetes-susceptible mitochondrial DNA haplogroup.

    Science.gov (United States)

    Kuo, Hsiao-Mei; Weng, Shao-Wen; Chang, Alice Y W; Huang, Hung-Tu; Lin, Hung-Yu; Chuang, Jiin-Haur; Lin, Tsu-Kung; Liou, Chia-Wei; Tai, Ming-Hong; Lin, Ching-Yi; Wang, Pei-Wen

    2016-07-01

    The advantage of using a cytoplasmic hybrid (cybrid) model to study the genetic effects of mitochondria is that the cells have the same nuclear genomic background. We previously demonstrated the independent role of mitochondria in the pathogenesis of insulin resistance (IR) and pro-inflammation in type 2 diabetes. In this study, we compared mitochondrial dynamics and related physiological functions between cybrid cells harboring diabetes-susceptible (B4) and diabetes-protective (D4) mitochondrial haplogroups, especially the responses before and after insulin stimulation. Cybrid B4 showed a more fragmented mitochondrial network, impaired mitochondrial biogenesis and bioenergetics, increased apoptosis and ineffective mitophagy and a low expression of fusion-related molecules. Upon insulin stimulation, increases in network formation, mitochondrial DNA (mtDNA) content, and ATP production were observed only in cybrid D4. Insulin promoted a pro-fusion dynamic status in both cybrids, but the trend was greater in cybrid D4. In cybrid B4, the imbalance of mitochondrial dynamics and impaired biogenesis and bioenergetics, and increased apoptosis were significantly improved in response to antioxidant treatment. We concluded that diabetes-susceptible mtDNA variants are themselves resistant to insulin. PMID:27107769

  20. Amelioration of radiation induced DNA damage and biochemical alterations by Punica Granatum (L) extracts and synthetic ellagic acid in Swiss albino mice

    International Nuclear Information System (INIS)

    Radiation therapy has been used in cancer treatment for many decades; Although effective in killing tumor cells, ROS produced in radiotherapy threaten the integrity and survival of surrounding normal cells. ROS are scavenged by radioprotectors before they can interact with biochemical molecules, thus reducing harmful effects of radiation. The pomegranate, Punica granatum L., an ancient, mystical, and highly distinctive fruit, is the predominant member of the Punicaceae family. It is used in several systems of medicine for a variety of ailments. The objective of the present study was to investigate the protective effects of ethanolic extracts of pomegranate whole fruit (EPWF) and seeds (EPS) and Synthetic Ellagic acid (EA) against Electron Beam Radiation (EBR) induced DNA damage and biochemical alterations in Swiss Albino mice. The extracts and synthetic compound were assessed for its radical scavenging property by DPPH radical scavenging and Ferric Reducing Antioxidant Power assays. The animals were treated with 200 mg/kg body wt. of pomegranate extracts and Ellagic acid for 15 days before exposure to 6 Gy of EBR. Radiation induced DNA damage was assessed by comet assay in the peripheral blood lymphocytes of mice. The biochemical estimations were carried out in the serum and RBC lysate of the animals. The plant extracts and synthetic compound exhibited good radical scavenging and reducing properties.The pretreated animals before irradiation caused a reduction in the comet length, olive tail moment, % DNA in tail when compared to irradiated group. The biochemical parameters such as lipid peroxidation was significantly depleted in the treated groups when compared to irradiated group followed by significant elevation in reduced glutathione. Our findings indicate the ameliorating effects of pomegranate extracts and synthetic ellagic acid on radiation induced DNA damage and biochemical changes in mice may be due to its free radical scavenging and increased antioxidant

  1. Opposing tissue-specific roles of angiotensin in the pathogenesis of obesity, and implications for obesity-related hypertension.

    Science.gov (United States)

    Littlejohn, Nicole K; Grobe, Justin L

    2015-12-15

    Metabolic disease, specifically obesity, has now become the greatest challenge to improving cardiovascular health. The renin-angiotensin system (RAS) exists as both a circulating hormone system and as a local paracrine signaling mechanism within various tissues including the brain, kidney, and adipose, and this system is strongly implicated in cardiovascular health and disease. Growing evidence also implicates the RAS in the control of energy balance, supporting the concept that the RAS may be mechanistically involved in the pathogenesis of obesity and obesity hypertension. Here, we review the involvement of the RAS in the entire spectrum of whole organism energy balance mechanisms, including behaviors (food ingestion and spontaneous physical activity) and biological processes (digestive efficiency and both aerobic and nonaerobic resting metabolic rates). We hypothesize that opposing, tissue-specific effects of the RAS to modulate these various components of energy balance can explain the apparently paradoxical results reported by energy-balance studies that involve stimulating, versus disrupting, the RAS. We propose a model in which such opposing and tissue-specific effects of the RAS can explain the failure of simple, global RAS blockade to result in weight loss in humans, and hypothesize that obesity-mediated uncoupling of endogenous metabolic rate control mechanisms can explain the phenomenon of obesity-related hypertension.

  2. Tissue-specific bioaccumulation and oxidative stress responses in juvenile Japanese flounder ( Paralichthys olivaceus) exposed to mercury

    Science.gov (United States)

    Huang, Wei; Cao, Liang; Ye, Zhenjiang; Lin, Longshan; Chen, Quanzhen; Dou, Shuozeng

    2012-07-01

    To understand mercury (Hg) toxicity in marine fish, we measured Hg accumulation in juvenile Japanese flounder ( Paralichthys olivaceus) and assessed the effects on growth and antioxidant responses. After Hg exposure (control, 5, 40, and 160 μg/L Hg) for 28 d, fish growth was significantly reduced. The accumulation of Hg in fish was dose-dependent and tissue-specific, with the maximum accumulation in kidney and liver, followed by gills, bone, and muscle. Different antioxidants responded differently to Hg exposure to cope with the induction of lipid peroxidation (LPO), which was also tissue-specific and dosedependent. As Hg concentration increased, superoxide dismutase (SOD) and catalase (CAT) activities increased significantly, whereas glutathione S -transferase (GST) activity and glutathione (GSH) levels decreased significantly in the gills. SOD and glutathione peroxidase (GPx) activities and the GSH level increased significantly in the liver. SOD activity and GSH levels increased significantly, but CAT activity decreased significantly with an increase in Hg concentration in the kidney. LPO was induced significantly by elevated Hg in the gills and kidney but was least affected in the liver. Therefore, oxidative stress biomarkers in gills were more sensitive than those in the liver and kidney to Hg exposure. Thus, the gills have potential as bioindicators for evaluating Hg toxicity in juvenile flounder.

  3. Tissue-specific expression of Arabidopsis NPR1 gene in rice for sheath blight resistance without compromising phenotypic cost.

    Science.gov (United States)

    Molla, Kutubuddin Ali; Karmakar, Subhasis; Chanda, Palas Kumar; Sarkar, Sailendra Nath; Datta, Swapan Kumar; Datta, Karabi

    2016-09-01

    Rice sheath blight disease, caused by the fungus Rhizoctonia solani, is considered the second most important disease of rice after blast. NPR1 (non expressor of PR1) is the central regulator of systemic acquired resistance (SAR) conferring broad spectrum resistance to various pathogens. Previous reports have indicated that constitutive expression of the Arabidopsis thaliana NPR1 (AtNPR1) gene results in disease resistance in rice but has a negative impact on growth and agronomic traits. Here, we report that green tissue-specific expression of AtNPR1 in rice confers resistance to the sheath blight pathogen, with no concomitant abnormalities in plant growth and yield parameters. Elevated levels of NPR1 activated the defence pathway in the transgenic plants by inducing expression of endogenous genes such as PR1b, RC24, and PR10A. Enhanced sheath blight resistance of the transgenic plants was evaluated using three different bioassay systems. A partially isolated toxin from R. solani was used in the bioassays to measure the resistance level. Studies of the phenotype and yield showed that the transgenic plants did not exhibit any kind of phenotypic imbalances. Our results demonstrate that green tissue-specific expression of AtNPR1 is an effective strategy for controlling the sheath blight pathogen. The present work in rice can be extended to other crop plants severely damaged by the pathogen. PMID:27457988

  4. Tissue Specificity and Sex-Specific Regulatory Variation Permit the Evolution of Sex-Biased Gene Expression.

    Science.gov (United States)

    Dean, Rebecca; Mank, Judith E

    2016-09-01

    Genetic correlations between males and females are often thought to constrain the evolution of sexual dimorphism. However, sexually dimorphic traits and the underlying sexually dimorphic gene expression patterns are often rapidly evolving. We explore this apparent paradox by measuring the genetic correlation in gene expression between males and females (Cmf) across broad evolutionary timescales, using two RNA-sequencing data sets spanning multiple populations and multiple species. We find that unbiased genes have higher Cmf than sex-biased genes, consistent with intersexual genetic correlations constraining the evolution of sexual dimorphism. However, we found that highly sex-biased genes (both male and female biased) also had higher tissue specificity, and unbiased genes had greater expression breadth, suggesting that pleiotropy may constrain the breakdown of intersexual genetic correlations. Finally, we show that genes with high Cmf showed some degree of sex-specific changes in gene expression in males and females. Together, our results suggest that genetic correlations between males and females may be less important in constraining the evolution of sex-biased gene expression than pleiotropy. Sex-specific regulatory variation and tissue specificity may resolve the paradox of widespread sex bias within a largely shared genome.

  5. Tissue-specific bioaccumulation and oxidative stress responses in juvenile Japanese flounder (Paralichthys olivaceus) exposed to mercury

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei; CAO Liang; YE Zhenjiang; LIN Longshan; CHEN Quanzhen; DOU Shuozeng

    2012-01-01

    To understand mercury (Hg) toxicity in marine fish,we measured Hg accumulation in juvenile Japanese flounder (Paralichthys olivaceus) and assessed the effects on growth and antioxidant responses.After Hg exposure (control,5,40,and 160 μg/L Hg) for 28 d,fish growth was significantly reduced.The accumulation of Hg in fish was dose-dependent and tissue-specific,with the maximum accumulation in kidney and liver,followed by gills,bone,and muscle.Different antioxidants responded differently to Hg exposure to cope with the induction of lipid peroxidation (LPO),which was also tissue-specific and dosedependent.As Hg concentration increased,superoxide dismutase (SOD) and catalase (CAT) activities increased significantly,whereas glutathione S-transferase (GST) activity and glutathione (GSH) levels decreased significantly in the gills.SOD and glutathione peroxidase (GPx) activities and the GSH level increased significantly in the liver.SOD activity and GSH levels increased significantly,but CAT activity decreased significantly with an increase in Hg concentration in the kidney.LPO was induced significantly by elevated Hg in the gills and kidney but was least affected in the liver.Therefore,oxidative stress biomarkers in gills were more sensitive than those in the liver and kidney to Hg exposure.Thus,the gills have potential as bioindicators for evaluating Hg toxicity in juvenile flounder.

  6. Tissue-specific metallothionein gene expression in liver and intestine by dexamethasone, interleukin-1α and elevated zinc status

    International Nuclear Information System (INIS)

    Intestinal metallothionein has been implicated in the regulation of zinc absorption. Glucocorticoids and cytokines mediate hepatic metallothionein gene expression but the effects of these hormones in the small intestine are unclear. In this experiment, rats were injected ip with dexamethasone (DEX), recombinant human interleukin-1α (ILK-1), or ZnSO4. Data collected 0. 3, 6,9, or 12 hour post-injection showed tissue specific regulation of metallothionein gene expression. Liver metallothionein mRNA (determined by hybridization analysis) were increased by DEX, IL-1 and ZnSO4. In contrast, the intestine was completely refractory to IL-1. DEX did not affect intestinal metallothionein but did enhance mucosal accumulation of 65Zn by ligated duodenal loops. Absorption of 65Zn was not affected by IL-1 or DEX but was inversely related to elevated intestinal metallothionein protein induced in response to ZnSO. Plasma zinc was depressed by DEX and IL-1 and elevated in rats injected with ZnSO4 but was not related to 54Zn absorption. Tissue-specific induction of metallothionein may constitute a mechanism for independently regulating both tissue zinc distribution and zinc absorption

  7. Tissue-Specific Contributions of Paternally Expressed Gene 3 in Lactation and Maternal Care of Mus musculus.

    Directory of Open Access Journals (Sweden)

    Wesley D Frey

    Full Text Available Paternally Expressed Gene 3 (Peg3 is an imprinted gene that controls milk letdown and maternal-caring behaviors. In this study, a conditional knockout allele has been developed in Mus musculus to further characterize these known functions of Peg3 in a tissue-specific manner. The mutant line was first crossed with a germline Cre. The progeny of this cross displayed growth retardation phenotypes. This is consistent with those seen in the previous mutant lines of Peg3, confirming the usefulness of the new mutant allele. The mutant line was subsequently crossed individually with MMTV- and Nkx2.1-Cre lines to test Peg3's roles in the mammary gland and hypothalamus, respectively. According to the results, the milk letdown process was impaired in the nursing females with the Peg3 mutation in the mammary gland, but not in the hypothalamus. This suggests that Peg3's roles in the milk letdown process are more critical in the mammary gland than in the hypothalamus. In contrast, one of the maternal-caring behaviors, nest-building, was interrupted in the females with the mutation in both MMTV- and Nkx2.1-driven lines. Overall, this is the first study to introduce a conditional knockout allele of Peg3 and to further dissect its contribution to mammalian reproduction in a tissue-specific manner.

  8. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders.

    Science.gov (United States)

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  9. cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment.

    Science.gov (United States)

    Qian, Airong; Di, Shengmeng; Gao, Xiang; Zhang, Wei; Tian, Zongcheng; Li, Jingbao; Hu, Lifang; Yang, Pengfei; Yin, Dachuan; Shang, Peng

    2009-07-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields. In this study, a special designed superconducting magnet, which can produce three apparent gravity levels (0, 1, and 2 g), namely high magneto-gravitational environment (HMGE), was used to simulate space gravity environment. The effects of HMGE on osteoblast gene expression profile were investigated by microarray. Genes sensitive to diamagnetic levitation environment (0 g), gravity changes, and high magnetic field changes were sorted on the basis of typical cell functions. Cytoskeleton, as an intracellular load-bearing structure, plays an important role in gravity perception. Therefore, 13 cytoskeleton-related genes were chosen according to the results of microarray analysis, and the expressions of these genes were found to be altered under HMGE by real-time PCR. Based on the PCR results, the expressions of WASF2 (WAS protein family, member 2), WIPF1 (WAS/WASL interacting protein family, member 1), paxillin, and talin 1 were further identified by western blot assay. Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels, and talin 1 and paxillin were sensitive to both magnetic field and gravity changes. Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskeleton-related genes expression. The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis.

  10. Distinctive features of single nucleotide alterations in induced pluripotent stem cells with different types of DNA repair deficiency disorders

    Science.gov (United States)

    Okamura, Kohji; Sakaguchi, Hironari; Sakamoto-Abutani, Rie; Nakanishi, Mahito; Nishimura, Ken; Yamazaki-Inoue, Mayu; Ohtaka, Manami; Periasamy, Vaiyapuri Subbarayan; Alshatwi, Ali Abdullah; Higuchi, Akon; Hanaoka, Kazunori; Nakabayashi, Kazuhiko; Takada, Shuji; Hata, Kenichiro; Toyoda, Masashi; Umezawa, Akihiro

    2016-01-01

    Disease-specific induced pluripotent stem cells (iPSCs) have been used as a model to analyze pathogenesis of disease. In this study, we generated iPSCs derived from a fibroblastic cell line of xeroderma pigmentosum (XP) group A (XPA-iPSCs), a rare autosomal recessive hereditary disease in which patients develop skin cancer in the areas of skin exposed to sunlight. XPA-iPSCs exhibited hypersensitivity to ultraviolet exposure and accumulation of single-nucleotide substitutions when compared with ataxia telangiectasia-derived iPSCs that were established in a previous study. However, XPA-iPSCs did not show any chromosomal instability in vitro, i.e. intact chromosomes were maintained. The results were mutually compensating for examining two major sources of mutations, nucleotide excision repair deficiency and double-strand break repair deficiency. Like XP patients, XPA-iPSCs accumulated single-nucleotide substitutions that are associated with malignant melanoma, a manifestation of XP. These results indicate that XPA-iPSCs may serve a monitoring tool (analogous to the Ames test but using mammalian cells) to measure single-nucleotide alterations, and may be a good model to clarify pathogenesis of XP. In addition, XPA-iPSCs may allow us to facilitate development of drugs that delay genetic alteration and decrease hypersensitivity to ultraviolet for therapeutic applications. PMID:27197874

  11. Genome-Wide Screening of Genes Showing Altered Expression in Liver Metastases of Human Colorectal Cancers by cDNA Microarray

    Directory of Open Access Journals (Sweden)

    Rempei Yanagawa

    2001-01-01

    Full Text Available In spite of intensive and increasingly successful attempts to determine the multiple steps involved in colorectal carcinogenesis, the mechanisms responsible for metastasis of colorectal tumors to the liver remain to be clarified. To identify genes that are candidates for involvement in the metastatic process, we analyzed genome-wide expression profiles of 10 primary colorectal cancers and their corresponding metastatic lesions by means of a cDNA microarray consisting of 9121 human genes. This analysis identified 40 genes whose expression was commonly upregulated in metastatic lesions, and 7 that were commonly downregulated. The upregulated genes encoded proteins involved in cell adhesion, or remodeling of the actin cytoskeleton. Investigation of the functions of more of the altered genes should improve our understanding of metastasis and may identify diagnostic markers and/or novel molecular targets for prevention or therapy of metastatic lesions.

  12. cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment

    Institute of Scientific and Technical Information of China (English)

    Airong Qian; Shengmeng Di; Xiang Gao; Wei Zhang; Zongcheng Tian; Jingbao Li; Lifang Hu; Pengfei Yang; Dachuan Yin; Peng Shang

    2009-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields.In this study,a special designed superconducting magnet,which can produce three apparent gravity levels (0,1,and 2 g),namely high magneto-gravitational environment (HMGE),was used to simulate space gravity environment.The effects of HMGE on osteoblast gene expression profile were investigated by microarray.Genes sensitive to diamagnetic levitation environment (0 g),gravity changes,and high magnetic field changes were sorted on the basis of typical cell func-tions.Cytoskeleton,as an intracellular load-bearing struc-ture,plays an important role in gravity perception.Therefore,13 cytoskeleton-related genes were chosen according to the results of microarray analysis,and the expressions of these genes were found to be altered under HMGE by real-time PCR.Based on the PCR results,the expressions of WASF2 (WAS protein family,member 2),WIPFI (WAS/WASL interacting protein family,member 1),paxillin:and talin 1 were further identified by western blot assay.Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels,and talin 1 and paxillin were sensitive to both magnetic field and gravity changes.Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskele-ton-related genes expression.The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis.

  13. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity.

    Science.gov (United States)

    Hu, Yuxiang; Blair, John D; Yuen, Ryan K C; Robinson, Wendy P; von Dadelszen, Peter

    2015-05-01

    Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility. PMID:25697377

  14. Tissue-specific calibration of extracellular matrix material properties by transforming growth factor-β and Runx2 in bone is required for hearing

    OpenAIRE

    Chang, Jolie L; Brauer, Delia S.; Johnson, Jacob; Chen, Carol G.; Akil, Omar; Balooch, Guive; Humphrey, Mary Beth; Chin, Emily N.; Porter, Alexandra E.; Butcher, Kristin; Ritchie, Robert O.; Schneider, Richard A; Lalwani, Anil; Derynck, Rik; Marshall, Grayson W.

    2010-01-01

    By investigating the role of bone quality in hearing, this study provides evidence that signaling pathways and lineage-specific transcription factors cooperate to define the tissue-specific and functionally essential material properties of the extracellular matrix.

  15. Gambogic Acid Is a Tissue-Specific Proteasome Inhibitor In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Xiaofen Li

    2013-01-01

    Full Text Available Gambogic acid (GA is a natural compound derived from Chinese herbs that has been approved by the Chinese Food and Drug Administration for clinical trials in cancer patients; however, its molecular targets have not been thoroughly studied. Here, we report that GA inhibits tumor proteasome activity, with potency comparable to bortezomib but much less toxicity. First, GA acts as a prodrug and only gains proteasome-inhibitory function after being metabolized by intracellular CYP2E1. Second, GA-induced proteasome inhibition is a prerequisite for its cytotoxicity and anticancer effect without off-targets. Finally, because expression of the CYP2E1 gene is very high in tumor tissues but low in many normal tissues, GA could therefore produce tissue-specific proteasome inhibition and tumor-specific toxicity, with clinical significance for designing novel strategies for cancer treatment.

  16. Differences between liver gap junction protein and lens MIP 26 from rat: implications for tissue specificity of gap junctions.

    Science.gov (United States)

    Nicholson, B J; Takemoto, L J; Hunkapiller, M W; Hood, L E; Revel, J P

    1983-03-01

    Liver gap junctions and gap-junction-like structures from eye lenses are each comprised of a single major protein (Mr 28,000 and 26,000, respectively). These proteins display different two-dimensional peptide fingerprints, distinct amino acid compositions, nonhomologous N-terminal amino acid sequences and different sensitivities to proteases when part of the intact junction. However, the junctional protein of each tissue is well conserved between species, as demonstrated previously for lens and now for liver in several mammalian species. The possiblity of tissue-specific gap junction proteins is discussed in the light of data suggesting that rat heart gap junctions are comprised of yet a third protein. PMID:6299583

  17. Tissue specific diurnal rhythms of metabolites and their regulation during herbivore attack in a native tobacco, Nicotiana attenuata.

    Directory of Open Access Journals (Sweden)

    Sang-Gyu Kim

    Full Text Available Ecological performance is all about timing and the endogenous clock that allows the entrainment of rhythms and anticipation of fitness-determining events is being rapidly characterized. How plants anticipate daily abiotic stresses, such as cold in early mornings and drought at noon, as well as biotic stresses, such as the timing of pathogen infections, is being explored, but little is known about the clock's role in regulating responses to insect herbivores and mutualists, whose behaviors are known to be strongly diurnally regulated and whose attack is known to reconfigure plant metabolomes. We developed a liquid chromatography-mass spectrometry procedure and analyzed its output with model-based peak picking algorithms to identify metabolites with diurnal accumulation patterns in sink/source leaves and roots in an unbiased manner. The response of metabolites with strong diurnal patterns to simulated attack from the specialist herbivore, Manduca sexta larvae was analyzed and annotated with in-house and public databases. Roots and leaves had largely different rhythms and only 10 ions of 182 oscillating ions in leaves and 179 oscillating ions in roots were rhythmic in both tissues: root metabolites mainly peaked at dusk or night, while leaf metabolites peaked during the day. Many oscillating metabolites showed tissue-specific regulation by simulated herbivory of which systemic responses in unattacked tissues were particularly pronounced. Diurnal and herbivory-elicited accumulation patterns of disaccharide, phenylalanine, tyrosine, lyciumoside I, coumaroyl tyramine, 12-oxophytodienoic acid and jasmonic acid and those of their related biosynthetic transcripts were examined in detail. We conclude that oscillating metabolites of N. attenuata accumulate in a highly tissue-specific manner and the patterns reveal pronounced diurnal rhythms in the generalized and specialized metabolism that mediates the plant's responses to herbivores and mutualists. We

  18. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

    Science.gov (United States)

    Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit

    2015-11-01

    Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance. PMID:26475187

  19. Tissue-specific populations of leukocytes in semen-producing organs of the normal, hemicastrated, and vasectomized mouse.

