WorldWideScience

Sample records for alter plasma lipid

  1. PLASMA-MEMBRANE LIPID ALTERATIONS INDUCED BY NACL IN WINTER-WHEAT ROOTS

    NARCIS (Netherlands)

    MANSOUR, MMF; VANHASSELT, PR; KUIPER, PJC

    A highly enriched plasma membrane fraction was isolated by two phase partitioning from wheat roots (Triticum aestivum L. cv. Vivant) grown with and without 100 mM NaCl. The lipids of the plasma membrane fraction were extracted and characterized. Phosphatidylcholine and phosphatidylethanolamine were

  2. Lipidomics reveals a remarkable diversity of lipids in human plasma.

    Science.gov (United States)

    Quehenberger, Oswald; Armando, Aaron M; Brown, Alex H; Milne, Stephen B; Myers, David S; Merrill, Alfred H; Bandyopadhyay, Sibali; Jones, Kristin N; Kelly, Samuel; Shaner, Rebecca L; Sullards, Cameron M; Wang, Elaine; Murphy, Robert C; Barkley, Robert M; Leiker, Thomas J; Raetz, Christian R H; Guan, Ziqiang; Laird, Gregory M; Six, David A; Russell, David W; McDonald, Jeffrey G; Subramaniam, Shankar; Fahy, Eoin; Dennis, Edward A

    2010-11-01

    The focus of the present study was to define the human plasma lipidome and to establish novel analytical methodologies to quantify the large spectrum of plasma lipids. Partial lipid analysis is now a regular part of every patient's blood test and physicians readily and regularly prescribe drugs that alter the levels of major plasma lipids such as cholesterol and triglycerides. Plasma contains many thousands of distinct lipid molecular species that fall into six main categories including fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and prenols. The physiological contributions of these diverse lipids and how their levels change in response to therapy remain largely unknown. As a first step toward answering these questions, we provide herein an in-depth lipidomics analysis of a pooled human plasma obtained from healthy individuals after overnight fasting and with a gender balance and an ethnic distribution that is representative of the US population. In total, we quantitatively assessed the levels of over 500 distinct molecular species distributed among the main lipid categories. As more information is obtained regarding the roles of individual lipids in health and disease, it seems likely that future blood tests will include an ever increasing number of these lipid molecules.

  3. Clerodendron glandulosum Coleb., Verbenaceae, ameliorates high fat diet-induced alteration in lipid and cholesterol metabolism in rats

    Directory of Open Access Journals (Sweden)

    RN Jadeja

    Full Text Available The present study was undertaken to evaluate the efficacy of freeze dried extract of Clerodendron glandulosum Coleb., Verbenaceae, leaves (FECG on alteration in lipid and cholesterol metabolism in high fat diet fed hyperlipidemic rats. Plasma and hepatic lipid profiles, lipid and cholesterol metabolizing enzymes in target tissues and fecal total lipids and bile acid contents were evaluated in FECG treated normolipidemic and hyperlipidemic rats. These results were compared with synthetic hypolipidemic drug Lovastatin (LVS. Results indicate that FECG was able to positively regulate induced experimental hyperlipidemia by significant alteration in plasma and tissue lipid profiles. These results can be attributed to reduced absorption, effective elimination and augmented catabolism of lipids and cholesterol possibly due to high content of saponin and phytosterols in C. glandulosum. Use of C. glandulosum extract as a potential therapeutic agent against hypercholesterolemia and hypertriglyceridemia is indicated.

  4. A sulfur amino acid-free meal increases plasma lipids in humans.

    Science.gov (United States)

    Park, Youngja; Le, Ngoc-Anh; Yu, Tianwei; Strobel, Fred; Gletsu-Miller, Nana; Accardi, Carolyn J; Lee, Kichun S; Wu, Shaoxiong; Ziegler, Thomas R; Jones, Dean P

    2011-08-01

    The content of sulfur amino acid (SAA) in a meal affects postprandial plasma cysteine concentrations and the redox potential of cysteine/cystine. Because such changes can affect enzyme, transporter, and receptor activities, meal content of SAA could have unrecognized effects on metabolism during the postprandial period. This pilot study used proton NMR ((1)H-NMR) spectroscopy of human plasma to test the hypothesis that dietary SAA content changes macronutrient metabolism. Healthy participants (18-36 y, 5 males and 3 females) were equilibrated for 3 d to adequate SAA, fed chemically defined meals without SAA for 5 d (depletion), and then fed isoenergetic, isonitrogenous meals containing 56 mg·kg(-1)·d(-1) SAA for 4.5 d (repletion). On the first and last day of consuming the chemically defined meals, a morning meal containing 60% of the daily food intake was given and plasma samples were collected over an 8-h postprandial time course for characterization of metabolic changes by (1)H-NMR spectroscopy. SAA-free food increased peak intensity in the plasma (1)H-NMR spectra in the postprandial period. Orthogonal signal correction/partial least squares-discriminant analysis showed changes in signals associated with lipids, some amino acids, and lactate, with notable increases in plasma lipid signals (TG, unsaturated lipid, cholesterol). Conventional lipid analyses confirmed higher plasma TG and showed an increase in plasma concentration of the lipoprotein lipase inhibitor, apoC-III. The results show that plasma (1)H-NMR spectra can provide useful macronutrient profiling following a meal challenge protocol and that a single meal with imbalanced SAA content alters postprandial lipid metabolism.

  5. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    International Nuclear Information System (INIS)

    Liu, Yansong; Xu, Dan; Feng, Jianghua; Kou, Hao; Liang, Gai; Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin; Magdalou, Jacques; Wang, Hui

    2012-01-01

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by 1 H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine ingestion

  6. Plasma kinetics of an LDL-like nanoemulsion and lipid transfer to HDL in subjects with glucose intolerance

    Directory of Open Access Journals (Sweden)

    Marina P Bertato

    2012-01-01

    Full Text Available OBJECTIVE: Glucose intolerance is frequently associated with an altered plasma lipid profile and increased cardiovascular disease risk. Nonetheless, lipid metabolism is scarcely studied in normolipidemic glucose-intolerant patients. The aim of this study was to investigate whether important lipid metabolic parameters, such as the kinetics of LDL free and esterified cholesterol and the transfer of lipids to HDL, are altered in glucose-intolerant patients with normal plasma lipids. METHODS: Fourteen glucose-intolerant patients and 15 control patients were studied; none of the patients had cardiovascular disease manifestations, and they were paired for age, sex, race and co-morbidities. A nanoemulsion resembling a LDL lipid composition (LDE labeled with 14C-cholesteryl ester and ³H-free cholesterol was intravenously injected, and blood samples were collected over a 24-h period to determine the fractional clearance rate of the labels by compartmental analysis. The transfer of free and esterified cholesterol, triglycerides and phospholipids from the LDE to HDL was measured by the incubation of the LDE with plasma and radioactivity counting of the supernatant after chemical precipitation of non-HDL fractions. RESULTS: The levels of LDL, non-HDL and HDL cholesterol, triglycerides, apo A1 and apo B were equal in both groups. The 14C-esterified cholesterol fractional clearance rate was not different between glucose-intolerant and control patients, but the ³H-free-cholesterol fractional clearance rate was greater in glucose-intolerant patients than in control patients. The lipid transfer to HDL was equal in both groups. CONCLUSION: In these glucose-intolerant patients with normal plasma lipids, a faster removal of LDE free cholesterol was the only lipid metabolic alteration detected in our study. This finding suggests that the dissociation of free cholesterol from lipoprotein particles occurs in normolipidemic glucose intolerance and may participate in

  7. Properties of Plasma Membrane from Pea Root Seedlings under Altered Gravity

    Science.gov (United States)

    Klymchuk, D.; Baranenko, V.; Vorobyova, T. V.; Kurylenko, I.; Chyzhykova, O.; Dubovoy, V.

    In this study, the properties of pea (Pisum sativum L.) plasma membrane were examined to determine how the membrane structure and functions are regulated in response to clinorotation (2 rev/min) conditions. Membrane preparations enriched by plasma membrane vesicles were obtained by aqueous two-phase partitioning from 6-day seedling roots. The specific characteristics of H^+-ATPase, lípid composition and peroxidation intensity as well as fluidity of lipid bilayer were analysed. ATP hydrolytic activity was inhibited by ortovanadate and was insensitive to aside and nitrate in sealed plasma membrane vesicles isolated from both clinorotated and control seedlings. Plasma membrane vesicles from clinorotated seedlings in comparison to controls were characterised by increase in the total lipid/protein ratio, ATP hydrolytic activity and intensifying of lipid peroxidation. Sitosterol and campesterol were the predominant free sterol species. Clinorotated seedlings contained a slightly higher level of unsaturated fatty acid than controls. Plasma membrane vesicles were labelled with pyrene and fluorescence originating from monomeric (I_M) molecules and excimeric (I_E) aggregates were measured. The calculated I_E/I_M values were higher in clinorotated seedlings compared with controls reflecting the reduction in membrane microviscosity. The involvement of the changes in plasma membrane lipid content and composition, fluidity and H^+-ATPase activity in response of pea seedlings to altered gravity is discussed.

  8. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yansong [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Feng, Jianghua, E-mail: jianghua.feng@xmu.edu.cn [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (China); Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005 (China); Kou, Hao; Liang, Gai [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin [Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China)

    2012-07-15

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by {sup 1}H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine

  9. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex.

    Science.gov (United States)

    Martín, Virginia; Fabelo, Noemí; Santpere, Gabriel; Puig, Berta; Marín, Raquel; Ferrer, Isidre; Díaz, Mario

    2010-01-01

    Lipid rafts are membrane microdomains intimately associated with cell signaling. These biochemical microstructures are characterized by their high contents of sphingolipids, cholesterol and saturated fatty acids and a reduced content of polyunsaturated fatty acids (PUFA). Here, we have purified lipid rafts of human frontal brain cortex from normal and Alzheimer's disease (AD) and characterized their biochemical lipid composition. The results revealed that lipid rafts from AD brains exhibit aberrant lipid profiles compared to healthy brains. In particular, lipid rafts from AD brains displayed abnormally low levels of n-3 long chain polyunsaturated fatty acids (LCPUFA, mainly 22:6n-3, docosahexaenoic acid) and monoenes (mainly 18:1n-9, oleic acid), as well as reduced unsaturation and peroxidability indexes. Also, multiple relationships between phospholipids and fatty acids were altered in AD lipid rafts. Importantly, no changes were observed in the mole percentage of lipid classes and fatty acids in rafts from normal brains throughout the lifespan (24-85 years). These indications point to the existence of homeostatic mechanisms preserving lipid raft status in normal frontal cortex. The disruption of such mechanisms in AD brains leads to a considerable increase in lipid raft order and viscosity, which may explain the alterations in lipid raft signaling observed in AD.

  10. Comparative plasma lipidome between human and cynomolgus monkey: are plasma polar lipids good biomarkers for diabetic monkeys?

    Directory of Open Access Journals (Sweden)

    Guanghou Shui

    Full Text Available BACKGROUND: Non-human primates (NHP are now being considered as models for investigating human metabolic diseases including diabetes. Analyses of cholesterol and triglycerides in plasma derived from NHPs can easily be achieved using methods employed in humans. Information pertaining to other lipid species in monkey plasma, however, is lacking and requires comprehensive experimental analysis. METHODOLOGIES/PRINCIPAL FINDINGS: We examined the plasma lipidome from 16 cynomolgus monkey, Macaca fascicularis, using liquid chromatography coupled with mass spectrometry (LC/MS. We established novel analytical approaches, which are based on a simple gradient elution, to quantify polar lipids in plasma including (i glycerophospholipids (phosphatidylcholine, PC; phosphatidylethanolamine, PE; phosphatidylinositol, PI; phosphatidylglycerol, PG; phosphatidylserine, PS; phosphatidic acid, PA; (ii sphingolipids (sphingomyelin, SM; ceramide, Cer; Glucocyl-ceramide, GluCer; ganglioside mannoside 3, GM3. Lipidomic analysis had revealed that the plasma of human and cynomolgus monkey were of similar compositions, with PC, SM, PE, LPC and PI constituting the major polar lipid species present. Human plasma contained significantly higher levels of plasmalogen PE species (p<0.005 and plasmalogen PC species (p<0.0005, while cynomolgus monkey had higher levels of polyunsaturated fatty acyls (PUFA in PC, PE, PS and PI. Notably, cynomolgus monkey had significantly lower levels of glycosphingolipids, including GluCer (p<0.0005 and GM(3 (p<0.0005, but higher level of Cer (p<0.0005 in plasma than human. We next investigated the biochemical alterations in blood lipids of 8 naturally occurring diabetic cynomolgus monkeys when compared with 8 healthy controls. CONCLUSIONS: For the first time, we demonstrated that the plasma of human and cynomolgus monkey were of similar compositions, but contained different mol distribution of individual molecular species. Diabetic monkeys

  11. [Prevalence of obesity and altered lipid profile in university students].

    Science.gov (United States)

    González Sandoval, Claudia Elena; Díaz Burke, Yolanda; Mendizabal-Ruiz, Adriana Patricia; Medina Díaz, Eunice; Morales, José Alejandro

    2014-02-01

    Obesity is a serious public health problem because its association with the risk to develop various chronic diseases. Atherogenic dyslipidemia that often accompany obesity is also associated to the metabolic syndrome and to cardiovascular diseases. The transition from adolescence to young adulthood appears to be a period where major changes occur in the lifestyle which contributes to the development of obesity, however, little attention has been given to this transition stage. The inclination to adopt unhealthy behaviors which occurs during early adulthood may be increased on university students because their lifestyle, which is characterized by lack of time to eat a healthy diet, which can make them susceptible to obesity. To determine the prevalence of obesity and lipid levels abnormalities and their relationship in a group of university students. Transversal study of university students aged between 18 and 24 years. Body mass index, waist circumference and blood lipid profile where evaluated. Of the 620 students surveyed about one-third have either overweight or obesity. 86% of students had at least one alteration in the evaluated parameters. Lipid profile results show a high prevalence of minor alterations in levels, particularly in cholesterol linked to low density lipoproteins levels. University young students have a high prevalence of overweight and plasma lipid levels above the norm, but most are in the low-risk categories. It is necessary to establish early preventive measures aimed at promoting in the university student good eating habits and increased physical activity. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  12. Alterations of plasma lipids in mice via adenoviral-mediated hepatic overexpression of human ABCA1

    NARCIS (Netherlands)

    Wellington, Cheryl L.; Brunham, Liam R.; Zhou, Steven; Singaraja, Roshni R.; Visscher, Henk; Gelfer, Allison; Ross, Colin; James, Erick; Liu, Guoqing; Huber, Mary T.; Yang, Yu-Zhou; Parks, Robin J.; Groen, Albert; Fruchart-Najib, Jamila; Hayden, Michael R.

    2003-01-01

    ATP binding cassette transporter A1 (ABCA1) is a widely expressed lipid transporter essential for the generation of HDL. ABCA1 is particularly abundant in the liver, suggesting that the liver may play a major role in HDL homeostasis. To determine how hepatic ABCA1 affects plasma HDL cholesterol

  13. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides

    Energy Technology Data Exchange (ETDEWEB)

    Wade, C.R.; van Rij, A.M.

    1988-01-01

    The effects of Fe/sup 3 +/, lipid peroxy radicals and the antioxidant butylated hydroxytoluene on the 2-thiobarbituric (TBA) acid quantitation of plasma lipid peroxides were investigated. Whole plasma and plasma fractions prepared by trichloroacetic acid (TCA) protein precipitation and lipid extraction, demonstrated markedly differing TBA reactivities in the presence or absence of added Fe/sup 3 +/. Examination of the spectral profiles of the TBA reacted whole plasma and TCA precipitated fractions demonstrated the presence of interfering compounds which gave rise to an artifactual increase in lipid peroxide concentrations. In contrast the TBA reacted lipid extracts had low levels of interfering compounds that could be removed by our previously described high pressure liquid chromatographic method. Further characterization of the TBA reactivity of the lipid extract showed that Fe/sup 3 +/ at an optimal concentration of 0.5 mM was necessary for the quantitative decomposition of the lipid peroxides to the TBA reactive product malondialdehyde (MDA). However the presence of Fe/sup 3 +/ resulted in further peroxidation of any unsaturated lipids present.

  14. Effects of Plasma Lipids and Statins on Cognitive Function.

    Science.gov (United States)

    Li, Rui; Wang, Tian-Jun; Lyu, Pei-Yuan; Liu, Yang; Chen, Wei-Hong; Fan, Ming-Yue; Xu, Jing

    2018-02-20

    Dementia is the fourth most common cause of death in developed countries. The relationship between plasma lipids and cognitive function is complex and controversial. Due to the increasing life expectancy of the population, there is an urgent need to control vascular risk factors and to identify therapies to prevent and treat both cognitive impairment and dementia. Here, we reviewed the effects of plasma lipids and statins on cognitive function. We searched the PubMed database for research articles published through November 2017 with key words including "plasma lipids," "hyperlipidemia," "hypercholesterolemia," "statins," and "cognition function." Articles were retrieved and reviewed to analyze the effects of plasma lipids and statins on cognitive function and the mechanisms underlying these effects. Many studies have examined the relationship between plasma lipids and cognitive function, but no definitive conclusions can be drawn. The mechanisms involved may include blood-brain barrier injury, the influence on small blood vessels in the brain, the influence on amyloid deposition, and a neuroprotective effect. To date, most studies of statins and cognition have been observational, with few randomized controlled trials. Therefore, firm conclusions regarding whether mid- or long-term statin use affects cognition function and dementia remain elusive. However, increasing concern exists that statins may be a causative factor for cognitive problems. These adverse effects appear to be rare and likely represent a yet-to-be-defined vulnerability in susceptible individuals. The association between plasma lipids and cognition, the mechanism of the influence of plasma lipids on cognitive function, and the association between statins and cognitive function are complex issues and currently not fully understood. Future research aimed at identifying the mechanisms that underlie the effects of plasma lipids and statins on cognition will not only provide important insight into the

  15. Osbpl8 deficiency in mouse causes an elevation of high-density lipoproteins and gender-specific alterations of lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Olivier Béaslas

    Full Text Available OSBP-related protein 8 (ORP8 encoded by Osbpl8 is an endoplasmic reticulum sterol sensor implicated in cellular lipid metabolism. We generated an Osbpl8(-/- (KO C57Bl/6 mouse strain. Wild-type and Osbpl8KO animals at the age of 13-weeks were fed for 5 weeks either chow or high-fat diet, and their plasma lipids/lipoproteins and hepatic lipids were analyzed. The chow-fed Osbpl8KO male mice showed a marked elevation of high-density lipoprotein (HDL cholesterol (+79% and phospholipids (+35%, while only minor increase of apolipoprotein A-I (apoA-I was detected. In chow-fed female KO mice a less prominent increase of HDL cholesterol (+27% was observed, while on western diet the HDL increment was prominent in both genders. The HDL increase was accompanied by an elevated level of HDL-associated apolipoprotein E in male, but not female KO animals. No differences between genotypes were observed in lecithin:cholesterol acyltransferase (LCAT or hepatic lipase (HL activity, or in the fractional catabolic rate of fluorescently labeled mouse HDL injected in chow-diet fed animals. The Osbpl8KO mice of both genders displayed reduced phospholipid transfer protein (PLTP activity, but only on chow diet. These findings are consistent with a model in which Osbpl8 deficiency results in altered biosynthesis of HDL. Consistent with this hypothesis, ORP8 depleted mouse hepatocytes secreted an increased amount of nascent HDL into the culture medium. In addition to the HDL phenotype, distinct gender-specific alterations in lipid metabolism were detected: Female KO animals on chow diet showed reduced lipoprotein lipase (LPL activity and increased plasma triglycerides, while the male KO mice displayed elevated plasma cholesterol biosynthetic markers cholestenol, desmosterol, and lathosterol. Moreover, modest gender-specific alterations in the hepatic expression of lipid homeostatic genes were observed. In conclusion, we report the first viable OsbplKO mouse model

  16. Alterations of plasma lysophosphatidylcholine species in obesity and weight loss.

    Directory of Open Access Journals (Sweden)

    Susanne Heimerl

    Full Text Available Obesity and related diseases of the metabolic syndrome contribute to the major health problems in industrialized countries. Alterations in the metabolism of lipid classes and lipid species may significantly be involved in these metabolic overload diseases. However, little is known about specific lipid species in this syndrome and existing data are contradictive.In this study, we quantified plasma lipid species by electrospray ionization tandem mass spectrometry (ESI-MS/MS in obese subjects before and after 3 month weight loss as well as in a control group.The comparison of obese subjects with control subjects before weight loss revealed significantly lower lysophosphatidylcholine (LPC concentrations in obesity. LPC concentrations did not significantly increase during the observed period in the weight loss group. Analysis of LPC species revealed a decrease of most species in obesity and negative correlations with C-reactive protein (CRP and body mass index (BMI. Correlating BMI ratio before and after weight loss with the ratio of total LPC and individual LPC species revealed significant negative relationships of LPC ratios with BMI ratio.Our findings contribute to the contradictive discussion of the role of LPC in obesity and related chronic inflammation strongly supporting pre-existing data in the literature that show a decrease of LPC species in plasma of obese and a potentially anti-inflammatory role in these subjects.

  17. Xylopia Aethiopica lowers Plasma Lipid Precursors of Reproductive ...

    African Journals Online (AJOL)

    Xylopia Aethiopica lowers Plasma Lipid Precursors of Reproductive Hormones in Wister Rats. PC Onyebuagu, CP Aloamaka, JC Igweh. Abstract. This study investigated the effects of dietary Xylopia aethiopica on reproductive hormones and plasma lipids in rats. 10 male and 10 female Wistar rats weighing 200-220g and ...

  18. Plasma membrane lipids and their role in fungal virulence.

    Science.gov (United States)

    Rella, Antonella; Farnoud, Amir M; Del Poeta, Maurizio

    2016-01-01

    There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies. Published by Elsevier Ltd.

  19. Specific inhibition of bile acid transport alters plasma lipids and GLP-1

    DEFF Research Database (Denmark)

    Rudling, Mats; Camilleri, Michael; Graffner, Hans

    2015-01-01

    mellitus. The objectives of this study were to evaluate metabolic effects of elobixibat. Effects on plasma lipids and BA synthesis were evaluated utilizing a 4-week, placebo-controlled study in patients with dyslipidemia while changes of glucagon-like peptide-1 (GLP-1) by elobixibat was assayed in samples......: In the dyslipidemia study LDL cholesterol was reduced by 7.4 % (p = 0.044), and the LDL/HDL ratio was decreased by 18 % (p = 0.004). Serum C4 increased, indicating that BA synthesis was induced. No serious adverse events were recorded. In the CC study, GLP-1 increased significantly in both the 15 mg (20.7 ± 2.4 pmol...

  20. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    Energy Technology Data Exchange (ETDEWEB)

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; Dohnalkova, Alice; Hu, Dehong; Lemke, Rachelle A.; Piotrowski, Jeff S.; Orr, Galya; Noguera, Daniel R.; Donohue, Timothy J.

    2017-05-23

    ABSTRACT

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals.

    IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase

  1. Lipid organization of the plasma membrane

    NARCIS (Netherlands)

    Ingólfsson, Helgi I; Melo, Manuel N; van Eerden, Floris J; Arnarez, Clément; Lopez, Cesar A; Wassenaar, Tsjerk A; Periole, Xavier; de Vries, Alex H; Tieleman, D Peter; Marrink, Siewert J

    2014-01-01

    The detailed organization of cellular membranes remains rather elusive. Based on large-scale molecular dynamics simulations, we provide a high-resolution view of the lipid organization of a plasma membrane at an unprecedented level of complexity. Our plasma membrane model consists of 63 different

  2. Alteration in lipid composition of plasma membranes of sensitive and resistant Guerin carcinoma cells due to the action of free and liposomal form of cisplatin.

    Science.gov (United States)

    Naleskina, L A; Todor, I N; Nosko, M M; Lukianova, N Y; Pivnyuk, V M; Chekhun, V F

    2013-09-01

    To study in vivo changes of lipid composition of plasma membranes of sensitive and resistant to cisplatin Guerin carcinoma cells under influence of free and liposomal cisplatin forms. The isolation of plasma membranes from parental (sensitive) and resistant to cisplatin Guerin carcinoma cells was by differential ultracentrifugation in sucrose density gradient. Lipids were detected by method of thin-layer chromatography. It was determined that more effective action of cisplatin liposomal form on resistant cells is associated with essential abnormalities of conformation of plasma membrane due to change of lipid components and architectonics of rafts. It results in the increase of membrane fluidity. Reconstructions in lipid composition of plasma membranes of cisplatin-resistant Guerin carcinoma cells provide more intensive delivery of drug into the cells, increase of its concentration and more effective interaction with cellular structural elements.

  3. Plasma lipid peroxidation and progression of disability in multiple sclerosis

    NARCIS (Netherlands)

    Koch, M.; Mostert, J.; Arutjunyan, A. V.; Stepanov, M.; Teelken, A.; Heersema, D.; De Keyser, J.

    Oxidative stress has been implicated in the pathophysiology of multiple sclerosis (MS), but its relation to disease progression is uncertain. To evaluate the relationship of plasma lipid peroxidation with progression of disability in MS, we measured blood plasma fluorescent lipid peroxidation

  4. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice.

    Directory of Open Access Journals (Sweden)

    Huan Cai

    Full Text Available Taste perception plays an important role in regulating food preference, eating behavior and energy homeostasis. Taste perception is modulated by a variety of factors, including gastric hormones such as ghrelin. Ghrelin can regulate growth hormone release, food intake, adiposity, and energy metabolism. Octanoylation of ghrelin by ghrelin O-acyltransferase (GOAT is a specific post-translational modification which is essential for many biological activities of ghrelin. Ghrelin and GOAT are both widely expressed in many organs including the gustatory system. In the current study, overall metabolic profiles were assessed in wild-type (WT, ghrelin knockout (ghrelin(-/-, and GOAT knockout (GOAT(-/- mice. Ghrelin(-/- mice exhibited decreased food intake, increased plasma triglycerides and increased ketone bodies compared to WT mice while demonstrating WT-like body weight, fat composition and glucose control. In contrast GOAT(-/- mice exhibited reduced body weight, adiposity, resting glucose and insulin levels compared to WT mice. Brief access taste behavioral tests were performed to determine taste responsivity in WT, ghrelin(-/- and GOAT(-/- mice. Ghrelin and GOAT null mice possessed reduced lipid taste responsivity. Furthermore, we found that salty taste responsivity was attenuated in ghrelin(-/- mice, yet potentiated in GOAT(-/- mice compared to WT mice. Expression of the potential lipid taste regulators Cd36 and Gpr120 were reduced in the taste buds of ghrelin and GOAT null mice, while the salt-sensitive ENaC subunit was increased in GOAT(-/- mice compared with WT mice. The altered expression of Cd36, Gpr120 and ENaC may be responsible for the altered lipid and salt taste perception in ghrelin(-/- and GOAT(-/- mice. The data presented in the current study potentially implicates ghrelin signaling activity in the modulation of both lipid and salt taste modalities.

  5. Membrane lipid alterations in the metabolic syndrome and the role of dietary oils.

    Science.gov (United States)

    Perona, Javier S

    2017-09-01

    The metabolic syndrome is a cluster of pathological conditions, including hypertension, hyperglycemia, hypertriglyceridemia, obesity and low HDL levels that is of great concern worldwide, as individuals with metabolic syndrome have an increased risk of type-2 diabetes and cardiovascular disease. Insulin resistance, the key feature of the metabolic syndrome, might be at the same time cause and consequence of impaired lipid composition in plasma membranes of insulin-sensitive tissues like liver, muscle and adipose tissue. Diet intervention has been proposed as a powerful tool to prevent the development of the metabolic syndrome, since healthy diets have been shown to have a protective role against the components of the metabolic syndrome. Particularly, dietary fatty acids are capable of modulating the deleterious effects of these conditions, among other mechanisms, by modifications of the lipid composition of the membranes in insulin-sensitive tissues. However, there is still scarce data based of high-level evidence on the effects of dietary oils on the effects of the metabolic syndrome and its components. This review summarizes the current knowledge on the effects of dietary oils on improving alterations of the components of the metabolic syndrome. It also examines their influence in the modulation of plasma membrane lipid composition and in the functionality of membrane proteins involved in insulin activity, like the insulin receptor, GLUT-4, CD36/FAT and ABCA-1, and their effect in the metabolism of glucose, fatty acids and cholesterol, and, in turn, the key features of the metabolic syndrome. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Relation between plasma and brain lipids

    DEFF Research Database (Denmark)

    Wellington, Cheryl L; Frikke-Schmidt, Ruth

    2016-01-01

    : Plasma levels of traditional lipids and lipoproteins are not consistently associated with risk of dementia even though low plasma levels of apolipoprotein E, through unknown mechanisms, robustly predict future dementia. Experimental evidence suggests neuroprotective roles of several brain...... and cerebrospinal fluid apolipoproteins. Whether plasma levels of apolipoprotein E, or any other apolipoprotein with possible central nervous system and/or blood-brain barrier functions (apolipoproteins J, A-I, A-II, A-IV, D, C-I, and C-III) may become accessible biomarker components that improve risk prediction...

  7. Lipidomic profiling reveals distinct differences in plasma lipid composition in healthy, prediabetic, and type 2 diabetic individuals

    Science.gov (United States)

    Zhong, Huanzi; Fang, Chao; Fan, Yanqun; Lu, Yan; Wen, Bo; Ren, Huahui; Hou, Guixue; Yang, Fangming; Xie, Hailiang; Jie, Zhuye; Peng, Ye; Ye, Zhiqiang; Wu, Jiegen; Zi, Jin; Zhao, Guoqing; Chen, Jiayu; Bao, Xiao; Hu, Yihe; Gao, Yan; Zhang, Jun; Yang, Huanming; Wang, Jian; Madsen, Lise; Kristiansen, Karsten

    2017-01-01

    Abstract The relationship between dyslipidemia and type 2 diabetes mellitus (T2D) has been extensively reported, but the global lipid profiles, especially in the East Asia population, associated with the development of T2D remain to be characterized. Liquid chromatography coupled to tandem mass spectrometry was applied to detect the global lipidome in the fasting plasma of 293 Chinese individuals, including 114 T2D patients, 81 prediabetic subjects, and 98 individuals with normal glucose tolerance (NGT). Both qualitative and quantitative analyses revealed a gradual change in plasma lipid features with T2D patients exhibiting characteristics close to those of prediabetic individuals, whereas they differed significantly from individuals with NGT. We constructed and validated a random forest classifier with 28 lipidomic features that effectively discriminated T2D from NGT or prediabetes. Most of the selected features significantly correlated with diabetic clinical indices. Hydroxybutyrylcarnitine was positively correlated with fasting plasma glucose, 2-hour postprandial glucose, glycated hemoglobin, and insulin resistance index (HOMA-IR). Lysophosphatidylcholines such as lysophosphatidylcholine (18:0), lysophosphatidylcholine (18:1), and lysophosphatidylcholine (18:2) were all negatively correlated with HOMA-IR. The altered plasma lipidome in Chinese T2D and prediabetic subjects suggests that lipid features may play a role in the pathogenesis of T2D and that such features may provide a basis for evaluating risk and monitoring disease development. PMID:28505362

  8. Influence of Some Micro nutrients Quenching the Effect of g-Radiation on Plasma Lipids and Vitamin E Contents in Rats

    International Nuclear Information System (INIS)

    Zahran, A.M.; Noaman, E.; Omran, M.F.

    2003-01-01

    The effects of ionizing radiation on some biological parameters in rats have been studied. Sublethal whole body g-irradiation dose on the plasma lipid fractions and susceptibility to oxidative stress were investigated. Male albino rats were intraperitoneally injected with a-tocopheryl acetate (200 mg/kg body weight), and/or sodium selenite (0.1 mg/kg body weight), daily for two weeks before exposure to 6.5 Gy of ionizing radiation. Exposed rats to ionizing radiation showed significant alterations in the assayed parameters indicating lipid metabolism disturbances. The combined administration of a-tocopherol and selenium greatly ameliorated the increase in total cholesterol, triacylglycerols, phospholipids, low-density lipoprotein- cholesterol concentration in plasma. Moreover, the data revealed an increased consumption of vitamin E concentration in plasma following g-rays exposure. Vitamin E/triacylglycerols ratio was greatly corrected by combined administration of vitamin E and Selenium. Cholesterol has a long scientific history being representing a major essential constituent for all animal cell membranes (Gurr and Harwood, 1992). Plasma lipid levels are affected by genetic and dietary factors, medication and certain primary disease states (Feldman and Kuske, 1989). Hyperlipemia may occur due to exposure to ionizing radiation resulting in accumulation of cholesterol,

  9. Interrelation between human fertility and seminal plasma lipids, prostaglandins and zinc

    International Nuclear Information System (INIS)

    Hafiez, A.A.; Zaki, K.; Abbas, E.Z.; Halawa, F.A.; Abdel-Azis, A.

    1986-01-01

    In adult fertile men (32), men with oligospermia (43) and men with azoospermia (31) seminal plasma lipids, prostaglandins (PG) and Zn were determined. The PGs were determined by radioimmunoassay. In oligospermia the seminal plasma levels of PGE phospholipids, triglycerides and Zn were significantly increased, while the PGF/sub 2α/ level was unchanged. In azoospermia the seminal plasma total lipids, phospholipids and cholesterol were significantly decreased, PGE revealed an insignificant decrease only

  10. Consensus clinical recommendations for the management of plasma lipid disorders in the Middle East.

    Science.gov (United States)

    Al Sayed, Nasreen; Al Waili, Khalid; Alawadi, Fatheya; Al-Ghamdi, Saeed; Al Mahmeed, Wael; Al-Nouri, Fahad; Al Rukhaimi, Mona; Al-Rasadi, Khalid; Awan, Zuhier; Farghaly, Mohamed; Hassanein, Mohamed; Sabbour, Hani; Zubaid, Mohammad; Barter, Philip

    2016-12-15

    Plasma lipid disorders are key risk factors for the development of atherosclerotic cardiovascular disease (ASCVD) and are prevalent in the Middle East, with rates increasing in recent decades. Despite this, no region-specific guidelines for managing plasma lipids exist and there is a lack of use of guidelines developed in other regions. A multidisciplinary panel of regional experts was convened to develop consensus clinical recommendations for the management of plasma lipids in the Middle East. The panel considered existing international guidelines and regional clinical experience to develop recommendations. The panel's recommendations include plasma lipid screening, ASCVD risk calculation and treatment considerations. The panel recommend that plasma lipid levels should be measured in all at-risk patients and at regular intervals in all adults from the age of 20years. A scoring system should be used to calculate ASCVD risk that includes known lipid and non-lipid risk factors. Primary treatment targets include low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol. Lifestyle modifications should be first-line treatment for all patients; the first-line pharmacological treatment targeting plasma lipids in patients at moderate-to-high risk of ASCVD is statin therapy, with a number of adjunctive or second-line agents available. Guidance is also provided on the management of underlying conditions and special populations; of particular pertinence in the region are familial hypercholesterolaemia, diabetes and metabolic dyslipidaemia. These consensus clinical recommendations provide practicing clinicians with comprehensive, region-specific guidance to improve the detection and management of plasma lipid disorders in patients in the Middle East. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs

    OpenAIRE

    Laat, S.W. de; Tetteroo, P.A.T.; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van

    1984-01-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xaopus Levis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein (“HEDAF”) and 5-(N-tetradecanoyl)aminofluorescein (“TEDAF”) as probes. The preexisting plasma membrane of the animal side showed an inhomogeneous, dotted fluorescence pattern after labeling and the lateral mobility of both probes used was below the detection limits of the FP...

  12. Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease.

    Science.gov (United States)

    Labilloy, Anatália; Youker, Robert T; Bruns, Jennifer R; Kukic, Ira; Kiselyov, Kirill; Halfter, Willi; Finegold, David; do Monte, Semiramis Jamil Hadad; Weisz, Ora A

    2014-02-01

    Accumulation of globotriaosylceramide (Gb3) and other neutral glycosphingolipids with galactosyl residues is the hallmark of Fabry disease, a lysosomal storage disorder caused by deficiency of the enzyme alpha-galactosidase A (α-gal A). These lipids are incorporated into the plasma membrane and intracellular membranes, with a preference for lipid rafts. Disruption of raft mediated cell processes is implicated in the pathogenesis of several human diseases, but little is known about the effects of the accumulation of glycosphingolipids on raft dynamics in the context of Fabry disease. Using siRNA technology, we have generated a polarized renal epithelial cell model of Fabry disease in Madin-Darby canine kidney cells. These cells present increased levels of Gb3 and enlarged lysosomes, and progressively accumulate zebra bodies. The polarized delivery of both raft-associated and raft-independent proteins was unaffected by α-gal A knockdown, suggesting that accumulation of Gb3 does not disrupt biosynthetic trafficking pathways. To assess the effect of α-gal A silencing on lipid raft dynamics, we employed number and brightness (N&B) analysis to measure the oligomeric status and mobility of the model glycosylphosphatidylinositol (GPI)-anchored protein GFP-GPI. We observed a significant increase in the oligomeric size of antibody-induced clusters of GFP-GPI at the plasma membrane of α-gal A silenced cells compared with control cells. Our results suggest that the interaction of GFP-GPI with lipid rafts may be altered in the presence of accumulated Gb3. The implications of our results with respect to the pathogenesis of Fabry disease are discussed. © 2013 Elsevier Inc. All rights reserved.

  13. Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids.

    Science.gov (United States)

    Li, Guangtao; Kim, JiHyun; Huang, Zhen; St Clair, Johnna R; Brown, Deborah A; London, Erwin

    2016-12-06

    Our understanding of membranes and membrane lipid function has lagged far behind that of nucleic acids and proteins, largely because it is difficult to manipulate cellular membrane lipid composition. To help solve this problem, we show that methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange can be used to maximally replace the sphingolipids and phospholipids in the outer leaflet of the plasma membrane of living mammalian cells with exogenous lipids, including unnatural lipids. In addition, lipid exchange experiments revealed that 70-80% of cell sphingomyelin resided in the plasma membrane outer leaflet; the asymmetry of metabolically active cells was similar to that previously defined for erythrocytes, as judged by outer leaflet lipid composition; and plasma membrane outer leaflet phosphatidylcholine had a significantly lower level of unsaturation than phosphatidylcholine in the remainder of the cell. The data also provided a rough estimate for the total cellular lipids residing in the plasma membrane (about half). In addition to such lipidomics applications, the exchange method should have wide potential for investigations of lipid function and modification of cellular behavior by modification of lipids.

  14. Changes in Plasma Lipids during Exposure to Total Sleep Deprivation.

    Science.gov (United States)

    Chua, Eric Chern-Pin; Shui, Guanghou; Cazenave-Gassiot, Amaury; Wenk, Markus R; Gooley, Joshua J

    2015-11-01

    The effects of sleep loss on plasma lipids, which play an important role in energy homeostasis and signaling, have not been systematically examined. Our aim was to identify lipid species in plasma that increase or decrease reliably during exposure to total sleep deprivation. Twenty individuals underwent sleep deprivation in a laboratory setting. Blood was drawn every 4 h and mass spectrometry techniques were used to analyze concentrations of 263 lipid species in plasma, including glycerolipids, glycerophospholipids, sphingolipids, and sterols. Chronobiology and Sleep Laboratory, Duke-NUS Graduate Medical School. Healthy ethnic-Chinese males aged 21-28 y (n = 20). Subjects were kept awake for 40 consecutive hours. Each metabolite time series was modeled as a sum of sinusoidal (circadian) and linear components, and we assessed whether the slope of the linear component differed from zero. More than a third of all individually analyzed lipid profiles exhibited a circadian rhythm and/or a linear change in concentration during sleep deprivation. Twenty-five lipid species showed a linear and predominantly unidirectional trend in concentration levels that was consistent across participants. Choline plasmalogen levels decreased, whereas several phosphatidylcholine (PC) species and triacylglycerides (TAG) carrying polyunsaturated fatty acids increased. The decrease in choline plasmalogen levels during sleep deprivation is consistent with prior work demonstrating that these lipids are susceptible to degradation by oxidative stress. The increase in phosphatidylcholines and triacylglycerides suggests that sleep loss might modulate lipid metabolism, which has potential implications for metabolic health in individuals who do not achieve adequate sleep. © 2015 Associated Professional Sleep Societies, LLC.

  15. An onion byproduct affects plasma lipids in healthy rats.

    Science.gov (United States)

    Roldán-Marín, Eduvigis; Jensen, Runa I; Krath, Britta N; Kristensen, Mette; Poulsen, Morten; Cano, M Pilar; Sánchez-Moreno, Concepción; Dragsted, Lars O

    2010-05-12

    Onion may contribute to the health effects associated with high fruit and vegetable consumption. A considerable amount of onion production ends up as waste that might find use in foods. Onion byproduct has not yet been explored for potential health benefits. The aim of this study is to elucidate the safety and potential role of onion byproducts in affecting risk markers of cardiovascular disease (CVD). For that purpose, the effects of an onion byproduct, Allium cepa L. cepa 'Recas' (OBP), and its two derived fractions, an ethanolic extract (OE) and a residue (OR), on the distribution of plasma lipids and on factors affecting cholesterol metabolism in healthy rats have been investigated. The OBP or its fractions did not significantly reduce cholesterol or down-regulate hepatic 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) gene expression. The OR even had the effect of increasing plasma triacylglycerides (TAG) and cholesterol in the very low density lipoprotein (VLDL-C) fraction. Neither total bile acids nor total primary or secondary bile acids were significantly affected by feeding rats the OBP or its fractions. Principal component analysis combining all markers revealed that the controls could be completely separated from OBP, OE, and OR groups in the scores plot and also that OE and OR groups were separated. Plasma lipids and bile acid excretion were the discriminating loading factors for separating OE and OR but also contributed to the separation of onion-fed animals and controls. It was concluded that the onion byproduct did not present significant beneficial effects on individual markers related to plasma lipid transport in this healthy rat model but that onion byproduct contains factors with the ability to modulate plasma lipids and lipoprotein levels.

  16. Lipid self-assembly and lectin-induced reorganization of the plasma membrane.

    Science.gov (United States)

    Sych, Taras; Mély, Yves; Römer, Winfried

    2018-05-26

    The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  17. Defatted Detarium senegalense seed-based diet alters lipid profile ...

    African Journals Online (AJOL)

    Defatted Detarium senegalense seed-based diet alters lipid profile, ... cheaper alternative source for good quality protein for dietary purposes, we evaluated Detarium ... Whole seed residue, DDS seed flour and control diets (soybeans) were ...

  18. Quantitative profile of lipid classes in blood by normal phase chromatography with evaporative light scattering detector: application in the detection of lipid class abnormalities in liver cirrhosis.

    Science.gov (United States)

    Chamorro, Laura; García-Cano, Ana; Busto, Rebeca; Martínez-González, Javier; Albillos, Agustín; Lasunción, Miguel Ángel; Pastor, Oscar

    2013-06-05

    The lack of analytical methods specific for each lipid class, particularly for phospholipids and sphyngolipids, makes necessary their separation by preparative techniques before quantification. LC-MS would be the election method but for daily work in the clinical laboratory this is not feasible for different reasons, both economic and time consuming. In the present work, we have optimized an HPLC method to quantify lipid classes in plasma and erythrocytes and applied it to samples from patients with cirrhosis. Lipid classes were analyzed by normal phase liquid chromatography with evaporative light scattering detection. We employed a quaternary solvent system to separate twelve lipid classes in 15 min. Interday, intraday and recovery for quantification of lipid classes in plasma were excellent with our methodology. The total plasma lipid content of cirrhotic patients vs control subjects was decreased with diminished CE (81±33 vs 160±17 mg/dL) and PC (37±16 vs 60±19 mg/dL). The composition of erythrocytes showed a decrease in acidic phospholipids: PE, PI and PS. Present methodology provides a reliable quantification of lipid classes in blood. The lipid profile of cirrhotics showed alterations in the PC/PE plasma ratio and in the phospholipid content of erythrocytes, which might reflect alterations in hepatocyte and erythrocyte membrane integrity. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Evaluation of plasma lipids and lipoproteins in nigerians suffering ...

    African Journals Online (AJOL)

    There are conflicting reports on the role of plasma lipids in depressive illness. Very little is known about the lipid and lipoprotein status in Nigerian adults suffering from depression. One hundred subjects consisting of sixty (60) depressed patients with mean age (40.3±12.3 yrs) and forty (40) apparently healthy controls ...

  20. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs

    NARCIS (Netherlands)

    Laat, S.W. de; Tetteroo, P.A.T.; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van

    1984-01-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xaopus Levis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein (“HEDAF”) and 5-(N-tetradecanoyl)aminofluorescein (“TEDAF”) as probes. The

  1. Mesoscale organization of domains in the plasma membrane - beyond the lipid raft.

    Science.gov (United States)

    Lu, Stella M; Fairn, Gregory D

    2018-04-01

    The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid-protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the "lipid raft" concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms "membrane raft" or "membrane nanodomain" are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.

  2. Perillyl alcohol: Dynamic interactions with the lipid bilayer and implications for long‐term inhalational chemotherapy for gliomas

    DEFF Research Database (Denmark)

    Orlando da Fonseca, Clovis; Khandelia, Himanshu; D’Alincourt Salazar, Marcela

    2016-01-01

    at the outer plasma membrane interface are critical for effective drug uptake. Amphipathic molecules such as perillyl alcohol (POH) have a high partition coefficient and generally lead to altered lipid acyl tail dynamics near the lipid-water interface, impacting the lipid bilayer structure and transport...... of patients with LGG halted disease progression with virtually no toxicity. Conclusion: Altogether, the results suggest that POH-induced alterations of the plasma membrane might be contributing to its therapeutic efficacy in preventing LGG progression....

  3. Radioprotection of whole-body gamma irradiation induced alterations in lipid metabolism of liver and plasma by AET (S-2, aminoethyl isothiuronium Br. H. Br.) and serotonin in rats

    International Nuclear Information System (INIS)

    Ramanathan, R.; Misra, U.K.

    1975-01-01

    Radioprotective effect of AET, serotonin and their mixture has been studied on liver and plasma lipid metabolism 24 hrs and 48 hrs after irradiation in fasted male rats. AET and serotonin both gave significant radioprotection to certain liver and plasma lipid components, but the mixture of the two afforded a better protection. The non-radioprotection of plasma NEFA, phospholipids and phosphatidyl choline levels by serotonin observed in irradiated rats was because serotonin itself raised the levels of these lipids in control rats. Serotonin alone or in mixture effectively protected the radiation-induced increased incorporation of NaH 2 32 PO 4 into liver phospholipids. Mixture of AET and serotonin failed to protect the increased incorporation of aceae-1-14-C into liver total fatty acids and cholesterol, but it prevented this increased incorporation into liver triglycerides and phospholipids. (orig.) [de

  4. Incorporation of deuterium-labeled trans- and cis-13-octadecenoic acids in human plasma lipids

    International Nuclear Information System (INIS)

    Emken, E.A.; Adlof, R.O.; Rohwedder, W.K.; Gulley, R.M.

    1983-01-01

    The absorption and distribution of deuterated trans- and cis-13-octadecenoic acid (13t-18:1 and 13c-18:1) in plasma lipids were compared to deuterated cis-9-octadecenoic acid (9c-18:1) in two young adult male subjects. A mixture of triglycerides was fed in a multiple-labeled experiment where each triglyceride contained a fatty acid labeled with a different number of deuterium atoms. Analysis of human plasma lipids by mass spectroscopy allowed the distribution of the two 13-octadecenoic acid isomers to be directly compared to cis-9-octadecenoic acid. Plasma lipids selectively excluded both the 13t-18:1 and 13c-18:1 isomers relative to 9c-18:1 in all neutral and phospholipid fractions. Discrimination against incorporation of the 13t-18:1 isomer into plasma cholesteryl ester and 2-acyl phosphatidylcholine was nearly absolute. The 1-acyl phosphatidylcholine fraction exhibited a large positive selectivity for the 13t-18:1 isomer. Differences in the relative distribution of the trans and cis 13-18:1 isomers vs. 9c-18:1 in the various lipoprotein lipid classes were found. Analysis of the chylomicron triglyceride component of the plasma lipids indicated all three fatty acids were equally well absorbed

  5. Lateral mobility of plasma membrane lipids in dividing Xenopus eggs.

    Science.gov (United States)

    Tetteroo, P A; Bluemink, J G; Dictus, W J; van Zoelen, E J; de Laat, S W

    1984-07-01

    The lateral mobility of plasma membrane lipids was analyzed during first cleavage of Xenopus laevis eggs by fluorescence photobleaching recovery (FPR) measurements, using the lipid analogs 5-(N-hexadecanoyl)aminofluorescein ("HEDAF") and 5-(N-tetradecanoyl)aminofluorescein ("TEDAF") as probes. The preexisting plasma membrane of the animal side showed an inhomogeneous, dotted fluorescence pattern after labeling and the lateral mobility of both probes used was below the detection limits of the FPR method (D much less than 10(-10) cm2/sec). In contrast, the preexisting plasma membrane of the vegetal side exhibited homogeneous fluorescence and the lateral diffusion coefficient of both probes used was relatively high (HEDAF, D = 2.8 X 10(-8) cm2/sec; TEDAF, D = 2.4 X 10(-8) cm2/sec). In the cleaving egg visible transfer of HEDAF or TEDAF from prelabeled plasma membrane to the new membrane in the furrow did not occur, even on the vegetal side. Upon labeling during cleavage, however, the new membrane was uniformly labeled and both probes were mobile, as in the vegetal preexisting plasma membrane. These data show that the membrane of the dividing Xenopus egg comprises three macrodomains: (i) the animal preexisting plasma membrane; (ii) the vegetal preexisting plasma membrane; (iii) the new furrow membrane.

  6. Human plasma lipid modulation in schistosomiasis mansoni depends on apolipoprotein E polymorphism.

    Directory of Open Access Journals (Sweden)

    Caíque Silveira Martins da Fonseca

    Full Text Available Schistosomiasis mansoni is a parasitic liver disease, which causes several metabolic disturbances. Here, we evaluate the influence of Apolipoprotein E (APOE gene polymorphism, a known modulator of lipid metabolism, on plasma lipid levels in patients with hepatosplenic schistosomiasis.Blood samples were used for APOE genotyping and to measure total cholesterol (TC, LDL-C, HDL-C and triglycerides. Schistosomiasis patients had reduced TC, LDL-C and triglycerides (25%, 38% and 32% lower, respectively; Pε3>ε4 was absent in patients (ε2 or ε4>ε3, and the increase in HDL-C of ε2 or ε4 patients compared to ε3 patients was not seen in the control groups.We confirm that human schistosomiasis causes dyslipidemia and report for the first time that certain changes in plasma lipid and lipoprotein levels depend on APOE gene polymorphism. Importantly, we also concluded that S. mansoni disrupts the expected regulation of plasma lipids by the different ApoE isoforms. This finding suggests ways to identify new metabolic pathways affected by schistosomiasis and also potential molecular targets to treat associated morbidities.

  7. Application of FTIR-ATR Spectroscopy to Determine the Extent of Lipid Peroxidation in Plasma during Haemodialysis

    Directory of Open Access Journals (Sweden)

    Adam Oleszko

    2015-01-01

    Full Text Available During a haemodialysis (HD, because of the contact of blood with the surface of the dialyser, the immune system becomes activated and reactive oxygen species (ROS are released into plasma. Particularly exposed to the ROS are lipids and proteins contained in plasma, which undergo peroxidation. The main breakdown product of oxidized lipids is the malondialdehyde (MDA. A common method for measuring the concentration of MDA is a thiobarbituric acid reactive substances (TBARS method. Despite the formation of MDA in plasma during HD, its concentration decreases because it is removed from the blood in the dialyser. Therefore, this research proposes the Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR spectroscopy, which enables determination of primary peroxidation products. We examined the influence of the amount of hydrogen peroxide added to lipid suspension that was earlier extracted from plasma specimen on lipid peroxidation with use of TBARS and FTIR-ATR methods. Linear correlation between these methods was shown. The proposed method was effective during the evaluation of changes in the extent of lipid peroxidation in plasma during a haemodialysis in sheep. A measurement using the FTIR-ATR showed an increase in plasma lipid peroxidation after 15 and 240 minutes of treatment, while the TBARS concentration was respectively lower.

  8. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    Science.gov (United States)

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein–protein and protein–lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid–protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status. PMID:24672530

  9. Plasma Lipid Peroxidation and Total Antioxidant Status among ...

    African Journals Online (AJOL)

    BACKGROUND: The oxidative modification hypothesis of atherosclerosis predicts that low density lipoprotein-cholesterol (LDL-C) oxidation is an early event in atherosclerosis and that oxidized LDL-C contributes to atherogenesis. OBJECTIVE: To determine a link, if any, between the plasma lipid peroxidation and total ...

  10. Effects of dietary phospholipid level in cobia (Rachycentron canadum) larvae: growth, survival, plasma lipids and enzymes of lipid metabolism.

    Science.gov (United States)

    Niu, J; Liu, Y J; Tian, L X; Mai, K S; Yang, H J; Ye, C X; Zhu, Y

    2008-03-01

    A study was conducted to determine the effects of dietary phospholipid (PL) levels in cobia (Rachycentron canadum) larvae with regard to growth, survival, plasma lipids and enzymes of lipid metabolism. Fish with an average weight of 0.4 g were fed diets containing four levels of PL (0, 20, 40 and 80 g kg(-1)dry matter: purity 97%) for 42 days. Final body weight (FBW), weight gain (WG) and survival ratio were highest in the 8% PL diet group and mortality was highest in PL-free diet group. We examined the activities of lipoprotein lipase (LPL) and hepatic lipase (HL) in liver, lecithin-cholesterolacyltransferase (LCAT) in plasma as well as plasma lipids and lipoprotein. LCAT activity showed a decrease of more than two-fold in PL-supplemented diet groups compared with the PL-free diet group. HL activity was highest in the 8% PL diet group and the other three groups showed no difference. LPL activity was significantly higher in the PL-supplemented diet groups than in the PL-free diet group. The dietary intervention significantly increased plasma phospholipids and total cholesterol (TC) levels, and the higher free cholesterol (FC) level contributed to the TC level. However, the fish fed PL exhibited a significantly decreased plasma triglyceride (TG) level. The lipoprotein fractions were also affected significantly by the PL. The PL-supplemented diet groups had significantly higher high-density lipoprotein (HDL) compared with the PL-free diet group, but showed a marked decrease in very low-density lipoprotein (VLDL). The results suggested that PL could modify plasma lipoprotein metabolism and lipid profile, and that the optimal dietary PL level may well exceed 80 g kg(-1) for cobia larvae according to growth and survival.

  11. Impaired plasma lipid profiles in acute hepatitis

    Directory of Open Access Journals (Sweden)

    Wang Yongzhong

    2010-01-01

    Full Text Available Abstract The present study examined plasma lipid profiles in thirty patients suffered from acute viral hepatitis. Patients' blood samples were collected at both the debut and recovery of diseases. Thirty sex and age matched normal subjects were included as controls. Plasma total triglycerides (TG, total cholesterol, high density lipoprotein cholesterol (HDL-C, low density lipoprotein cholesterol (LDL-C, apolipoprotein AI (ApoAI, apolipoprotein B (ApoB, lipoprotein (a (Lp(a, blood coagulation status including prothrombin complex activity and activated partial tromboplastin time (APTT, and hepatic functions were determined by the automatic biochemical analytical instrument. It demonstrated that plasma levels of total cholesterol, HDL-C and apoAI were significantly lower in the patients at the acute phase of hepatitis than those in normal subjects, whereas plasma levels of TG and LDL-C were obviously higher in the patients than in normal subjects (P

  12. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    Energy Technology Data Exchange (ETDEWEB)

    Frei, B. (Department of Nutrition, Harvard School of Public Health, Boston, MA (Unites States))

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  13. Addition of electrophilic lipids to actin alters filament structure

    International Nuclear Information System (INIS)

    Gayarre, Javier; Sanchez, David; Sanchez-Gomez, Francisco J.; Terron, Maria C.; Llorca, Oscar; Perez-Sala, Dolores

    2006-01-01

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-Δ 12,14 -PGJ 2 (15d-PGJ 2 ) and PGA 1 in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA 1 and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ 2 or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ 2 at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles

  14. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    DEFF Research Database (Denmark)

    Zech, Tobias; Ejsing, Christer S.; Gaus, Katharina

    2009-01-01

    Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T-cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin...... and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation...... domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate...

  15. Identification of the lipid biomarkers from plasma in idiopathic pulmonary fibrosis by Lipidomics.

    Science.gov (United States)

    Yan, Feng; Wen, Zhensong; Wang, Rui; Luo, Wenling; Du, Yufeng; Wang, Wenjun; Chen, Xianyang

    2017-12-06

    Idiopathic pulmonary fibrosis (IPF) is an irreversible interstitial pulmonary disease featured by high mortality, chronic and progressive course, and poor prognosis with unclear etiology. Currently, more studies have been focusing on identifying biomarkers to predict the progression of IPF, such as genes, proteins, and lipids. Lipids comprise diverse classes of molecules and play a critical role in cellular energy storage, structure, and signaling. The role of lipids in respiratory diseases, including cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD) has been investigated intensely in the recent years. The human serum lipid profiles in IPF patients however, have not been thoroughly understood and it will be very helpful if there are available molecular biomarkers, which can be used to monitor the disease progression or provide prognostic information for IPF disease. In this study, we performed the ultraperformance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-QTOF/MS) to detect the lipid variation and identify biomarker in plasma of IPF patients. The plasma were from 22 IPF patients before received treatment and 18 controls. A total of 507 individual blood lipid species were determined with lipidomics from the 40 plasma samples including 20 types of fatty acid, 159 types of glycerolipids, 221 types of glycerophospholipids, 47 types of sphingolipids, 46 types of sterol lipids, 7 types of prenol lipids, 3 types of saccharolipids, and 4 types of polyketides. By comparing the variations in the lipid metabolite levels in IPF patients, a total of 62 unique lipids were identified by statistical analysis including 24 kinds of glycerophoslipids, 30 kinds of glycerolipids, 3 kinds of sterol lipids, 4 kinds of sphingolipids and 1 kind of fatty acids. Finally, 6 out of 62 discriminating lipids were selected as the potential biomarkers, which are able to differentiate between IPF disease and controls with ROC

  16. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function

    Directory of Open Access Journals (Sweden)

    George A. Robinson

    2017-11-01

    Full Text Available It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β, and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.

  17. Factor XIII as a modulator of plasma fibronectin alterations during experimental bacteremia.

    Science.gov (United States)

    Kiener, J L; Cho, E; Saba, T M

    1986-11-01

    Fibronectin is found in plasma as well as in association with connective tissue and cell surfaces. Depletion of plasma fibronectin is often observed in septic trauma and burned patients, while experimental rats often manifest hyperfibronectinemia with sepsis. Since Factor XIII may influence the rate of clearance and deposition of plasma fibronectin into tissues, we evaluated the temporal changes in plasma fibronectin and plasma Factor XIII following bacteremia and RE blockade in rats in an attempt to understand the mechanism leading to elevation of fibronectin levels in bacteremic rats, which is distinct from that observed with RE blockade. Clearance of exogenously administered fibronectin after bacteremia was also determined. Rats received either saline, Pseudomonas aeruginosa (1 X 10(9) organisms), gelatinized RE test lipid emulsion (50 mg/100 gm B.W.), or emulsion followed by Pseudomonas. Plasma fibronectin and Factor XIII were determined at 0, 2, 24, and 48 hours post-blockade or bacteremia. At 24 and 48 hr following bacteremia alone or bacteremia after RE blockade, there was a significant elevation (p less than 0.05) of plasma fibronectin and a concomitant decrease (p less than 0.05) of plasma factor XIII activity. Extractable tissue fibronectin from liver and spleen was also increased at 24 and 48 hours following R.E. blockade plus bacteremia. In addition, the plasma clearance of human fibronectin was significantly prolonged (p less than 0.05) following bacterial challenge. Infusion of activated Factor XIII (20 units/rat) during a period of hyperfibronectinemia (908.0 +/- 55.1 micrograms/ml) resulted in a significant (p less than 0.05) decrease in plasma fibronectin (548.5 +/- 49.9 micrograms/ml) within 30 min. Thus Factor XIII deficiency in rats with bacteremia may contribute to the elevation in plasma fibronectin by altering kinetics associated with the clearance of fibronectin from the blood.