    Science.gov (United States)

    Mullen, Thomas E; Kiessling, Rachel L; Kiessling, Ann A

    2003-03-01

    Semen HIV is separate and distinct from blood HIV and work has revealed that seminal plasma HIV particles do not arise from infected cells in semen. These findings indicate that semen-producing organs contain multiple, separate populations of HIV host cells. To test this hypothesis, we have examined leukocytes in semen-producing organs of male mice. Cells expressing F4/80 (tissue-specific macrophage marker) were abundant in testicular interstitium and as dendritic-like cells in the lumenal epithelium of the epididymis, especially the initial segment. Cells expressing CD45 (panleukocyte marker) were found rarely in the testicular interstitium, commonly in epididymal epithelium, were most abundant in the interstitium of the epididymis, and were more readily released from minced tissues than were F4/80(+) cells. Unlike the testis and epididymis, F4/80(+) cells in seminal vesicles also appeared to be CD45(+). Seminal vesicle leukocytes were restricted to the epithelium surrounding the lumen and were not released by mincing. CD11b (monocyte/B cell marker) was detected in testicular and seminal vesicle interstitium, but not in the epididymis. Hemicastration and vasectomy caused a limited redistribution of the leukocytes. These findings confirm the existence of tissue-specific populations of leukocytes in semen-producing organs and indicate that some populations are highly tissue adherent. The regionalized, tissue-adherent macrophages in the testicular interstitium, the initial segment of the caput epididymis, and the seminal vesicle epithelium suggest the existence of reservoirs of HIV-infected cells in humans that could contribute virus particles, but not infected cells, to semen and possibly blood. PMID:12689416

  20. Lack of global meiotic sex chromosome inactivation, and paucity of tissue-specific gene expression on the Drosophila X chromosome

    Directory of Open Access Journals (Sweden)

    Nurminsky Dmitry I

    2011-05-01

    Full Text Available Abstract Background Paucity of male-biased genes on the Drosophila X chromosome is a well-established phenomenon, thought to be specifically linked to the role of these genes in reproduction and/or their expression in the meiotic male germline. In particular, meiotic sex chromosome inactivation (MSCI has been widely considered a driving force behind depletion of spermatocyte-biased X-linked genes in Drosophila by analogy with mammals, even though the existence of global MCSI in Drosophila has not been proven. Results Microarray-based study and qRT-PCR analyses show that the dynamics of gene expression during testis development are very similar between X-linked and autosomal genes, with both showing transcriptional activation concomitant with meiosis. However, the genes showing at least ten-fold expression bias toward testis are significantly underrepresented on the X chromosome. Intriguingly, the genes with similar expression bias toward tissues other than testis, even those not apparently associated with reproduction, are also strongly underrepresented on the X. Bioinformatics analysis shows that while tissue-specific genes often bind silencing-associated factors in embryonic and cultured cells, this trend is less prominent for the X-linked genes. Conclusions Our data show that the global meiotic inactivation of the X chromosome does not occur in Drosophila. Paucity of testis-biased genes on the X appears not to be linked to reproduction or germline-specific events, but rather reflects a general underrepresentation of tissue-biased genes on this chromosome. Our analyses suggest that the activation/repression switch mechanisms that probably orchestrate the highly-biased expression of tissue-specific genes are generally not efficient on the X chromosome. This effect, probably caused by dosage compensation counteracting repression of the X-linked genes, may be the cause of the exodus of highly tissue-biased genes to the autosomes.

  1. Involvement of an ent-copalyl diphosphate synthase in tissue-specific accumulation of specialized diterpenes in Andrographis paniculata.

    Science.gov (United States)

    Misra, Rajesh Chandra; Garg, Anchal; Roy, Sudeep; Chanotiya, Chandan Singh; Vasudev, Prema G; Ghosh, Sumit

    2015-11-01

    Ent-labdane-related diterpene (ent-LRD) specialized (i.e. secondary) metabolites of the medicinal plant kalmegh (Andrographis paniculata) have long been known for several pharmacological activities. However, our understanding of the ent-LRD biosynthetic pathway has remained largely incomplete. Since ent-LRDs accumulate in leaves, we carried out a comparative transcriptional analysis using leaf and root tissues, and identified 389 differentially expressed transcripts, including 223 transcripts that were preferentially expressed in leaf tissue. Analysis of the transcripts revealed various specialized metabolic pathways, including transcripts of the ent-LRD biosynthetic pathway. Two class II diterpene synthases (ApCPS1 and ApCPS2) along with one (ApCPS1') and two (ApCPS2' and ApCPS2″) transcriptional variants that were the outcomes of alternative splicing of the precursor mRNA and alternative transcriptional termination, respectively, were identified. ApCPS1 and ApCPS2 encode for 832- and 817-amino acids proteins, respectively, and are phylogenetically related to the dicotyledons ent-copalyl diphosphate synthases (ent-CPSs). The spatio-temporal patterns of ent-LRD metabolites accumulation and gene expression suggested a likely role for ApCPS1 in general (i.e. primary) metabolism, perhaps by providing precursor for the biosynthesis of phytohormone gibberellin (GA). However, ApCPS2 is potentially involved in tissue-specific accumulation of ent-LRD specialized metabolites. Bacterially expressed recombinant ApCPS2 catalyzed the conversion of (E,E,E)-geranylgeranyl diphosphate (GGPP), the general precursor of diterpenes to ent-copalyl diphosphate (ent-CPP), the precursor of ent-LRDs. Taken together, these results advance our understanding of the tissue-specific accumulation of specialized ent-LRDs of medicinal importance.

  2. Topological and organizational properties of the products of house-keeping and tissue-specific genes in protein-protein interaction networks

    OpenAIRE

    Liu Wei-chung; Lin Wen-hsien; Hwang Ming-jing

    2009-01-01

    Abstract Background Human cells of various tissue types differ greatly in morphology despite having the same set of genetic information. Some genes are expressed in all cell types to perform house-keeping functions, while some are selectively expressed to perform tissue-specific functions. In this study, we wished to elucidate how proteins encoded by human house-keeping genes and tissue-specific genes are organized in human protein-protein interaction networks. We constructed protein-protein ...

  3. Medullary Epithelial Cells of the Human Thymus Express a Highly Diverse Selection of Tissue-specific Genes Colocalized in Chromosomal Clusters

    OpenAIRE

    Gotter, Jörn; Brors, Benedikt; Hergenhahn, Manfred; Kyewski, Bruno

    2004-01-01

    Promiscuous expression of tissue-specific self-antigens in the thymus imposes T cell tolerance and protects from autoimmune diseases, as shown in animal studies. Analysis of promiscuous gene expression in purified stromal cells of the human thymus at the single and global gene level documents the species conservation of this phenomenon. Medullary thymic epithelial cells overexpress a highly diverse set of genes (>400) including many tissue-specific antigens, disease-associated autoantigens, a...

  4. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway.

    Directory of Open Access Journals (Sweden)

    Courtney A Lovejoy

    Full Text Available The Alternative Lengthening of Telomeres (ALT pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ALT in pancreatic neuroendocrine cancers, pediatric glioblastomas, and other tumors of the central nervous system, suggesting that these mutations might contribute to the activation of the ALT pathway in these cancers. We have taken a comprehensive approach to deciphering ALT by applying genomic, molecular biological, and cell biological approaches to a panel of 22 ALT cell lines, including cell lines derived in vitro. Here we show that loss of ATRX protein and mutations in the ATRX gene are hallmarks of ALT-immortalized cell lines. In addition, ALT is associated with extensive genome rearrangements, marked micronucleation, defects in the G2/M checkpoint, and altered double-strand break (DSB repair. These attributes will facilitate the diagnosis and treatment of ALT positive human cancers.

  5. Therapy and progression--induced O6-methylguanine-DNA methyltransferase and mismatch repair alterations in recurrent glioblastoma multiforme.

    Science.gov (United States)

    Agarwal, S; Suri, V; Sharma, M C; Sarkar, C

    2015-01-01

    Despite multimodality treatment protocol including surgical resection, radiotherapy, and chemotherapy in patients with glioblastoma multiforme (GBM), most suffer from treatment failure and tumor recurrence within a few months of initial surgery. The effectiveness of temozolomide (TMZ), the most commonly used chemotherapeutic agent, is largely dependent on the methylation status of the promoter of the gene O6-methylguanine-DNA methyltransferase (MGMT) and the integrity of the mismatch repair (MMR) system. Changes in these regulatory mechanisms at the time of recurrence may influence response to therapy. Deciphering the molecular mechanisms of resistance to these drugs may in future lead to improvised patient management. In this article, we provide an update of the spectrum of molecular changes that occur in recurrent GBMs, and thus may have an impact on patient survival and treatment response. For review, electronic search for the keywords "Recurrent GBM", "Recurrent GBM AND MGMT" "Recurrent glioma AND MGMT", "Recurrent GBM AND MMR" and "Recurrent glioma AND MMR", "Recurrent GBM AND MMR" and "Recurrent glioma AND MMR" was done on PubMed and relevant citations were screened including cross-references. PMID:26960480

  6. Therapy and progression – induced O6-methylguanine-DNA methyltransferase and mismatch repair alterations in recurrent glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    S Agarwal

    2015-01-01

    Full Text Available Despite multimodality treatment protocol including surgical resection, radiotherapy, and chemotherapy in patients with glioblastoma multiforme (GBM, most suffer from treatment failure and tumor recurrence within a few months of initial surgery. The effectiveness of temozolomide (TMZ, the most commonly used chemotherapeutic agent, is largely dependent on the methylation status of the promoter of the gene O6-methylguanine-DNA methyltransferase (MGMT and the integrity of the mismatch repair (MMR system. Changes in these regulatory mechanisms at the time of recurrence may influence response to therapy. Deciphering the molecular mechanisms of resistance to these drugs may in future lead to improvised patient management. In this article, we provide an update of the spectrum of molecular changes that occur in recurrent GBMs, and thus may have an impact on patient survival and treatment response. For review, electronic search for the keywords “Recurrent GBM”, “Recurrent GBM AND MGMT” “Recurrent glioma AND MGMT”, “Recurrent GBM AND MMR” and “Recurrent glioma AND MMR”, “Recurrent GBM AND MMR” and “Recurrent glioma AND MMR” was done on PubMed and relevant citations were screened including cross-references.

  7. Exploring Genome-wide DNA Methylation Profiles Altered in Kashin-Beck Disease Using Infinium Human Methylation 450 Bead Chips.

    Science.gov (United States)

    Shi, Xiao Wei; Shi, Bo Hui; Lyu, Ai Li; Zhang, Feng; Zhou, Tian Tian; Guo, Xiong

    2016-07-01

    To understand how differentially methylated genes (DMGs) might affect the pathogenesis of Kashin-Beck disease (KBD). Genome-wide methylation profiling of whole blood from 12 matched KBD and controls pairs was performed using a high-resolution Infinium 450 K methylation array. In total, 97 CpG sites were differentially methylated in KBD compared to the normal controls; of these sites, 36 sites were significantly hypermethylated (covering 22 genes) and 61 sites were significantly hypomethylated (covering 34 genes). Of these genes, 14 significant pathways were identified, the most significant P value pathway was type I diabetes mellitus pathway and pathways associated with autoimmune diseases and inflammatory diseases were included in this study. Subsequently, 4 CpG sites in HLA-DRB1 were validated using bisulfite sequencing polymerase chain reaction (BSP) in articular cartilage, and the results showed significant differences in the methylation status between KBD and controls, consistent with the results of the high-resolution array. These results suggested that differences in genome-wide DNA methylation exist between KBD and the controls, and the biological pathways support the autoimmune disease and inflammatory disease hypothesis of KBD.

  8. Exploring Genome-wide DNA Methylation Profiles Altered in Kashin-Beck Disease Using Infinium Human Methylation 450 Bead Chips.

    Science.gov (United States)

    Shi, Xiao Wei; Shi, Bo Hui; Lyu, Ai Li; Zhang, Feng; Zhou, Tian Tian; Guo, Xiong

    2016-07-01

    To understand how differentially methylated genes (DMGs) might affect the pathogenesis of Kashin-Beck disease (KBD). Genome-wide methylation profiling of whole blood from 12 matched KBD and controls pairs was performed using a high-resolution Infinium 450 K methylation array. In total, 97 CpG sites were differentially methylated in KBD compared to the normal controls; of these sites, 36 sites were significantly hypermethylated (covering 22 genes) and 61 sites were significantly hypomethylated (covering 34 genes). Of these genes, 14 significant pathways were identified, the most significant P value pathway was type I diabetes mellitus pathway and pathways associated with autoimmune diseases and inflammatory diseases were included in this study. Subsequently, 4 CpG sites in HLA-DRB1 were validated using bisulfite sequencing polymerase chain reaction (BSP) in articular cartilage, and the results showed significant differences in the methylation status between KBD and controls, consistent with the results of the high-resolution array. These results suggested that differences in genome-wide DNA methylation exist between KBD and the controls, and the biological pathways support the autoimmune disease and inflammatory disease hypothesis of KBD. PMID:27554126

  9. Extracellular superoxide dismutase (SOD3): Tissue-specific expression, genomic characterization, and computer-assisted sequence analysis of the human EC SOD gene

    Energy Technology Data Exchange (ETDEWEB)

    Folz, R.J.; Crapo, J.D. [Duke Univ. Medical Center, Durham, NC (United States)

    1994-07-01

    The authors have isolated and characterized over 10,000 bp of the human EC SOD gene (SOD3 or EC 1.15.1.1) and its 5{prime}- and 3{prime}-flanking regions. Human genomic Southern blot analysis supports the existence of a single gene, without evidence for pseudogenes. The human EC SOD gene spans approximately 5900 bp. The gene can be divided into 3 exons and 2 introns. The 720-bp coding region is uninterrupted and located within exon 3. The 560 bp 5{prime} to the transcription start site were sequenced. No obvious TATA box was identified. A variety of conserved cis elements were identified by database searching. Exon 3 is surrounded by an Alu-J repetitive element in reverse orientation at the 5{prime} and by an Alu-Sx repetitive element in the 3{prime}-flanking DNA. The relative levels of EC SOD tissue-specific expression were determined by RNA gel blot analysis. Adult heart, placenta, pancreas, and lung had the most expression, followed by kidney, skeletal muscle, and liver. Little EC SOD message was found in the brain. A second unique mRNA, approximately 4.2 kb in length, was highly expressed in skeletal muscle. When tissue enzyme activity is compared to relative mRNA levels, there is a marked disparity in the brain, pancreas, and lung, suggesting that these tissues have enhanced affinity for circulating EC SOD or translate the EC SOD message more efficiently than other tissues. These results indicate that the EC SOD gene contains unique transcriptional regulatory elements and that its expression may be regulated at the post-transcriptional or post-translational level. The characterization of the human EC SOD gene should now allow the development of further insights into its biology and provide the basis for studies of its role in human heritable disorders. 68 refs., 5 figs., 1 tab.

  10. Tissue-specific differences in the spatial interposition of X-chromosome and 3R chromosome regions in the malaria mosquito Anopheles messeae Fall.

    Directory of Open Access Journals (Sweden)

    Gleb Artemov

    Full Text Available Spatial organization of a chromosome in a nucleus is very important in biology but many aspects of it are still generally unresolved. We focused on tissue-specific features of chromosome architecture in closely related malaria mosquitoes, which have essential inter-specific differences in polytene chromosome attachments in nurse cells. We showed that the region responsible for X-chromosome attachment interacts with nuclear lamina stronger in nurse cells, then in salivary glands cells in Anopheles messeae Fall. The inter-tissue differences were demonstrated more convincingly in an experiment of two distinct chromosomes interposition in the nucleus space of cells from four tissues. Microdissected DNA-probes from nurse cells X-chromosome (2BC and 3R chromosomes (32D attachment regions were hybridized with intact nuclei of nurse cells, salivary gland cells, follicle epithelium cells and imaginal disсs cells in 3D-FISH experiments. We showed that only salivary gland cells and follicle epithelium cells have no statistical differences in the interposition of 2BC and 32D. Generally, the X-chromosome and 3R chromosome are located closer to each other in cells of the somatic system in comparison with nurse cells on average. The imaginal disсs cell nuclei have an intermediate arrangement of chromosome interposition, similar to other somatic cells and nurse cells. In spite of species-specific chromosome attachments there are no differences in interposition of nurse cells chromosomes in An. messeae and An. atroparvus Thiel. Nurse cells have an unusual chromosome arrangement without a chromocenter, which could be due to the special mission of generative system cells in ontogenesis and evolution.

  11. Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptide microcin B17 and alter the activity of DNA gyrase.

    Science.gov (United States)

    del Castillo, F J; del Castillo, I; Moreno, F

    2001-03-01

    Microcin B17 is a peptide antibiotic that inhibits DNA replication in Escherichia coli by targeting DNA gyrase. Previously, two independently isolated microcin B17-resistant mutants were shown to harbor the same gyrB point mutation that results in the replacement of tryptophan 751 by arginine in the GyrB polypeptide. We used site-directed mutagenesis to construct mutants in which tryptophan 751 was deleted or replaced by other amino acids. These mutants exhibit altered DNA gyrase activity and different levels of resistance to microcin B17.

  12. Transcription factors as targets for DNA-interacting drugs.

    Science.gov (United States)

    Gniazdowski, Marek; Denny, William A; Nelson, Stephanie M; Czyz, Malgorzata

    2003-06-01

    Gene expression, both tissue specific or inducible, is controlled at the level of transcription by various transcription factors interacting with specific sequences of DNA. Anticancer drugs and other potential therapeutic agents alter interactions of regulatory proteins with DNA by a variety of different mechanisms. The main ones, considered in the review, are: i) competition for the transcription factor DNA binding sequences by drugs that interact non-covalently with DNA (e.g. anthracyclines, acridines, actinomycin D, pyrrole antibiotics and their polyamide derivatives); ii) covalent modifications of DNA by alkylating agents (e.g. nitrogen mustards, cisplatin) that prevent transcription factors from recognizing their specific sequences, or that result in multiple "unnatural" binding sites in DNA which hijack the transcription factors, thus decreasing their availability in the nucleus; iii) competition with binding sites on the transcription factors by synthetic oligonucleotides or peptide nucleic acids in an antigene strategy. The latter compounds may also compete for binding sites on regulatory proteins, acting as decoys to lower their active concentration in the cell. In this review, we have summarized recent advances which have been made towards understanding the above mechanisms by which small molecules interfere with the function of transcription factors. PMID:12678680

  13. Tissue-specific B-cell dysfunction and generalized memory B-cell loss during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Sandrine Peruchon

    Full Text Available BACKGROUND: Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART. Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV mac251-infected Cynomolgus macaques. METHODS AND FINDINGS: Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.. We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD(-CD27(+ B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8(+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus-B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. CONCLUSIONS: These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid

  14. 5-Azacytidine enhances the radiosensitivity of CNE2 and SUNE1 cells in vitro and in vivo possibly by altering DNA methylation.

    Science.gov (United States)

    Jiang, Wei; Li, Ying-Qin; Liu, Na; Sun, Ying; He, Qing-Mei; Jiang, Ning; Xu, Ya-Fei; Chen, Lei; Ma, Jun

    2014-01-01

    The radioresistance of tumor cells remains a major cause of treatment failure in nasopharyngeal carcinoma (NPC). Recently, several reports have highlighted the importance of epigenetic changes in radiation-induced responses. Here, we investigated whether the demethylating agent 5-azacytidine (5-azaC) enhances the radiosensitivity of NPC cells. The NPC cell lines CNE2 and SUNE1 were treated with 1 μmol/L 5-azaC for 24 h before irradiation (IR); clonogenic survival was then assessed. Tumor growth was investigated in a mouse xenograft model in vivo. The apoptosis, cell cycle progression and DNA damage repair were examined using flow cytometry, immunofluorescent staining and western blotting. Promoter methylation and the expression of four genes epigenetically silenced during the development of NPC were evaluated by pyrosequencing and real-time PCR. We found that pretreatment with 5-azaC significantly decreased clonogenic survival after IR compared to IR alone; the sensitivity-enhancement ratio of 5-azaC was 1.4 and 1.2 for CNE2 and SUNE1 cells, respectively. The combined administration of 5-azaC and IR significantly inhibited tumor growth in the mouse xenograft model, and enhanced radiation-induced apoptosis in vitro compared to 5-azaC alone or IR alone. 5-AzaC also decreased promoter methylation and upregulated the expression of genes which are epigenetically silenced both in vitro and in vivo in NPC. Thus, 5-azaC enhance the radiosensitivity of both the CNE2 and SUNE1 cell lines, possibly by altering DNA methylation levels and increasing the ability of irradiated cells to undergo apoptosis. The use of 5-azaC combined with IR maybe represent an attractive strategy for the treatment of NPC. PMID:24691157

  15. 5-Azacytidine Enhances the Radiosensitivity of CNE2 and SUNE1 Cells In Vitro and In Vivo Possibly by Altering DNA Methylation

    Science.gov (United States)

    Sun, Ying; He, Qing-Mei; Jiang, Ning; Xu, Ya-Fei; Chen, Lei; Ma, Jun

    2014-01-01

    The radioresistance of tumor cells remains a major cause of treatment failure in nasopharyngeal carcinoma (NPC). Recently, several reports have highlighted the importance of epigenetic changes in radiation-induced responses. Here, we investigated whether the demethylating agent 5-azacytidine (5-azaC) enhances the radiosensitivity of NPC cells. The NPC cell lines CNE2 and SUNE1 were treated with 1 μmol/L 5-azaC for 24 h before irradiation (IR); clonogenic survival was then assessed. Tumor growth was investigated in a mouse xenograft model in vivo. The apoptosis, cell cycle progression and DNA damage repair were examined using flow cytometry, immunofluorescent staining and western blotting. Promoter methylation and the expression of four genes epigenetically silenced during the development of NPC were evaluated by pyrosequencing and real-time PCR. We found that pretreatment with 5-azaC significantly decreased clonogenic survival after IR compared to IR alone; the sensitivity-enhancement ratio of 5-azaC was 1.4 and 1.2 for CNE2 and SUNE1 cells, respectively. The combined administration of 5-azaC and IR significantly inhibited tumor growth in the mouse xenograft model, and enhanced radiation-induced apoptosis in vitro compared to 5-azaC alone or IR alone. 5-AzaC also decreased promoter methylation and upregulated the expression of genes which are epigenetically silenced both in vitro and in vivo in NPC. Thus, 5-azaC enhance the radiosensitivity of both the CNE2 and SUNE1 cell lines, possibly by altering DNA methylation levels and increasing the ability of irradiated cells to undergo apoptosis. The use of 5-azaC combined with IR maybe represent an attractive strategy for the treatment of NPC. PMID:24691157

  16. 5-Azacytidine enhances the radiosensitivity of CNE2 and SUNE1 cells in vitro and in vivo possibly by altering DNA methylation.

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    Full Text Available The radioresistance of tumor cells remains a major cause of treatment failure in nasopharyngeal carcinoma (NPC. Recently, several reports have highlighted the importance of epigenetic changes in radiation-induced responses. Here, we investigated whether the demethylating agent 5-azacytidine (5-azaC enhances the radiosensitivity of NPC cells. The NPC cell lines CNE2 and SUNE1 were treated with 1 μmol/L 5-azaC for 24 h before irradiation (IR; clonogenic survival was then assessed. Tumor growth was investigated in a mouse xenograft model in vivo. The apoptosis, cell cycle progression and DNA damage repair were examined using flow cytometry, immunofluorescent staining and western blotting. Promoter methylation and the expression of four genes epigenetically silenced during the development of NPC were evaluated by pyrosequencing and real-time PCR. We found that pretreatment with 5-azaC significantly decreased clonogenic survival after IR compared to IR alone; the sensitivity-enhancement ratio of 5-azaC was 1.4 and 1.2 for CNE2 and SUNE1 cells, respectively. The combined administration of 5-azaC and IR significantly inhibited tumor growth in the mouse xenograft model, and enhanced radiation-induced apoptosis in vitro compared to 5-azaC alone or IR alone. 5-AzaC also decreased promoter methylation and upregulated the expression of genes which are epigenetically silenced both in vitro and in vivo in NPC. Thus, 5-azaC enhance the radiosensitivity of both the CNE2 and SUNE1 cell lines, possibly by altering DNA methylation levels and increasing the ability of irradiated cells to undergo apoptosis. The use of 5-azaC combined with IR maybe represent an attractive strategy for the treatment of NPC.

  17. Molecular recognition between ligands and nucleic acids: Novel pyridine- and benzoxazole-containing agents related to Hoechst 33258 that exhibit altered DNA sequence specificity deduced from footprinting analysis and spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bathini, Y.; Rao, K.E.; Shea, R.G.; Lown, J.W. (Univ. of Alberta, Edmonton (Canada))

    The syntheses of certain analogues of the DNA minor groove binding agent Hoechst 33258 designed to exhibit altered sequence recognition are described. The structural modifications include the following: substitution of pyridine for the benzene ring of the benzimidazole moiety, replacement of one benzimidazole unit by a benzoxazole in the two possible orientations with respect to the DNA receptor, and a synthesis of 2,2{prime}-m-phenylenebis(6-(4-methyl-1-piperazinyl)benzimidazole). Sequence recognition of these agents on a HindIII/EcoRI fragment of pBR322 DNA was determined by MPE footprinting procedures. Some of the analogues exhibited altered DNA sequence preference compared with Hoechst 33258. In particular, a structure bearing a benzoxazole moiety with the oxygen oriented inward to the minor groove together with an inward-directed pyridine nitrogen appears to confer the property of recognition of a GC base pair within the binding sequence. The possible factors, structural, stereochemical, and electrostatic, contributing to the altered DNA sequence recognition properties are discussed.

  18. Long-range looping of a locus control region drives tissue-specific chromatin packing within a multigene cluster.

    Science.gov (United States)

    Tsai, Yu-Cheng; Cooke, Nancy E; Liebhaber, Stephen A

    2016-06-01

    The relationships of higher order chromatin organization to mammalian gene expression remain incompletely defined. The human Growth Hormone (hGH) multigene cluster contains five gene paralogs. These genes are selectively activated in either the pituitary or the placenta by distinct components of a remote locus control region (LCR). Prior studies have revealed that appropriate activation of the placental genes is dependent not only on the actions of the LCR, but also on the multigene composition of the cluster itself. Here, we demonstrate that the hGH LCR 'loops' over a distance of 28 kb in primary placental nuclei to make specific contacts with the promoters of the two GH genes in the cluster. This long-range interaction sequesters the GH genes from the three hCS genes which co-assemble into a tightly packed 'hCS chromatin hub'. Elimination of the long-range looping, via specific deletion of the placental LCR components, triggers a dramatic disruption of the hCS chromatin hub. These data reveal a higher-order structural pathway by which long-range looping from an LCR impacts on local chromatin architecture that is linked to tissue-specific gene regulation within a multigene cluster. PMID:26893355

  19. Aequorin-Based Luminescence Imaging Reveals Stimulus- and Tissue-Specific Ca2+ Dynamics in Arabidopsis Plants

    Institute of Scientific and Technical Information of China (English)

    Xiaohong Zhu; Ying Feng; Gaimei Liang; Na Liu; Jian-Kang Zhu

    2013-01-01

    Calcium ion is a versatile second messenger for diverse cell signaling in response to developmental and environmental cues.The specificity of Ca2+-mediated signaling is defined by stimulus-elicited Ca2+ signature and down-stream decoding processes.Here,an Aequorin-based luminescence recording system was developed for monitoring Ca2+ in response to various stimuli in Arabidopsis.With the simple,highly sensitive,and robust Ca2+ recording,this system revealed stimulus-and tissue-specific Ca2+ signatures in seedlings.Cellular Ca2+ dynamics and relationship to Aequorin-based Ca2+ recording were explored using a GFP-based Ca2+ indicator,which suggested that a synchronous cellular Ca2+ signal is responsible for cold-induced Ca2+ response in seedlings,whereas asynchronous Ca2+ oscillation contributes to osmotic stress-induced Ca2+ increase in seedlings.The optimized recording system would be a powerful tool for the identification and characterization of novel components in Ca2+-mediated stress-signaling pathways.

  20. Systems view of adipogenesis via novel omics-driven and tissue-specific activity scoring of network functional modules

    Science.gov (United States)

    Nassiri, Isar; Lombardo, Rosario; Lauria, Mario; Morine, Melissa J.; Moyseos, Petros; Varma, Vijayalakshmi; Nolen, Greg T.; Knox, Bridgett; Sloper, Daniel; Kaput, Jim; Priami, Corrado

    2016-07-01

    The investigation of the complex processes involved in cellular differentiation must be based on unbiased, high throughput data processing methods to identify relevant biological pathways. A number of bioinformatics tools are available that can generate lists of pathways ranked by statistical significance (i.e. by p-value), while ideally it would be desirable to functionally score the pathways relative to each other or to other interacting parts of the system or process. We describe a new computational method (Network Activity Score Finder - NASFinder) to identify tissue-specific, omics-determined sub-networks and the connections with their upstream regulator receptors to obtain a systems view of the differentiation of human adipocytes. Adipogenesis of human SBGS pre-adipocyte cells in vitro was monitored with a transcriptomic data set comprising six time points (0, 6, 48, 96, 192, 384 hours). To elucidate the mechanisms of adipogenesis, NASFinder was used to perform time-point analysis by comparing each time point against the control (0 h) and time-lapse analysis by comparing each time point with the previous one. NASFinder identified the coordinated activity of seemingly unrelated processes between each comparison, providing the first systems view of adipogenesis in culture. NASFinder has been implemented into a web-based, freely available resource associated with novel, easy to read visualization of omics data sets and network modules.

  1. Ferlins Show Tissue-Specific Expression and Segregate as Plasma Membrane/Late Endosomal or Trans-Golgi/Recycling Ferlins.

    Science.gov (United States)

    Redpath, Gregory M I; Sophocleous, Reece A; Turnbull, Lynne; Whitchurch, Cynthia B; Cooper, Sandra T

    2016-03-01

    Ferlins are a family of transmembrane-anchored vesicle fusion proteins uniquely characterized by 5-7 tandem cytoplasmic C2 domains, Ca(2+)-regulated phospholipid-binding domains that regulate vesicle fusion in the synaptotagmin family. In humans, dysferlin mutations cause limb-girdle muscular dystrophy type 2B (LGMD2B) due to defective Ca(2+)-dependent, vesicle-mediated membrane repair and otoferlin mutations cause non-syndromic deafness due to defective Ca(2+)-triggered auditory neurotransmission. In this study, we describe the tissue-specific expression, subcellular localization and endocytic trafficking of the ferlin family. Studies of endosomal transit together with 3D-structured illumination microscopy reveals dysferlin and myoferlin are abundantly expressed at the PM and cycle to Rab7-positive late endosomes, supporting potential roles in the late-endosomal pathway. In contrast, Fer1L6 shows concentrated localization to a specific compartment of the trans-Golgi/recycling endosome, cycling rapidly between this compartment and the PM via Rab11 recycling endosomes. Otoferlin also shows trans-Golgi to PM cycling, with very low levels of PM otoferlin suggesting either brief PM residence, or rare incorporation of otoferlin molecules into the PM. Thus, type-I and type-II ferlins segregate as PM/late-endosomal or trans-Golgi/recycling ferlins, consistent with different ferlins mediating vesicle fusion events in specific subcellular locations.

  2. Identification and tissue-specific distribution of sulfated glycosaminoglycans in the blood-sucking bug Rhodnius prolixus (Linnaeus).

    Science.gov (United States)

    Costa-Filho, Adilson; Souza, Maisa L S; Martins, Rita C L; dos Santos, André V F; Silva, Gabriela V; Comaru, Michele W; Moreira, Mônica F; Atella, Georgia C; Allodi, Silvana; Nasciutti, Luiz E; Masuda, Hatisaburo; Silva, Luiz-Claudio F

    2004-03-01

    We have previously characterized heparan sulfate (HS) as the major ovarian sulfated glycosaminoglycan (GAG) in females of Rhodnius prolixus, while chondroitin sulfate (CS) was the minor component. Using histochemical procedures we found that GAGs were concentrated in the ovarian tissue but not found inside the oocytes. Here, we extend our initial observations of GAG expression in R. prolixus by characterizing these molecules in other organs: the fat body, intestinal tract, and the reproductive tracts. Only HS and CS were found in the three organs analyzed, however CS was the major GAG species in these tissues. We also determined the compartmental distribution of GAGs in these organs by histochemical analysis using 1,9-dimethylmethylene blue, and evaluated the specific distribution of CS within both male and female reproductive tracts by immunohistochemistry using an anti-CS antibody. We also determined the GAG composition in eggs at days 0 and 6 of embryonic development. Only HS and CS were found in eggs at day 6, while no sulfated GAGs were detected at day 0. Our results demonstrate that HS and CS are the only sulfated GAG species expressed in the fat body and in the intestinal and reproductive tracts of Rhodnius male and female adults. Both sulfated GAGs were also identified in Rhodnius embryos. Altogether, these results show no qualitative differences in the sulfated GAG composition regarding tissue-specific or development-specific distribution. PMID:14871621

  3. Adipocyte dysfunction in a mouse model of polycystic ovary syndrome (PCOS: evidence of adipocyte hypertrophy and tissue-specific inflammation.

    Directory of Open Access Journals (Sweden)

    Joseph S Marino

    Full Text Available Clinical research shows an association between polycystic ovary syndrome (PCOS and chronic inflammation, a pathological state thought to contribute to insulin resistance. The underlying pathways, however, have not been defined. The purpose of this study was to characterize the inflammatory state of a novel mouse model of PCOS. Female mice lacking leptin and insulin receptors in pro-opiomelanocortin neurons (IR/LepR(POMC mice and littermate controls were evaluated for estrous cyclicity, ovarian and adipose tissue morphology, and body composition by QMR and CT scan. Tissue-specific macrophage infiltration and cytokine mRNA expression were measured, as well as circulating cytokine levels. Finally, glucose regulation during pregnancy was evaluated as a measure of risk for diabetes development. Forty-five percent of IR/LepR(POMC mice showed reduced or absent ovulation. IR/LepR(POMC mice also had increased fat mass and adipocyte hypertrophy. These traits accompanied elevations in macrophage accumulation and inflammatory cytokine production in perigonadal adipose tissue, liver, and ovary. These mice also exhibited gestational hyperglycemia as predicted. This report is the first to show the presence of inflammation in IR/LepR(POMC mice, which develop a PCOS-like phenotype. Thus, IR/LepR(POMC mice may serve as a new mouse model to clarify the involvement of adipose and liver tissue in the pathogenesis and etiology of PCOS, allowing more targeted research on the development of PCOS and potential therapeutic interventions.

  4. Promoter complexity and tissue-specific expression of stress response components in Mytilus galloprovincialis, a sessile marine invertebrate species.

    Directory of Open Access Journals (Sweden)

    Chrysa Pantzartzi

    Full Text Available The mechanisms of stress tolerance in sessile animals, such as molluscs, can offer fundamental insights into the adaptation of organisms for a wide range of environmental challenges. One of the best studied processes at the molecular level relevant to stress tolerance is the heat shock response in the genus Mytilus. We focus on the upstream region of Mytilus galloprovincialis Hsp90 genes and their structural and functional associations, using comparative genomics and network inference. Sequence comparison of this region provides novel evidence that the transcription of Hsp90 is regulated via a dense region of transcription factor binding sites, also containing a region with similarity to the Gamera family of LINE-like repetitive sequences and a genus-specific element of unknown function. Furthermore, we infer a set of gene networks from tissue-specific expression data, and specifically extract an Hsp class-associated network, with 174 genes and 2,226 associations, exhibiting a complex pattern of expression across multiple tissue types. Our results (i suggest that the heat shock response in the genus Mytilus is regulated by an unexpectedly complex upstream region, and (ii provide new directions for the use of the heat shock process as a biosensor system for environmental monitoring.

  5. Nonsyntenic Genes Drive Tissue-Specific Dynamics of Differential, Nonadditive, and Allelic Expression Patterns in Maize Hybrids.

    Science.gov (United States)

    Baldauf, Jutta A; Marcon, Caroline; Paschold, Anja; Hochholdinger, Frank

    2016-06-01

    Distantly related maize (Zea mays) inbred lines display an exceptional degree of genomic diversity. F1 progeny of such inbred lines are often more vigorous than their parents, a phenomenon known as heterosis. In this study, we investigated how the genetic divergence of the maize inbred lines B73 and Mo17 and their F1 hybrid progeny is reflected in differential, nonadditive, and allelic expression patterns in primary root tissues. In pairwise comparisons of the four genotypes, the number of differentially expressed genes between the two parental inbred lines significantly exceeded those of parent versus hybrid comparisons in all four tissues under analysis. No differentially expressed genes were detected between reciprocal hybrids, which share the same nuclear genome. Moreover, hundreds of nonadditive and allelic expression ratios that were different from the expression ratios of the parents were observed in the reciprocal hybrids. The overlap of both nonadditive and allelic expression patterns in the reciprocal hybrids significantly exceeded the expected values. For all studied types of expression - differential, nonadditive, and allelic - substantial tissue-specific plasticity was observed. Significantly, nonsyntenic genes that evolved after the last whole genome duplication of a maize progenitor from genes with synteny to sorghum (Sorghum bicolor) were highly overrepresented among differential, nonadditive, and allelic expression patterns compared with the fraction of these genes among all expressed genes. This observation underscores the role of nonsyntenic genes in shaping the transcriptomic landscape of maize hybrids during the early developmental manifestation of heterosis in root tissues of maize hybrids. PMID:27208302

  6. A Systematic Phenotypic Screen of F-box Genes Through a Tissue-specific RNAi-based Approach in Drosophila

    Institute of Scientific and Technical Information of China (English)

    Wen Dui; Wei Lu; Jun Ma; Renjie Jiao

    2012-01-01

    F-box proteins are components of the SCF (SkpA-Cullin 1-F-box) E3 ligase complexes,acting as the specificity-determinants in targeting substrate proteins for ubiquitination and degradation.In humans,at least 22 out of 75 F-box proteins have experimentally documented substrates,whereas in Drosophila 12 F-box proteins have been characterized with known substrates.To systematically investigate the genetic and molecular functions of F-box proteins in Drosophila,we performed a survey of the literature and databases.We identified 45 Drosophila genes that encode proteins containing at least one F-box domain.We collected publically available RNAi lines against these genes and used them in a tissue-specific RNAi-based phenotypic screen.Here,we present our systematic phenotypic dataset from the eye,the wing and the notum.This dataset is the first of its kind and represents a useful resource for future studies of the molecular and genetic functions of F-box genes in Drosophila.Our results show that,as expected,F-box genes in Drosophila have regulatory roles in a diverse array of processes including cell proliferation,cell growth,signal transduction,and cellular and animal survival.

  7. Tissue-specific expression of GFP reporter gene in germline driven by GATA-2 promoter and enhancers in zebrafish

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    GATA-2,a transcription factor,is expressed in several types of blood cells and in the central nervous system (CNS),and regulates the differentiation of these cells.We have obtained five zebrafish transgenic germlines that carry and express the green fluorescent protein (GFP) gene ligated to various 5′flanking sequences of zebrafish GATA-2 gene.The spatial pattern of GFP expression varies,mainly depending on which regulatory sequence is used,among the germlines.In some of the germlines,the expression of GFP is restricted to the CNS and the enveloping layer (EVL) cells,while in some other lines GFP is observed only in the CNS.It is noted that the intensity of GFP in the transgenic fish remain unchanged after a six-generation passage of the transgenes.The transgenic fish could find its uses in the future in generating tissue-specific,even cellspecific mutant fish and in functional study of related genes through transgenesis.

  8. Accumulation, tissue-specific distribution and debromination of decabromodiphenyl ether (BDE 209) in European starlings (Sturnus vulgaris)

    Energy Technology Data Exchange (ETDEWEB)

    Steen, E. van den [Department of Biology, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1, 2610 Wilrijk (Belgium)]. E-mail: evi.vandensteen@ua.ac.be; Covaci, A. [Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Jaspers, V.L.B. [Department of Biology, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1, 2610 Wilrijk (Belgium); Dauwe, T. [Department of Biology, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1, 2610 Wilrijk (Belgium); Voorspoels, S. [Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Eens, M. [Department of Biology, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1, 2610 Wilrijk (Belgium); Pinxten, R. [Department of Biology, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1, 2610 Wilrijk (Belgium)

    2007-07-15

    In this study we investigated the accumulation, tissue-specific distribution and possible debromination of BDE 209 in a terrestrial songbird species, the European starling, using silastic implants as a method of exposure. BDE 209 accumulated in the blood of the exposed starlings to a mean peak concentration of 16 {+-} 4.1 ng/ml on day 10. After this peak, there was a decline to 3.3 {+-} 0.4 ng/ml blood at the end of the exposure period of 76 days, which suggests elimination of BDE 209. In the exposed group, the muscle concentrations (461 ng/g lipid weight [lw], 430 ng/g lw) were about twofold those in liver (269 ng/g lw, 237 ng/g lw). In addition to BDE 209, other PBDE congeners, particularly octa- and nonaBDEs, were also present in the muscle and liver, suggesting bioformation from BDE 209. To our knowledge, these results are the first indications for the debromination of BDE 209 in birds. - BDE 209 accumulates in the blood and tissues of a terrestrial bird species, the European starling, and can be debrominated to lower PBDE congeners.

  9. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA.

    OpenAIRE

    Streuli, M; Saito, H

    1989-01-01

    Tissue-specific alternative splicing is an important mechanism for controlling gene expression. Exons 4, 5 and 6 of the human leukocyte common antigen (LCA) gene are included in B cell mRNA but excluded from thymocyte mRNA by differential splicing. In order to study this tissue-specific alternative splicing, we constructed mini-genes that contain only a few of the LCA exons and the SV40 promoter. Mouse B cells and thymocytes were transfected with these mini-gene constructs and the structures ...

  10. Temporal and Tissue-Specific Expression of Tomato 14-3-3 Gene Family in Response to Phosphorus Deficiency

    Institute of Scientific and Technical Information of China (English)

    XU Wei-Feng; SHI Wei-Ming; YAN Feng

    2012-01-01

    Plants adapt to phosphorus (P) deficiency through a complex of biological processes and many genes are involved.Tomato (Solanum lycopersicum L.'Hezuo906’) plants were selected to grown hydroponically to study the temporal and spatial gene expression patterns of the 14-3-3 gene family and their roles in response to P deficiency in tomato plants.Using real-time reverse-transcriptase polymerase chain reaction (RT-PCR),we investigated the expression profiles in different tissues (root,stem and leaf) at short-term and long-term P-deficient stress phases.Results revealed that i) four members of 14-3-3 gene family (TFT1,TFT4,TFT6 and TFT7)were involved in the adaptation of tomato plants to P deficiency,ii) TFT7 responded quickly to P deficiency in the root,while TFT6 responded slowly to P deficiency in the leaf,iii) expression response of TFT4 to P-deficient stress was widely distributed in different tissues (root,stem and leaf) while TFT8 only displayed stem-specific expression,and iv) temporal and tissues-specific expression patterns to P deficiency suggested that isoform specificity existed in tomato 14-3-3 gene family.We propose that TFT7 (one member of ε-like group in tomato 14-3-3 family) is the early responsive gene and may play a role in the adaptation of tomato plants to short-term P deficiency,while TFT6 (one member of non-ε group in tomato 14-3-3 family) is the later responsive gene and may play a role in the adaptation of tomato plants to long-term P deficiency.

  11. Interstitial tissue-specific gene expression in mouse testis by intra-tunica albuguineal injection of recombinant baculovirus

    Institute of Scientific and Technical Information of China (English)

    Hyun Jung Park; Won Young Lee; Jin Hoi Kim; Jae Hwan Kim; Hun Jong Jung; Nam Hyung Kim; Bo Kyung Kim; Hyuk Song

    2009-01-01

    The purpose of this study is to establish a gene delivery system for interstitial tissue-specific protein expression in mice testes using modified recombinant baculovirus. Green fluorescent protein (GFP)-expressing recombinant bacuiovirus (GFP-baculovirus), in which the insect cell-specific polyhedron promoter was replaced by the cytomegalovirus (CMV)-IE promoter, was used to transfect testicular cells in vitro, and for intra-tunica albuguineai injection of the interstitial tissue of the testis. GFP expression was monitored in frozen testes sections by fluorescence microscopy. Expression of GFP in testicular tissues was also assessed by reverse transcription polymerase chain reaction (RT-PCR), and protein expression was assessed by Western blot. Testicular cells in vitro were infected efficiently by modified recombinant GFP-baculovirus. Intra-tunica albuguineal injection of GFP-baculovirus into the mouse testis resulted in a high level of GFP expression in the interstitial tissues. RT-PCR analysis clearly showed GFP gene expression in the testis, particularly interstitial tissues. Intra-tunica albuguineal injection of a modified baculovirus that encoded recombinant rat insulin-like growth factor binding protein (IGFBP)-5 resulted in an increase in IGFBP-5 in testis and semen. In conclusion, we have developed an efficient delivery system for gene expression in vivo in testicular cells, particularly cells of the interstitial tissue using intra-tunica albuguineal injection of a modified recombinant baculovirus. This method will be particularly relevant for application that requires gene delivery and protein expression in the testicular cells of the outer seminiferous tubule of the testis.

  12. Combinatorial binding leads to diverse regulatory responses: Lmd is a tissue-specific modulator of Mef2 activity.

    Directory of Open Access Journals (Sweden)

    Paulo M F Cunha

    2010-07-01

    Full Text Available Understanding how complex patterns of temporal and spatial expression are regulated is central to deciphering genetic programs that drive development. Gene expression is initiated through the action of transcription factors and their cofactors converging on enhancer elements leading to a defined activity. Specific constellations of combinatorial occupancy are therefore often conceptualized as rigid binding codes that give rise to a common output of spatio-temporal expression. Here, we assessed this assumption using the regulatory input of two essential transcription factors within the Drosophila myogenic network. Mutations in either Myocyte enhancing factor 2 (Mef2 or the zinc-finger transcription factor lame duck (lmd lead to very similar defects in myoblast fusion, yet the underlying molecular mechanism for this shared phenotype is not understood. Using a combination of ChIP-on-chip analysis and expression profiling of loss-of-function mutants, we obtained a global view of the regulatory input of both factors during development. The majority of Lmd-bound enhancers are co-bound by Mef2, representing a subset of Mef2's transcriptional input during these stages of development. Systematic analyses of the regulatory contribution of both factors demonstrate diverse regulatory roles, despite their co-occupancy of shared enhancer elements. These results indicate that Lmd is a tissue-specific modulator of Mef2 activity, acting as both a transcriptional activator and repressor, which has important implications for myogenesis. More generally, this study demonstrates considerable flexibility in the regulatory output of two factors, leading to additive, cooperative, and repressive modes of co-regulation.

  13. Plasma 25-Hydroxyvitamin D Is Related to Protein Signaling Involved in Glucose Homeostasis in a Tissue-Specific Manner

    Directory of Open Access Journals (Sweden)

    Lewan Parker

    2016-10-01

    Full Text Available Vitamin D has been suggested to play a role in glucose metabolism. However, previous findings are contradictory and mechanistic pathways remain unclear. We examined the relationship between plasma 25-hydroxyvitamin D (25(OHD, insulin sensitivity, and insulin signaling in skeletal muscle and adipose tissue. Seventeen healthy adults (Body mass index: 26 ± 4; Age: 30 ± 12 years underwent a hyperinsulinemic-euglycemic clamp, and resting skeletal muscle and adipose tissue biopsies. In this cohort, the plasma 25(OHD concentration was not associated with insulin sensitivity (r = 0.19, p = 0.56. However, higher plasma 25(OHD concentrations correlated with lower phosphorylation of glycogen synthase kinase-3 (GSK-3 αSer21 and βSer9 in skeletal muscle (r = −0.66, p = 0.015 and r = −0.53, p = 0.06, respectively and higher GSK-3 αSer21 and βSer9 phosphorylation in adipose tissue (r = 0.82, p < 0.01 and r = 0.62, p = 0.042, respectively. Furthermore, higher plasma 25(OHD concentrations were associated with greater phosphorylation of both protein kinase-B (AktSer473 (r = 0.78, p < 0.001 and insulin receptor substrate-1 (IRS-1Ser312 (r = 0.71, p = 0.01 in adipose tissue. No associations were found between plasma 25(OHD concentration and IRS-1Tyr612 phosphorylation in skeletal muscle and adipose tissue. The divergent findings between muscle and adipose tissue with regard to the association between 25(OHD and insulin signaling proteins may suggest a tissue-specific interaction with varying effects on glucose homeostasis. Further research is required to elucidate the physiological relevance of 25(OHD in each tissue.

  14. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis.

    Science.gov (United States)

    Wong, Ming-Kin; Guan, Daogang; Ng, Kaoru Hon Chun; Ho, Vincy Wing Sze; An, Xiaomeng; Li, Runsheng; Ren, Xiaoliang; Zhao, Zhongying

    2016-06-10

    Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development.