  18. Altered fructosamine and lipid fractions in subclinical hypothyroidism.

    Science.gov (United States)

    Udupa, Sridevi V; Manjrekar, Poornima A; Udupa, Vinit A; Vivian, D'Souza

    2013-01-01

    Thyroid function disorders lead to changes in the lipoprotein metabolism. To study the lipid and the glycaemic abnormalities in the subclinical hypothyroidism cases and to compare the same with the euthyroid, overt hypothyroid and the hyperthyroid subjects. Four groups, euthyroid (Group-I), hypothyroid (Group-II), subclinical hypothyroid (Group-III) and hyperthyroid (Group-IV), which consisted of 30 subjects each, of either sex, who were aged 25-55 years, underwent Fasting Plasma Glucose (FPG), fructosamine, lipid profile and total T3, T4 and TSH estimations. The subjects who were on lipid lowering or thyroid disorder drugs and known diabetics were excluded from the study. In Group-III, all the lipid fractions were comparable to those of Group-II and they were significantly deranged, as compared to those of Group-I. The fructosamine levels were significantly higher in Group-II and Group-III (phypothyrodism, the subclinical hypothyroid cases also need to be treated similarly. The fructosamine values which are largely in excess of the FPG values, indicate a higher propensity to glycation and a decreased turnover of the proteins in the hypothyroid and the subclinical hypothyroid pools. Vice versa is true of the hyperthyroid pool. Fructosamine can be included in the thyroid work up of the patients to assess the metabolic function and the subsequent response after the initiation of the therapy.

  19. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb.

    Science.gov (United States)

    Jiang, Hongqin; Wang, Zhenzhen; Ma, Yong; Qu, Yanghua; Lu, Xiaonan; Luo, Hailing

    2015-07-01

    Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old) were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate) or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p0.05). The levels of TG (pCAT, pCAT (p<0.05, linearly) and SOD (p<0.001, linearly). Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment stress and maintain normal physiological metabolism.

  20. Diacylglycerol-enriched structured lipids containing CLA and capric acid alter body fat mass and lipid metabolism in rats.

    Science.gov (United States)

    Kim, Hye-Jin; Lee, Ki-Teak; Lee, Mi-Kyung; Jeon, Seon-Min; Choi, Myung-Sook

    2006-01-01

    The present study compared the effect of corn oil, diacylglycerol (DG) oil, and DG-enriched structured lipids (SL-DG) produced from corn oil, capric and conjugated linoleic acid on adiposity in rats fed an AIN-76 diet (5% fat) for 6 weeks. The plasma and hepatic lipids, adipose tissue weight, and enzyme activities related to fatty acid metabolism were determined. The weights of the epididymal white adipose tissue (WAT), perirenal WAT, and interscapular WAT were significantly lower in the SL-DG group than in the DG group. Reduction of fat mass in the SL-DG group was related to suppressing fatty acid synthase activities and enhancing beta-oxidation activity in perirenal WAT. The plasma leptin was lower in the SL-DG group than in the DG group, plus a lower plasma TG level was accompanied by an increase in adipocyte LPL activity. Meanwhile the SL-DG supplement lowered the plasma and hepatic cholesterol level. In addition, the hepatic HMG-CoA reductase and ACAT activities were significantly lower in the SL-DG group than in the other groups. The DG-enriched SL used in this study was effective in enhancing triglyceride metabolism in adipose tissue, especially as regards reducing the abdominal fat mass and cholesterol metabolism in the liver. Copyright 2006 S. Karger AG, Basel.

  1. Altered Antioxidant Status and Increased Lipid Per-Oxidation in Seminal Plasma of Tunisian Infertile Men

    Science.gov (United States)

    Atig, Fatma; Raffa, Monia; Ali, Habib Ben; Abdelhamid, Kerkeni; Saad, Ali; Ajina, Mounir

    2012-01-01

    Human seminal plasma is a natural reservoir of antioxidants that protect spermatozoa from oxidative damages. There is evidence in literature supports the fact that impairments in seminal antioxidant and lipid per-oxidation status play important roles in the physiopathology of male infertility. Our present study forms the first one which was carried out in Tunisia. We evaluated the antioxidant status in the seminal plasma of 120 infertile men programmed to In Vitro Fertilization (IVF) for the first tentative. Patients were characterized by an idiopathic infertility. They were divided into three groups: normozoospermics who were considered as controls (n=40), asthenozoospermics (Astheno; n=45) and oligoasthenoteratozoospermics (OAT; n=35). Seminal activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) and the levels of glutathione (GSH), zinc (Zn) and malondialdehyde (MDA) were measured. With the significant increase of the seminal activities of SOD and GPX in normozoospermics group, there were positive correlations observed between this enzymes and sperm quality. Also, significant elevated rates of seminal zinc and GSH were observed in control group, but there was contradictory associations reflecting the effects of these antioxidants on semen parameters. However, we noted significant increase of MDA levels in groups with abnormal seminogram. We showed negative associations between this per-oxidative marker and sperm parameters. These results obviously suggested that impairment on seminal antioxidants is an important risk factor for low sperm quality associated to idiopathic infertility and as a result can lead to poor IVF outcome. PMID:22211112

  2. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    Science.gov (United States)

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi

    2014-03-01

    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Fluidity of pea root plasma membranes under altered gravity

    Science.gov (United States)

    Klymchuk, D. O.; Baranenko, V. V.; Vorobyova, T. V.; Dubovoy, V. D.

    This investigation aims to determine whether clinorotation 2 rev min of pea Pisum sativum L seedlings induces the alterations in the physical-chemical properties of cellular membranes including the plasma membrane fluidity The last is an important regulator of functional activity of membrane enzymes The plasma membranes were isolated by aqueous two-phase partitioning from roots of 6-day old pea seedlings The membrane fluidity was examined by fluorescence spectroscopy using pyrene probe The plasma membrane vesicles with known protein concentration were added to the incubation buffer to a final concentration of 50 mu g of protein per ml A small amount by 1 mu l of pyrene solution in 2-propanol was added to the incubation mixture to a final probe concentration 5 mu M at constant mixing Fluorescence spectra were measured using a Perkin-Elmer LS-50 spectrofluorometer Perkin-Elmer England Pyrene was excited at 337 nm and fluorescence intensity of monomers I M and excimers I E were measured at 393 and 470 nm respectively The I E I M ratios were 0 081 pm 0 003 and 0 072 pm 0 004 in preparations obtained from clinorotated and the control seedlings respectively This fact indicates that rotation on the clinostat increases the membrane fluidity Compared with controls clinorotated seedlings have also showed a reduced growth and a higher level of total unsaturated fatty acids determined by gas chromatography The factors that influence on the fluidity of membrane lipids in bilayer appear to be the

  4. Differential effect of corn oil-based low trans structured fat on the plasma and hepatic lipid profile in an atherogenic mouse model: comparison to hydrogenated trans fat

    Directory of Open Access Journals (Sweden)

    Kim Hye-Jin

    2011-01-01

    Full Text Available Abstract Background Trans fat are not desirable in many aspects on health maintenance. Low trans structured fats have been reported to be relatively more safe than trans fats. Methods We examined the effects of low trans structured fat from corn oil (LC, compared with high trans fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high trans fat (10% fat: commercial shortening (CS or a low trans fat (LC diet for 12 weeks. Results LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR. Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of trans fatty acids compared to CS. Conclusions We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these apo E-/- mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC.

  5. Differential effect of corn oil-based low trans structured fat on the plasma and hepatic lipid profile in an atherogenic mouse model: comparison to hydrogenated trans fat

    Science.gov (United States)

    2011-01-01

    Background Trans fat are not desirable in many aspects on health maintenance. Low trans structured fats have been reported to be relatively more safe than trans fats. Methods We examined the effects of low trans structured fat from corn oil (LC), compared with high trans fat shortening, on cholesterol and fatty acid metabolism in apo E deficient mice which is an atherogenic animal model. The animals were fed a high trans fat (10% fat: commercial shortening (CS)) or a low trans fat (LC) diet for 12 weeks. Results LC decreased apo B and hepatic cholesterol and triglyceride concentration compared to the CS group but significantly increased plasma total cholesterol and triglyceride concentration and fecal lipids with a simultaneous increase in HDL-cholesterol level, apo A-I, and the ratio of HDL-cholesterol to total cholesterol (HTR). Reduction of hepatic lipid levels by inclusion of LC intake was observed alongside modulation of hepatic enzyme activities related to cholesterol esterification, fatty acid metabolism and fecal lipids level compared to the CS group. The differential effects of LC intake on the plasma and hepatic lipid profile seemed to be partly due to the fatty acid composition of LC which contains higher MUFA, PUFA and SFA content as well as lower content of trans fatty acids compared to CS. Conclusions We suggest that LC may exert a dual effect on plasma and hepatic lipid metabolism in an atherogenic animal model. Accordingly, LC, supplemented at 10% in diet, had an anti-atherogenic effect on these apo E-/- mice, and increased fecal lipids, decreased hepatic steatosis, but elevated plasma lipids. Further studies are needed to verify the exact mode of action regarding the complex physiological changes and alteration in lipid metabolism caused by LC. PMID:21247503

  6. Chlordecone altered hepatic disposition of [14C]cholesterol and plasma cholesterol distribution but not SR-BI or ABCG8 proteins in livers of C57BL/6 mice

    International Nuclear Information System (INIS)

    Lee, Junga; Scheri, Richard C.; Curtis, Lawrence R.

    2008-01-01

    Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [ 14 C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [ 14 C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [ 14 C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [ 14 C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [ 14 C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [ 14 C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism

  7. Chlordecone altered hepatic disposition of [14C]cholesterol and plasma cholesterol distribution but not SR-BI or ABCG8 proteins in livers of C57BL/6 mice.

    Science.gov (United States)

    Lee, Junga; Scheri, Richard C; Curtis, Lawrence R

    2008-06-15

    Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [(14)C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [(14)C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [(14)C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [(14)C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [(14)C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [(14)C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism.

  8. Plasma lipid pattern and red cell membrane structure in β-thalassemia patients in Jakarta

    Directory of Open Access Journals (Sweden)

    Seruni K.U. Freisleben

    2011-08-01

    Full Text Available Background: Over the last 10 years, we have investigated thalassemia patients in Jakarta to obtain a comprehensive picture of iron overload, oxidative stress, and cell damage.Methods: In blood samples from 15 transfusion-dependent patients (group T, 5 non-transfused patients (group N and 10 controls (group C, plasma lipids and lipoproteins, lipid-soluble vitamin E, malondialdehyde (MDA and thiol status were measured. Isolated eryhtrocyte membranes were investigated with electron paramagnetic resonance (EPR spectroscopy using doxyl-stearic acid and maleimido-proxyl spin lables. Data were analyzed statistically with ANOVA.Results: Plasma triglycerides were higher and cholesterol levels were lower in thalassemic patients compared to controls. Vitamin E, group C: 21.8 vs T: 6.2 μmol/L and reactive thiols (C: 144 vs. T: 61 μmol/L were considerably lower in transfused patients, who exert clear signs of oxidative stress (MDA, C: 1.96 vs T: 9.2 μmol/L and of tissue cell damage, i.e., high transaminases plasma levels. Non-transfused thalassemia patients have slight signs of oxidative stress, but no significant indication of cell damage. Erythrocyte membrane parameters from EPR spectroscopy differ considerably between all groups. In transfusion-dependent patients the structure of the erythrocyte membrane and the gradients of polarity and fluidity are destroyed in lipid domains; binding capacity of protein thiols in the membrane is lower and immobilized.Conclusion: In tranfusion-dependent thalassemic patients, plasma lipid pattern and oxidative stress are associated with structural damage of isolated erythrocyte membranes as measured by EPR spectroscopy with lipid and proteinthiol spin labels. (Med J Indones 2011; 20:178-84Keywords: electron paramagnetic resonance spectroscopy, erythrocyte membrane, lipoproteins, oxidative stress, thalassemia, plasma lipids.

  9. Novel free-radical mediated lipid peroxidation biomarkers in newborn plasma.

    Science.gov (United States)

    Sánchez-Illana, Ángel; Thayyil, Sudhin; Montaldo, Paolo; Jenkins, Dorothea; Quintás, Guillermo; Oger, Camille; Galano, Jean-Marie; Vigor, Claire; Durand, Thierry; Vento, Máximo; Kuligowski, Julia

    2017-12-15

    Oxidative stress derived from perinatal asphyxia appears to be closely linked to neonatal brain damage and lipid peroxidation biomarkers have shown to provide predictive power of oxidative stress related pathologies in situations of hypoxia and reoxygenation in the newborn. The objective of this work was to develop and validate of a comprehensive liquid chromatography tandem mass spectrometry approach for the quantitative profiling of 28 isoprostanoids in newborn plasma samples covering a broad range of lipid peroxidation product classes. The method was developed taking into account the specific requirements for its use in neonatology (i.e. limited sample volumes, straightforward sample processing and high analytical throughput). The method was validated following stringent FDA guidelines and was then applied to the analysis of 150 plasma samples collected from newborns. Information obtained from the quantitative analysis of isoprostanoids was critically compared to that provided by a previously developed approach aiming at the semi-quantitative detection of total parameters of fatty acid derived lipid peroxidation biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effects of Dietary Macronutrients on Plasma Lipid Levels and the Consequence for Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Emilie Daoud

    2014-10-01

    Full Text Available Despite gaining focus, cardiovascular disease (CVD remains the leading cause of death worldwide. Health promotion agencies have traditionally recommended diets that are low in fat in order to reduce CVD risk however, much debate remains about which dietary approaches are the most efficient for effective disease prevention. Common markers of CVD include elevated plasma triglycerides (TG and low-density lipoprotein (LDL cholesterol levels, as well as reduced high-density lipoprotein (HDL cholesterol levels. While weight loss alone can significantly reduce markers of CVD, manipulating dietary macronutrient content contributes to the beneficial effects of weight loss and furthers the improvement of lipid profiles even without the alteration of total caloric intake. Considering the recent attention to diets that are low in carbohydrates rather than fat, it remains to be elucidated the beneficial effects of each diet type when establishing new recommendations for CVD prevention. This review aims to examine the effects of different macronutrient compositions on lipid markers, thus providing insight into the potential roles of various diet types in the targeted prevention against CVD.

  11. Study of Alterations in Lipid Profile After Burn Injury.

    Directory of Open Access Journals (Sweden)

    Dr.Asha Khubchandani

    2017-06-01

    Full Text Available Introduction: After burn injury, changes in lipid profile occur in body. Dyslipidemia after burn injury is one of the important alterations. Objective: To check alterations in lipid profile after burn injury. Materials and Method: It was cross sectional study which was carried out on 250 burns patients of both sex, with an age group of 18-45 years, and varying burns percentage of 20-80% of total body surface area (TBSA. Serum cholesterol, serum LDL, serum HDL and serum triglyceride level were measured on XL-640 fully-auto biochemical analyser. Serum LDL and HDL were measured by Accelerator Selective Detergent Method. Serum cholesterol and triglyceride were measured by Trindor’s method. Results: Results showed decrease in serum cholesterol, serum LDL and serum HDL, while increase in serum triglyceride level in burns patients compared to normal subjects. Conclusion: This study clearly showed the importance of measuring serum cholesterol, TG, LDL and HDL in burn patients and targeting changes that occur in their levels along the burns course, which may have beneficial effect in protection from organ damage, increasing survival rates and improving burn outcome.

  12. Early Effect of High Dose of Ionizing Radiation Exposure on Plasma Lipids Profile and Liver Fatty Acids Composition in Rats

    International Nuclear Information System (INIS)

    Noaman, E.; Mansour, S.Z.; Ibrahim, N.K.

    2005-01-01

    The present study was conducted to analyze the effect of acute gamma-irradiation on rats at supralethal doses of 20 Gy to determine the synthesis and amounts of free fatty acids, neutral lipids and phospholipids of plasma and liver after 24 and 48 h of gamma-irradiation. Male Wistar rats weighing 120+- 20 g were exposed to 20 Gy of gamma radiation (dose rate of 0.59 Gy/min). Exposure of rats to ionizing radiation resulted in significant alterations in the assayed parameters indicating lipid metabolism disturbance. Plasma cholesterol and phospholipid levels increased up to 71.3 and 71.5 %, respectively, after 24 h from radiation exposure and then returned to 28 and 27 % change in-compare with control values after 48 h post-irradiation. Plasma triacylglycerol concentrations increased concomitantly with irradiation, but their values are less high than cholesterol and phospholipid levels recording significant changes at 19 and 9 % comparing with control rats. Lipid peroxidation measured as MDA recorded significant elevation after 24 and 48 h post irradiation. It was shown that the synthesis of free fatty acids, cholesterol, cholesterol ethers and phospholipids was activated 48 h after irradiation at 20 Gy. The amount of free fatty acids of the rat liver decreased at 20 Gy exposures. This is assumed to be a result of the radioresistance to some degree in the system of free fatty acid synthesis of the rat to the gamma-irradiation in the lethal doses

  13. Treatment of chronic hemodialysis patients with low-dose fenofibrate effectively reduces plasma lipids and affects plasma redox status

    Directory of Open Access Journals (Sweden)

    Makówka Agnieszka

    2012-07-01

    Full Text Available Abstract Dyslipidemia is common in chronic hemodialysis patients and its underlying mechanism is complex. Hemodialysis causes an imbalance between antioxidants and production of reactive oxygen species, which induces the oxidative stress and thereby may lead to accelerated atherosclerosis. Statins have been found to be little effective in end-stage kidney disease and other lipid-lowering therapies have been only scarcely studied. The study aimed to assess the effect of low-dose fenofibrate therapy on plasma lipids and redox status in long-term hemodialysis patients with mild hypertriglyceridemia. Twenty seven chronic hemodialysis patients without any lipid-lowering therapy were included in a double-blind crossover, placebo-controlled study. The patients were randomized into two groups and were given a sequence of either 100 mg of fenofibrate per each hemodialysis day for 4 weeks or placebo with a week-long wash-out period between treatment periods. Plasma lipids, high sensitive C-reactive protein (CRP, urea, creatinine, electrolytes, phosphocreatine kinase (CK, GOT, GPT and plasma thiols (total and free glutathione, homocysteine, cysteine and cysteinylglycine were measured at baseline and after each of the study periods. Plasma aminothiols were measured by reversed phase HPLC with thiol derivatization with 2-chloro-1-methylquinolinium tetrafluoroborate. Fenofibrate therapy caused a significant decrease of total serum cholesterol, LDL cholesterol and triglycerides and an increase of HDL cholesterol. The treatment was well tolerated with no side-effects but there was a small but significant increase of CK not exceeding the upper limit of normal range. There were no changes of serum CRP, potassium, urea, and creatinine and liver enzymes during the treatment. Neither total nor total free cysteinylglycine and cysteine changed during the study but both total and free glutathione increased during the therapy with fenofibrate and the same was observed

  14. Long term effects on human plasma lipoproteins of a formulation enriched in butter milk polar lipid

    Directory of Open Access Journals (Sweden)

    Nilsson Åke

    2009-10-01

    Full Text Available Abstract Background Sphingolipids (SL, in particular sphingomyelin (SM are important components of milk fat polar lipids. Dietary SM inhibits cholesterol absorption in rats (Nyberg et al. J Nutr Biochem. 2000 and SLs decrease both cholesterol and TG concentrations in lipid- and cholesterol fed APOE*3Leiden mice (Duivenvoorden et al. Am J Clin Nutr. 2006. This human study examines effects of a butter milk formulation enriched in milk fat globule membrane material, and thereby in SLs, on blood lipids in healthy volunteers. In a four week parallel group study with 33 men and 15 women we examined the effects of an SL-enriched butter milk formulation (A and an equivalent control formulation (B on plasma lipid levels. Plasma concentrations of HDL and LDL cholesterol, triacylglycerols (TG, apolipoproteins AI and B, and lipoprotein (a were measured. The daily dose of SL in A was 975 mg of which 700 mg was SM. The participants registered food and drink intake four days before introducing the test formula and the last four days of the test period. Results A daily increase of SL intake did not significantly influence fasting plasma lipids or lipoproteins. In group B TG, cholesterol, LDL, HDL and apolipoprotein B concentrations increased, however, but not in group A after four weeks. The difference in LDL cholesterol was seen primarily in women and difference in TG primarily in men. No significant side effects were observed. Conclusion The study did not show any significant decrease on plasma lipids or lipoprotein levels of an SL-enriched formulation containing 2-3 times more SL than the normal dietary intake on cholesterol, other plasma lipids or on energy intake. The formulation A may, however, have counteracted the trend towards increased blood lipid concentrations caused by increased energy intake that was seen with the B formulation.

  15. Protective effect of ascorbic acid on netilmicin-induced lipid profile and peroxidation parameters in rabbit blood plasma.

    Science.gov (United States)

    Devbhuti, Pritesh; Sikdar, Debasis; Saha, Achintya; Sengupta, Chandana

    2011-01-01

    A drug may cause alteration in blood-lipid profile and induce lipid peroxidation phenomena on administration in the body. Antioxidant may play beneficial role to control the negative alteration in lipid profile and lipid peroxidation. In view of this context, the present in vivo study was carried out to evaluate the role of ascorbic acid as antioxidant on netilmicin-induced alteration of blood lipid profile and peroxidation parameters. Rabbits were used as experimental animals and blood was collected to estimate blood-lipid profiles, such as total cholesterol (TCh), high density lipoprotein cholesterol (HDL-Ch), low density lipoprotein cholesterol (LDL-Ch), very low density lipoprotein cholesterol (VLDL-Ch), triglycerides (Tg), phospholipids (PL), and total lipids (TL), as well as peroxidation parameters, such as malondialdehyde (MDA), 4-hydroxy-2-nonenal (HNE), reduced glutathione (GSH) and nitric oxide (NO). The results revealed that netilmicin caused significant enhancement of MDA, HNE, TCh, LDL-Ch, VLDL-Ch, Tg levels and reduction in GSH, NO, HDL-Ch, PL, TL levels. On co-administration, ascorbic acid was found to be effective in reducing netilmicin-induced negative alterations of the above parameters.

  16. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer's disease using metabolomics.

    Directory of Open Access Journals (Sweden)

    Eugenia Trushina

    Full Text Available Alzheimer's Disease (AD currently affects more than 5 million Americans, with numbers expected to grow dramatically as the population ages. The pathophysiological changes in AD patients begin decades before the onset of dementia, highlighting the urgent need for the development of early diagnostic methods. Compelling data demonstrate that increased levels of amyloid-beta compromise multiple cellular pathways; thus, the investigation of changes in various cellular networks is essential to advance our understanding of early disease mechanisms and to identify novel therapeutic targets. We applied a liquid chromatography/mass spectrometry-based non-targeted metabolomics approach to determine global metabolic changes in plasma and cerebrospinal fluid (CSF from the same individuals with different AD severity. Metabolic profiling detected a total of significantly altered 342 plasma and 351 CSF metabolites, of which 22% were identified. Based on the changes of >150 metabolites, we found 23 altered canonical pathways in plasma and 20 in CSF in mild cognitive impairment (MCI vs. cognitively normal (CN individuals with a false discovery rate <0.05. The number of affected pathways increased with disease severity in both fluids. Lysine metabolism in plasma and the Krebs cycle in CSF were significantly affected in MCI vs. CN. Cholesterol and sphingolipids transport was altered in both CSF and plasma of AD vs. CN. Other 30 canonical pathways significantly disturbed in MCI and AD patients included energy metabolism, Krebs cycle, mitochondrial function, neurotransmitter and amino acid metabolism, and lipid biosynthesis. Pathways in plasma that discriminated between all groups included polyamine, lysine, tryptophan metabolism, and aminoacyl-tRNA biosynthesis; and in CSF involved cortisone and prostaglandin 2 biosynthesis and metabolism. Our data suggest metabolomics could advance our understanding of the early disease mechanisms shared in progression from CN to

  17. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations.

    Directory of Open Access Journals (Sweden)

    Tenna Ruest Haarmark Nielsen

    Full Text Available The body mass index (BMI standard deviation score (SDS may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during childhood obesity treatment.876 children and adolescents (498 girls with overweight/obesity, median age 11.2 years (range 1.6-21.7, and median BMI SDS 2.8 (range 1.3-5.7 were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0.4-7.4. Height and weight, body composition measured by dual-energy X-ray absorptiometry, and fasting plasma lipid concentrations were assessed at baseline and at follow-up. Lipid concentrations (total cholesterol (TC, low-density lipoprotein (LDL, high-density lipoprotein (HDL, non-HDL, and triglycerides (TG were available in 469 individuals (264 girls. Linear regressions were performed to investigate the associations between BMI SDS, body composition indices, and lipid concentrations.At baseline, BMI SDS was negatively associated with concentrations of HDL (p = 6.7*10-4 and positively with TG (p = 9.7*10-6. Reductions in BMI SDS were associated with reductions in total body fat percentage (p<2*10-16 and percent truncal body fat (p<2*10-16. Furthermore, reductions in BMI SDS were associated with improvements in concentrations of TC, LDL, HDL, non-HDL, LDL/HDL-ratio, and TG (all p <0.0001. Changes in body fat percentage seemed to mediate the changes in plasma concentrations of TC, LDL, and non-HDL, but could not alone explain the changes in HDL, LDL/HDL-ratio or TG. Among 81 individuals with available lipid concentrations, who increased their BMI SDS, 61% improved their body composition, and 80% improved their lipid concentrations.Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma

  18. Detrimental effects of fluvastatin on plasma lipid metabolism in rat breast carcinoma model

    Directory of Open Access Journals (Sweden)

    Kapinová Andrea

    2013-01-01

    Full Text Available From clinical practice, obvious positive effects of statins on plasma lipid metabolism are well known. On the other hand, there are several experimental rodent studies, where these beneficial effects were not confirmed. The effects of fluvastatin on selected serum lipid parameters in a rat model of experimental breast cancer were determined. The drug was dietary administered at two concentrations of 20 and 200 mg/kg. At the end of the study (experiment duration - 18 weeks the blood from each animal was collected and serum lipid parameters were evaluated. Fluvastatin in both treated groups significantly increased parameters of serum lipids (mostly in a dose dependent manner. Fluvastatin in both treated groups of animals significantly increased serum levels of triacylglycerols, total cholesterol, and LDL-, HDL-, VLDL-cholesterol when compared to the control group. Our results pointed out to the apparent harmful effects of fluvastatin on plasma lipid metabolism in rat mammary carcinogenesis. Based on our previous results, it seems that rats commonly used in cancer model studies are generally unresponsive to the hypocholesterolemic effects of statins.

  19. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    Directory of Open Access Journals (Sweden)

    Zhu Zhu

    2016-01-01

    Full Text Available Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice by altering exposure to light. C57 BL/6J mice (C57 mice and ApoE-KO mice (ApoE-KO mice exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1 levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  20. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb

    Directory of Open Access Journals (Sweden)

    Hongqin Jiang

    2015-07-01

    Full Text Available Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p0.05. The levels of TG (p<0.001 and LDL-C (p<0.001 were decreased with the feeding time extension, and both showed a linear trend (p<0.01. Malondialdehyde level in plasma and liver decreased linearly with the increase of lycopene inclusion levels (p<0.01. Dietary lycopene intake linearly increased the plasma antioxidant vitamin E level (p<0.001, total antioxidant capacity (T-AOC, p<0.05, and activities of catalase (CAT, p<0.01, glutathione peroxidase (GSH-Px, p<0.05 and superoxide dismutase (SOD, p<0.05. The plasma T-AOC and activities of GSH-Px and SOD decreased with the extension of the feeding time. In liver, dietary lycopene inclusion showed similar antioxidant effects with respect to activities of CAT (p<0.05, linearly and SOD (p<0.001, linearly. Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment stress and maintain normal physiological metabolism.

  1. A novel biotinylated lipid raft reporter for electron microscopic imaging of plasma membrane microdomains[S

    Science.gov (United States)

    Krager, Kimberly J.; Sarkar, Mitul; Twait, Erik C.; Lill, Nancy L.; Koland, John G.

    2012-01-01

    The submicroscopic spatial organization of cell surface receptors and plasma membrane signaling molecules is readily characterized by electron microscopy (EM) via immunogold labeling of plasma membrane sheets. Although various signaling molecules have been seen to segregate within plasma membrane microdomains, the biochemical identity of these microdomains and the factors affecting their formation are largely unknown. Lipid rafts are envisioned as submicron membrane subdomains of liquid ordered structure with differing lipid and protein constituents that define their specific varieties. To facilitate EM investigation of inner leaflet lipid rafts and the localization of membrane proteins therein, a unique genetically encoded reporter with the dually acylated raft-targeting motif of the Lck kinase was developed. This reporter, designated Lck-BAP-GFP, incorporates green fluorescent protein (GFP) and biotin acceptor peptide (BAP) modules, with the latter allowing its single-step labeling with streptavidin-gold. Lck-BAP-GFP was metabolically biotinylated in mammalian cells, distributed into low-density detergent-resistant membrane fractions, and was readily detected with avidin-based reagents. In EM images of plasma membrane sheets, the streptavidin-gold-labeled reporter was clustered in 20–50 nm microdomains, presumably representative of inner leaflet lipid rafts. The utility of the reporter was demonstrated in an investigation of the potential lipid raft localization of the epidermal growth factor receptor. PMID:22822037

  2. Dyslipidemia and reference values for fasting plasma lipid concentrations in Danish/North-European White children and adolescents

    DEFF Research Database (Denmark)

    Nielsen, Tenna Ruest Haarmark; Lausten-Thomsen, Ulrik; Fonvig, Cilius Esmann

    2017-01-01

    BACKGROUND: Dyslipidemia is reported in 27 - 43% of children and adolescents with overweight/obesity and tracks into adulthood, increasing the risk of cardiovascular morbidity. Cut-off values for fasting plasma lipid concentrations are typically set at fixed levels throughout childhood. The objec......BACKGROUND: Dyslipidemia is reported in 27 - 43% of children and adolescents with overweight/obesity and tracks into adulthood, increasing the risk of cardiovascular morbidity. Cut-off values for fasting plasma lipid concentrations are typically set at fixed levels throughout childhood....... The objective of this cross-sectional study was to generate fasting plasma lipid references for a Danish/North-European White population-based cohort of children and adolescents, and investigate the prevalence of dyslipidemia in this cohort as well as in a cohort with overweight/obesity. METHODS: A population......, and fasting plasma lipid concentrations were measured on all participants. Smoothed reference curves and percentiles were generated using the Generalized Additive Models for Location Scale and Shape package in the statistical software R. RESULTS: In the population-based cohort, plasma concentrations of total...

  3. Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2.

    Science.gov (United States)

    Ahmad, Irshad; Sharma, Anil K; Daniell, Henry; Kumar, Shashi

    2015-05-01

    Higher lipid biosynthesis and accumulation are important to achieve economic viability of biofuel production via microalgae. To enhance lipid content, Chlamydomonas reinhardtii was genetically engineered with a key enzyme diacylglycerol acyltransferase (BnDGAT2) from Brassica napus, responsible for neutral lipid biosynthesis. The transformed colonies harbouring aph7 gene, screened on hygromycin-supplemented medium, achieved transformation frequency of ~120 ± 10 colonies/1 × 10(6) cells. Transgene integration and expression were confirmed by PCR, Southern blots, staining lipid droplets, proteins and spectro-fluorometric analysis of Nile red-stained cells. The neutral lipid is a major class (over 80% of total lipids) and most significant requirement for biodiesel production; this was remarkably higher in the transformed alga than the untransformed control. The levels of saturated fatty acids in the transformed alga decreased to about 7% while unsaturated fatty acids increased proportionately when compared to wild type cells. Polyunsaturated fatty acids, especially α-linolenic acid, an essential omega-3 fatty acid, were enhanced up to 12% in the transformed line. Nile red staining confirmed formation of a large number of lipid globules in the transformed alga. Evaluation of long-term stability and vitality of the transgenic alga revealed that cryopreservation produced significantly higher quantity of lipid than those maintained continuously over 128 generations on solid medium. The overexpression of BnDGAT2 significantly altered the fatty acids profile in the transformed alga. Results of this study offer a valuable strategy of genetic manipulation for enhancing polyunsaturated fatty acids and neutral lipids for biofuel production in algae. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations.

    Science.gov (United States)

    Nielsen, Tenna Ruest Haarmark; Fonvig, Cilius Esmann; Dahl, Maria; Mollerup, Pernille Maria; Lausten-Thomsen, Ulrik; Pedersen, Oluf; Hansen, Torben; Holm, Jens-Christian

    2018-01-01

    The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during childhood obesity treatment. 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6-21.7), and median BMI SDS 2.8 (range 1.3-5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0.4-7.4). Height and weight, body composition measured by dual-energy X-ray absorptiometry, and fasting plasma lipid concentrations were assessed at baseline and at follow-up. Lipid concentrations (total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), non-HDL, and triglycerides (TG)) were available in 469 individuals (264 girls). Linear regressions were performed to investigate the associations between BMI SDS, body composition indices, and lipid concentrations. At baseline, BMI SDS was negatively associated with concentrations of HDL (p = 6.7*10-4) and positively with TG (p = 9.7*10-6). Reductions in BMI SDS were associated with reductions in total body fat percentage (pobesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma lipid concentrations. Even in individuals increasing their BMI SDS, body composition and lipid concentrations may improve.

  5. Relationship between the concentrations of plasma phospholipid stearic acid and plasma lipoprotein lipids in healthy men.

    Science.gov (United States)

    Li, D

    2001-01-01

    This study investigated the correlation between the plasma phospholipid (PL) saturated fatty acid (SFA) concentration (as a surrogate marker of SFA intake) and plasma lipid and lipoprotein lipid concentrations in 139 healthy Australian men aged 20-55 years old with widely varying intakes of saturated fat (vegans, n=18; ovolacto vegetarians, n=43; moderate meat eaters, n=60; high meat eaters, n=18). Both the ovolacto vegetarian and vegan groups demonstrated significant decreases in plasma total cholesterol (TC), low-density-lipoprotein cholesterol (LDL-C) and triacylglycerol concentrations compared with both the high-meat-eater and moderate-meat-eater groups. Total SFA and individual SFA [palmitic acid (16:0), stearic acid (18:0) and arachidic acid (20:0)] in the plasma PL were significantly lower in both the ovolacto vegetarian and vegan groups than in both the high- and moderate-meat-eater groups, while myristic acid (14:0) was significantly lower in the vegans than in the high-meat-eaters. Bivariate analysis of the results showed that the plasma PL stearic acid concentration was strongly positively correlated with plasma TC (P<0.0001), LDL-C (P<0.0001) and triacylglycerol (P<0.0001), with r(2) values of 0.655, 0.518 and 0.43 respectively. In multiple linear regression, after controlling for potential confounding factors (such as exercise, dietary group, age, body mass index, plasma PL myristic acid, palmitic acid and arachidic acid, and dietary total fat, saturated fat, cholesterol, carbohydrate and fibre intake), the plasma PL stearic acid concentration was still strongly positively correlated with plasma TC (P<0.0001) and LDL-C (P=0.006) concentrations. Based on the present data, it would seem appropriate for the population to reduce their dietary total SFA intake rather than to replace other SFA with stearic acid.

  6. N-3 polyunsaturated fatty acids supplementation does not affect changes of lipid metabolism induced in rats by altered thyroid status.

    Science.gov (United States)

    Rauchová, H; Vokurková, M; Pavelka, S; Behuliak, M; Tribulová, N; Soukup, T

    2013-07-01

    Epidemiological studies have demonstrated that n-3 polyunsaturated fatty acid (PUFA) consumption is associated with a reduced risk of atherosclerosis and hyperlipidemia. It is well known that lipid metabolism is also influenced by thyroid hormones. The aim of our study was to test whether n-3 PUFA supplementation (200 mg/kg of body weight/day for 6 weeks given intragastrically) would affect lipid metabolism in Lewis male rats with altered thyroid status. Euthyroid, hypothyroid, and hyperthyroid status of experimental groups was well defined by plasma levels of triiodothyronine, the activity of liver mitochondrial glycerol-3-phosphate dehydrogenase, and by relative heart weight. Fasting blood glucose levels were significantly higher in the hyperthyroid compared to the euthyroid and hypothyroid rats (5.0±0.2 vs. 3.7±0.4 and 4.4±0.2 mmol/l, respectively). In hyperthyroid animals, the concentration of plasma postprandial triglycerides was also increased compared to euthyroid and hypothyroid rats (0.9±0.1 vs. 0.5±0.1 and 0.4±0.1 mmol/l, respectively). On the other hand, hypothyroidism compared to euthyroid and hyperthyroid status was associated with elevated plasma levels of total cholesterol (2.6±0.2 vs. 1.5±0.1 and 1.6±0.1 mmol/l, respectively), LDL cholesterol (0.9±0.1 vs. 0.4±0.1 and 0.2±0.1 mmol/l, respectively) as well as HDL cholesterol (1.6±0.1 vs. 1.0±0.1 and 1.3±0.1 mmol/l, respectively). Supplementation of n-3 PUFA in the present study did not significantly modify either relative heart weight or glucose and lipid levels in any thyroid status. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Increased plasma lipid levels exacerbate muscle pathology in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Milad, Nadia; White, Zoe; Tehrani, Arash Y; Sellers, Stephanie; Rossi, Fabio M V; Bernatchez, Pascal

    2017-09-12

    Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin expression and leads to severe ambulatory and cardiac function decline. However, the dystrophin-deficient mdx murine model of DMD only develops a very mild form of the disease. Our group and others have shown vascular abnormalities in animal models of MD, a likely consequence of the fact that blood vessels express the same dystrophin-associated glycoprotein complex (DGC) proteins as skeletal muscles. To test the blood vessel contribution to muscle damage in DMD, mdx 4cv mice were given elevated lipid levels via apolipoprotein E (ApoE) gene knockout combined with normal chow or lipid-rich Western diets. Ambulatory function and heart function (via echocardiogram) were assessed at 4 and 7 months of age. After sacrifice, muscle histology and aortic staining were used to assess muscle pathology and atherosclerosis development, respectively. Plasma levels of total cholesterol, high-density lipoprotein (HDL), triglycerides, and creatine kinase (CK) were also measured. Although there was an increase in left ventricular heart volume in mdx-ApoE mice compared to that in mdx mice, parameters of heart function were not affected. Compared with wild-type and ApoE-null, only mdx-ApoE KO mice showed significant ambulatory dysfunction. Despite no significant difference in plasma CK, histological analyses revealed that elevated plasma lipids in chow- and Western diet-fed mdx-ApoE mice was associated with severe exacerbation of muscle pathology compared to mdx mice: significant increase in myofiber damage and fibrofatty replacement in the gastrocnemius and triceps brachii muscles, more reminiscent of human DMD pathology. Finally, although both ApoE and mdx-ApoE groups displayed increased plasma lipids, mdx-ApoE exhibited atherosclerotic plaque deposition equal to or less than that of ApoE mice. Since others have shown that lipid abnormalities correlate with DMD severity, our data suggest that plasma lipids could be

  8. Prolonged Intake of Dietary Lipids Alters Membrane Structure and T Cell Responses in LDLr-/- Mice.

    Science.gov (United States)

    Pollock, Abigail H; Tedla, Nicodemus; Hancock, Sarah E; Cornely, Rhea; Mitchell, Todd W; Yang, Zhengmin; Kockx, Maaike; Parton, Robert G; Rossy, Jérémie; Gaus, Katharina

    2016-05-15

    Although it is recognized that lipids and membrane organization in T cells affect signaling and T cell activation, to what extent dietary lipids alter T cell responsiveness in the absence of obesity and inflammation is not known. In this study, we fed low-density lipoprotein receptor knockout mice a Western high-fat diet for 1 or 9 wk and examined T cell responses in vivo along with T cell lipid composition, membrane order, and activation ex vivo. Our data showed that high levels of circulating lipids for a prolonged period elevated CD4(+) and CD8(+) T cell proliferation and resulted in an increased proportion of CD4(+) central-memory T cells within the draining lymph nodes following induction of contact hypersensitivity. In addition, the 9-wk Western high-fat diet elevated the total phospholipid content and monounsaturated fatty acid level, but decreased saturated phosphatidylcholine and sphingomyelin within the T cells. The altered lipid composition in the circulation, and of T cells, was also reflected by enhanced membrane order at the activation site of ex vivo activated T cells that corresponded to increased IL-2 mRNA levels. In conclusion, dietary lipids can modulate T cell lipid composition and responses in lipoprotein receptor knockout mice even in the absence of excess weight gain and a proinflammatory environment. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Atherogenic index of plasma as useful predictor of cardiovascular ...

    African Journals Online (AJOL)

    as the duration of menopause increased. Conclusion: Menopause, no doubt alters lipid profile. A triglyceride based index (AIP) can significantly add value when assessing the risk of developing atherosclerosis in Nigeria. Key Words: Lipid profile, atherogenic index of plasma (AIP), postmenopausal women, dyslipidaemia, ...

  10. Pattern Of Altered Lipid Profile In Patients With Subclinical And Clinical Hypothyroidism And Its Correlation With Body Mass Index

    International Nuclear Information System (INIS)

    Humerah, S.; Siddiqui, A.; Khan, H. F.

    2016-01-01

    Objective: To compare the lipid profile of the subclinical and clinical hypothyroid patients and to evaluate the correlation between body mass index (BMI) and lipid profile in hypothyroidism. Study Design: Cross-sectional study. Place and Duration of Study: Islamic International Medical College, Riphah International University, Islamabad, and Citi Laboratory, Rawalpindi, from January to December 2013. Methodology: The subjects were selected through non-probability, purposive sampling. On the basis of thyroid profile, the subjects were divided into 3 groups: euthyroids (n=20), subclinical hypothyroids (n=50), and clinical hypothyroids (n=30). The blood of these subjects was then analyzed for lipid profile. Data was analyzed using SPSS version 18 statistical software. Result: Both hypothyroid groups showed altered lipid profile which was observed to be significantly raised when compared with the euthyroid subjects. Comparison of lipid profile in euthyroid, subclinical, and clinical hypothyroid groups showed significant differences by non-parametric tests (p < 0.05). An assessment of correlation of lipid profile with the BMI was found to be significant (p < 0.01). Conclusion: Hypothyroidism causes alteration of lipid profile. Clinical and subclinical hypothyroid patients have altered lipid profile as compared to euthyroids. Thyroid status monitoring is very important, since it can induce changes in lipid profile. Such dyslipidemic status is significant not only for the management of thyroid disorders but also for common diseases like obesity and coronary atherosclerosis in the population. (author)

  11. Altered lipid homeostasis in Sertoli cells stressed by mild hyperthermia.

    Directory of Open Access Journals (Sweden)

    Ana S Vallés

    Full Text Available Spermatogenesis is known to be vulnerable to temperature. Exposures of rat testis to moderate hyperthermia result in loss of germ cells with survival of Sertoli cells (SC. Because SC provide structural and metabolic support to germ cells, our aim was to test the hypothesis that these exposures affect SC functions, thus contributing to germ cell damage. In vivo, regularly repeated exposures (one of 15 min per day, once a day during 5 days of rat testes to 43 °C led to accumulation of neutral lipids. This SC-specific lipid function took 1-2 weeks after the last of these exposures to be maximal. In cultured SC, similar daily exposures for 15 min to 43 °C resulted in significant increase in triacylglycerol levels and accumulation of lipid droplets. After incubations with [3H]arachidonate, the labeling of cardiolipin decreased more than that of other lipid classes. Another specifically mitochondrial lipid metabolic function, fatty acid oxidation, also declined. These lipid changes suggested that temperature affects SC mitochondrial physiology, which was confirmed by significantly increased degrees of membrane depolarization and ROS production. This concurred with reduced expression of two SC-specific proteins, transferrin, and Wilms' Tumor 1 protein, markers of SC secretion and differentiation functions, respectively, and with an intense SC cytoskeletal perturbation, evident by loss of microtubule network (α-tubulin and microfilament (f-actin organization. Albeit temporary and potentially reversible, hyperthermia-induced SC structural and metabolic alterations may be long-lasting and/or extensive enough to respond for the decreased survival of the germ cells they normally foster.

  12. Physiological Aldosterone Concentrations Are Associated with Alterations of Lipid Metabolism: Observations from the General Population.

    Science.gov (United States)

    Hannich, M; Wallaschofski, H; Nauck, M; Reincke, M; Adolf, C; Völzke, H; Rettig, R; Hannemann, A

    2018-01-01

    Aldosterone and high-density lipoprotein cholesterol (HDL-C) are involved in many pathophysiological processes that contribute to the development of cardiovascular diseases. Previously, associations between the concentrations of aldosterone and certain components of the lipid metabolism in the peripheral circulation were suggested, but data from the general population is sparse. We therefore aimed to assess the associations between aldosterone and HDL-C, low-density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, or non-HDL-C in the general adult population. Data from 793 men and 938 women aged 25-85 years who participated in the first follow-up of the Study of Health in Pomerania were obtained. The associations of aldosterone with serum lipid concentrations were assessed in multivariable linear regression models adjusted for sex, age, body mass index (BMI), estimated glomerular filtration rate (eGFR), and HbA1c. The linear regression models showed statistically significant positive associations of aldosterone with LDL-C ( β -coefficient = 0.022, standard error = 0.010, p = 0.03) and non-HDL-C ( β -coefficient = 0.023, standard error = 0.009, p = 0.01) as well as an inverse association of aldosterone with HDL-C ( β -coefficient = -0.022, standard error = 0.011, p = 0.04). The present data show that plasma aldosterone is positively associated with LDL-C and non-HDL-C and inversely associated with HDL-C in the general population. Our data thus suggests that aldosterone concentrations within the physiological range may be related to alterations of lipid metabolism.

  13. Triphenyltin alters lipid homeostasis in females of the ramshorn snail Marisa cornuarietis

    Energy Technology Data Exchange (ETDEWEB)

    Lyssimachou, Angeliki [Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain); Navarro, Juan Carlos [Institute of Aquaculture of Torre de la Sal, CSIC, 12595 Ribera de Cabanes, Castellon (Spain); Bachmann, Jean [Department of Ecology and Evolution-Ecotoxicology, Johann Wolfgang Goethe-University Frankfurt, D-60054 Frankfurt am Main (Germany); Porte, Cinta, E-mail: cinta.porte@cid.csic.e [Environmental Chemistry Department, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain)

    2009-05-15

    Molluscs are sensitive species to the toxic effects of organotin compounds, particularly to masculinisation. Both tributyltin (TBT) and triphenyltin (TPT) have been recently shown to bind to mollusc retinoid X receptor (RXR). If RXR is involved in lipid homeostasis, exposure to TPT would have an immediate effect on endogenous lipids. To test this hypothesis, the ramshorn snail Marisa cornuarietis was exposed to environmentally relevant concentrations of TPT (30, 125, 500 ng/L as Sn) in a semi-static water regime for 7 days. Percentage of lipids and total fatty acid content decreased significantly in TPT-exposed females while the activity of peroxisomal acyl-CoA oxidase, involved in fatty acid catabolism, increased. In addition, fatty acid profiles (carbon chain length and unsaturation degree) were significantly altered in exposed females but not in males. This work highlights the ability of TPT to disrupt lipid metabolism in M. cornuarietis at environmentally realistic concentrations and the higher susceptibility of females in comparison to males. - Short-term exposure to the fungicide TPT disrupts lipid metabolism in M. cornuarietis at environmentally realistic concentrations.

  14. Triphenyltin alters lipid homeostasis in females of the ramshorn snail Marisa cornuarietis

    International Nuclear Information System (INIS)

    Lyssimachou, Angeliki; Navarro, Juan Carlos; Bachmann, Jean; Porte, Cinta

    2009-01-01

    Molluscs are sensitive species to the toxic effects of organotin compounds, particularly to masculinisation. Both tributyltin (TBT) and triphenyltin (TPT) have been recently shown to bind to mollusc retinoid X receptor (RXR). If RXR is involved in lipid homeostasis, exposure to TPT would have an immediate effect on endogenous lipids. To test this hypothesis, the ramshorn snail Marisa cornuarietis was exposed to environmentally relevant concentrations of TPT (30, 125, 500 ng/L as Sn) in a semi-static water regime for 7 days. Percentage of lipids and total fatty acid content decreased significantly in TPT-exposed females while the activity of peroxisomal acyl-CoA oxidase, involved in fatty acid catabolism, increased. In addition, fatty acid profiles (carbon chain length and unsaturation degree) were significantly altered in exposed females but not in males. This work highlights the ability of TPT to disrupt lipid metabolism in M. cornuarietis at environmentally realistic concentrations and the higher susceptibility of females in comparison to males. - Short-term exposure to the fungicide TPT disrupts lipid metabolism in M. cornuarietis at environmentally realistic concentrations.

  15. The adsorption of biomolecules to multi-walled carbon nanotubes is influenced by both pulmonary surfactant lipids and surface chemistry

    Directory of Open Access Journals (Sweden)

    Yan Bing

    2010-12-01

    Full Text Available Abstract Background During production and processing of multi-walled carbon nanotubes (MWCNTs, they may be inhaled and may enter the pulmonary circulation. It is essential that interactions with involved body fluids like the pulmonary surfactant, the blood and others are investigated, particularly as these interactions could lead to coating of the tubes and may affect their chemical and physical characteristics. The aim of this study was to characterize the possible coatings of different functionalized MWCNTs in a cell free environment. Results To simulate the first contact in the lung, the tubes were coated with pulmonary surfactant and subsequently bound lipids were characterized. The further coating in the blood circulation was simulated by incubating the tubes in blood plasma. MWCNTs were amino (NH2- and carboxyl (-COOH-modified, in order to investigate the influence on the bound lipid and protein patterns. It was shown that surfactant lipids bind unspecifically to different functionalized MWCNTs, in contrast to the blood plasma proteins which showed characteristic binding patterns. Patterns of bound surfactant lipids were altered after a subsequent incubation in blood plasma. In addition, it was found that bound plasma protein patterns were altered when MWCNTs were previously coated with pulmonary surfactant. Conclusions A pulmonary surfactant coating and the functionalization of MWCNTs have both the potential to alter the MWCNTs blood plasma protein coating and to determine their properties and behaviour in biological systems.

  16. Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-ß: A Protective Role of Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio A. Rosales-Corral

    2012-01-01

    Full Text Available Alzheimer pathogenesis involves mitochondrial dysfunction, which is closely related to amyloid-ß (Aß generation, abnormal tau phosphorylation, oxidative stress, and apoptosis. Alterations in membranal components, including cholesterol and fatty acids, their characteristics, disposition, and distribution along the membranes, have been studied as evidence of cell membrane alterations in AD brain. The majority of these studies have been focused on the cytoplasmic membrane; meanwhile the mitochondrial membranes have been less explored. In this work, we studied lipids and mitochondrial membranes in vivo, following intracerebral injection of fibrillar amyloid-ß (Aß. The purpose was to determine how Aß may be responsible for beginning of a vicious cycle where oxidative stress and alterations in cholesterol, lipids and fatty acids, feed back on each other to cause mitochondrial dysfunction. We observed changes in mitochondrial membrane lipids, and fatty acids, following intracerebral injection of fibrillar Aß in aged Wistar rats. Melatonin, a well-known antioxidant and neuroimmunomodulator indoleamine, reversed some of these alterations and protected mitochondrial membranes from obvious damage. Additionally, melatonin increased the levels of linolenic and n-3 eicosapentaenoic acid, in the same site where amyloid ß was injected, favoring an endogenous anti-inflammatory pathway.

  17. Alteration in metabolic signature and lipid metabolism in patients with angina pectoris and myocardial infarction.

    Science.gov (United States)

    Park, Ju Yeon; Lee, Sang-Hak; Shin, Min-Jeong; Hwang, Geum-Sook

    2015-01-01

    Lipid metabolites are indispensable regulators of physiological and pathological processes, including atherosclerosis and coronary artery disease (CAD). However, the complex changes in lipid metabolites and metabolism that occur in patients with these conditions are incompletely understood. We performed lipid profiling to identify alterations in lipid metabolism in patients with angina and myocardial infarction (MI). Global lipid profiling was applied to serum samples from patients with CAD (angina and MI) and age-, sex-, and body mass index-matched healthy subjects using ultra-performance liquid chromatography/quadruple time-of-flight mass spectrometry and multivariate statistical analysis. A multivariate analysis showed a clear separation between the patients with CAD and normal controls. Lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) species containing unsaturated fatty acids and free fatty acids were associated with an increased risk of CAD, whereas species of lysoPC and lyso-alkyl PC containing saturated fatty acids were associated with a decreased risk. Additionally, PC species containing palmitic acid, diacylglycerol, sphingomyelin, and ceramide were associated with an increased risk of MI, whereas PE-plasmalogen and phosphatidylinositol species were associated with a decreased risk. In MI patients, we found strong positive correlation between lipid metabolites related to the sphingolipid pathway, sphingomyelin, and ceramide and acute inflammatory markers (high-sensitivity C-reactive protein). The results of this study demonstrate altered signatures in lipid metabolism in patients with angina or MI. Lipidomic profiling could provide the information to identity the specific lipid metabolites under the presence of disturbed metabolic pathways in patients with CAD.

  18. State-dependent alterations of lipid profiles in patients with bipolar disorder.

    Science.gov (United States)

    Huang, Yu-Jui; Tsai, Shang-Ying; Chung, Kuo-Hsuan; Chen, Pao-Huan; Huang, Shou-Hung; Kuo, Chian-Jue

    2018-07-01

    Objective Serum lipid levels may be associated with the affective severity of bipolar disorder, but data on lipid profiles in Asian patients with bipolar disorder and the lipid alterations in different states of opposite polarities are scant. We investigated the lipid profiles of patients in the acute affective, partial, and full remission state in bipolar mania and depression. Methods The physically healthy patients aged between 18 and 45 years with bipolar I disorder, as well as age-matched healthy normal controls were enrolled. We compared the fasting blood levels of glucose, cholesterol, triglyceride, low-density lipoprotein, and high-density lipoprotein of manic or depressed patients in the acute phase and subsequent partial and full remission with those of their normal controls. Results A total of 32 bipolar manic patients (12 women and 20 men), 32 bipolar depressed participants (18 women and 14 men), and 64 healthy control participants took part in this study. The mean cholesterol level in acute mania was significantly lower than that in acute depression (p bipolar mania. Conclusion Circulating lipid profiles may be easily affected by affective states. The acute manic state may be accompanied by state-dependent lower cholesterol and triglyceride levels relative to that in other mood states.

  19. Altered regulation of lipid biosynthesis in a mutant of Arabidopsis deficient in chloroplast glycerol-3-phosphate acyltransferase activity

    International Nuclear Information System (INIS)

    Kunst, L.; Browse, J.; Somerville, C.

    1988-01-01

    The leaf membrane lipids of many plant species, including Arabidopsis thaliana (L.) Heynh., are synthesized by two complementary pathways that are associated with the chloroplast and the endoplasmic reticulum. By screening directly for alterations in lipid acyl-group composition, the authors have identified several mutants of Arabidopsis that lack the plastid pathway because of a deficiency in activity of the first enzyme in the plastid pathway of glycerolipid synthesis, acyl-ACP:sn-glycerol-3-phosphate acyltransferase. The lesion results in an increased synthesis of lipids by the cytoplasmic pathway that largely compensates for the loss of the plastid pathway and provides nearly normal amounts of all the lipids required for chloroplast biogenesis. However, the fatty acid composition of the leaf membrane lipids of the mutants is altered because the acyltransferases associated with the two pathways normally exhibit different substrate specificities. The remarkable flexibility of the system provides an insight into the nature of the regulatory mechanisms that allocate lipids for membrane biogenesis

  20. The action of red wine and purple grape juice on vascular reactivity is independent of plasma lipids in hypercholesterolemic patients.

    Science.gov (United States)

    Coimbra, S R; Lage, S H; Brandizzi, L; Yoshida, V; da Luz, P L

    2005-09-01

    Although red wine (RW) reduces cardiovascular risk, the mechanisms underlying the effect have not been identified. Correction of endothelial dysfunction by RW flavonoids could be one mechanism. We measured brachial artery reactivity by high-resolution ultrasonography, plasma lipids, glucose, adhesion molecules (ICAM-1 and VCAM), and platelet function in 16 hypercholesterolemic individuals (8 men and 8 women; mean age 51.6 +/- 8.1 years) without other risk factors. Twenty-four normal subjects were used as controls for vascular reactivity. Subjects randomly received RW, 250 ml/day, or purple grape juice (GJ), 500 ml/day, for 14 days with an equal wash-out period. At baseline, all 16 subjects were hypercholesterolemic (mean LDL = 181.0 +/- 28.7 mg/dl) but HDL, triglycerides, glucose, adhesion molecules, and platelet function were within normal limits. Brachial artery flow-mediated dilation was significantly decreased compared to controls (9.0 +/- 7.1 vs 12.1 +/- 4.5%; P effect on either molecule. No significant alterations were observed in plasma lipids, glucose or platelet aggregability with RW or GJ. Both RW and GJ similarly improved flow-mediated dilation, but RW also enhanced endothelium-independent vasodilation in hypercholesterolemic patients despite the increased plasma cholesterol. Thus, we conclude that GJ may protect against coronary artery disease without the additional negative effects of alcohol despite the gender.

  1. Triphenyltin alters lipid homeostasis in females of the ramshorn snail Marisa cornuarietis.

    Science.gov (United States)

    Lyssimachou, Angeliki; Navarro, Juan Carlos; Bachmann, Jean; Porte, Cinta

    2009-05-01

    Molluscs are sensitive species to the toxic effects of organotin compounds, particularly to masculinisation. Both tributyltin (TBT) and triphenyltin (TPT) have been recently shown to bind to mollusc retinoid X receptor (RXR). If RXR is involved in lipid homeostasis, exposure to TPT would have an immediate effect on endogenous lipids. To test this hypothesis, the ramshorn snail Marisa cornuarietis was exposed to environmentally relevant concentrations of TPT (30, 125, 500 ng/L as Sn) in a semi-static water regime for 7 days. Percentage of lipids and total fatty acid content decreased significantly in TPT-exposed females while the activity of peroxisomal acyl-CoA oxidase, involved in fatty acid catabolism, increased. In addition, fatty acid profiles (carbon chain length and unsaturation degree) were significantly altered in exposed females but not in males. This work highlights the ability of TPT to disrupt lipid metabolism in M. cornuarietis at environmentally realistic concentrations and the higher susceptibility of females in comparison to males.