  15. A new method to determine tissue specific tissue factor thrombomodulin activities: endotoxin and particulate air pollution induced disbalance

    Directory of Open Access Journals (Sweden)

    Gerlofs-Nijland Miriam E

    2008-10-01

    Full Text Available Abstract Background Increase in tissue factor (TF and loss in thrombomodulin (TM antigen levels has been described in various inflammatory disorders. The functional consequences of such changes in antigen concentrations in the coagulation balance are, however, not known. This study was designed to assess the consequences of inflammation-driven organ specific functional properties of the procoagulant response. Methods Tissue specific procoagulant activity was assessed by adding tissue homogenate to normal human pool plasma and recording of the thrombin generation curve. The new technique was subsequently applied on two inflammation driven animal models: 1 mouse lipopolysaccharide (LPS induced endotoxemia and 2 spontaneously hypertensive rats exposed to environmental air pollution (particulate matter (PM. Results Addition of lung tissue from untreated animals to human plasma suppressed the endogenous thrombin potential (ETP (175 ± 61 vs. 1437 ± 112 nM.min for control. This inhibitory effect was due to TM, because a it was absent in protein C deficient plasma and b lungs from TMpro/pro mice allowed full thrombin generation (ETP: 1686 ± 209 nM.min. The inhibitory effect of TM was lost after LPS administration to mice, which induced TF activity in lungs of C57Bl/6 mice as well as increased the ETP (941 ± 523 vs. 194 ± 159 nM.min for control. Another pro-inflammatory stimulus, PM dose-dependently increased TF in the lungs of spontaneously hypertensive rats at 4 and 48 hours after PM exposure. The ETP increased up to 48 hours at the highest concentration of PM (1441 ± 289 nM.min vs. saline: 164 ± 64 nM.min, p Conclusion Inflammation associated procoagulant effects in tissues are dependent on variations in activity of the TF-TM balance. The application of these novel organ specific functional assays is a useful tool to monitor inflammation-driven shifts in the coagulation balance within animal or human tissues.

  16. Effects of adeno-associated virus serotype and tissue-specific expression on circulating biomarkers of propionic acidemia.

    Science.gov (United States)

    Guenzel, Adam J; Hillestad, Matthew L; Matern, Dietrich; Barry, Michael A

    2014-09-01

    Propionic acidemia (PA) is an autosomal recessive inborn error of metabolism caused by deficiency of propionyl-CoA carboxylase (PCC). This enzyme is composed of six PCCA and six PCCB subunits and mediates a critical step in catabolism of odd chain fatty acids and certain amino acids. Current treatment options for PA are limited to stringent dietary restriction of protein consumption and some patients undergo elective liver transplantation. We previously generated a hypomorphic model of PA, designated Pcca(-/-)(A138T), with 2% of wild-type enzyme activity that mimics many aspects of the human disease. In this study, we used the differing tissue tropisms of adeno-associated virus (AAV) to probe the ability of liver or muscle-directed gene therapy to treat systemic aspects of this disease that affects many cell types. Systemic therapy with muscle-biased AAV1, liver-biased AAV8, and broadly tropic AAVrh10 mediated significant biochemical corrections in circulating propionylcarnitine (C3) and methyl citrate by all vectors. The innate tissue bias of AAV1 and AAV8 gene expression was made more specific by the use of muscle-specific muscle creatine kinase (specifically MCK6) and hepatocyte-specific transthyretin (TTR) promoters, respectively. Under these targeted conditions, both vectors mediated significant long-term correction of circulating metabolites, demonstrating that correction of muscle and likely other tissue types in addition to liver is necessary to fully correct pathology caused by PA. Liver-specific AAV8-TTR-PCCA mediated better correction than AAV1-MCK-PCCA. These data suggest that targeted gene therapy may be a viable alternative to liver transplantation for PA. They also demonstrate the effects of tissue-specific and broad gene therapy on a cell autonomous systemic genetic disease. PMID:25046265

  17. Identification of the interactome between fish plasma proteins and Edwardsiella tarda reveals tissue-specific strategies against bacterial infection.

    Science.gov (United States)

    Li, Hui; Huang, Xiaoyan; Zeng, Zaohai; Peng, Xuan-Xian; Peng, Bo

    2016-09-01

    Elucidating the complex pathogen-host interaction is essential for a comprehensive understanding of how these remarkable agents invade their hosts and how the hosts defend against these invaders. During the infection, pathogens interact intensively with host to enable their survival, which can be revealed through their interactome. Edwardsiella tarda is a Gram-negative bacterial pathogen causing huge economic loss in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. E. tarda is an ideal model for host-pathogen investigation as it infects fish in three distinct steps: entering the host, circulating through the blood and establishing infection. We adopted a previous established proteomic approach that inactivated E. tarda cells and covalent crosslink fish plasma proteins were used to capture plasma proteins and bacterial outer membrane proteins, respectively. By the combinatorial use of proteomic and biochemical approaches, six plasma proteins and seven outer membrane proteins (OMPs) were identified. Interactions among these proteins were validated with protein-array, far-Western blotting and co-immunoprecipitation. At last, seventeen plasma protein-bacteria protein-protein interaction were confirmed to be involved in the interaction network, forming a complex interactome. Compared to our previous results, different host proteins were detected, whereas some of the bacterial proteins were similar, which indicates that hosts adopt tissue-specific strategies to cope with the same pathogen during infection. Thus, our results provide a robust demonstration of both bacterial initiators and host receptors or interacting proteins to further explore infection and anti-infective mechanisms between hosts and microbes. PMID:27458055

  18. Assessment of tissue-specific accumulation and effects of cadmium in a marine fish fed contaminated commercially produced diet

    Energy Technology Data Exchange (ETDEWEB)

    Dang Fei [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [AMCE and Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2009-11-27

    Commercially produced fish diet is now widely used in fish farming but it often contains elevated levels of cadmium (Cd). However, the adverse effects on fish are poorly understood. In this study, farm-raised marine grunts, Terapon jarbua, were fed Cd-contaminated diet or exposed to waterborne Cd for 4 weeks. Tissue-specific Cd bioaccumulation and its effects were subsequently examined. We found that Cd was accumulated in different fish tissues (digestive tracts, gills or livers). At the end of the exposure, Cd accumulation peaked in the fishes' livers (5.0-6.3 {mu}g g{sup -1}), followed by the digestive tracts (0.83-3.16 {mu}g g{sup -1}) and gills (0.27-2.74 {mu}g g{sup -1}). Endpoints such as the survival rate, specific growth rate, condition factor, and superoxide dismutase activity were not significantly affected by Cd exposure. In contrast, metallothionein (MT) induction and subcellular Cd distribution indicated that there were possible sublethal effects of Cd exposure. MT was induced in response to Cd accumulation, but it returned to the control levels after a longer exposure period, except for hepatic MT induction resulting from waterborne or low dietary Cd exposure. The Cd percentage in the metallothionein-like protein (MTLP) fraction increased over exposure time, and it accounted for more than 57% Cd in the fishes' livers and 80% Cd in their digestive tracts by the end of the exposure period. Overall, although Cd in commercial fish diet did not have significant lethality to T. jarbua, sensitive responses such as hepatic MT induction and subcellular Cd distribution revealed that the Cd-induced storage and detoxification in T. jarbua may increase fish's tolerance to toxic metals.

  19. Telomeric trans-silencing in Drosophila melanogaster: tissue specificity, development and functional interactions between non-homologous telomeres.

    Directory of Open Access Journals (Sweden)

    Thibaut Josse

    Full Text Available BACKGROUND: The study of P element repression in Drosophila melanogaster led to the discovery of the telomeric Trans-Silencing Effect (TSE, a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, "TAS" has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. TSE can show variegation in ovaries, displays a maternal effect as well as an epigenetic transmission through meiosis and involves heterochromatin and RNA silencing pathways. PRINCIPAL FINDINGS: Here, we analyze phenotypic and genetic properties of TSE. We report that TSE does not occur in the soma at the adult stage, but appears restricted to the female germline. It is detectable during development at the third instar larvae where it presents the same tissue specificity and maternal effect as in adults. Transgenes located in TAS at the telomeres of the main chromosomes can be silencers which in each case show the maternal effect. Silencers located at non-homologous telomeres functionally interact since they stimulate each other via the maternally-transmitted component. All germinally-expressed euchromatic transgenes tested, located on all major chromosomes, were found to be repressed by a telomeric silencer: thus we detected no TSE escaper. The presence of the euchromatic target transgene is not necessary to establish the maternal inheritance of TSE, responsible for its epigenetic behavior. A single telomeric silencer locus can simultaneously repress two P-lacZ targets located on different chromosomal arms. CONCLUSIONS AND SIGNIFICANCE: Therefore TSE appears to be a widespread phenomenon which can involve different telomeres and work across the genome. It can explain the P cytotype establishment by telomeric P elements in natural Drosophila populations.

  20. A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Crisanti Andrea

    2011-06-01

    Full Text Available Abstract Background The mosquito, Anopheles gambiae, is the primary vector of human malaria, a disease responsible for millions of deaths each year. To improve strategies for controlling transmission of the causative parasite, Plasmodium falciparum, we require a thorough understanding of the developmental mechanisms, physiological processes and evolutionary pressures affecting life-history traits in the mosquito. Identifying genes expressed in particular tissues or involved in specific biological processes is an essential part of this process. Results In this study, we present transcription profiles for ~82% of annotated Anopheles genes in dissected adult male and female tissues. The sensitivity afforded by examining dissected tissues found gene activity in an additional 20% of the genome that is undetected when using whole-animal samples. The somatic and reproductive tissues we examined each displayed patterns of sexually dimorphic and tissue-specific expression. By comparing expression profiles with Drosophila melanogaster we also assessed which genes are well conserved within the Diptera versus those that are more recently evolved. Conclusions Our expression atlas and associated publicly available database, the MozAtlas (http://www.tissue-atlas.org, provides information on the relative strength and specificity of gene expression in several somatic and reproductive tissues, isolated from a single strain grown under uniform conditions. The data will serve as a reference for other mosquito researchers by providing a simple method for identifying where genes are expressed in the adult, however, in addition our resource will also provide insights into the evolutionary diversity associated with gene expression levels among species.

  1. Tissue-specific increases in 11beta-hydroxysteroid dehydrogenase type 1 in normal weight postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Therése Andersson

    Full Text Available With age and menopause there is a shift in adipose distribution from gluteo-femoral to abdominal depots in women. Associated with this redistribution of fat are increased risks of type 2 diabetes and cardiovascular disease. Glucocorticoids influence body composition, and 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1 which converts inert cortisone to active cortisol is a putative key mediator of metabolic complications in obesity. Increased 11betaHSD1 in adipose tissue may contribute to postmenopausal central obesity. We hypothesized that tissue-specific 11betaHSD1 gene expression and activity are up-regulated in the older, postmenopausal women compared to young, premenopausal women. Twenty-three pre- and 23 postmenopausal, healthy, normal weight women were recruited. The participants underwent a urine collection, a subcutaneous adipose tissue biopsy and the hepatic 11betaHSD1 activity was estimated by the serum cortisol response after an oral dose of cortisone. Urinary (5alpha-tetrahydrocortisol+5beta-tetrahydrocortisol/tetrahydrocortisone ratios were higher in postmenopausal women versus premenopausal women in luteal phase (P<0.05, indicating an increased whole-body 11betaHSD1 activity. Postmenopausal women had higher 11betaHSD1 gene expression in subcutaneous fat (P<0.05. Hepatic first pass conversion of oral cortisone to cortisol was also increased in postmenopausal women versus premenopausal women in follicular phase of the menstrual cycle (P<0.01, at 30 min post cortisone ingestion, suggesting higher hepatic 11betaHSD1 activity. In conclusion, our results indicate that postmenopausal normal weight women have increased 11betaHSD1 activity in adipose tissue and liver. This may contribute to metabolic dysfunctions with menopause and ageing in women.

  2. LMNA E82K mutation activates FAS and mitochondrial pathways of apoptosis in heart tissue specific transgenic mice.

    Directory of Open Access Journals (Sweden)

    Dan Lu

    Full Text Available The lamin A/C (LMNA, nuclear intermediate filament proteins, is a basic component of the nuclear lamina. Mutations in LMNA are associated with a broad range of laminopathies, congenital diseases affecting tissue regeneration and homeostasis. Heart tissue specific transgenic mice of human LMNA E82K, a mutation causing dilated cardiomyopathy, were generated. Lmna(E82K transgenic mouse lines exhibited thin-walled, dilated left and right ventricles, a progressive decrease of contractile function assessed by echocardiography. Abnormalities of the conduction system, myocytes disarray, collagen accumulation and increased levels of B-type natriuretic peptide (BNP, procollagen type III α1 (Col3α1 and skeletal muscle actin α1 (Actα1 were detected in the hearts of Lmna(E82K transgenic mice. The LMNA E82K mutation caused mislocation of LMNA in the nucleus and swollen mitochondria with loss of critae, together with the loss of nuclear envelope integrity. Most interestingly, we found that the level of apoptosis was 8.5-fold higher in the Lmna(E82K transgenic mice than that of non-transgenic (NTG mice. In the presence of the LMNA E82K, both of FAS and mitochondrial pathways of apoptosis were activated consistent with the increase of FAS expression, the release of cytochrome c from mitochondria to cytosol and activation of caspase-8, -9 and -3. Our results suggested that the apoptosis, at least for the LMNA E82K or the mutations in the rod region of Lamin A/C, might be an important mechanism causing continuous loss of myocytes and lead to myocardial dysfunction. It could be a potential therapeutic means to suppress and/or prevent inappropriate cardiac cell death in patients carrying LMNA mutation.

  3. DNA glue

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.;

    2008-01-01

    Significant alterations in thermal stability of parallel DNA triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in the structure of phenylmethylglycerol inserted as a bulge into DNA (TINA). Insertions of two ortho-TINAs as a pseudo...

  4. Cleaving DNA with DNA

    Science.gov (United States)

    Carmi, Nir; Balkhi, Shameelah R.; Breaker, Ronald R.

    1998-03-01

    A DNA structure is described that can cleave single-stranded DNA oligonucleotides in the presence of ionic copper. This ``deoxyribozyme'' can self-cleave or can operate as a bimolecular complex that simultaneously makes use of duplex and triplex interactions to bind and cleave separate DNA substrates. Bimolecular deoxyribozyme-mediated strand scission proceeds with a kobs of 0.2 min-1, whereas the corresponding uncatalyzed reaction could not be detected. The duplex and triplex recognition domains can be altered, making possible the targeted cleavage of single-stranded DNAs with different nucleotide sequences. Several small synthetic DNAs were made to function as simple ``restriction enzymes'' for the site-specific cleavage of single-stranded DNA.

  5. Genomic alterations in DNA repair and chromatin remodeling genes in estrogen receptor-positive metastatic breast cancer patients with exceptional responses to capecitabine

    International Nuclear Information System (INIS)

    We analyzed the genomic and phosphoproteomic profiles of breast cancer tissue obtained from six patients with estrogen receptor (ER)-positive, HER2-negative metastatic breast cancer who had highly durable (≥5 years) and, in some cases, ongoing clinical responses with capecitabine. Formalin-fixed, paraffin-embedded tissue samples from patients’ primary (n = 4) or metastatic (n = 2) breast cancers were utilized for targeted next-generation sequencing and reversed phase protein microarray. Two patients received capecitabine monotherapy. Four patients received capecitabine in combination with paclitaxel; three of these continued single-agent capecitabine after stopping paclitaxel. Capecitabine was discontinued for progressive disease after a mean of 66 months in four patients (range 54–86 months), and two patients remain on therapy, having received capecitabine for >91 months and >122 months, respectively. Three patients’ cancers (50%) had likely functional alterations in DNA repair and chromatin remodeling genes, while three other patients’ cancers had variants of unknown significance in these pathways. Mutations in PIK3CA, amplifications of FGFR1 or ZNF703, or phosphorylation of HER family receptors and their downstream proteins did not preclude exceptional responses to capecitabine. None of the patients’ tumors harbored TP53 or PTEN mutations. Four of the patients had breast cancer tissue available for PTEN immunohistochemistry, and all four patients’ cancers were positive for PTEN. These surprising findings in a group of phenotypically similar patients with ER-positive, endocrine therapy-pretreated, HER2-negative metastases, are supported by preclinical data showing that sensitivity to 5-fluorouracil is enhanced by deficiencies in chromatin remodeling and homologous recombination genes. Our findings suggest that mutations that inactivate homologous recombination and/or chromatin remodeling genes within ER-positive, HER2-negative breast cancers may

  6. [11C]-metformin distribution in the liver and small intestine using dynamic PET in mice demonstrates tissue-specific transporter dependency

    DEFF Research Database (Denmark)

    Jensen, Jonas B; Sundelin, Elias I; Jakobsen, Steen;

    2016-01-01

    ) including Multidrug and Toxin Extrusion proteins (MATE) are essential for transport of metformin across membranes, but tissue-specific activity of these transporters in vivo is incompletely understood. Here, we use dynamic PET with C11-labelled metformin ([11C]-metformin) in mice to investigate the role of...

  7. Persistent foot-and-mouth disease virus infection in the nasopharynx of cattle: tissue-specific distribution and local cytokine expression

    Science.gov (United States)

    Tissues obtained post-mortem from cattle persistently infected with foot-and-mouth disease virus (FMDV) were analyzed to characterize the tissue-specific localization of FMDV and partial transcriptome profiles for selected immunoregulatory cytokines. Analysis of 28 distinct anatomic sites from 21 st...

  8. Tissue specific uptake of inactivated and live Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss): Visualization by immunohistochemistry and in situ hybridization

    DEFF Research Database (Denmark)

    Khimmakthong, Umaporn; Deshmukh, Sidhartha; Chettri, Jiwan Kumar;

    2013-01-01

    oligonucleotide probes binding to Y. ruckeri (serotype O1, biotype 2) in tissue sections and were able to demonstrate a tissue specific uptake of this bacterium (both formalin inactivated and live form). Uptake and subsequent translocation dynamics at various surfaces demonstrated different site specific...

  9. Mining tissue specificity, gene connectivity and disease association to reveal a set of genes that modify the action of disease causing genes

    Directory of Open Access Journals (Sweden)

    Reverter Antonio

    2008-09-01

    Full Text Available Abstract Background The tissue specificity of gene expression has been linked to a number of significant outcomes including level of expression, and differential rates of polymorphism, evolution and disease association. Recent studies have also shown the importance of exploring differential gene connectivity and sequence conservation in the identification of disease-associated genes. However, no study relates gene interactions with tissue specificity and disease association. Methods We adopted an a priori approach making as few assumptions as possible to analyse the interplay among gene-gene interactions with tissue specificity and its subsequent likelihood of association with disease. We mined three large datasets comprising expression data drawn from massively parallel signature sequencing across 32 tissues, describing a set of 55,606 true positive interactions for 7,197 genes, and microarray expression results generated during the profiling of systemic inflammation, from which 126,543 interactions among 7,090 genes were reported. Results Amongst the myriad of complex relationships identified between expression, disease, connectivity and tissue specificity, some interesting patterns emerged. These include elevated rates of expression and network connectivity in housekeeping and disease-associated tissue-specific genes. We found that disease-associated genes are more likely to show tissue specific expression and most frequently interact with other disease genes. Using the thresholds defined in these observations, we develop a guilt-by-association algorithm and discover a group of 112 non-disease annotated genes that predominantly interact with disease-associated genes, impacting on disease outcomes. Conclusion We conclude that parameters such as tissue specificity and network connectivity can be used in combination to identify a group of genes, not previously confirmed as disease causing, that are involved in interactions with disease causing

  10. The Pioneer Transcription Factor FoxA Maintains an Accessible Nucleosome Configuration at Enhancers for Tissue-Specific Gene Activation.

    Science.gov (United States)

    Iwafuchi-Doi, Makiko; Donahue, Greg; Kakumanu, Akshay; Watts, Jason A; Mahony, Shaun; Pugh, B Franklin; Lee, Dolim; Kaestner, Klaus H; Zaret, Kenneth S

    2016-04-01

    Nuclear DNA wraps around core histones to form nucleosomes, which restricts the binding of transcription factors to gene regulatory sequences. Pioneer transcription factors can bind DNA sites on nucleosomes and initiate gene regulatory events, often leading to the local opening of chromatin. However, the nucleosomal configuration of open chromatin and the basis for its regulation is unclear. We combined low and high levels of micrococcal nuclease (MNase) digestion along with core histone mapping to assess the nucleosomal configuration at enhancers and promoters in mouse liver. We find that MNase-accessible nucleosomes, bound by transcription factors, are retained more at liver-specific enhancers than at promoters and ubiquitous enhancers. The pioneer factor FoxA displaces linker histone H1, thereby keeping enhancer nucleosomes accessible in chromatin and allowing other liver-specific transcription factors to bind and stimulate transcription. Thus, nucleosomes are not exclusively repressive to gene regulation when they are retained with, and exposed by, pioneer factors.

  11. Tissue-specific expression of the human alpha 1-antitrypsin gene is controlled by multiple cis-regulatory elements.

    OpenAIRE

    Shen, R F; Li, Y.; Sifers, R N; Wang, H.; Hardick, C; Tsai, S. Y.; Woo, S L

    1987-01-01

    Human alpha 1-antitrypsin (AAT) is expressed in the liver, and a 318 bp fragment immediately flanking the CAP site of the gene was found to be sufficient to drive the expression of a reporter gene (CAT) specifically in hepatoma cells. The enhancing activity however, was orientation-dependent. The DNA fragment was separated into a distal region and a proximal region. A "core enhancer" sequence GTGGTTTC is present within the distal region and is capable of activity enhancement in both orientati...

  12. 5-Bromo-2’-deoxyuridine induces visible morphological alteration in the DNA puffs of the anterior salivary gland region of Bradysia hygida (Diptera, Sciaridae

    Directory of Open Access Journals (Sweden)

    J.C. de Almeida

    2010-12-01

    Full Text Available 5-Bromo-2’-deoxyuridine (BrdUrd has long been known to interfere with cell differentiation. We found that treatment ofBradysia hygida larvae with BrdUrd during DNA puff anlage formation in the polytene chromosomes of the salivary gland S1 region noticeably affects anlage morphology. However, it does not affect subsequent metamorphosis to the adult stage. The chromatin of the chromosomal sites that would normally form DNA puffs remains very compact and DNA puff expansion does not occur with administration of 4 to 8 mM BrdUrd. Injection of BrdUrd at different ages provoked a gradient of compaction of the DNA puff chromatin, leading to the formation of very small to almost normal puffs. By immunodetection, we show that the analogue is preferentially incorporated into the DNA puff anlages. When BrdUrd is injected in a mixture with thymidine, it is not incorporated into the DNA, and normal DNA puffs form. Therefore, incorporation of this analogue into the amplified DNA seems to be the cause of this extreme compaction. Autoradiographic experiments and silver grains counting showed that this treatment decreases the efficiency of RNA synthesis at DNA puff anlages.

  13. А new Gal/GalNAc-specific lectin from the mussel Mytilus trossulus: Structure, tissue specificity, antimicrobial and antifungal activity.

    Science.gov (United States)

    Chikalovets, Irina V; Kovalchuk, Svetlana N; Litovchenko, Alina P; Molchanova, Valentina I; Pivkin, Mikhail V; Chernikov, Oleg V

    2016-03-01

    In the present study, a new Gal/GalNAc specific lectin from the mussel Mytilus trossulus (designated as MTL) was identified, and its expression levels, both in tissues and toward pathogen stimulation, were then characterized. The MTL primary structure was determined via cDNA sequencing. Deduced sequence of 150 amino acid residues showed 89% similarity to lectins from the mussels Crenomytilus grayanus and Mytilus galloprovincialis that were the first members of a new family of zoolectins. The results indicated that the MTL might be involved in immune response toward pathogen infection, and it might perform different recognition specificity toward bacteria or fungi.