  2. Comprehensive metabolomics identified lipid peroxidation as a prominent feature in human plasma of patients with coronary heart diseases

    Directory of Open Access Journals (Sweden)

    Jianhong Lu

    2017-08-01

    Full Text Available Coronary heart disease (CHD is a complex human disease associated with inflammation and oxidative stress. The underlying mechanisms and diagnostic biomarkers for the different types of CHD remain poorly defined. Metabolomics has been increasingly recognized as an enabling technique with the potential to identify key metabolomic features in an attempt to understand the pathophysiology and differentiate different stages of CHD. We performed comprehensive metabolomic analysis in human plasma from 28 human subjects with stable angina (SA, myocardial infarction (MI, and healthy control (HC. Subsequent analysis demonstrated a uniquely altered metabolic profile in these CHD: a total of 18, 37 and 36 differential metabolites were identified to distinguish SA from HC, MI from SA, and MI from HC groups respectively. Among these metabolites, glycerophospholipid (GPL metabolism emerged as the most significantly disturbed pathway. Next, we used a targeted metabolomic approach to systematically analyze GPL, oxidized phospholipid (oxPL, and downstream metabolites derived from polyunsaturated fatty acids (PUFAs, such as arachidonic acid and linoleic acid. Surprisingly, lipids associated with lipid peroxidation (LPO pathways including oxidized PL and isoprostanes, isomers of prostaglandins, were significantly elevated in plasma of MI patients comparing to HC and SA, consistent with the notion that oxidative stress-induced LPO is a prominent feature in CHD. Our studies using the state-of-the-art metabolomics help to understand the underlying biological mechanisms involved in the pathogenesis of CHD; LPO metabolites may serve as potential biomarkers to differentiation MI from SA and HC. Keywords: Metabolomics, Lipid peroxidation, Lipidomics, Myocardial infarction, Isoprostanes, Coronary heart disease (CHD

  3. New insights of altered lipid profile in Fragile X Syndrome.

    Directory of Open Access Journals (Sweden)

    Artuela Çaku

    Full Text Available Fragile X Syndrome (FXS is the main genetic cause of autism and intellectual deficiency resulting the absence of the Fragile X Mental Retardation Protein (FMRP. Clinical picture is characterized by cognitive impairment associated with a broad spectrum of psychiatric comorbidities including autism spectrum disorders and attention-deficit/hyperactivity disorders. Some of these disorders have been associated with lipid abnormalities and lower cholesterol levels. Since lipids are important for neuronal development, we aim to investigate the lipid profile of French Canadian-FXS individuals and to identify the altered components of cholesterol metabolism as well as their association with clinical profile.Anthropometric data were collected from 25 FXS individuals and 26 controls. Lipid assessment included: total cholesterol (TC, triglycerides, LDL, HDL, ApoB, ApoA1, PCSK9, Lp(a and lipoprotein electrophoresis. Aberrant and adaptive behaviour of affected individuals was respectively assessed by the ABC-C and ABAS questionnaires.FXS participants had a higher body mass index as compared to controls while 38% of them had TC<10th percentile. Lower levels of LDL, HDL and apoA1 were observed in FXS group as compared to controls. However, PCSK9 levels did not differ between the two groups. As expected, PCSK9 levels correlated with total cholesterol (rs = 0.61, p = 0.001 and LDL (rs = 0.46, p = 0.014 in the control group, while no association was present in the FXS group. An inverse relationship was observed between total cholesterol and aberrant behaviour as determined by ABC-C total score.Our results showed the presence of hypocholesterolemia in French Canadian-FXS population, a condition that seems to influence their clinical phenotype. We identified for the first time a potential underlying alteration of PCSK9 function in FXS that could result from the absence of FMRP. Further investigations are warranted to better understand the association between

  4. Lateral mobility of plasma membrane lipids in Xenopus eggs: Regional differences related to animal/vegetal polarity

    OpenAIRE

    Laat, S.W. de; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van; Tetteroo, P.A.T.; Tertoolen, L.G.J.

    1984-01-01

    Regional differences in the lateral mobility properties of plasma membrane lipids were studied in unfertilized and fertilized Xenopus eggs by fluorescence photobleaching recovery (FPR) measurements. Out of a variety of commonly used lipid probes only the aminofluorescein- -1abelled fatty acids HEDAF (5-(N-hexadecanoyl)- aminofluorescein) and TEDAF (5-(N-tetradecanoyl)-aminofluorescein) appear to distribute itself in the plasma membrane. Under all experimental conditions used these molecules s...

  5. The effects of therapeutic concentrations ofamisulpride andrisperidone on human plasma lipid peroxidation – invitro studies

    Directory of Open Access Journals (Sweden)

    Anna Dietrich-Muszalska

    2011-09-01

    Full Text Available Introduction: Antipsychotics may in different ways affect the oxidative stress measured by plasma lipid peroxidation. Probably some of them may intensify the oxidative balance disturbances occurring in schizophrenia. The effects of amisulpride and risperidone on redox processes are not known sufficiently yet. Aim of the study: Establishment of the effects of amisulpride and risperidone on human plasma lipid peroxidation measured by determination of the level of thiobarbituric acid-reactive substances (TBARS, in vitro. Material and methods: Blood for the studies was collected from healthy volunteers (aged 24-26 years for ACD solution. Active substances of the examined drugs were dissolved in 0.01% dimethylsulfoxide (DMSO to the final concentrations (of amisulpride 578 ng/ml and risperidone 64 ng/ml and incubated with plasma for 1 and 24 hours at 37ºC. For each experiment the control samples of plasma with DMSO (without the drug were performed. The lipid peroxidation level was measured in plasma by determining the TBARS concentration, using the spectrophotometric method (acc. to Rice-Evans, 1991. The results were analysed using the following statistical methods: the paired Student t-test and ANOVA II variance analysis and NIR test (StatSoft Inc., Statistica v. 6.0. Results: The ANOVA II variance analysis indicated significant differences in the effects of both drugs on TBARS level (F=4.26; df=2, p0.05. Conclusion: Amisulpride and risperidone in concentrations corresponding to doses recommended for treatment of acute episode of schizophrenia do not induce oxidative stress measured by lipid peroxidation. Unlike risperidone, amisulpride exhibits antioxidative effects.

  6. Rapid and simple extraction of lipids from blood plasma and urine for liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Bang, Dae Young; Byeon, Seul Kee; Moon, Myeong Hee

    2014-02-28

    A simple and fast lipid extraction method from human blood plasma and urine is introduced in this study. The effective lipid extraction from biological systems with a minimization of the matrix effect is important for the successful qualitative and quantitative analysis of lipids in liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). The method described here is based on the modification of the quick, easy, cheap, effective, rugged and safe (QuEChERS) extraction method, which was originally developed for pesticide residue analysis in food, for the purpose of isolating lipids from biological fluids. Applicability of QuEChERS method for lipids was evaluated by varying organic solvents for the extraction/partitioning of lipids in MgSO4/CH3COONa for the removal of water and by varying sorbents (primary secondary amines, graphitized carbon black, silica, strong anion exchange resins and C18 particles) for the dispersive solid-phase extraction (dSPE) step. This study shows that 2:1 (v/v) CHCl3/CH3OH is effective in the extraction/partitioning step and that 50mg of C18 particles (for 0.1mL plasma and 1mL of urine) are more suitable for sample cleanup for the dSPE step of the QuEChERS method. Matrix effects were calculated by comparing the recovery values of lipid standards spiked to both plasma and urine samples after extraction with those of the same standards in a neat solution using nanoflow LC-ESI-MS/MS, resulting in improved MS signals due to the decrease of the ion suppression compared to the conventional Folch method. The modified QuEChERS method was applied to lipid extracts from both human urine and plasma samples, demonstrating that it can be powerfully utilized for high-speed (<15min) preparation of lipids compared to the Folch method, with equivalent or slightly improved results in lipid identification using nLC-ESI-MS/MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Relationship between Lipids Levels of Serum and Seminal Plasma and Semen Parameters in 631 Chinese Subfertile Men.

    Directory of Open Access Journals (Sweden)

    Jin-Chun Lu

    Full Text Available This prospective study was designed to investigate the relationship between lipids levels in both serum and seminal plasma and semen parameters.631 subfertile men were enrolled. Their obesity-associated markers were measured, and semen parameters were analyzed. Also, seminal plasma and serum TC, TG, HDL and LDL and serum FFA, FSH, LH, total testosterone (TT, estradiol (E2 and SHBG levels were detected.Seminal plasma and serum TG, TC and LDL levels were positively related to age. Serum TC, TG and LDL were positively related to obesity-associated markers (P < 0.001, while only seminal plasma TG was positively related to them (P < 0.05. For lipids levels in serum and seminal plasma, only TG level had slightly positive correlation between them (r = 0.081, P = 0.042. There was no significant correlation between serum lipids levels and semen parameters. However, seminal plasma TG, TC, LDL and HDL levels were negatively related to one or several semen parameters, including semen volume (SV, sperm concentration (SC, total sperm count (TSC, sperm motility, progressive motility (PR and total normal-progressively motile sperm counts (TNPMS. Moreover, seminal plasma TG, TC, LDL and HDL levels in patients with oligospermatism, asthenospermia and teratozoospermia were higher than those with normal sperm concentration, motility or morphology. After adjusting age and serum LH, FSH, TT, E2 and SHBG levels, linear regression analysis showed that SV was still significantly correlated with seminal plasma LDL (P = 0.012, both of SC and TSC with seminal plasma HDL (P = 0.028 and 0.002, and both of PR and sperm motility with seminal plasma TC (P = 0.012 and 0.051.The abnormal metabolism of lipids in male reproductive system may contribute to male factor infertility.

  8. Lipid Raft: A Floating Island Of Death or Survival

    Science.gov (United States)

    George, Kimberly S.; Wu, Shiyong

    2012-01-01

    Lipid rafts are microdomains of the plasma membrane enriched in cholesterol and sphingolipids, and play an important role in the initiation of many pharmacological agent-induced signaling pathways and toxicological effects. The structure of lipid rafts is dynamic, resulting in an ever-changing content of both lipids and proteins. Cholesterol, as a major component of lipid rafts, is critical for the formation and configuration of lipid rafts microdomains, which provide signaling platforms capable of activating both pro-apoptotic and anti-apoptotic signaling pathways. A change of cholesterol level can result in lipid rafts disruption and activate or deactivate raft-associated proteins, such as death receptor proteins, protein kinases, and calcium channels. Several anti-cancer drugs are able to suppress growth and induce apoptosis of tumor cells through alteration of lipid raft contents via disrupting lipid raft integrity. PMID:22289360

  9. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The effect of low calorie structured lipid palm mid fraction, virgin coconut oil and canola oil blend on rats body weight and plasma profile

    Science.gov (United States)

    Bakar, Aftar Mizan Abu; Ayob, Mohd Khan; Maskat, Mohamad Yusof

    2016-11-01

    This study was carried out to evaluate the effect of low calorie cocoa butter substitutes, the structured lipids (SLs) on rats' body weight and plasma lipid levels. The SLs were developed from a ternary blending of palm mid fraction (PMF), virgin coconut oil (VCO) and canola oil (CO). The optimized blends were then underwent enzymatic acidolysisusing sn-1,3-specific lipase. This process produced A12, a SL which hasa solid fat content almost comparable to cocoa butter but has low calories. Therefore, it has a high potential to be used for cocoa butter substitute with great nutritional values. Fourty two Sprague Dawley rats were divided into 6 groups and were force feed for a period of 2 months (56 days) and the group were Control 1(rodent chow), Control 2(cocoa butter), Control 3(PMF:VCO:CO 90:5:5 - S3 blend), High doseSL (A12:C8+S3), Medium dose SL (A12:C8+S3) and Low dose SL (A12:C8+S3). The body weight of each rat was recorded once daily. The plasma profile of treated and control rats, which comprised of total cholesterol, HDL cholesterol, LDL cholesterol and triglyceride was measured on day 0 (baseline) and day 56 (post-treatment). Low calorie structured lipid (SL) was synthesized through acidolysis reaction using sn 1-3-specific lipase of ThermomycesLanuginos (TLIM) among 25 samples with optimum parameter obtained from the RSM. Blood samples for plasma separation were collected using cardiac puncture and requiring anesthesia via tail vein(Anesthetics for rats: Ketamine/Xylazine) for day 0 and day 56. Results of the study showed that rats in group 1 and group 2 has gained weight by 1.66 g and 4.75 g respectively and showed significant difference (p0.05) between G3 on day 0 and 56 days for total cholesterol. Meanwhile, total plasma HDLcholesterol content of rats fed with C8:0 was significantly higher (pstructured lipids effectively altered the plasma cholesterol levels of experimental rats.

  11. Plasma lipid levels in Alzheimer's disease patients treated by Donepezil hydrochloride: a cross-sectional study.

    Science.gov (United States)

    Adunsky, Abraham; Chesnin, Vladimir; Ravona, Ramit; Harats, Dror; Davidson, Michael

    2004-01-01

    Donepezil hydrochloride is a central acetylcholine esterase inhibitor that is widely used in Alzheimer disease (AD). We have recently observed some differences in lipid profile between occasional cases of Donepezil hydrochloride users (DU) and non-users (DNU). This prompted us to study the levels of plasma lipids in these two groups, cross-sectionally. The medical charts of patients with probable AD were screened for current use of Donepezil hydrochloride and lipids profile, along with other clinical and demographic data. A total number of 105 patients were identified and included in the final analysis. Patients were divided into two groups (DU and DNU). Plasma levels of lipids were recorded. Mann-Whitney or t-test for continuous variables and Fisher exact test for categorical variables were used to test for significant differences between the groups. Regression analysis was applied to identify independently the factors associated with lipid levels. Thirty-three patients were DU and 72 DNU. The two groups differed in terms of age, lipid levels and cognitive level. DU had statistically significant higher levels of triglycerides compared with those not using the drug (P=0.036), higher total cholesterol (Phydrochloride. Alternatively, this may indicate that the effect of the medication may involve lipid metabolism, rather than other proposed mechanisms.

  12. Lateral mobility of plasma membrane lipids in Xenopus eggs: regional differences related to animal/vegetal polarity become extreme upon fertilization.

    Science.gov (United States)

    Dictus, W J; van Zoelen, E J; Tetteroo, P A; Tertoolen, L G; de Laat, S W; Bluemink, J G

    1984-01-01

    Regional differences in the lateral mobility properties of plasma membrane lipids have been studied in unfertilized and fertilized Xenopus eggs by fluorescence photobleaching recovery (FPR) measurements. Out of a variety of commonly used lipid probes only the aminofluorescein-labeled fatty acids HEDAF (5-(N-hexadecanoyl)-aminofluorescein) and TEDAF (5-(N-tetradecanoyl)-aminofluorescein) appear to partition into the plasma membrane. Under all experimental conditions used these molecules show partial recovery upon photobleaching indicating the existence of lipidic microdomains. In the unfertilized egg the mobile fraction of plasma membrane lipids (approximately 50%) has a fivefold smaller lateral diffusion coefficient (D = 1.5 X 10(-8) cm2/sec) in the animal than in the vegetal plasma membrane (D = 7.6 X 10(-8) cm2/sec). This demonstrates the presence of an animal/vegetal polarity within the Xenopus egg plasma membrane. Upon fertilization this polarity is strongly (greater than 100X) enhanced leading to the formation of two distinct macrodomains within the plasma membrane. At the animal side of the egg lipids are completely immobilized on the time scale of FPR measurements (D less than 10(-10) cm2/sec), whereas at the vegetal side D is only slightly reduced (D = 4.4 X 10(-8) cm2/sec). The immobilization of animal plasma membrane lipids, which could play a role in the polyspermy block, probably arises by the fusion of cortical granules which are more numerous here. The transition between the animal and the vegetal domain is sharp and coincides with the boundary between the presumptive ecto- and endoderm. The role of regional differences in the plasma membrane is discussed in relation to cell diversification in early development.

  13. Simulations of simple linoleic acid-containing lipid membranes and models for the soybean plasma membranes.

    Science.gov (United States)

    Zhuang, Xiaohong; Ou, Anna; Klauda, Jeffery B

    2017-06-07

    The all-atom CHARMM36 lipid force field (C36FF) has been tested with saturated, monounsaturated, and polyunsaturated lipids; however, it has not been validated against the 18:2 linoleoyl lipids with an unsaturated sn-1 chain. The linoleoyl lipids are common in plants and the main component of the soybean membrane. The lipid composition of soybean plasma membranes has been thoroughly characterized with experimental studies. However, there is comparatively less work done with computational modeling. Our molecular dynamics (MD) simulation results show that the pure linoleoyl lipids, 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (18:0/18:2) and 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (di-18:2), agree very well with the experiments, which demonstrates the accuracy of the C36FF for the computational study of soybean membranes. Based on the experimental composition, the soybean hypocotyl and root plasma membrane models are developed with each containing seven or eight types of linoleoyl phospholipids and two types of sterols (sitosterol and stigmasterol). MD simulations are performed to characterize soybean membranes, and the hydrogen bonds and clustering results demonstrate that the lipids prefer to interact with the lipids of the same/similar tail unsaturation. All the results suggest that these two soybean membrane models can be used as a basis for further research in soybean and higher plant membranes involving membrane-associated proteins.

  14. Physiological Aldosterone Concentrations Are Associated with Alterations of Lipid Metabolism: Observations from the General Population

    Directory of Open Access Journals (Sweden)

    M. Hannich

    2018-01-01

    Full Text Available Objective. Aldosterone and high-density lipoprotein cholesterol (HDL-C are involved in many pathophysiological processes that contribute to the development of cardiovascular diseases. Previously, associations between the concentrations of aldosterone and certain components of the lipid metabolism in the peripheral circulation were suggested, but data from the general population is sparse. We therefore aimed to assess the associations between aldosterone and HDL-C, low-density lipoprotein cholesterol (LDL-C, total cholesterol, triglycerides, or non-HDL-C in the general adult population. Methods. Data from 793 men and 938 women aged 25–85 years who participated in the first follow-up of the Study of Health in Pomerania were obtained. The associations of aldosterone with serum lipid concentrations were assessed in multivariable linear regression models adjusted for sex, age, body mass index (BMI, estimated glomerular filtration rate (eGFR, and HbA1c. Results. The linear regression models showed statistically significant positive associations of aldosterone with LDL-C (β-coefficient = 0.022, standard error = 0.010, p=0.03 and non-HDL-C (β-coefficient = 0.023, standard error = 0.009, p=0.01 as well as an inverse association of aldosterone with HDL-C (β-coefficient = −0.022, standard error = 0.011, p=0.04. Conclusions. The present data show that plasma aldosterone is positively associated with LDL-C and non-HDL-C and inversely associated with HDL-C in the general population. Our data thus suggests that aldosterone concentrations within the physiological range may be related to alterations of lipid metabolism.

  15. Childhood obesity treatment; Effects on BMI SDS, body composition, and fasting plasma lipid concentrations

    DEFF Research Database (Denmark)

    Nielsen, Tenna Ruest Haarmark; Fonvig, Cilius Esmann; Dahl, Maria

    2018-01-01

    Objective The body mass index (BMI) standard deviation score (SDS) may not adequately reflect changes in fat mass during childhood obesity treatment. This study aimed to investigate associations between BMI SDS, body composition, and fasting plasma lipid concentrations at baseline and during......, and 80% improved their lipid concentrations. Conclusion Reductions in the degree of obesity during multidisciplinary childhood obesity treatment are accompanied by improvements in body composition and fasting plasma lipid concentrations. Even in individuals increasing their BMI SDS, body composition...... childhood obesity treatment. Methods 876 children and adolescents (498 girls) with overweight/obesity, median age 11.2 years (range 1.6±21.7), and median BMI SDS 2.8 (range 1.3±5.7) were enrolled in a multidisciplinary outpatient treatment program and followed for a median of 1.8 years (range 0...

  16. Regional differences in the lateral mobility of plasma membrane lipids in a molluscan embryo

    OpenAIRE

    Speksnijder, J.E.; Dohmen, M.R.; Tertoolen, L.G.J.; Laat, S.W. de

    1985-01-01

    Regional and temporal differences in plasma membrane lipid mobility have been analyzed during the first three cleavage cycles of the embryo of the polar-lobe-forming mollusc Nassarius reticulatus by the fluorescence photobleaching recovery (FPR) method, using 1,1′-ditetradecyl 3,3,3′,3′-tetramethylindocarbocyanine iodide (C14diI) as a fluorescent lipid probe. During this period of development the lateral diffusion coefficient of membrane lipids is consistently greater in the vegetal polar lob...

  17. Altered lipid accumulation in Nannochloropsis salina CCAP849/3 following EMS and UV induced mutagenesis

    Directory of Open Access Journals (Sweden)

    T.A. Beacham

    2015-09-01

    Full Text Available Microalgae have potential as a chemical feed stock in a range of industrial applications. Nannochloropsis salina was subject to EMS mutagenesis and the highest lipid containing cells selected using fluorescence-activated cell sorting. Assessment of growth, lipid content and fatty acid composition identified mutant strains displaying a range of altered traits including changes in the PUFA content and a total FAME increase of up to 156% that of the wild type strain. Combined with a reduction in growth this demonstrated a productivity increase of up to 76%. Following UV mutagenesis, lipid accumulation of the mutant cultures was elevated to more than 3 fold that of the wild type strain, however reduced growth rates resulted in a reduction in overall productivity. Changes observed are indicative of alterations to the regulation of the omega 6 Kennedy pathway. The importance of these variations in physiology for industrial applications such as biofuel production is discussed.

  18. A maternal high-fat, high-sucrose diet alters insulin sensitivity and expression of insulin signalling and lipid metabolism genes and proteins in male rat offspring: effect of folic acid supplementation.

    Science.gov (United States)

    Cuthbert, Candace E; Foster, Jerome E; Ramdath, D Dan

    2017-10-01

    A maternal high-fat, high-sucrose (HFS) diet alters offspring glucose and lipid homoeostasis through unknown mechanisms and may be modulated by folic acid. We investigated the effect of a maternal HFS diet on glucose homoeostasis, expression of genes and proteins associated with insulin signalling and lipid metabolism and the effect of prenatal folic acid supplementation (HFS/F) in male rat offspring. Pregnant Sprague-Dawley rats were randomly fed control (CON), HFS or HFS/F diets. Offspring were weaned on CON; at postnatal day 70, fasting plasma insulin and glucose and liver and skeletal muscle gene and protein expression were measured. Treatment effects were assessed by one-way ANOVA. Maternal HFS diet induced higher fasting glucose in offspring v. HFS/F (P=0·027) and down-regulation (Pinsulin resistance v. CON (P=0·030) and HFS/F was associated with higher insulin (P=0·016) and lower glucose (P=0·025). Maternal HFS diet alters offspring insulin sensitivity and de novo hepatic lipogenesis via altered gene and protein expression, which appears to be potentiated by folate supplementation.

  19. Elevated plasma YKL-40, lipids and lipoproteins, and ischemic vascular disease in the general population

    DEFF Research Database (Denmark)

    Kjaergaard, Alisa D; Johansen, Julia S; Bojesen, Stig E

    2015-01-01

    BACKGROUND AND PURPOSE: We tested the hypothesis that observationally and genetically elevated YKL-40 is associated with elevated lipids and lipoproteins and with increased risk of ischemic vascular disease. METHODS: We conducted cohort and Mendelian randomization studies in 96 110 individuals from...... the Danish general population, with measured plasma levels of YKL-40 (n=21 647), plasma lipids and lipoproteins (n=94 461), and CHI3L1 rs4950928 genotype (n=94 579). RESULTS: From 1977 to 2013, 3256 individuals developed ischemic stroke, 5629 ischemic cerebrovascular disease, 4183 myocardial infarction...

  20. The effect of N-stearoylethanolamine on plasma lipid composition in rats with experimental insulin resistance

    Directory of Open Access Journals (Sweden)

    O. V. Onopchenko

    2015-02-01

    Full Text Available A model of insulin resistance (IR, induced by prolonged high fat diet with high content of saturated fats was used to investigate the effect of N-stearoylethanolamine (NSE on the composition of free fatty acids (FFA, plasma lipoprotein spectrum and content of proinflammatory cytokine TNFα in rats. The results of this work showed a rise in the content of monounsaturated fatty acids (18:1 n-9 and a reduction in the level of polyunsaturated fatty acids (20:4 n-6 in plasma of rats with experimental IR. These findings are accompanied by the increased TNFα production and significant changes in plasma lipoprotein profile of rats with the fat overload. Particularly, a decreased high-density lipoprotein (HDL cholesterol level and increased low-density (LDL and very low-density lipoprotein (VLDL cholesterol level were detected. The NSE administration to obese rats with IR restored the content of mono- and polyunsaturated FFA, increased HDL cholesterol content and reduced LDL cholesterol level. In addition, the IR rats treated with NSE showed normalization in the serum TNFα level. Our results showed the restoration of plasma lipid profile under NSE administration in rats with obesity-induced IR. Considering the fact that plasma lipid composition displays the lipid metabolism in general, the NSE actions may play a significant role in the prevention of IR-associated complications.

  1. Cartap and carbofuran induced alterations in serum lipid profile of Wistar rats.

    Science.gov (United States)

    Rai, Devendra K; Rai, Prashant Kumar; Gupta, Aradhna; Watal, Geeta; Sharma, Bechan

    2009-04-01

    Wistar rats of 6-8 weeks in age weighing between 120-150 g were exposed to the fixed doses of each of the carbamate pesticides such as cartap (50% LD(50)) and carbofuran (50% LD(50)) as well as a combination of these two with 25% LD(50) of each for one week. The effect of treatments was studied in terms of serum lipid parameters such as high-density lipoprotein, total cholesterol, triglyceride, low-density lipoprotein and very low-density lipoprotein. Treatment with individual doses of carbofuran (50% LD(50)) and cartap (50 % LD(50)) caused significant alterations in the levels of serum lipid parameters. The pesticides treatment resulted in marked decrease in the level of serum high-density lipoprotein where as that of other lipids got significantly elevated. Further, the rats exhibited relatively higher impact of pesticides when treated with the compounds in combination (25 % LD(50) of each). The results indicated that these compounds when used together may exert enhanced effect on the levels of serum lipids in rat.

  2. The role of abnormal body weight and plasma lipids in male ...

    African Journals Online (AJOL)

    Objectives: This study aimed at determining the relationship between plasma lipids, body mass index (BMI) and fertility status, in husbands of women undergoing investigation for infertility. Methods: Fourty-seven men, who were the husbands of women that attended our Infertility Clinic, were recruited for this study.

  3. DHEA-induced modulation of renal gluconeogenesis, insulin sensitivity and plasma lipid profile in the control- and dexamethasone-treated rabbits. Metabolic studies.

    Science.gov (United States)

    Kiersztan, Anna; Nagalski, Andrzej; Nalepa, Paweł; Tempes, Aleksandra; Trojan, Nina; Usarek, Michał; Jagielski, Adam K

    2016-02-01

    In view of antidiabetic and antiglucocorticoid effects of dehydroepiandrosterone (DHEA) both in vitro and in vivo studies were undertaken: (i) to elucidate the mechanism of action of both dexamethasone phosphate (dexP) and DHEA on glucose synthesis in primary cultured rabbit kidney-cortex tubules and (ii) to investigate the influence of DHEA on glucose synthesis, insulin sensitivity and plasma lipid profile in the control- and dexP-treated rabbits. Data show, that in cultured kidney-cortex tubules dexP significantly stimulated gluconeogenesis by increasing flux through fructose-1,6-bisphosphatase (FBPase). DexP-induced effects were dependent only upon glucocorticoid receptor. DHEA decreased glucose synthesis via inhibition of glucose-6-phosphatase (G6Pase) and suppressed the dexP-induced stimulation of renal gluconeogenesis. Studies with the use of inhibitors of DHEA metabolism in cultured renal tubules showed for the first time that DHEA directly affects renal gluconeogenesis. However, in view of analysis of glucocorticoids and DHEA metabolites levels in urine, it seems likely, that testosterone may also contribute to DHEA-evoked effects. In dexP-treated rabbits, plasma glucose level was not altered despite increased renal and hepatic FBPase and G6Pase activities, while a significant elevation of both plasma insulin and HOMA-IR was accompanied by a decline of ISI index. It thus appears that increased insulin levels were required to maintain normoglycaemia and to compensate the insulin resistance. DHEA alone affected neither plasma glucose nor lipid levels, while it increased insulin sensitivity and diminished both renal and hepatic G6Pase activities. Surprisingly, DHEA co-administrated with dexP did not alter insulin sensitivity, while it partially suppressed the dexP-induced elevation of renal G6Pase activity and plasma cholesterol and triglyceride contents. As (i) gluconeogenic pathway in rabbit is similar to that in human, and (ii) DHEA counteracts several

  4. Lateral mobility of plasma membrane lipids in Xenopus eggs: Regional differences related to animal/vegetal polarity

    NARCIS (Netherlands)

    Laat, S.W. de; Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van; Tetteroo, P.A.T.; Tertoolen, L.G.J.

    1984-01-01

    Regional differences in the lateral mobility properties of plasma membrane lipids were studied in unfertilized and fertilized Xenopus eggs by fluorescence photobleaching recovery (FPR) measurements. Out of a variety of commonly used lipid probes only the aminofluorescein- -1abelled fatty

  5. Molecular dynamics study of lipid bilayers modeling the plasma membranes of mouse hepatocytes and hepatomas.

    Science.gov (United States)

    Andoh, Yoshimichi; Aoki, Noriyuki; Okazaki, Susumu

    2016-02-28

    Molecular dynamics (MD) calculations of lipid bilayers modeling the plasma membranes of normal mouse hepatocytes and hepatomas in water have been performed under physiological isothermal-isobaric conditions (310.15 K and 1 atm). The changes in the membrane properties induced by hepatic canceration were investigated and were compared with previous MD calculations included in our previous study of the changes in membrane properties induced by murine thymic canceration. The calculated model membranes for normal hepatocytes and hepatomas comprised 23 and 24 kinds of lipids, respectively. These included phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. We referred to previously published experimental values for the mole fraction of the lipids adopted in the present calculations. The calculated structural and dynamic properties of the membranes such as lateral structure, order parameters, lateral self-diffusion constants, and rotational correlation times all showed that hepatic canceration causes plasma membranes to become more ordered laterally and less fluid. Interestingly, this finding contrasts with the less ordered structure and increased fluidity of plasma membranes induced by thymic canceration observed in our previous MD study.

  6. Ethanol alters cellular activation and CD14 partitioning in lipid rafts

    International Nuclear Information System (INIS)

    Dai Qun; Zhang Jun; Pruett, Stephen B.

    2005-01-01

    Alcohol consumption interferes with innate immunity. In vivo EtOH administration suppresses cytokine responses induced through Toll-like receptor 4 (TLR4) and inhibits TLR4 signaling. Actually, EtOH exhibits a generalized suppressive effect on signaling and cytokine responses induced by through most TLRs. However, the underlying mechanism remains unknown. RAW264.7 cells were treated with LPS or co-treated with EtOH or with lipid raft-disrupting drugs. TNF-α production, IRAK-1 activation, and CD14 partition were evaluated. EtOH or nystatin, a lipid raft-disrupting drug, suppressed LPS-induced production of TNF-α. The suppressive effect of EtOH on LPS-induced TNF-α production was additive with that of methyl-β-cyclodextrin (MCD), another lipid raft-disrupting drug. EtOH interfered with IRAK-1 activation, an early TLR4 intracellular signaling event. Cell fractionation analyses show that acute EtOH altered LPS-related partition of CD14, a critical component of the LPS receptor complex. These results suggest a novel mechanism of EtOH action that involves interference with lipid raft clustering induced by LPS. This membrane action of EtOH might be one of the mechanisms by which EtOH acts as a generalized suppressor for TLR signaling

  7. Methods of staining and visualization of sphingolipid enriched and non-enriched plasma membrane regions of Arabidopsis thaliana with fluorescent dyes and lipid analogues

    Directory of Open Access Journals (Sweden)

    Blachutzik Jörg O

    2012-08-01

    Full Text Available Abstract Background Sterols and Sphingolipids form lipid clusters in the plasma membranes of cell types throughout the animal and plant kingdoms. These lipid domains provide a medium for protein signaling complexes at the plasma membrane and are also observed to be principal regions of membrane contact at the inception of infection. We visualized different specific fluorescent lipophilic stains of the both sphingolipid enriched and non-sphingolipid enriched regions in the plasma membranes of live protoplasts of Arabidopsis thaliana. Results Lipid staining protocols for several fluorescent lipid analogues in plants are presented. The most emphasis was placed on successful protocols for the single and dual staining of sphingolipid enriched regions and exclusion of sphingolipid enriched regions on the plasma membrane of Arabidopsis thaliana protoplasts. A secondary focus was placed to ensure that these staining protocols presented still maintain cell viability. Furthermore, the protocols were successfully tested with the spectrally sensitive dye Laurdan. Conclusion Almost all existing staining procedures of the plasma membrane with fluorescent lipid analogues are specified for animal cells and tissues. In order to develop lipid staining protocols for plants, procedures were established with critical steps for the plasma membrane staining of Arabidopsis leaf tissue and protoplasts. The success of the plasma membrane staining protocols was additionally verified by measurements of lipid dynamics by the fluorescence recovery after photobleaching technique and by the observation of new phenomena such as time dependent lipid polarization events in living protoplasts, for which a putative physiological relevance is suggested.

  8. Scallop protein with endogenous high taurine and glycine content prevents high-fat, high-sucrose-induced obesity and improves plasma lipid profile in male C57BL/6J mice

    DEFF Research Database (Denmark)

    Tastesen, Hanne Sørup; Keenan, Alison H.; Madsen, Lise

    2014-01-01

    High-protein diets induce alterations in metabolism that may prevent diet-induced obesity. However, little is known as to whether different protein sources consumed at normal levels may affect diet-induced obesity and associated co-morbidities. We fed obesity-prone male C57BL/6J mice high-fat, high......-fed mice, but otherwise no changes in lean body mass were observed between the groups. Feed efficiency and apparent nitrogen digestibility were reduced in scallop-fed mice suggesting alterations in energy utilization and metabolism. Overnight fasted plasma triacylglyceride, non-esterified fatty acids......, glycerol and hydroxy-butyrate levels were significantly reduced, indicating reduced lipid mobilization in scallop-fed mice. The plasma HDL-to-total-cholesterol ratio was higher, suggesting increased reverse cholesterol transport or cholesterol clearance in scallop-fed mice in both fasted and non-fasted...

  9. In vivo incorporation of 1-14C-acetate into liver and plasma lipids of postnatally overfed rats

    International Nuclear Information System (INIS)

    Aust, L.; Noack, R.; Borchardt, M.; Akademie der Wissenschaften der DDR, Berlin-Buch. Forschungszentrum fuer Molekularbiologie und Medizin)

    1982-01-01

    Postnatal overnutrition due to breeding of rats in small nests (4 pups per dam) leads to distinct metabolic changes in later life stages even in conditions of ad libitum feeding. At an age of 5 months rats from small nests differ from those of large nests (14 pups per dam) in a significant higher level of liver triglycerides and cholesterol esters, whereas changes in plasma lipids concern only the increased cholesterol ester fraction. The relative distribution of in vivo incorporated 1- 14 C-acetate into liver lipids shows a higher moiety in the triglyceride fraction of animals from small nests but no changes of the relative distribution of activity among lipid fractions of plasma. These changes of lipid metabolism are discussed in relation to the development of an obese state of postnatally overfed animals. (author)

  10. Differentiation of human keratinocytes: changes in lipid synthesis, plasma membrane lipid composition, and 125I-EGF binding upon administration of 25-hydroxycholesterol and mevinolin

    International Nuclear Information System (INIS)

    Ponec, M.; Kempenaar, J.; Weerheim, A.; Boonstra, J.

    1987-01-01

    We have studied the relationship between differentiation capacity, plasma membrane composition, and epidermal growth factor (EGF) receptor expression of normal keratinocytes in vitro. The plasma membrane composition of the cells was modulated experimentally by cholesterol depletion, using specific inhibitors of cholesterol synthesis, such as 25-hydroxycholesterol and mevinolin. Exposure of the cells towards these inhibitors resulted in a drastic decrease of cholesterol biosynthesis, as determined from 14 C-acetate incorporation into the various lipid fractions. This effect on cholesterol biosynthesis was reflected by changes in plasma membrane composition, as determined by lipid analysis of isolated plasma membrane fractions, these resulting in a decreased cholesterol-phospholipid ratio. The experimental modulation of plasma membrane composition by 25-hydroxycholesterol or mevinolin were accompanied by a decreased cornified envelope formation and by high expression of EGF binding sites. These phenomena were more pronounced in cells induced to differentiate by exposure of cells grown under low Ca2+ to normal Ca2+ concentrations, as compared to cells grown persistently under low Ca2+ concentrations. These results suggest a close correlation between plasma membrane composition, differentiation capacity, and EGF receptor expression

  11. Altered lipid homeostasis in Drosophila InsP3 receptor mutants leads to obesity and hyperphagia

    Directory of Open Access Journals (Sweden)

    Manivannan Subramanian

    2013-05-01

    Obesity is a complex metabolic disorder that often manifests with a strong genetic component in humans. However, the genetic basis for obesity and the accompanying metabolic syndrome is poorly defined. At a metabolic level, obesity arises from an imbalance between the nutritional intake and energy utilization of an organism. Mechanisms that sense the metabolic state of the individual and convey this information to satiety centers help achieve this balance. Mutations in genes that alter or modify such signaling mechanisms are likely to lead to either obese individuals, who in mammals are at high risk for diabetes and cardiovascular disease, or excessively thin individuals with accompanying health problems. Here we show that Drosophila mutants for an intracellular calcium signaling channel, the inositol 1,4,5-trisphosphate receptor (InsP3R store excess triglycerides in their fat bodies and become unnaturally obese on a normal diet. Although excess insulin signaling can rescue obesity in InsP3R mutants to some extent, we show that it is not the only cause of the defect. Through mass spectrometric analysis of lipids we find that homeostasis of storage and membrane lipids are altered in InsP3R mutants. Possibly as a compensatory mechanism, InsP3R mutant adults also feed excessively. Thus, reduced InsP3R function alters lipid metabolism and causes hyperphagia in adults. Together, the metabolic and behavioral changes lead to obesity. Our results implicate altered InsP3 signaling as a previously unknown causative factor for metabolic syndrome in humans. Importantly, our studies also suggest preventive dietary interventions.

  12. Only a fraction of patients with ischaemic diseases or diabetes are treated to recommended target values for plasma lipids

    DEFF Research Database (Denmark)

    Siggaard-Andersen, Niels; Freiberg, Jacob J; Nordestgaard, Børge G

    2012-01-01

    We tested the hypothesis that individuals in the general population with and without ischaemic cardiovascular disease, or with diabetes, are treated to recommended target values for plasma lipids.......We tested the hypothesis that individuals in the general population with and without ischaemic cardiovascular disease, or with diabetes, are treated to recommended target values for plasma lipids....

  13. Navy Bean and Rice Bran Intake Alters the Plasma Metabolome of Children at Risk for Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Katherine J. Li

    2018-01-01

    Full Text Available Abnormal cholesterol in childhood predicts cardiovascular disease (CVD risk in adulthood. Navy beans and rice bran have demonstrated efficacy in regulating blood lipids in adults and children; however, their effects on modulating the child plasma metabolome has not been investigated and warrants investigation. A pilot, randomized-controlled, clinical trial was conducted in 38 children (10 ± 0.8 years old with abnormal cholesterol. Participants consumed a snack for 4 weeks containing either: no navy bean or rice bran (control; 17.5 g/day cooked navy bean powder; 15 g/day heat-stabilized rice bran; or 9 g/day navy beans and 8 g/day rice bran. Plasma metabolites were extracted using 80% methanol for global, non-targeted metabolic profiling via ultra-high performance liquid-chromatography tandem mass spectrometry. Differences in plasma metabolite levels after 4 weeks of dietary intervention compared to control and baseline were analyzed using analysis of variance and Welch’s t-tests (p ≤ 0.05. Navy bean and/or rice bran consumption influenced 71 plasma compounds compared to control (p ≤ 0.05, with lipids representing 46% of the total plasma metabolome. Significant changes were determined for 18 plasma lipids in the navy bean group and 10 plasma lipids for the rice bran group compared to control, and 48 lipids in the navy bean group and 40 in the rice bran group compared to baseline. These results support the hypothesis that consumption of these foods impact blood lipid metabolism with implications for reducing CVD risk in children. Complementary and distinct lipid pathways were affected by the diet groups, including acylcarnitines and lysolipids (navy bean, sphingolipids (rice bran, and phospholipids (navy bean + rice bran. Navy bean consumption decreased free fatty acids associated with metabolic diseases (palmitate and arachidonate and increased the relative abundance of endogenous anti-inflammatory lipids

  14. Evaluation of body mass index and plasma lipid profile in dogs ...

    African Journals Online (AJOL)

    This study evaluated the body mass index (BMI), plasma lipid profile and gait assessment score (GAS) in dogs. Body weights (BW), height (H) at shoulder and waist circumference (WC) were obtained from fifty client-owned dogs of both sexes to determine the BMI. In addition, body condition score (BCS) and GAS were ...

  15. Evaluation of body mass index and plasma lipid profile in Boerboel ...

    African Journals Online (AJOL)

    This study evaluated the body mass index (BMI) and plasma lipid profile in Boerboel dogs. Body weights (BW), height (H) at shoulder and waist circumference (WC) were obtained from fifty-three Boerboels to determine the BMI while, body condition score (BCS) was determined subjectively. Also 5mls of blood was obtained ...

  16. Altering pyrroloquinoline quinone nutritional status modulates mitochondrial, lipid, and energy metabolism in rats.

    Directory of Open Access Journals (Sweden)

    Kathryn Bauerly

    Full Text Available We have reported that pyrroloquinoline quinone (PQQ improves reproduction, neonatal development, and mitochondrial function in animals by mechanisms that involve mitochondrial related cell signaling pathways. To extend these observations, the influence of PQQ on energy and lipid relationships and apparent protection against ischemia reperfusion injury are described herein. Sprague-Dawley rats were fed a nutritionally complete diet with PQQ added at either 0 (PQQ- or 2 mg PQQ/Kg diet (PQQ+. Measurements included: 1 serum glucose and insulin, 2 total energy expenditure per metabolic body size (Wt(3/4, 3 respiratory quotients (in the fed and fasted states, 4 changes in plasma lipids, 5 the relative mitochondrial amount in liver and heart, and 6 indices related to cardiac ischemia. For the latter, rats (PQQ- or PQQ+ were subjected to left anterior descending occlusions followed by 2 h of reperfusion to determine PQQ's influence on infarct size and myocardial tissue levels of malondialdehyde, an indicator of lipid peroxidation. Although no striking differences in serum glucose, insulin, and free fatty acid levels were observed, energy expenditure was lower in PQQ- vs. PQQ+ rats and energy expenditure (fed state was correlated with the hepatic mitochondrial content. Elevations in plasma di- and triacylglyceride and β-hydroxybutryic acid concentrations were also observed in PQQ- rats vs. PQQ+ rats. Moreover, PQQ administration (i.p. at 4.5 mg/kg BW for 3 days resulted in a greater than 2-fold decrease in plasma triglycerides during a 6-hour fast than saline administration in a rat model of type 2 diabetes. Cardiac injury resulting from ischemia/reperfusion was more pronounced in PQQ- rats than in PQQ+ rats. Collectively, these data demonstrate that PQQ deficiency impacts a number of parameters related to normal mitochondrial function.

  17. Reorganization of plasma membrane lipid domains during conidial germination.

    Science.gov (United States)

    Santos, Filipa C; Fernandes, Andreia S; Antunes, Catarina A C; Moreira, Filipe P; Videira, Arnaldo; Marinho, H Susana; de Almeida, Rodrigo F M

    2017-02-01

    Neurospora crassa, a filamentous fungus, in the unicellular conidial stage has ideal features to study sphingolipid (SL)-enriched domains, which are implicated in fundamental cellular processes ranging from antifungal resistance to apoptosis. Several changes in lipid metabolism and in the membrane composition of N. crassa occur during spore germination. However, the biophysical impact of those changes is unknown. Thus, a biophysical study of N. crassa plasma membrane, particularly SL-enriched domains, and their dynamics along conidial germination is prompted. Two N. crassa strains, wild-type (WT) and slime, which is devoid of cell wall, were studied. Conidial growth of N. crassa WT from a dormancy state to an exponential phase was accompanied by membrane reorganization, namely an increase of membrane fluidity, occurring faster in a supplemented medium than in Vogel's minimal medium. Gel-like domains, likely enriched in SLs, were found in both N. crassa strains, but were particularly compact, rigid and abundant in the case of slime cells, even more than in budding yeast Saccharomyces cerevisiae. In N. crassa, our results suggest that the melting of SL-enriched domains occurs near growth temperature (30°C) for WT, but at higher temperatures for slime. Regarding biophysical properties strongly affected by ergosterol, the plasma membrane of slime conidia lays in between those of N. crassa WT and S. cerevisiae cells. The differences in biophysical properties found in this work, and the relationships established between membrane lipid composition and dynamics, give new insights about the plasma membrane organization and structure of N. crassa strains during conidial growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Clinical significance of determination of plasma NPY levels and serum lipid profile in patients with cerebral hemorrhage and cerebral infarction

    International Nuclear Information System (INIS)

    Huang Fujuan; Shen Airong; Yang Yongqing

    2010-01-01

    Objective: To study the clinical significance of changes of plasma NPY levels and serum lipid profile in patients with cerebral hemorrhage and cerebral infarction. Methods: Plasma NPY levels (with RIA) and serum lipid profile (with biochemistry) were determined in (1) 48 patients with acute cerebral hemorrhage (2) 46 patients with acute cerebral infarction and (3) controls.Results Plasma NPY levels in both patients with cerebral hemorrhage and patients with cerebral infarction were significantly higher than those in controls (P 0.05). Conclusion: NPY played important roles in the development and pathogenesis of cerebral vascular accidents. Lipid profile changes was the basic etiological factor. (authors)

  19. Lipid raft proteome reveals that oxidative phosphorylation system is associated with the plasma membrane.

    Science.gov (United States)

    Kim, Bong-Woo; Lee, Chang Seok; Yi, Jae-Sung; Lee, Joo-Hyung; Lee, Joong-Won; Choo, Hyo-Jung; Jung, Soon-Young; Kim, Min-Sik; Lee, Sang-Won; Lee, Myung-Shik; Yoon, Gyesoon; Ko, Young-Gyu

    2010-12-01

    Although accumulating proteomic analyses have supported the fact that mitochondrial oxidative phosphorylation (OXPHOS) complexes are localized in lipid rafts, which mediate cell signaling, immune response and host-pathogen interactions, there has been no in-depth study of the physiological functions of lipid-raft OXPHOS complexes. Here, we show that many subunits of OXPHOS complexes were identified from the lipid rafts of human adipocytes, C2C12 myotubes, Jurkat cells and surface biotin-labeled Jurkat cells via shotgun proteomic analysis. We discuss the findings of OXPHOS complexes in lipid rafts, the role of the surface ATP synthase complex as a receptor for various ligands and extracellular superoxide generation by plasma membrane oxidative phosphorylation complexes.

  20. Green tea polyphenols alter lipid metabolism in the livers of broiler chickens through increased phosphorylation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Jinbao Huang

    Full Text Available Our previous results showed that green tea polyphenols (GTPs significantly altered the expression of lipid-metabolizing genes in the liver of chickens. However, the underlying mechanism was not elucidated. In this study, we further characterized how GTPs influence AMP-activated protein kinase (AMPK in the regulation of hepatic fat metabolism. Thirty-six male chickens were fed GTPs at a daily dose of 0, 80 or 160 mg/kg of body weight for 4 weeks. The results demonstrated that oral administration of GTPs significantly reduced hepatic lipid content and abdominal fat mass, enhanced the phosphorylation levels of AMPKα and ACACA, and altered the mRNA levels and enzymatic activities of lipid-metabolizing enzymes in the liver. These results suggested that the activation of AMPK is a potential mechanism by which GTPs regulate hepatic lipid metabolism in such a way that lipid synthesis is reduced and fat oxidation is stimulated.

  1. Levels of cholesteryl esters and other lipids in the plasma of patientswith end-stage renal failure

    International Nuclear Information System (INIS)

    Gillett, Michael P.T.; Obineche, Enyioma N.; Lakhani, Mohammad S.; Abdulle, Abdishakur M.; Amirlak, I.; Al-Rukhaimi, M.; Suleiman, Mustafa N.

    2001-01-01

    The importance of plasma lipid abnormalities in chronic renal failure(CRF) is well recognized, but surprisingly little attention has been given tothe study of some plasma lipid fractions, including cholesteryl esters (CE)and phospholipids, which might be expected to be important factors in thepathogenesis of disease. Fasting blood samples were taken from 25 controlsubjects and 53 CRF patients (29 predialysis and 24 on Hemodialysis). Sampleswere analyzed for urea nitrogen, creatinine, triacyglycerols, total andindividuals phospholipids, total and free cholesterol, as well as cholesterolbound to be very low-, and high- density lipoproteins (VDL, LDL and HDL).Plasma CE was calculated and expressed as a percentage of total cholesterol.Over half of the patients had CE levels more than two standard deviationsbelow the control value. In this subgroup of low CE patients, total LDL- andHDL-cholesterol levels were also significantly lower than for controls, whilelevels of phosphatidylcholine and lysophosphatidylcholine were decreased andincreased, respectively. In patients with high CE, no significant lipidabnormalities were observed. In this study, CE was an excellent marker forlipid disturbances-if CE was high, then the other lipid fractions wereabnormal. The changes noted appear to be consequences of or related todeficiency of the plasma enzyme lecithin-cholesterol acyltransferase. (author)

  2. Chronic Ethanol Consumption in Mice Alters Hepatocyte Lipid Droplet Properties

    Science.gov (United States)

    Orlicky, David J.; Roede, James R.; Bales, Elise; Greenwood, Carrie; Greenberg, Andrew; Petersen, Dennis; McManaman, James L.

    2014-01-01

    Background Hepatosteatosis is a common pathological feature of impaired hepatic metabolism following chronic alcohol consumption. Although often benign and reversible, it is widely believed that steatosis is a risk factor for development of advanced liver pathologies, including steatohepatitis and fibrosis. The hepatocyte alterations accompanying the initiation of steatosis are not yet clearly defined. Methods Induction of hepatosteatosis by chronic ethanol consumption was investigated using the Lieber-DeCarli (LD) high fat diet model. Effects were assessed by immunohistochemistry and blood and tissue enzymatic assays. Cell culture models were employed for mechanistic studies. Results Pair feeding mice ethanol (LD-Et) or isocaloric control (LD-Co) diets for 6 weeks progressively increased hepatocyte triglyceride accumulation in morphological, biochemical, and zonally distinct cytoplasmic lipid droplets (CLD). The LD-Et diet induced zone 2-specific triglyceride accumulation in large CLD coated with perilipin, adipophilin (ADPH), and TIP47. In LD-Co- fed mice, CLD were significantly smaller than those in LD-Et-fed mice and lacked perilipin. A direct role of perilipin in formation of large CLD was further suggested by cell culture studies showing that perilipin-coated CLD were significantly larger than those coated with ADPH or TIP47. LD-Co- and LD-Et-fed animals also differed in hepatic metabolic stress responses. In LD-Et but not LD-Co-fed mice, inductions were observed in the following: microsomal ethanol-oxidizing system [cytochrome P-4502E1 (CYP2E1)], hypoxia response pathway (hypoxia-inducible factor 1 alpha, HIF1α), endoplasmic reticulum stress pathway (calreticulin), and synthesis of lipid peroxidation products [4-hydroxynonenal (4-HNE)]. CYP2E1 and HIF1 α immunostaining localized to zone 3 and did not correlate with accumulation of large CLD. In contrast, calreticulin and 4-HNE immunostaining closely correlated with large CLD accumulation. Importantly, 4

  3. Lupin seeds lower plasma lipid concentrations and normalize antioxidant parameters in rats

    Directory of Open Access Journals (Sweden)

    Osman, M.

    2011-06-01

    Full Text Available This study was designed to test bitter and sweet lupin seeds for lipid-lowering and for their antioxidative activities in hypercholesterolemic rats. The levels of plasma lipid, malondialdehyde (MDA and whole blood reduced glutathione (GSH, as well as the activities of transaminases (ALT and AST, lactate dehydrogenase (LDH in plasma, superoxide dismutase (SOD, glutathione peroxidase (GPx in erythrocytes and plasma glutathione reductase (GR, glutathione-S-transferase (GST and catalase (CAT were examined. A hypercholesterolemia-induced diet manifested in the elevation of total lipids (TL, total cholesterol (TC, triglycerides (TG, LDL-C and MDA levels, ALT, AST, LDH activities and the depletion of GSH and enzymic antioxidants. The supplementation of a hypercholesterolemia-induced diet with bitter and sweet lupin seeds significantly lowered the plasma levels of TL, TC, TG and LDL-C. ALT, AST and LDH activities slightly decreased in treated groups compared with the hypercholesterolemic group (HC. Furthermore, the content of GSH significantly increased while MDA significantly decreased in treated groups compared with the HC group. In addition, the bitter lupin seed group improved enzymic antioxidants compared with the HC group. In general, the results indicated that the bitter lupin seed supplements are better than those containing sweet lupin seeds. These results suggested that the hypocholesterolemic effect of bitter and sweet lupin seed supplements might be due to their abilities to lower the plasma cholesterol level as well as to slow down the lipid peroxidation process and to enhance the antioxidant enzyme activity.

    Este estudio fue diseñado para evaluar semillas de altramuces dulces y amargas como agentes que bajan los lípidos y estudiar su efecto en la actividad antioxidante en ratas hipercolesterolémicas. El nivel de lípidos en plasma, malondialdehido (MDA y glutatión reducido (GSH, así como la actividad transaminasa (ALT y AST

  4. Lipid composition of microdomains is altered in neuronopathic Gaucher disease sheep brain and spleen.

    Science.gov (United States)

    Hein, Leanne K; Rozaklis, Tina; Adams, Melissa K; Hopwood, John J; Karageorgos, Litsa

    2017-07-01

    Gaucher disease is a lysosomal storage disorder caused by a deficiency in glucocerebrosidase activity that leads to accumulation of glucosylceramide and glucosylsphingosine. Membrane raft microdomains are discrete, highly organized microdomains with a unique lipid composition that provide the necessary environment for specific protein-lipid and protein-protein interactions to take place. In this study we purified detergent resistant membranes (DRM; membrane rafts) from the occipital cortex and spleen from sheep affected with acute neuronopathic Gaucher disease and wild-type controls. We observed significant increases in the concentrations of glucosylceramide, hexosylsphingosine, BMP and gangliosides and decreases in the percentage of cholesterol and phosphatidylcholine leading to an altered DRM composition. Altered sphingolipid/cholesterol homeostasis would dramatically disrupt DRM architecture making them less ordered and more fluid. In addition, significant changes in the length and degree of lipid saturation within the DRM microdomains in the Gaucher brain were also observed. As these DRM microdomains are involved in many cellular events, an imbalance or disruption of the cell membrane homeostasis may impair normal cell function. This disruption of membrane raft microdomains and imbalance within the environment of cellular membranes of neuronal cells may be a key factor in initiating a cascade process leading to neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Objectively measured sedentary behavior, physical activity, and plasma lipids in overweight and obese children.

    Science.gov (United States)

    Cliff, Dylan P; Okely, Anthony D; Burrows, Tracy L; Jones, Rachel A; Morgan, Philip J; Collins, Clare E; Baur, Louise A

    2013-02-01

    This study examines the associations between objectively measured sedentary behavior, light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA), and plasma lipids in overweight and obese children. Cross-sectional analyses were conducted among 126 children aged 5.5-9.9 years. Sedentary behavior, LPA, and MVPA were assessed using accelerometry. Fasting blood samples were analyzed for plasma lipids (high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol [LDL-C], total cholesterol [TC], and triglycerides [TG]). MVPA was not related to plasma lipids (P > 0.05). Independent of age, sex, energy intake, and waist circumference z-score, sedentary behavior and LPA were associated with HDL-C (β = -0.23, 95% CI -0.42 to -0.04, P = 0.020; β = 0.20, 95% CI 0.14 to 0.39, P = 0.036, respectively). The strength of the associations remained after additionally adjusting for MVPA (sedentary behavior: β = -0.22, 95% CI -0.44 to 0.006, P = 0.056; LPA: β = 0.19, 95% CI -0.005 to 0.38, P = 0.056, respectively). Substituting at least LPA for sedentary time may contribute to the development of healthy HDL-C levels among overweight and obese children, independent of their adiposity. Comprehensive prevention and treatment strategies to improve plasma HDL-C among overweight and obese children should target reductions in total sedentary time and promote the benefits of LPA, in addition to promoting healthy levels of adiposity, healthy dietary behaviors, and MVPA. Copyright © 2012 The Obesity Society.

  6. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  7. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.

    Science.gov (United States)

    Iswanto, Arya Bagus Boedi; Kim, Jae-Yean

    2017-04-03

    A bstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.

  8. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase.

    Science.gov (United States)

    Morales-Cedillo, Francisco; González-Solís, Ariadna; Gutiérrez-Angoa, Lizbeth; Cano-Ramírez, Dora Luz; Gavilanes-Ruiz, Marina

    2015-04-01

    Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.

  9. Low trans structured fat from flaxseed oil improves plasma and hepatic lipid metabolism in apo E(-/-) mice.

    Science.gov (United States)

    Cho, Yun-Young; Kwon, Eun-Young; Kim, Hye-Jin; Park, Yong-Bok; Lee, Ki-Teak; Park, Taesun; Choi, Myung-Sook

    2009-07-01

    The objective of this study was to explicate the effects of feeding low trans structured fat from flaxseed oil (LF) on plasma and hepatic lipid metabolism involved in apo E(-/-) mice. The animals were fed a commercial shortening (CS), commercial low trans fat (CL) and LF diet based on AIN-76 diet (10% fat) for 12 weeks. LF supplementation exerted a significant suppression in hepatic lipid accumulation with the concomitant decrease in liver weight. The LF significantly lowered plasma total cholesterol and free fatty acid whereas it significantly increased HDL-C concentration and the HDL-C/total-C ratio compared to the CS group. Reduction of hepatic lipid levels in the LF group was related with the suppression of hepatic enzyme activities for fatty acid and triglyceride synthesis, and cholesterol regulating enzyme activity compared to the CS and CL groups. Accordingly, low trans structured fat from flaxseed oil is highly effective for improving hyperlipidemia and hepatic lipid accumulation in apo E(-/-) mice.

  10. Sex specific differences in hepatic and plasma lipid profiles in healthy cats pre and post spaying and neutering: relationship with feline hepatic lipidosis.

    Science.gov (United States)

    Valtolina, Chiara; Vaandrager, Arie B; Favier, Robert P; Tuohetahuntila, Maidina; Kummeling, Anne; Jeusette, Isabelle; Rothuizen, Jan; Robben, Joris H

    2017-08-08

    A link between lipid metabolism and disease has been recognized in cats. Since hepatic lipidosis is a frequent disorder in cats, the aim of the current study was to evaluate liver and plasma lipid dimorphism in healthy cats and the effects of gonadectomy on lipid profiling. From six female and six male cats plasma and liver lipid profiles before and after spaying/neutering were assessed and compared to five cats (three neutered male and two spayed female) diagnosed with hepatic lipidosis. Intact female cats had a significantly lower level of plasma triacylglycerides (TAG) and a higher liver level of the long chain polyunsaturated fatty acid arachidonic acid (AA) compared to their neutered state. Both male and female cats with lipidosis had a higher liver, but not plasma TAG level and an increased level of plasma and liver sphingomyelin compared to the healthy cats. Although lipid dimorphism in healthy cats resembles that of other species, intact female cats show differences in metabolic configuration that could predispose them to develop hepatic lipidosis. The increased sphingomyelin levels in cats with lipidosis could suggest a potential role in the pathogenesis of hepatic lipidosis in cats.

  11. A Moderate Zinc Deficiency Does Not Alter Lipid and Fatty Acid Composition in the Liver of Weanling Rats Fed Diets Rich in Cocoa Butter or Safflower Oil.

    Science.gov (United States)

    Weigand, Edgar; Egenolf, Jennifer

    2017-01-01

    The aim of the study was to examine whether a moderate zinc deficiency alters hepatic lipid composition. Male weanling rats, assigned to five groups (8 animals each), were fed low-carbohydrate high-fat diets supplemented with 7 or 50 mg Zn/kg (LZ or HZ) and 22% cocoa butter (CB) or 22% safflower oil (SF) for four weeks. One group each had free access to the LZ-CB and LZ-SF diets, one group each was restrictedly fed the HZ-CB and HZ-SF diets in matching amounts, and one group had free access to the HZ-SF diet (ad libitum control). The rats fed the LZ diets had significantly lower energy intakes and final body weights than the ad libitum control group, and lower plasma and femur Zn concentrations than the animals consuming the HZ diets. Hepatic cholesterol, triacylglycerol and phospholipid concentrations, and fatty acid composition of hepatic triacylglycerols and phospholipids did not significantly differ between the LZ and their respective HZ groups, but were greatly affected by dietary fat source. In conclusion, the moderate Zn deficiency did not significantly alter liver lipid concentrations and fatty acid composition.

  12. A Moderate Zinc Deficiency Does Not Alter Lipid and Fatty Acid Composition in the Liver of Weanling Rats Fed Diets Rich in Cocoa Butter or Safflower Oil

    Directory of Open Access Journals (Sweden)

    Edgar Weigand

    2017-01-01

    Full Text Available The aim of the study was to examine whether a moderate zinc deficiency alters hepatic lipid composition. Male weanling rats, assigned to five groups (8 animals each, were fed low-carbohydrate high-fat diets supplemented with 7 or 50 mg Zn/kg (LZ or HZ and 22% cocoa butter (CB or 22% safflower oil (SF for four weeks. One group each had free access to the LZ-CB and LZ-SF diets, one group each was restrictedly fed the HZ-CB and HZ-SF diets in matching amounts, and one group had free access to the HZ-SF diet (ad libitum control. The rats fed the LZ diets had significantly lower energy intakes and final body weights than the ad libitum control group, and lower plasma and femur Zn concentrations than the animals consuming the HZ diets. Hepatic cholesterol, triacylglycerol and phospholipid concentrations, and fatty acid composition of hepatic triacylglycerols and phospholipids did not significantly differ between the LZ and their respective HZ groups, but were greatly affected by dietary fat source. In conclusion, the moderate Zn deficiency did not significantly alter liver lipid concentrations and fatty acid composition.

  13. Effects of kiwi consumption on plasma lipids, fibrinogen and insulin resistance in the context of a normal diet.

    Science.gov (United States)

    Recio-Rodriguez, Jose I; Gomez-Marcos, Manuel A; Patino-Alonso, Maria C; Puigdomenech, Elisa; Notario-Pacheco, Blanca; Mendizabal-Gallastegui, Nere; de la Fuente, Aventina de la Cal; Otegui-Ilarduya, Luis; Maderuelo-Fernandez, Jose A; de Cabo Laso, Angela; Agudo-Conde, Cristina; Garcia-Ortiz, Luis

    2015-09-15

    Among fruits, kiwi is one of the richest in vitamins and polyphenols and has strong anti-oxidant effects. We aimed to analyze the relationship between the consumption of kiwi and plasma lipid values, fibrinogen, and insulin resistance in adults within the context of a normal diet and physical-activity. Cross-sectional study. Participants (N = 1469), who were free of cardiovascular diseases, completed a visit, which included the collection of information concerning the participant's usual diet and kiwi consumption using a previously validated, semi-quantitative, 137-item food-frequency-questionnaire. Fasting laboratory determinations included plasma lipids, fibrinogen and insulin resistance. Regular physical-activity was determined using accelerometry. Consumers of at least 1 kiwi/week presented higher plasma values of HDL-cholesterol (mean difference 4.50 [95% CI: 2.63 to 6.36]) and lower triglyceride values (mean difference -20.03 [95% CI: -6.77 to -33.29]), fibrinogen values (mean difference -13.22 [95% CI: -2.18 to -24.26]) and HOMAir values (mean difference -0.30 [95% CI: -0.09 to -0.50]) (p Consumption of at least one kiwi/week is associated with lower plasma concentrations of fibrinogen and improved plasma lipid profile in the context of a normal diet and regular exercise.

  14. Sex specific differences in hepatic and plasma lipid profiles in healthy cats pre and post spaying and neutering: relationship with feline hepatic lipidosis

    OpenAIRE

    Valtolina, Chiara; Vaandrager, Arie B.; Favier, Robert P.; Tuohetahuntila, Maidina; Kummeling, Anne; Jeusette, Isabelle; Rothuizen, Jan; Robben, Joris H.

    2017-01-01

    BACKGROUND: A link between lipid metabolism and disease has been recognized in cats. Since hepatic lipidosis is a frequent disorder in cats, the aim of the current study was to evaluate liver and plasma lipid dimorphism in healthy cats and the effects of gonadectomy on lipid profiling. From six female and six male cats plasma and liver lipid profiles before and after spaying/neutering were assessed and compared to five cats (three neutered male and two spayed female) diagnosed with hepatic li...

  15. Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study.

    Science.gov (United States)

    Li, Shixin; Luo, Zhen; Xu, Yan; Ren, Hao; Deng, Li; Zhang, Xianren; Huang, Fang; Yue, Tongtao

    2017-10-01

    Lipid nanodisc, a model membrane platform originally synthesized for study of membrane proteins, has recently been used as the carrier to deliver amphiphilic drugs into target tumor cells. However, the central question of how cells interact with such emerging nanomaterials remains unclear and deserves our research for both improving the delivery efficiency and reducing the side effect. In this work, a binary lipid nanodisc is designed as the minimum model to investigate its interactions with plasma membranes by using the dissipative particle dynamics method. Three typical interaction pathways, including the membrane attachment with lipid domain exchange of nanodiscs, the partial membrane wrapping with nanodisc vesiculation, and the receptor-mediated endocytosis, are discovered. For the first pathway, the boundary normal lipids acting as ligands diffuse along the nanodisc rim to gather at the membrane interface, repelling the central bola lipids to reach a stable membrane attachment. If bola lipids are positioned at the periphery and act as ligands, they diffuse to form a large aggregate being wrapped by the membrane, leaving the normal lipids exposed on the membrane exterior by assembling into a vesicle. Finally, by setting both central normal lipids and boundary bola lipids as ligands, the receptor-mediated endocytosis occurs via both deformation and self-rotation of the nanodiscs. All above pathways for soft lipid nanodiscs are quite different from those for rigid nanoparticles, which may provide useful guidelines for design of soft lipid nanodiscs in widespread biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Mass spectrometry profiling reveals altered plasma levels of monohydroxy fatty acids and related lipids in healthy humans after controlled exposure to biodiesel exhaust.

    Science.gov (United States)

    Gouveia-Figueira, Sandra; Karimpour, Masoumeh; Bosson, Jenny A; Blomberg, Anders; Unosson, Jon; Sehlstedt, Maria; Pourazar, Jamshid; Sandström, Thomas; Behndig, Annelie F; Nording, Malin L

    2018-08-14

    Experimental human exposure studies are an effective tool to study adverse health effects from acute inhalation of particulate matter and other constituents of air pollution. In this randomized and double-blinded crossover study, we investigated the systemic effect on bioactive lipid metabolite levels after controlled biodiesel exhaust exposure of healthy humans and compared it to filtered air at a separate exposure occasion. Eicosanoids and other oxylipins, as well as endocannabinoids and related lipids, were quantified in plasma from 14 healthy volunteers at baseline and at three subsequent time points (2, 6, and 24 h) after 1 h exposure sessions. Protocols based on liquid chromatography (LC) coupled to tandem mass spectrometry (MS/MS) methods were developed to detect temporal changes in circulating levels after biodiesel exhaust exposure. The exhaust was generated by a diesel engine fed with an undiluted rapeseed methyl ester fuel. Among the 51 analyzed lipid metabolites, PGF 2α , 9,10-DiHOME, 9-HODE, 5-HETE, 11-HETE, 12-HETE, and DEA displayed significant responsiveness to the biodiesel exhaust exposure as opposed to filtered air. Of these, 9-HODE and 5-HETE at 24 h survived the 10% false discovery rate cutoff (p emphasis on metabolites with inflammation related properties and implications on cardiovascular health and disease. These observations aid future investigations on air pollution effects, especially with regard to cardiovascular outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Lateral mobility of plasma membrane lipids in Xenopus eggs: Regional differences related to animal/vegetal polarity become extreme upon fertilization

    OpenAIRE

    Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van; Tetteroo, P.A.T.; Tertoolen, L.G.J.; Laat, S.W. de

    1984-01-01

    Regional differences in the lateral mobility properties of plasma membrane lipids have been studied in unfertilized and fertilizedxaqpus eggs by fluorescence photobleaching recovery (FPR) measurements. Out of a variety of commonly used lipid probes only the aminofluorescein-labeled fatty acids HEDAF (5-(N-hexadecanoyl)-aminofluorescein) and TEDAF (5-(N-tetradecanoyl)-aminofluorescein) appear to partition into the plasma membrane. Under all experimental conditions used these molecules show par...

  18. Effect of L-ascorbic acid on nickel-induced alterations in serum lipid profiles and liver histopathology in rats.

    Science.gov (United States)

    Das, Kusal K; Gupta, Amrita Das; Dhundasi, Salim A; Patil, Ashok M; Das, Swastika N; Ambekar, Jeevan G

    2006-01-01

    Nickel exposure greatly depletes intracellular ascorbate and alters ascorbate-cholesterol metabolism. We studied the effect of the simultaneous oral treatment with L-ascorbic acid (50 mg/100 g body weight (BW) and nickel sulfate (2.0 mg/100 g BW, i.p) on nickelinduced changes in serum lipid profiles and liver histopathology. Nickel-treated rats showed a significant increase in serum low-density lipoprotein-cholesterol, total cholesterol, triglycerides, and a significant decrease in serum high-density lipoprotein-cholesterol. In the liver, nickel sulfate caused a loss of normal architecture, fatty changes, extensive vacuolization in hepatocytes, eccentric nuclei, and Kupffer cell hypertrophy. Simultaneous administration of L-ascorbic acid with nickel sulfate improved both the lipid profile and liver impairments when compared with rats receiving nickel sulfate only. The results indicate that L-ascorbic acid is beneficial in preventing nickel-induced lipid alterations and hepatocellular damage.

  19. Major Alterations of Phosphatidylcholine and Lysophosphotidylcholine Lipids in the Substantia Nigra Using an Early Stage Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Kyle Farmer

    2015-08-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disease affecting the nigrostriatal pathway, where patients do not manifest motor symptoms until >50% of neurons are lost. Thus, it is of great importance to determine early neuronal changes that may contribute to disease progression. Recent attention has focused on lipids and their role in pro- and anti-apoptotic processes. However, information regarding the lipid alterations in animal models of PD is lacking. In this study, we utilized high performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS and novel HPLC solvent methodology to profile phosphatidylcholines and sphingolipids within the substantia nigra. The ipsilateral substantia nigra pars compacta was collected from rats 21 days after an infusion of 6-hydroxydopamine (6-OHDA, or vehicle into the anterior dorsal striatum. We identified 115 lipid species from their mass/charge ratio using the LMAPS Lipid MS Predict Database. Of these, 19 lipid species (from phosphatidylcholine and lysophosphotidylcholine lipid classes were significantly altered by 6-OHDA, with most being down-regulated. The two lipid species that were up-regulated were LPC (16:0 and LPC (18:1, which are important for neuroinflammatory signalling. These findings provide a first step in the characterization of lipid changes in early stages of PD-like pathology and could provide novel targets for early interventions in PD.

  20. Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2016-12-01

    Full Text Available An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32 were allocated to two equal treatment groups: Fed basal diet (control or fed basal diet with additional 200 mg/kg niacin supplementation (niacin. The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p0.05. However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05. In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.

  1. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties.

    Directory of Open Access Journals (Sweden)

    Xabier Osteikoetxea

    Full Text Available In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations. Here we introduce a simple 96 well plate-based total lipid assay for determination of lipid content and protein to lipid ratios of extracellular vesicle preparations from various myeloid and lymphoid cell lines as well as blood plasma. These preparations included apoptotic bodies, microvesicles/microparticles, and exosomes isolated by size-based fractionation. We also investigated lipid bilayer order of extracellular vesicle subpopulations using Di-4-ANEPPDHQ lipid probe, and lipid composition using affinity reagents to clustered cholesterol (monoclonal anti-cholesterol antibody and ganglioside GM1 (cholera toxin subunit B. We have consistently found different protein to lipid ratios characteristic for the investigated extracellular vesicle subpopulations which were substantially altered in the case of vesicular damage or protein contamination. Spectral ratiometric imaging and flow cytometric analysis also revealed marked differences between the various vesicle populations in their lipid order and their clustered membrane cholesterol and GM1 content. Our study introduces for the first time a simple and readily available lipid assay to complement the widely used protein assays in order to better characterize extracellular vesicle preparations. Besides differentiating extracellular vesicle subpopulations, the novel parameters introduced in this work (protein to lipid ratio, lipid bilayer order, and lipid composition, may prove useful for quality control of extracellular vesicle related basic and clinical studies.

  2. Beneficial effects of aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes.

    Science.gov (United States)

    Rajasekaran, Subbiah; Ravi, Kasiappan; Sivagnanam, Karuran; Subramanian, Sorimuthu

    2006-03-01

    The effect of diabetes mellitus on lipid metabolism is well established. The association of hyperglycaemia with an alteration of lipid parameters presents a major risk for cardiovascular complications in diabetes. Many secondary plant metabolites have been reported to possess lipid-lowering properties. The present study was designed to examine the potential anti-hyperlipidaemic efficacy of the ethanolic extract from Aloe vera leaf gel in streptozotocin (STZ)-induced diabetic rats. 2. Oral administration of Aloe vera gel extract at a dose of 300 mg/kg bodyweight per day to STZ-induced diabetic rats for a period of 21 days resulted in a significant reduction in fasting blood glucose, hepatic transaminases (aspartate aminotransferase and alanine aminotransferase), plasma and tissue (liver and kidney) cholesterol, triglycerides, free fatty acids and phospholipids and a significant improvement in plasma insulin. 3. In addition, the decreased plasma levels of high-density lipoprotein-cholesterol and increased plasma levels of low-density lipoprotein-and very low-density lipoprotein-cholesterol in diabetic rats were restored to near normal levels following treatment with the extract. 4. The fatty acid composition of the liver and kidney was analysed by gas chromatography. The altered fatty acid composition in the liver and kidney of diabetic rats was restored following treatment with the extract. 5. Thus, the results of the present study provide a scientific rationale for the use of Aloe vera as an antidiabetic agent.

  3. Regional differences in the lateral mobility of plasma membrane lipids in a molluscan embryo

    NARCIS (Netherlands)

    Speksnijder, J.E.; Dohmen, M.R.; Tertoolen, L.G.J.; Laat, S.W. de

    1985-01-01

    Regional and temporal differences in plasma membrane lipid mobility have been analyzed during the first three cleavage cycles of the embryo of the polar-lobe-forming mollusc Nassarius reticulatus by the fluorescence photobleaching recovery (FPR) method, using 1,1′-ditetradecyl

  4. Altered levels of acetylcholinesterase in Alzheimer plasma.

    Directory of Open Access Journals (Sweden)

    María-Salud García-Ayllón

    Full Text Available BACKGROUND: Many studies have been conducted in an extensive effort to identify alterations in blood cholinesterase levels as a consequence of disease, including the analysis of acetylcholinesterase (AChE in plasma. Conventional assays using selective cholinesterase inhibitors have not been particularly successful as excess amounts of butyrylcholinesterase (BuChE pose a major problem. PRINCIPAL FINDINGS: Here we have estimated the levels of AChE activity in human plasma by first immunoprecipitating BuChE and measuring AChE activity in the immunodepleted plasma. Human plasma AChE activity levels were approximately 20 nmol/min/mL, about 160 times lower than BuChE. The majority of AChE species are the light G(1+G(2 forms and not G(4 tetramers. The levels and pattern of the molecular forms are similar to that observed in individuals with silent BuChE. We have also compared plasma AChE with the enzyme pattern obtained from human liver, red blood cells, cerebrospinal fluid (CSF and brain, by sedimentation analysis, Western blotting and lectin-binding analysis. Finally, a selective increase of AChE activity was detected in plasma from Alzheimer's disease (AD patients compared to age and gender-matched controls. This increase correlates with an increase in the G(1+G(2 forms, the subset of AChE species which are increased in Alzheimer's brain. Western blot analysis demonstrated that a 78 kDa immunoreactive AChE protein band was also increased in Alzheimer's plasma, attributed in part to AChE-T subunits common in brain and CSF. CONCLUSION: Plasma AChE might have potential as an indicator of disease progress and prognosis in AD and warrants further investigation.

  5. Lipid raft disarrangement as a result of neuropathological progresses: a novel strategy for early diagnosis?

    Science.gov (United States)

    Marin, R; Rojo, J A; Fabelo, N; Fernandez, C E; Diaz, M

    2013-08-15

    Lipid rafts are the preferential site of numerous membrane signaling proteins which are involved in neuronal functioning and survival. These proteins are organized in multiprotein complexes, or signalosomes, in close contact with lipid classes particularly represented in lipid rafts (i.e. cholesterol, sphingolipids and saturated fatty acids), which may contribute to physiological responses leading to neuroprotection. Increasing evidence indicates that alteration of lipid composition in raft structures as a consequence of neuropathologies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), causes a dramatic increase in lipid raft order. These phenomena may correlate with perturbation of signalosome activities, likely contributing to neurodegenerative progression. Interestingly, significant disruption of stable raft microenvironments has been already observed in the first stages of either AD or PD, suggesting that these alterations may represent early events in the neuropathological development. In this regard, the search for biochemical markers, such as specific metabolic products altered in the brain at the first steps of the disease, presently represents an important challenge for early diagnostic strategies. Alterations of these biomarkers may be reflected in either plasma or cerebrospinal fluid, thus representing a potential strategy to predict an accurate diagnosis. We propose that pathologically-linked lipid raft markers may be interesting candidates to be explored at this level, although it has not been studied so far to what extent alteration of different signalosome components may be reflected in peripheral fluids. In this mini-review, we will discuss on relevant aspects of lipid rafts that contribute to the modulation of neuropathological events related to AD and PD. An interesting hypothesis is that anomalies on raft biomarkers measured at peripheral fluids might mirror the lipid raft pathology observed in early stages of AD and PD. Copyright

  6. Seasonal variation in plasma lipids and lipases in young healthy humans.

    Science.gov (United States)

    Cambras, Trinitat; Baena-Fustegueras, Juan A; Pardina, Eva; Ricart-Jané, David; Rossell, Joana; Díez-Noguera, Antoni; Peinado-Onsurbe, Julia

    2017-01-01

    Although intermediate metabolism is known to follow circadian rhythms, little information is available on the variation in lipase activities (lipoprotein and hepatic lipase, LPL and HL, respectively) and lipids throughout the year. In a cross-sectional study, we collected and analysed blood from 245 healthy students (110 men and 135 women) between 18 and 25 years old from the University of Barcelona throughout the annual campaign (March, May, October and December) of the blood bank. All subjects gave their written informed consent to participate. All blood samples were taken after breakfast at 8:00 and 11:00 am. Plasma glucose, total plasma protein, triacylglycerides (TAG), free fatty acids (FFA), free cholesterol and esterified cholesterol (FC and TC, respectively), cholesterol in low-density lipoproteins (cLDL), cholesterol in high-density lipoproteins (cHDL), phospholipids (PL) and lipase activities (LPL and HL) were determined. Cosinor analysis was used to evaluate the presence (significance of fit cosine curve to data and variance explained by rhythm) and characteristics of possible 12-month rhythms (acrophase, MESOR and amplitude). Statistically significant seasonal rhythms were detected for all the variables studied except proteins, with most of them peaking in the winter season. The lowest value for cLDL and the HL occurs in summer, while for cHDL and the LPL it is in winter. These findings demonstrate for the first time that in physiological conditions, plasma LPL and HL activities and lipids follow seasonal rhythms. The metabolic significance of this pattern is discussed.

  7. Hypercholesterolemia increases plasma saturated and n-6 fatty acids altering prostaglandin homeostasis and promotes endothelial dysfunction in rabbits.

    Science.gov (United States)

    Medina, M; Alberto, M R; Sierra, L; Van Nieuwenhove, C; Saad, S; Isla, M I; Jerez, S

    2014-07-01

    The present study evaluated the plasma fatty acid levels and the vascular prostaglandin (PG) release in a rabbit model of early hypercholesterolemia with endothelial dysfunction. Rabbits were fed either a control diet (CD) or a diet containing 1 % cholesterol (HD) for 5-6 weeks. The level of fatty acids was measured in plasma. The levels of PG and nitric oxide (NO) released from the aorta were also determined. Vascular morphology of the aorta was characterized by intima and media thickness measurements. The rabbits fed with HD had higher levels of arachidonic acid (ARA) and lower levels of oleic acid. The linoleic acid level was unchanged. PGI(2) and NO were diminished and PGF(2α) levels, the PGI(2)/TXA(2) ratio and the intima/media ratio were increased in rabbits fed with HD. In conclusion, feeding HD for a short period increased ARA plasma levels and unbalanced release of vasodilator/vasoconstrictor PG redirected the pathway to vasoconstrictor metabolite release. These lipid metabolism alterations in addition to the reduced NO levels and the moderate changes in the vascular morphology contributed to the endothelial dysfunction in this animal model. Therefore, the present findings support the importance of early correction or prevention of high cholesterol levels to disrupt the endothelial dysfunction process that leads to cardiovascular disease.

  8. Chromium supplementation alters both glucose and lipid metabolism in feedlot cattle during the receiving period

    Science.gov (United States)

    Crossbred steers (n = 20; 235 +/- 4 kg) were fed 53 days during a receiving period to determine if supplementing chromium (Cr; KemTRACE®brandChromium Propionate 0.04%, Kemin Industries) would alter the glucose or lipid metabolism of newly received cattle. Chromium premixes were supplemented to add 0...

  9. Chromium supplementation alters the glucose and lipid metabolism of feedlot cattle during the receiving period

    Science.gov (United States)

    Crossbreed steers (n = 20; 235 ± 4 kg) were fed 53 d during a receiving period to determine if supplementing chromium (Cr; KemTRACE®brand Chromium Propionate 0.04%, Kemin Industries) would alter the glucose or lipid metabolism of newly received cattle. Chromium premixes were supplemented to add 0 (C...

  10. A lignan complex isolated from flaxseed does not affect plasma lipid concentrations or antioxidant capacity in healthy postmenopausal women

    DEFF Research Database (Denmark)

    Hallund, Jesper; Ravn-Haren, Gitte; Bügel, S.

    2006-01-01

    A lignan complex rich in the plant lignan secoisolariciresinol diglucoside (SDG) was isolated from flaxseed. SDG is metabolized by the colonic microflora to the mammalian lignans enterodiol (END) and enterolactone (ENL), and was hypothesized to reduce plasma lipid concentrations and improve...... antioxidant capacity, The aim of this study was to investigate the effects of a lignan complex, providing 500 mg/d of SDG, on serum concentration and urinary excretion of ENL, plasma lipids, serum lipoprotein oxidation resistance, and markers of antioxidant capacity. Healthy postmenopausal women (n=22...

  11. Altered gene-expression profile in rat plasma and promoted body ...

    African Journals Online (AJOL)

    Altered gene-expression profile in rat plasma and promoted body and brain development ... The study was aimed to explore how the prenatal EE impacts affect the ... positively promote the body and nervous system development of offspring, ...

  12. Lateral mobility of plasma membrane lipids in a molluscan egg: Evidence for an animal/vegetal polarity

    OpenAIRE

    Laat, S.W. de; Speksnijder, J.E.; Dohmen, M.R.; Zoelen, E. van; Tertoolen, L.G.J.; Bluemink, J.G.

    1984-01-01

    The lateral diffusion of the lipid analog C₁₄-diI (3', 3'-dihexadecylindocarbocyanine iodide) was measured in the plasma membrane of early embryos of the mollusc Nassarius reticulatus using the FPR-(Fluorescence Photobleaching Recovery) method. At almost all stages measured (from fertilized egg up to 8-cell stage) the diffusion coefficient (D) of the mobile fraction (MF) of C₁₄-diI is significantly higher in the plasma membrane of the polar lobe as compared to the plasma membrane of the anima...

  13. The action of red wine and purple grape juice on vascular reactivity is independent of plasma lipids in hypercholesterolemic patients

    Directory of Open Access Journals (Sweden)

    Coimbra S.R.

    2005-01-01

    Full Text Available Although red wine (RW reduces cardiovascular risk, the mechanisms underlying the effect have not been identified. Correction of endothelial dysfunction by RW flavonoids could be one mechanism. We measured brachial artery reactivity by high-resolution ultrasonography, plasma lipids, glucose, adhesion molecules (ICAM-1 and VCAM, and platelet function in 16 hypercholesterolemic individuals (8 men and 8 women; mean age 51.6 ± 8.1 years without other risk factors. Twenty-four normal subjects were used as controls for vascular reactivity. Subjects randomly received RW, 250 ml/day, or purple grape juice (GJ, 500 ml/day, for 14 days with an equal wash-out period. At baseline, all 16 subjects were hypercholesterolemic (mean LDL = 181.0 ± 28.7 mg/dl but HDL, triglycerides, glucose, adhesion molecules, and platelet function were within normal limits. Brachial artery flow-mediated dilation was significantly decreased compared to controls (9.0 ± 7.1 vs 12.1 ± 4.5%; P < 0.05 and increased with both GJ (10.1 ± 7.1 before vs 16.9 ± 6.7% after: P < 0.05 and RW (10.1 ± 6.4 before vs 15.6 ± 4.6% after; P < 0.05. RW, but not GJ, also significantly increased endothelium-independent vasodilation (17.0 ± 8.6 before vs 23.0 ± 12.0% after; P < 0.01. GJ reduced ICAM-1 but not VCAM and RW had no effect on either molecule. No significant alterations were observed in plasma lipids, glucose or platelet aggregability with RW or GJ. Both RW and GJ similarly improved flow-mediated dilation, but RW also enhanced endothelium-independent vasodilation in hypercholesterolemic patients despite the increased plasma cholesterol. Thus, we conclude that GJ may protect against coronary artery disease without the additional negative effects of alcohol despite the gender.

  14. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    Directory of Open Access Journals (Sweden)

    Heidi Koldsø

    2014-10-01

    Full Text Available Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2, in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  15. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people

    Directory of Open Access Journals (Sweden)

    DiSilvestro Robert A

    2012-09-01

    Full Text Available Abstract Background Curcumin extracts of turmeric are proposed to produce health benefits. To date, human intervention studies have focused mainly on people with existing health problems given high doses of poorly absorbed curcumin. The purpose of the current study was to check whether in healthy people, a low dose of a lipidated curcumin extract could alter wellness-related measures. Methods The present study was conducted in healthy middle aged people (40–60 years old with a low dose of curcumin (80 mg/day in a lipidated form expected to have good absorption. Subjects were given either curcumin (N = 19 or placebo (N = 19 for 4 wk. Blood and saliva samples were taken before and after the 4 weeks and analyzed for a variety of blood and saliva measures relevant to health promotion. Results Curcumin, but not placebo, produced the following statistically significant changes: lowering of plasma triglyceride values, lowering of salivary amylase levels, raising of salivary radical scavenging capacities, raising of plasma catalase activities, lowering of plasma beta amyloid protein concentrations, lowering of plasma sICAM readings, increased plasma myeloperoxidase without increased c-reactive protein levels, increased plasma nitric oxide, and decreased plasma alanine amino transferase activities. Conclusion Collectively, these results demonstrate that a low dose of a curcumin-lipid preparation can produce a variety of potentially health promoting effects in healthy middle aged people.

  16. Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes.

    Science.gov (United States)

    Niko, Yosuke; Didier, Pascal; Mely, Yves; Konishi, Gen-ichi; Klymchenko, Andrey S

    2016-01-11

    Imaging lipid organization in cell membranes requires advanced fluorescent probes. Here, we show that a recently synthesized push-pull pyrene (PA), similarly to popular probe Laurdan, changes the emission maximum as a function of lipid order, but outperforms it by spectroscopic properties. In addition to red-shifted absorption compatible with common 405 nm diode laser, PA shows higher brightness and much higher photostability than Laurdan in apolar membrane environments. Moreover, PA is compatible with two-photon excitation at wavelengths >800 nm, which was successfully used for ratiometric imaging of coexisting liquid ordered and disordered phases in giant unilamellar vesicles. Fluorescence confocal microscopy in Hela cells revealed that PA efficiently stains the plasma membrane and the intracellular membranes at >20-fold lower concentrations, as compared to Laurdan. Finally, ratiometric imaging using PA reveals variation of lipid order within different cellular compartments: plasma membranes are close to liquid ordered phase of model membranes composed of sphingomyelin and cholesterol, while intracellular membranes are much less ordered, matching well membranes composed of unsaturated phospholipids without cholesterol. These differences in the lipid order were confirmed by fluorescence lifetime imaging (FLIM) at the blue edge of PA emission band. PA probe constitutes thus a new powerful tool for biomembrane research.

  17. Lateral mobility of plasma membrane lipids in Xenopus eggs: Regional differences related to animal/vegetal polarity become extreme upon fertilization

    NARCIS (Netherlands)

    Bluemink, J.G.; Dictus, W.J.A.G.; Zoelen, E.J.J. van; Tetteroo, P.A.T.; Tertoolen, L.G.J.; Laat, S.W. de

    1984-01-01

    Regional differences in the lateral mobility properties of plasma membrane lipids have been studied in unfertilized and fertilizedxaqpus eggs by fluorescence photobleaching recovery (FPR) measurements. Out of a variety of commonly used lipid probes only the aminofluorescein-labeled fatty acids

  18. Effects of chromium-enriched bacillus subtilis KT260179 supplementation on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality.

    Science.gov (United States)

    Yang, Jiajun; Qian, Kun; Zhang, Wei; Xu, Yayuan; Wu, Yijing

    2016-11-08

    Both chromium (Cr) and probiotic bacillus own the virtues of regulating animal metabolism and meat quality. Purpose of this study was to evaluate the efficiency of supplemental Cr and bacillus in the form of chromium-enriched Bacillus subtilis KT260179 (CEBS) on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality. Six hundred of 1-day-old Chinese Huainan Partridge chickens were divided into four groups randomly: Control, inorganic Cr, Bacillus subtilis, and CEBS. The feed duration was 56 days. After 28 days of treatment, broiler feed CEBS or normal B. subtilis had higher body weights than control broiler, and after 56 days, chickens given either CEBS or B. subtilis had greater body weights than control broiler or those given inorganic Cr. Plasma total cholesterol, triglycerides, and low density lipoprotein cholesterol levels declined significantly in the CEBS group compared with the control, whereas plasma high density lipoprotein cholesterol levels increased significantly. The concentration of Cr in blood and breast muscle increased after CEBS and inorganic Cr supplementation. B. subtilis and CEBS supplementation caused a significant increase in the numbers of Lactobacillus and Bifidobacterium in the caecum, while the numbers of Escherichia coli and Salmonella decreased significantly compared to the control. Feed adding CEBS increased the lightness, redness, and yellowness of breast meat, improved the water-holding capacity, decreased the shear force and cooking loss. In all, CEBS supplementation promoted body growth, improved plasma lipid parameters, increased tissue Cr concentrations, altered cecal bacterial composition and improved breast meat quality.

  19. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus.

    Science.gov (United States)

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A; Fraser, Mark E; Scott, Jordan L; Soni, Smita P; Jones, Keaton R; Digman, Michelle A; Gratton, Enrico; Tessier, Charles R; Stahelin, Robert V

    2015-09-01

    Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. Copyright © 2015, American

  20. Data on plasma levels of apolipoprotein E, correlations with lipids and lipoproteins stratified by APOE genotype, and risk of ischemic heart disease

    DEFF Research Database (Denmark)

    Rasmussen, Katrine L.; Tybjærg-Hansen, Anne; Nordestgaard, Børge G

    2016-01-01

    Data on correlations of plasma apoE with levels of lipids and lipoproteins stratified by APOE genotypes as well as data exploring the association between plasma levels of apoE and risk of ischemic heart disease (IHD) are wanted. The present data on 91,695 individuals from the general population...... provides correlations between plasma levels of apoE and lipids and lipoproteins for the three APOE genotypes ε33, ε44 and ε22, representing each of the three apoE isoforms. Further, data on extreme groups of plasma apoE (highest 5%) versus lower levels of apoE at enrollment explores risk of IHD...... and myocardial infarction (MI) and is given as hazard ratios. In addition, IHD and MI as a function of apoE/high-density lipoprotein (HDL) cholesterol ratio, as well as data on lipids, lipoproteins and apolipoproteins are given as hazard ratios. Data is stratified by gender and presented for the Copenhagen...

  1. Regional differences in the lateral mobility of plasma membrane lipids in a molluscan embryo.

    Science.gov (United States)

    Speksnijder, J E; Dohmen, M R; Tertoolen, L G; de Laat, S W

    1985-07-01

    Regional and temporal differences in plasma membrane lipid mobility have been analyzed during the first three cleavage cycles of the embryo of the polar-lobe-forming mollusc Nassarius reticulatus by the fluorescence photobleaching recovery (FPR) method, using 1,1'-ditetradecyl 3,3,3',3'-tetramethylindocarbocyanine iodide (C14diI) as a fluorescent lipid probe. During this period of development the lateral diffusion coefficient of membrane lipids is consistently greater in the vegetal polar lobe area as compared to the animal plasma membrane area (on average 30%), demonstrating the existence of an animal-vegetal polarity in plasma membrane properties. At third cleavage, the differences between animal and vegetal plasma membrane region become even more pronounced; in the four animal micromeres the diffusion coefficient (D) and mobile fraction (MF) are 2.9 +/- 0.2 X 10(-9) cm2/sec and 51 +/- 2%, respectively, while in the four vegetal macromeres D = 5.0 +/- 0.3 X 10(-9) cm2/sec and MF = 78 +/- 2%. Superimposed upon the observed animal-vegetal polarity, the lateral diffusion in the polar lobe membrane area shows a cell-cycle-dependent modulation. The highest mean values for D are reached during the S phase (ranging from 7.0 to 7.8 X 10(-9) cm2/sec in the three cycles measured), while at the end of G2 phase and during early mitosis mean values for D have decreased significantly (ranging from 5.0 to 5.9 X 10(-9) cm2/sec). Diffusion rates in the animal membranes of the embryo are constant during the three successive cell cycles (D = 4.3-5.0 X 10(-9) cm2/sec), except for a peak at the S phase of the first cell cycle (D = 6.0 X 10(-9) cm2/sec). These results are discussed in relation with previously observed ultrastructural heterogeneities in the Nassarius egg plasma membrane. It is speculated that the observed animal-vegetal polarity in the organization of the egg membrane might play an important role in the process of cell diversification during early development.

  2. Sleep restriction alters plasma endocannabinoids concentrations before but not after exercise in humans.

    Science.gov (United States)

    Cedernaes, Jonathan; Fanelli, Flaminia; Fazzini, Alessia; Pagotto, Uberto; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Schiöth, Helgi B; Benedict, Christian

    2016-12-01

    Following binding to cannabinoid receptors, endocannabinoids regulate a variety of central nervous system processes including appetite and mood. Recent evidence suggests that the systemic release of these lipid metabolites can be altered by acute exercise and that their levels also vary across the 24-h sleep-wake cycle. The present study utilized a within-subject design (involving 16 normal-weight men) to determine whether daytime circulating endocannabinoid concentrations differ following three nights of partial sleep deprivation (4.25-h sleep opportunity, 2:45-7a.m. each night) vs. normal sleep (8.5-h sleep opportunity, 10:30p.m.-7a.m. each night), before and after an acute bout of ergometer cycling in the morning. In addition, subjective hunger and stress were measured. Pre-exercise plasma concentrations of 2-arachidonoylglycerol (2AG) were 80% higher 1.5h after awakening (vs. normal sleep, pexercise (+44%, pexercise-induced rise. Finally, subjective stress was generally lower on the day after three nights of short sleep vs. normal sleep, especially after exercise (pexercise-induced elevations of endocannabinoids appear to be less affected by short sleep duration. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  3. Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Kei; Yokota, Shin-ichi; Tatsumi, Naoyuki; Fukami, Tatsuki; Yokoi, Tsuyoshi; Nakajima, Miki, E-mail: nmiki@p.kanazawa-u.ac.jp

    2013-10-01

    Circulating microRNAs (miRNAs) are receiving attention as potential biomarkers of various diseases, including cancers, chronic obstructive pulmonary disease, and cardiovascular disease. However, it is unknown whether the levels of circulating miRNAs in a healthy subject might vary with external factors in daily life. In this study, we investigated whether cigarette smoking, a habit that has spread throughout the world and is a risk factor for various diseases, affects plasma miRNA profiles. We determined the profiles of 11 smokers and 7 non-smokers by TaqMan MicroRNA array analysis. A larger number of miRNAs were detected in smokers than in non-smokers, and the plasma levels of two-thirds of the detected miRNAs (43 miRNAs) were significantly higher in smokers than in non-smokers. A principal component analysis of the plasma miRNA profiles clearly separated smokers and non-smokers. Twenty-four of the miRNAs were previously reported to be potential biomarkers of disease, suggesting the possibility that smoking status might interfere with the diagnosis of disease. Interestingly, we found that quitting smoking altered the plasma miRNA profiles to resemble those of non-smokers. These results suggested that the differences in the plasma miRNA profiles between smokers and non-smokers could be attributed to cigarette smoking. In addition, we found that an acute exposure of ex-smokers to cigarette smoke (smoking one cigarette) did not cause a dramatic change in the plasma miRNA profile. In conclusion, we found that repeated cigarette smoking substantially alters the plasma miRNA profile, interfering with the diagnosis of disease or signaling potential smoking-related diseases. - Highlights: • Plasma miRNA profiles were unambiguously different between smokers and non-smokers. • Smoking status might interfere with the diagnosis of disease using plasma miRNAs. • Changes of plasma miRNA profiles may be a signal of smoking-related diseases.

  4. Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects

    International Nuclear Information System (INIS)

    Takahashi, Kei; Yokota, Shin-ichi; Tatsumi, Naoyuki; Fukami, Tatsuki; Yokoi, Tsuyoshi; Nakajima, Miki

    2013-01-01

    Circulating microRNAs (miRNAs) are receiving attention as potential biomarkers of various diseases, including cancers, chronic obstructive pulmonary disease, and cardiovascular disease. However, it is unknown whether the levels of circulating miRNAs in a healthy subject might vary with external factors in daily life. In this study, we investigated whether cigarette smoking, a habit that has spread throughout the world and is a risk factor for various diseases, affects plasma miRNA profiles. We determined the profiles of 11 smokers and 7 non-smokers by TaqMan MicroRNA array analysis. A larger number of miRNAs were detected in smokers than in non-smokers, and the plasma levels of two-thirds of the detected miRNAs (43 miRNAs) were significantly higher in smokers than in non-smokers. A principal component analysis of the plasma miRNA profiles clearly separated smokers and non-smokers. Twenty-four of the miRNAs were previously reported to be potential biomarkers of disease, suggesting the possibility that smoking status might interfere with the diagnosis of disease. Interestingly, we found that quitting smoking altered the plasma miRNA profiles to resemble those of non-smokers. These results suggested that the differences in the plasma miRNA profiles between smokers and non-smokers could be attributed to cigarette smoking. In addition, we found that an acute exposure of ex-smokers to cigarette smoke (smoking one cigarette) did not cause a dramatic change in the plasma miRNA profile. In conclusion, we found that repeated cigarette smoking substantially alters the plasma miRNA profile, interfering with the diagnosis of disease or signaling potential smoking-related diseases. - Highlights: • Plasma miRNA profiles were unambiguously different between smokers and non-smokers. • Smoking status might interfere with the diagnosis of disease using plasma miRNAs. • Changes of plasma miRNA profiles may be a signal of smoking-related diseases

  5. Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men: a randomized controlled trial [ISRCTN10820810

    Directory of Open Access Journals (Sweden)

    Mafu Akier

    2002-01-01

    Full Text Available Abstract Background Fermented milk products have been shown to affect serum cholesterol concentrations in humans. Kefir, a fermented milk product, has been traditionally consumed for its potential health benefits but has to date not been studied for its hypocholesterolemic properties. Methods Thirteen healthy mildly hypercholesterolemic male subjects consumed a dairy supplement in randomized crossover trial for 2 periods of 4 wk each. Subjects were blinded to the dairy supplement consumed. Blood samples were collected at baseline and after 4 wk of supplementation for measurement of plasma total, low-density lipoprotein, and high-density lipoprotein cholesterol and triglyceride concentrations, as well as fatty acid profile and cholesterol synthesis rate. Fecal samples were collected at baseline and after 2 and 4 wk of supplementation for determination of fecal short chain fatty acid level and bacterial content. Results Kefir had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglyceride concentrations nor on cholesterol fractional synthesis rates after 4 wk of supplementation. No significant change on plasma fatty acid levels was observed with diet. However, both kefir and milk increased (p Conclusions Since kefir consumption did not result in lowered plasma lipid concentrations, the results of this study do not support consumption of kefir as a cholesterol-lowering agent.

  6. Effects of moderately enhanced levels of ozone on the acyl lipid composition and dynamical properties of plasma membranes isolated from garden pea (Pisum sativum)

    DEFF Research Database (Denmark)

    Hellgren, Lars; Sellden, G.; Sandelius, A.S.

    2001-01-01

    Plasma membranes were isolated from leaves of 16-day-old garden pea, Pisum sativum L., that had been grown in the absence or presence of 65 nl l(-1) ozone for 4 days prior to membrane isolation, Plasma membranes from ozone-fumigated plants contained significantly more acyl lipids per protein than....../stigmasterol and lipid/protein ratios, and suggesting that ozone-fumigated pea plants may be more susceptible to freezing injuries....... lipids, as well as in PC and PE, The amount of free sterols per protein was unaltered, but the percentage of campesterol increased, concomitant with a decrease in stigmasterol, The dynamical properties of the isolated plasma membranes were assessed using Laurdan fluorescence spectroscopy, which monitors...

  7. Targeted exonic sequencing of GWAS loci in the high extremes of the plasma lipids distribution

    NARCIS (Netherlands)

    Patel, Aniruddh P.; Peloso, Gina M.; Pirruccello, James P.; Johansen, Christopher T.; Dubé, Joseph B.; Larach, Daniel B.; Ban, Matthew R.; Dallinge-Thie, Geesje M.; Gupta, Namrata; Boehnke, Michael; Abecasis, Gonçalo R.; Kastelein, John J. P.; Hovingh, G. Kees; Hegele, Robert A.; Rader, Daniel J.; Kathiresan, Sekar

    2016-01-01

    Genome-wide association studies (GWAS) for plasma lipid levels have mapped numerous genomic loci, with each region often containing many protein-coding genes. Targeted re-sequencing of exons is a strategy to pinpoint causal variants and genes. We performed solution-based hybrid selection of 9008

  8. Dyslipidemia and reference values for fasting plasma lipid concentrations in Danish/North-European White children and adolescents.

    Science.gov (United States)

    Nielsen, Tenna Ruest Haarmark; Lausten-Thomsen, Ulrik; Fonvig, Cilius Esmann; Bøjsøe, Christine; Pedersen, Lise; Bratholm, Palle Skov; Hansen, Torben; Pedersen, Oluf; Holm, Jens-Christian

    2017-04-28

    Dyslipidemia is reported in 27 - 43% of children and adolescents with overweight/obesity and tracks into adulthood, increasing the risk of cardiovascular morbidity. Cut-off values for fasting plasma lipid concentrations are typically set at fixed levels throughout childhood. The objective of this cross-sectional study was to generate fasting plasma lipid references for a Danish/North-European White population-based cohort of children and adolescents, and investigate the prevalence of dyslipidemia in this cohort as well as in a cohort with overweight/obesity. A population-based cohort of 2141 (1275 girls) children and adolescents aged 6 - 19 (median 11.5) years was recruited from 11 municipalities in Denmark. Additionally, a cohort of children and adolescents of 1421 (774 girls) with overweight/obesity aged 6 - 19 years (median 11.8) was recruited for the study. Height, weight, and fasting plasma lipid concentrations were measured on all participants. Smoothed reference curves and percentiles were generated using the Generalized Additive Models for Location Scale and Shape package in the statistical software R. In the population-based cohort, plasma concentrations of total cholesterol (TC) (P dyslipidemia was 6.4% in the population-based cohort and 28.0% in the cohort with overweight/obesity. The odds ratio for exhibiting dyslipidemia in the cohort with overweight/obesity compared with the population-based cohort was 6.2 (95% CI: 4.9 - 8.1, P dyslipidemia. The study is part of The Danish Childhood Obesity Biobank; ClinicalTrials.gov ID-no.: NCT00928473 retrospectively registered on June 25th 2009.

  9. Easy, Fast, and Reproducible Quantification of Cholesterol and Other Lipids in Human Plasma by Combined High Resolution MSX and FTMS Analysis

    Science.gov (United States)

    Gallego, Sandra F.; Højlund, Kurt; Ejsing, Christer S.

    2018-01-01

    Reliable, cost-effective, and gold-standard absolute quantification of non-esterified cholesterol in human plasma is of paramount importance in clinical lipidomics and for the monitoring of metabolic health. Here, we compared the performance of three mass spectrometric approaches available for direct detection and quantification of cholesterol in extracts of human plasma. These approaches are high resolution full scan Fourier transform mass spectrometry (FTMS) analysis, parallel reaction monitoring (PRM), and novel multiplexed MS/MS (MSX) technology, where fragments from selected precursor ions are detected simultaneously. Evaluating the performance of these approaches in terms of dynamic quantification range, linearity, and analytical precision showed that the MSX-based approach is superior to that of the FTMS and PRM-based approaches. To further show the efficacy of this approach, we devised a simple routine for extensive plasma lipidome characterization using only 8 μL of plasma, using a new commercially available ready-to-spike-in mixture with 14 synthetic lipid standards, and executing a single 6 min sample injection with combined MSX analysis for cholesterol quantification and FTMS analysis for quantification of sterol esters, glycerolipids, glycerophospholipids, and sphingolipids. Using this simple routine afforded reproducible and absolute quantification of 200 lipid species encompassing 13 lipid classes in human plasma samples. Notably, the analysis time of this procedure can be shortened for high throughput-oriented clinical lipidomics studies or extended with more advanced MSALL technology (Almeida R. et al., J. Am. Soc. Mass Spectrom. 26, 133-148 [1]) to support in-depth structural elucidation of lipid molecules. [Figure not available: see fulltext.

  10. Plasma concentrations of lipids and lipoproteins in newborn kids and female Baladi goats during late pregnancy and onset of lactation.

    Science.gov (United States)

    Hussein, S A; Azab, M E

    1998-01-01

    Concentrations of blood lipids and some lipoproteins were investigated in normal female Baladi goats during late pregnancy, parturition and onset of lactation as well as in their newborn kids during the first two weeks of life. A total number of 60 herparinized blood samples was collected from does at 4, 3, 2 and 1 weeks pre-partum, day of parturition and at 1, 2, 3 and 4 weeks postpartum. In addition, blood samples were also collected from their newborn kids during the first two weeks of life (day of birth, 1 and 2 weeks of age). Plasma was separated and analyzed for concentration of total lipid, total cholesterol, triacylglycerols, phospholipids, non esterified fatty acids (NEFA) and some lipoproteins as high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C). The obtained results revealed that there was a significant decrease in plasma level of total lipids at one week after parturition. Plasma level of triaclyglycerols was significantly higher at 4, 3 and 2 weeks before parturition. This increase became very highly significant at one week before parturition. Meanwhile, plasma phospholipid concentrations showed a significant decrease at 3 weeks before parturition, followed by an significant increase at 2 and 3 weeks after parturition and highly significant increase at 4 weeks after parturition. The concentration of plasma NEFA showed a significant increase at 4 weeks before parturition followed by a very highly significant increase at 2 and 1 week before parturition. On the other hand plasma NEFA was non detected at 2, 3 and 4 weeks post-partum when compared with the value reported at day of parturition. Regarding plasma lipoprotein concentrations the obtained results showed that there was a significant increase in plasma HDL-C level at 2 and 3 weeks after parturition, followed by a very highly significant decrease at the fourth week post-partum. However, plasma LDL-C level showed a significant decrease at 3, 2 and 1 weeks

  11. Ultrastructural modification of the plasma membrane in HUT 102 lymphoblasts by long-wave ultraviolet light, psoralen, and PUVA

    International Nuclear Information System (INIS)

    Malinin, G.I.; Lo, H.K.; Hornicek, F.J.; Malinin, T.I.

    1990-01-01

    Ultrastructural alterations of the plasma membrane in HUT 102 lymphoblasts were assessed after a 2-h interaction with a suprapharmacologic (15 micrograms/ml) concentration of 8-MOP, 2-h irradiation with UVA (2.1 mW/cm2), and the exposure of the HUT 102 cells to PUVA under the same conditions. The dark reaction of HUT cells with 8-MOP resulted in the disappearance of microvilli, the emergence of plasma-membrane-associated spherical bodies, formation of lamellar fungiform membrane evaginations, and, in approximately 1% of the cells, formation of uropods and cell capping. Except for uropod formation and cell capping, UVA has induced the same plasma-membrane alterations, and was more deleterious to structural cytoplasmic integrity than 8-MOP. Morphologic changes of the plasma membrane in PUVA-exposed cells tended to replicate structural alterations elicited independently during the dark reaction by suprapharmacologic 8-MOP concentrations. Partial retention of microvilli by cells after PUVA was the sole exception. In light of all available evidence we conclude that psoralen during the dark reactions interacts with plasma membrane lipids by as yet undisclosed mechanisms and that in addition to lipids, membrane proteins are also the primary target of the initial interaction of HUT 102 cells with psoralen during PUVA treatment

  12. Plant adaptation to frequent alterations between high and low temperatures: remodeling of membrane lipids and maintenance of unsaturation levels

    OpenAIRE

    Zheng, Guowei; Tian, Bo; Zhang, Fujuan; Tao, Faqing; Li, Weiqi

    2011-01-01

    One major strategy by which plants adapt to temperature change is to decrease the degree of unsaturation of membrane lipids under high temperature and increase it under low temperature. We hypothesize that this strategy cannot be adopted by plants in ecosystems and environments with frequent alterations between high and low temperatures, because changes in lipid unsaturation are complex and require large energy inputs. To test this hypothesis, we used a lipidomics approach to profile changes ...

  13. Effect of intragastric acid stability of fat emulsions on gastric emptying, plasma lipid profile and postprandial satiety.

    Science.gov (United States)

    Marciani, Luca; Faulks, Richard; Wickham, Martin S J; Bush, Debbie; Pick, Barbara; Wright, Jeff; Cox, Eleanor F; Fillery-Travis, Annette; Gowland, Penny A; Spiller, Robin C

    2009-03-01

    Fat is often included in common foods as an emulsion of dispersed oil droplets to enhance the organoleptic quality and stability. The intragastric acid stability of emulsified fat may impact on gastric emptying, satiety and plasma lipid absorption. The aim of the present study was to investigate whether, compared with an acid-unstable emulsion, an acid-stable fat emulsion would empty from the stomach more slowly, cause more rapid plasma lipid absorption and cause greater satiety. Eleven healthy male volunteers received on two separate occasions 500 ml of 15 % (w/w) [13C]palmitate-enriched olive oil-in-water emulsion meals which were either stable or unstable in the acid gastric environment. MRI was used to measure gastric emptying and the intragastric oil fraction of the meals. Blood sampling was used to measure plasma lipids and visual analogue scales were used to assess satiety. The acid-unstable fat emulsion broke and rapidly layered in the stomach. Gastric emptying of meal volume was slower for the acid-stable fat emulsion (P rate of energy delivery of fat from the stomach to the duodenum was not different up to t = 110 min. The acid-stable emulsion induced increased fullness (P distribution of fat emulsions against the gastric acid environment. This could have implications for the design of novel foods.

  14. Sex specific differences in hepatic and plasma lipid profiles in healthy cats pre and post spaying and neutering : relationship with feline hepatic lipidosis

    NARCIS (Netherlands)

    Valtolina, Chiara|info:eu-repo/dai/nl/412503034; Vaandrager, Arie B|info:eu-repo/dai/nl/073165506; Favier, Robert P|info:eu-repo/dai/nl/304828742; Tuohetahuntila, Maidina; Kummeling, Anne|info:eu-repo/dai/nl/304828793; Jeusette, Isabelle; Rothuizen, Jan|info:eu-repo/dai/nl/071276033; Robben, Joris H|info:eu-repo/dai/nl/266740790

    2017-01-01

    BACKGROUND: A link between lipid metabolism and disease has been recognized in cats. Since hepatic lipidosis is a frequent disorder in cats, the aim of the current study was to evaluate liver and plasma lipid dimorphism in healthy cats and the effects of gonadectomy on lipid profiling. From six

  15. Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy

    NARCIS (Netherlands)

    Vermeer, J.E.M.; van Munster, E.B.; Vischer, N.O.; Gadella, T.

    2004-01-01

    Multimode fluorescence resonance energy transfer (FRET) microscopy was applied to study the plasma membrane organization using different lipidated green fluorescent protein (GFP)-fusion proteins co-expressed in cowpea protoplasts. Cyan fluorescent protein (CFP) was fused to the hyper variable region

  16. RPLC-lon-trap-FTMS method for lipid profiling of plasma: Method validation And application to p53 mutant mouse model

    NARCIS (Netherlands)

    Hu, C.; Dommelen, J. van; Heijden, R. van der; Spijksma, G.; Reijmers, T.H.; Wang, M.; Slee, E.; Lu, X.; Xu, G.; Greef, J. van der; Hankemeier, T.

    2008-01-01

    A reversed-phase liquid chromatography-linear ion trap-Fourier transform ion cyclotron resonance-mass spectrometry method was developed for the profiling of lipids in human and mouse plasma. With the use of a fused-core C8 column and a binary gradient, more than 160 lipids belonging to

  17. Fish oil affects blood pressure and the plasma lipid profile in healthy Danish infants

    DEFF Research Database (Denmark)

    Damsgaard, C.T.; Schack-Nielsen, L.; Michaelsen, K.F.

    2006-01-01

    with an oscillometric device, and blood was sampled for analysis of erythrocyte fatty acid composition and the plasma lipid profile. This paper examines the effects of the fish oil supplement, with adjustment for the effects of the milk intervention when relevant. The fish oil intervention increased erythrocyte (n-3......Animal and epidemiologic studies indicate that early nutrition has lasting effects on metabolism and cardiovascular disease risk. In adults, (n-3) long-chain PUFA (LCPUFA) from fish oils improve blood pressure, the lipid profile, and possibly cardiovascular disease mortality. This randomized trial...... is the first to investigate the effects of fish oil on blood pressure and the lipid profile in infancy. Healthy term 9-mo old infants In 83) were randomly assigned to 5 mL fish oil daily or no fish oil for 3 mo and to 2 different milk types. Before and after the intervention, blood pressure was measured...

  18. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts

    Directory of Open Access Journals (Sweden)

    Marco Emanuele

    2016-05-01

    Full Text Available Alpha-synuclein (αSyn interferes with multiple steps of synaptic activity at pre-and post-synaptic terminals, however the mechanism/s by which αSyn alters neurotransmitter release and synaptic potentiation is unclear. By atomic force microscopy we show that human αSyn, when incubated with reconstituted membrane bilayer, induces lipid rafts' fragmentation. As a consequence, ion channels and receptors are displaced from lipid rafts with consequent changes in their activity. The enhanced calcium entry leads to acute mobilization of synaptic vesicles, and exhaustion of neurotransmission at later stages. At the post-synaptic terminal, an acute increase in glutamatergic transmission, with increased density of PSD-95 puncta, is followed by disruption of the interaction between N-methyl-d-aspartate receptor (NMDAR and PSD-95 with ensuing decrease of long term potentiation. While cholesterol loading prevents the acute effect of αSyn at the presynapse; inhibition of casein kinase 2, which appears activated by reduction of cholesterol, restores the correct localization and clustering of NMDARs.

  19. Lateral mobility of plasma membrane lipids in a molluscan egg: Evidence for an animal/vegetal polarity

    NARCIS (Netherlands)

    Laat, S.W. de; Speksnijder, J.E.; Dohmen, M.R.; Zoelen, E. van; Tertoolen, L.G.J.; Bluemink, J.G.

    1984-01-01

    The lateral diffusion of the lipid analog C₁₄-diI (3', 3'-dihexadecylindocarbocyanine iodide) was measured in the plasma membrane of early embryos of the mollusc Nassarius reticulatus using the FPR-(Fluorescence Photobleaching Recovery) method. At almost all stages measured (from

  20. Pleiotropic effects of lipid genes on plasma glucose, HbA1c, and HOMA-IR levels

    NARCIS (Netherlands)

    Li, Naishi; van der Sijde, Marijke R; Bakker, Stephan J L; Dullaart, Robin P F; van der Harst, Pim; Gansevoort, Ron T; Elbers, Clara C; Wijmenga, Cisca; Snieder, Harold; Hofker, Marten H; Fu, Jingyuan

    Dyslipidemia is strongly associated with raised plasma glucose levels and insulin resistance (IR), and genome-wide association studies have identified 95 loci that explain a substantial proportion of the variance in blood lipids. However, the loci's effects on glucose-related traits are largely

  1. Lipids rich in phosphatidylethanolamine from natural gas-utilizing bacteria reduce plasma cholesterol and classes of phospholipids

    DEFF Research Database (Denmark)

    Müller, H.; Hellgren, Lars; Olsen, E.

    2004-01-01

    -utilizing bacteria (LNGB), which were rich in PE. The group with 0% LNGB was fed a diet for which the lipid content was 100% soybean oil. The total cholesterol, LDL cholesterol, and HDL cholesterol of animals consuming a diet with 67% LNGB (67LNGB-diet), were significantly lowered by 35, 49, and 29%, respectively......, and unesterified cholesterol increased by 17% compared with the animals fed a diet of 100% lipids from soybean oil (SB-diet). In addition, the ratio of LDL cholesterol to HDL cholesterol was 27% lower in mink fed the 67LNGB-diet than those fed the S13-cliet. When the mink were fed the 67LNGB-diet, plasma PC, total...... phospholipids, lysoPC, and PI were lowered significantly compared with the mink fed a SB-diet. Plasma total cholesterol was correlated with total phospholipids as well as with PC (R = 0.8, P

  2. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism.

    Science.gov (United States)

    Lerin, Carles; Goldfine, Allison B; Boes, Tanner; Liu, Manway; Kasif, Simon; Dreyfuss, Jonathan M; De Sousa-Coelho, Ana Luisa; Daher, Grace; Manoli, Irini; Sysol, Justin R; Isganaitis, Elvira; Jessen, Niels; Goodyear, Laurie J; Beebe, Kirk; Gall, Walt; Venditti, Charles P; Patti, Mary-Elizabeth

    2016-10-01

    Plasma levels of branched-chain amino acids (BCAA) are consistently elevated in obesity and type 2 diabetes (T2D) and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28). We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut) and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D.