  14. Multiple POU-binding motifs, recognized by tissue-specific nuclear factors, are important for Dll1 gene expression in neural stem cells

    International Nuclear Information System (INIS)

    We cloned the 5'-flanking region of the mouse homolog of the Delta gene (Dll1) and demonstrated that the sequence between nucleotide position -514 and -484 in the 5'-flanking region of Dll1 played a critical role in the regulation of its tissue-specific expression in neural stem cells (NSCs). Further, we showed that multiple POU-binding motifs, located within this short sequence of 30 bp, were essential for transcriptional activation of Dll1 and also that multiple tissue-specific nuclear factors recognized these POU-binding motifs in various combinations through differentiation of NSCs. Thus, POU-binding factors may play an important role in Dll1 expression in developing NSCs

  15. Tissue-specific expression of the human alpha 1-antitrypsin gene is controlled by multiple cis-regulatory elements.

    Science.gov (United States)

    Shen, R F; Li, Y; Sifers, R N; Wang, H; Hardick, C; Tsai, S Y; Woo, S L

    1987-10-26

    Human alpha 1-antitrypsin (AAT) is expressed in the liver, and a 318 bp fragment immediately flanking the CAP site of the gene was found to be sufficient to drive the expression of a reporter gene (CAT) specifically in hepatoma cells. The enhancing activity however, was orientation-dependent. The DNA fragment was separated into a distal region and a proximal region. A "core enhancer" sequence GTGGTTTC is present within the distal region and is capable of activity enhancement in both orientations when complemented by the proximal region in the sense orientation. The results strongly suggest that there are multiple cis-acting elements in the human AAT gene that confer cell specificity for its expression. Nuclear proteins prepared from the hepatoma cells bound specifically to the proximal region in a band-shifting assay that was resistant to competition by the globin promoter DNA. Foot-printing analysis showed a protected domain within the proximal region that contains a nearly perfect palindromic sequence TGGTTAATATTCACCA, which may be important in the regulation of AAT expression in the liver. PMID:2823229

  16. Astrocyte- and hepatocyte-specific expression of genes from the distal serpin subcluster at 14q32.1 associates with tissue-specific chromatin structures

    OpenAIRE

    Gopalan, Sunita; Kasza, Aneta; Xu, Weili; Kiss, Daniel L.; Wilczynska, Katarzyna M.; Rydel, Russell E.; Kordula, Tomasz

    2005-01-01

    The distal serpin subcluster contains genes encoding α1-antichymotrypsin (ACT), protein C inhibitor (PCI), kallistatin (KAL), and the KAL-like protein that are expressed in hepatocytes but only the act gene is expressed in astrocytes. We show here that the tissue-specific expression of these genes associates with astrocyte- and hepatocyte-specific chromatin structures. In hepatocytes, we identified twelve DNase I-hypersenitive sites (DHS) that were distributed throughout the entire subcluster...

  17. Tissue specific analysis reveals a differential organization and regulation of both ethylene biosynthesis and E8 during climacteric ripening of tomato

    OpenAIRE

    Van de Poel, Bram; Vandenzavel, Nick; Smet, Cindy; Nicolay, Toon; Bulens, Inge; Mellidou, Ifigeneia; Vandoninck, Sandy; Hertog, Maarten LATM; Derua, Rita; Spaepen, Stijn; Vanderleyden, Jos; Waelkens, Etienne; De Proft, Maurice P; Nicolai, Bart M.; Geeraerd, Annemie H

    2014-01-01

    Background: Solanum lycopersicum or tomato is extensively studied with respect to the ethylene metabolism during climacteric ripening, focusing almost exclusively on fruit pericarp. In this work the ethylene biosynthesis pathway was examined in all major tomato fruit tissues: pericarp, septa, columella, placenta, locular gel and seeds. The tissue specific ethylene production rate was measured throughout fruit development, climacteric ripening and postharvest storage. All ethylene intermediate...

  18. Integrative Tissue-Specific Functional Annotations in the Human Genome Provide Novel Insights on Many Complex Traits and Improve Signal Prioritization in Genome Wide Association Studies

    Science.gov (United States)

    Wang, Qian; He, Beixin Julie; Zhao, Hongyu

    2016-01-01

    Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies. Integrative analysis of GenoSkyline annotations and results from genome-wide association studies (GWAS) led to novel biological insights on the etiologies of a number of human complex traits. We also explored using tissue-specific functional annotations to prioritize GWAS signals and predict relevant tissue types for each risk locus. Brain and blood-specific annotations led to better prioritization performance for schizophrenia than standard GWAS p-values and non-tissue-specific annotations. As for coronary artery disease, heart-specific functional regions was highly enriched of GWAS signals, but previously identified risk loci were found to be most functional in other tissues, suggesting a substantial proportion of still undetected heart-related loci. In summary, GenoSkyline annotations can guide genetic studies at multiple resolutions and provide valuable insights in understanding complex diseases. GenoSkyline is available at http://genocanyon.med.yale.edu/GenoSkyline. PMID:27058395

  19. Cocoa Consumption Alters the Global DNA Methylation of Peripheral Leukocytes in Humans with Cardiovascular Disease Risk Factors: A Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Anna Crescenti

    Full Text Available DNA methylation regulates gene expression and can be modified by different bioactive compounds in foods, such as polyphenols. Cocoa is a rich source of polyphenols, but its role in DNA methylation is still unknown. The objective was to assess the effect of cocoa consumption on DNA methylation and to determine whether the enzymes involved in the DNA methylation process participate in the mechanisms by which cocoa exerts these effects in humans. The global DNA methylation levels in the peripheral blood were evaluated in 214 volunteers who were pre-hypertensive, stage-1 hypertensive or hypercholesterolemic. The volunteers were divided into two groups: 110 subjects who consumed cocoa (6 g/d for two weeks and 104 control subjects. In addition, the peripheral blood mononuclear cells (PBMCs from six subjects were treated with a cocoa extract to analyze the mRNA levels of the DNA methyltransferases (DNMTs, methylenetetrahydrofolate reductase (MTHFR, and methionine synthase reductase (MTRR genes. Cocoa consumption significantly reduced the DNA methylation levels (2.991±0.366 vs. 3.909±0.380, p<0.001. Additionally, we found an association between the cocoa effects on DNA methylation and three polymorphisms located in the MTHFR, MTRR, and DNMT3B genes. Furthermore, in PBMCs, the cocoa extract significantly lowered the mRNA levels of the DNMTs, MTHFR, and MTRR. Our study demonstrates for the first time that the consumption of cocoa decreases the global DNA methylation of peripheral leukocytes in humans with cardiovascular risk factors. In vitro experiments with PBMCs suggest that cocoa may exert this effect partially via the down-regulation of DNMTs, MTHFR and MTRR, which are key genes involved in this epigenetic process.Clinicaltrials.govNCT00511420 and NCT00502047.

  20. Diverse and Tissue Specific Mitochondrial Respiratory Response in A Mouse Model of Sepsis-Induced Multiple Organ Failure

    DEFF Research Database (Denmark)

    Karlsson, Michael; Hara, Naomi; Morata, Saori;

    2016-01-01

    Mitochondrial function is thought to play a role in sepsis-induced multiple organ failure. However, the temporal and organ specific alterations in mitochondrial function has yet to be fully elucidated. Many studies show reduced phosphorylating capacity while others have indicated that mitochondrial...... respiration is enhanced. The objective of the study was to evaluate the temporal dynamics of brain and liver mitochondrial function in a mouse model of sepsis.Sepsis was induced by cecal ligation and puncture. Controls were sham operated. Using high-resolution respirometry, brain and liver homogenates from 31...... C57BL/6 mice were analyzed at either 6 hours or 24 hours. ROS-production was simultaneously measured in brain samples using fluorometry.Septic brain tissue exhibited an early increased uncoupling of respiration. Temporal changes between the two time points were diminutive and no difference in ROS...

  1. Altered DNA methylation patterns of the H19 differentially methylated region and the DAZL gene promoter are associated with defective human sperm.

    Directory of Open Access Journals (Sweden)

    Bo Li

    Full Text Available DNA methylation disturbance is associated with defective human sperm. However, oligozoospermia (OZ and asthenozoospermia (AZ usually present together, and the relationship between the single-phenotype defects in human sperm and DNA methylation is poorly understood. In this study, 20 infertile OZ patients and 20 infertile AZ patients were compared with 20 fertile normozoospermic men. Bisulfate-specific PCR was used to analyze DNA methylation of the H19-DMR and the DAZL promoter in these subjects. A similar DNA methylation pattern of the H19-DMR was detected in AZ and NZ(control, with only complete methylation and mild hypomethylation(0.05. However, the methylation pattern of severe hypomethylation (>50% unmethylated CpGs and complete unmethylation was only detected in 5 OZ patients, and the occurrence of these two methylation patterns was 8.54±10.86% and 9±6.06%, respectively. Loss of DNA methylation of the H19-DMR in the OZ patients was found to mainly occur in CTCF-binding site 6, with occurrence of 18.15±14.71%, which was much higher than that in patients with NZ (0.84±2.05% and AZ (0.58±1.77% (P20% methylated clones in the DAZL promoter only in infertile patients, there was no significant difference between the AZ and OZ patients in the proportion of moderately-to-severely hypermethylated clones (p>0.05. In all cases, global sperm genome methylation analyses, using LINE1 transposon as the indicator, showed that dysregulation of DNA methylation is specifically associated with the H19-DMR and DAZL promoter. Therefore, abnormal DNA methylation status of H19-DMR, especially at the CTCF-binding site 6, is closely associated with OZ. Abnormal DNA methylation of the DAZL promoter might represent an epigenetic marker of male infertility.

  2. The L84F polymorphic variant of human O6-methylguanine-DNA methyltransferase alters stability in U87MG glioma cells but not temozolomide sensitivity

    OpenAIRE

    Remington, Maya; Chtchetinin, Jana; Ancheta, Karen; Nghiemphu, Phioanh Leia; Cloughesy, Timothy; Lai, Albert

    2009-01-01

    First-line therapy for patients with glioblastoma multiforme includes treatment with radiation and temozolomide (TMZ), an oral DNA alkylating chemotherapy. Sensitivity of glioma cells to TMZ is dependent on the level of cellular O6-methylguanine-DNA methyltransferase (MGMT) repair activity. Several common coding- region polymorphisms in the MGMT gene (L84F and the linked pair I143V/K178R) modify functional characteristics of MGMT and cancer risk. To determine whether these polymorphic changes...

  3. Abnormal Localization and Tumor Suppressor Function of Epithelial Tissue-Specific Transcription Factor ESE3 in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Wang, Li; Xing, Jie; Cheng, Rui; Shao, Ying; Li, Peng; Zhu, Shengtao; Zhang, Shutian

    2015-01-01

    Esophageal cancer is one of the most common malignant cancers worldwide. The molecular mechanism of esophageal squamous cell carcinoma (ESCC) is still poorly understood. ESE3 is a member of the Ets transcription family, which is only expressed in epithelial tissues and acts as a tumor suppressor gene in prostate cancer. Our study aim was to confirm whether ESE3 is involved in the carcinogenesis of ESCC. Immunohistochemical analysis revealed that ESE3 was mainly located in cell nuclei of normal tissues and the cytoplasm in ESCC tissues. Immunofluorescence and western blot analyses of the normal esophageal cell line HEEpiC and ESCC cell lines EC9706 TE-1, KYSE150, and KYSE410 confirmed these results. pEGFP-ESE3 and pcDNA3.1-V5/HisA-ESE3 plasmids were constructed for overexpression of ESE3 in EC9706 and KYSE150 cells. The stably transfected cells showed restoration of the nuclear localization of ESE3. EC9706 cells with re-localization of ESE3 to the nucleus showed inhibition of proliferation, colony formation, migration, and invasion. To explore the possible mechanism of the differences in localization of ESE3 in normal esophageal cells and ESCC cells, ESCC cell lines were treated with the nuclear export inhibitor leptomycin B, transcription inhibitor actinomycin D, PKC inhibitor sphinganine, P38 MAPK inhibitor SB202190, and CK II inhibitor TBCA. These reagents were chosen according to the well-known mechanisms of protein translocation. However, the localization of ESE3 was unchanged after these treatments. The sequence of ESE3 cDNA in ESCC cells was identical to the standard sequence of ESE3 in the NCBI Genebank database, indicating that there was no mutation in the coding region of ESE3 in ESCC. Taken together, our study suggests that ESE3 plays an important role in the carcinogenesis of ESCC through changes in subcellular localization and may act as a tumor suppressor gene in ESCC, although the mechanisms require further study.

  4. Abnormal Localization and Tumor Suppressor Function of Epithelial Tissue-Specific Transcription Factor ESE3 in Esophageal Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Esophageal cancer is one of the most common malignant cancers worldwide. The molecular mechanism of esophageal squamous cell carcinoma (ESCC is still poorly understood. ESE3 is a member of the Ets transcription family, which is only expressed in epithelial tissues and acts as a tumor suppressor gene in prostate cancer. Our study aim was to confirm whether ESE3 is involved in the carcinogenesis of ESCC. Immunohistochemical analysis revealed that ESE3 was mainly located in cell nuclei of normal tissues and the cytoplasm in ESCC tissues. Immunofluorescence and western blot analyses of the normal esophageal cell line HEEpiC and ESCC cell lines EC9706 TE-1, KYSE150, and KYSE410 confirmed these results. pEGFP-ESE3 and pcDNA3.1-V5/HisA-ESE3 plasmids were constructed for overexpression of ESE3 in EC9706 and KYSE150 cells. The stably transfected cells showed restoration of the nuclear localization of ESE3. EC9706 cells with re-localization of ESE3 to the nucleus showed inhibition of proliferation, colony formation, migration, and invasion. To explore the possible mechanism of the differences in localization of ESE3 in normal esophageal cells and ESCC cells, ESCC cell lines were treated with the nuclear export inhibitor leptomycin B, transcription inhibitor actinomycin D, PKC inhibitor sphinganine, P38 MAPK inhibitor SB202190, and CK II inhibitor TBCA. These reagents were chosen according to the well-known mechanisms of protein translocation. However, the localization of ESE3 was unchanged after these treatments. The sequence of ESE3 cDNA in ESCC cells was identical to the standard sequence of ESE3 in the NCBI Genebank database, indicating that there was no mutation in the coding region of ESE3 in ESCC. Taken together, our study suggests that ESE3 plays an important role in the carcinogenesis of ESCC through changes in subcellular localization and may act as a tumor suppressor gene in ESCC, although the mechanisms require further study.

  5. Brief Report: Alternative Splicing of Extra Domain A (EIIIA) of Fibronectin Plays a Tissue-Specific Role in Hematopoietic Homeostasis.

    Science.gov (United States)

    Malara, Alessandro; Gruppi, Cristian; Celesti, Giuseppe; Romano, Bina; Laghi, Luigi; De Marco, Luigi; Muro, Andrés F; Balduini, Alessandra

    2016-08-01

    Fibronectin (FN) is a major extracellular matrix protein implicated in cell adhesion and differentiation in the bone marrow (BM) environment. Alternative splicing of FN gene results in the generation of protein variants containing an additional EIIIA domain that sustains cell proliferation or differentiation during physiological or pathological tissue remodeling. To date its expression and role in adult hematopoiesis has not been explored. In our research, we demonstrate that during physiological hematopoiesis a small fraction of BM derived FN contains the EIIIA domain and that mice constitutively including (EIIIA(+/+) ) or excluding (EIIIA(-/-) ) the EIIIA exon present comparable levels of hematopoietic stem cells, myeloid and lymphoid progenitors within BM. Moreover, only minor alterations were detected in blood parameters and in hematopoietic frequencies of BM granulocytes/monocytes and B cells. As opposed to other tissues, unique compensatory mechanisms, such as increased FN accumulation and variable expression of the EIIIA receptors, Toll like receptor-4 and alpha9 integrin subunit, characterized the BM of these mice. Our data demonstrate that FN is a fundamental component of the hematopoietic tissue and that the EIIIA exon may play a key role in modulating hematopiesis in conditions of BM stress or diseases. Stem Cells 2016;34:2263-2268. PMID:27090359

  6. Clustering of tissue-specific sub-TADs accompanies the regulation of HoxA genes in developing limbs.

    Directory of Open Access Journals (Sweden)

    Soizik Berlivet

    Full Text Available HoxA genes exhibit central roles during development and causal mutations have been found in several human syndromes including limb malformation. Despite their importance, information on how these genes are regulated is lacking. Here, we report on the first identification of bona fide transcriptional enhancers controlling HoxA genes in developing limbs and show that these enhancers are grouped into distinct topological domains at the sub-megabase scale (sub-TADs. We provide evidence that target genes and regulatory elements physically interact with each other through contacts between sub-TADs rather than by the formation of discreet "DNA loops". Interestingly, there is no obvious relationship between the functional domains of the enhancers within the limb and how they are partitioned among the topological domains, suggesting that sub-TAD formation does not rely on enhancer activity. Moreover, we show that suppressing the transcriptional activity of enhancers does not abrogate their contacts with HoxA genes. Based on these data, we propose a model whereby chromatin architecture defines the functional landscapes of enhancers. From an evolutionary standpoint, our data points to the convergent evolution of HoxA and HoxD regulation in the fin-to-limb transition, one of the major morphological innovations in vertebrates.

  7. Androgen and taxol cause cell type-specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cells

    Science.gov (United States)

    Schatten, H.; Ripple, M.; Balczon, R.; Weindruch, R.; Chakrabarti, A.; Taylor, M.; Hueser, C. N.

    2000-01-01

    We investigated the effects of androgen and taxol on the androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cell lines. Cells were treated for 48 and 72 h with 0.05-1 nM of the synthetic androgen R1881 and with 100 nM taxol. Treatment of LNCaP cells with 0.05 nM R1881 led to increased cell proliferation, whereas treatment with 1 nM R1881 resulted in inhibited cell division, DNA cycle arrest, and altered centrosome organization. After treatment with 1 nM R1881, chromatin became clustered, nuclear envelopes convoluted, and mitochondria accumulated around the nucleus. Immunofluorescence microscopy with antibodies to centrosomes showed altered centrosome structure. Although centrosomes were closely associated with the nucleus in untreated cells, they dispersed into the cytoplasm after treatment with 1 nM R1881. Microtubules were only faintly detected in 1 nM R1881-treated LNCaP cells. The effects of taxol included microtubule bundling and altered mitochondria morphology, but not DNA organization. As expected, the androgen-independent prostate cancer cell line DU145 was not affected by R1881. Treatment with taxol resulted in bundling of microtubules in both cell lines. Additional taxol effects were seen in DU145 cells with micronucleation of DNA, an indication of apoptosis. Simultaneous treatment with R1881 and taxol had no additional effects on LNCaP or DU145 cells. These results suggest that LNCaP and DU145 prostate cancer cells show differences not only in androgen responsiveness but in sensitivity to taxol as well. Copyright 2000 Wiley-Liss, Inc.

  8. Pref-1 in brown adipose tissue: specific involvement in brown adipocyte differentiation and regulatory role of C/EBPδ.

    Science.gov (United States)

    Armengol, Jordi; Villena, Josep A; Hondares, Elayne; Carmona, María C; Sul, Hei Sook; Iglesias, Roser; Giralt, Marta; Villarroya, Francesc

    2012-05-01

    Pref-1 (pre-adipocyte factor-1) is known to play a central role in regulating white adipocyte differentiation, but the role of Pref-1 in BAT (brown adipose tissue) has not been analysed. In the present study we found that Pref-1 expression is high in fetal BAT and declines progressively after birth. However, Pref-1-null mice showed unaltered fetal development of BAT, but exhibited signs of over-activation of BAT thermogenesis in the post-natal period. In C/EBP (CCAAT/enhancer-binding protein) α-null mice, a rodent model of impaired fetal BAT differentiation, Pref-1 was dramatically overexpressed, in association with reduced expression of the Ucp1 (uncoupling protein 1) gene, a BAT-specific marker of thermogenic differentiation. In brown adipocyte cell culture models, Pref-1 was mostly expressed in pre-adipocytes and declined with brown adipocyte differentiation. The transcription factor C/EBPδ activated the Pref-1 gene transcription in brown adipocytes, through binding to the proximal promoter region. Accordingly, siRNA (small interfering RNA)-induced C/EBPδ knockdown led to reduced Pref-1 gene expression. This effect is consistent with the observed overexpression of C/EBPδ in C/EBPα-null BAT and high expression of C/EBPδ in brown pre-adipocytes. Dexamethasone treatment of brown pre-adipocytes suppressed Pref-1 down-regulation occurring throughout the brown adipocyte differentiation process, increased the expression of C/EBPδ and strongly impaired expression of the thermogenic markers UCP1 and PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator-α]. However, it did not alter normal fat accumulation or expression of non-BAT-specific genes. Collectively, these results specifically implicate Pref-1 in controlling the thermogenic gene expression program in BAT, and identify C/EBPδ as a novel transcriptional regulator of Pref-1 gene expression that may be related to the specific role of glucocorticoids in BAT differentiation.

  9. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats.

    Directory of Open Access Journals (Sweden)

    Asmita Kulkarni

    Full Text Available Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B(12 are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B(12 deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B(12 deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B(12 lowers plasma and placental DHA levels (p<0.05 and reduces global DNA methylation levels (p<0.05. When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.

  10. Highly interactive nature of flower-specific enhancers and promoters, and its potential impact on tissue-specific expression and engineering of multiple genes or agronomic traits.

    Science.gov (United States)

    Wen, Zhifeng; Yang, Yazhou; Zhang, Jinjin; Wang, Xiping; Singer, Stacy; Liu, Zhongchi; Yang, Yingjun; Yan, Guohua; Liu, Zongrang

    2014-09-01

    Molecular stacking enables multiple traits to be effectively engineered in crops using a single vector. However, the co-existence of distinct plant promoters in the same transgenic unit might, like their mammalian counterparts, interfere with one another. In this study, we devised a novel approach to investigate enhancer-promoter and promoter-promoter interactions in transgenic plants and demonstrated that three of four flower-specific enhancer/promoters were capable of distantly activating a pollen- and stigma-specific Pps promoter (fused to the cytotoxic DT-A gene) in other tissues, as revealed by novel tissue ablation phenotypes in transgenic plants. The NtAGI1 enhancer exclusively activated stamen- and carpel-specific DT-A expression, thus resulting in tissue ablation in an orientation-independent manner; this activation was completely abolished by the insertion of an enhancer-blocking insulator (EXOB) between the NtAGI1 enhancer and Pps promoter. Similarly, AGL8 and AP1Lb1, but not AP1La, promoters also activated distinct tissue-specific DT-A expression and ablation, with the former causing global growth retardation and the latter ablating apical inflorescences. While the tissue specificity of the enhancer/promoters generally defined their activation specificities, the strength of their activity in particular tissues or developmental stages appeared to determine whether activation actually occurred. Our findings provide the first evidence that plant-derived enhancer/promoters can distantly interact/interfere with one another, which could pose potential problems for the tissue-specific engineering of multiple traits using a single-vector stacking approach. Therefore, our work highlights the importance of adopting enhancer-blocking insulators in transformation vectors to minimize promoter-promoter interactions. The practical and fundamental significance of these findings will be discussed.

  11. hSAGEing: an improved SAGE-based software for identification of human tissue-specific or common tumor markers and suppressors.

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    Full Text Available BACKGROUND: SAGE (serial analysis of gene expression is a powerful method of analyzing gene expression for the entire transcriptome. There are currently many well-developed SAGE tools. However, the cross-comparison of different tissues is seldom addressed, thus limiting the identification of common- and tissue-specific tumor markers. METHODOLOGY/PRINCIPAL FINDINGS: To improve the SAGE mining methods, we propose a novel function for cross-tissue comparison of SAGE data by combining the mathematical set theory and logic with a unique "multi-pool method" that analyzes multiple pools of pair-wise case controls individually. When all the settings are in "inclusion", the common SAGE tag sequences are mined. When one tissue type is in "inclusion" and the other types of tissues are not in "inclusion", the selected tissue-specific SAGE tag sequences are generated. They are displayed in tags-per-million (TPM and fold values, as well as visually displayed in four kinds of scales in a color gradient pattern. In the fold visualization display, the top scores of the SAGE tag sequences are provided, along with cluster plots. A user-defined matrix file is designed for cross-tissue comparison by selecting libraries from publically available databases or user-defined libraries. CONCLUSIONS/SIGNIFICANCE: The hSAGEing tool provides a combination of friendly cross-tissue analysis and an interface for comparing SAGE libraries for the first time. Some up- or down-regulated genes with tissue-specific or common tumor markers and suppressors are identified computationally. The tool is useful and convenient for in silico cancer transcriptomic studies and is freely available at http://bio.kuas.edu.tw/hSAGEing.