  3. Loss of spatacsin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration.

    Science.gov (United States)

    Branchu, Julien; Boutry, Maxime; Sourd, Laura; Depp, Marine; Leone, Céline; Corriger, Alexandrine; Vallucci, Maeva; Esteves, Typhaine; Matusiak, Raphaël; Dumont, Magali; Muriel, Marie-Paule; Santorelli, Filippo M; Brice, Alexis; El Hachimi, Khalid Hamid; Stevanin, Giovanni; Darios, Frédéric

    2017-06-01

    Mutations in SPG11 account for the most common form of autosomal recessive hereditary spastic paraplegia (HSP), characterized by a gait disorder associated with various brain alterations. Mutations in the same gene are also responsible for rare forms of Charcot-Marie-Tooth (CMT) disease and progressive juvenile-onset amyotrophic lateral sclerosis (ALS). To elucidate the physiopathological mechanisms underlying these human pathologies, we disrupted the Spg11 gene in mice by inserting stop codons in exon 32, mimicking the most frequent mutations found in patients. The Spg11 knockout mouse developed early-onset motor impairment and cognitive deficits. These behavioral deficits were associated with progressive brain atrophy with the loss of neurons in the primary motor cortex, cerebellum and hippocampus, as well as with accumulation of dystrophic axons in the corticospinal tract. Spinal motor neurons also degenerated and this was accompanied by fragmentation of neuromuscular junctions and muscle atrophy. This new Spg11 knockout mouse therefore recapitulates the full range of symptoms associated with SPG11 mutations observed in HSP, ALS and CMT patients. Examination of the cellular alterations observed in this model suggests that the loss of spatacsin leads to the accumulation of lipids in lysosomes by perturbing their clearance from these organelles. Altogether, our results link lysosomal dysfunction and lipid metabolism to neurodegeneration and pinpoint a critical role of spatacsin in lipid turnover. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. The role of the kidney in lipid metabolism

    DEFF Research Database (Denmark)

    Moestrup, Søren K; Nielsen, Lars Bo

    2005-01-01

    PURPOSE OF REVIEW: Cellular uptake of plasma lipids is to a large extent mediated by specific membrane-associated proteins that recognize lipid-protein complexes. In the kidney, the apical surface of proximal tubules has a high capacity for receptor-mediated uptake of filtered lipid-binding plasma...... proteins. We describe the renal receptor system and its role in lipid metabolism in health and disease, and discuss the general effect of the diseased kidney on lipid metabolism. RECENT FINDINGS: Megalin and cubilin are receptors in the proximal tubules. An accumulating number of lipid......-binding and regulating proteins (e.g. albumin, apolipoprotein A-I and leptin) have been identified as ligands, suggesting that their receptors may directly take up lipids in the proximal tubules and indirectly affect plasma and tissue lipid metabolism. Recently, the amnionless protein was shown to be essential...

  5. Lipid status in phyisiological non-complicated pregnancy

    Directory of Open Access Journals (Sweden)

    Ardalić Daniela

    2016-01-01

    Full Text Available Specifically altered lipid profile and physiological hyperlipidemia during pregnancy are considered essential for the normal course of pregnancy and fetal development. This specific alteration of the lipid profile raises the questions about potential proaterogenic effect of these altered lipid parameters during pregnancy and its influence on the development of cardiovascular disease in women later in life. Research topic was also the association of altered lipid profile during pregnancy with the development of complications in pregnancy, especially gestational diabetes, hypertension and preeclampsia. Through the mediation of cholesterol ester transfer protein (CETP, the activity of which grows in mid-gestation, there are exchanges of the triglycerides between VLDL and LDL or HDL particle, which leads to increased accumulation of triglycerides in these particles, causes them to become smaller and denser with much greater atherogenic potential. These changes in lipid profile point out that a large number of pregnancies increase risk of development of cardiovascular diseases later in life. In order to optimize the predictive capacity of the lipid profile during pregnancy, it is recommended to determine the indexes of lipid.

  6. Influence of consumption of probiotics on the plasma lipid profile: a meta-analysis of randomised controlled trials.

    Science.gov (United States)

    Guo, Z; Liu, X M; Zhang, Q X; Shen, Z; Tian, F W; Zhang, H; Sun, Z H; Zhang, H P; Chen, W

    2011-11-01

    Human clinical studies have yielded mixed results on the effects of consumption of probiotics on the plasma lipid profile. We conducted a meta-analysis of randomised controlled trials that evaluated the effects of probiotics consumption on blood lipids. A systematic literature search of Embase, Web of Science, PubMed and Cochrane Controlled Trials Registry was conducted for studies that investigated the efficacy of probiotics on the plasma lipid profile of subjects. With the help of Review Manager 4.2, data from 13 trials, which included 485 participants with high, borderline high and normal cholesterol levels, were examined. The pooled mean net change in total cholesterol for those treated with probiotics compared to controls was -6.40 mg dl(-1) (95% confidence interval (CI), -9.93 to -2.87), mean net change in low-density lipoprotein (LDL) cholesterol was -4.90 mg dl(-1) (95% CI, -7.91 to -1.90), mean net change in high-density lipoprotein (HDL) cholesterol was -0.11 mg dl(-1) (95% CI, -1.90-1.69) and mean net change in triglycerides was -3.95 mg dl(-1) (95% CI, -10.32-2.42). These results indicate that a diet rich in probiotics decreases total cholesterol and LDL cholesterol concentration in plasma for participants with high, borderline high and normal cholesterol levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Human Plasma Metabolomics Study across All Stages of Age-Related Macular Degeneration Identifies Potential Lipid Biomarkers.

    Science.gov (United States)

    Laíns, Inês; Kelly, Rachel S; Miller, John B; Silva, Rufino; Vavvas, Demetrios G; Kim, Ivana K; Murta, Joaquim N; Lasky-Su, Jessica; Miller, Joan W; Husain, Deeba

    2018-02-01

    To characterize the plasma metabolomic profile of patients with age-related macular degeneration (AMD) using mass spectrometry (MS). Cross-sectional observational study. We prospectively recruited participants with a diagnosis of AMD and a control group (>50 years of age) without any vitreoretinal disease. All participants underwent color fundus photography, used for AMD diagnosis and staging, according to the Age-Related Eye Disease Study classification scheme. Fasting blood samples were collected and plasma was analyzed by Metabolon, Inc. (Durham, NC), using ultrahigh-performance liquid chromatography (UPLC) and high-resolution MS. Metabolon's hardware and software were used to identify peaks and control quality. Principal component analysis and multivariate regression were performed to assess differences in the metabolomic profiles of AMD patients versus controls, while controlling for potential confounders. For biological interpretation, pathway enrichment analysis of significant metabolites was performed using MetaboAnalyst. The primary outcome measures were levels of plasma metabolites in participants with AMD compared with controls and among different AMD severity stages. We included 90 participants with AMD (30 with early AMD, 30 with intermediate AMD, and 30 with late AMD) and 30 controls. Using UPLC and MS, 878 biochemicals were identified. Multivariate logistic regression identified 87 metabolites with levels that differed significantly between AMD patients and controls. Most of these metabolites (82.8%; n = 72), including the most significant metabolites, belonged to the lipid pathways. Analysis of variance revealed that of the 87 metabolites, 48 (55.2%) also were significantly different across the different stages of AMD. A significant enrichment of the glycerophospholipids pathway was identified (P = 4.7 × 10 -9 ) among these metabolites. Participants with AMD have altered plasma metabolomic profiles compared with controls. Our data suggest

  8. Diosgenin reorganises hyperglycaemia and distorted tissue lipid profile in high-fat diet-streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Naidu, Parim Brahma; Ponmurugan, Ponnusamy; Begum, Mustapha Sabana; Mohan, Karthick; Meriga, Balaji; RavindarNaik, Ramavat; Saravanan, Ganapathy

    2015-12-01

    Diabetes is often connected with significant morbidity, mortality and also has a pivotal role in the development of cardiovascular diseases. Diet intervention, particularly naturaceutical antioxidants have anti-diabetic potential and avert oxidative damage linked with diabetic pathogenesis. The present study investigated the effects of diosgenin, a saponin from fenugreek, on the changes in lipid profile in plasma, liver, heart and brain in high-fat diet-streptozotocin (HFD-STZ)-induced diabetic rats. Diosgenin was administered to HFD-STZ induced diabetic rats by orally at 60 mg kg(-1) body weight for 30 days to assess its effects on body weight gain, glucose, insulin, insulin resistance and cholesterol, triglycerides, free fatty acids and phospholipids in plasma, liver, heart and brain. The levels of body weight, glucose, insulin, insulin resistance, cholesterol, triglycerides, free fatty acids, phospholipids, VLDL-C and LDL-C were increased significantly (P rats. Administration of diosgenin to HFD-STZ diabetic rats caused a decrease in body weight gain, blood glucose, insulin, insulin resistance and also it modulated lipid profile in plasma and tissues. The traditional plant fenugreek and its constituents mediate its anti-diabetic potential through mitigating hyperglycaemic status, altering insulin resistance by alleviating metabolic dysregulation of lipid profile in both plasma and tissues. © 2014 Society of Chemical Industry.

  9. Dyslipidemia and reference values for fasting plasma lipid concentrations in Danish/North-European White children and adolescents

    DEFF Research Database (Denmark)

    Nielsen, Tenna Ruest Haarmark; Lausten-Thomsen, Ulrik; Esmann Fonvig, Cilius

    2017-01-01

    Background: Dyslipidemia is reported in 27-43% of children and adolescents with overweight/obesity and tracks into adulthood, increasing the risk of cardiovascular morbidity. Cut-off values for fasting plasma lipid concentrations are typically set at fixed levels throughout childhood. The objective...... of this cross-sectional study was to generate fasting plasma lipid references for a Danish/North-European White population-based cohort of children and adolescents, and investigate the prevalence of dyslipidemia in this cohort as well as in a cohort with overweight/obesity. Methods: A population-based cohort...... of 2141 (1275 girls) children and adolescents aged 6-19 (median 11.5) years was recruited from 11 municipalities in Denmark. Additionally, a cohort of children and adolescents of 1421 (774 girls) with overweight/obesity aged 6-19years (median 11.8) was recruited for the study. Height, weight, and fasting...

  10. "Lipid raft aging" in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease.

    Science.gov (United States)

    Díaz, Mario; Fabelo, Noemí; Ferrer, Isidre; Marín, Raquel

    2018-07-01

    Lipid rafts are highly dynamic membrane domains featured by distinctive biochemical composition and physicochemical properties compared with the surrounding plasma membrane. These microstructures are associated not only with cellular signaling and communication in normal nerve cells but also with pathological processing of amyloid precursor protein in Alzheimer's disease. Using lipid rafts isolated from human frontal cortex in nondemented subjects aging 24 to 85 years, we demonstrate here that lipid structure of lipid rafts undergo significant alterations of specific lipid classes and phospholipid-bound fatty acids as brain cortex correlating with aging. Main changes affect levels of plasmalogens, polyunsaturated fatty acids (especially docosahexaenoic acid and arachidonic acid), total polar lipids (mainly phosphatidylinositol, sphingomyelin, sulfatides, and cerebrosides), and total neutral lipids (particularly cholesterol and sterol esters). Besides, relevant relationships between main fatty acids and/or lipid classes were altered in an age-related manner. This "lipid raft aging" exhibits clear gender differences and appear to be more pronounced in women than in men, especially in older (postmenopausal) women. The outcomes led us to conclude that human cortical lipid rafts are modified by aging in a gender-dependent fashion. Given the central role of bilayer lipid matrix in lipid rafts functionality and neuronal signaling, we hypothesize that these findings might underlie the higher prevalence of cognitive decline evolving toward Alzheimer's disease in postmenopausal women. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    Science.gov (United States)

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  12. Chronic consumption of fructose rich soft drinks alters tissue lipids of rats

    Directory of Open Access Journals (Sweden)

    Botezelli Jose D

    2010-06-01

    Full Text Available Abstract Background Fructose-based diets are apparently related to the occurrence of several metabolic dysfunctions, but the effects of the consumption of high amounts of fructose on body tissues have not been well described. The aim of this study was to analyze the general characteristics and the lipid content of different tissues of rats after chronic ingestion of a fructose rich soft drink. Methods Forty-five Wistar rats were used. The rats were divided into three groups (n = 15 and allowed to consume water (C, light Coca Cola ® (L or regular Coca Cola® (R as the sole source of liquids for eight weeks. Results The R group presented significantly higher daily liquid intake and significantly lower food intake than the C and L groups. Moreover, relative to the C and L groups, the R group showed higher triglyceride concentrations in the serum and liver. However, the L group animals presented lower values of serum triglycerides and cholesterol than controls. Conclusions Based on the results, it can be concluded that daily ingestion of a large amount of fructose- rich soft drink resulted in unfavorable alterations to the lipid profile of the rats.

  13. Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men: a randomized controlled trial [ISRCTN10820810

    Science.gov (United States)

    St-Onge, Marie-Pierre; Farnworth, Edward R; Savard, Tony; Chabot, Denise; Mafu, Akier; Jones, Peter JH

    2002-01-01

    Background Fermented milk products have been shown to affect serum cholesterol concentrations in humans. Kefir, a fermented milk product, has been traditionally consumed for its potential health benefits but has to date not been studied for its hypocholesterolemic properties. Methods Thirteen healthy mildly hypercholesterolemic male subjects consumed a dairy supplement in randomized crossover trial for 2 periods of 4 wk each. Subjects were blinded to the dairy supplement consumed. Blood samples were collected at baseline and after 4 wk of supplementation for measurement of plasma total, low-density lipoprotein, and high-density lipoprotein cholesterol and triglyceride concentrations, as well as fatty acid profile and cholesterol synthesis rate. Fecal samples were collected at baseline and after 2 and 4 wk of supplementation for determination of fecal short chain fatty acid level and bacterial content. Results Kefir had no effect on total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglyceride concentrations nor on cholesterol fractional synthesis rates after 4 wk of supplementation. No significant change on plasma fatty acid levels was observed with diet. However, both kefir and milk increased (p < 0.05) fecal isobutyric, isovaleric and propionic acids as well as the total amount of fecal short chain fatty acids. Kefir supplementation resulted in increased fecal bacterial content in the majority of the subjects. Conclusions Since kefir consumption did not result in lowered plasma lipid concentrations, the results of this study do not support consumption of kefir as a cholesterol-lowering agent. PMID:11825344

  14. Gemfibrozil disrupts the metabolism of circulating lipids in bobwhite quails.

    Science.gov (United States)

    Bussière-Côté, Sophie; Omlin, Teye; de Càssia Pinheiro, Eliana; Weber, Jean-Michel

    2016-01-01

    The circulating lipids of birds play essential roles for egg production and as an energy source for flight and thermogenesis. How lipid-lowering pharmaceuticals geared to prevent heart disease in humans and that are routinely released in the environment affect their metabolism is unknown. This study assesses the impact of the popular drug gemfibrozil (GEM) on the plasma phospholipids (PL), neutral lipids (NL), and nonesterified fatty acids (NEFA) of bobwhite quails (Colinus virginianus). Results show that bird lipoproteins are rapidly altered by GEM, even at environmentally-relevant doses. After 4 days of exposure, pharmacological amounts cause an 83% increase in circulating PL levels, a major decrease in average lipoprotein size measured as a 56% drop in the NL/PL ratio, and important changes in the fatty acid composition of PL and NEFA (increases in fatty acid unsaturation). The levels of PL carrying all individual fatty acids except arachidonate are strongly stimulated. The large decrease in bird lipoprotein size may reflect the effects seen in humans: lowering of LDL that can cause atherosclerosis and stimulation of HDL that promote cholesterol disposal. Lower (environmental) doses of GEM cause a reduction of %palmitate in all the plasma lipid fractions of quails, but particularly in the core triacylglycerol of lipoproteins (NL). No changes in mRNA levels of bird peroxisome proliferator-activated receptor (PPAR) could be demonstrated. The disrupting effects of GEM on circulating lipids reported here suggest that the pervasive presence of this drug in the environment could jeopardize reproduction and migratory behaviours in wild birds. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Maternal chocolate and sucrose soft drink intake induces hepatic steatosis in rat offspring associated with altered lipid gene expression profile

    DEFF Research Database (Denmark)

    Kjærgaard, Maj; Nilsson, C.; Rosendal, A.

    2014-01-01

    weight gain and adiposity in offspring born to chow-fed dams. Conclusion: Our results suggest that supplementation of chocolate and soft drink during gestation and lactation contributes to early onset of hepatic steatosis associated with changes in hepatic gene expression and lipid handling....... until weaning, giving four dietary groups. Results: At postnatal day 1, offspring from high-fat/high-sucrose-fed dams were heavier and had increased hepatic triglycerides (TG), hepatic glycogen, blood glucose and plasma insulin compared with offspring from chow-fed dams. Hepatic genes involved in lipid...... oxidation, VLDL transport and insulin receptor were down-regulated, whereas FGF21 expression was up-regulated. Independent of postnatal litter size, offspring from high-fat/high-sucrose-fed dams aged 21 days had still increased hepatic TG and up-regulated FGF21 expression, while plasma insulin started...

  16. Palm oil and cardiovascular disease: a randomized trial of the effects of hybrid palm oil supplementation on human plasma lipid patterns.

    Science.gov (United States)

    Lucci, P; Borrero, M; Ruiz, A; Pacetti, D; Frega, N G; Diez, O; Ojeda, M; Gagliardi, R; Parra, L; Angel, M

    2016-01-01

    This study examines, for the first time, the effect of hybrid Elaeis oleifera × E. guineensis palm oil supplementation on human plasma lipids related to CVD risk factors. One hundred sixty eligible participants were randomized and assigned to one of the two treatments: 25 mL hybrid palm oil (HPO group) or 25 mL extra virgin olive oil (EVOO group) daily for 3 months. Fasting venous samples were obtained at baseline and after 1, 2 and 3 months for measurement of plasma lipids (TC, LDL-C, HDL-C and TAGs). Changes in body mass index and waist circumference were also assessed. Although there was an overall reduction in TC (7.4%, p lipids to EVOO, thus providing additional support for the concept that hybrid Elaeis oleifera × E. guineensis palm oil can be seen as a "tropical equivalent of olive oil".

  17. Inhibition of HIV-1 endocytosis allows lipid mixing at the plasma membrane, but not complete fusion

    Directory of Open Access Journals (Sweden)

    de la Vega Michelle

    2011-12-01

    Full Text Available Abstract Background We recently provided evidence that HIV-1 enters HeLa-derived TZM-bl and lymphoid CEMss cells by fusing with endosomes, whereas its fusion with the plasma membrane does not proceed beyond the lipid mixing step. The mechanism of restriction of HIV-1 fusion at the cell surface and/or the factors that aid the virus entry from endosomes remain unclear. Results We examined HIV-1 fusion with a panel of target cells lines and with primary CD4+ T cells. Kinetic measurements of fusion combined with time-resolved imaging of single viruses further reinforced the notion that HIV-1 enters the cells via endocytosis and fusion with endosomes. Furthermore, we attempted to deliberately redirect virus fusion to the plasma membrane, using two experimental strategies. First, the fusion reaction was synchronized by pre-incubating the viruses with cells at reduced temperature to allow CD4 and coreceptors engagement, but not the virus uptake or fusion. Subsequent shift to a physiological temperature triggered accelerated virus uptake followed by entry from endosomes, but did not permit fusion at the cell surface. Second, blocking HIV-1 endocytosis by a small-molecule dynamin inhibitor, dynasore, resulted in transfer of viral lipids to the plasma membrane without any detectable release of the viral content into the cytosol. We also found that a higher concentration of dynasore is required to block the HIV-endosome fusion compared to virus internalization. Conclusions Our results further support the notion that HIV-1 enters disparate cell types through fusion with endosomes. The block of HIV-1 fusion with the plasma membrane at a post-lipid mixing stage shows that this membrane is not conducive to fusion pore formation and/or enlargement. The ability of dynasore to interfere with the virus-endosome fusion suggests that dynamin could be involved in two distinct steps of HIV-1 entry - endocytosis and fusion within intracellular compartments.

  18. Insulin sensitivity is independent of lipid binding protein trafficking at the plasma membrane in human skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Serup, Annette Karen; Karstoft, Kristian

    2014-01-01

    The aim of the present study was to investigate lipid-induced regulation of lipid binding proteins in human skeletal muscle and the impact hereof on insulin sensitivity. Eleven healthy male subjects underwent a 3-day hyper-caloric and high-fat diet regime. Muscle biopsies were taken before......-regulated by increased fatty acid availability. This suggests a time dependency in the up-regulation of FAT/CD36 and FABPpm protein during high availability of plasma fatty acids. Furthermore, we did not detect FATP1 and FATP4 protein in giant sarcolemmal vesicles obtained from human skeletal muscle. In conclusion......, this study shows that a short-term lipid-load increases mRNA content of key lipid handling proteins in human muscle. However, decreased insulin sensitivity after high-fat diet is not accompanied with relocation of FAT/CD36 or FABPpm protein to the sarcolemma. Finally, FATP1 and FATP4 protein could...

  19. The effects of aqueous extract of water cress on the glucose and lipid plasma in the streptozotocin induced diabetic rats

    International Nuclear Information System (INIS)

    Shahrokhi, N.; Hadad, K.

    2009-01-01

    For treating diabetic patients, different nutrients are being used in some areas of Kennan province, Nasturtium offsinallis (NF) is one of them. In current research work, effects of NF on plasma lipid and glucose levels have been assessed in diabetic rats. In this study, 60 male rats were used. All rats randomly divided into six groups, consisting of one intact non-diabetic group, and remaining 5 groups were injected subcutaneousloy of 55 mg/kg of streptozotocin to make them experimentally diabetic. Three groups of diabetic animals were eaten orally (via gavage) of low (25 mg/kg), and high (75 mg/kg) doses of aqueous extract of NF in a volume of 1.5 ml for short period (4 weeks)and long period (8-weeks) respectively. One group of diabetic animals was given 2-4U of NPH insulin intraperitoneally (IP). The last remaining group of five diabetics was given nothing at the end of each Experiment in all groups' blood glucose and lipid levels were measured. There was significant reduction of plasma glucose in treatment groups compared to diabetic group. The greatest decrease(9 6%) was observed by the high dose long term group for NF extract) that was significantly greater than the insulin group (49%) (p<0.001). There wasn't any change in diabetic animals' total cholesterol, and triglyceride levels of plasma. Both low and high doses of extracts increased LDL-cholesterol levels in diabetic animals (p<0.00 I). In diabetic animals, plasma H DL- cholesterol levels (33+-2.2) decreased by long term dose of extract. Both doses decreased plasma glucose in diabetic animal, whereas, it have not effect on plasma lipids or have negative effect, there fore this research suggested that NF extract is useful for control of blood glucose. (author)

  20. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism

    Directory of Open Access Journals (Sweden)

    Carles Lerin

    2016-10-01

    Full Text Available Objective: Plasma levels of branched-chain amino acids (BCAA are consistently elevated in obesity and type 2 diabetes (T2D and can also prospectively predict T2D. However, the role of BCAA in the pathogenesis of insulin resistance and T2D remains unclear. Methods: To identify pathways related to insulin resistance, we performed comprehensive gene expression and metabolomics analyses in skeletal muscle from 41 humans with normal glucose tolerance and 11 with T2D across a range of insulin sensitivity (SI, 0.49 to 14.28. We studied both cultured cells and mice heterozygous for the BCAA enzyme methylmalonyl-CoA mutase (Mut and assessed the effects of altered BCAA flux on lipid and glucose homeostasis. Results: Our data demonstrate perturbed BCAA metabolism and fatty acid oxidation in muscle from insulin resistant humans. Experimental alterations in BCAA flux in cultured cells similarly modulate fatty acid oxidation. Mut heterozygosity in mice alters muscle lipid metabolism in vivo, resulting in increased muscle triglyceride accumulation, increased plasma glucose, hyperinsulinemia, and increased body weight after high-fat feeding. Conclusions: Our data indicate that impaired muscle BCAA catabolism may contribute to the development of insulin resistance by perturbing both amino acid and fatty acid metabolism and suggest that targeting BCAA metabolism may hold promise for prevention or treatment of T2D. Keywords: Insulin sensitivity, BCAA, Fatty acid oxidation, TCA cycle

  1. EFFECTS OF EXERCISE ON THE PLASMA LIPID PROFILE IN HISPANIOLAN AMAZON PARROTS (AMAZONA VENTRALIS) WITH NATURALLY OCCURRING HYPERCHOLESTEROLEMIA.

    Science.gov (United States)

    Gustavsen, Kate A; Stanhope, Kimber L; Lin, Amy S; Graham, James L; Havel, Peter J; Paul-Murphy, Joanne R

    2016-09-01

    Hypercholesterolemia is common in psittacines, and Amazon parrots ( Amazona spp.) are particularly susceptible. Associations have been demonstrated between naturally occurring and experimentally induced hypercholesterolemia and atherosclerosis in psittacines. Daily exercise improves lipid metabolism in humans and other mammals, as well as pigeons and chickens, under varying experimental conditions. Hispaniolan Amazon parrots ( Amazona ventralis ) with naturally occurring hypercholesterolemia (343-576 mg/dl) were divided into two groups. An exercised group (n = 8) was housed as a flock and exercised daily with 30 min of aviary flight and 30 min walking on a rotating perch. A sedentary control group (n = 4) was housed in individual cages with no exercise regime. A plasma lipid panel, including total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, and triglycerides, was validated for this species. Body weight, chest girth, and the lipid panel were measured at 0, 61, and 105 days. Hematology and plasma biochemistry were measured at 0 and 105 days. Weight and girth were significantly lower in exercised than sedentary parrots at 61 and 105 days. HDL-C concentrations were significantly higher in exercised parrots at 61 days but returned to near baseline by 105 days. There were no significant changes in hematology, biochemistry, or other lipid panel parameters. Results were similar to studies in humans and animal models, in which increased HDL-C was the most consistent effect of exercise on circulating lipid and lipoprotein parameters. The return toward baseline HDL-C may have resulted from decreased participation in aviary flight. Additional investigation will be required to determine the amount of exercise and change in circulating lipid-related parameters necessary to improve long-term wellness in psittacine species predisposed to hypercholesterolemia.

  2. Treatment goals for ambulatory blood pressure and plasma lipids after stroke are often not reached

    DEFF Research Database (Denmark)

    Engberg, Aase Worså; Kofoed, Klaus

    2013-01-01

    In Danish health care, secondary prevention after stroke is currently handled mainly by general practitioners using office blood pressure (OBP) assessment of hypertension. The aim of this study was to compare the OBP approach to 24-hour assessment by ambulatory blood pressure (ABP) monitoring....... Furthermore, we aimed to record the degree of adherence to recommended therapy goals for blood pressure and plasma lipids....

  3. Cellular cholesterol efflux to plasma from proteinuric patients is elevated and remains unaffected by antiproteinuric treatment

    NARCIS (Netherlands)

    Vogt, L; Laverman, GD; van Tol, A; Groen, AK; Navis, G; Dullaart, RPF

    Background. Lipid derangements are assumed to contribute to the elevated cardiovascular risk in proteinuric patients. The impact of proteinuria on reverse cholesterol transport (RCT) is unknown. The first step in RCT, cellular cholesterol efflux to plasma, may be altered in proteinuria, consequent

  4. Effects of topographical and mechanical property alterations induced by oxygen plasma modification on stem cell behavior.

    Science.gov (United States)

    Yang, Yong; Kulangara, Karina; Lam, Ruby T S; Dharmawan, Rena; Leong, Kam W

    2012-10-23

    Polymeric substrates intended for cell culture and tissue engineering are often surface-modified to facilitate cell attachment of most anchorage-dependent cell types. The modification alters the surface chemistry and possibly topography. However, scant attention has been paid to other surface property alterations. In studying oxygen plasma treatment of polydimethylsiloxane (PDMS), we show that oxygen plasma treatment alters the surface chemistry and, consequently, the topography and elasticity of PDMS at the nanoscale level. The elasticity factor has the predominant effect, compared with the chemical and topographical factors, on cell adhesions of human mesenchymal stem cells (hMSCs). The enhanced focal adhesions favor cell spreading and osteogenesis of hMSCs. Given the prevalent use of PDMS in biomedical device construction and cell culture experiments, this study highlights the importance of understanding how oxygen plasma treatment would impact subsequent cell-substrate interactions. It helps explain inconsistency in the literature and guides preparation of PDMS-based biomedical devices in the future.

  5. Critical composition fluctuations in artificial and cell-derived lipid membranes

    Science.gov (United States)

    Honerkamp-Smith, Aurelia

    2014-03-01

    Cell plasma membranes contain a mixture of lipid types which can segregate into coexisting liquids, a thermodynamic phenomenon which may contribute to biological functions. Simplified, artificial three-component lipid vesicles can be prepared which display a critical miscibility transition near room temperature. We found that such vesicles exhibit concentration fluctuations whose size, composition, and timescales vary consistently with critical exponents for two-dimensional conserved order parameter systems. However, the critical miscibility transition is also observed in vesicles formed directly from the membranes of living cells, despite their more complex composition and the presence of membrane proteins. I will describe our critical fluctuation measurements and also review a variety of more recent work by other researchers. Proximity to a critical point alters the spatial distribution and aggregation tendencies of proteins, and makes lipid mixtures more susceptible to domain formation by protein-mediated interactions, such as adhesion zones. Recent work suggests that critical temperature depression may also be relevant to the mechanism of anaesthetic action.

  6. Streptozotocin-Treated High Fat Fed Mice: A New Type 2 Diabetes Model Used to Study Canagliflozin-Induced Alterations in Lipids and Lipoproteins.

    Science.gov (United States)

    Yu, Tian; Sungelo, Mitchell J; Goldberg, Ira J; Wang, Hong; Eckel, Robert H

    2017-05-01

    The pharmacological effects of type 2 diabetes (T2DM) medications on lipoprotein metabolism are difficult to assess in preclinical models because those created failure to replicate the human condition in which insulin deficiency is superimposed on obesity-related insulin resistance. To create a better model, we fed mice with high fat (HF) diet and treated the animals with low dose streptozotocin (STZ) to mimic T2DM. We used this model to evaluate the effects of canagliflozin (CANA), a drug that reduces plasma glucose by inhibiting the sodium-glucose transporter 2 (SGLT2), which mediates ~90% of renal glucose reabsorption] on lipid and lipoprotein metabolism. After 6 weeks of CANA (30 mg/kg/day) treatment, the increase in total plasma cholesterol in HF-STZ diabetic mice was reversed, but plasma triglycerides were not affected. Lipoprotein fractionation and cholesterol distribution analysis showed that CANA kept HDL-Cholesterol, LDL-Cholesterol, and IDL-Cholesterol levels steady while these lipoprotein species were increased in placebo- and insulin-treated control groups. CANA treatment of HF-STZ mice reduced post-heparin plasma lipoprotein lipase (LPL) activity at 2 (-40%) and 5 (-30%) weeks compared to placebo. Tissue-specific LPL activity following CANA treatment showed similar reduction. In summary, CANA prevented the total cholesterol increase in HF-STZ mice without effects on plasma lipids or lipoproteins, but did decrease LPL, implying a potential role of LPL-dependent lipoprotein metabolism in CANA action. These effects did not recapitulate the effect of SGLT2 inhibitors on lipids and lipoproteins in human, suggesting that a better murine T2DM model (such as the ApoB100 humanized CETP-overexpressing mouse) is needed next. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Free cholesterol is a potent regulator of lipid transfer protein function

    International Nuclear Information System (INIS)

    Morton, R.E.

    1988-01-01

    This study investigates the effect of altered lipoprotein free cholesterol (FC) content on the transfer of cholesteryl ester (CE) and triglyceride (TG) from very low- (VLDL), low- (LDL), and high-(HDL) density lipoproteins by the plasma-derived lipid transfer protein (LTP). The FC content of VLDL and HDL was selectively altered by incubating these lipoproteins with FC/phospholipid dispersions of varying composition. FC-modified lipoproteins were then equilibrated with [3H] TG, [14C]CE-labeled lipoproteins of another class to facilitate the subsequent modification of the radiolabeled donor lipoproteins. LTP was added and the extent of radiolabeled TG and CE transfer determined after 1 h. With either LDL or VLDL as lipid donor, an increase in the FC content of these lipoproteins caused a concentration-dependent inhibition (up to 50%) of CE transfer from these particles, without any significant effect on TG transfer. In contrast, with HDL as donor, increasing the HDL FC content had little effect on CE transfer from HDL, but markedly stimulated (up to 2.5-fold) the transfer of TG. This differential effect of FC on the unidirectional transfer of radiolabeled lipids from VLDL and HDL led to marked effects on LTP-facilitated net mass transfer of lipids. During long-term incubation of a constant amount of LTP with FC-modified VLDL and HDL, the extent of net mass transfer was linearly related to lipoprotein FC content; a 4-fold increase in FC content resulted in a 3-fold stimulation of the CE mass transferred to VLDL, which was coupled to an equimolar, reciprocal transfer of TG mass to HDL. Since lipid transfer between lipoproteins is integral to the process of reverse cholesterol transport, we conclude that lipoprotein FC levels are a potent, positive regulator of the pathways involved in sterol clearance. FC may modulate lipid transfer by altering the availability of CE and TG to LTP at the lipoprotein surface

  8. THE EFFECT OF WEIGHT LOSS ON PLASMA MDA, LIPIDS PROFILE AND APOA AND APOB IN OBESE WOMAN

    Directory of Open Access Journals (Sweden)

    Fatemeh Ramezani

    2010-12-01

    Full Text Available Abstract   INTRODUCTION: Obesity increased reactive oxygen species generation that it result in oxidative injury on lipids profile and lipoproteins that all of which insert atherosclerotic effect. Nutritional intervention by means of a hypocaloric diet could produce protective effects against the redox unbalance.  In this context, the aim of this intervention trial was to estimate the ability of weight loss to improve oxidative stress biomarkers related to lipids peroxidation and lipid profile and apoproteins concentrations of serum in obese women.   METHODS: Thirties eight obese women, 15-45 years old, with body mass index (BMI <30 kg/m2 were recruited. The obese women were assigned to energy-restricted dietary treatments for 12 week. Before and after nutritional intervention and 10% weight reduction, anthropometric measurements were taken and fasting blood was drawn. Plasma levels of (MDA determined with TBAR and triglyceride, total cholesterol and HDL cholesterol. Keywords: MDA, lipid profile, obese woman, Weight loss.

  9. Does creatine supplementation improve the plasma lipid profile in healthy male subjects undergoing aerobic training?

    Directory of Open Access Journals (Sweden)

    Scagliusi Fernanda B

    2008-10-01

    Full Text Available Abstract We aimed to investigate the effects of creatine (Cr supplementation on the plasma lipid profile in sedentary male subjects undergoing aerobic training. Methods Subjects (n = 22 were randomly divided into two groups and were allocated to receive treatment with either creatine monohydrate (CR (~20 g·day-1 for one week followed by ~10 g·day-1 for a further eleven weeks or placebo (PL (dextrose in a double blind fashion. All subjects undertook moderate intensity aerobic training during three 40-minute sessions per week, over 3 months. High-density lipoprotein cholesterol (HDL, low-density lipoprotein cholesterol (LDL, very low-density lipoprotein cholesterol (VLDL, total cholesterol (TC, triglyceride (TAG, fasting insulin and fasting glycemia were analyzed in plasma. Thereafter, the homeostasis model assessment (HOMA was calculated. Tests were performed at baseline (Pre and after four (Post 4, eight (Post 8 and twelve (Post 12 weeks. Results We observed main time effects in both groups for HDL (Post 4 versus Post 8; P = 0.01, TAG and VLDL (Pre versus Post 4 and Post 8; P = 0.02 and P = 0.01, respectively. However, no between group differences were noted in HDL, LDL, CT, VLDL and TAG. Additionally, fasting insulin, fasting glycemia and HOMA did not change significantly. Conclusion These findings suggest that Cr supplementation does not exert any additional effect on the improvement in the plasma lipid profile than aerobic training alone.

  10. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    Science.gov (United States)

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  11. The epidermis of grhl3-null mice displays altered lipid processing and cellular hyperproliferation.

    Science.gov (United States)

    Ting, Stephen B; Caddy, Jacinta; Wilanowski, Tomasz; Auden, Alana; Cunningham, John M; Elias, Peter M; Holleran, Walter M; Jane, Stephen M

    2005-04-01

    The presence of an impermeable surface barrier is an essential homeostatic mechanism in almost all living organisms. We have recently described a novel gene that is critical for the developmental instruction and repair of the integument in mammals. This gene, Grainy head-like 3 (Grhl3) is a member of a large family of transcription factors that are homologs of the Drosophila developmental gene grainy head (grh). Mice lacking Grhl3 fail to form an adequate skin barrier, and die at birth due to dehydration. These animals are also unable to repair the epidermis, exhibiting failed wound healing in both fetal and adult stages of development. These defects are due, in part, to diminished expression of a Grhl3 target gene, Transglutaminase 1 (TGase 1), which encodes a key enzyme involved in cross-linking of epidermal structural proteins and lipids into the cornified envelope (CE). Remarkably, the Drosophila grh gene plays an analogous role, regulating enzymes involved in the generation of quinones, which are essential for cross-linking structural components of the fly epidermis. In an extension of our initial analyses, we focus this report on additional defects observed in the Grhl3-null epidermis, namely defective extra-cellular lipid processing, altered lamellar lipid architecture and cellular hyperproliferation. These abnormalities suggest that Grhl3 plays diverse mechanistic roles in maintaining homeostasis in the skin.

  12. Lack of predictive power of plasma lipids or lipoproteins for gestational diabetes mellitus in Japanese women.

    Science.gov (United States)

    Iimura, Yuko; Matsuura, Masaaki; Yao, Zemin; Ito, Satoru; Fujiwara, Mutsunori; Yoshitsugu, Michiyasu; Miyauchi, Akito; Hiyoshi, Toru

    2015-11-01

    To determine the diagnostic potential of plasma lipids and apolipoproteins in gestational diabetes mellitus (GDM), we carried out a retrospective cohort study of 1,161 Japanese women at 20-28 weeks of gestation who underwent a glucose challenge test (GCT). A total of 1,161 Japanese women at 20-28 weeks of gestation underwent a GCT. Participants with a positive test (GCT[+]) underwent a subsequent oral glucose tolerance test. Clinical and biochemical parameters were determined and quantification of apolipoproteins (Apo), including ApoB, ApoB48, ApoA-I and ApoC-III, was carried out. The prevalence of GCT(+; with a 130 mg/dL glucose cut-off) and GDM was 20% and 4%, respectively. There was a trend for increased triglycerides and ApoC-III in GDM(+) participants. However, the difference in plasma triglycerides, ApoC-III or ApoB48 did not reach statistical significance between GDM(+) and GDM(-) women. Values of 1-h glucose (P < 0.001) and fasting glucose (P = 0.002) were significant risk factors for GDM. Prediction of GDM using only the ApoC-III value is not easy, although triglycerides and ApoC-III were higher in the GDM(+) group. The present findings show no significant difference in plasma lipid levels between women diagnosed with GDM and those with normal glucose tolerance.

  13. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS

    DEFF Research Database (Denmark)

    Schneider, Falk; Waithe, Dominic; Clausen, Mathias P

    2017-01-01

    (STED-FCS) to access and compare the diffusion characteristics of fluorescent lipid analogues and GPI-anchored proteins (GPI-APs) in the live cell plasma membrane and in actin cytoskeleton-free cell-derived giant plasma membrane vesicles (GPMVs). Hindered diffusion of phospholipids and sphingolipids......Diffusion and interaction dynamics of molecules at the plasma membrane play an important role in cellular signalling, and they are suggested to be strongly associated with the actin cytoskeleton. Here, we utilise super-resolution STED microscopy combined with fluorescence correlation spectroscopy...... forming immobile clusters, both of which disappear in GPMVs. Our data underline the crucial role of the actin cortex in maintaining hindered diffusion modes of many but not all of the membrane molecules, and highlight a powerful experimental approach to decipher specific influences on molecular plasma...

  14. Effect of gender, age, diet and smoking status on chronomics of circulating plasma lipid components in healthy Indians.

    Science.gov (United States)

    Singh, Ranjana; Sharma, Sumita; Singh, Rajesh K; Mahdi, Abbas A; Singh, Raj K; Lee Gierke, Cathy; Cornelissen, Germaine

    2016-08-01

    Circulating lipid components were studied under near-normal tropical conditions (around Lucknow) in 162 healthy volunteers - mostly medical students, staff members and members of their families (103 males and 59 females; 7 to 75y), subdivided into 4 age groups: A (7-20y; N=42), B (21-40y; N=60), C (41-60y; N=35) and D (61-75y; N=25). Blood samples were collected from each subject every 6h for 24h (4 samples). Plasma was separated and total cholesterol, high-density-lipoprotein (HDL) cholesterol, phospholipids and total lipids were measured spectrophotometrically. Data from each subject were analyzed by cosinor. We examined by multiple-analysis of variance how the MESOR (Midline Estimating Statistic Of Rhythm, a rhythm-adjusted mean) and the circadian amplitude of these variables is affected by gender, age, diet (vegetarian vs. omnivore), and smoking status. In addition to effects of gender and age, diet and smoking were found to affect the MESOR of circulating plasma lipid components in healthy Indians residing in northern India. Age also affected the circadian amplitude of these variables. These results indicate the possibility of using non-pharmacological interventions to improve a patient's metabolic profile before prescribing medication under near normal tropical conditions. They also add information that may help refine cut-off values in the light of factors shown here to affect blood lipids. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The Effect of Ramadan Fasting and Weight-Lifting Training on Plasma Volume, Glucose and Lipids Profile of Male Weight-Lifters

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Tayebi

    Full Text Available Objective(sThe purpose of the present study was to evaluate the effect of Ramadan fasting and weight-lifting training on plasma volume, glucose, and lipids profile of male weight-lifter.Materials and MethodsForty male weight-lifters were recruited and divided into 4 groups (n=10 each and as the following groups: control (C, fasting (F, training (T and fasting-training (F-T. The T and F-T groups performed weight-lifting technique trainings and hypertrophy body building (3 sessions/week, 90 min/session. All subjects were asked to complete a medical examination as well as a medical questionnaire to ensure that they were not taking any medication, were free of cardiac, respiratory, renal, and metabolic diseases, and were not using steroids. Blood samples were taken at 24 hr before and 24 hr after one month of fasting and weight-lifting exercise. The plasma volume, fasting blood sugar (FBS, lipid profiles, and lipoproteins were analyzed in blood samples. ResultsBody weight and plasma volume showed significant (P< 0.05 decrease and increase in the F group (P< 0.05 respectively. Also, a significant reduction was observed in F-T group body weight (P< 0.01. A significant increase was found in FBS level of F group (P< 0.05. The lipid profiles and lipoproteins didn’t change significantly in C, F, T and the F-T groups.ConclusionThe effect of Ramadan fasting on body weight and plasma volumes may be closely related to the nutritional diet or biochemical response to fasting.

  16. Plasma lipids, lipoproteins, and triglyceride turnover in eu- and hypo-thyroid rats and rats on a hypocaloric diet.

    Science.gov (United States)

    Dory, L; Krause, B R; Roheim, P S

    1981-08-01

    Lipid and lipoprotein concentration, and triglyceride turnover were studied in control, thyroidectomized, and pair-fed control rats (pair-fed to match the food intake of the thyroidectomized rats). Thyroidectomy induced a significant increase in plasma cholesterol (and low density lipoprotein) concentrations and a decrease in plasma triglyceride (and very low density lipoprotein) concentrations. Changes in similar direction but of smaller magnitude were observed in the plasma of the pair-fed control rats. To further investigate triglyceride metabolism in these three groups of animals, triglyceride turnover was studied in fasted, unrestrained, and unanesthetized rats, following injection of [2-3H]glycerol. Peak incorporation of [2-3H]glycerol into plasma triglyceride occurred in all three groups of animals at 25 min after precursor administration, although the maximal incorporation was substantially lower in the thyroidectomized group than in either of the control groups. Thereafter, plasma triglyceride radioactivity decayed monoexponentially with a half-life of 24 +/- 1 min for both normal and pair-fed control rats, compared with the half-life of 41 +/- 3 min observed in the thyroidectomized rats. The calculated apparent fractional catabolic rates were thus 0.029 min-1 for both control groups and only 0.017 min-1 for the thyroidectomized animals. The apparent total catabolic rates of plasma triglyceride were 299 +/- 11, 138 +/- 11, and 48 +/- 4 micrograms triglyceride . min-1 for the normal controls, pair-fed controls, and thyroidectomized rats, respectively. These data further emphasize the importance of thyroid hormones in regulating plasma lipid and lipoprotein metabolism and, specifically, indicate that hypothyroidism results in a reduction of triglyceride secretion into, and the removal from, circulation. Furthermore, evidence was presented that the decreased caloric intake of the hypothyroid animals cannot, in itself, account for this observation.

  17. Juvenile-onset loss of lipid-raft domains in attractin-deficient mice

    International Nuclear Information System (INIS)

    Azouz, Abdallah; Gunn, Teresa M.; Duke-Cohan, Jonathan S.

    2007-01-01

    Mutations at the attractin (Atrn) locus in mice result in altered pigmentation on an agouti background, higher basal metabolic rate and juvenile-onset hypomyelination leading to neurodegeneration, while studies on human immune cells indicate a chemotaxis regulatory function. The underlying biochemical defect remains elusive. In this report we identify a role for attractin in plasma membrane maintenance. In attractin's absence there is a decline in plasma membrane glycolipid-enriched rafts from normal levels at 8 weeks to a complete absence by 24 weeks. The structural integrity of lipid rafts depends upon cholesterol and sphingomyelin, and can be identified by partitioning within of ganglioside GM 1 . Despite a significant fall in cellular cholesterol with maturity, and a lesser fall in both membrane and total cellular GM 1 , these parameters lag behind raft loss, and are normal when hypomyelination/neurodegeneration has already begun thus supporting consequence rather than cause. These findings can be recapitulated in Atrn-deficient cell lines propagated in vitro. Further, signal transduction through complex membrane receptor assemblies is not grossly disturbed despite the complete absence of lipid rafts. We find these results compatible with a role for attractin in plasma membrane maintenance and consistent with the proposal that the juvenile-onset hypomyelination and neurodegeneration represent a defect in attractin-mediated raft-dependent myelin biogenesis

  18. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  19. JTT-130, a microsomal triglyceride transfer protein (MTP inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs

    Directory of Open Access Journals (Sweden)

    Shrestha Sudeep

    2005-09-01

    Full Text Available Abstract Background Microsomal transfer protein inhibitors (MTPi have the potential to be used as a drug to lower plasma lipids, mainly plasma triglycerides (TG. However, studies with animal models have indicated that MTPi treatment results in the accumulation of hepatic TG. The purpose of this study was to evaluate whether JTT-130, a unique MTPi, targeted to the intestine, would effectively reduce plasma lipids without inducing a fatty liver. Methods Male guinea pigs (n = 10 per group were used for this experiment. Initially all guinea pigs were fed a hypercholesterolemic diet containing 0.08 g/100 g dietary cholesterol for 3 wk. After this period, animals were randomly assigned to diets containing 0 (control, 0.0005 or 0.0015 g/100 g of MTPi for 4 wk. A diet containing 0.05 g/100 g of atorvastatin, an HMG-CoA reductase inhibitor was used as the positive control. At the end of the 7th week, guinea pigs were sacrificed to assess drug effects on plasma and hepatic lipids, composition of LDL and VLDL, hepatic cholesterol and lipoprotein metabolism. Results Plasma LDL cholesterol and TG were 25 and 30% lower in guinea pigs treated with MTPi compared to controls (P Conclusion These results suggest that JTT-130 could have potential clinical applications due to its plasma lipid lowering effects with no alterations in hepatic lipid concentrations.

  20. Bioactive constituents from "triguero" asparagus improve the plasma lipid profile and liver antioxidant status in hypercholesterolemic rats.

    Science.gov (United States)

    Vázquez-Castilla, Sara; De la Puerta, Rocío; Garcia Gimenez, María Dolores; Fernández-Arche, María Angeles; Guillén-Bejarano, Rafael

    2013-10-24

    We have previously shown that the Andalusian-cultivated Asparagus officinalis L. "triguero" variety produces hypocholesterolemic and hepatoprotective effects on rats. This asparagus is a rich source of phytochemicals although we hypothesized there would be some of them more involved in these functional properties. Thus, we aimed to study the effects of asparagus (500 mg/kg body weight (bw)/day) and their partially purified fractions in flavonoids (50 mg/kg bw/day), saponins (5 mg/kg bw/day) and dietary fiber (500 mg/kg bw/day) on oxidative status and on lipid profile in rats fed a cholesterol-rich diet. After 5 weeks treatment, plasma lipid values, hepatic enzyme activities and liver malondialdehyde (MDA) concentrations were measured. With the exception of the saponin fraction (SF), the administration of lyophilized asparagus (LA), fiber fraction (FF), and flavonoid fraction (FVF) to hypercholesterolemic rats produced a significant hypolipidemic effect compare to a high-cholesterol diet (HCD). In addition, the LA and FVF groups exhibited a significant increase in enzyme activity from multiple hepatic antioxidant systems including: superoxide dismutase, catalase, and gluthatione reductase/peroxidase as well as a decrease in MDA concentrations compared to HCD group. These results demonstrate that "triguero" asparagus possesses bioactive constituents, especially dietary fiber and flavonoids, that improve the plasma lipid profile and prevent hepatic oxidative damage under conditions of hypercholesterolemia.

  1. Quantitative lipidomic analysis of plasma and plasma lipoproteins using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Serna, Jorge; García-Seisdedos, David; Alcázar, Alberto; Lasunción, Miguel Ángel; Busto, Rebeca; Pastor, Óscar

    2015-07-01

    Knowledge of the plasma lipid composition is essential to clarify the specific roles of different lipid species in various pathophysiological processes. In this study, we developed an analytical strategy combining high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) and off-line coupling with matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry (MALDI-TOF/MS) to determine the composition of plasma and major lipoproteins at two levels, lipid classes and lipid species. We confirmed the suitability of MALDI-TOF/MS as a quantitative measurement tool studying the linearity and repeatability for triglycerides (TG), phosphatidylethanolamine (PE) and phosphatidylcholine (PC). Moreover, data obtained with this method were correlated with other lipid classes and species measurements using currently available technologies. To establish the potential utility of our approach, human plasma very low density- (VLDL), low density- (LDL) and high density- (HDL) lipoproteins from 10 healthy donors were separated using ultracentrifugation, and compositions of nine lipid classes, cholesteryl esters (CE), TG, free cholesterol (FC), PE, phosphatidylinositol (PI), sulfatides (S), PC, lysophosphatidylcholine (LPC) and sphingomyelin (SM), analyzed. In total, 157 lipid species in plasma, 182 in LDL, 171 in HDL, and 148 in VLDL were quantified. The lipidomic profile was consistent with known differences in lipid classes, but also revealed unexpected differences in lipid species distribution of lipoproteins, particularly for LPC and SM. In summary, the methodology developed in this study constitutes a valid approach to determine the lipidomic composition of plasma and lipoproteins. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Genetics of Lipid and Lipoprotein Disorders and Traits.

    Science.gov (United States)

    Dron, Jacqueline S; Hegele, Robert A

    2016-01-01

    Plasma lipids, namely cholesterol and triglyceride, and lipoproteins, such as low-density lipoprotein (LDL) and high-density lipoprotein, serve numerous physiological roles. Perturbed levels of these traits underlie monogenic dyslipidemias, a diverse group of multisystem disorders. We are on the verge of having a relatively complete picture of the human dyslipidemias and their components. Recent advances in genetics of plasma lipids and lipoproteins include the following: (1) expanding the range of genes causing monogenic dyslipidemias, particularly elevated LDL cholesterol; (2) appreciating the role of polygenic effects in such traits as familial hypercholesterolemia and combined hyperlipidemia; (3) accumulating a list of common variants that determine plasma lipids and lipoproteins; (4) applying exome sequencing to identify collections of rare variants determining plasma lipids and lipoproteins that via Mendelian randomization have also implicated gene products such as NPC1L1 , APOC3 , LDLR , APOA5 , and ANGPTL4 as causal for atherosclerotic cardiovascular disease; and (5) using naturally occurring genetic variation to identify new drug targets, including inhibitors of apolipoprotein (apo) C-III, apo(a), ANGPTL3, and ANGPTL4. Here, we compile this disparate range of data linking human genetic variation to plasma lipids and lipoproteins, providing a "one stop shop" for the interested reader.

  3. Molecular dynamics study of lipid bilayers modeling the plasma membranes of normal murine thymocytes and leukemic GRSL cells.

    Science.gov (United States)

    Andoh, Yoshimichi; Okazaki, Susumu; Ueoka, Ryuichi

    2013-04-01

    Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.15K and 1 atm) to investigate changes in membrane properties induced by canceration. The model membranes used in our calculations for normal and leukemic thymocytes comprised 23 and 25 kinds of lipids, respectively, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. The mole fractions of the lipids adopted here were based on previously published experimental values. Our calculations clearly showed that the membrane area was increased in leukemic cells, and that the isothermal area compressibility of the leukemic plasma membranes was double that of normal cells. The calculated membranes of leukemic cells were thus considerably bulkier and softer in the lateral direction compared with those of normal cells. The tilt angle of the cholesterol and the conformation of the phospholipid fatty acid tails both showed a lower level of order in leukemic cell membranes compared with normal cell membranes. The lateral radial distribution function of the lipids also showed a more disordered structure in leukemic cell membranes than in normal cell membranes. These observations all show that, for the present thymocytes, the lateral structure of the membrane is considerably disordered by canceration. Furthermore, the calculated lateral self-diffusion coefficient of the lipid molecules in leukemic cell membranes was almost double that in normal cell membranes. The calculated rotational and wobbling autocorrelation functions also indicated that the molecular motion of the lipids was enhanced in leukemic cell membranes. Thus, here we have demonstrated that the membranes of thymocyte leukemic cells are more disordered and more fluid than normal cell membranes. Copyright © 2013

  4. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice.

    Science.gov (United States)

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas D E; Rozen, Rima

    2015-03-01

    Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Folic acid-supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr(+/+) and Mthfr(+/-) mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr(+/-) mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr(+/-) livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr(+/-) mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2-hit mechanism whereby mutant hepatocytes cannot

  5. Study of lipid profile and parieto-temporal lipid peroxidation in AlCl3 mediated neurotoxicity. modulatory effect of fenugreek seeds

    Directory of Open Access Journals (Sweden)

    Belaïd-Nouira Yosra

    2012-01-01

    Full Text Available Abstract Background Peroxidation of lipid (LPO membrane and cholesterol metabolism have been involved in the physiopathology of many diseases of aging brain. Therefore, this prospective animal study was carried firstly to find out the correlation between LPO in posterior brain and plasmatic cholesterol along with lipoprotein levels after chronic intoxication by aluminium chloride (AlCl3. Chronic aluminum-induced neurotoxicity has been in fact related to enhanced brain lipid peroxidation together with hypercholesterolemia and hypertriglyceridemia, despite its controversial etiological role in neurodegenerative diseases. Secondly an evaluation of the effectiveness of fenugreek seeds in alleviating the engendered toxicity through these biochemical parameters was made. Results Oral administration of AlCl3 to rats during 5 months (500 mg/kg bw i.g for one month then 1600 ppm via the drinking water enhanced the levels of LPO in posterior brain, liver and plasma together with lactate dehydrogenase (LDH activities, total cholesterol (TC, triglycerides (TG and LDL-C (Low Density Lipoproteins levels. All these parameters were decreased following fenugreek seeds supplementation either as fenugreek seed powder (FSP or fenugreek seed extract (FSE. A notable significant correlation was observed between LPObrain and LDL-C on one hand and LDHliver on the other hand. This latter was found to correlate positively with TC, TG and LDL-C. Furthermore, high significant correlations were observed between LDHbrain and TC, TG, LDL-C, LPObrain as well as LDHliver. Conclusion Aluminium-induced LPO in brain could arise from alteration of lipid metabolism particularly altered lipoprotein metabolism rather than a direct effect of cholesterol oxidation. Fenugreek seeds could play an anti-peroxidative role in brain which may be attributed in part to its modulatory effect on plasmatic lipid metabolism.

  6. Erythrocyte membrane, plasma and atherosclerotic plaque lipid pattern in coronary heart disease Perfil lipídico de membrana de eritrocito, plasma y placa ateromatosa en la enfermedad coronaria

    Directory of Open Access Journals (Sweden)

    Natalia R. Lausada

    2007-10-01

    Full Text Available The objective was to analyze the lipid composition of the atherosclerotic plaque (AP, plasma and erythrocyte membrane (EM in patients with advanced coronary heart disease (CHD. AP were obtained through endarterectomy in 18 patients. Ten normolipemic healthy subjects were selected to obtain the normal lipid pattern profile. Total lipids of AP and EM were determined by HPTLC, and the fatty acid profile from AP, EM and plasma using TLC-FID. The relative amount of the lipid species analyzed in AP was in line with the data in the literature [phospholipids: 23.5 mol% ± 3.5; total cholesterol 68.9 mol% ± 7.9; triglyceride 7.6 mol% ± 3.4]. Plasma and EM from CHD patients compared to controls, showed a decrease in polyunsaturated fatty acids and an increase in saturated fatty acids leading to a decrease in the unsaturation index (plasma: 1.67 ± 0.06 vs. 1.28 ± 0.03, PEl objetivo fue analizar la composición lipídica de las membranas de eritrocitos (ME, plasma y placas ateromatosas (PA en pacientes con enfermedad coronaria avanzada (ECV. Las PA fueron obtenidas de endarterectomías coronarias de 18 pacientes. Fueron seleccionados 10 sujetos sanos, normolipémicos, como grupo control. Los lípidos totales de PA y ME se determinaron utilizando HPTLC, y el perfil de ácidos grasos de las PA, ME y plasma mediante TLC-FID. La cantidad relativa de las especies lipídicas obtenidas de las PA coinciden con la literatura [fosfolípidos 23.5 mol% ± 3.5; colesterol total 68.9 mol% ± 7.9; triglicéridos 7.6 mol% ± 3.4]. En el plasma y en las ME de los pacientes con ECV se observó, comparando con los pacientes controles, una disminución de los ácidos grasos poli-no saturados acompañado de un aumento de los ácidos grasos saturados que provocó el descenso del índice de instauración (plasma: 1.67 ± 0.06 vs. 1.28 ± 0.03, P<0.05; ME: 2.28 ± 0.04 vs. 1.25 ± 0.010, P<0.05 y el incremento del cociente AG saturados/insaturados (plasma: 0.35 ± 0.02 vs. 0

  7. Effect of lipid-lowering and anti-hypertensive drugs on plasma homocysteine levels

    Directory of Open Access Journals (Sweden)

    Jutta Dierkes

    2007-03-01

    Full Text Available Jutta Dierkes, Claus Luley, Sabine WestphalInstitute of Clinical Chemistry and Biochemistry, University Hospital Magdeburg, Germany Abstract: Elevated plasma concentrations of homocysteine, a sulfur-containing amino acid, are a risk factor for coronary, cerebral and peripheral artery disease. Next to other factors, drugs used for the prevention or treatment of cardiovascular disease may modulate plasma homocysteine levels. Thus, a drug induced homocysteine increase may counteract the desired cardioprotective effect. The aim is to summarize the current knowledge on the effect of two important classes of drugs, lipid-lowering drugs and anti-hypertensive drugs, on homocysteine metabolism. Among the lipid-lowering drugs, especially the fibric acid derivatives, which are used for treatment of hypertriglyceridemia and low HDL-cholesterol, are associated with an increase of homocysteine by 20%–50%. This increase can be reduced, but not totally avoided by the addition of folic acid, vitamin B12 and B6 to fibrates. HMG-CoA reductase inhibitors (statins do not influence homocysteine concentrations substantially. The effects of nicotinic acid and n3-fatty acids on the homocysteine concentrations are less clear, more studies are necessary to clarify their influence on homocysteine. Antihypertensive drugs have also been studied with respect to homocysteine metabolism. A homocysteine increase has been shown after treatment with hydrochlorothiazide, a lowering was observed after treatment with ß-blockers, but no effect with ACE-inhibitors. The clinical significance of the homocysteine elevation by fibrates and thiazides is not clear. However, individual patients use these drugs for long time, indicating that even moderate increases may be important.Keywords: homocysteine, fibrates, diuretics, cardiovascular disease

  8. Diets high in palmitic acid (16:0), lauric and myristic acids (12:0 + 14:0), or oleic acid (18:1) do not alter postprandial or fasting plasma homocysteine and inflammatory markers in healthy Malaysian adults.