  12. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Rouzbeh Taghizadeh

    Full Text Available A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+.We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone.The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  13. Tissue-Specific Signatures in the Transcriptional Response to Anaplasma phagocytophilum Infection of Ixodes scapularis and Ixodes ricinus Tick Cell Lines

    Science.gov (United States)

    Alberdi, Pilar; Mansfield, Karen L.; Manzano-Román, Raúl; Cook, Charlotte; Ayllón, Nieves; Villar, Margarita; Johnson, Nicholas; Fooks, Anthony R.; de la Fuente, José

    2016-01-01

    Anaplasma phagocytophilum are transmitted by Ixodes spp. ticks and have become one of the most common and relevant tick-borne pathogens due to their impact on human and animal health. Recent results have increased our understanding of the molecular interactions between Ixodes scapularis and A. phagocytophilum through the demonstration of tissue-specific molecular pathways that ensure pathogen infection, development and transmission by ticks. However, little is known about the Ixodes ricinus genes and proteins involved in the response to A. phagocytophilum infection. The tick species I. scapularis and I. ricinus are evolutionarily closely related and therefore similar responses are expected in A. phagocytophilum-infected cells. However, differences may exist between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cells associated with tissue-specific signatures of these cell lines. To address this hypothesis, the transcriptional response to A. phagocytophilum infection was characterized by RNA sequencing and compared between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cell lines. The transcriptional response to infection of I. scapularis ISE6 cells resembled that of tick hemocytes while the response in I. ricinus IRE/CTVM20 cells was more closely related to that reported previously in infected tick midguts. The inhibition of cell apoptosis by A. phagocytophilum appears to be a key adaptation mechanism to facilitate infection of both vertebrate and tick cells and was used to investigate further the tissue-specific response of tick cell lines to pathogen infection. The results supported a role for the intrinsic pathway in the inhibition of cell apoptosis by A. phagocytophilum infection of I. scapularis ISE6 cells. In contrast, the results in I. ricinus IRE/CTVM20 cells were similar to those obtained in tick midguts and suggested a role for the JAK/STAT pathway in the inhibition of apoptosis in tick cells infected with A. phagocytophilum. Nevertheless, tick

  14. Tissue-Specific Signatures in the Transcriptional Response to Anaplasma phagocytophilum Infection of Ixodes scapularis and Ixodes ricinus Tick Cell Lines.

    Science.gov (United States)

    Alberdi, Pilar; Mansfield, Karen L; Manzano-Román, Raúl; Cook, Charlotte; Ayllón, Nieves; Villar, Margarita; Johnson, Nicholas; Fooks, Anthony R; de la Fuente, José

    2016-01-01

    Anaplasma phagocytophilum are transmitted by Ixodes spp. ticks and have become one of the most common and relevant tick-borne pathogens due to their impact on human and animal health. Recent results have increased our understanding of the molecular interactions between Ixodes scapularis and A. phagocytophilum through the demonstration of tissue-specific molecular pathways that ensure pathogen infection, development and transmission by ticks. However, little is known about the Ixodes ricinus genes and proteins involved in the response to A. phagocytophilum infection. The tick species I. scapularis and I. ricinus are evolutionarily closely related and therefore similar responses are expected in A. phagocytophilum-infected cells. However, differences may exist between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cells associated with tissue-specific signatures of these cell lines. To address this hypothesis, the transcriptional response to A. phagocytophilum infection was characterized by RNA sequencing and compared between I. scapularis ISE6 and I. ricinus IRE/CTVM20 tick cell lines. The transcriptional response to infection of I. scapularis ISE6 cells resembled that of tick hemocytes while the response in I. ricinus IRE/CTVM20 cells was more closely related to that reported previously in infected tick midguts. The inhibition of cell apoptosis by A. phagocytophilum appears to be a key adaptation mechanism to facilitate infection of both vertebrate and tick cells and was used to investigate further the tissue-specific response of tick cell lines to pathogen infection. The results supported a role for the intrinsic pathway in the inhibition of cell apoptosis by A. phagocytophilum infection of I. scapularis ISE6 cells. In contrast, the results in I. ricinus IRE/CTVM20 cells were similar to those obtained in tick midguts and suggested a role for the JAK/STAT pathway in the inhibition of apoptosis in tick cells infected with A. phagocytophilum. Nevertheless, tick

  15. The interplay between SUCLA2, SUCLG2, and mitochondrial DNA depletion

    DEFF Research Database (Denmark)

    Miller, Chaya; Wang, Liya; Ostergaard, Elsebet;

    2011-01-01

    SUCLA2-related mitochondrial DNA (mtDNA) depletion syndrome is a result of mutations in the β subunit of the ADP-dependent isoform of the Krebs cycle succinyl-CoA synthase (SCS). The mechanism of tissue specificity and mtDNA depletion is elusive but complementation by the GDP-dependent isoform...

  16. Altered Function of the DnaJ Family Cochaperone DNJ-17 Modulates Locomotor Circuit Activity in a Caenorhabditis elegans Seizure Model

    Science.gov (United States)

    Takayanagi-Kiya, Seika; Jin, Yishi

    2016-01-01

    The highly conserved cochaperone DnaJ/Hsp40 family proteins are known to interact with molecular chaperone Hsp70, and can regulate many cellular processes including protein folding, translocation, and degradation. In studies of Caenorhabditis elegans locomotion mutants, we identified a gain-of-function (gf) mutation in dnj-17 closely linked to the widely used e156 null allele of C. elegans GAD (glutamic acid decarboxylase) unc-25. dnj-17 encodes a DnaJ protein orthologous to human DNAJA5. In C. elegans DNJ-17 is a cytosolic protein and is broadly expressed in many tissues. dnj-17(gf) causes a single amino acid substitution in a conserved domain, and behaves as a hypermorphic mutation. The effect of this dnj-17(gf) is most prominent in mutants lacking GABA synaptic transmission. In a seizure model caused by a mutation in the ionotropic acetylcholine receptor acr-2(gf), dnj-17(gf) exacerbates the convulsion phenotype in conjunction with absence of GABA. Null mutants of dnj-17 show mild resistance to aldicarb, while dnj-17(gf) is hypersensitive. These results highlight the importance of DnaJ proteins in regulation of C. elegans locomotor circuit, and provide insights into the in vivo roles of DnaJ proteins in humans. PMID:27185401

  17. Replacement of the C-terminal tetrapeptide (314PAPV317 to 314SSSM317) in interferon regulatory factor-2 alters its N-terminal DNA-binding activity

    Indian Academy of Sciences (India)

    Krishna Prakash; Pramod C Rath

    2010-12-01

    Interferon regulatory factor-2 (IRF-2) is an important transcription factor involved in cell growth regulation, immune response and cancer. IRF-2 can function as a transcriptional repressor and activator depending on its DNA-binding activity and protein–protein interactions. We compared the amino acid sequences of IRF-2 and found a C-terminal tetrapeptide (314PAPV317) of mouse IRF-2 to be different (314SSSM317) from human IRF-2. Recombinant GST-IRF-2 with 314PAPV317 (wild type) and 314SSSM317 (mutant) expressed in Escherichia coli were assessed for DNA-binding activity with 32P-(GAAAGT)4 by electrophoretic mobility shift assay (EMSA). Wild type- and mutant GST-IRF-2 showed similar expression patterns and immunoreactivities but different DNA-binding activities. Mutant (mt) IRF-2 formed higher-molecular-mass, more and stronger DNA–protein complexes in comparison to wild type (wt) IRF-2. Anti-IRF-2 antibody stabilized the DNA–protein complexes formed by both wt IRF-2 and mt IRF-2, resolving the differences. This suggests that PAPV and SSSM sequences at 314-317 in the C-terminal region of mouse and human IRF-2 contribute to conformation of IRF-2 and influence DNA-binding activity of the N-terminal region, indicating intramolecular interactions. Thus, evolution of IRF-2 from murine to human genome has resulted in subtle differences in C-terminal amino acid motifs, which may contribute to qualitative changes in IRF-2-dependent DNA-binding activity and gene expression.

  18. Differential domain evolution and complex RNA processing in a family of paralogous EPB41 (protein 4.1) genes facilitates expression of diverse tissue-specific isoforms

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Marilyn; Gee, Sherry; Chan, Nadine; Ryaboy, Dmitriy; Dubchak, Inna; Narla, Mohandas; Gascard, Philippe D.; Conboy, John G.

    2004-07-15

    The EPB41 (protein 4.1) genes epitomize the resourcefulness of the mammalian genome to encode a complex proteome from a small number of genes. By utilizing alternative transcriptional promoters and tissue-specific alternative pre-mRNA splicing, EPB41, EPB41L2, EPB41L3, and EPB41L1 encode a diverse array of structural adapter proteins. Comparative genomic and transcript analysis of these 140kb-240kb genes indicates several unusual features: differential evolution of highly conserved exons encoding known functional domains, interspersed with unique exons whose size and sequence variations contribute substantially to intergenic diversity: alternative first exons, most of which map far upstream of the coding regions; and complex tissue-specific alternative pre-mRNA splicing that facilitates synthesis of functionally different complements of 4.1 proteins in various cells. Understanding the splicing regulatory networks that control protein 4.1 expression will be critical to a full appreciation of the many roles of 4.1 proteins in normal cell biology and their proposed roles in human cancer.

  19. sek-1 is important in tissue-specific regulation of innate immunity during the Xoo infection in the model host Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Y Bai

    2014-08-01

    Full Text Available Xanthomonas oryzae pv. Oryzae (Xoo are plant pathogenic bacteria that can cause serious blight of rice. We have demonstrated that Xoo can infect the model organism C. elegans and p38 MAPK pathway plays specific roles in defense against the pathogen in our previous paper. Based on that p38 MAPK pathway can be activated in a range of tissues, it is intriguing to compare the tissue-specific activities of this pathway in host innate immunity. Here, transgenic worms that sek-1 expressed specifically in neurons system, ciliated sensory neurons, and intestine respectively are used to determine the nematode survival and transcriptional levels of immune-related genes. We report that SEK-1 and TOL-1 are not involved in C. elegans avoidance behavior, and ingestion of nematodes is related to the aversion and also the characteristics of bacteria. In addition, tol-1 and sek-1 participate the immune response to the infection by Xoo; sek-1 also exhibits tissue-specific activities in host innate immunity. Our findings suggest that overlapping immune effect may exist between the tol-1 and sek-1.

  20. Expression of Glutamine Transporter Slc38a3 (SNAT3 During Acidosis is Mediated by a Different Mechanism than Tissue-Specific Expression

    Directory of Open Access Journals (Sweden)

    Sarojini Balkrishna

    2014-05-01

    Full Text Available Background: Despite homeostatic pH regulation, systemic and cellular pH changes take place and strongly influence metabolic processes. Transcription of the glutamine transporter SNAT3 (Slc38a3 for instance is highly up-regulated in the kidney during metabolic acidosis to provide glutamine for ammonia production. Methods: Slc38a3 promoter activity and messenger RNA stability were measured in cultured cells in response to different extracellular pH values. Results: Up-regulation of SNAT3 mRNA was mediated both by the stabilization of its mRNA and by the up-regulation of gene transcription. Stabilisation of the mRNA involved a pH-response element, while enhanced transcription made use of a second pH-sensitive Sp1 binding site in addition to a constitutive Sp1 binding site. Transcriptional regulation dominated the early response to acidosis, while mRNA stability was more important for chronic adaptation. Tissue-specific expression of SNAT3, by contrast, appeared to be controlled by promoter methylation and histone modifications. Conclusions: Regulation of SNAT3 gene expression by extracellular pH involves post-transcriptional and transcriptional mechanisms, the latter being distinct from the mechanisms that control the tissue-specific expression of the gene.

  1. Green synthesis of anticancerous honeycomb PtNPs clusters: Their alteration effect on BSA and HsDNA using fluorescence probe.

    Science.gov (United States)

    Pansare, Amol V; Kulal, Dnyaneshwar K; Shedge, Amol A; Patil, Vishwanath R

    2016-09-01

    The screening and characterization of cancer cells has been challenging due to sample insufficiency and extravagant. In this article, we highlighted easy green synthesis of Platinum nanoparticles (PtNPs) in the honeycomb like clusters, and their optical properties (by HRTEM, XRD, DLS, Zeta potential, EDAX, and UV-Visible techniques). PtNPs were responsive of binding mechanisms with the bovine serum albumin (BSA), herring sperm deoxyribonucleic acid (HsDNA) and cytotoxicity of human carcinomas cell. We are able to elucidate the responses of various concentrations of PtNPs for the control of MDA-MB-468 cell and binding conformation of BSA and HsDNA by using multi-spectroscopic techniques under the physiological conditions. The extent of quenching was in agreement of PtNPs-BSA binding reaction was mainly a static. The Ksv, K, the number of binding sites at different temperatures and the thermodynamic parameters between BSA and PtNPs were calculated. The positive ΔS(0) and negative ΔH(0), ΔG(0) values indicated that the binding pattern was determined by spontaneous hydrogen bond electrostatic interaction of BSA with esterage like activity. The binding properties of the PtNPs with HsDNA have been investigated by thermal denaturation, competitive DNA-binding studies with ethidium bromide (EB), Hochest-33258 and relative viscosity. The negative ΔH(0), ΔS(0) and ΔG(0) values indicated that the hydrophilic interaction were main force in spontaneity in binding mechanism of PtNPs to HsDNA. GI50 value of PtNPs demonstrated that these nanoparticles showed cytotoxicity against MDA-MB-468 human breast cancer cell line. Our results also clarified that PtNPs bind to BSA and can be effectively transported in the body and eliminated. PtNPs showed minor groove binding with HsDNA, which could be a useful guideline for further versatile approach to develop biomedical coatings with different functions of drug design.

  2. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    Science.gov (United States)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  3. Alterations in benzo(A)pyrene metabolism and in vivo binding to hepatic DNA in rats red diets containing menhaden oil

    Energy Technology Data Exchange (ETDEWEB)

    Wade, A.E.; Dharwadkar, S.

    1987-01-01

    Polyunsaturated fatty acids of the omega-6 type have been shown to support the mixed function oxidases (MFO) responsible for carcinogen activation and to promote tumorigenesis in laboratory animals. The omega-3 fatty acids contained in menhaden oil (MO) have been shown to enhance MFO activity and increase the binding of Benzo(a)pyrene (B(a)P) metabolites to calf thymus DNA in an in vitro microsomal system. Rats fed two levels of MO (0.5% and 20%) for 11 days received a single i.p. dose of (/sup 3/H)B(a)P (5 m Ci/kg) dissolved in DMSO. At selected time intervals thereafter rats were killed, blood withdrawn, livers removed and DNA extracted. Hepatic microsomes were recovered from control rats on each diet at the time of B(a)P administration to assess MFO activities. Binding of B(a)P to DNA was higher in rats fed the 20% MO diet suggesting an increased rate of B(a)P activation. Blood levels of B(a)P were elevated at 16 and 24 hours post B(a)P, however no differences in urine concentrations were observed. Elevations in concentration of cytochrome P-450, ethoxycoumarin dealkylase, and glutathione S-transferase suggest that omega-3 fatty acids of menhaden fish oil support MFO related reactions not unlike the omega-6 fatty acids.

  4. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    Science.gov (United States)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm‑2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  5. DNA damage and repair in plants

    International Nuclear Information System (INIS)

    The biological impact of any DNA damaging agent is a combined function of the chemical nature of the induced lesions and the efficiency and accuracy of their repair. Although much has been learned frommicrobes and mammals about both the repair of DNA damage and the biological effects of the persistence of these lesions, much remains to be learned about the mechanism and tissue-specificity of repair in plants. This review focuses on recent work on the induction and repair of DNA damage in higher plants, with special emphasis on UV-induced DNA damage products. (author)

  6. α-Fetoprotein promoter-driven Cre/LoxP-switched RNA interference for hepatocellular carcinoma tissue-specific target therapy.

    Directory of Open Access Journals (Sweden)

    Yuan-Fei Peng

    Full Text Available BACKGROUND: RNA interference (RNAi has recently emerged as a potential treatment modality for hepatocellular carcinoma (HCC therapy, but the lack of cellular targets and sustained efficacy limits its application. The purpose of this study is to develop an HCC tissue-specific RNAi system and investigate its possibility for HCC treatment. METHODS: Two different HCC-specific RNAi systems in which therapeutic miRNA or shRNA against target gene (Beclin 1 was directly or indirectly driven by alpha-fetoprotein promoter (AFP-miRNA and AFP-Cre/LoxP-shRNA were constructed. Human HCC cell lines (HepG2, Hep3B and HCCLM3 and non-HCC cell lines (L-02, Hela and SW1116 were infected with the systems. The effectiveness and tissue-specificity of the systems were examined by Q-PCR and western blot analysis. The efficacy of the systems was further tested in mouse model of HCC by intravenous or intratumoral administration. The feasibility of the system for HCC treatment was evaluated by applying the system as adjuvant therapy to enhance sorafenib treatment. An AFP-Cre/LoxP-shRNA system targeting Atg5 gene (AFP-Cre/LoxP-shRNA-Atg5 was constructed and its efficacy in sensitizing HCC cells (MHCC97L/PLC to sorafenib treatment was examined by apoptosis assay in vitro and tumorigenesis assay in vivo. RESULTS: The AFP-miRNA system could silence target gene (Beclin 1 but required a high titer which was lethal to target cells. The AFP-Cre/LoxP-shRNA system could efficiently knockdown target gene while maintain high HCC specificity. Intratumoral injection of the AFP-Cre/LoxP-shRNA system could efficiently silence target gene (Beclin 1 in vivo while intravenous administration could not. The AFP-Cre/LoxP-shRNA system target Atg5 gene could significantly sensitize MHCC97L/PLC cells to sorafenib-induced apoptosis in vitro and tumor growth suppression in vivo. CONCLUSIONS: An efficient HCC tissue-specific RNAi system (AFP-Cre/LoxP-shRNA was successfully established. The system

  7. A four step model for the IL-6 amplifier, a regulator of chromic inflammations in tissue specific MHC class II-associated autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Masaaki eMurakami

    2011-06-01

    Full Text Available It is thought autoimmune diseases are caused by the breakdown of self-tolerance, which suggests the recognition of specific antigens by autoreactive CD4+ T cells contribute to the specificity of autoimmune diseases. In several cases, however, even for diseases associated with class II MHC alleles, the causative tissue-specific antigens recognized by memory/activated CD4+ T cells have not been established. Rheumatoid arthritis (RA and arthritis in F759 knock-in mouse line (F759 mice are such examples, even though evidences support a pathogenic role for CD4+ T cells in both diseases. We have recently shown local events such as microbleeding together with an accumulation of activated CD4+ T cells in a manner independent of tissue antigen-recognitions induces arthritis in the joints of F759 mice. For example, local microbleeding-mediated CCL20 expression induced such an accumulation, causing arthritis development via chronic activation of an IL-17A-dependent IL-6 signaling amplification loop in type 1 collagen+ cells that is triggered by CD4+ T cell-derived cytokine(s such as IL-17A, which leads to the synergistic activation of STAT3 and NFκB in non hematopoietic cells in the joint. We named this loop the IL-6-mediated inflammation amplifier, or IL-6 amplifier. Thus, certain class II MHC–associated, tissue-specific autoimmune diseases may be induced by local events that cause an antigen-independent accumulation of effector CD4+ T cells followed by the induction of the IL-6 amplifier in the affected tissue. To explain this hypothesis, we have proposed a Four Step Model for MHC class II associated autoimmune diseases. The interaction of four local events results in chronic activation of the IL-6 amplifier, leading to the manifestation of autoimmune diseases. Thus, we have concluded the IL-6 amplifier is a critical regulator of chromic inflammations in tissue specific MHC class II-associated autoimmune diseases.

  8. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site.

    Science.gov (United States)

    Le François, Brice; Soo, Jeremy; Millar, Anne M; Daigle, Mireille; Le Guisquet, Anne-Marie; Leman, Samuel; Minier, Frédéric; Belzung, Catherine; Albert, Paul R

    2015-10-01

    The serotonin 1A receptor (5-HT1A), a critical regulator of the brain serotonergic tone, is implicated in major depressive disorder (MDD) where it is often found to be dys-regulated. However, the extent to which stress and antidepressant treatment impact 5-HT1A expression in adults remains unclear. To address this issue, we subjected adult male BALB/c mice to unpredictable chronic mild stress (UCMS) to induce a depression-like phenotype that was reversed by chronic treatment with the antidepressant imipramine. In prefrontal cortex (PFC) and midbrain tissue, UCMS increased 5-HT1A RNA and protein levels, changes that are expected to decrease the brain serotonergic activity. The stress-induced increase in 5-HT1A expression was paralleled by a specific increase in DNA methylation of the conserved -681 CpG promoter site, located within a Sp1-like element. We show that the -681 CpG site is recognized and repressed by Sp4, the predominant neuronal Sp1-like factor and that Sp4-induced repression is attenuated by DNA methylation, despite a stress-induced increase in PFC Sp4 levels. These results indicate that adult life stress induces DNA methylation of a conserved promoter site, antagonizing Sp4 repression to increase 5-HT1A expression. Chronic imipramine treatment fully reversed the UCMS-induced increase in methylation of the -681 CpG site in the PFC but not midbrain of stressed animals and also increased 5-HT1A expression in the PFC of control animals. Incomplete reversal by imipramine of stress-induced changes in 5-HT1A methylation and expression indicates a persistence of stress vulnerability, and that sustained reversal of behavioral impairments may require additional pathways. PMID:26188176

  9. The alteration in the architecture of a T-DNA insertion rice mutant osmtd1 is caused by up-regulation of MicroRNA156f

    Institute of Scientific and Technical Information of China (English)

    Qing Liu; and Langtao Xiao; Gezhi Shen; Keqin Peng; Zhigang Huang; Jianhua Tong; Mohammed Humayun Kabir; Jianhui Wang; Jingzhe Zhang; Genji Qin

    2015-01-01

    Plant architecture is an important factor for crop production. Some members of microRNA156 (miR156) and their target genes SQUAMOSA Promoter-Binding Protein-Like (SPL) were identified to play essential roles in the establish-ment of plant architecture. However, the roles and regulation of miR156 is not well understood yet. Here, we identified a T-DNA insertion mutant Osmtd1 (Oryza sativa multi-tillering and dwarf mutant). Osmtd1 produced more tillers and displayed short stature phenotype. We determined that the dramatic morphological changes were caused by a single T-DNA insertion in Osmtd1. Further analysis revealed that the T-DNA insertion was located in the gene Os08g34258 encoding a putative inhibitor I family protein. Os08g34258 was knocked out and OsmiR156f was significantly upregulated in Osmtd1. Overexpression of Os08g34258 in Osmtd1 com-plemented the defects of the mutant architecture, while overexpression of OsmiR156f in wild-type rice phenocopied Osmtd1. We showed that the expression of OsSPL3, OsSPL12, and OsSPL14 were significantly downregulated in Osmtd1 or OsmiR156f overexpressed lines, indicating that OsSPL3, OsSPL12, and OsSPL14 were possibly direct target genes of OsmiR156f. Our results suggested that OsmiR156f controlled plant architecture by mediating plant stature and tiller outgrowth and may be regulated by an unknown protease inhibitor I family protein.

  10. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression.

    Directory of Open Access Journals (Sweden)

    Steven W Paugh

    2016-02-01

    Full Text Available MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10(-16 for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.

  11. Alterations in [3H] thymidine incorporation into DNA and [3H] uridine incorporation into RNA induced by 5-azacytidine in vivo

    International Nuclear Information System (INIS)

    Administration in vivo 5-azacytidine (5-aza-CR) caused suppression of [3H] thymidine ([3H]TdR) incorporation into DNA of bone marrow and gastrointestinal mucosa of mice and a more prolonged suppression of L1210 ascites tumor. Single doses of 5-aza-CR caused a modest and short-lived suppression of incorporation of [3H] uridine ([3H]UR) into nuclear RNA of L1210 ascites tumor cells. No suppression of [3H]UR incorporation into RNA of bone marrow or gastrointestinal mucosa was observed. L1210 tumor cells resistant to the other active cytidine analogue, cytosine arabinoside, demonstrated less disruption of [3H]TdR incorporation after exposure to 5-aza-CR, suggesting some cross resistance in the effects of these two drugs on DNA synthesis. Survival studies carried out in mice bearing both the sensitive and resistant L1210 tumor cell lines confirmed cross resistance of the anti-tumor effects of the two cytidine analogues. Second doses of 5-aza-CR, with the timing of administration based upon the differing patterns of recovery of [3H]TdR incorporation between normal tissues and tumor cells, led to a prolongation of survival in mice bearing the sensitive L1210 ascites tumor. (author)

  12. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression.

    Science.gov (United States)

    Paugh, Steven W; Coss, David R; Bao, Ju; Laudermilk, Lucas T; Grace, Christy R; Ferreira, Antonio M; Waddell, M Brett; Ridout, Granger; Naeve, Deanna; Leuze, Michael; LoCascio, Philip F; Panetta, John C; Wilkinson, Mark R; Pui, Ching-Hon; Naeve, Clayton W; Uberbacher, Edward C; Bonten, Erik J; Evans, William E

    2016-02-01

    MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA) and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR) that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident) to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, ptriplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription. PMID:26844769

  13. Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation.