    Science.gov (United States)

    Voon, Phooi Tee; Ng, Tony Kock Wai; Lee, Verna Kar Mun; Nesaretnam, Kalanithi

    2011-12-01

    Dietary fat type is known to modulate the plasma lipid profile, but its effects on plasma homocysteine and inflammatory markers are unclear. We investigated the effects of high-protein Malaysian diets prepared with palm olein, coconut oil (CO), or virgin olive oil on plasma homocysteine and selected markers of inflammation and cardiovascular disease (CVD) in healthy adults. A randomized-crossover intervention with 3 dietary sequences of 5 wk each was conducted in 45 healthy subjects. The 3 test fats, namely palmitic acid (16:0)-rich palm olein (PO), lauric and myristic acid (12:0 + 14:0)-rich CO, and oleic acid (18:1)-rich virgin olive oil (OO), were incorporated at two-thirds of 30% fat calories into high-protein Malaysian diets. No significant differences were observed in the effects of the 3 diets on plasma total homocysteine (tHcy) and the inflammatory markers TNF-α, IL-1β, IL-6, and IL-8, high-sensitivity C-reactive protein, and interferon-γ. Diets prepared with PO and OO had comparable nonhypercholesterolemic effects; the postprandial total cholesterol for both diets and all fasting lipid indexes for the OO diet were significantly lower (P diet. Unlike the PO and OO diets, the CO diet was shown to decrease postprandial lipoprotein(a). Diets that were rich in saturated fatty acids prepared with either PO or CO, and an OO diet that was high in oleic acid, did not alter postprandial or fasting plasma concentrations of tHcy and selected inflammatory markers. This trial was registered at clinicaltrials.gov as NCT00941837.

  9. The antifungal properties of a 2S albumin-homologous protein from passion fruit seeds involve plasma membrane permeabilization and ultrastructural alterations in yeast cells.

    Science.gov (United States)

    Agizzio, Ana Paula; Da Cunha, Maura; Carvalho, André O; Oliveira, Marco Antônio; Ribeiro, Suzanna F F; Gomes, Valdirene M

    2006-10-01

    Different types of antimicrobial proteins were purified from plant seeds, including chitinases, β-1,3-glucanases, defensins, thionins, lipid transfer proteins and 2S albumins. It has become clear that these groups of proteins play an important role in the protection of plants from microbial infection. Recent results from our laboratory have shown that the defense-related proteins from passion fruit seeds, named Pf1 and Pf2 (which show sequence homology with 2S albumins), inhibit fungal growth and glucose-stimulated acidification of the medium by Saccharomyces cerevisiae cells. The aim of this study was to determine whether 2S albumins from passion fruit seeds induce plasma membrane permeabilization and cause morphological alterations in yeast cells. Initially, we used an assay based on the uptake of SYTOX Green, an organic compound that fluoresces upon interaction with nucleic acids and penetrates cells with compromised plasma membranes, to investigate membrane permeabilization in S. cerevisiae cells. When viewed with a confocal laser microscope, S. cervisiae cells showed strong SYTOX Green fluorescence in the cytosol, especially in the nuclei. 2S albumins also inhibited glucose-stimulated acidification of the medium by S. cerevisiae cells, which indicates a probable impairment of fungal metabolism. The microscopical analysis of the yeast cells treated with 2S albumins demonstrated several morphological alterations in cell shape, cell surface, cell wall and bud formation, as well as in the organization of intracellular organelles. Copyright © 2006 Elsevier Ireland Ltd. All rights reserved.

  10. The physiology of lipid storage and use in reptiles.

    Science.gov (United States)

    Price, Edwin R

    2017-08-01

    Lipid metabolism is central to understanding whole-animal energetics. Reptiles store most excess energy in lipid form, mobilise those lipids when needed to meet energetic demands, and invest lipids in eggs to provide the primary source of energy to developing embryos. Here, I review the mechanisms by which non-avian reptiles store, transport, and use lipids. Many aspects of lipid absorption, transport, and storage appear to be similar to birds, including the hepatic synthesis of lipids from glucose substrates, the transport of triglycerides in lipoproteins, and the storage of lipids in adipose tissue, although adipose tissue in non-avian reptiles is usually concentrated in abdominal fat bodies or the tail. Seasonal changes in fat stores suggest that lipid storage is primarily for reproduction in most species, rather than for maintenance during aphagic periods. The effects of fasting on plasma lipid metabolites can differ from mammals and birds due to the ability of non-avian reptiles to reduce their metabolism drastically during extended fasts. The effect of fasting on levels of plasma ketones is species specific: β-hydroxybutyrate concentration may rise or fall during fasting. I also describe the process by which the bulk of lipids are deposited into oocytes during vitellogenesis. Although this process is sometimes ascribed to vitellogenin-based transport in reptiles, the majority of lipid deposition occurs via triglycerides packaged in very-low-density lipoproteins (VLDLs), based on physiological, histological, biochemical, comparative, and genomic evidence. I also discuss the evidence for non-avian reptiles using 'yolk-targeted' VLDLs during vitellogenesis. The major physiological states - feeding, fasting, and vitellogenesis - have different effects on plasma lipid metabolites, and I discuss the possibilities and potential problems of using plasma metabolites to diagnose feeding condition in non-avian reptiles. © 2016 Cambridge Philosophical Society.

  11. Upregulation of glycolytic enzymes, mitochondrial dysfunction and increased cytotoxicity in glial cells treated with Alzheimer's disease plasma.

    Directory of Open Access Journals (Sweden)

    Tharusha Jayasena

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder associated with increased oxidative stress and neuroinflammation. Markers of increased protein, lipid and nucleic acid oxidation and reduced activities of antioxidant enzymes have been reported in AD plasma. Amyloid plaques in the AD brain elicit a range of reactive inflammatory responses including complement activation and acute phase reactions, which may also be reflected in plasma. Previous studies have shown that human AD plasma may be cytotoxic to cultured cells. We investigated the effect of pooled plasma (n = 20 each from healthy controls, individuals with amnestic mild cognitive impairment (aMCI and Alzheimer's disease (AD on cultured microglial cells. AD plasma and was found to significantly decrease cell viability and increase glycolytic flux in microglia compared to plasma from healthy controls. This effect was prevented by the heat inactivation of complement. Proteomic methods and isobaric tags (iTRAQ found the expression level of complement and other acute phase proteins to be altered in MCI and AD plasma and an upregulation of key enzymes involved in the glycolysis pathway in cells exposed to AD plasma. Altered expression levels of acute phase reactants in AD plasma may alter the energy metabolism of glia.

  12. Conversion of α-linolenic acid to long-chain omega-3 fatty acid derivatives and alterations of HDL density subfractions and plasma lipids with dietary polyunsaturated fatty acids in Monk parrots (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, C; Larner, C; Heatley, J J; Bailey, C A; MacFarlane, R D; Bauer, J E

    2014-04-01

    The effect of α-linolenic acid from a flaxseed (FLX)-enriched diet on plasma lipid and fatty acid metabolism and possible atherosclerosis risk factors was studied in Monk parrots (Myiopsitta monachus). Twenty-four Monk parrots were randomly assigned to diets containing either 10% ground SUNs or 10% ground FLXs. Feed intake was calculated daily. Blood samples, body condition scores and body weights were obtained at -5 weeks, day 0, 7, 14, 28, 42 and 70. Plasma samples were analysed for total cholesterol, free cholesterol, triacylglycerols and lipoproteins. Phospholipid subfraction fatty acid profiles were determined. By day 70, the FLX group had significantly higher plasma phospholipid fatty acids including 18:3n-3 (α-linolenic acid), 20:5n-3 (eicosapentaenoic acid) and 22:6n-3 (docosahexaenoic acid). The sunflower group had significantly higher plasma phospholipid levels of 20:4n-6 (arachidonic acid). By day 70, the high-density lipoprotein (HDL) peak shifted resulting in significantly different HDL peak densities between the two experimental groups (1.097 g/ml FLX group and 1.095 g/ml SUN group, p = 0.028). The plasma fatty acid results indicate that Monk parrots can readily convert α-linolenic acid to the long-chain omega-3 derivatives including docosahexaenoic acid and reduce 20:4n-6 accumulation in plasma phospholipids. The reason for a shift in the HDL peak density is unknown at this time. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  13. Effects of dietary coconut oil, butter and safflower oil on plasma lipids, lipoproteins and lathosterol levels.

    Science.gov (United States)

    Cox, C; Sutherland, W; Mann, J; de Jong, S; Chisholm, A; Skeaff, M

    1998-09-01

    The aim of this present study was to determine plasma levels of lathosterol, lipids, lipoproteins and apolipoproteins during diets rich in butter, coconut fat and safflower oil. The study consisted of sequential six week periods of diets rich in butter, coconut fat then safflower oil and measurements were made at baseline and at week 4 in each diet period. Forty-one healthy Pacific island polynesians living in New Zealand participated in the trial. Subjects were supplied with some foods rich in the test fats and were given detailed dietary advice which was reinforced regularly. Plasma lathosterol concentration (P safflower oil diets compared with butter diets. Plasma total cholesterol, HDL cholesterol and apoA-levels were also significantly (Psafflower oil compared with diets rich in butter and might be associated with lower production rates of apoB-containing lipoproteins.

  14. Structural changes in plasma membranes prepared from irradiated Chinese hamster V79 cells as revealed by Raman spectroscopy

    International Nuclear Information System (INIS)

    Verma, S.P.; Sonwalkar, N.

    1991-01-01

    The effect of gamma irradiation on the integrity of plasma membranes isolated from Chinese hamster V79 cells was investigated by Raman spectroscopy. Plasma membranes of control V79 cells show transitions between -10 and 5 degree C (low-temperature transition), 10 and 22 degree C (middle-temperature transition), and 32 and 40 degree C (high-temperature transition). Irradiation (5 Gy) alters these transitions markedly. First, the low-temperature transition shifts to higher temperature (onset and completion temperatures 4 and 14 degree C). Second, the middle-temperature transition shifts up to the range of about 20-32 degree C, but the width remains unchanged. Third, the higher temperature transition broadens markedly and shifts to the range of about 15-40 degree C. Protein secondary structure as determined by least-squares analysis of the amide I bands shows 36% total helix, 55% total beta-strand, and 9% turn plus undefined for control plasma membrane proteins. Plasma membrane proteins of irradiated V79 cells show an increase in total helix (40 and 45% at 5 and 10 Gy, respectively) and a decrease in the total beta-strand (48 and 44% at 5 and 10 Gy, respectively) structures. The qualitative analysis of the Raman features of plasma membranes and model compounds in the 1600 cm-1 region, assigned to tyrosine groups, revealed that irradiation alters the microenvironment of these groups. We conclude that the radiation dose used in the survival range of Chinese hamster V79 cells can cause damage to plasma membrane proteins without detectable lipid peroxidation, and that the altered proteins react differently with lipids, yielding a shift in the thermal transition properties

  15. Effect of DHA on plasma fatty acid availability and oxidative stress during training season and football exercise.

    Science.gov (United States)

    Martorell, Miquel; Capó, Xavier; Sureda, Antoni; Batle, Joan M; Llompart, Isabel; Argelich, Emma; Tur, Josep A; Pons, Antoni

    2014-08-01

    The aim was to determine the effects of a diet supplemented with 1.14 g per day of docosahexaenoic acid (DHA) for eight weeks on the plasma oxidative balance and anti-inflammatory markers after training and acute exercise. Fifteen volunteer male football players were randomly assigned to placebo or experimental and supplemented groups. Blood samples were taken under resting conditions at the beginning and after eight weeks of training under resting and post-exercise conditions. The experimental beverage increased the plasma DHA availability in non-esterified fatty acids (NEFAs) and triglyceride fatty acids (TGFAs) and increased the polyunsaturated fatty acid (PUFA) fraction of NEFAs but had no effects on the biomarkers for oxidative balance in plasma. During training, plasma protein markers of oxidative damage, the haemolysis degree and the antioxidant enzyme activities increased, but did not affect lipid oxidative damage. Training season and DHA influenced the circulating levels of prostaglandin E2 (PGE2). Acute exercise did not alter the basal levels of plasma markers for oxidative and nitrosative damage of proteins and lipids, and the antioxidant enzyme activities, although DHA-diet supplementation significantly increased the PGE2 in plasma after acute exercise. In conclusion, the training season and acute exercise, but not the DHA diet supplementation, altered the pattern of plasma oxidative damage, as the antioxidant system proved sufficient to prevent the oxidative damage induced by the acute exercise in well-trained footballers. The DHA-diet supplementation increased the prostaglandin PGE2 plasma evidencing anti-inflammatory effects of DHA to control inflammation after acute exercise.

  16. The Effects of Phytosterols Extracted from Diascorea alata on the Antioxidant Activity, Plasma Lipids, and Hematological Profiles in Taiwanese Menopausal Women

    Directory of Open Access Journals (Sweden)

    Chao-Chin Hsu

    2017-12-01

    Full Text Available The efficacy of phytosterols extracted from Diascorea alata on antioxidant activities, plasma lipids and hematological profiles was assessed in postmenopausal women. Gas chromatography and mass spectrophotometry was employed to determine the steroid content of Taiwanese yam (Diascorea alata cv. Tainung No. 2. A two-center, randomized, double-blind, placebo-controlled clinical investigation on 50 postmenopausal women randomly assigned to two groups treated for 12 months with placebo or two sachets daily of Diascorea extracts containing 12 mg/dose was carried out. The main outcome measures were the plasma antioxidant activities, hematological profiles, and the concentrations of plasma lipids, including cholesterol, triglyceride, low density lipoprotein, high density lipoprotein, very low density lipoprotein,, and apolipoprotein A1 and B. A one-way analysis of covariance (ANCOVA test was performed to investigate the significance. Beta-sitosterol, stigmasterol, 22-23-dihydro-, and γ-sitosterol were major phytosterols determined from Diascorea extracts. At six months in those receiving Diascorea, there were significantly decreased leukocyte counts (p < 0.01 and improvement on antioxidant activity of malondialdehyde (p < 0.001. After 12 months’ treatment, elevations of hematocrit and mean corpuscular volume (p < 0.01 were noted in those receiving Diascorea. Moreover, the low dose Diascorea consumption in menopausal women for one year generally did not present positive effects on lipid profiles.

  17. β3-adrenoceptor agonist prevents alterations of muscle diacylglycerol and adipose tissue phospholipids induced by a cafeteria diet

    Directory of Open Access Journals (Sweden)

    Darimont Christian

    2004-08-01

    Full Text Available Abstract Background Insulin resistance induced by a high fat diet has been associated with alterations in lipid content and composition in skeletal muscle and adipose tissue. Administration of β3-adrenoceptor (β3-AR agonists was recently reported to prevent insulin resistance induced by a high fat diet, such as the cafeteria diet. The objective of the present study was to determine whether a selective β3-AR agonist (ZD7114 could prevent alterations of the lipid profile of skeletal muscle and adipose tissue lipids induced by a cafeteria diet. Methods Male Sprague-Dawley rats fed a cafeteria diet were treated orally with either the β3-AR agonist ZD7114 (1 mg/kg per day or the vehicle for 60 days. Rats fed a chow diet were used as a reference group. In addition to the determination of body weight and insulin plasma level, lipid content and fatty acid composition in gastronemius and in epididymal adipose tissue were measured by gas-liquid chromatography, at the end of the study. Results In addition to higher body weights and plasma insulin concentrations, rats fed a cafeteria diet had greater triacylglycerol (TAG and diacylglycerol (DAG accumulation in skeletal muscle, contrary to animals fed a chow diet. As expected, ZD7114 treatment prevented the excessive weight gain and hyperinsulinemia induced by the cafeteria diet. Furthermore, in ZD7114 treated rats, intramyocellular DAG levels were lower and the proportion of polyunsaturated fatty acids, particularly arachidonic acid, in adipose tissue phospholipids was higher than in animals fed a cafeteria diet. Conclusions These results show that activation of the β3-AR was able to prevent lipid alterations in muscle and adipose tissue associated with insulin resistance induced by the cafeteria diet. These changes in intramyocellular DAG levels and adipose tissue PL composition may contribute to the improved insulin sensitivity associated with β3-AR activation.

  18. Lipid-Altering Therapies and the Progression of Atherosclerotic Disease

    International Nuclear Information System (INIS)

    Wierzbicki, Anthony S.

    2007-01-01

    Lipids play a key role in the progression of atherosclerosis, and lipid-lowering therapies have been studied for 30 years in coronary disease. Measurement of the progression of atherosclerosis through carotid intima-media thickness, coronary mean lumen diameter, and, mostly recently, intravascular ultrasound is generally accepted. This article reviews the role of lipid-lowering therapies in changing the rate of atherosclerosis progression in the coronary and carotid circulations. Statins are the primary therapy used to reduce atherosclerosis and cardiovascular events, including strokes and transient ischemic attacks, and have benefits in reducing events in patients undergoing carotid endarterectomy. In contrast, data for other agents, including fibrates and nicotinic acid, in reducing the progression of atherosclerosis are less extensive and not as well known. There is increasing interest in optimizing the whole lipid profile, as this might deliver extra benefits over and above statin therapy alone. Initial proof of this concept has recently come from studies that measured the progression of atherosclerosis and showed that adding nicotinic acid to statin therapy and, more directly, infusion of high-density lipoprotein-like particles reduced progression and indeed might induce regression of the disease. It is likely that the management of significant carotid stenosis will become ever more drug focused and will be customized to the lipid profile of each patient with intervention reserved only for late-stage symptomatic disease

  19. The alterations of plasma ET-1 and NO post selective pericardial devascularization in patients with hepatic portal hypertension

    International Nuclear Information System (INIS)

    Wang Chunxi; Niu Lei; Xia Shaoyou; Peng Zheng

    2011-01-01

    Objective: To investigate the alterations of plasma endothelin-1 (ET-1) and nitric oxide (NO) post the selective pericardial devascularization in patients with hepatic portal hypertension,and to investigate the relationship between such alterations with illness and therapeutic effects. Methods: Before treatment,plasma ET-1 and NO contents were determined by radioimmunoassay (RIA) and Griss method respectively in 92 patients with hepatic portal hypertension. One day and three weeks after operation, 66 operated cases with selective pericardial devascularization in patients with hepatic protal hypertension were also determined the levels of plasma ET-1 and NO with RIA. Results: The levels of plasma ET-1 and NO were increased in 92 patients with hepatic portal hypertension, and which closely related to the stage of illness. Post effective selective pericardial devascularization the high levels of plasma ET-1 and No were improved and were closely returned to normal after 3 week's. Conclusion: Clinical detection of plasma ET-1 and NO levels were useful for assessment of the therapeutic effects of selective pericardial devascularization in patients with hepatic portal hypertension. (authors)

  20. Cell-based lipid flippase assay employing fluorescent lipid derivatives

    DEFF Research Database (Denmark)

    Jensen, Maria Stumph; Costa, Sara; Günther-Pomorski, Thomas

    2016-01-01

    P-type ATPases in the P4 subfamily (P4-ATPases) are transmembrane proteins unique for eukaryotes that act as lipid flippases, i.e., to translocate phospholipids from the exofacial to the cytofacial monolayer of cellular membranes. While initially characterized as aminophospholipid translocases, s...... flippase activities in the plasma membrane of cells, using yeast as an example.......P-type ATPases in the P4 subfamily (P4-ATPases) are transmembrane proteins unique for eukaryotes that act as lipid flippases, i.e., to translocate phospholipids from the exofacial to the cytofacial monolayer of cellular membranes. While initially characterized as aminophospholipid translocases......, studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates. Here, we describe an assay based on fluorescent lipid derivatives to monitor and characterize lipid...

  1. Therapeutical approach to plasma homocysteine and cardiovascular risk reduction

    Directory of Open Access Journals (Sweden)

    Marcello Ciaccio

    2008-03-01

    Full Text Available Marcello Ciaccio, Giulia Bivona, Chiara BelliaDepartment of Medical Biotechnologies and Forensic Medicine, Faculty of Medicine, University of Palermo, ItalyAbstract: Homocysteine is a sulfur-containing aminoacid produced during metabolism of methionine. Since 1969 the relationship between altered homocysteine metabolism and both coronary and peripheral atherotrombosis is known; in recent years experimental evidences have shown that elevated plasma levels of homocysteine are associated with an increased risk of atherosclerosis and cardiovascular ischemic events. Several mechanisms by which elevated homocysteine impairs vascular function have been proposed, including impairment of endothelial function, production of reactive oxygen species (ROS and consequent oxidation of low-density lipids. Endothelial function is altered in subjects with hyperhomocysteinemia, and endothelial dysfunction is correlated with plasma levels of homocysteine. Folic acid and B vitamins, required for remethylation of homocysteine to methionine, are the most important dietary determinants of homocysteine and daily supplementation typically lowers plasma homocysteine levels; it is still unclear whether the decreased plasma levels of homocysteine through diet or drugs may be paralleled by a reduction in cardiovascular risk.Keywords: homocysteine, MTHFR, cardiovascular disease, folate, B vitamin

  2. Bioactive Constituents from “Triguero” Asparagus Improve the Plasma Lipid Profile and Liver Antioxidant Status in Hypercholesterolemic Rats

    Science.gov (United States)

    Vázquez-Castilla, Sara; De la Puerta, Rocío; Giménez, María Dolores García; Fernández-Arche, María Angeles; Guillén-Bejarano, Rafael

    2013-01-01

    We have previously shown that the Andalusian-cultivated Asparagus officinalis L. “triguero” variety produces hypocholesterolemic and hepatoprotective effects on rats. This asparagus is a rich source of phytochemicals although we hypothesized there would be some of them more involved in these functional properties. Thus, we aimed to study the effects of asparagus (500 mg/kg body weight (bw)/day) and their partially purified fractions in flavonoids (50 mg/kg bw/day), saponins (5 mg/kg bw/day) and dietary fiber (500 mg/kg bw/day) on oxidative status and on lipid profile in rats fed a cholesterol-rich diet. After 5 weeks treatment, plasma lipid values, hepatic enzyme activities and liver malondialdehyde (MDA) concentrations were measured. With the exception of the saponin fraction (SF), the administration of lyophilized asparagus (LA), fiber fraction (FF), and flavonoid fraction (FVF) to hypercholesterolemic rats produced a significant hypolipidemic effect compare to a high-cholesterol diet (HCD). In addition, the LA and FVF groups exhibited a significant increase in enzyme activity from multiple hepatic antioxidant systems including: superoxide dismutase, catalase, and gluthatione reductase/peroxidase as well as a decrease in MDA concentrations compared to HCD group. These results demonstrate that “triguero” asparagus possesses bioactive constituents, especially dietary fiber and flavonoids, that improve the plasma lipid profile and prevent hepatic oxidative damage under conditions of hypercholesterolemia. PMID:24284391

  3. Bioactive Constituents from “Triguero” Asparagus Improve the Plasma Lipid Profile and Liver Antioxidant Status in Hypercholesterolemic Rats

    Directory of Open Access Journals (Sweden)

    Rafael Guillén-Bejarano

    2013-10-01

    Full Text Available We have previously shown that the Andalusian-cultivated Asparagus officinalis L. “triguero” variety produces hypocholesterolemic and hepatoprotective effects on rats. This asparagus is a rich source of phytochemicals although we hypothesized there would be some of them more involved in these functional properties. Thus, we aimed to study the effects of asparagus (500 mg/kg body weight (bw/day and their partially purified fractions in flavonoids (50 mg/kg bw/day, saponins (5 mg/kg bw/day and dietary fiber (500 mg/kg bw/day on oxidative status and on lipid profile in rats fed a cholesterol-rich diet. After 5 weeks treatment, plasma lipid values, hepatic enzyme activities and liver malondialdehyde (MDA concentrations were measured. With the exception of the saponin fraction (SF, the administration of lyophilized asparagus (LA, fiber fraction (FF, and flavonoid fraction (FVF to hypercholesterolemic rats produced a significant hypolipidemic effect compare to a high-cholesterol diet (HCD. In addition, the LA and FVF groups exhibited a significant increase in enzyme activity from multiple hepatic antioxidant systems including: superoxide dismutase, catalase, and gluthatione reductase/peroxidase as well as a decrease in MDA concentrations compared to HCD group. These results demonstrate that “triguero” asparagus possesses bioactive constituents, especially dietary fiber and flavonoids, that improve the plasma lipid profile and prevent hepatic oxidative damage under conditions of hypercholesterolemia.

  4. Regulation of egg quality and lipids metabolism by Zinc Oxide Nanoparticles.

    Science.gov (United States)

    Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Liu, Xin-Qi; Zhang, Wei-Dong; Ding, Zhao-Peng; Wang, Shi-Wen; Shen, Wei; Min, Ling-Jiang; Hao, Zhi-Hui

    2016-04-01

    This investigation was designed to explore the effects of Zinc Oxide Nanoparticles (ZnO NP) on egg quality and the mechanism of decreasing of yolk lipids. Different concentration of ZnO NP and ZnSO4 were used to treat hens for 24 weeks. The body weight and egg laying frequency were recorded and analyzed. Albumen height, Haugh unit, and yolk color score were analyzed by an Egg Multi Tester. Breaking strength was determined by an Egg Force Reader. Egg shell thickness was measured using an Egg Shell Thickness Gouge. Shell color was detected by a spectrophotometer. Egg shape index was measured by Egg Form Coefficient Measuring Instrument. Albumen and yolk protein was determined by the Kjeldahl method. Amino acids were determined by an amino acids analyzer. Trace elements Zn, Fe, Cu, and P (mg/kg wet mass) were determined in digested solutions using Inductively Coupled Plasma-Optical Emission Spectrometry. TC and TG were measured using commercial analytical kits. Yolk triglyceride, total cholesterol, pancreatic lipase, and phospholipids were determined by appropriate kits. β-carotene was determined by spectrophotometry. Lipid metabolism was also investigated with liver, plasma, and ovary samples. ZnO NP did not change the body weight of hens during the treatment period. ZnO NP slowed down egg laying frequency at the beginning of egg laying period but not at later time. ZnO NP did not affect egg protein or water contents, slightly decreased egg physical parameters (12 to 30%) and trace elements (20 to 35%) after 24 weeks treatment. However, yolk lipids content were significantly decreased by ZnO NP (20 to 35%). The mechanism of Zinc oxide nanoparticles decreasing yolk lipids was that they decreased the synthesis of lipids and increased lipid digestion. These data suggested ZnO NP affected egg quality and specifically regulated lipids metabolism in hens through altering the function of hen's ovary and liver. © 2016 Poultry Science Association Inc.

  5. Exposure to TBT increases accumulation of lipids and alters fatty acid homeostasis in the ramshorn snail Marisa cornuarietis.

    Science.gov (United States)

    Janer, Gemma; Navarro, Juan Carlos; Porte, Cinta

    2007-09-01

    Recent studies have shown that organotin compounds affect lipid homeostasis in vertebrates, probably through interaction with RXR and/or PPARgamma receptors. Molluscs are sensitive species to the toxic effects of tributyltin (TBT), particularly to masculinization, and TBT has been recently shown to bind to molluscs RXR. Thus, we hypothesized that exposure to TBT could affect lipid homeostasis in the ramshorn snail Marisa cornuarietis. For comparative purposes, the synthetic androgen methyl-testosterone (MT) was included in the study due to its masculinization effects, but its lack of binding to the RXR receptor. M. cornuarietis was exposed to different concentrations of TBT (30, 125, 500 ng/L as Sn) and MT (30, 300 ng/L) for 100 days. Females exposed to 500 ng/L TBT showed increased percentage of lipids and increased levels of fatty acids in the digestive gland/gonad complex (2- to 3-fold). In addition, fatty acid profiles were altered in both males and females exposed to 125 and 500 ng/L TBT. These effects were not observed in females exposed to MT. Overall, this work suggest that TBT acts as a potent inducer of lipid and fatty acid accumulation in M. cornuarietis as shown in vertebrate studies earlier, and that sex differences in sensitivity do exist.

  6. Imaging of blood plasma coagulation at supported lipid membranes.

    Science.gov (United States)

    Faxälv, Lars; Hume, Jasmin; Kasemo, Bengt; Svedhem, Sofia

    2011-12-15

    The blood coagulation system relies on lipid membrane constituents to act as regulators of the coagulation process upon vascular trauma, and in particular the 2D configuration of the lipid membranes is known to efficiently catalyze enzymatic activity of blood coagulation factors. This work demonstrates a new application of a recently developed methodology to study blood coagulation at lipid membrane interfaces with the use of imaging technology. Lipid membranes with varied net charges were formed on silica supports by systematically using different combinations of lipids where neutral phosphocholine (PC) lipids were mixed with phospholipids having either positively charged ethylphosphocholine (EPC), or negatively charged phosphatidylserine (PS) headgroups. Coagulation imaging demonstrated that negatively charged SiO(2) and membrane surfaces exposing PS (obtained from liposomes containing 30% of PS) had coagulation times which were significantly shorter than those for plain PC membranes and EPC exposing membrane surfaces (obtained from liposomes containing 30% of EPC). Coagulation times decreased non-linearly with increasing negative surface charge for lipid membranes. A threshold value for shorter coagulation times was observed below a PS content of ∼6%. We conclude that the lipid membranes on solid support studied with the imaging setup as presented in this study offers a flexible and non-expensive solution for coagulation studies at biological membranes. It will be interesting to extend the present study towards examining coagulation on more complex lipid-based model systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Effect of dietary cholesterol and plant sterol consumption on plasma lipid responsiveness and cholesterol trafficking in healthy individuals.

    Science.gov (United States)

    Alphonse, Peter A S; Ramprasath, Vanu; Jones, Peter J H

    2017-01-01

    Dietary cholesterol and plant sterols differentially modulate cholesterol kinetics and circulating cholesterol. Understanding how healthy individuals with their inherent variabilities in cholesterol trafficking respond to such dietary sterols will aid in improving strategies for effective cholesterol lowering and alleviation of CVD risk. The objectives of this study were to assess plasma lipid responsiveness to dietary cholesterol v. plant sterol consumption, and to determine the response in rates of cholesterol absorption and synthesis to each sterol using stable isotope approaches in healthy individuals. A randomised, double-blinded, crossover, placebo-controlled clinical trial (n 49) with three treatment phases of 4-week duration were conducted in a Manitoba Hutterite population. During each phase, participants consumed one of the three treatments as a milkshake containing 600 mg/d dietary cholesterol, 2 g/d plant sterols or a control after breakfast meal. Plasma lipid profile was determined and cholesterol absorption and synthesis were measured by oral administration of [3, 4-13C] cholesterol and 2H-labelled water, respectively. Dietary cholesterol consumption increased total (0·16 (sem 0·06) mmol/l, P=0·0179) and HDL-cholesterol (0·08 (sem 0·03) mmol/l, P=0·0216) concentrations with no changes in cholesterol absorption or synthesis. Plant sterol consumption failed to reduce LDL-cholesterol concentrations despite showing a reduction (6 %, P=0·0004) in cholesterol absorption. An over-compensatory reciprocal increase in cholesterol synthesis (36 %, P=0·0026) corresponding to a small reduction in absorption was observed with plant sterol consumption, possibly resulting in reduced LDL-cholesterol lowering efficacy of plant sterols. These data suggest that inter-individual variability in cholesterol trafficking mechanisms may profoundly impact plasma lipid responses to dietary sterols in healthy individuals.

  8. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice12345

    Science.gov (United States)

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas DE

    2015-01-01

    Background: Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Objective: Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Design: Folic acid–supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr+/+ and Mthfr+/− mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Results: Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr+/− mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr+/− livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr+/− mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. Conclusions: We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2

  9. Ozone dosing alters the biological potential and therapeutic outcomes of plasma rich in growth factors.

    Science.gov (United States)

    Anitua, E; Zalduendo, M M; Troya, M; Orive, G

    2015-04-01

    Until now, ozone has been used in a rather empirical way. This in-vitro study investigates, for the first time, whether different ozone treatments of plasma rich in growth factors (PRGF) alter the biological properties and outcomes of this autologous platelet-rich plasma. Human plasma rich in growth factors was treated with ozone using one of the following protocols: a continuous-flow method; or a syringe method in which constant volumes of ozone and PRGF were mixed. In both cases, ozone was added before, during and after the addition of calcium chloride. Three ozone concentrations, of the therapeutic range 20, 40 and 80 μg/mL, were tested. Fibrin clot properties, growth factor content and the proliferative effect on primary osteoblasts and gingival fibroblasts were evaluated. Ozone treatment of PRGF using the continuous flow protocol impaired formation of the fibrin scaffold, drastically reduced the levels of growth factors and significantly decreased the proliferative potential of PRGF on primary osteoblasts and gingival fibroblasts. In contrast, treatment of PRGF with ozone using the syringe method, before, during and after the coagulation process, did not alter the biological outcomes of the autologous therapy. These findings suggest that ozone dose and the way that ozone combines with PRGF may alter the biological potential and therapeutic outcomes of PRGF. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. A Healthy Nordic Diet Alters the Plasma Lipidomic Profile in Adults with Features of Metabolic Syndrome in a Multicenter Randomized Dietary Intervention.

    Science.gov (United States)

    Lankinen, Maria; Schwab, Ursula; Kolehmainen, Marjukka; Paananen, Jussi; Nygren, Heli; Seppänen-Laakso, Tuulikki; Poutanen, Kaisa; Hyötyläinen, Tuulia; Risérus, Ulf; Savolainen, Markku J; Hukkanen, Janne; Brader, Lea; Marklund, Matti; Rosqvist, Fredrik; Hermansen, Kjeld; Cloetens, Lieselotte; Önning, Gunilla; Thorsdottir, Inga; Gunnarsdottir, Ingibjorg; Åkesson, Björn; Dragsted, Lars Ove; Uusitupa, Matti; Orešič, Matej

    2016-03-09

    A healthy Nordic diet is associated with improvements in cardiometabolic risk factors, but the effect on lipidomic profile is not known. The aim was to investigate how a healthy Nordic diet affects the fasting plasma lipidomic profile in subjects with metabolic syndrome. Men and women (n = 200) with features of metabolic syndrome [mean age: 55 y; body mass index (in kg/m 2 ): 31.6] were randomly assigned to either a healthy Nordic (n = 104) or a control (n = 96) diet for 18 or 24 wk at 6 centers. Of the participants, 156 completed the study with plasma lipidomic measurements. The healthy Nordic diet consisted of whole grains, fruits, vegetables, berries, vegetable oils and margarines, fish, low-fat milk products, and low-fat meat. An average Nordic diet served as the control diet and included low-fiber cereal products, dairy fat-based spreads, regular-fat milk products, and a limited amount of fruits, vegetables, and berries. Lipidomic profiles were measured at baseline, week 12, and the end of the intervention (18 or 24 wk) by using ultraperformance liquid chromatography mass spectrometry. The effects of the diets on the lipid variables were analyzed with linear mixed-effects models. Data from centers with 18- or 24-wk duration were also analyzed separately. Changes in 21 plasma lipids differed significantly between the groups at week 12 (false discovery rate P Nordic diet group compared with the control group. At the end of the study, changes in lipidomic profiles did not differ between the groups. However, when the intervention lasted 24 wk, changes in 8 plasma lipids that had been identified at 12 wk, including plasmalogens, were sustained. There were no differences in changes in plasma lipids between groups with an intervention of 18 wk. By the dietary biomarker score, adherence to diet did not explain the difference in the results related to the duration of the study. A healthy Nordic diet transiently modified the plasma lipidomic profile, specifically by

  11. The effect of interesterification on the bioavailability of fatty acids in structured lipids.

    Science.gov (United States)

    Farfán, M; Villalón, M J; Ortíz, M E; Nieto, S; Bouchon, P

    2013-08-15

    Fatty acid (FA) profile is a critical factor in the nutritional properties of fats, but, stereochemistry may also play a fundamental role in the rate and extent to which FAs are absorbed and become available. To better understand this phenomenon, we evaluated the bioavailability of FAs in linseed-oil and palm-stearin blends compared to their interesterified mix, using a sn-1,3 stereospecific lipase, to determine if there was any difference in terms of FA availability when using this technology. Test meals were fed through an intragastric feeding tube on Sprague-Dawley male rats after 18 h fasting. Postprandial blood samples were collected after meal or physiological serum (control) administration and the FA profile of plasma lipids was determined. Results showed that modification of the melting profile through interesterification, without altering the bioavailability determined by sn-2 stereochemistry, could delay lipid absorption at the beginning, but had no effect on total lipid absorption. Copyright © 2013. Published by Elsevier Ltd.

  12. Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2015-03-01

    The results reported here clearly document changes in the properties and the organization of fiber-cell membrane lipids that occur with age, based on electron paramagnetic resonance (EPR) analysis of lens membranes of clear lenses from donors of age groups from 0 to 20, 21 to 40, and 61 to 80 years. The physical properties, including profiles of the alkyl chain order, fluidity, hydrophobicity, and oxygen transport parameter, were investigated using EPR spin-labeling methods, which also provide an opportunity to discriminate coexisting lipid domains and to evaluate the relative amounts of lipids in these domains. Fiber-cell membranes were found to contain three distinct lipid environments: bulk lipid domain, which appears minimally affected by membrane proteins, and two domains that appear due to the presence of membrane proteins, namely boundary and trapped lipid domains. In nuclear membranes the amount of boundary and trapped phospholipids as well as the amount of cholesterol in trapped lipid domains increased with the donors' age and was greater than that in cortical membranes. The difference between the amounts of lipids in domains uniquely formed due to the presence of membrane proteins in nuclear and cortical membranes increased with the donors' age. It was also shown that cholesterol was to a large degree excluded from trapped lipid domains in cortical membranes. It is evident that the rigidity of nuclear membranes was greater than that of cortical membranes for all age groups. The amount of lipids in domains of low oxygen permeability, mainly in trapped lipid domains, were greater in nuclear than cortical membranes and increased with the age of donors. These results indicate that the nuclear fiber cell plasma membranes were less permeable to oxygen than cortical membranes and become less permeable to oxygen with age. In clear lenses, age-related changes in the lens lipid and protein composition and organization appear to occur in ways that increase fiber

  13. Effects of Iron Overload on the Activity of Na,K-ATPase and Lipid Profile of the Human Erythrocyte Membrane.

    Directory of Open Access Journals (Sweden)

    Leilismara Sousa

    Full Text Available Iron is an essential chemical element for human life. However, in some pathological conditions, such as hereditary hemochromatosis type 1 (HH1, iron overload induces the production of reactive oxygen species that may lead to lipid peroxidation and a change in the plasma-membrane lipid profile. In this study, we investigated whether iron overload interferes with the Na,K-ATPase activity of the plasma membrane by studying erythrocytes that were obtained from the whole blood of patients suffering from iron overload. Additionally, we treated erythrocytes of normal subjects with 0.8 mM H2O2 and 1 μM FeCl3 for 24 h. We then analyzed the lipid profile, lipid peroxidation and Na,K-ATPase activity of plasma membranes derived from these cells. Iron overload was more frequent in men (87.5% than in women and was associated with an increase (446% in lipid peroxidation, as indicated by the amount of the thiobarbituric acid reactive substances (TBARS and an increase (327% in the Na,K-ATPase activity in the plasma membrane of erythrocytes. Erythrocytes treated with 1 μM FeCl3 for 24 h showed an increase (132% in the Na,K-ATPase activity but no change in the TBARS levels. Iron treatment also decreased the cholesterol and phospholipid content of the erythrocyte membranes and similar decreases were observed in iron overload patients. In contrast, erythrocytes treated with 0.8 mM H2O2 for 24 h showed no change in the measured parameters. These results indicate that erythrocytes from patients with iron overload exhibit higher Na,K-ATPase activity compared with normal subjects and that this effect is specifically associated with altered iron levels.

  14. Clinical symptoms in fibromyalgia are better associated to lipid peroxidation levels in blood mononuclear cells rather than in plasma.

    Science.gov (United States)

    Cordero, Mario D; Alcocer-Gómez, Elísabet; Cano-García, Francisco J; De Miguel, Manuel; Carrión, Angel M; Navas, Plácido; Sánchez Alcázar, José A

    2011-01-01

    We examined lipid peroxidation (LPO) in blood mononuclear cells (BMCs) and plasma, as a marker of oxidative damage, and its association to clinical symptoms in Fibromyalgia (FM) patients. We conducted a case-control and correlational study comparing 65 patients and 45 healthy controls. Clinical parameters were evaluated using the Fibromyalgia Impact Questionnaire (FIQ), visual analogues scales (VAS), and the Beck Depression Inventory (BDI). Oxidative stress was determined by measuring LPO in BMCs and plasma. We found increased LPO levels in BMCs and plasma from FM patients as compared to normal control (PBMI, and sex, showed that both LPO in cells and plasma were independently associated to clinical symptoms. However, LPO in cells, but not LPO in plasma, was independently associated to clinical symptoms when controlling for depression (BDI scores). The results of this study suggest a role for oxidative stress in the pathophysiology of fibromyalgia and that LPO in BMCs rather than LPO in plasma is better associated to clinical symptoms in FM.

  15. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism.

    Science.gov (United States)

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H; Blesso, Christopher N; Fernandez, Maria Luz

    2017-06-22

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group ( p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group ( p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls ( p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  16. An Interaction of the Pre- and Post-Weaning Diets Rich in Omega-6 Polyunsaturated Fats Alters Plasma Lipids, Hepatic Gene Expression and Aortic Vascular Reactivity in Adult 057Bl/6 Mice

    Directory of Open Access Journals (Sweden)

    Kanta Chechi

    2010-01-01

    Full Text Available Aim To investigate the effects of diets rich in n-6 polyunsaturated fats (PUFA fed during pre- and post-weaning time periods on the lipid metabolism and vascular reactivity in adult C57Bl/6 mice, in order to assess the impact of maternal nutrition and its interaction with the offspring diet on the metabolism of adult offspring. Methods Female C57Bl/6 mice were fed a high-fat diet enriched with n-6 PUFA (P or control diet (C for 2-weeks before, during mating, gestation and lactation, while their pups received either P or C for 8-weeks post-weaning. Results A significant interaction between the maternal and post-weaning diets was observed for the offspring body weight, food-, caloric-intake, plasma lipids, hepatic mRNA expression of lecithin cholesterol acyltransferase, aortic contractile and relaxation responses ( P < 0.05. Conclusion The overall metabolic and physiological outcome in the offspring is dependent upon the interaction between the pre- and post-weaning dietary environments.

  17. Adipose tissue and metabolic and inflammatory responses to stroke are altered in obese mice

    Directory of Open Access Journals (Sweden)

    Michael J. Haley

    2017-10-01

    Full Text Available Obesity is an independent risk factor for stroke, although several clinical studies have reported that obesity improves stroke outcome. Obesity is hypothesised to aid recovery by protecting against post-stroke catabolism. We therefore assessed whether obese mice had an altered metabolic and inflammatory response to stroke. Obese ob/ob mice underwent a 20-min middle cerebral artery occlusion and 24-h reperfusion. Lipid metabolism and expression of inflammatory cytokines were assessed in the plasma, liver and adipose tissue. The obese-specific metabolic response to stroke was assessed in plasma using non-targeted ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS metabolomics coupled with univariate and multivariate analysis. Obesity had no effect on the extent of weight loss 24 h after stroke but affected the metabolic and inflammatory responses to stroke, predominantly affecting lipid metabolism. Specifically, obese mice had increases in plasma free fatty acids and expression of adipose lipolytic enzymes. Metabolomics identified several classes of metabolites affected by stroke in obese mice, including fatty acids and membrane lipids (glycerophospholipids, lysophospholipids and sphingolipids. Obesity also featured increases in inflammatory cytokines in the plasma and adipose tissue. Overall, these results demonstrate that obesity affected the acute metabolic and inflammatory response to stroke and suggest a potential role for adipose tissue in this effect. These findings could have implications for longer-term recovery and also further highlight the importance of considering comorbidities in preclinical stroke research, especially when identifying biomarkers for stroke. However, further work is required to assess whether these changes translate into long-term effects on recovery.

  18. Occupational exposures at a polyvinyl chloride production facility are associated with significant changes to the plasma metabolome

    International Nuclear Information System (INIS)

    Guardiola, John J.; Beier, Juliane I.; Falkner, K. Cameron; Wheeler, Benjamin; McClain, Craig James; Cave, Matt

    2016-01-01

    Background: Occupational vinyl chloride (VC) exposures have been associated with toxicant-associated steatohepatitis and liver cancer. Metabolomics has been used to clarify mode of action in drug-induced liver injury but has not been performed following VC exposures. Methods: Plasma samples from 17 highly exposed VC workers without liver cancer and 27 unexposed healthy volunteers were obtained for metabolite extraction and GC/MS and LC/MS 2 analysis. Following ion identification/quantification, Ingenuity pathway analysis was performed. Results: 613 unique named metabolites were identified. Of these, 189 metabolites were increased in the VC exposure group while 94 metabolites were decreased. Random Forest analysis indicated that the metabolite signature could separate the groups with 94% accuracy. VC exposures were associated with increased long chain (including arachidonic acid) and essential (including linoleic acid) fatty acids. Occupational exposure increased lipid peroxidation products including monohydroxy fatty acids (including 13-HODE); fatty acid dicarboxylates; and oxidized arachidonic acid products (including 5,9, and 15-HETE). Carnitine and carnitine esters were decreased, suggesting peroxisomal/mitochondrial dysfunction and alternate modes of lipid oxidation. Differentially regulated metabolites were shown to interact with extracellular-signal-regulated kinase 1/2 (ERK1/2), Akt, AMP-activated protein kinase (AMPK), and the N-Methyl-D-aspartate (NMDA) receptor. The top canonical pathways affected by occupational exposure included tRNA charging, nucleotide degradation, amino acid synthesis/degradation and urea cycle. Methionine and homocysteine was increased with decreased cysteine, suggesting altered 1-carbon metabolism. Conclusions: Occupational exposure generated a distinct plasma metabolome with markedly altered lipid and amino acid metabolites. ERK1/2, Akt, AMPK, and NMDA were identified as protein targets for vinyl chloride toxicity. - Highlights:

  19. Occupational exposures at a polyvinyl chloride production facility are associated with significant changes to the plasma metabolome

    Energy Technology Data Exchange (ETDEWEB)

    Guardiola, John J. [University of Louisville Department of Medicine, Louisville, KY 40206 (United States); Beier, Juliane I. [Department of Pharmacology and Toxicology, Louisville, KY 40206 (United States); Falkner, K. Cameron; Wheeler, Benjamin [Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Louisville, KY 40206 (United States); McClain, Craig James [Department of Pharmacology and Toxicology, Louisville, KY 40206 (United States); Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Louisville, KY 40206 (United States); The Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206 (United States); The Kentucky One Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202 (United States); Cave, Matt, E-mail: matt.cave@louisville.edu [Department of Pharmacology and Toxicology, Louisville, KY 40206 (United States); Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Louisville, KY 40206 (United States); The Robley Rex Veterans Affairs Medical Center, Louisville, KY, 40206 (United States); The Kentucky One Health Jewish Hospital Liver Transplant Program, Louisville, KY 40202 (United States); Department of Biochemistry and Molecular Biology, Louisville, KY, 40202 (United States)

    2016-12-15

    Background: Occupational vinyl chloride (VC) exposures have been associated with toxicant-associated steatohepatitis and liver cancer. Metabolomics has been used to clarify mode of action in drug-induced liver injury but has not been performed following VC exposures. Methods: Plasma samples from 17 highly exposed VC workers without liver cancer and 27 unexposed healthy volunteers were obtained for metabolite extraction and GC/MS and LC/MS{sup 2} analysis. Following ion identification/quantification, Ingenuity pathway analysis was performed. Results: 613 unique named metabolites were identified. Of these, 189 metabolites were increased in the VC exposure group while 94 metabolites were decreased. Random Forest analysis indicated that the metabolite signature could separate the groups with 94% accuracy. VC exposures were associated with increased long chain (including arachidonic acid) and essential (including linoleic acid) fatty acids. Occupational exposure increased lipid peroxidation products including monohydroxy fatty acids (including 13-HODE); fatty acid dicarboxylates; and oxidized arachidonic acid products (including 5,9, and 15-HETE). Carnitine and carnitine esters were decreased, suggesting peroxisomal/mitochondrial dysfunction and alternate modes of lipid oxidation. Differentially regulated metabolites were shown to interact with extracellular-signal-regulated kinase 1/2 (ERK1/2), Akt, AMP-activated protein kinase (AMPK), and the N-Methyl-D-aspartate (NMDA) receptor. The top canonical pathways affected by occupational exposure included tRNA charging, nucleotide degradation, amino acid synthesis/degradation and urea cycle. Methionine and homocysteine was increased with decreased cysteine, suggesting altered 1-carbon metabolism. Conclusions: Occupational exposure generated a distinct plasma metabolome with markedly altered lipid and amino acid metabolites. ERK1/2, Akt, AMPK, and NMDA were identified as protein targets for vinyl chloride toxicity

  20. Lipoprotein lipase: genetics, lipid uptake, and regulation.

    Science.gov (United States)

    Merkel, Martin; Eckel, Robert H; Goldberg, Ira J

    2002-12-01

    Lipoprotein lipase (LPL) regulates the plasma levels of triglyceride and HDL. Three aspects are reviewed. 1) Clinical implications of human LPL gene variations: common mutations and their effects on plasma lipids and coronary heart disease are discussed. 2) LPL actions in the nervous system, liver, and heart: the discussion focuses on LPL and tissue lipid uptake. 3) LPL gene regulation: the LPL promoter and its regulatory elements are described.

  1. Relative abundance of Delta(5)-sterols in plasma membrane lipids of root-tip cells correlates with aluminum tolerance of rice.

    Science.gov (United States)

    Khan, M Shahadat Hossain; Tawaraya, Keitarou; Sekimoto, Hiroshi; Koyama, Hiroyuki; Kobayashi, Yuriko; Murayama, Tetsuya; Chuba, Masaru; Kambayashi, Mihoko; Shiono, Yoshihito; Uemura, Matsuo; Ishikawa, Satoru; Wagatsuma, Tadao

    2009-01-01

    We investigated variations in aluminum (Al) tolerance among rice plants, using ancestor cultivars from the family line of the Al-tolerant and widely cultivated Japonica cultivar, Sasanishiki. The cultivar Rikuu-20 was Al sensitive, whereas a closely related cultivar that is a descendant of Rikuu-20, Rikuu-132, was Al tolerant. These two cultivars were compared to determine mechanisms underlying variations in Al tolerance. The sensitive cultivar Rikuu-20 showed increased permeability of the plasma membrane (PM) and greater Al uptake within 1 h of Al treatment. This could not be explained by organic acid release. Lipid composition of the PM differed between these cultivars, and may account for the difference in Al tolerance. The tolerant cultivar Rikuu-132 had a lower ratio of phospholipids to Delta(5)-sterols than the sensitive cultivar Rikuu-20, suggesting that the PM of Rikuu-132 is less negatively charged and less permeabilized than that of Rikuu-20. We used inhibitors of Delta(5)-sterol synthesis to alter the ratio of phospholipids to Delta(5)-sterols in both cultivars. These inhibitors reduced Al tolerance in Rikuu-132 and its Al-tolerant ancestor cultivars Kamenoo and Kyoku. In addition, Rikuu-132 showed a similar level of Al sensitivity when the ratio of phospholipids to Delta(5)-sterols was increased to match that of Rikuu-20 after treatment with uniconazole-P, an inhibitor of obtusifoliol-14alpha-demethylase. These results indicate that PM lipid composition is a factor underlying variations in Al tolerance among rice cultivars.

  2. Alterations in endo-lysosomal function induce similar hepatic lipid profiles in rodent models of drug-induced phospholipidosis and Sandhoff disease.

    Science.gov (United States)

    Lecommandeur, Emmanuelle; Baker, David; Cox, Timothy M; Nicholls, Andrew W; Griffin, Julian L

    2017-07-01

    Drug-induced phospholipidosis (DIPL) is characterized by an increase in the phospholipid content of the cell and the accumulation of drugs and lipids inside the lysosomes of affected tissues, including in the liver. Although of uncertain pathological significance for patients, the condition remains a major impediment for the clinical development of new drugs. Human Sandhoff disease (SD) is caused by inherited defects of the β subunit of lysosomal β-hexosaminidases (Hex) A and B, leading to a large array of symptoms, including neurodegeneration and ultimately death by the age of 4 in its most common form. The substrates of Hex A and B, gangliosides GM2 and GA2, accumulate inside the lysosomes of the CNS and in peripheral organs. Given that both DIPL and SD are associated with lysosomes and lipid metabolism in general, we measured the hepatic lipid profiles in rodent models of these two conditions using untargeted LC/MS to examine potential commonalities. Both model systems shared a number of perturbed lipid pathways, notably those involving metabolism of cholesteryl esters, lysophosphatidylcholines, bis(monoacylglycero)phosphates, and ceramides. We report here profound alterations in lipid metabolism in the SD liver. In addition, DIPL induced a wide range of lipid changes not previously observed in the liver, highlighting similarities with those detected in the model of SD and raising concerns that these lipid changes may be associated with underlying pathology associated with lysosomal storage disorders. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  3. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis.

    Science.gov (United States)

    Fozo, E M; Rucks, E A

    2016-01-01

    In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora. © 2016 Elsevier Ltd All rights reserved.

  4. Combined effects of headgroup charge and tail unsaturation of lipids on lateral organization and diffusion of lipids in model biomembranes

    International Nuclear Information System (INIS)

    Chen Xiao-Jie; Liang Qing

    2017-01-01

    Lateral organization and dynamics of lipids in plasma membranes are crucial for several cellular processes such as signal transduction across the membrane and still remain elusive. In this paper, using coarse-grained molecular dynamics simulation, we theoretically study the combined effects of headgroup charge and tail unsaturation of lipids on the lateral organization and diffusion of lipids in ternary lipid bilayers. In neutral ternary lipid bilayers composed of saturated lipids, unsaturated lipids, and cholesterols, under the conditions of given temperature and components, the main factor for the phase separation is the unsaturation of unsaturated lipids and the bilayers can be separated into liquid-ordered domains enriched in saturated lipids and cholesterols and liquid-disordered domains enriched in unsaturated lipids. Once the headgroup charge is introduced, the electrostatic repulsion between the negatively charged lipid headgroups will increase the distance between the charged lipids. We find that the lateral organization and diffusion of the lipids in the (partially) charged ternary lipid bilayers are determined by the competition between the headgroup charge and the unsaturation of the unsaturated lipids. In the bilayers containing unsaturated lipids with lower unsaturation, the headgroup charge plays a crucial role in the lateral organization and diffusion of lipids. The headgroup charge may make the lipid domains unstable and even can suppress phase separation of the lipids in some systems. However, in the bilayers containing highly unsaturated lipids, the lateral organization and diffusion of lipids are mainly dominated by the unsaturation of the unsaturated lipids. This work may provide some theoretical insights into understanding the formation of nanosized domains and lateral diffusion of lipids in plasma membranes. (paper)

  5. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Science.gov (United States)

    Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H.; Blesso, Christopher N.; Fernandez, Maria Luz

    2017-01-01

    To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group (p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group (p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver. PMID:28640194

  6. Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Manal Mused Almatrafi

    2017-06-01

    Full Text Available To investigate the mechanisms by which Moringa oleifera leaves (ML modulate hepatic lipids, guinea pigs were allocated to either control (0% ML, 10% Low Moringa (LM or 15% High Moringa (HM diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH and triglyceride (TG metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG with the lowest concentrations in the HM group (p < 0.001, consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL-1β and interferon-γ, were lowest in the HM group (p < 0.005. Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01. This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.

  7. Plasma glucose, cholesterol, triglyceride, and glycerol concentrations in the postmature rabbit.

    Science.gov (United States)

    Harlow, A C; Roux, J F; Shapiro, M I

    1980-02-15

    Plasma cholesterol, triglycerides, glycerol, and glucose concentrations were measured in term and postmature rabbits. The data show that the term and postmature mothers have significantly higher glycemia than their fetuses. However, triglyceride and cholesterol concentrations are lower in the postmature mother than in her fetus. Postmature fetuses are characterized by very high plasma triglyceride and cholesterol concentrations. The results demonstrate that postmaturity is accompanied by maternal and fetal lipid metabolic changes related to a decrease in the transfer of maternal fatty acids through the placenta and to a diminution in fetal liver glucose utilization. The postmature fetus is then in a relative state of fasting and must rely on its own supply of fuel (glycogen and lipids) to provide cells for growth and survival. The maternal metabolic changes can possibly be explained by a decreased utilization of maternal substrates by the fetus, the placenta becoming insufficient. The close interrelationship of fetal and maternal lipid metabolism with the activity of the placenta suggests that an accurate knowledge of the metabolic changes taking place in the fetus during alteration of the maternal environment is indispensable to the understanding of the short- and long-term effects of maternal disease on the fetus.

  8. Effects of a combined intervention with a lentil protein hydrolysate and a mixed training protocol on the lipid metabolism and hepatic markers of NAFLD in Zucker rats.

    Science.gov (United States)

    Martínez, Rosario; Kapravelou, Garyfallia; Donaire, Ana; Lopez-Chaves, Carlos; Arrebola, Francisco; Galisteo, Milagros; Cantarero, Samuel; Aranda, Pilar; Porres, Jesus M; López-Jurado, María

    2018-02-21

    Metabolic syndrome is a cluster of metabolic alterations characterized by central obesity, dyslipidemia, elevated plasma glucose, insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD). In this study, a combined intervention of a lentil protein hydrolysate and a mixed training protocol was assessed in an animal experimental model of genetic obesity and metabolic syndrome. Thirty-two male obese and 32 lean Zucker rats were divided into eight different experimental groups. Rats performed a mixed exercise protocol or had a sedentary lifestyle and were administered a lentil protein hydrolysate or placebo. Daily food intake, weekly body weight gain, plasma parameters of glucose and lipid metabolisms, body composition, hepatic weight, total fat content and fatty acid profile, as well as gene expression of lipogenic and lipolytic nuclear transcription factors and their target genes were measured. Obese Zucker rats exhibited higher body and liver weight and fat content than did their lean counterparts. Such alterations were related to modifications in aerobic capacity, plasma biochemical parameters of glucose and lipid metabolisms, hepatic fatty acid profile and gene expression of nuclear transcription factors SREBP1c, PPARα, LXR and associated lipogenic and lipolytic enzymes. The interventions tested did not affect body weight gain but improved aerobic capacity, reduced hepatomegalia and steatosis associated with NAFLD and relieved the adverse effects produced by this condition in glucose and lipid metabolisms through the modulation in the expression of different genes involved in diverse metabolic pathways.

  9. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis.

    Science.gov (United States)

    Grison, Magali S; Brocard, Lysiane; Fouillen, Laetitia; Nicolas, William; Wewer, Vera; Dörmann, Peter; Nacir, Houda; Benitez-Alfonso, Yoselin; Claverol, Stéphane; Germain, Véronique; Boutté, Yohann; Mongrand, Sébastien; Bayer, Emmanuelle M

    2015-04-01

    Plasmodesmata (PD) are nano-sized membrane-lined channels controlling intercellular communication in plants. Although progress has been made in identifying PD proteins, the role played by major membrane constituents, such as the lipids, in defining specialized membrane domains in PD remains unknown. Through a rigorous isolation of "native" PD membrane fractions and comparative mass spectrometry-based analysis, we demonstrate that lipids are laterally segregated along the plasma membrane (PM) at the PD cell-to-cell junction in Arabidopsis thaliana. Remarkably, our results show that PD membranes display enrichment in sterols and sphingolipids with very long chain saturated fatty acids when compared with the bulk of the PM. Intriguingly, this lipid profile is reminiscent of detergent-insoluble membrane microdomains, although our approach is valuably detergent-free. Modulation of the overall sterol composition of young dividing cells reversibly impaired the PD localization of the glycosylphosphatidylinositol-anchored proteins Plasmodesmata Callose Binding 1 and the β-1,3-glucanase PdBG2 and altered callose-mediated PD permeability. Altogether, this study not only provides a comprehensive analysis of the lipid constituents of PD but also identifies a role for sterols in modulating cell-to-cell connectivity, possibly by establishing and maintaining the positional specificity of callose-modifying glycosylphosphatidylinositol proteins at PD. Our work emphasizes the importance of lipids in defining PD membranes. © 2015 American Society of Plant Biologists. All rights reserved.

  10. Lipid-based nutrient supplements do not affect efavirenz but lower plasma nevirapine concentrations in Ethiopian adult HIV patients

    DEFF Research Database (Denmark)

    Abdissa, A; Olsen, Mette Frahm; Yilma, D

    2015-01-01

    OBJECTIVES: Lipid-based nutrient supplements (LNSs) are increasingly used in HIV programmes in resource-limited settings. However, the possible effects of LNSs on the plasma concentrations of antiretroviral drugs have not been assessed. Here, we aimed to assess the effects of LNSs on plasma...... efavirenz and nevirapine trough concentrations in Ethiopian adult HIV-infected patients. METHODS: The effects of LNSs were studied in adults initiating antiretroviral therapy (ART) in a randomized trial. Patients with body mass index (BMI) > 17 kg/m(2) (n = 282) received daily supplementation of an LNS.......9; -0.9 μg/mL; P = 0.01), respectively, compared with the group not receiving supplements. There were no differences between groups with respect to efavirenz plasma concentrations. The CYP2B6 516 G>T polymorphism was associated with a 5 μg/mL higher plasma efavirenz concentration compared with the wild...

  11. Regular Exercise and Plasma Lipid Levels Associated with the Risk of Coronary Heart Disease: A 20-Year Longitudinal Study

    Science.gov (United States)

    Teramoto, Masaru; Golding, Lawrence A.

    2009-01-01

    We investigated the effects of regular exercise on the plasma lipid levels that contribute to coronary heart disease (CHD), of 20 sedentary men who participated in an exercise program over 20 consecutive years. The men, whose initial ages ranged from 30-51 years, participated in the University of Nevada-based exercise program for an average of 45…

  12. Association of Neuropeptide-Y (NPY) and Interleukin-1beta (IL1B), Genotype-Phenotype Correlation and Plasma Lipids with Type-II Diabetes.

    Science.gov (United States)

    Patel, Roma; Dwivedi, Mitesh; Mansuri, Mohmmad Shoab; Ansarullah; Laddha, Naresh C; Thakker, Ami; Ramachandran, A V; Begum, Rasheedunnisa

    2016-01-01

    Neuropeptide Y (NPY) is known to play a role in the regulation of satiety, energy balance, body weight, and insulin release. Interleukin-1beta (IL1B) has been associated with loss of beta-cell mass in type-II diabetes (TIID). The present study attempts to investigate the association of NPY exon2 +1128 T/C (Leu7Pro; rs16139), NPY promoter -399 T/C (rs16147) and IL1B -511 C/T (rs16944) polymorphisms with TIID and their correlation with plasma lipid levels, BMI, and IL1B transcript levels. PCR-RFLP was used for genotyping these polymorphisms in a case-control study involving 558 TIID patients and 1085 healthy age-matched controls from Gujarat. Linkage disequilibrium and haplotype analysis of the NPY polymorphic sites were performed to assess their association with TIID. IL1B transcript levels in PBMCs were also assessed in 108 controls and 101 patients using real-time PCR. Our results show significant association of both structural and promoter polymorphisms of NPY (p<0.0001 and p<0.0001 respectively) in patients with TIID. However, the IL1B C/T polymorphism did not show any association (p = 0.3797) with TIID patients. Haplotype analysis revealed more frequent association of CC and CT haplotypes (p = 3.34 x 10-5, p = 6.04 x 10-9) in diabetics compared to controls and increased the risk of diabetes by 3.02 and 2.088 respectively. Transcript levels of IL1B were significantly higher (p<0.0001) in patients as compared to controls. Genotype-phenotype correlation of IL1B polymorphism did not show any association with its higher transcript levels. In addition, NPY +1128 T/C polymorphism was found to be associated with increased plasma LDL levels (p = 0.01). The present study provides an evidence for a strong correlation between structural and promoter polymorphisms of NPY gene and upregulation of IL1B transcript levels with susceptibility to TIID and altering the lipid metabolism in Gujarat population.

  13. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: slbqam@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: cinta.porte@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  14. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    International Nuclear Information System (INIS)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-01-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  15. Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Glisezinski, I. de; Larrouy, D.; Bajzova, M.

    2009-01-01

    The relative contribution of noradrenaline (norepinephrine) and adrenaline (epinephrine) in the control of lipid mobilization in subcutaneous adipose tissue (SCAT) during exercise was evaluated in men treated with a somatostatin analogue, octreotide. Eight lean and eight obese young men matched...... of octreotide suppressed plasma insulin and growth hormone levels at rest and during exercise. It blocked the exercise-induced increase in plasma adrenaline while that of noradrenaline was unchanged. Plasma natriuretic peptides (NPs) level was higher at rest and during exercise under octreotide infusion in lean...... individuals. In conclusion, blockade of beta-adrenergic receptors during exercise performed during infusion of octreotide (blocking the exercise-induced rise in adrenaline but not that of noradrenaline) does not alter the exercise-induced lipolysis. This suggests that adrenaline is the main adrenergic agent...

  16. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Mariateresa Maldini

    2015-06-01

    Full Text Available The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle. We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the

  17. Structured lipid emulsion as nutritional therapy for the elderly patients with severe sepsis.

    Science.gov (United States)

    Chen, Jin; Yan, Jing; Cai, Guo-Long; Xu, Qiang-Hong; Gong, Shi-Jin; Dai, Hai-Wen; Yu, Yi-Hua; Li, Li

    2013-06-01

    The nutritional support is one of the important therapeutic strategies for the elderly patients with severe sepsis, but there is controversial in choosing a parenteral nutrition formulation. This study was designed to compare the therapeutic effects of structured lipid emulsion, physically mixed medium, and long-chain fat emulsion in the treatment of severe sepsis in elderly patients. A total number of 64 elder patients with severe sepsis were enrolled in the study. After a week of enteral nutritional support, the patients were randomly divided into research (structured lipid emulsion as parenteral alimentation) and control groups (physically mixed medium and long-chain fat emulsion as parenteral alimentation). The alterations of plasma albumin, lipid metabolism, and blood glucose level were recorded after parenteral alimentation and were compared between the two groups. The plasma levels of albumin, prealbumin, cholesterol, and triglyceride were decreased in all the patients after one week of enteral nutritional support treatment (t = 7.78, P = 0.000; t = 10.21, P = 0.000; t = 7.99, P = 0.000; and t = 10.99, P = 0.000). Further parenteral alimentation with different lipid emulsions had significant effects on the serum prealbumin and albumin (t = 3.316, P = 0.002; t = 3.200, P = 0.002), whilst had no effects on the blood glucose and triglyceride level (t = 7.78, P = 0.000; t = 4.228, P = 0.000). In addition, the two groups had a significantly different Apache II score, ventilator time, and hospital stay time (t = -2.213, P = 0.031; t = 2.317, P = 0.024; t = 2.514, P = 0.015). The structured lipid emulsion was safe as parenteral nutrition for elderly patients with severe sepsis. It was demonstrated to be superior to the physically mixed medium and long-chain fat emulsion with respect to the protein synthesis and prognosis.

  18. Accumulation of Oxidized Low-Density Lipoprotein in Psoriatic Skin and Changes of Plasma Lipid Levels in Psoriatic Patients

    Directory of Open Access Journals (Sweden)

    Nilgun Solak Tekin

    2007-01-01

    Full Text Available Background. Psoriasis is a chronic inflammatory skin disease characterized by an accelerated turnover of epidermal cells and an incomplete differentiation in epidermis with lesion. However, the exact etiology of psoriasis is unknown. Abnormalities in essential fatty acid metabolism, free radical generation, lipid peroxidation, and release of lymphokines have been proposed. Objective. Our purpose was to evaluate the plasma lipids and oxidized low-density lipoprotein accumulation in psoriatic skin lesion in order to ascertain the possible participation of oxidative stress and oxidative modification of lipids in pathogenesis of psoriasis. Methods. The study group included 84 patients with psoriasis, and 40 sex- and age-matched healthy volunteers. Blood lipid profile was determined. Psoriatic and nonlesional skin samples of psoriatic patients were evaluated for the presence of oxidized low-density lipoprotein by using an immune-fluorescent staining method. Results. The mean levels of lipids (total cholesterol, triglyceride, and LDL cholesterol in patients with psoriasis were found to be significantly higher than those of healthy subjects. Psoriatic skins were shown positive oxidized low-density lipoprotein staining. There was no staining in nonlesional skin samples of the same individuals. Conclusion. Lipid peroxidation mediated by free radicals is believed to be one of the important causes of cell membrane destruction and cell damage. This study shows for the first time the accumulation of oxidized low-density lipoprotein in psoriatic skin lesion. We believe that accumulation of ox-LDL in psoriatic skin may have an important role in the immune-inflammatory events that result in progressive skin damage.

  19. Roux-en-Y Gastric Bypass Surgery Induces Early Plasma Metabolomic and Lipidomic Alterations in Humans Associated with Diabetes Remission.

    Directory of Open Access Journals (Sweden)

    Tulika Arora

    Full Text Available Roux-en-Y gastric bypass (RYGB is an effective method to attain sustained weight loss and diabetes remission. We aimed to elucidate early changes in the plasma metabolome and lipidome after RYGB. Plasma samples from 16 insulin-resistant morbidly obese subjects, of whom 14 had diabetes, were subjected to global metabolomics and lipidomics analysis at pre-surgery and 4 and 42 days after RYGB. Metabolites and lipid species were compared between time points and between subjects who were in remission and not in remission from diabetes 2 years after surgery. We found that the variables that were most discriminatory between time points were decanoic acid and octanoic acid, which were elevated 42 days after surgery, and sphingomyelins (18:1/21:0 and 18:1/23:3, which were at their lowest level 42 days after surgery. Insulin levels were lower at 4 and 42 days after surgery compared with pre-surgery levels. At 4 days after surgery, insulin levels correlated positively with metabolites of branched chain and aromatic amino acid metabolism and negatively with triglycerides with long-chain fatty acids. Of the 14 subjects with diabetes prior to surgery, 7 were in remission 2 years after surgery. The subjects in remission displayed higher pre-surgery levels of tricarboxylic acid cycle intermediates and triglycerides with long-chain fatty acids compared with subjects not in remission. Thus, metabolic alterations are induced soon after surgery and subjects with diabetes remission differ in the metabolic profiles at pre- and early post-surgery time points compared to patients not in remission.

  20. The WWOX Gene Modulates HDL and Lipid Metabolism

    Science.gov (United States)

    Iatan, Iulia; Choi, Hong Y.; Ruel, Isabelle; Linga Reddy, M.V. Prasad; Kil, Hyunsuk; Lee, Jaeho; Abu Odeh, Mohammad; Salah, Zaidoun; Abu-Remaileh, Muhannad; Weissglas-Volkov, Daphna; Nikkola, Elina; Civelek, Mete; Awan, Zuhier; Croce, Carlo M.; Aqeilan, Rami I.; Pajukanta, Päivi; Aldaz, C. Marcelo; Genest, Jacques

    2014-01-01

    Background Low high-density lipoprotein-cholesterol (HDL-C) constitutes a major risk factor for atherosclerosis. Recent studies from our group reported a genetic association between the WW domain-containing oxidoreductase (WWOX) gene and HDL-C levels. Here, through next-generation resequencing, in vivo functional studies and gene microarray analyses, we investigated the role of WWOX in HDL and lipid metabolism. Methods and Results Using next-generation resequencing of the WWOX region, we first identified 8 variants significantly associated and perfectly segregating with the low-HDL trait in two multi-generational French Canadian dyslipidemic families. To understand in vivo functions of WWOX, we used liver-specific Wwoxhep−/− and total Wwox−/− mice models, where we found decreased ApoA-I and ABCA1 levels in hepatic tissues. Analyses of lipoprotein profiles in Wwox−/−, but not Wwox hep−/− littermates, also showed marked reductions in serum HDL-C concentrations, concordant with the low-HDL findings observed in families. We next obtained evidence of a gender-specific effect in female Wwoxhep−/− mice, where an increase in plasma triglycerides and altered lipid metabolic pathways by microarray analyses were observed. We further identified a significant reduction in ApoA-I and LPL, and upregulation in Fas, Angptl4 and Lipg, suggesting that the effects of Wwox involve multiple pathways, including cholesterol homeostasis, ApoA-I/ABCA1 pathway, and fatty acid biosynthesis/triglyceride metabolism. Conclusions Our data indicate that WWOX disruption alters HDL and lipoprotein metabolism through several mechanisms and may account for the low-HDL phenotype observed in families expressing the WWOX variants. These findings thus describe a novel gene involved in cellular lipid homeostasis, which effects may impact atherosclerotic disease development. PMID:24871327

  1. Classification of metabolic syndrome according to lipid alterations: analysis from the Mexican National Health and Nutrition Survey 2006.

    Science.gov (United States)

    Pedroza-Tobias, Andrea; Trejo-Valdivia, Belem; Sanchez-Romero, Luz M; Barquera, Simon

    2014-10-09

    There are 16 possible Metabolic Syndrome (MS) combinations out of 5 conditions (glucose intolerance, low levels of high-density lipoprotein Cholesterol (HDL-C), high triglycerides, high blood pressure and abdominal obesity), when selecting those with at least three. Studies suggest that some combinations have different cardiovascular risk. However evaluation of all 16 combinations is complex and difficult to interpret. The purpose of this study is to describe and explore a classification of MS groups according to their lipid alterations. This is a cross-sectional study with data from the Mexican National Health and Nutrition Survey 2006. Subjects (n = 5,306) were evaluated for the presence of MS; four mutually-exclusive MS groups were considered: mixed dyslipidemia (altered triglycerides and HDL-C), hypoalphalipoproteinemia: (normal triglycerides but low HDL-C), hypertriglyceridemia (elevated triglycerides and normal HDL-C) and without dyslipidemia (normal triglycerides and HDL-C). A multinomial logistic regression model was fitted in order to identify characteristics that were associated with the groups. The most frequent MS group was hypoalphalipoproteinemia in females (51.3%) and mixed dyslipidemia in males (43.5%). The most prevalent combination of MS for both genders was low HDL-C + hypertension + abdominal obesity (20.4% females, 19.4% males). The hypoalphalipoproteinemia group was characteristic of women and less developed areas of the country. The group without dyslipidemia was more frequent in the highest socioeconomic level and less prevalent in the south of the country. The mixed dyslipidemia group was characteristic of men, and the Mexico City region. A simple system to classify MS based on lipid alterations was useful to evaluate prevalences by diverse biologic and sociodemographic characteristics. This system may allow prevention and early detection strategies with emphasis on population-specific components and may serve as a guide for

  2. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools.

    Science.gov (United States)

    Taha, Ameer Y; Cheon, Yewon; Faurot, Keturah F; Macintosh, Beth; Majchrzak-Hong, Sharon F; Mann, J Douglas; Hibbeln, Joseph R; Ringel, Amit; Ramsden, Christopher E

    2014-05-01

    Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA. Published by Elsevier Ltd.

  3. Effect of a Diet Enriched with Fresh Coconut Saturated Fats on Plasma Lipids and Erythrocyte Fatty Acid Composition in Normal Adults.

    Science.gov (United States)

    Nagashree, Rokkam Shankar; Manjunath, N K; Indu, M; Ramesh, M; Venugopal, V; Sreedhar, P; Pavithra, N; Nagendra, Hongasandra R

    2017-07-01

    The objective of this study was to compare the effects of increased saturated fatty acid (SFA) (provided by fresh coconut) versus monounsaturated fatty acid (MUFA) intake (provided by a combination of groundnuts and groundnut oil) on plasma lipids and erythrocyte fatty acid (EFA) composition in healthy adults. Fifty-eight healthy volunteers, randomized into 2 groups, were provided standardized diet along with 100 g fresh coconut or groundnuts and groundnut oil combination for 90 days in a Yoga University. Fasting blood samples were collected before and after the intervention period for the measurement of plasma lipids and EFA profile. Coconut diet increased low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels significantly. In contrast, the groundnut diet decreased total cholesterol (TC), mainly due to a decrease in HDL levels. There were no differences in the major SFA of erythrocytes in either group. However, coconut consumption resulted in an increase in C14:0 and C24:0 along with a decrease in levels of C18:1 n9 (oleic acid). There was a significant increase in levels of C20:3 n6 (dihomo-gamma linolenic acid, DGLA). Consumption of SFA-rich coconut for 3 months had no significant deleterious effect on erythrocytes or lipid-related factors compared to groundnut consumption. On the contrary, there was an increase in the anti-atherogenic HDL levels and anti-inflammatory precursor DGLA in erythrocyte lipids. This suggests that coconut consumption may not have any deleterious effects on cardiovascular risk in normal subjects.

  4. Lipid peroxidation in liver homogenates. Effects of membrane lipid composition and irradiation

    International Nuclear Information System (INIS)

    Vaca, C.; Ringdahl, M.H.

    1984-01-01

    The rate of lipid peroxidation has been followed in whole liver homogenates from mice using the TBA-method. Liver homogenates with different membrane fatty acid composition were obtained from mice fed diets containing different sources of fat i.e. sunflower seed oil (S), coconut oil (C) and hydrogenated lard (L). The yields of the TBA-chromophore (TBA-c) were 4 times higher in the liver homogenates S compared to C and L after 4 hour incubation at 37 0 C. Irradiation of the liver homogenates before incubation inhibited the formation of lipid peroxidation products in a dose dependent way. The catalytic capacity of the homogenates was investigated, followed as the autooxidation of cysteamine or modified by addition of the metal chelator EDTA. The rate of autooxidation of cysteamine, which is dependent on the presence of metal ions (Fe/sup 2+/ or Cu/sup 2+/), was decreased with increasing dose, thus indicating an alteration in the availability of metal catalysts in the system. The addition of Fe/sup 2+/ to the system restored the lipid peroxidation yields in the irradiated systems and the presence of EDTA inhibited the formation of lipid peroxidation products in all three dietary groups. It is suggested that irradiation alters the catalytic activity needed in the autooxidation processes of polyunsaturated fatty acids

  5. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    Science.gov (United States)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  6. Alterations in tissue lipids of rats subjected to whole-body X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    De, A K; Aiyar, A S [Bhabha Atomic Research Centre, Bombay (India). Biochemistry and Food Technology Div.

    1978-02-01

    Whole-body irradiation of rats at sublethal doses leads to hepatic lipid accumulation which reaches a maximum by the sixth day; this effect on lipid metabolism does not appear to be due to accompanying inanition but due to irradiation per se. The female rats show a greater and more consistent increase in liver lipids than males and this better response of the females is not abolished by prolonged administration of testosterone to these animals. An accumulation of triglycerides accounts for almost all the increases in total liver lipids, although smaller elevations in the levels of free fatty acids and cholesterol are also seen. Free fatty acids of liver show a marked decrease on the second day following irradiation. Serum lipids do not show any appreciable changes while adipose lipids progressively decrease reaching a minimum by the sixth day. Although an insufficiency of ATP may be responsible for lipid accumulation in the irradiated rat as in the case in rats treated with ethionine or orotic acid, adenine administration, which prevents fatty infiltration due to these chemical agents, does not protect against the radiation-induced increase in liver triglycerides.

  7. Bile acids modulate signaling by functional perturbation of plasma membrane domains.

    Science.gov (United States)

    Zhou, Yong; Maxwell, Kelsey N; Sezgin, Erdinc; Lu, Maryia; Liang, Hong; Hancock, John F; Dial, Elizabeth J; Lichtenberger, Lenard M; Levental, Ilya

    2013-12-13

    Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.

  8. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    International Nuclear Information System (INIS)

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya; Challapalli, Srinivas; Chandraguthi, Shrinidhi Gururajarao; Jain, Navya; Krishnamurthy, Hanumanthappa; Kumar, Pratap; Adiga, Satish Kumar

    2014-01-01

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  9. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India); Challapalli, Srinivas [Department of Radiotherapy, Kasturba Medical College, Mangalore (India); Chandraguthi, Shrinidhi Gururajarao [Department of Radiotherapy and Oncology, Kasturba Medical College, Manipal (India); Jain, Navya; Krishnamurthy, Hanumanthappa [National Centre for Biological Sciences, Bangalore (India); Kumar, Pratap [Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal (India); Adiga, Satish Kumar, E-mail: satish.adiga@manipal.edu [Division of Clinical Embryology, Department of Obstetrics and Gynecology, Kasturba Medical College, Manipal University, Manipal 576104 (India)

    2014-07-15

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  10. Lipid Nanotechnology

    Directory of Open Access Journals (Sweden)

    Gijsje Koenderink

    2013-02-01

    Full Text Available Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology.

  11. Alterations in lipid metabolism and antioxidant status in lichen planus

    Directory of Open Access Journals (Sweden)

    Falguni H Panchal

    2015-01-01

    Full Text Available Background: Lichen planus (LP, a T-cell-mediated inflammatory disorder, wherein inflammation produces lipid metabolism disturbances, is linked to increase in cardiovascular (CV risk with dyslipidemia. Increased reactive oxygen species and lipid peroxides have also been implicated in its pathogenesis. Aim and Objective: The aim of the study was to evaluate the status on lipid disturbances, oxidative stress, and inflammation in LP patients. Materials and Methods: The study was initiated after obtaining Institutional Ethics Committee permission and written informed consent from participants. The study included 125 patients (74 LP patients and 51 age and sex-matched controls visiting the outpatient clinic in the dermatology department of our hospital. Variables analyzed included lipid profile, C-reactive protein (CRP, malondialdehyde (MDA, and catalase (CAT activity. Results: Analysis of lipid parameters revealed significantly higher levels of total cholesterol (TC, triglycerides, and low-density lipoprotein cholesterol (LDL-C along with decreased levels of high-density lipoprotein cholesterol (HDL-C in LP patients as compared to their respective controls. LP patients also presented with a significantly higher atherogenic index that is, (TC/HDL-C and LDL-C/HDL-C ratios than the controls. A significant increase in CRP levels was observed among the LP patients. There was a statistically significant increase in the serum levels of the lipid peroxidation product, MDA and a statistically significant decrease in CAT activity in LP patients as compared to their respective controls. A statistically significant positive correlation (r = 0.96 was observed between serum MDA levels and duration of LP whereas a significantly negative correlation (r = −0.76 was seen between CAT activity and LP duration. Conclusion: Chronic inflammation in patients with LP may explain the association with dyslipidemia and CV risk. Our findings also suggest that an increase in

  12. Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Wang, Li; Zhang, Xue Tong; Zhang, Hai Yan; Yao, Hui Yuan; Zhang, Hui

    2010-08-09

    To investigate the hypoglycemic effects of Vaccinium bracteatum Thunb. leaves (VBTL) extract in streptozotocin-induced diabetic mice. After administration of VBTL extract for 4 weeks, the body weight, organ weight, blood glucose (BG), insulin and plasma lipid levels of streptozotocin-induced diabetic mice were measured. Body weights of diabetic mice treated with VBTL extract were partly recovered. The BG levels of AEG (diabetic mice treated with VBTL aqueous extract) were reduced to 91.52 and 85.82% at week 2 and week 4, respectively (P0.05). The insulin levels of AEG and EEG were obviously higher (P<0.05) than those of MC (diabetic mice in model control group). Comparing with MC, AEG and EEG had significantly lower (P<0.05) TC or TG levels and similar HDL-cholesterol or LDL-cholesterol levels. In comparison with non-diabetic control mice, AEG had similar plasma lipid levels except higher LDL-cholesterol level, while EEG had higher TC, TG and LDL-cholesterol levels and lower HDL-cholesterol levels. Both aqueous and ethanolic extract of VBTL possess a potential hypoglycemic effect in streptozotocin-induced diabetic mice. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  13. Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes.

    Science.gov (United States)

    Stone, Matthew B; Shelby, Sarah A; Núñez, Marcos F; Wisser, Kathleen; Veatch, Sarah L

    2017-02-01

    Diverse cellular signaling events, including B cell receptor (BCR) activation, are hypothesized to be facilitated by domains enriched in specific plasma membrane lipids and proteins that resemble liquid-ordered phase-separated domains in model membranes. This concept remains controversial and lacks direct experimental support in intact cells. Here, we visualize ordered and disordered domains in mouse B lymphoma cell membranes using super-resolution fluorescence localization microscopy, demonstrate that clustered BCR resides within ordered phase-like domains capable of sorting key regulators of BCR activation, and present a minimal, predictive model where clustering receptors leads to their collective activation by stabilizing an extended ordered domain. These results provide evidence for the role of membrane domains in BCR signaling and a plausible mechanism of BCR activation via receptor clustering that could be generalized to other signaling pathways. Overall, these studies demonstrate that lipid mediated forces can bias biochemical networks in ways that broadly impact signal transduction.

  14. Imaging mass spectrometry (IMS) of cortical lipids from preclinical to severe stages of Alzheimer's disease.

    Science.gov (United States)

    Gónzalez de San Román, E; Manuel, I; Giralt, M T; Ferrer, I; Rodríguez-Puertas, R

    2017-09-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting millions of patients worldwide. Previous studies have demonstrated alterations in the lipid composition of lipid extracts from plasma and brain samples of AD patients. However, there is no consensus regarding the qualitative and quantitative changes of lipids in brains from AD patients. In addition, the recent developments in imaging mass spectrometry methods are leading to a new stage in the in situ analysis of lipid species in brain tissue slices from human postmortem samples. The present study uses the matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS), permitting the direct anatomical analysis of lipids in postmortem brain sections from AD patients, which are compared with the intensity of the lipid signal in samples from matched subjects with no neurological diseases. The frontal cortex samples from AD patients were classified in three groups based on Braak's histochemical criteria, ranging from non-cognitively impaired patients to those severely affected. The main results indicate a depletion of different sulfatide lipid species from the earliest stages of the disease in both white and gray matter areas of the frontal cortex. Therefore, the decrease in sulfatides in cortical areas could be considered as a marker of the disease, but may also indicate neurochemical modifications related to the pathogenesis of the disease. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Inflammation-modulating cytokine profile and lipid interaction in HIV-related risk factors for cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Gori E

    2016-11-01

    Full Text Available Elizabeth Gori,1,2 Takafira Mduluza,3,4 Mudavanhu Nyagura,2 Babill Stray-Pedersen,5 Zvenyika Alfred Gomo1 1Chemical Pathology Department, College of Health Sciences, 2Preclinical Veterinary Studies Department, Faculty of Veterinary Sciences, 3Biochemistry Department, University of Zimbabwe, Harare, Zimbabwe; 4School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; 5Institute of Clinical Medicine, University in Oslo, Oslo University Hospital, Oslo, Norway Abstract: HIV infection and antiretroviral therapy (ART are associated with changes in plasma levels of lipoproteins, thus posing the risk of cardiovascular complications in infected individuals. The alteration in plasma lipoprotein levels results from dysregulation of inflammation-modulating cytokines that control lipid metabolism. Little is understood regarding the relationship between the cytokines and serum lipid levels, which have been reported to be altered in adults receiving ART. The objective of this study was to describe the profiles of inflammation-modulating cytokines and their relationship to lipids as cardiovascular disease (CVD risk factors in HIV infection. This observational cross-sectional study measured plasma levels of interleukin (IL-10, tumor necrosis factor-alpha (TNF-α, IL-4, total cholesterol (TC, and high-density lipoprotein cholesterol (HDL-c in HIV-infected and uninfected adults. A total of 219 HIV-infected participants were enrolled from an HIV treatment center; of them, 187 were receiving ART and 32 were ART naïve, while 65 were HIV-uninfected blood donors. HIV-infected individuals had higher levels of IL-10 (HIV-infected ART-naïve [P=0.0024] and ART-receiving [P=0.033] than their uninfected counterparts. ART-naïve subjects had significantly higher plasma levels of IL-10 than ART-receiving subjects (P=0.0014. No significant difference was observed in plasma levels of IL-4 and TNF

  16. Interactions between lipids and proteins are critical for organization of plasma membrane-ordered domains in tobacco BY-2 cells.

    Science.gov (United States)

    Grosjean, Kevin; Der, Christophe; Robert, Franck; Thomas, Dominique; Mongrand, Sébastien; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2018-06-27

    The laterally heterogeneous plant plasma membrane (PM) is organized into finely controlled specialized areas that include membrane-ordered domains. Recently, the spatial distribution of such domains within the PM has been identified as playing a key role in cell responses to environmental challenges. To examine membrane order at a local level, BY-2 tobacco suspension cell PMs were labelled with an environment-sensitive probe (di-4-ANEPPDHQ). Four experimental models were compared to identify mechanisms and cell components involved in short-term (1 h) maintenance of the ordered domain organization in steady-state cell PMs: modulation of the cytoskeleton or the cell wall integrity of tobacco BY-2 cells; and formation of giant vesicles using either a lipid mixture of tobacco BY-2 cell PMs or the original lipid and protein combinations of the tobacco BY-2 cell PM. Whilst inhibiting phosphorylation or disrupting either the cytoskeleton or the cell wall had no observable effects, we found that lipids and proteins significantly modified both the abundance and spatial distribution of ordered domains. This indicates the involvement of intrinsic membrane components in the local physical state of the plant PM. Our findings support a major role for the 'lipid raft' model, defined as the sterol-dependent ordered assemblies of specific lipids and proteins in plant PM organization.

  17. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    Science.gov (United States)

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of lead (Pb) poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for 3 weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with decreased triglycerides and increased cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  18. Combined therapy of mixed dyslipidemia in patients with high cardiovascular risk and changes in the lipid target values and atherogenic index of plasma

    Czech Academy of Sciences Publication Activity Database

    Rosolová, H.; Dobiášová, Milada; Soška, V.; Bláha, V.; Češka, R.; Nussbaumerová, B.; Pelikánová, T.; Souček, M.

    2014-01-01

    Roč. 56, č. 2 (2014), e133-e139 ISSN 1803-7712 Institutional support: RVO:67985823 Keywords : mixed dyslipidemia * atherogenic index of plasma (AIP=log[triglycerides/HDL-cholesterol]) * combined lipid modifying therapy Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition

  19. Effects of hormones on lipids and lipoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, R.M.

    1991-12-01

    Levels of plasma lipids and lipoproteins are strong predictors for the development of atherosclerotic cardiovascular disease in postmenopausal women. In women, as in men, numerous factors contribute to variations in plasma lipoproteins that may affect cardiovascular disease risk. These include age, dietary components, adiposity, genetic traits, and hormonal changes. Each of these factors may operate to varying degrees in determining changes in plasma lipoprotein profiles accompanying menopause- Cross-sectional and longitudinal studies have suggested increases in levels of cholesterol, low density lipoproteins (LDL) and triglyceride-rich lipoproteins associated with menopause. High density lipoproteins (HDL), which are higher in women than men and are thought to contribute to relative protection of premenopausal women from cardiovascular disease, remain relatively constant in the years following menopause, although small, and perhaps transient reductions in the HDL{sub 2} subfraction have been reported in relation to reduced estradiol level following menopause. Despite these associations, it has been difficult to determine the role of endogenous hormones in influencing the plasma lipoproteins of postmenopausal women. In principle, the effects of hormone replacement should act to reverse any alterations in lipoprotein metabolism that are due to postmenopausal hormone changes. While there may be beneficial effects on lipoproteins, hormone treatment does not restore a premenopausal lipoprotein profile. Furthermore, it is not dear to what extent exogenous hormone-induced lipoprotein changes contribute to the reduced incidence of cardiovascular disease with hormone replacement therapy.

  20. Effects of medium-chain fatty acids and oleic acid on blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities

    DEFF Research Database (Denmark)

    Tholstrup, T.; Ehnholm, C.; Jauhiainen, M.

    2004-01-01

    Background: Dietary medium-chain fatty acids (MCFAs) are of nutritional interest because they are more easily absorbed from dietary medium-chain triacylglycerols (MCTs) than are long-chain fatty acids from, for example, vegetable oils. It has generally been claimed that MCFAs do not increase plasma...... cholesterol, although this claim is poorly documented. Objective: We compared the effects of a diet rich in either MCFAs or oleic acid on fasting blood lipids, lipoproteins, glucose, insulin, and lipid transfer protein activities in healthy men. Design: In a study with a double-blind, randomized, crossover...... plasma total triacylglycerol (P = 0.0361), and higher plasma glucose (P = 0.033). Plasma HDL-cholesterol and insulin concentrations and activities of cholesterol ester transfer protein and phospholipid transfer protein did not differ significantly between the diets. Conclusions: Compared with fat high...

  1. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Atsushi [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan); Kurisaki, Tomohiro [Department of Growth Regulation, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Sato, Satoshi B. [Research Center for Low Temperature and Material Sciences, Kyoto University, Yoshida-honmachi, Kyoto 606-8501 (Japan); Kobayashi, Toshihide [Lipid Biology Laboratory, Discovery Research Institute, RIKEN, Wako, Saitama 351-0198 (Japan); Kondoh, Gen [Laboratory of Animal Experiments for Regeneration, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan); Hashimoto, Naohiro, E-mail: nao@nils.go.jp [Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Oobu, Aichi 474-8522 (Japan)

    2009-10-15

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, {beta}-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  2. Dynamic clustering and dispersion of lipid rafts contribute to fusion competence of myogenic cells

    International Nuclear Information System (INIS)

    Mukai, Atsushi; Kurisaki, Tomohiro; Sato, Satoshi B.; Kobayashi, Toshihide; Kondoh, Gen; Hashimoto, Naohiro

    2009-01-01

    Recent research indicates that the leading edge of lamellipodia of myogenic cells (myoblasts and myotubes) contains presumptive fusion sites, yet the mechanisms that render the plasma membrane fusion-competent remain largely unknown. Here we show that dynamic clustering and dispersion of lipid rafts contribute to both cell adhesion and plasma membrane union during myogenic cell fusion. Adhesion-complex proteins including M-cadherin, β-catenin, and p120-catenin accumulated at the leading edge of lamellipodia, which contains the presumptive fusion sites of the plasma membrane, in a lipid raft-dependent fashion prior to cell contact. In addition, disruption of lipid rafts by cholesterol depletion directly prevented the membrane union of myogenic cell fusion. Time-lapse recording showed that lipid rafts were laterally dispersed from the center of the lamellipodia prior to membrane fusion. Adhesion proteins that had accumulated at lipid rafts were also removed from the presumptive fusion sites when lipid rafts were laterally dispersed. The resultant lipid raft- and adhesion complex-free area at the leading edge fused with the opposing plasma membrane. These results demonstrate a key role for dynamic clustering/dispersion of lipid rafts in establishing fusion-competent sites of the myogenic cell membrane, providing a novel mechanistic insight into the regulation of myogenic cell fusion.

  3. Electrophysiological, haemodynamic, and mitochondrial alterations induced by levobupivacaine during myocardial ischemia in a pig model: protection by lipid emulsions?

    Science.gov (United States)

    Mamou, Zahida; Descotes, Jacques; Chevalier, Philippe; Bui-Xuan, Bernard; Romestaing, Caroline; Timour, Quadiri

    2015-10-01

    Accidental intravascular or high-dose injection of local anesthetics (LA) can result in serious, potentially life-threatening complications. Indeed, adequate supportive measures and the administration of lipid emulsions are required in such complications. The study's objectives were threefold: (i) evaluate the myocardial toxicity of levobupivacaine when administered intravenously; (ii) investigate levobupivacaine toxicity on cardiomyocytes mitochondrial functions and cellular structure; (iii) assess the protective effects of a lipid emulsion in the presence or absence of myocardial ischemia. Domestic pigs randomized into two groups of 24 animals each, with either preserved coronary circulation or experimental myocardial ischemia. Six animals from each group received either: (i) single IV injection of saline, (ii) lipid emulsion (Intralipid(®) ), (iii) levobupivacaine, (iv) combination levobupivacaine-Intralipid(®) . Serially measured endpoints included: heart rate, duration of the monophasic action potentials (dMAP), mean arterial pressure, and peak of the time derivative of left ventricular pressure (LV dP/dtmax ). In addition, the following cardiomyocytes mitochondrial functions were measured: reactive oxygen species (ROS) production, oxidative phosphorylation, and calcium retention capacity (CRC) as well as the consequences of ROS production on lipids, proteins, and DNA. IV injection of levobupivacaine induced sinus bradycardia and reduced dMAP and LV dP/dtmax . At the mitochondrial level, oxygen consumption and CRC were decreased. In contrast, ROS production was increased leading to enhanced lipid peroxidation and structural alterations of proteins and DNA. Myocardial ischemia was associated with global worsening of all changes. Intralipid(®) quickly improved haemodynamics. However, beneficial effects of Intralipid(®) were less clear after myocardial ischemia. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  4. Monoethylhexyl Phthalate Elicits an Inflammatory Response in Adipocytes Characterized by Alterations in Lipid and Cytokine Pathways.

    Science.gov (United States)

    Manteiga, Sara; Lee, Kyongbum

    2017-04-01

    A growing body of evidence links endocrine-disrupting chemicals (EDCs) with obesity-related metabolic diseases. While it has been shown that EDCs can predispose individuals toward adiposity by affecting developmental processes, little is known about the chemicals' effects on adult adipose tissue. Our aim was to study the effects of low, physiologically relevant doses of EDCs on differentiated murine adipocytes. We combined metabolomics, proteomics, and gene expression analysis to characterize the effects of mono-ethylhexyl phthalate (MEHP) in differentiated adipocytes. Repeated exposure to MEHP over several days led to changes in metabolite and enzyme levels indicating elevated lipogenesis and lipid oxidation. The chemical exposure also increased expression of major inflammatory cytokines, including chemotactic factors. Proteomic and gene expression analysis revealed significant alterations in pathways regulated by peroxisome proliferator activated receptor-γ (PPARγ). Inhibiting the nuclear receptor's activity using a chemical antagonist abrogated not only the alterations in PPARγ-regulated metabolic pathways, but also the increases in cytokine expression. Our results show that MEHP can induce a pro-inflammatory state in differentiated adipocytes. This effect is at least partially mediated PPARγ.

  5. Greater adherence to a Mediterranean dietary pattern is associated with improved plasma lipid profile: the Aragon Health Workers Study cohort.

    Science.gov (United States)

    Peñalvo, José L; Oliva, Belén; Sotos-Prieto, Mercedes; Uzhova, Irina; Moreno-Franco, Belén; León-Latre, Montserrat; Ordovás, José María

    2015-04-01

    There is wide recognition of the importance of healthy eating in cardiovascular health promotion. The purpose of this study was to identify the main dietary patterns among a Spanish population, and to determine their relationship with plasma lipid profiles. A cross-sectional analysis was conducted of data from 1290 participants of the Aragon Workers Health Study cohort. Standardized protocols were used to collect clinical and biochemistry data. Diet was assessed through a food frequency questionnaire, quantifying habitual intake over the past 12 months. The main dietary patterns were identified by factor analysis. The association between adherence to dietary patterns and plasma lipid levels was assessed by linear and logistic regression. Two dietary patterns were identified: a Mediterranean dietary pattern, high in vegetables, fruits, fish, white meat, nuts, and olive oil, and a Western dietary pattern, high in red meat, fast food, dairy, and cereals. Compared with the participants in the lowest quintile of adherence to the Western dietary pattern, those in the highest quintile had 4.6 mg/dL lower high-density lipoprotein cholesterol levels (P dietary pattern had 3.3mg/dL higher high-density lipoprotein cholesterol levels (P dietary pattern is associated with improved lipid profile compared with a Western dietary pattern, which was associated with a lower odds of optimal high-density lipoprotein cholesterol levels in this population. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  6. Mistimed food intake and sleep alters 24-hour time-of-day patterns of the human plasma proteome.

    Science.gov (United States)

    Depner, Christopher M; Melanson, Edward L; McHill, Andrew W; Wright, Kenneth P

    2018-06-05

    Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.

  7. Effects of atopic dermatitis and gender on sebum lipid mediator and fatty acid profiles

    Science.gov (United States)

    Lipid mediator metabolism in skin is altered in some diseases. If mediators in skin secretions are influenced by skin health, they may provide useful clinical matrices with low subject burden. While lipid mediators in sweat can be altered by disease, the influences of skin diseases on sebum lipid me...

  8. Protective Effect of Pulp Oil Extracted from Canarium odontophyllum Miq. Fruit on Blood Lipids, Lipid Peroxidation, and Antioxidant Status in Healthy Rabbits

    Directory of Open Access Journals (Sweden)

    Faridah Hanim Shakirin

    2012-01-01

    Full Text Available The aim of this paper was to compare the effects of pulp and kernel oils of Canarium odontophyllum Miq. (CO on lipid profile, lipid peroxidation, and oxidative stress of healthy rabbits. The oils are rich in SFAs and MUFAs (mainly palmitic and oleic acids. The pulp oil is rich in polyphenols. Male New Zealand white (NZW rabbits were fed for 4 weeks on a normal diet containing pulp (NP or kernel oil (NK of CO while corn oil was used as control (NC. Total cholesterol (TC, HDL-C, LDL-c and triglycerides (TG levels were measured in this paper. Antioxidant enzymes (superoxide dismutase and glutathione peroxidise, thiobarbiturate reactive substances (TBARSs, and plasma total antioxidant status (TAS were also evaluated. Supplementation of CO pulp oil resulted in favorable changes in blood lipid and lipid peroxidation (increased HDL-C, reduced LDL-C, TG, TBARS levels with enhancement of SOD, GPx, and plasma TAS levels. Meanwhile, supplementation of kernel oil caused lowering of plasma TC and LDL-C as well as enhancement of SOD and TAS levels. These changes showed that oils of CO could be beneficial in improving lipid profile and antioxidant status as when using part of normal diet. The oils can be used as alternative to present vegetable oil.

  9. Improvement of Lipid Profile Is Accompanied by Atheroprotective Alterations in High-Density Lipoprotein Composition Upon Tumor Necrosis Factor Blockade A Prospective Cohort Study in Ankylosing Spondylitis

    NARCIS (Netherlands)

    Eijk, van I.C.; Vries, de M.K.; Levels, J.H.M.; Peters, M.J.L.; Huizer, E.E.; Dijkmans, B.A.C.; Horst - Bruinsma, van der I.E.; Hazenberg, B.P.C.; Stadt, van de R.J.; Wolbink, G.; Nurmohamed, M.T.

    2009-01-01

    Objective. Cardiovascular mortality is increased in ankylosing spondylitis (AS), and inflammation plays an important role. Inflammation deteriorates the lipid profile and alters high-density lipoprotein cholesterol (HDL-c) composition, reflected by increased concentrations of serum amyloid A (SAA)

  10. A comparison of the effects of 2 doses of soy protein or casein on serum lipids, serum lipoproteins, and plasma total homocysteine in hypercholesterolemic subjects.

    Science.gov (United States)

    Tonstad, Serena; Smerud, Knut; Høie, Lars

    2002-07-01

    Studies have shown that soy protein reduces some atherogenic lipid and lipoprotein concentrations, although lipoprotein(a) concentrations may be increased. The dose response of soy protein has not been established; neither has its effect on plasma total homocysteine. Our objective was to evaluate the effect of 2 doses of soy protein on lipid, lipoprotein, and homocysteine concentrations. Four to 24 wk after being instructed to consume a lipid-lowering diet, 130 men and women with LDL-cholesterol concentrations > or = 4 mmol/L were studied during a parallel group trial in which 4 interventions were assigned randomly. Thirty grams isolated soy protein (ISP) and 10 g cotyledon fiber or 50 g ISP and 16.6 g cotyledon fiber or equivalent doses of casein and cellulose were consumed daily as a beverage for 16 wk. When the 2 groups who consumed ISP were compared with the 2 groups who consumed casein, the differences in the net changes from baseline to week 16 in the concentrations of LDL cholesterol and plasma total homocysteine were -0.26 mmol/L (95% CI: -0.43, -0.09 mmol/L; P = 0.01) and -0.8 micromol/L (-1.4, -0.2 micromol/L; P = 0.005), respectively. The effect of the ISP dose was not significant. There were no significant differences between the 2 ISP and the 2 casein groups in changes in lipoprotein(a), HDL-cholesterol, or triacylglycerol concentrations. Adding 30-50 g soy protein/d to a lipid-lowering diet significantly reduced LDL-cholesterol concentrations without increasing lipoprotein(a) concentrations. Plasma total homocysteine concentrations also decreased, suggesting a novel, possibly antiatherosclerotic effect.

  11. Docosahexaenoic acid alters Gsα localization in lipid raft and potentiates adenylate cyclase.

    Science.gov (United States)

    Zhu, Zhuoran; Tan, Zhoubin; Li, Yan; Luo, Hongyan; Hu, Xinwu; Tang, Ming; Hescheler, Jürgen; Mu, Yangling; Zhang, Lanqiu

    2015-01-01

    Supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA), recently has become popular for the amelioration of depression; however the molecular mechanism of DHA action remains unclear. The aim of this study was to investigate the mechanism underlying the antidepressant effect of DHA by evaluating Gsα localization in lipid raft and the activity of adenylate cyclase in an in vitro glioma cell model. Lipid raft fractions from C6 glioma cells treated chronically with DHA were isolated by sucrose gradient ultracentrifugation. The content of Gsα in lipid raft was analyzed by immunoblotting and colocalization of Gsα with lipid raft was subjected to confocal microscopic analysis. The intracellular cyclic adenosine monophosphate (cAMP) level was determined by cAMP immunoassay kit. DHA decreased the amount of Gsα in lipid raft, whereas whole cell lysate Gsα was not changed. Confocal microscopic analysis demonstrated that colocalization of Gsα with lipid raft was decreased, whereas DHA increased intracellular cAMP accumulation in a dose-dependent manner. Interestingly, we found that DHA increased the lipid raft level, instead of disrupting it. The results of this study suggest that DHA may exert its antidepressant effect by translocating Gsα from lipid raft and potentiating the activity of adenylate cyclase. Importantly, the reduced Gsα in lipid raft by DHA is independent of disruption of lipid raft. Overall, the study provides partial preclinical evidence supporting a safe and effective therapy using DHA for depression. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Background diet and fat type alters plasma lipoprotein response but not aortic cholesterol accumulation in F1B Golden Syrian hamsters.

    Science.gov (United States)

    Dillard, Alice; Matthan, Nirupa R; Spartano, Nicole L; Butkowski, Ann E; Lichtenstein, Alice H

    2013-12-01

    Dietary modification alters plasma lipoprotein profiles and atherosclerotic lesion progression in humans and some animal models. Variability in response to diet induced atherosclerosis has been reported in hamsters. Assessed was the interaction between background diet composition and dietary fat type on aortic cholesterol accumulation, lipoprotein profiles, hepatic lipids and selected genes. F1B Golden Syrian hamsters (20/group) were fed (12 weeks) semi-purified or non-purified diets containing either 10 % (w/w) coconut oil or safflower oil and 0.15 % (w/w) cholesterol. The non-purified diets relative to semi-purified diets resulted in significantly higher TC (72 % [percent difference] and 38 %, coconut oil and safflower oil, respectively) and nHDL-C (84 and 61 %, coconut oil and safflower oil, respectively), and lower HDL-C (-47 and -45 %, coconut oil and safflower oil, respectively) concentrations. Plasma triacylglycerol concentrations in the hamsters fed the non-purified coconut oil-supplemented diets were three- to fourfold higher than non-purified safflower oil-supplemented, and both semi-purified diets. With the exception of HDL-C, a significant effect of fat type was observed in TC, nHDL-C and triacylglycerol (all P < 0.05) concentrations. Regardless of diet induced differences in lipoprotein profiles, there was no significant effect on aortic cholesterol accumulation. There was an inverse relationship between plasma nHDL-C and triacylglycerol, and hepatic cholesteryl ester content (P < 0.001). Diet induced differences in hepatic gene transcription (LDL receptor, apoB-100, microsomal transfer protein) were not reflected in protein concentrations. Although hamsters fed non-purified and/or saturated fatty acid-supplemented diets had more atherogenic lipoprotein profiles compared to hamsters fed semi-purified and/or polyunsaturated fatty acid-supplemented diets these differences were not reflected in aortic cholesterol accumulation.

  13. Effect of anti-gut inflammatory agent on insulin resistance and lipid ...

    African Journals Online (AJOL)

    The level of fasting blood glucose, fasting plasma insulin and the curve of glucose tolerance test (GTT) in mice fed LFD, HFD or HFC diet were not affected by 5-ASA treatment. Although plasma lipid levels were similar between 5-ASA consuming and non-5-ASA groups in mice fed LFD and HFD, improved lipid profile was ...

  14. Increasing fetal ovine number per gestation alters fetal plasma clinical chemistry values.

    Science.gov (United States)

    Zywicki, Micaela; Blohowiak, Sharon E; Magness, Ronald R; Segar, Jeffrey L; Kling, Pamela J

    2016-08-01

    Intrauterine growth restriction (IUGR) is interconnected with developmental programming of lifelong pathophysiology. IUGR is seen in human multifetal pregnancies, with stepwise rises in fetal numbers interfering with placental nutrient delivery. It remains unknown whether fetal blood analyses would reflect fetal nutrition, liver, and excretory function in the last trimester of human or ovine IUGR In an ovine model, we hypothesized that fetal plasma biochemical values would reflect progressive placental, fetal liver, and fetal kidney dysfunction as the number of fetuses per gestation rose. To determine fetal plasma biochemical values in singleton, twin, triplet, and quadruplet/quintuplet ovine gestation, we investigated morphometric measures and comprehensive metabolic panels with nutritional measures, liver enzymes, and placental and fetal kidney excretory measures at gestational day (GD) 130 (90% gestation). As anticipated, placental dysfunction was supported by a stepwise fall in fetal weight, fetal plasma glucose, and triglyceride levels as fetal number per ewe rose. Fetal glucose and triglycerides were directly related to fetal weight. Plasma creatinine, reflecting fetal renal excretory function, and plasma cholesterol, reflecting placental excretory function, were inversely correlated with fetal weight. Progressive biochemical disturbances and growth restriction accompanied the rise in fetal number. Understanding the compensatory and adaptive responses of growth-restricted fetuses at the biochemical level may help explain how metabolic pathways in growth restriction can be predetermined at birth. This physiological understanding is important for clinical care and generating interventional strategies to prevent altered developmental programming in multifetal gestation. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  15. Dietary soya protein improves intra-myocardial lipid deposition and altered glucose metabolism in a hypertensive, dyslipidaemic, insulin-resistant rat model.

    Science.gov (United States)

    Oliva, María E; Creus, Agustina; Ferreira, María R; Chicco, Adriana; Lombardo, Yolanda B

    2018-01-01

    This study investigates the effects of replacing dietary casein by soya protein on the underlying mechanisms involved in the impaired metabolic fate of glucose and lipid metabolisms in the heart of dyslipidaemic rats chronically fed (8 months) a sucrose-rich (62·5 %) diet (SRD). To test this hypothesis, Wistar rats were fed an SRD for 4 months. From months 4 to 8, half the animals continued with the SRD and the other half were fed an SRD in which casein was substituted by soya. The control group received a diet with maize starch as the carbohydrate source. Compared with the SRD-fed group, the following results were obtained. First, soya protein significantly (Psoya protein significantly increased (Psoya protein upon the altered pathways of glucose and lipid metabolism in the heart muscle of this rat model.

  16. SERUM MAGNESIUM, LIPID PROFILE AND GLYCATED HAEMOGLOBIN IN DIABETIC RETINOPATHY

    Directory of Open Access Journals (Sweden)

    Sunanda Vusikala

    2016-07-01

    Full Text Available BACKGROUND Diabetic retinopathy is one of the important microvascular complications of diabetes mellitus of long duration. Alterations in trace metals like magnesium and lipid profile was observed in diabetic retinopathy with hyperglycaemic status. AIM The study was taken up to assess the role of magnesium, lipid profile and glycated haemoglobin in diabetic retinopathy. MATERIALS AND METHODS A total of 80 subjects between 40-65 years were included in the study. Group 1 includes 20 age and sex matched healthy controls. Group 2 includes 30 cases of Diabetes mellitus without retinopathy. Group 3 includes 30 cases of Diabetes mellitus with retinopathy. RESULTS Magnesium was found to be significantly low in the diabetic group with retinopathy. Serum cholesterol and triglycerides were significantly elevated in the diabetic group with retinopathy. Fasting and Postprandial plasma glucose and glycated haemoglobin (HbA1c levels confirmed the glycaemic status of each of the groups. CONCLUSIONS Hypomagnesemia, hypercholesterolaemia, hypertriglyceridemia was observed in diabetic retinopathy along with increased levels of glycated haemoglobin in our study.

  17. Recent developments in genome and exome-wide analyses of plasma lipids.

    Science.gov (United States)

    Lange, Leslie A; Willer, Cristen J; Rich, Stephen S

    2015-04-01

    Genome-wide association scans (GWAS) have identified over 100 human loci associated with variation in lipids. The identification of novel genes and variants that affect lipid levels is made possible by next-generation sequencing, rare variant discovery and analytic advances. The current status of the genetic basis of lipid traits will be presented. Expansion of GWAS sample sizes for lipid traits has not substantially increased the proportion of trait variance explained by common genetic variants (less than 15% of trait variation captured). Although GWAS has discovered novel loci and pathways with putative biological function and impact on cardiovascular disease risk, discovery of the genes in these loci remains challenging. Exome sequencing promises to identify genes with protein-coding variants with a large impact on lipids, as shown for LDL-cholesterol levels associated with novel (PNPLA5) and known (LDLR, PCSK9, APOB) genes. Current results have increased our understanding of the genetic architecture of lipids, expanding the range of effect and frequency for variants identified for lipid traits. Identification of novel lipid-associated gene variants, even if small in effect or rare in the population, could provide important novel drug targets and biological pathways for dyslipidemia.

  18. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Ferrante, Maria C.; Amero, Paola; Santoro, Anna; Monnolo, Anna; Simeoli, Raffaele; Di Guida, Francesca; Mattace Raso, Giuseppina; Meli, Rosaria

    2014-01-01

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  19. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, Maria C. [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Amero, Paola; Santoro, Anna [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Monnolo, Anna [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Simeoli, Raffaele; Di Guida, Francesca [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Mattace Raso, Giuseppina, E-mail: mattace@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Meli, Rosaria, E-mail: meli@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy)

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  20. Specific alterations in plasma proteins during depressed, manic, and euthymic states of bipolar disorder

    Energy Technology Data Exchange (ETDEWEB)

    Song, Y.R. [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Wu, B. [Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Yang, Y.T.; Chen, J. [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Zhang, L.J.; Zhang, Z.W. [Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Shi, H.Y. [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Huang, C.L.; Pan, J.X. [Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China); Xie, P. [Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing (China); Chongqing Key Laboratory of Neurobiology, Chongqing (China); Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing (China)

    2015-09-08

    Bipolar disorder (BD) is a common psychiatric mood disorder affecting more than 1-2% of the general population of different European countries. Unfortunately, there is no objective laboratory-based test to aid BD diagnosis or monitor its progression, and little is known about the molecular basis of BD. Here, we performed a comparative proteomic study to identify differentially expressed plasma proteins in various BD mood states (depressed BD, manic BD, and euthymic BD) relative to healthy controls. A total of 10 euthymic BD, 20 depressed BD, 15 manic BD, and 20 demographically matched healthy control subjects were recruited. Seven high-abundance proteins were immunodepleted in plasma samples from the 4 experimental groups, which were then subjected to proteome-wide expression profiling by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight tandem mass spectrometry. Proteomic results were validated by immunoblotting and bioinformatically analyzed using MetaCore. From a total of 32 proteins identified with 1.5-fold changes in expression compared with healthy controls, 16 proteins were perturbed in BD independent of mood state, while 16 proteins were specifically associated with particular BD mood states. Two mood-independent differential proteins, apolipoprotein (Apo) A1 and Apo L1, suggest that BD pathophysiology may be associated with early perturbations in lipid metabolism. Moreover, down-regulation of one mood-dependent protein, carbonic anhydrase 1 (CA-1), suggests it may be involved in the pathophysiology of depressive episodes in BD. Thus, BD pathophysiology may be associated with early perturbations in lipid metabolism that are independent of mood state, while CA-1 may be involved in the pathophysiology of depressive episodes.

  1. Specific alterations in plasma proteins during depressed, manic, and euthymic states of bipolar disorder

    International Nuclear Information System (INIS)

    Song, Y.R.; Wu, B.; Yang, Y.T.; Chen, J.; Zhang, L.J.; Zhang, Z.W.; Shi, H.Y.; Huang, C.L.; Pan, J.X.; Xie, P.

    2015-01-01

    Bipolar disorder (BD) is a common psychiatric mood disorder affecting more than 1-2% of the general population of different European countries. Unfortunately, there is no objective laboratory-based test to aid BD diagnosis or monitor its progression, and little is known about the molecular basis of BD. Here, we performed a comparative proteomic study to identify differentially expressed plasma proteins in various BD mood states (depressed BD, manic BD, and euthymic BD) relative to healthy controls. A total of 10 euthymic BD, 20 depressed BD, 15 manic BD, and 20 demographically matched healthy control subjects were recruited. Seven high-abundance proteins were immunodepleted in plasma samples from the 4 experimental groups, which were then subjected to proteome-wide expression profiling by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight/time-of-flight tandem mass spectrometry. Proteomic results were validated by immunoblotting and bioinformatically analyzed using MetaCore. From a total of 32 proteins identified with 1.5-fold changes in expression compared with healthy controls, 16 proteins were perturbed in BD independent of mood state, while 16 proteins were specifically associated with particular BD mood states. Two mood-independent differential proteins, apolipoprotein (Apo) A1 and Apo L1, suggest that BD pathophysiology may be associated with early perturbations in lipid metabolism. Moreover, down-regulation of one mood-dependent protein, carbonic anhydrase 1 (CA-1), suggests it may be involved in the pathophysiology of depressive episodes in BD. Thus, BD pathophysiology may be associated with early perturbations in lipid metabolism that are independent of mood state, while CA-1 may be involved in the pathophysiology of depressive episodes

  2. Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice.

    Science.gov (United States)

    Uebanso, Takashi; Kano, Saki; Yoshimoto, Ayumi; Naito, Chisato; Shimohata, Takaaki; Mawatari, Kazuaki; Takahashi, Akira

    2017-07-14

    The sugar alcohol xylitol inhibits the growth of some bacterial species including Streptococcus mutans . It is used as a food additive to prevent caries. We previously showed that 1.5-4.0 g/kg body weight/day xylitol as part of a high-fat diet (HFD) improved lipid metabolism in rats. However, the effects of lower daily doses of dietary xylitol on gut microbiota and lipid metabolism are unclear. We examined the effect of 40 and 200 mg/kg body weight/day xylitol intake on gut microbiota and lipid metabolism in mice. Bacterial compositions were characterized by denaturing gradient gel electrophoresis and targeted real-time PCR. Luminal metabolites were determined by capillary electrophoresis electrospray ionization time-of-flight mass spectrometry. Plasma lipid parameters and glucose tolerance were examined. Dietary supplementation with low- or medium-dose xylitol (40 or 194 mg/kg body weight/day, respectively) significantly altered the fecal microbiota composition in mice. Relative to mice not fed xylitol, the addition of medium-dose xylitol to a regular and HFD in experimental mice reduced the abundance of fecal Bacteroidetes phylum and the genus Barnesiella , whereas the abundance of Firmicutes phylum and the genus Prevotella was increased in mice fed an HFD with medium-dose dietary xylitol. Body composition, hepatic and serum lipid parameters, oral glucose tolerance, and luminal metabolites were unaffected by xylitol consumption. In mice, 40 and 194 mg/kg body weight/day xylitol in the diet induced gradual changes in gut microbiota but not in lipid metabolism.