    Science.gov (United States)

    Bam, Marpe; Yang, Xiaoming; Zumbrun, Elizabeth E; Zhong, Yin; Zhou, Juhua; Ginsberg, Jay P; Leyden, Quinne; Zhang, Jiajia; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2016-01-01

    Post-traumatic stress disorder patients experience chronic systemic inflammation. However, the molecular pathways involved and mechanisms regulating the expression of genes involved in inflammatory pathways in PTSD are reported inadequately. Through RNA sequencing and miRNA microarray, we identified 326 genes and 190 miRNAs that were significantly different in their expression levels in the PBMCs of PTSD patients. Expression pairing of the differentially expressed genes and miRNAs indicated an inverse relationship in their expression. Functional analysis of the differentially expressed genes indicated their involvement in the canonical pathways specific to immune system biology. DNA methylation analysis of differentially expressed genes also showed a gradual trend towards differences between control and PTSD patients, again indicating a possible role of this epigenetic mechanism in PTSD inflammation. Overall, combining data from the three techniques provided a holistic view of several pathways in which the differentially expressed genes were impacted through epigenetic mechanisms, in PTSD. Thus, analysis combining data from RNA-Seq, miRNA array and DNA methylation, can provide key evidence about dysregulated pathways and the controlling mechanism in PTSD. Most importantly, the present study provides further evidence that inflammation in PTSD could be epigenetically regulated. PMID:27510991

  14. A four-step model for the IL-6 amplifier, a regulator of chronic inflammations in tissue-specific MHC class II-associated autoimmune diseases.

    Science.gov (United States)

    Murakami, Masaaki; Hirano, Toshio

    2011-01-01

    It is commonly thought that autoimmune diseases are caused by the breakdown of self-tolerance, which suggests the recognition of specific antigens by autoreactive CD4+ T cells contribute to the specificity of autoimmune diseases (Marrack et al., 2001; Mathis and Benoist, 2004). In several cases, however, even for diseases associated with class II major histocompatibility complex (MHC) alleles, the causative tissue-specific antigens recognized by memory/activated CD4+ T cells have not been established (Mocci et al., 2000; Skapenko et al., 2005). Rheumatoid arthritis (RA) and arthritis in F759 knock-in mice (F759 mice) are such examples (Atsumi et al., 2002; Brennan et al., 2002; Falgarone et al., 2009). These include associations with class II MHC and CD4 molecules; increased numbers of memory/activated CD4+ T cells; and improved outcomes in response to suppressions and/or deficiencies in class II MHC molecules, CD4+ T cells, and the T cell survival cytokine IL-7. Regarding the development of arthritis in F759 mice, it is not only the immune system, but also non-immune tissue that are involved, indicating that the importance of their interactions (Sawa et al., 2006, 2009; Ogura et al., 2008; Hirano, 2010; Murakami et al., 2011). Furthermore, we have shown that local events such as microbleeding together with an accumulation of activated CD4+ T cells in a manner independent of tissue antigen-recognitions induces arthritis in the joints of F759 mice (Murakami et al., 2011). For example, local microbleeding-mediated CCL20 expression induce such an accumulation, causing arthritis development via chronic activation of an IL-17A-dependent IL-6 signaling amplification loop in type 1 collagen+ cells that is triggered by CD4+ T cell-derived cytokine(s) such as IL-17A, which leads to the synergistic activation of STAT3 and NFκB in non-hematopoietic cells in the joint (Murakami et al., 2011). We named this loop the IL-6-mediated inflammation amplifier, or IL-6 amplifier for

  15. From food to offspring down: tissue-specific discrimination and turn-over of stable isotopes in herbivorous waterbirds and other avian foraging guilds.

    Directory of Open Access Journals (Sweden)

    Steffen Hahn

    Full Text Available Isotopic discrimination and turn-over are fundamental to the application of stable isotope ecology in animals. However, detailed information for specific tissues and species are widely lacking, notably for herbivorous species. We provide details on tissue-specific carbon and nitrogen discrimination and turn-over times from food to blood, feathers, claws, egg tissues and offspring down feathers in four species of herbivorous waterbirds. Source-to-tissue discrimination factors for carbon (δ¹³C and nitrogen stable isotope ratios (δ¹⁵N showed little variation across species but varied between tissues. Apparent discrimination factors ranged between -0.5 to 2.5‰ for δ¹³C and 2.8 to 5.2‰ for δ¹⁵N, and were more similar between blood components than between keratinous tissues or egg tissue. Comparing these results with published data from other species we found no effect of foraging guild on discrimination factors for carbon but a significant foraging-guild effect for nitrogen discrimination factors.Turn-over of δ¹³C in tissues was most rapid in blood plasma, with a half-life of 4.3 d, whereas δ¹³C in blood cells had a half-life of approximately 32 d. Turn-over times for albumen and yolk in laying females were similar to those of blood plasma, at 3.2 and 6.0 d respectively. Within yolk, we found decreasing half-life times of δ¹³C from inner yolk (13.3 d to outer yolk (3.1 d, related to the temporal pattern of tissue formation.We found similarities in tissue-specific turn-over times across all avian species studied to date. Yet, while generalities regarding discrimination factors and tissue turn-over times can be made, a large amount of variation remains unexplained.

  16. Tissue specific localization of pectin-Ca²⁺ cross-linkages and pectin methyl-esterification during fruit ripening in tomato (Solanum lycopersicum.

    Directory of Open Access Journals (Sweden)

    Hiromi Hyodo

    Full Text Available Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE and depolymerization by polygalacturonase (PG, is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca²⁺ deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue-tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.

  17. Tissue specific localization of pectin-Ca²⁺ cross-linkages and pectin methyl-esterification during fruit ripening in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Hyodo, Hiromi; Terao, Azusa; Furukawa, Jun; Sakamoto, Naoya; Yurimoto, Hisayoshi; Satoh, Shinobu; Iwai, Hiroaki

    2013-01-01

    Fruit ripening is one of the developmental processes accompanying seed development. The tomato is a well-known model for studying fruit ripening and development, and the disassembly of primary cell walls and the middle lamella, such as through pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by polygalacturonase (PG), is generally accepted to be one of the major changes that occur during ripening. Although many reports of the changes in pectin during tomato fruit ripening are focused on the relation to softening of the pericarp or the Blossom-end rot by calcium (Ca²⁺) deficiency disorder, the changes in pectin structure and localization in each tissues during tomato fruit ripening is not well known. In this study, to elucidate the tissue-specific role of pectin during fruit development and ripening, we examined gene expression, the enzymatic activities involved in pectin synthesis and depolymerisation in fruit using biochemical and immunohistochemical analyses, and uronic acids and calcium (Ca)-bound pectin were determined by secondary ion-microprobe mass spectrometry. These results show that changes in pectin properties during fruit development and ripening have tissue-specific patterns. In particular, differential control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls of the pericarp are quite different from that of locular tissues. The Ca-binding pectin and hairy pectin in skin cell layers are important for intercellular and tissue-tissue adhesion. Maintenance of the globular form and softening of tomato fruit may be regulated by the arrangement of pectin structures in each tissue.

  18. Transcriptome-wide N⁶-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification.

    Science.gov (United States)

    Li, Yuli; Wang, Xiliang; Li, Cuiping; Hu, Songnian; Yu, Jun; Song, Shuhui

    2014-01-01

    N(6)-methyladenosine (m(6)A) is the most prevalent internal modification present in mRNAs of all higher eukaryotes. With the development of MeRIP-seq technique, in-depth identification of mRNAs with m(6)A modification becomes feasible. Here we present a transcriptome-wide m(6)A modification profiling effort for rice transcriptomes of differentiated callus and leaf, which yields 8,138 and 14,253 m(6)A-modified genes, respectively. The m(6)A peak (m(6)A-modified nucleotide position on mRNAs) distribution exhibits preference toward both translation termination and initiation sites. The m(6)A peak enrichment is negatively correlated with gene expression and weakly positively correlated with certain gene features, such as exon length and number. By comparing m(6)A-modified genes between the 2 samples, we define 1,792 and 6,508 tissue-specific m(6)A-modified genes (TSMGs) in callus and leaf, respectively. Among which, 626 and 5,509 TSMGs are actively expressed in both tissues but are selectively m(6)A-modified (SMGs) only in one of the 2 tissues. Further analyses reveal characteristics of SMGs: (1) Most SMGs are differentially expressed between callus and leaf. (2) Two conserved RNA-binding motifs, predicted to be recognized by PUM and RNP4F, are significantly over-represented in SMGs. (3) GO enrichment analysis shows that SMGs in callus mainly participate in transcription regulator/factor activity whereas SMGs in leaf are mainly involved in plastid and thylakoid. Our results suggest the presence of tissue-specific competitors involved in SMGs. These findings provide a resource for plant RNA epitranscriptomic studies and further enlarge our knowledge on the function of RNA m(6)A modification.

  19. Identification of CTLA2A, DEFB29, WFDC15B, SERPINA1F and MUP19 as Novel Tissue-Specific Secretory Factors in Mouse.

    Directory of Open Access Journals (Sweden)

    Jibin Zhang

    Full Text Available Secretory factors in animals play an important role in communication between different cells, tissues and organs. Especially, the secretory factors with specific expression in one tissue may reflect important functions and unique status of that tissue in an organism. In this study, we identified potential tissue-specific secretory factors in the fat, muscle, heart, lung, kidney and liver in the mouse by analyzing microarray data from NCBI's Gene Expression Omnibus (GEO public repository and searching and predicting their subcellular location in GeneCards and WoLF PSORT, and then confirmed tissue-specific expression of the genes using semi-quantitative PCR reactions. With this approach, we confirmed 11 lung, 7 liver, 2 heart, 1 heart and muscle, 7 kidney and 2 adipose and liver-specific secretory factors. Among these genes, 1 lung-specific gene--CTLA2A (cytotoxic T lymphocyte-associated protein 2 alpha, 3 kidney-specific genes--SERPINA1F (serpin peptidase inhibitor, Clade A, member 1F, WFDC15B (WAP four-disulfide core domain 15B and DEFB29 (defensin beta 29 and 1 liver-specific gene--MUP19 (major urinary protein 19 have not been reported as secretory factors. These genes were tagged with hemagglutinin at the 3'end and then transiently transfected to HEK293 cells. Through protein detection in cell lysate and media using Western blotting, we verified secretion of the 5 genes and predicted the potential pathways in which they may participate in the specific tissue through data analysis of GEO profiles. In addition, alternative splicing was detected in transcripts of CTLA2A and SERPINA1F and the corresponding proteins were found not to be secreted in cell culture media. Identification of novel secretory factors through the current study provides a new platform to explore novel secretory factors and a general direction for further study of these genes in the future.

  20. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects.

    Directory of Open Access Journals (Sweden)

    Monika Stimac

    Full Text Available Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET (TS plasmid, in comparison to the plasmid with constitutive promoter (CON plasmid, in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.

  1. Epigenetic reversion of breast carcinoma phenotype is accompaniedby DNA sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sandal, Tone; Valyi-Nagy, Klara; Spencer, Virginia A.; Folberg,Robert; Bissell, Mina J.; Maniotis, Andrew J.

    2006-07-19

    The importance of microenvironment and context in regulation of tissue-specific genes is finally well established. DNA exposure to, or sequestration from, nucleases can be used to detect differences in higher order chromatin structure in intact cells without disturbing cellular or tissue architecture. To investigate the relationship between chromatin organization and tumor phenotype, we utilized an established 3-D assay where normal and malignant human breast cells can be easily distinguished by the morphology of the structures they make (acinus-like vs tumor-like, respectively). We show that these phenotypes can be distinguished also by sensitivity to AluI digestion where the malignant cells are resistant to digestion relative to non-malignant cells. Reversion of the T4-2 breast cancer cells by either cAMP analogs, or a phospatidylinositol 3-kinase (P13K) inhibitor not only reverted the phenotype, but also the chromatin sensitivity to AluI. By using different cAMP-analogs, we show that the cAMP-induced phenotypic reversion, polarization, and shift in DNA organization act through a cAMP-dependent-protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to fibronectin also reverted the malignant phenotype, polarized the acini, and changed chromatin sequestration. These experiments show not only that modifying the tumor microenvironment can alter the organization of tumor cells but also that architecture of the tissues and the global chromatin organization are coupled and yet highly plastic.

  2. Gene expression alterations during HGF-induced dedifferentiation of a renal tubular epithelial cell line (MDCK) using a novel canine DNA microarray.

    Science.gov (United States)

    Balkovetz, Daniel F; Gerrard, Edward R; Li, Shixiong; Johnson, David; Lee, James; Tobias, John W; Rogers, Katherine K; Snyder, Richard W; Lipschutz, Joshua H

    2004-04-01

    Hepatocyte growth factor (HGF) elicits a broad spectrum of biological activities, including epithelial cell dedifferentiation. One of the most widely used and best-studied polarized epithelial cell lines is the Madin-Darby canine kidney (MDCK) cell line. Here, we describe and validate the early response of polarized monolayers of MDCK cells stimulated with recombinant HGF using a novel canine DNA microarray designed to query 12,473 gene sequences. In our survey, eight genes previously implicated in the HGF signaling pathway were differentially regulated, demonstrating that the system was responsive to HGF. Also identified were 117 genes not previously known to be involved in the HGF pathway. The results were confirmed by real-time PCR or Western blot analysis for 38 genes. Of particular interest were the large number of differentially regulated genes encoding small GTPases, proteins involved in endoplasmic reticulum translation, proteins involved in the cytoskeleton, the extracellular matrix, and the hematopoietic and prostaglandin systems.

  3. Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes

    DEFF Research Database (Denmark)

    Nilsson, Emma; Jansson, Per Anders; Perfilyev, Alexander;

    2014-01-01

    Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent...... case-control cohorts. In adipose tissue from diabetic twins, we found decreased expression of genes involved in oxidative phosphorylation; carbohydrate, amino acid, and lipid metabolism; and increased expression of genes involved in inflammation and glycan degradation. The most differentially expressed...... genes included ELOVL6, GYS2, FADS1, SPP1 (OPN), CCL18, and IL1RN. We replicated these results in adipose tissue from an independent case-control cohort. Several candidate genes for obesity and T2D (e.g., IRS1 and VEGFA) were differentially expressed in discordant twins. We found a heritable contribution...

  4. Glucose metabolism and hepatic Igf1 DNA methylation are altered in the offspring of dams fed a low-salt diet during pregnancy.

    Science.gov (United States)

    Siqueira, Flavia R; Furukawa, Luzia N S; Oliveira, Ivone B; Heimann, Joel C

    2016-02-01

    A low-salt (LS) diet during pregnancy has been linked to insulin resistance in adult offspring, at least in the experimental setting. However, it remains unclear if this effect is due to salt restriction during early or late pregnancy. To better understand this phenomenon, 12-week-old female Wistar rats were fed a LS or normal-salt (NS) diet during gestation or a LS diet during either the first (LS10) or second (LS20) half of gestation. Glucose tolerance test, HOMA-IR, gene expression analysis and DNA methylation measurements were conducted for the Insr, Igf1, Igf1r, Ins1 and Ins2 genes in the livers of neonates and in the liver, white adipose tissue and muscle of 20-week-old male offspring. Birth weight was lower in the LS20 and LS animals compared with the NS and LS10 rats. In the liver, the Igf1 levels in the LS10, LS20 and LS neonates were lower than those in the NS neonates. Methylation of the Insr, Igf1r, Ins1 and Ins2 genes was influenced in a variable manner by low salt intake during pregnancy. Increased liver Igf1 methylation was observed in the LS and LS20 neonates compared with their NS and LS10 counterparts. Glucose intolerance was observed in adult offspring as an effect of low salt intake over the duration of pregnancy. Compared to the NS animals, the HOMA-IR was higher in the 12-week-old LS and 20-week-old LS-10 rats. Based on these results, it appears that the reason a LS diet during pregnancy induces a low birth weight is its negative correlation with Igf1 DNA methylation in neonates. PMID:26596702

  5. Targeted Expression of Stromelysin-1 in Mammary Gland Provides Evidence for a Role of Proteinases in Branching Morphogenesis and the Requirement for an Intact Basement Membrane for Tissue-specific Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sympson, Carolyn J; Talhouk, Rabih S; Alexander, Caroline M; Chin, Jennie R; Cliff, Shirley M; Bissell, Mina J; Werb, Zena

    1994-05-01

    The extracellular matrix (ECM) is an important regulator of the differentiated phenotype of mammary epithelial cells in culture. Despite the fact that ECM-degrading enzymes have been implicated in morphogenesis and tissue remodeling, there is little evidence for a direct role for such regulation in vivo. We generated transgenic mice that express autoactivated isoforms of the matrix metalloproteinase stromelysin-1, under the control of the whey acidic protein gene promoter, to examine the effect of inappropriate expression of this enzyme. Stromelysin-1 is implicated as the primary player in the loss of basement membrane and loss of function in the mammary gland during involution. The transgene was expressed at low levels in mammary glands of virgin female mice, leading to an unexpected phenotype: The primary ducts had supernumerary branches and showed precocious development of alveoli that expressed beta-casein at levels similar to that of an early- to mid-pregnant gland. Lactating glands showed high levels of transgene expression, with accumulation at the basement membrane, and a decrease in laminin and collagen IV, resulting in a loss of basement membrane integrity; this was accompanied by a dramatic alteration of alveolar morphology, with decreased size and shrunken lumina containing little beta-casein. During pregnancy, expression of endogenous whey acidic protein and beta-casein was reduced in transgenic glands, confirming the observed dependence of milk protein transcription of ECM in mammary epithelial cells in culture. These data provide direct evidence that stromelysin-1 activity can be morphogenic for mammary epithelial cells, inducing hyperproliferation and differentiation in virgin animals, and that its lytic activity can, indeed, disrupt membrane integrity and reduce mammary-specific function. We conclude that the balance of ECM-degrading enzymes with their inhibitors, and the associated regulation of ECM structure, is crucial for tissue-specific gene

  6. The Cell Death Inhibitor ARC Is Induced in a Tissue-Specific Manner by Deletion of the Tumor Suppressor Gene Men1, but Not Required for Tumor Development and Growth.

    Directory of Open Access Journals (Sweden)

    Wendy M McKimpson

    Full Text Available Multiple endocrine neoplasia type 1 (MEN1 is a genetic disorder characterized by tissue-specific tumors in the endocrine pancreas, parathyroid, and pituitary glands. Although tumor development in these tissues is dependent upon genetic inactivation of the tumor suppressor Men1, loss of both alleles of this gene is not sufficient to induce these cancers. Men1 encodes menin, a nuclear protein that influences transcription. A previous ChIP on chip analysis suggested that menin binds promoter sequences of nol3, encoding ARC, which is a cell death inhibitor that has been implicated in cancer pathogenesis. We hypothesized that ARC functions as a co-factor with Men1 loss to induce the tissue-restricted distribution of tumors seen in MEN1. Using mouse models that recapitulate this syndrome, we found that biallelic deletion of Men1 results in selective induction of ARC expression in tissues that develop tumors. Specifically, loss of Men1 in all cells of the pancreas resulted in marked increases in ARC mRNA and protein in the endocrine, but not exocrine, pancreas. Similarly, ARC expression increased in the parathyroid with inactivation of Men1 in that tissue. To test if ARC contributes to MEN1 tumor development in the endocrine pancreas, we generated mice that lacked none, one, or both copies of ARC in the context of Men1 deletion. Studies in a cohort of 126 mice demonstrated that, although mice lacking Men1 developed insulinomas as expected, elimination of ARC in this context did not significantly alter tumor load. Cellular rates of proliferation and death in these tumors were also not perturbed in the absence of ARC. These results indicate that ARC is upregulated by loss Men1 in the tissue-restricted distribution of MEN1 tumors, but that ARC is not required for tumor development in this syndrome.

  7. Structural evolution and tissue-specific expression of tetrapod-specific second isoform of secretory pathway Ca{sup 2+}-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Pestov, Nikolay B., E-mail: korn@mail.ibch.ru [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Dmitriev, Ruslan I.; Kostina, Maria B. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Korneenko, Tatyana V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Shakhparonov, Mikhail I. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Modyanov, Nikolai N., E-mail: nikolai.modyanov@utoledo.edu [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. Black-Right-Pointing-Pointer ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. Black-Right-Pointing-Pointer Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. Black-Right-Pointing-Pointer Subcellular localization of SPCA2 may depend on tissue type. Black-Right-Pointing-Pointer In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2), the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2

  8. Long-Term Boron-Excess-Induced Alterations of Gene Profiles in Roots of Two Citrus Species Differing in Boron-Tolerance Revealed by cDNA-AFLP

    Science.gov (United States)

    Guo, Peng; Qi, Yi-Ping; Yang, Lin-Tong; Ye, Xin; Huang, Jing-Hao; Chen, Li-Song

    2016-01-01

    Boron (B) toxicity is observed in some citrus orchards in China. However, limited data are available on the molecular mechanisms of citrus B-toxicity and B-tolerance. Using cDNA-AFLP, we identified 20 up- and 52 down-regulated genes, and 44 up- and 66 down-regulated genes from excess B-treated Citrus sinensis and Citrus grandis roots, respectively, thereby demonstrating that gene expression profiles were more affected in the latter. In addition, phosphorus and total soluble protein concentrations were lowered only in excess B-treated C. grandis roots. Apparently, C. sinensis had higher B-tolerance than C. grandis. Our results suggested that the following several aspects were responsible for the difference in the B-tolerance between the two citrus species including: (a) B-excess induced Root Hair Defective 3 expression in C. sinensis roots, and repressed villin4 expression in C. grandis roots; accordingly, root growth was less inhibited by B-excess in the former; (b) antioxidant systems were impaired in excess B-treated C. grandis roots, hence accelerating root senescence; (c) genes related to Ca2+ signals were inhibited (induced) by B-excess in C. grandis (C. sinensis) roots. B-excess-responsive genes related to energy (i.e., alternative oxidase and cytochrome P450), lipid (i.e., Glycerol-3-phosphate acyltransferase 9 and citrus dioxygenase), and nucleic acid (i.e., HDA19, histone 4, and ribonucleotide reductase RNR1 like protein) metabolisms also possibly accounted for the difference in the B-tolerance between the two citrus species. These data increased our understanding of the mechanisms on citrus B-toxicity and B-tolerance at transcriptional level. PMID:27446128

  9. Fine-mapping analysis revealed complex pleiotropic effect and tissue-specific regulatory mechanism of TNFSF15 in primary biliary cholangitis, Crohn's disease and leprosy.

    Science.gov (United States)

    Sun, Yonghu; Irwanto, Astrid; Toyo-Oka, Licht; Hong, Myunghee; Liu, Hong; Andiappan, Anand Kumar; Choi, Hyunchul; Hitomi, Yuki; Yu, Gongqi; Yu, Yongxiang; Bao, Fangfang; Wang, Chuan; Fu, Xian; Yue, Zhenhua; Wang, Honglei; Zhang, Huimin; Kawashima, Minae; Kojima, Kaname; Nagasaki, Masao; Nakamura, Minoru; Yang, Suk-Kyun; Ye, Byong Duk; Denise, Yosua; Rotzschke, Olaf; Song, Kyuyoung; Tokunaga, Katsushi; Zhang, Furen; Liu, Jianjun

    2016-01-01

    Genetic polymorphism within the 9q32 locus is linked with increased risk of several diseases, including Crohn's disease (CD), primary biliary cholangitis (PBC) and leprosy. The most likely disease-causing gene within 9q32 is TNFSF15, which encodes the pro-inflammatory cytokine TNF super-family member 15, but it was unknown whether these disparate diseases were associated with the same genetic variance in 9q32, and how variance within this locus might contribute to pathology. Using genetic data from published studies on CD, PBC and leprosy we revealed that bearing a T allele at rs6478108/rs6478109 (r(2) = 1) or rs4979462 was significantly associated with increased risk of CD and decreased risk of leprosy, while the T allele at rs4979462 was associated with significantly increased risk of PBC. In vitro analyses showed that the rs6478109 genotype significantly affected TNFSF15 expression in cells from whole blood of controls, while functional annotation using publicly-available data revealed the broad cell type/tissue-specific regulatory potential of variance at rs6478109 or rs4979462. In summary, we provide evidence that variance within TNFSF15 has the potential to affect cytokine expression across a range of tissues and thereby contribute to protection from infectious diseases such as leprosy, while increasing the risk of immune-mediated diseases including CD and PBC. PMID:27507062

  10. Tissue-specific expression of glutathione S-transferases induced by 2-tridecanone or quercetin in cotton bollworms, Helicoverpa armigera (Hübner)

    Institute of Scientific and Technical Information of China (English)

    TANG Fang; LIANG Pei; GAO Xiwu

    2005-01-01

    The tissue-specific expression of glutathione S-transferases (GSTs) in the cotton bollworm and the expression level induced by 2-tridecanone and quercetin were examined using the methods of biochemistry and the quantitative PCR. The relative expression level of GST mRNA was unanimous with the GSTs activity conjugaging with 1-chloro-2, 4-dimitro-benzene (CDNB) in fat bodies,midguts, heads and integuments of cotton bollworms. The GSTs activity in fat bodies was the highest, then midguts, heads and integuments in turn, which was in consistent with the relative expression level of GST mRNA. The specific activity of GSTs and the relative expression level of GST mRNA could be significantly induced by 2-tridecanone and quercetin, and after the induction the order of the GSTs activity and the relative expression level of GST mRNA in the above four tissues in cotton bollworms was not different from the control.The induction of GSTs by 2-tridecanone was stronger than by quercetin in all four tissues, which was in accordance with the relative expression level of GST mRNA. It suggested that the increase of GSTs activity induced by plant allelochemicals was associated with the elevated expression of GST mRNA in cotton bollworms.

  11. Tissue specific deletion of inhibitor of kappa B kinase 2 with OX40-Cre reveals the unanticipated expression from the OX40 locus in skin epidermis.

    Directory of Open Access Journals (Sweden)

    Georgina H Cornish

    Full Text Available NF-κB signalling plays an essential role in T cell activation and generation of regulatory and memory populations in vivo. In the present study, we aimed to investigate the role of NF-κB signalling in post-activation T cells using tissue specific ablation of inhibitor of kappa-B kinase 2 expression, an important component of the inhibitor of kappa-B kinase complex in canonical NF-κB signalling. The OX40 antigen is expressed on activated T cells. Therefore, we used previously described mouse strain expressing Cre recombinase from the endogenous OX40 locus. Ablation of IKK2 expression using OX40(Cre mice resulted in the development of an inflammatory response in the skin epidermis causing wide spread skin lesions. The inflammatory response was characterised by extensive leukocytic infiltrate in skin tissue, hyperplasia of draining lymph nodes and widespread activation in the T cell compartment. Surprisingly, disease development did not depend on T cells but was rather associated with an unanticipated expression of Cre in skin epidermis, and activation of the T cell compartment did not require Ikbk2 deletion in T cells. Employment of Cre reporter strains revealed extensive Cre activity in skin epidermis. Therefore, development of skin lesions was rather more likely explained by deletion of Ikbk2 in skin keratinocytes in OX40(Cre mice.

  12. [11C]-Labeled Metformin Distribution in the Liver and Small Intestine Using Dynamic Positron Emission Tomography in Mice Demonstrates Tissue-Specific Transporter Dependency.

    Science.gov (United States)

    Jensen, Jonas B; Sundelin, Elias I; Jakobsen, Steen; Gormsen, Lars C; Munk, Ole L; Frøkiær, Jørgen; Jessen, Niels

    2016-06-01

    Metformin is the most commonly prescribed oral antidiabetic drug, with well-documented beneficial preventive effects on diabetic complications. Despite being in clinical use for almost 60 years, the underlying mechanisms for metformin action remain elusive. Organic cation transporters (OCT), including multidrug and toxin extrusion proteins (MATE), are essential for transport of metformin across membranes, but tissue-specific activity of these transporters in vivo is incompletely understood. Here, we use dynamic positron emission tomography with [(11)C]-labeled metformin ([(11)C]-metformin) in mice to investigate the role of OCT and MATE in a well-established target tissue, the liver, and a putative target of metformin, the small intestine. Ablation of OCT1 and OCT2 significantly reduced the distribution of metformin in the liver and small intestine. In contrast, inhibition of MATE1 with pyrimethamine caused accumulation of metformin in the liver but did not affect distribution in the small intestine. The demonstration of OCT-mediated transport into the small intestine provides evidence of direct effects of metformin in this tissue. OCT and MATE have important but separate roles in uptake and elimination of metformin in the liver, but this is not due to changes in biliary secretion. [(11)C]-Metformin holds great potential as a tool to determine the pharmacokinetic properties of metformin in clinical studies.

  13. Persistent Foot-and-Mouth Disease Virus Infection in the Nasopharynx of Cattle; Tissue-Specific Distribution and Local Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Juan M Pacheco

    Full Text Available Tissues obtained post-mortem from cattle persistently infected with foot-and-mouth disease virus (FMDV were analyzed to characterize the tissue-specific localization of FMDV and partial transcriptome profiles for selected immunoregulatory cytokines. Analysis of 28 distinct anatomic sites from 21 steers infected with FMDV serotype A, O or SAT2, had the highest prevalence of overall viral detection in the dorsal nasopharynx (80.95% and dorsal soft palate (71.43%. FMDV was less frequently detected in laryngeal mucosal tissues, oropharyngeal mucosal sites, and lymph nodes draining the pharynx. Immunomicroscopy indicated that within persistently infected mucosal tissues, FMDV antigens were rarely detectable within few epithelial cells in regions of mucosa-associated lymphoid tissue (MALT. Transcriptome analysis of persistently infected pharyngeal tissues by qRT-PCR for 14 cytokine genes indicated a general trend of decreased mRNA levels compared to uninfected control animals. Although, statistically significant differences were not observed, greatest suppression of relative expression (RE was identified for IP-10 (RE = 0.198, IFN-β (RE = 0.269, IL-12 (RE = 0.275, and IL-2 (RE = 0.312. Increased relative expression was detected for IL-6 (RE = 2.065. Overall, this data demonstrates that during the FMDV carrier state in cattle, viral persistence is associated with epithelial cells of the nasopharynx in the upper respiratory tract and decreased levels of mRNA for several immunoregulatory cytokines in the infected tissues.

  14. Identification and analysis of house-keeping and tissue-specific genes based on RNA-seq data sets across 15 mouse tissues.

    Science.gov (United States)

    Zeng, Jingyao; Liu, Shoucheng; Zhao, Yuhui; Tan, Xinyu; Aljohi, Hasan Awad; Liu, Wanfei; Hu, Songnian

    2016-01-15

    Recently, RNA-seq has become widely used technology for transcriptome profiling due to its single-base accuracy and high-throughput speciality. In this study, we applied a computational approach on an integrated RNA-seq dataset across 15 normal mouse tissues, and consequently assigned 8408 house-keeping (HK) genes and 2581 tissue-specific (TS) genes among UCSC RefGene annotation. Apart from some basic genomic features, we also performed expression, function and pathway analysis with clustering, DAVID and Ingenuity Pathway Analysis, indicating the physiological connections (tissues) and diverse biological roles of HK genes (fundamental processes) and TS genes (tissue-corresponding processes). Moreover, we used RT-PCR method to test 18 candidate HK genes and finally identified a novel list of highly stable internal control genes: Ywhae, Ddb 1, Eif4h, etc. In summary, this study provides a new HK gene and TS gene resource for further genetic and evolution research and helps us better understand morphogenesis and biological diversity in mouse.

  15. Temporal and tissue specific regulation of RP-associated splicing factor genes PRPF3, PRPF31 and PRPC8--implications in the pathogenesis of RP.

    Directory of Open Access Journals (Sweden)

    Huibi Cao

    Full Text Available BACKGROUND: Genetic mutations in several ubiquitously expressed RNA splicing genes such as PRPF3, PRP31 and PRPC8, have been found to cause retina-specific diseases in humans. To understand this intriguing phenomenon, most studies have been focused on testing two major hypotheses. One hypothesis assumes that these mutations interrupt retina-specific interactions that are important for RNA splicing, implying that there are specific components in the retina interacting with these splicing factors. The second hypothesis suggests that these mutations have only a mild effect on the protein function and thus affect only the metabolically highly active cells such as retinal photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS: We examined the second hypothesis using the PRPF3 gene as an example. We analyzed the spatial and temporal expression of the PRPF3 gene in mice and found that it is highly expressed in retinal cells relative to other tissues and its expression is developmentally regulated. In addition, we also found that PRP31 and PRPC8 as well as snRNAs are highly expressed in retinal cells. CONCLUSIONS/SIGNIFICANCE: Our data suggest that the retina requires a relatively high level of RNA splicing activity for optimal tissue-specific physiological function. Because the RP18 mutation has neither a debilitating nor acute effect on protein function, we suggest that retinal degeneration is the accumulative effect of decades of suboptimal RNA splicing due to the mildly impaired protein.

  16. Species-and tissue-specific mercury bioaccumulation in five fish species from Laizhou Bay in the Bohai Sea of China

    Institute of Scientific and Technical Information of China (English)

    LIU Jinhu; CAO Liang; HUANG Wei; DOU Shuozeng

    2013-01-01

    Mercury (Hg) concentrations in the tissues (muscle,stomach,liver,gills,skin,and gonads)of five fish species (mullet Liza haematocheilus,flathead fish Platycephalus indicus,sea bass Lateolabrax japonicus,mackerel Scomberomorus niphonius and silver pomfret Pampus argenteus) collected from Laizhou Bay in the Bohai Sea of China were investigated.The results indicate that Hg bioaccumulation in the five fish was tissue-specific,with the highest levels in the muscle and liver,followed by the stomach and gonads.The lowest levels were found in the gills and skin.Fish at higher trophic levels (flathead fish and sea bass) exhibited higher Hg concentrations than consumers at lower trophic levels.Mercury bioaccumulation tended to be positively correlated with fish length in mullet,silver pomfret,mackerel,and flathead fish,but was negatively correlated with fish length in sea bass.The Hg concentrations in the muscles of all fish species in Laizhou Bay were within the permissible limits of food safety set by national and international criteria.However,the suggesting maximum consumption of sea bass is 263 g per week for human health.

  17. The tissue-specific Rep8/UBXD6 tethers p97 to the endoplasmic reticulum membrane for degradation of misfolded proteins.

    Directory of Open Access Journals (Sweden)

    Louise Madsen

    Full Text Available The protein known as p97 or VCP in mammals and Cdc48 in yeast is a versatile ATPase complex involved in several biological functions including membrane fusion, protein folding, and activation of membrane-bound transcription factors. In addition, p97 plays a central role in degradation of misfolded secretory proteins via the ER-associated degradation pathway. This functional diversity of p97 depends on its association with various cofactors, and to further our understanding of p97 function it is important that these cofactors are identified and analyzed. Here, we isolate and characterize the human protein named Rep8 or Ubxd6 as a new cofactor of p97. Mouse Rep8 is highly tissue-specific and abundant in gonads. In testes, Rep8 is expressed in post-meiotic round spermatids, whereas in ovaries Rep8 is expressed in granulosa cells. Rep8 associates directly with p97 via its UBX domain. We show that Rep8 is a transmembrane protein that localizes to the ER membrane with its UBX domain facing the cytoplasm. Knock-down of Rep8 expression in human cells leads to a decreased association of p97 with the ER membrane and concomitantly a retarded degradation of misfolded ER-derived proteasome substrates. Thus, Rep8 tethers p97 to the ER membrane for efficient ER-associated degradation.

  18. A comprehensive genome-wide study on tissue-specific and abiotic stress-specific miRNAs in Triticum aestivum.

    Directory of Open Access Journals (Sweden)

    Ritu Pandey

    Full Text Available Productivity of wheat crop is largely dependent on its growth and development that, in turn, is mainly regulated by environmental conditions, including abiotic stress factors. miRNAs are key regulators of gene expression networks involved in diverse aspects of development and stress responses in plants. Using high-throughput sequencing of eight small RNA libraries prepared from diverse abiotic stresses and tissues, we identified 47 known miRNAs belonging to 20 families, 49 true novel and 1030 candidate novel miRNAs. Digital gene expression analysis revealed that 257 miRNAs exhibited tissue-specific expression and 74 were associated with abiotic stresses. Putative target genes were predicted for miRNAs identified in this study and their grouping into functional categories indicated that the putative targets were involved in diverse biological processes. RLM-RACE of predicted targets of three known miRNAs (miR156, miR160 and miR164 confirmed their mRNA cleavage, thus indicating their regulation at post-transcriptional level by the corresponding miRNAs. Mapping of the sequenced data onto the wheat progenitors and closely related monocots revealed a large number of evolutionary conserved miRNAs. Additional expression profiling of some of these miRNAs in other abiotic stresses underline their involvement in multiple stresses. Our findings provide valuable resource for an improved understanding of the role of miRNAs in stress tolerance as well as plant development.

  19. Breaking-off tissue specific activity of the oil palm metallothionein-like gene promoter in T(1) seedlings of tomato exposed to metal ions.

    Science.gov (United States)

    Kamaladini, Hossein; Nor Akmar Abdullah, Siti; Aziz, Maheran Abdul; Ismail, Ismanizan Bin; Haddadi, Fatemeh

    2013-02-15

    Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the β-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T(0)). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T(1)) produced the highest GUS activity when treated with 150 μM Cu(2+) compared to the control (without Cu(2+)). However, Zn(2+) and Fe(2+) treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T(1) seedlings of tomato when subjected to Cu(2+) ions. PMID:23290536

  20. Tensor GSVD of patient- and platform-matched tumor and normal DNA copy-number profiles uncovers chromosome arm-wide patterns of tumor-exclusive platform-consistent alterations encoding for cell transformation and predicting ovarian cancer survival.

    Science.gov (United States)

    Sankaranarayanan, Preethi; Schomay, Theodore E; Aiello, Katherine A; Alter, Orly

    2015-01-01

    The number of large-scale high-dimensional datasets recording different aspects of a single disease is growing, accompanied by a need for frameworks that can create one coherent model from multiple tensors of matched columns, e.g., patients and platforms, but independent rows, e.g., probes. We define and prove the mathematical properties of a novel tensor generalized singular value decomposition (GSVD), which can simultaneously find the similarities and dissimilarities, i.e., patterns of varying relative significance, between any two such tensors. We demonstrate the tensor GSVD in comparative modeling of patient- and platform-matched but probe-independent ovarian serous cystadenocarcinoma (OV) tumor, mostly high-grade, and normal DNA copy-number profiles, across each chromosome arm, and combination of two arms, separately. The modeling uncovers previously unrecognized patterns of tumor-exclusive platform-consistent co-occurring copy-number alterations (CNAs). We find, first, and validate that each of the patterns across only 7p and Xq, and the combination of 6p+12p, is correlated with a patient's prognosis, is independent of the tumor's stage, the best predictor of OV survival to date, and together with stage makes a better predictor than stage alone. Second, these patterns include most known OV-associated CNAs that map to these chromosome arms, as well as several previously unreported, yet frequent focal CNAs. Third, differential mRNA, microRNA, and protein expression consistently map to the DNA CNAs. A coherent picture emerges for each pattern, suggesting roles for the CNAs in OV pathogenesis and personalized therapy. In 6p+12p, deletion of the p21-encoding CDKN1A and p38-encoding MAPK14 and amplification of RAD51AP1 and KRAS encode for human cell transformation, and are correlated with a cell's immortality, and a patient's shorter survival time. In 7p, RPA3 deletion and POLD2 amplification are correlated with DNA stability, and a longer survival. In Xq, PABPC5

  1. Tensor GSVD of patient- and platform-matched tumor and normal DNA copy-number profiles uncovers chromosome arm-wide patterns of tumor-exclusive platform-consistent alterations encoding for cell transformation and predicting ovarian cancer survival.

    Directory of Open Access Journals (Sweden)

    Preethi Sankaranarayanan

    Full Text Available The number of large-scale high-dimensional datasets recording different aspects of a single disease is growing, accompanied by a need for frameworks that can create one coherent model from multiple tensors of matched columns, e.g., patients and platforms, but independent rows, e.g., probes. We define and prove the mathematical properties of a novel tensor generalized singular value decomposition (GSVD, which can simultaneously find the similarities and dissimilarities, i.e., patterns of varying relative significance, between any two such tensors. We demonstrate the tensor GSVD in comparative modeling of patient- and platform-matched but probe-independent ovarian serous cystadenocarcinoma (OV tumor, mostly high-grade, and normal DNA copy-number profiles, across each chromosome arm, and combination of two arms, separately. The modeling uncovers previously unrecognized patterns of tumor-exclusive platform-consistent co-occurring copy-number alterations (CNAs. We find, first, and validate that each of the patterns across only 7p and Xq, and the combination of 6p+12p, is correlated with a patient's prognosis, is independent of the tumor's stage, the best predictor of OV survival to date, and together with stage makes a better predictor than stage alone. Second, these patterns include most known OV-associated CNAs that map to these chromosome arms, as well as several previously unreported, yet frequent focal CNAs. Third, differential mRNA, microRNA, and protein expression consistently map to the DNA CNAs. A coherent picture emerges for each pattern, suggesting roles for the CNAs in OV pathogenesis and personalized therapy. In 6p+12p, deletion of the p21-encoding CDKN1A and p38-encoding MAPK14 and amplification of RAD51AP1 and KRAS encode for human cell transformation, and are correlated with a cell's immortality, and a patient's shorter survival time. In 7p, RPA3 deletion and POLD2 amplification are correlated with DNA stability, and a longer survival

  2. Tensor GSVD of Patient- and Platform-Matched Tumor and Normal DNA Copy-Number Profiles Uncovers Chromosome Arm-Wide Patterns of Tumor-Exclusive Platform-Consistent Alterations Encoding for Cell Transformation and Predicting Ovarian Cancer Survival

    Science.gov (United States)

    Sankaranarayanan, Preethi; Schomay, Theodore E.; Aiello, Katherine A.; Alter, Orly

    2015-01-01

    The number of large-scale high-dimensional datasets recording different aspects of a single disease is growing, accompanied by a need for frameworks that can create one coherent model from multiple tensors of matched columns, e.g., patients and platforms, but independent rows, e.g., probes. We define and prove the mathematical properties of a novel tensor generalized singular value decomposition (GSVD), which can simultaneously find the similarities and dissimilarities, i.e., patterns of varying relative significance, between any two such tensors. We demonstrate the tensor GSVD in comparative modeling of patient- and platform-matched but probe-independent ovarian serous cystadenocarcinoma (OV) tumor, mostly high-grade, and normal DNA copy-number profiles, across each chromosome arm, and combination of two arms, separately. The modeling uncovers previously unrecognized patterns of tumor-exclusive platform-consistent co-occurring copy-number alterations (CNAs). We find, first, and validate that each of the patterns across only 7p and Xq, and the combination of 6p+12p, is correlated with a patient’s prognosis, is independent of the tumor’s stage, the best predictor of OV survival to date, and together with stage makes a better predictor than stage alone. Second, these patterns include most known OV-associated CNAs that map to these chromosome arms, as well as several previously unreported, yet frequent focal CNAs. Third, differential mRNA, microRNA, and protein expression consistently map to the DNA CNAs. A coherent picture emerges for each pattern, suggesting roles for the CNAs in OV pathogenesis and personalized therapy. In 6p+12p, deletion of the p21-encoding CDKN1A and p38-encoding MAPK14 and amplification of RAD51AP1 and KRAS encode for human cell transformation, and are correlated with a cell’s immortality, and a patient’s shorter survival time. In 7p, RPA3 deletion and POLD2 amplification are correlated with DNA stability, and a longer survival. In Xq

  3. Calcium-insensitive splice variants of mammalian E1 subunit of 2-oxoglutarate dehydrogenase complex with tissue-specific patterns of expression.

    Science.gov (United States)

    Denton, Richard M; Pullen, Timothy J; Armstrong, Craig T; Heesom, Kate J; Rutter, Guy A

    2016-05-01

    The 2-oxoglutarate dehydrogenase (OGDH) complex is an important control point in vertebrate mitochondrial oxidative metabolism, including in the citrate cycle and catabolism of alternative fuels including glutamine. It is subject to allosteric regulation by NADH and the ATP/ADP ratio, and by Ca(2+) through binding to the E1 subunit. The latter involves a unique Ca(2+)-binding site which includes D(114)ADLD (site 1). Here, we describe three splice variants of E1 in which either the exon expressing this site is replaced with another exon (loss of site 1, LS1) or an additional exon is expressed leading to the insertion of 15 amino acids just downstream of site 1 (Insert), or both changes occur together (LS1/Insert). We show that all three variants are essentially Ca(2+)-insensitive. Comparison of massive parallel sequence (RNA-Seq) databases demonstrates predominant expression of the Ca(2+)-sensitive archetype form in heart and skeletal muscle, but substantial expression of the Ca(2+)-insensitive variants in brain, pancreatic islets and other tissues. Detailed proteomic and activity studies comparing OGDH complexes from rat heart and brain confirmed the substantial difference in expression between these tissues. The evolution of OGDH variants was explored using bioinformatics, and this indicated that Ca(2+)-sensitivity arose with the emergence of chordates. In all species examined, this was associated with the co-emergence of Ca(2+)-insensitive variants suggesting a retained requirement for the latter in some settings. Tissue-specific expression of OGDH splice variants may thus provide a mechanism that tunes the control of the enzyme to the specialized metabolic and signalling needs of individual cell types. PMID:26936970

  4. Comparative transcriptome profiles of the WRKY gene family under control, hormone-treated, and drought conditions in near-isogenic rice lines reveal differential, tissue specific gene activation.

    Science.gov (United States)

    Nuruzzaman, Mohammed; Sharoni, Akhter Most; Satoh, Kouji; Kumar, Arvind; Leung, Hei; Kikuchi, Shoshi

    2014-01-01

    The OsWRKY genes play various roles in developmental processes and in stress-related responses in plants. We describe the rice OsWRKY gene expression profiles (GEPs) under control, hormone-treated, and water-deficit treatment (WDT) conditions. The preferential expression of 3 genes was observed in specific tissues, suggesting that these genes may play important roles in the root and panicle stages of growth. To investigate the GEPs in the root and panicle of 3 rice genotypes, we used 2 near-isogenic rice lines from a common genetic combination backcross developed by Aday Selection and IR64. WDTs were applied using the fraction of transpirable soil water (FTSW) for severe, mild, and control conditions. Transcriptomic analysis using a 44K oligoarray from Affymetrix and Agilent was performed on all the tissues. The majority of the OsWRKY genes that were activated were activated in the drought-tolerant IR77298-14-1-2-B-10 line but not in the drought-susceptible IR77298-14-1-2-B-13 or IR64 lines. In IR77298-14-1-2-B-10, non-redundant genes (9) were very specific in their higher expression levels. Approximately 27 and 43% more genes from group III and subgroup IV-a, respectively, were activated in the panicle during severe stress than during the control treatment. We found 5 OsWRKY genes that introgressed in the drought-tolerant IR77298-14-1-2-B-10 line. Os01g43650 was up-regulated in the root under both WDTs and in the panicle under mild stress. OsWRKY up-regulated genes with tissue-specific expression patterns that contained at least 3 cis-elements in the tolerant line. These results provide a useful reference for the cloning of candidate genes for further functional analysis.

  5. Mutation of the palmitoylation site of estrogen receptor α in vivo reveals tissue-specific roles for membrane versus nuclear actions

    Science.gov (United States)

    Adlanmerini, Marine; Solinhac, Romain; Abot, Anne; Fabre, Aurélie; Raymond-Letron, Isabelle; Guihot, Anne-Laure; Boudou, Frédéric; Sautier, Lucile; Vessières, Emilie; Kim, Sung Hoon; Lière, Philippe; Fontaine, Coralie; Krust, Andrée; Chambon, Pierre; Katzenellenbogen, John A.; Gourdy, Pierre; Shaul, Philip W.; Henrion, Daniel; Arnal, Jean-François; Lenfant, Françoise

    2014-01-01

    Estrogen receptor alpha (ERα) activation functions AF-1 and AF-2 classically mediate gene transcription in response to estradiol (E2). A fraction of ERα is targeted to plasma membrane and elicits membrane-initiated steroid signaling (MISS), but the physiological roles of MISS in vivo are poorly understood. We therefore generated a mouse with a point mutation of the palmitoylation site of ERα (C451A-ERα) to obtain membrane-specific loss of function of ERα. The abrogation of membrane localization of ERα in vivo was confirmed in primary hepatocytes, and it resulted in female infertility with abnormal ovaries lacking corpora lutea and increase in luteinizing hormone levels. In contrast, E2 action in the uterus was preserved in C451A-ERα mice and endometrial epithelial proliferation was similar to wild type. However, E2 vascular actions such as rapid dilatation, acceleration of endothelial repair, and endothelial NO synthase phosphorylation were abrogated in C451A-ERα mice. A complementary mutant mouse lacking the transactivation function AF