  3. Analysis of lipid profile in lipid storage myopathy.

    Science.gov (United States)

    Aguennouz, M'hammed; Beccaria, Marco; Purcaro, Giorgia; Oteri, Marianna; Micalizzi, Giuseppe; Musumesci, Olimpia; Ciranni, Annmaria; Di Giorgio, Rosa Maria; Toscano, Antonio; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Lipid dysmetabolism disease is a condition in which lipids are stored abnormally in organs and tissues throughout the body, causing muscle weakness (myopathy). Usually, the diagnosis of this disease and its characterization goes through dosage of Acyl CoA in plasma accompanied with evidence of droplets of intra-fibrils lipids in the patient muscle biopsy. However, to understand the pathophysiological mechanisms of lipid storage diseases, it is useful to identify the nature of lipids deposited in muscle fiber. In this work fatty acids and triglycerides profile of lipid accumulated in the muscle of people suffering from myopathies syndromes was characterized. In particular, the analyses were carried out on the muscle biopsy of people afflicted by lipid storage myopathy, such as multiple acyl-coenzyme A dehydrogenase deficiency, and neutral lipid storage disease with myopathy, and by the intramitochondrial lipid storage dysfunctions, such as deficiencies of carnitine palmitoyltransferase II enzyme. A single step extraction and derivatization procedure was applied to analyze fatty acids from muscle tissues by gas chromatography with a flame ionization detector and with an electronic impact mass spectrometer. Triglycerides, extracted by using n-hexane, were analyzed by high performance liquid chromatography coupled to mass spectrometer equipped with an atmospheric pressure chemical ionization interface. The most representative fatty acids in all samples were: C16:0 in the 13-24% range, C18:1n9 in the 20-52% range, and C18:2n6 in the 10-25% range. These fatty acids were part of the most representative triglycerides in all samples. The data obtained was statistically elaborated performing a principal component analysis. A satisfactory discrimination was obtained among the different diseases. Using component 1 vs component 3 a 43.3% of total variance was explained. Such results suggest the important role that lipid profile characterization can have in supporting a correct

  4. Oxidation and antioxidation of human low-density lipoprotein and plasma exposed to 3-morpholinosydnonimine and reagent peroxynitrite

    DEFF Research Database (Denmark)

    Thomas, S R; Davies, Michael Jonathan; Stocker, R

    1998-01-01

    by the consumption of ubiquinol-10 (CoQ10H2) and alpha-tocopherol (alpha-TOH), the accumulation of cholesteryl ester hydro(pero)xides, the loss of lysine (Lys) and tryptophan (Trp) residues, and the change in relative electrophoretic mobility. Exposure to ONOO- or SIN-1 resulted in rapid (... enrichment with the co-antioxidant CoQ10H2 decreased LDL lipid peroxidation induced by SIN-1. At oxidant-to-LDL ratios of >200:1, alpha-TOH enrichment decreased LDL lipid peroxidation for both SIN-1 and ONOO-. In contrast to lipid peroxidation, altering the alpha-TOH content of LDL did not affect Trp or Lys......-antioxidants ascorbate and 3-HAA prevented alpha-TOH consumption and lipid peroxidation. Exposure of human plasma to SIN-1 resulted in the loss of ascorbate followed by loss of CoQ10H2 and bilirubin. Lipid peroxidation was inhibited during this period, though proceeded as a radical-chain process after depletion...

  5. Plasma lipid fatty acid composition, desaturase activities and insulin sensitivity in Amerindian women.

    Science.gov (United States)

    Vessby, B; Ahrén, B; Warensjö, E; Lindgärde, F

    2012-03-01

    Two Amerindian populations--Shuar women living in the Amazonian rain forest under traditional conditions and urbanized women in a suburb of Lima were studied. The fatty acid composition in plasma lipids and the relationships between fatty acid composition and metabolic variables were studied, as well as in a reference group of Swedish women. Fasting plasma was used for analyses of glucose, insulin, leptin and fatty acid composition. Women in Lima had more body fat, higher fasting insulin and leptin and lower insulin sensitivity than the Shuar women, who had insulin sensitivity similar to Swedish women. Shuar women had very high proportions (mean; SD) of palmitoleic (13.2; 3.9%) and oleic (33.9; 3.7%) acids in the plasma cholesteryl esters with very low levels of linoleic acid (29.1; 6.1 3%), as expected on a low fat, high carbohydrate diet. The estimated activity of delta 9 (SCD-1) desaturase was about twice as high in the Shuar compared with Lima women, suggesting neo lipogenesis, while the delta 5 desaturase activity did not differ. The Lima women, as well as the Swedish, showed strong positive correlations between SCD-1 activity on the one hand and fasting insulin and HOMA index on the other. These associations were absent in the Shuar women. The high SCD-1 activity in the Shuar women may reflect increased lipogenesis in adipose tissue. It also illustrates how a low fat diet rich in non-refined carbohydrates can be linked to a good metabolic situation. Copyright © 2010. Published by Elsevier B.V.

  6. Assessment of changes in plasma total antioxidant status in gamma irradiated rats treated with eugenol

    International Nuclear Information System (INIS)

    Azab, Kh. SH.

    2002-01-01

    Eugenol, a volatile phenolic phyto chemical, is a major constituent of clove oil. The present study was carried out to evaluate the antioxidant effect of eugenol on certain lipid metabolites and variations in the antioxidant status. In vitro study (oxidative susceptibility of lipoprotein) revealed that eugenol elongates the lag phase for the induction of conjugated diene and decreased the rate of lipid peroxidation (production of thiobarbituric reactive substances; TBARS) during the propagation phase. In vivo study on rats revealed a significant increase in plasma total antioxidant status after eugenol regime. Furthermore, eugenol water emulsion delivered to rats by garage in a concentration of 1 g/kg body weight for 15 days before and during exposure to fractionated whole body gamma radiation (1.5 Gy every other day) up to a total dose of 7.5 Gy showed that, administration of eugenol reduces significantly the concentration of plasma TBARS and minimize the decrease in plasma antioxidants. Amelioration in the concentration of reduced glutathione (GSH) in blood and liver and the activities of cytosolic glutathione-S-transferase (GST) in the liver were also observed. Furthermore, the changes in the concentrations of total cholesterol, triglycerides, LDL-cholesterol and HDL-cholesterol were less pronounced. It could be postulated that by minimizing the decrease in antioxidant status, eugenol could prevents the radiation induce alterations in lipid metabolism

  7. Long-term soft drink and aspartame intake induces hepatic damage via dysregulation of adipocytokines and alteration of the lipid profile and antioxidant status.

    Science.gov (United States)

    Lebda, Mohamed A; Tohamy, Hossam G; El-Sayed, Yasser S

    2017-05-01

    Dietary intake of fructose corn syrup in sweetened beverages is associated with the development of metabolic syndrome and obesity. We hypothesized that inflammatory cytokines play a role in lipid storage and induction of liver injury. Therefore, this study intended to explore the expression of adipocytokines and its link to hepatic damage. Rats were assigned to drink water, cola soft drink (free access) and aspartame (240 mg/kg body weight/day orally) for 2 months. The lipid profiles, liver antioxidants and pathology, and mRNA expression of adipogenic cytokines were evaluated. Subchronic intake of soft drink or aspartame substantially induced hyperglycemia and hypertriacylglycerolemia, as represented by increased serum glucose, triacylglycerol, low-density lipoprotein and very low-density lipoprotein cholesterol, with obvious visceral fatty deposition. These metabolic syndromes were associated with the up-regulation of leptin and down-regulation of adiponectin and peroxisome proliferator activated receptor-γ (PPAR-γ) expression. Moreover, alterations in serum transaminases accompanied by hepatic oxidative stress involving induction of malondialdehyde and reduction of superoxide dismutase, catalase, and glutathione peroxidase and glutathione levels are indicative of oxidative hepatic damage. Several cytoarchitecture alterations were detected in the liver, including degeneration, infiltration, necrosis, and fibrosis, predominantly with aspartame. These data suggest that long-term intake of soft drink or aspartame-induced hepatic damage may be mediated by the induction of hyperglycemia, lipid accumulation, and oxidative stress with the involvement of adipocytokines. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. [The role of structural heterogeneity of circulating lipids in the regulation of lipoprotein metabolism in the plasma and lymph in hypercholesterolemia in dogs].

    Science.gov (United States)

    Kosukhin, A B; Akhmetova, B S

    1986-01-01

    Fatty acid spectrum of lipoproteins was studied in intestinal steam lymph and blood plasma of dogs with alimentary hypercholesterolemia. Mechanism of cholesterol accumulation in blood plasma appears to relate to increase in content of cholesterol palmitate which is secreted from intestine into lymph and hydrolyzed slowly in liver tissue. Alterations in composition of fatty acid acyls of cholesterol esters, of phosphatidyl cholines and triacyl glycerides as well as effect of these alterations on the lecithin-cholesterol acyl-transferase reaction and lipoprotein lipolysis are discussed.

  9. Oral and intraperitoneal administration of quercetin decreased lymphocyte DNA damage and plasma lipid peroxidation induced by TSA in vivo.

    Science.gov (United States)

    Chan, Shu-Ting; Lin, Yi-Chin; Chuang, Cheng-Hung; Shiau, Rong-Jen; Liao, Jiunn-Wang; Yeh, Shu-Lan

    2014-01-01

    Our previous study showed that quercetin enhances the anticancer effect of trichostatin A (TSA) in xenograft mice given quercetin intraperitoneally (10 mg/kg, 3 times/week). Herein, we investigate whether quercetin administered orally exerts such an effect and prevents the cytotoxic side effects of TSA. We found that quercetin given orally (20 and 100 mg/kg, 3 times/week) failed to enhance the antitumor effect of TSA although it increased the total quercetin concentration more than quercetin administered intraperitoneally in the plasma. The compound quercetin-3-glucuronide (Q3G) increased the most. However, quercetin administered intraperitoneally increased the total quercetin level in tumor tissues more than oral quercetin. Oral and intraperitoneal administration of quercetin similarly decreased lymphocyte DNA damage and plasma lipid peroxidation level induced by TSA. Furthermore, we found that the enhancing effect of Q3G on the antitumor effect of TSA and the incorporation of Q3G was less than that of quercetin in A549 cells. However, we found that A549 cells possessed the ability to convert Q3G to quercetin. In conclusion, different from quercetin administered intraperitoneally, quercetin administered orally failed to enhance the antitumor effect of TSA because of its metabolic conversion. However, it prevented TSA-induced DNA damage and lipid peroxidation.

  10. Plasma lysophosphatidylcholine levels are reduced in obesity and type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Melissa N Barber

    Full Text Available BACKGROUND: Obesity and type 2 diabetes (T2DM are associated with increased circulating free fatty acids and triacylglycerols. However, very little is known about specific molecular lipid species associated with these diseases. In order to gain further insight into this, we performed plasma lipidomic analysis in a rodent model of obesity and insulin resistance as well as in lean, obese and obese individuals with T2DM. METHODOLOGY/PRINCIPAL FINDINGS: Lipidomic analysis using liquid chromatography coupled to mass spectrometry revealed marked changes in the plasma of 12 week high fat fed mice. Although a number of triacylglycerol and diacylglycerol species were elevated along with of a number of sphingolipids, a particularly interesting finding was the high fat diet (HFD-induced reduction in lysophosphatidylcholine (LPC levels. As liver, skeletal muscle and adipose tissue play an important role in metabolism, we next determined whether the HFD altered LPCs in these tissues. In contrast to our findings in plasma, only very modest changes in tissue LPCs were noted. To determine when the change in plasma LPCs occurred in response to the HFD, mice were studied after 1, 3 and 6 weeks of HFD. The HFD caused rapid alterations in plasma LPCs with most changes occurring within the first week. Consistent with our rodent model, data from our small human cohort showed a reduction in a number of LPC species in obese and obese individuals with T2DM. Interestingly, no differences were found between the obese otherwise healthy individuals and the obese T2DM patients. CONCLUSION: Irrespective of species, our lipidomic profiling revealed a generalized decrease in circulating LPC species in states of obesity. Moreover, our data indicate that diet and adiposity, rather than insulin resistance or diabetes per se, play an important role in altering the plasma LPC profile.

  11. Nitric oxide and oxidative stress is associated with severity of diabetic retinopathy and retinal structural alterations.

    Science.gov (United States)

    Sharma, Shashi; Saxena, Sandeep; Srivastav, Khushboo; Shukla, Rajendra K; Mishra, Nibha; Meyer, Carsten H; Kruzliak, Peter; Khanna, Vinay K

    2015-07-01

    The aim of the study was to determine plasma nitric oxide (NO) and lipid peroxide (LPO) levels in diabetic retinopathy and its association with severity of disease. Prospective observational study. A total of 60 consecutive cases and 20 healthy controls were included. Severity of retinopathy was graded according to early treatment diabetic retinopathy study (ETDRS) classification. Photoreceptor inner segment ellipsoid band (ISel) disruption and retinal pigment epithelium (RPE) alteration were graded using spectral domain optical coherence tomography. Data were statistically analyzed. Plasma thiobarbituric acid reactive substances, NO assay and reduced glutathione (GSH) were measured using standard protocol. Increased severity of diabetic retinopathy was significantly associated with increase in plasma levels of LPO (P diabetic retinopathy. For the first time, it has been demonstrated that increased plasma LPO, NO and decreased GSH levels are associated with in vivo structural changes in inner segment ellipsoid and RPE. © 2015 Royal Australian and New Zealand College of Ophthalmologists.

  12. Simvastatin reduces neointimal thickening in low-density lipoprotein receptor-deficient mice after experimental angioplasty without changing plasma lipids.

    Science.gov (United States)

    Chen, Zhiping; Fukutomi, Tatsuya; Zago, Alexandre C; Ehlers, Raila; Detmers, Patricia A; Wright, Samuel D; Rogers, Campbell; Simon, Daniel I

    2002-07-02

    Statins exert antiinflammatory and antiproliferative actions independent of cholesterol lowering. To determine whether these actions might affect neointimal formation, we investigated the effect of simvastatin on the response to experimental angioplasty in LDL receptor-deficient (LDLR-/-) mice, a model of hypercholesterolemia in which changes in plasma lipids are not observed in response to simvastatin. Carotid artery dilation (2.5 atm) and complete endothelial denudation were performed in male C57BL/6J LDLR-/- mice treated with low-dose (2 mg/kg) or high-dose (20 mg/kg) simvastatin or vehicle subcutaneously 72 hours before and then daily after injury. After 7 and 28 days, intimal and medial sizes were measured and the intima to media area ratio (I:M) was calculated. Total plasma cholesterol and triglyceride levels were similar in simvastatin- and vehicle-treated mice. Intimal thickening and I:M were reduced significantly by low- and high-dose simvastatin compared with vehicle alone. Simvastatin treatment was associated with reduced cellular proliferation (BrdU), leukocyte accumulation (CD45), and platelet-derived growth factor-induced phosphorylation of the survival factor Akt and increased apoptosis after injury. Simvastatin modulates vascular repair after injury in the absence of lipid-lowering effects. Although the mechanisms are not yet established, additional research may lead to new understanding of the actions of statins and novel therapeutic interventions for preventing restenosis.

  13. Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature

    Directory of Open Access Journals (Sweden)

    Philip P. Cheney

    2017-03-01

    Full Text Available The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE and hexadecanoic acid (HDA, using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.

  14. N-3 Polyunsaturated Fatty Acids Supplementation Does not Affect Changes of Lipid Metabolism Induced in Rats by Altered Thyroid Status

    Czech Academy of Sciences Publication Activity Database

    Rauchová, Hana; Vokurková, Martina; Pavelka, Stanislav; Behuliak, Michal; Tribulová, N.; Soukup, Tomáš

    2013-01-01

    Roč. 45, č. 7 (2013), s. 507-512 ISSN 0018-5043 R&D Projects: GA ČR(CZ) GA303/09/0570; GA ČR(CZ) GA304/08/0256; GA ČR(CZ) GAP304/12/0259; GA MŠk(CZ) 7AMB12SK158 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : hypothyriodism * hyperthyroidism * mitochondrial glycerol-3-phosphate dehydrogenase * glucose * plasma lipids Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.038, year: 2013

  15. Plasma Periostin Levels Are Increased in Chinese Subjects with Obesity and Type 2 Diabetes and Are Positively Correlated with Glucose and Lipid Parameters.

    Science.gov (United States)

    Luo, Yuanyuan; Qu, Hua; Wang, Hang; Wei, Huili; Wu, Jing; Duan, Yang; Liu, Dan; Deng, Huacong

    2016-01-01

    The purpose of this study is to examine the relations among plasma periostin, glucose and lipid metabolism, insulin resistance and inflammation in Chinese patients with obesity (OB), and type 2 diabetes mellitus (T2DM). Plasma periostin levels in the T2DM group were significantly higher than the NGT group (P index (BMI), waist-hip ratio (WHR), fasting plasma glucose (FPG), 2 h postchallenge plasma glucose (2 h PG), glycated hemoglobin (HbA1c), triglyceride (TG), total cholesterol (TC), fasting insulin (FINS), homeostasis model assessment of insulin resistance (HOMA-IR), TNF-α, and IL-6 (P < 0.05 or 0.001) and negatively correlated with high-density lipoprotein cholesterol (HDL-C) (P < 0.001). Multiple linear regression analysis showed that TG, TNF-α, and HOMA-IR were independent related factors in influencing the levels of plasma periostin (P < 0.001). These results suggested that Chinese patients with obesity and T2DM had significantly higher plasma periostin levels. Plasma periostin levels were strongly associated with plasma TG, chronic inflammation, and insulin resistance.

  16. Perioperative intravenous acetaminophen attenuates lipid peroxidation in adults undergoing cardiopulmonary bypass: a randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Frederic T Billings

    Full Text Available Cardiopulmonary bypass (CPB lyses erythrocytes and induces lipid peroxidation, indicated by increasing plasma concentrations of free hemoglobin, F2-isoprostanes, and isofurans. Acetaminophen attenuates hemeprotein-mediated lipid peroxidation, reduces plasma and urine concentrations of F2-isoprostanes, and preserves kidney function in an animal model of rhabdomyolysis. Acetaminophen also attenuates plasma concentrations of isofurans in children undergoing CPB. The effect of acetaminophen on lipid peroxidation in adults has not been studied. This was a pilot study designed to test the hypothesis that acetaminophen attenuates lipid peroxidation in adults undergoing CPB and to generate data for a clinical trial aimed to reduce acute kidney injury following cardiac surgery.In a prospective double-blind placebo-controlled clinical trial, sixty adult patients were randomized to receive intravenous acetaminophen or placebo starting prior to initiation of CPB and for every 6 hours for 4 doses. Acetaminophen concentrations measured 30 min into CPB and post-CPB were 11.9 ± 0.6 μg/mL (78.9 ± 3.9 μM and 8.7 ± 0.3 μg/mL (57.6 ± 2.0 μM, respectively. Plasma free hemoglobin increased more than 15-fold during CPB, and haptoglobin decreased 73%, indicating hemolysis. Plasma and urinary markers of lipid peroxidation also increased during CPB but returned to baseline by the first postoperative day. Acetaminophen reduced plasma isofuran concentrations over the duration of the study (P = 0.05, and the intraoperative plasma isofuran concentrations that corresponded to peak hemolysis were attenuated in those subjects randomized to acetaminophen (P = 0.03. Perioperative acetaminophen did not affect plasma concentrations of F2-isoprostanes or urinary markers of lipid peroxidation.Intravenous acetaminophen attenuates the increase in intraoperative plasma isofuran concentrations that occurs during CPB, while urinary markers were unaffected.ClinicalTrials.gov NCT

  17. Targeting Lipid Metabolic Reprogramming as Anticancer Therapeutics

    OpenAIRE

    Cha, Ji-Young; Lee, Ho-Jae

    2016-01-01

    Cancer cells rewire their metabolism to satisfy the demands of growth and survival, and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. Lipid metabolism is pivotal in cellular process that converts nutrients into energy, building blocks for membrane biogenesis and the generation of signaling molecules. Accumulating evidence suggests that cancer cells show alterations in different aspects of lipid metabolism. The changes in lipid metabolism of cancer cells c...

  18. Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane.

    Science.gov (United States)

    Hogue, Ian B; Grover, Jonathan R; Soheilian, Ferri; Nagashima, Kunio; Ono, Akira

    2011-10-01

    The HIV-1 structural protein Gag associates with two types of plasma membrane microdomains, lipid rafts and tetraspanin-enriched microdomains (TEMs), both of which have been proposed to be platforms for HIV-1 assembly. However, a variety of studies have demonstrated that lipid rafts and TEMs are distinct microdomains in the absence of HIV-1 infection. To measure the impact of Gag on microdomain behaviors, we took advantage of two assays: an antibody-mediated copatching assay and a Förster resonance energy transfer (FRET) assay that measures the clustering of microdomain markers in live cells without antibody-mediated patching. We found that lipid rafts and TEMs copatched and clustered to a greater extent in the presence of membrane-bound Gag in both assays, suggesting that Gag induces the coalescence of lipid rafts and TEMs. Substitutions in membrane binding motifs of Gag revealed that, while Gag membrane binding is necessary to induce coalescence of lipid rafts and TEMs, either acylation of Gag or binding of phosphatidylinositol-(4,5)-bisphosphate is sufficient. Finally, a Gag derivative that is defective in inducing membrane curvature appeared less able to induce lipid raft and TEM coalescence. A higher-resolution analysis of assembly sites by correlative fluorescence and scanning electron microscopy showed that coalescence of clustered lipid rafts and TEMs occurs predominantly at completed cell surface virus-like particles, whereas a transmembrane raft marker protein appeared to associate with punctate Gag fluorescence even in the absence of cell surface particles. Together, these results suggest that different membrane microdomain components are recruited in a stepwise manner during assembly.

  19. Extended-release niacin/laropiprant significantly improves lipid levels in type 2 diabetes mellitus irrespective of baseline glycemic control

    Directory of Open Access Journals (Sweden)

    Bays HE

    2015-02-01

    Full Text Available Harold E Bays,1 Eliot A Brinton,2 Joseph Triscari,3 Erluo Chen,3 Darbie Maccubbin,3 Alexandra A MacLean,3 Kendra L Gibson,3 Rae Ann Ruck,3 Amy O Johnson-Levonas,3 Edward A O’Neill,3 Yale B Mitchel3 1Louisville Metabolic & Atherosclerosis Research Center (L-MARC, Louisville, KY, USA; 2Utah Foundation for Biomedical Research, Salt Lake City, UT, USA; 3Merck & Co, Inc., Whitehouse Station, NJ, USA Background: The degree of glycemic control in patients with type 2 diabetes mellitus (T2DM may alter lipid levels and may alter the efficacy of lipid-modifying agents. Objective: Evaluate the lipid-modifying efficacy of extended-release niacin/laropiprant (ERN/LRPT in subgroups of patients with T2DM with better or poorer glycemic control. Methods: Post hoc analysis of clinical trial data from patients with T2DM who were randomized 4:3 to double-blind ERN/LRPT or placebo (n=796, examining the lipid-modifying effects of ERN/LRPT in patients with glycosylated hemoglobin or fasting plasma glucose levels above and below median baseline levels. Results: At Week 12 of treatment, ERN/LRPT significantly improved low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C, non-high-density lipoprotein cholesterol, triglycerides, and lipoprotein (a, compared with placebo, with equal efficacy in patients above or below median baseline glycemic control. Compared with placebo, over 36 weeks of treatment more patients treated with ERN/LRPT had worsening of their diabetes and required intensification of antihyperglycemic medication, irrespective of baseline glycemic control. Incidences of other adverse experiences were generally low in all treatment groups. Conclusion: The lipid-modifying effects of ERN/LRPT are independent of the degree of baseline glycemic control in patients with T2DM (NCT00485758. Keywords: lipid-modifying agents, hyperglycemia, LDL, HDL, triglycerides

  20. Lipoperoxides, alpha-tocopherol and ceruloplasmin in gamma-irradiated blood plasma

    International Nuclear Information System (INIS)

    Aladzhov, E.; Popzakharieva, V.

    1995-01-01

    Ceruloplasmin, alpha-tocopherol and lipid peroxide concentrations are evaluated in blood plasma for transfusion following exposure to irradiation with 60 Co gamma rays at doses 23, 50, 100 and 200 Gy. In plasma exposed to irradiation an increase in lipid peroxides and decrease in alpha-tocopherol and ceruloplasmin are observed. The addition of 2.3 U/ml ceruloplasmin to plasma prior to irradiation reduces the quantity of lipid peroxides and protects alpha-tocopherol. The possible explanation is that the metal helates prevent the formation of free hydroxyl radicals and thus inhibit the oxidation of lipid membranes. 15 refs., 1 tab. (author)

  1. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    Science.gov (United States)

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  2. Increased lipid droplet accumulation associated with a peripheral sensory neuropathy.

    Science.gov (United States)

    Marshall, Lee L; Stimpson, Scott E; Hyland, Ryan; Coorssen, Jens R; Myers, Simon J

    2014-04-01

    Hereditary sensory neuropathy type 1 (HSN-1) is an autosomal dominant neurodegenerative disease caused by missense mutations in the SPTLC1 gene. The SPTLC1 protein is part of the SPT enzyme which is a ubiquitously expressed, critical and thus highly regulated endoplasmic reticulum bound membrane enzyme that maintains sphingolipid concentrations and thus contributes to lipid metabolism, signalling, and membrane structural functions. Lipid droplets are dynamic organelles containing sphingolipids and membrane bound proteins surrounding a core of neutral lipids, and thus mediate the intracellular transport of these specific molecules. Current literature suggests that there are increased numbers of lipid droplets and alterations of lipid metabolism in a variety of other autosomal dominant neurodegenerative diseases, including Alzheimer's and Parkinson's disease. This study establishes for the first time, a significant increase in the presence of lipid droplets in HSN-1 patient-derived lymphoblasts, indicating a potential connection between lipid droplets and the pathomechanism of HSN-1. However, the expression of adipophilin (ADFP), which has been implicated in the regulation of lipid metabolism, was not altered in lipid droplets from the HSN-1 patient-derived lymphoblasts. This appears to be the first report of increased lipid body accumulation in a peripheral neuropathy, suggesting a fundamental molecular linkage between a number of neurodegenerative diseases.

  3. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats.

    Science.gov (United States)

    Murugan, Pidaran; Pari, Leelavinothan

    2006-08-01

    Hyperlipidaemia is an associated complication of diabetes mellitus. We recently reported that tetrahydrocurcumin lowered the blood glucose in diabetic rats. In the present study, we have investigated the effect of tetrahydrocurcumin, one of the active metabolites of curcumin on lipid profile and lipid peroxidation in streptozotocin-nicotinamide-induced diabetic rats. Tetrahydrocurcumin 80 mg/kg body weight was administered orally to diabetic rats for 45 days, resulted a significant reduction in blood glucose and significant increase in plasma insulin in diabetic rats, which proved its antidiabetic effect. Tetrahydrocurcumin also caused a significant reduction in lipid peroxidation (thiobarbituric acid reactive substances and hydroperoxides) and lipids (cholesterol, triglycerides, free fatty acids and phospholipids) in serum and tissues, suggesting its role in protection against lipid peroxidation and its antihyperlipidemic effect. Tetrahydrocurcumin showed a better effect when compared with curcumin. Results of the present study indicate that tetrahydrocurcumin showed antihyperlipidaemic effect in addition to its antidiabetic effect in type 2 diabetic rats.

  4. Plasma Phospholipid Fatty Acid Profile is Altered in Both Septic and Non-Septic Critically Ill: A Correlation with Inflammatory Markers and Albumin

    Czech Academy of Sciences Publication Activity Database

    Novák, F.; Borovská, J.; Vecka, M.; Rychlíková, J.; Vávrová, L.; Petrásková, H.; Žák, A.; Nováková, Olga

    2017-01-01

    Roč. 52, č. 3 (2017), s. 245-254 ISSN 0024-4201 Institutional support: RVO:67985823 Keywords : sepsis * inflammation * oxidative stress * plasma lipids * fatty acid profile * PUFA * lipoproteins Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition OBOR OECD: Critical care medicine and Emergency medicine Impact factor: 1.934, year: 2016

  5. Lipids in the cell: organisation regulates function.

    Science.gov (United States)

    Santos, Ana L; Preta, Giulio

    2018-06-01

    Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.

  6. Distribution of Tocopherols and Tocotrienols in Guinea Pig Tissues Following Parenteral Lipid Emulsion Infusion.

    Science.gov (United States)

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas M; Zaloga, Gary P; Siddiqui, Rafat A

    2016-07-01

    Tocopherols and tocotrienols possess vitamin E activity and function as the major lipid-soluble antioxidants in the human body. Commercial lipid emulsions are composed of different oils and supply different amounts of vitamin E. The objective of this study was to measure all 8 vitamin E homologs within 4 different commercial lipid emulsions and evaluate their distribution in guinea pig tissues. The distribution of vitamin E homologs within plasma and guinea pig tissues was determined using a high-performance liquid chromatography (HPLC) system. Lipid hydroperoxides in lipid emulsions were determined using a commercial kit (Cayman Chemical Company, Ann Arbor, MI), and malondialdehyde tissue levels were determined using an HPLC system. The lipid emulsions contained variable amounts of tocopherols, which were significantly different between emulsions. Tocotrienols were present at very low concentrations (≤0.3%). We found no correlation between the amount of vitamin E present in the lipid emulsions and lipid peroxidation. Hydroperoxides were the lowest with an olive oil-based emulsion and highest with a fish oil emulsion. The predominant vitamin E homolog in guinea pig tissues was α-tocopherol. No tissues had detectable levels of tocotrienols. Vitamin E levels (primarily α-tocopherol and γ-tocopherol) were highly variable among organ tissues. Plasma levels were a poor reflection of most tissue levels. Vitamin E levels within different lipid emulsions and plasma/tissues are highly variable, and no one tissue or plasma sample serves as a good proxy for levels in other tissues. All study emulsions were well tolerated and did not significantly increase systemic lipid peroxidation. © 2014 American Society for Parenteral and Enteral Nutrition.

  7. Impact of ticagrelor on P2Y1 and P2Y12 localization and on cholesterol levels in platelet plasma membrane.

    Science.gov (United States)

    Rabani, Vahideh; Montange, Damien; Meneveau, Nicolas; Davani, Siamak

    2017-10-11

    Ticagrelor is an antiplatelet agent that inhibits platelet activation via P2Y12 antagonism. There are several studies showing that P2Y12 needs lipid rafts to be activated, but there are few data about how ticagrelor impacts lipid raft organization. Therefore, we aimed to investigate how ticagrelor could impact the distribution of cholesterol and consequently alter the organization of lipid rafts on platelet plasma membranes. We identified cholesterol-enriched raft fractions in platelet membranes by quantification of their cholesterol levels. Modifications in cholesterol and protein profiles (Flotillin 1, Flotillin 2, CD36, P2Y1, and P2Y12) were studied in platelets stimulated by ADP, treated by ticagrelor, or both. In ADP-stimulated and ticagrelor-treated groups, we found a decreased level of cholesterol in raft fractions of platelet plasma membrane compared to the control group. In addition, the peak of cholesterol in different experimental groups changed its localization on membrane fractions. In the control group, it was situated on fraction 2, while in ADP-stimulated platelets, it was located in fractions 3 to 5, and in fraction 4 in ticagrelor-treated group. The proteins studied also showed changes in their level of expression and localization in fractions of plasma membrane. Cholesterol levels of plasma membranes have a direct role in the organization of platelet membranes and could be modified by stimulation or drug treatment. Since ticagrelor and ADP both changed lipid composition and protein profile, investigating the lipid and protein composition of platelet membranes is of considerable importance as a focus for further research in anti-platelet management.

  8. Effects of cadmium on lipids of almond seedlings (Prunus dulcis).

    Science.gov (United States)

    Elloumi, Nada; Zouari, Mohamed; Chaari, Leila; Jomni, Chiraz; Marzouk, Brahim; Ben Abdallah, Ferjani

    2014-12-01

    Cadmium uptake and distribution, as well as its effects on lipid composition was investigated in almond seedlings (Prunus dulcis) grown in culture solution supplied with two concentrations of Cd (50 and 150 μM). The accumulation of Cd increased with external metal concentrations, and was considerably higher in roots than in leaves. Fourteen days after Cd treatment, the membrane lipids were extracted and separated on silica-gel thin layer chromatography (TLC). Fatty acid methyl esters were analyzed by FID-GC on a capillary column. Our results showed that Cd stress decreased the quantities of all lipids classes (phospholipids, galactolipids and neutral lipids). Galactolipid, phospholipid and neutral lipid concentrations decreased more in roots than in leaves by Cd-treatment. In almost all lipid classes the proportion of palmitic acid (16:0), linoleic (18: 2) and that of linolenic (18: 3) acid decreased, suggesting that heavy metal treatment induced an alteration in the fatty acid synthesis processes. In conclusion, our results show that the changes found in total fatty acids, in the quantities of all lipids classes, and in the in the profiles of individual polar lipids suggest that membrane structure and function might be altered by Cd stress.

  9. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism

    DEFF Research Database (Denmark)

    Duparc, Thibaut; Plovier, Hubert; Marrachelli, Vannina G

    2017-01-01

    performed microarrays and quantitative PCRs in the liver. In addition, we investigated the gut microbiota composition, bile acid profile and both liver and plasma metabolome. We analysed the expression pattern of genes in the liver of obese humans developing non-alcoholic steatohepatitis (NASH). RESULTS...... proliferator activator receptor-α, farnesoid X receptor (FXR), liver X receptors and STAT3) and bile acid profiles involved in glucose, lipid metabolism and inflammation. In addition to these alterations, the genetic deletion of MyD88 in hepatocytes changes the gut microbiota composition and their metabolomes...

  10. Radiation and Heat Stress Impact on Plasma Levels of Thyroid Hormones, Lipid Fractions, Glucose and Liver Glycogen in rats

    International Nuclear Information System (INIS)

    Abdel-Fattah, K.I.; Abou-Safi, H.M.

    2003-01-01

    Since Egypt is classified as a hot country, the present work has been directed to study the combined effect of heat stress and gamma radiation exposure on blood thyroid hormonal levels and some other parameters. Four groups of rats were served as: control, whole-body gamma irradiated (6Gy), exposed to ambient heat stress (38 C-40 C) and a group exposed to heat stress and irradiation. Four time intervals 1, 3, 5 and 7 days were determined for heat stress or exposure to heat followed by irradiation. Blood samples and liver specimens were taken at the end of each time interval in the third group and after one hour of irradiation in the second and fourth groups. To detect the radiation effects after the different periods of heat stress, plasma levels of thyroid hormones (T3 and T4), lipid fractions (triglycerides, total cholesterol, HDL- and LDL-cholesterol), glucose and liver glycogen content were determined. The results revealed that exposure to heat and ionizing radiation leads to a decrease in the levels of thyroid hormones, which was mostly pronounced in the T3 levels. Plasma glucose levels showed significant elevations in both, the heat-stressed group and the heat-treated then irradiated group. While, liver glycogen content exhibited similar elevations only during the 1st, 3 rd and 5 th days of heating followed by irradiation treatment as compared to the heat stressed group. Yet, it showed significant declines in comparison with both control and irradiated groups. Enormous increments in all determined plasma lipid fractions were induced by heat stress and / or gamma radiation

  11. Bilayer/cytoskeleton interactions in lipid-symmetric erythrocytes assessed by a photoactivable phospholipid analogue

    International Nuclear Information System (INIS)

    Pradhan, D.; Schlegel, R.A.; Williamson, P.

    1991-01-01

    Two mechanisms have been proposed for maintenance of transbilayer phospholipid asymmetry in the erythrocyte plasma membrane, one involving specific interactions between the aminophospholipids of the inner leaflet of the bilayer and the cytoskeleton, particularly spectrin, and the other involving the aminophospholipid translocase. If the former mechanism is correct, then erythrocytes which have lost their asymmetric distribution of phospholipids should display altered bilayer/cytoskeleton interactions. To test this possibility, normal erythrocytes, erythrocytes from patients with chronic myelogenous leukemia or sickle disease, and lipid-symmetric and -asymmetric erythrocyte ghosts were labeled with the radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitrobenzoyl)-1-acyl-sn-glycero-3-phospho[ 14 C] ethanolamine ([ 14 C]AzPE), previously shown to label cytoskeletal proteins from the bilayer. The labeling pattern of cytoskeletal proteins in pathologic erythrocytes and lipid-asymmetric erythrocyte ghosts was indistinguishable from normal erythrocytes, indicating that the probe detects no differences in bilayer/cytoskeleton interactions in these cells. In contrast, in lipid-symmetric erythrocyte ghosts, labeling of bands 4.1 and 4.2 and actin, and to a lesser extent ankyrin, by [ 14 C]AzPE was considerably reduced. Significantly, however, labeling of spectrin was unaltered in the lipid-symmetric cells. These results do not support a model in which spectrin is involved in the maintenance of an asymmetric distribution of phospholipids in erythrocytes

  12. How membrane lipids control the 3D structure and function of receptors

    OpenAIRE

    Jacques Fantini; Francisco J. Barrantes

    2018-01-01

    The cohabitation of lipids and proteins in the plasma membrane of mammalian cells is controlled by specific biochemical and biophysical rules. Lipids may be either constitutively tightly bound to cell-surface receptors (non-annular lipids) or less tightly attached to the external surface of the protein (annular lipids). The latter are exchangeable with surrounding bulk membrane lipids on a faster time scale than that of non-annular lipids. Not only do non-annular lipids bind to membrane prote...

  13. Lipid rafts generate digital-like signal transduction in cell plasma membranes.

    Science.gov (United States)

    Suzuki, Kenichi G N

    2012-06-01

    Lipid rafts are meso-scale (5-200 nm) cell membrane domains where signaling molecules assemble and function. However, due to their dynamic nature, it has been difficult to unravel the mechanism of signal transduction in lipid rafts. Recent advanced imaging techniques have revealed that signaling molecules are frequently, but transiently, recruited to rafts with the aid of protein-protein, protein-lipid, and/or lipid-lipid interactions. Individual signaling molecules within the raft are activated only for a short period of time. Immobilization of signaling molecules by cytoskeletal actin filaments and scaffold proteins may facilitate more efficient signal transmission from rafts. In this review, current opinions of how the transient nature of molecular interactions in rafts generates digital-like signal transduction in cell membranes, and the benefits this phenomenon provides, are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Giant Plasma Membrane Vesicles: An Experimental Tool for Probing the Effects of Drugs and Other Conditions on Membrane Domain Stability.

    Science.gov (United States)

    Gerstle, Zoe; Desai, Rohan; Veatch, Sarah L

    2018-01-01

    Giant plasma membrane vesicles (GPMVs) are isolated directly from living cells and provide an alternative to vesicles constructed of synthetic or purified lipids as an experimental model system for use in a wide range of assays. GPMVs capture much of the compositional protein and lipid complexity of intact cell plasma membranes, are filled with cytoplasm, and are free from contamination with membranes from internal organelles. GPMVs often exhibit a miscibility transition below the growth temperature of their parent cells. GPMVs labeled with a fluorescent protein or lipid analog appear uniform on the micron-scale when imaged above the miscibility transition temperature, and separate into coexisting liquid domains with differing membrane compositions and physical properties below this temperature. The presence of this miscibility transition in isolated GPMVs suggests that a similar phase-like heterogeneity occurs in intact plasma membranes under growth conditions, albeit on smaller length scales. In this context, GPMVs provide a simple and controlled experimental system to explore how drugs and other environmental conditions alter the composition and stability of phase-like domains in intact cell membranes. This chapter describes methods to generate and isolate GPMVs from adherent mammalian cells and to interrogate their miscibility transition temperatures using fluorescence microscopy. © 2018 Elsevier Inc. All rights reserved.

  15. Protective effect of morin on lipid peroxidation and lipid profile in ammonium chloride-induced hyperammonemic rats

    Directory of Open Access Journals (Sweden)

    S Subash

    2012-04-01

    Full Text Available Objective: To evaluated the protective effects of morin (3, 5, 7, 2', 4'-pentahydroxyflavone on lipid peroxidation and lipid levels during ammonium chloride (AC induced hyperammonemia in experimental rats. Methods: Thirty two male albino Wistar rats, which are weighing between 180-200 g were used for the study. The hyperammonemia was induced by administration of 100 mg/kg body weight (i.p. thrice in a week of AC for 8 weeks. Rats were treated with morin at dose (30 mg/kg body weight via intragastric intubations together with AC. At the end of experimental duration, blood ammonia, plasma urea, lipid peroxidation indices [thiobarbituric acid reactive substances, hydroperoxides and lipid levels (cholesterol, triglycerides, free fatty acids and phospholipids] in serum and tissues were analysed to evaluate the antiperoxidative and antilipidemic effects of morin. Results: Ammonia, urea, lipid peroxidative indices and lipid levels were significantly increased in AC administered group. Morin treatment resulted in positive modulation of ammonia, urea, lipid peroxidative indices and lipid levels. Morin administration to normal rats did not exhibit any significant changes in any of the parameters studied. Conclusions: It can be concluded that the beneficial effect of morin on ammonia, urea, lipid peroxidative indices and lipid levels could be due to its antioxidant property.

  16. [Germ cell membrane lipids in spermatogenesis].

    Science.gov (United States)

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  17. Hydrogenated fat intake during pregnancy and lactation modifies serum lipid profile and adipokine mRNA in 21-day-old rats.

    Science.gov (United States)

    Pisani, Luciana P; Oyama, Lila M; Bueno, Allain A; Biz, Carolina; Albuquerque, Kelse T; Ribeiro, Eliane B; Oller do Nascimento, Claudia M

    2008-03-01

    We examined whether feeding pregnant and lactating rats hydrogenated fats rich in trans-fatty acids modifies the plasma lipid profiles and the expression of adipokines involved with insulin resistance and cardiovascular disease in their 21-d-old offspring. Pregnant and lactating Wistar rats were fed with a control diet (C group) or one enriched with hydrogenated vegetable fat (T group). After delivery, male offspring were weighed weekly and killed at day 21 of life by decapitation. Blood and retroperitoneal, epididymal, and subcutaneous white adipose tissues were collected. Offspring of T-group rats had increased serum triacylglycerols and cholesterol, white adipose tissue plasminogen activator inhibitor-1, and tumor necrosis factor-alpha gene expression, and carcass lipid content and decreased blood leptin and adiponectin and adiponectin gene expression. Ingestion of hydrogenated vegetable fat by the mother during gestation and lactation alters the blood lipid profiles and the expression of proinflammatory adipokynes by the adipose tissue of offspring aged 21 d.

  18. The association between lipid parameters and obesity in university students.

    Science.gov (United States)

    Hertelyova, Z; Salaj, R; Chmelarova, A; Dombrovsky, P; Dvorakova, M C; Kruzliak, P

    2016-07-01

    Abdominal obesity is associated with high plasma triglyceride and with low plasma high-density lipoprotein cholesterol levels. Objective of the study was to find an association between plasma lipid and lipoprotein levels and anthropometric parameters in abdominal obesity in Slovakian university students. Lipid profile and anthropometric parameters of obesity were studied in a sample of 419 probands, including 137 men and 282 women. Males had higher values of non-high-density lipoprotein cholesterol (non-HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG) and very low-density lipoprotein cholesterol (VLDL-C) than females, but these differences were not significant. Females had significantly (P obesity in young people, predominantly university students.

  19. Altered hypothalamic protein expression in a rat model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available Huntington's disease (HD is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic function. We conducted detailed hypothalamic proteome analyses and also measured circulating levels of various metabolic hormones and lipids in pre-symptomatic and symptomatic animals. Our results demonstrate that there are significant alterations in HD rat hypothalamic protein expression such as glial fibrillary acidic protein (GFAP, heat shock protein-70, the oxidative damage protein glutathione peroxidase (Gpx4, glycogen synthase1 (Gys1 and the lipid synthesis enzyme acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1. In addition, there are significant alterations in various circulating metabolic hormones and lipids in pre-symptomatic animals including, insulin, leptin, triglycerides and HDL, before any motor or cognitive alterations are apparent. These early metabolic and lipid alterations are likely prodromal signs of hypothalamic dysfunction. Gaining a greater understanding of the hypothalamic and metabolic alterations that occur in HD, could lead to the development of novel therapeutics for early interventional treatment of HD.

  20. The effect of dietary fatty acid composition on the hepatic fatty acid content and plasma lipid profile in rats

    Directory of Open Access Journals (Sweden)

    Tomáš Komprda

    2015-01-01

    Full Text Available The objective of the present study was to evaluate in a model organism the effect of different dietary lipids on plasma concentration of total cholesterol (TC, high-density lipoprotein cholesterol (HDL-C, low-density lipoprotein cholesterol (LDL-C and triacylglycerols (TAG. One hundred adult male rats (Wistar Albino were divided into 10 groups with 10 animals each and fed for 7 weeks either basic feed mixture (control diet, C or basic feed mixture with 5% of palm oil (P, safflower oil (SF, salmon oil (S, fish oil (F, Schizochytrium microalga oil (A, and 20% of beef tallow (T; four groups, respectively. The T-groups were fed for another 7 weeks T-, SF-, F- and A-diet, respectively. At the end of both the first and the second 7-week fattening period, plasma lipid concentration and hepatic fatty acid content was determined. Both A and F diets fed for 7 weeks decreased (P -1 compared to control (1.19 mmol∙l-1. The highest (P -1. A-diet had the most positive (decreasing effect on TAG concentrations (0.68–0.86 mmol∙l-1 compared to 1.22 and 2.88 mmol∙l-1 found in the C and T diets, respectively; P P Schizochytrium microalga oil (with high DHA content may have the potential for decreasing the risk of cardiovascular diseases.

  1. Reversing gastric mucosal alterations during ethanol-induced chronic gastritis in rats by oral administration of Opuntia ficus-indica mucilage

    Science.gov (United States)

    Vázquez-Ramírez, Ricardo; Olguín-Martínez, Marisela; Kubli-Garfias, Carlos; Hernández-Muñoz, Rolando

    2006-01-01

    AIM: To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats. METHODS: Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5’-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined. Histological studies of gastric samples from the experimental groups were included. RESULTS: Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes. Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect. The activity of 5’-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes. CONCLUSION: The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids, mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage. PMID:16865772

  2. Reversing gastric mucosal alterations during ethanol-induced chronic gastritis in rats by oral administration of Opuntia ficus-indica mucilage.

    Science.gov (United States)

    Vázquez-Ramírez, Ricardo; Olguín-Martínez, Marisela; Kubli-Garfias, Carlos; Hernández-Muñoz, Rolando

    2006-07-21

    To study the effect of mucilage obtained from cladodes of Opuntia ficus-indica (Cactaceae) on the healing of ethanol-induced gastritis in rats. Chronic gastric mucosa injury was treated with mucilage (5 mg/kg per day) after it was induced by ethanol. Lipid composition, activity of 5'-nucleotidase (a membrane-associated ectoenzyme) and cytosolic activities of lactate and alcohol dehydrogenases in the plasma membrane of gastric mucosa were determined. Histological studies of gastric samples from the experimental groups were included. Ethanol elicited the histological profile of gastritis characterized by loss of the surface epithelium and infiltration of polymorphonuclear leukocytes. Phosphatidylcholine (PC) decreased and cholesterol content increased in plasma membranes of the gastric mucosa. In addition, cytosolic activity increased while the activity of alcohol dehydrogenases decreased. The administration of mucilage promptly corrected these enzymatic changes. In fact, mucilage readily accelerated restoration of the ethanol-induced histological alterations and the disturbances in plasma membranes of gastric mucosa, showing a univocal anti-inflammatory effect. The activity of 5'-nucleotidase correlated with the changes in lipid composition and the fluidity of gastric mucosal plasma membranes. The beneficial action of mucilage seems correlated with stabilization of plasma membranes of damaged gastric mucosa. Molecular interactions between mucilage monosaccharides and membrane phospholipids, mainly PC and phosphatidylethanolamine (PE), may be the relevant features responsible for changing activities of membrane-attached proteins during the healing process after chronic gastric mucosal damage.

  3. CA 15-3 and lipid profile in preoperative breast cancer patients

    International Nuclear Information System (INIS)

    Jamall, S.; Ishaq, M.; Khadim, M.; Alam, J.M.

    2010-01-01

    The transmembrane glycoprotein CA 15-3 is the most widely used serum tumor marker in breast cancer. At present the main uses of CA 15-3 are in pre-clinically detecting recurrent breast cancer and monitoring the treatment of patients with advanced breast cancer. The aim of this study was to define the role of preoperative concentrations of serum CA 15-3a sp rognostic factor and to determine its sensitivity. Serum and plasma samples from breast cancer patients and normal individuals under fasting condition were used to estimate CAlS-3 and lipid profile. The lipid profile was done in order to assess the impact of plasma lipid on the progression of breast cancer. The serum concentration of the tumor marker CAlS-3 in preoperative breast cancer patients was found to be significantly higher (p<0.001) as compared to the normal individuals. The plasma cholesterol (TC), triglyceride (TRG) and total lipid (TL) levels in breast cancer patients were found to be significantly higher (p< O.OI) for TC, TRG and TL as compared to the normal individuals. Moreover, plasma LDL-C levels in breast cancer patients were found to be significantly higher (p< O.OI) compared to the normal individuals. (author)

  4. Gag Induces the Coalescence of Clustered Lipid Rafts and Tetraspanin-Enriched Microdomains at HIV-1 Assembly Sites on the Plasma Membrane ▿

    Science.gov (United States)

    Hogue, Ian B.; Grover, Jonathan R.; Soheilian, Ferri; Nagashima, Kunio; Ono, Akira

    2011-01-01

    The HIV-1 structural protein Gag associates with two types of plasma membrane microdomains, lipid rafts and tetraspanin-enriched microdomains (TEMs), both of which have been proposed to be platforms for HIV-1 assembly. However, a variety of studies have demonstrated that lipid rafts and TEMs are distinct microdomains in the absence of HIV-1 infection. To measure the impact of Gag on microdomain behaviors, we took advantage of two assays: an antibody-mediated copatching assay and a Förster resonance energy transfer (FRET) assay that measures the clustering of microdomain markers in live cells without antibody-mediated patching. We found that lipid rafts and TEMs copatched and clustered to a greater extent in the presence of membrane-bound Gag in both assays, suggesting that Gag induces the coalescence of lipid rafts and TEMs. Substitutions in membrane binding motifs of Gag revealed that, while Gag membrane binding is necessary to induce coalescence of lipid rafts and TEMs, either acylation of Gag or binding of phosphatidylinositol-(4,5)-bisphosphate is sufficient. Finally, a Gag derivative that is defective in inducing membrane curvature appeared less able to induce lipid raft and TEM coalescence. A higher-resolution analysis of assembly sites by correlative fluorescence and scanning electron microscopy showed that coalescence of clustered lipid rafts and TEMs occurs predominately at completed cell surface virus-like particles, whereas a transmembrane raft marker protein appeared to associate with punctate Gag fluorescence even in the absence of cell surface particles. Together, these results suggest that different membrane microdomain components are recruited in a stepwise manner during assembly. PMID:21813604

  5. The action of red wine and purple grape juice on vascular reactivity is independent of plasma lipids in hypercholesterolemic patients

    OpenAIRE

    Coimbra, S.R.; Lage, S.H.; Brandizzi, L.; Yoshida, V.; da Luz, P.L.

    2005-01-01

    Although red wine (RW) reduces cardiovascular risk, the mechanisms underlying the effect have not been identified. Correction of endothelial dysfunction by RW flavonoids could be one mechanism. We measured brachial artery reactivity by high-resolution ultrasonography, plasma lipids, glucose, adhesion molecules (ICAM-1 and VCAM), and platelet function in 16 hypercholesterolemic individuals (8 men and 8 women; mean age 51.6 ± 8.1 years) without other risk factors. Twenty-four normal subjects we...

  6. Effect of dietary lipid, carnitine and exercise on lipid profile in rat blood, liver and muscle.

    Science.gov (United States)

    Karanth, Jyothsna; Jeevaratnam, K

    2009-09-01

    Aim of this study was to investigate the influence of physical exercise on effects of the daily intake of vegetarian diet of either vegetable hydrogenated fat (HF) or peanut oil (PO) with or without carnitine on the lipid profile. Eight groups of male Wistar rats were fed HF-diet (4 groups) or PO-diet (4 groups), with or without carnitine for 24 weeks. One group for each diet acted as sedentary control while the other groups were allowed swimming for 1 hr a day, 6 days/week, for 24 weeks. Plasma triglycerides (TG), total cholesterol (TC), HDL-cholesterol, free fatty acids (FFA), liver and thigh muscle glycogen, total fat (TF), TG, TC and FFA were analyzed. HF-fed rats showed significantly increased plasma TC, VLDL+LDL-cholesterol and TG compared to PO-fed rats, wherein a lowered plasma TC, TG levels in all the groups with significantly increased liver cholesterol and decreased muscle cholesterol was observed. Physical exercise of moderate intensity reduced plasma TC and TG accompanied by significantly reduced tissue TG and cholesterol while FFA and glycogen increased in all the groups. The influence of exercise was less pronounced in carnitine supplemented rats since carnitine could significantly reduce TG in plasma and tissues of sedentary rats. Results from the present study showed that the intake of HF diet significantly increased the plasma and tissue lipid profile and MUFA-rich diet or carnitine supplementation and/or exercise may ameliorate the deleterious effects of HF.

  7. Atherogenic ω-6 Lipids Modulate PPAR- EGR-1 Crosstalk in Vascular Cells

    Directory of Open Access Journals (Sweden)

    Jia Fei

    2011-01-01

    Full Text Available Atherogenic ω-6 lipids are physiological ligands of peroxisome proliferator-activated receptors (PPARs and elicit pro- and antiatherogenic responses in vascular cells. The objective of this study was to investigate if ω-6 lipids modulated the early growth response-1 (Egr-1/PPAR crosstalk thereby altering vascular function. Rat aortic smooth muscle cells (RASMCs were exposed to ω-6 lipids, linoleic acid (LA, or its oxidized form, 13-HPODE (OxLA in the presence or absence of a PPARα antagonist (MK886 or PPARγ antagonist (GW9662 or PPAR-specific siRNA. Our results demonstrate that ω-6 lipids, induced Egr-1 and monocyte chemotactic protein-1 (MCP-1 mRNA and protein levels at the acute phase (1–4 hrs when PPARα was downregulated and at subacute phase (4–12 hrs by modulating PPARγ, thus resulting in altered monocyte adhesion to RASMCs. We provide novel insights into the mechanism of action of ω-6 lipids on Egr-1/PPAR interactions in vascular cells and their potential in altering vascular function.

  8. Lipid raft involvement in yeast cell growth and death

    Energy Technology Data Exchange (ETDEWEB)

    Mollinedo, Faustino, E-mail: fmollin@usal.es [Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca, Salamanca (Spain)

    2012-10-10

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na{sup +}, K{sup +}, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  9. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  10. Altered colonic mucosal Polyunsaturated Fatty Acid (PUFA derived lipid mediators in ulcerative colitis: new insight into relationship with disease activity and pathophysiology.

    Directory of Open Access Journals (Sweden)

    Mojgan Masoodi

    Full Text Available Ulcerative colitis (UC is a relapsing inflammatory disorder of unconfirmed aetiology, variable severity and clinical course, characterised by progressive histological inflammation and with elevation of eicosanoids which have a known pathophysiological role in inflammation. Therapeutic interventions targetting eicosanoids (5-aminosalicylates (ASA are effective first line and adjunctive treatments in mild-moderate UC for achieving and sustaining clinical remission. However, the variable clinical response to 5-ASA and frequent deterioration in response to cyclo-oxygenase (COX inhibitors, has prompted an in depth simultaneous evaluation of multiple lipid mediators (including eicosanoids within the inflammatory milieu in UC. We hypothesised that severity of inflammation is associated with alteration of lipid mediators, in relapsing UC.Study was case-control design. Mucosal lipid mediators were determined by LC-MS/MS lipidomics analysis on mucosal biopsies taken from patients attending outpatients with relapsing UC. Univariate and multivariate statistical analyses were used to investigate the association of mucosal lipid mediators, with the disease state and severity graded histologically.Levels of PGE2, PGD2, TXB2, 5-HETE, 11-HETE, 12-HETE and 15-HETE are significantly elevated in inflamed mucosa and correlate with severity of inflammation, determined using validated histological scoring systems.Our approach of capturing inflammatory mediator signature at different stages of UC by combining comprehensive lipidomics analysis and computational modelling could be used to classify and predict mild-moderate inflammation; however, predictive index is diminished in severe inflammation. This new technical approach could be developed to tailor drug treatments to patients with active UC, based on the mucosal lipid mediator profile.

  11. The surfactant protein C mutation A116D alters cellular processing, stress tolerance, surfactant lipid composition, and immune cell activation

    Directory of Open Access Journals (Sweden)

    Zarbock Ralf

    2012-03-01

    Full Text Available Abstract Background Surfactant protein C (SP-C is important for the function of pulmonary surfactant. Heterozygous mutations in SFTPC, the gene encoding SP-C, cause sporadic and familial interstitial lung disease (ILD in children and adults. Mutations mapping to the BRICHOS domain located within the SP-C proprotein result in perinuclear aggregation of the proprotein. In this study, we investigated the effects of the mutation A116D in the BRICHOS domain of SP-C on cellular homeostasis. We also evaluated the ability of drugs currently used in ILD therapy to counteract these effects. Methods SP-CA116D was expressed in MLE-12 alveolar epithelial cells. We assessed in vitro the consequences for cellular homeostasis, immune response and effects of azathioprine, hydroxychloroquine, methylprednisolone and cyclophosphamide. Results Stable expression of SP-CA116D in MLE-12 alveolar epithelial cells resulted in increased intracellular accumulation of proSP-C processing intermediates. SP-CA116D expression further led to reduced cell viability and increased levels of the chaperones Hsp90, Hsp70, calreticulin and calnexin. Lipid analysis revealed decreased intracellular levels of phosphatidylcholine (PC and increased lyso-PC levels. Treatment with methylprednisolone or hydroxychloroquine partially restored these lipid alterations. Furthermore, SP-CA116D cells secreted soluble factors into the medium that modulated surface expression of CCR2 or CXCR1 receptors on CD4+ lymphocytes and neutrophils, suggesting a direct paracrine effect of SP-CA116D on neighboring cells in the alveolar space. Conclusions We show that the A116D mutation leads to impaired processing of proSP-C in alveolar epithelial cells, alters cell viability and lipid composition, and also activates cells of the immune system. In addition, we show that some of the effects of the mutation on cellular homeostasis can be antagonized by application of pharmaceuticals commonly applied in ILD therapy

  12. Effect of 17β-estradiol on plasma lipids and LDL oxidation in postmenopausal women with type II diabetes mellitus

    NARCIS (Netherlands)

    Brussaard, H.E.; Leuven, J.A.G.; Kluft, C.; Krans, H.M.J.; Duyvenvoorde, W. van; Buytenhek, R.; Laarse, A. van der; Princen, H.M.G.

    1997-01-01

    In type II diabetes mellitus the altered hormonal state after menopause may represent an additional cardiovascular risk factor. Estrogen replacement therapy (ERT) is associated with a decreased cardiovascular risk, at least in nondiabetic post-menopausal women. We studied the effect of ERT on plasma

  13. Effects of atorvastatin and T-786C polymorphism of eNOS gene on plasma metabolic lipid parameters.

    Science.gov (United States)

    Zago, Vanessa Helena de Souza; Santos, José Eduardo Tanus dos; Danelon, Mirian Regina Gardin; Silva, Roger Marcelo Mesquita da; Panzoldo, Natália Baratella; Parra, Eliane Soler; Alexandre, Fernanda; Virgínio, Vítor Wilson de Moura; Quintão, Eder Carlos Rocha; Faria, Eliana Cotta de

    2013-01-01

    Endothelial nitric oxide synthase (eNOS) activity may be modulated by high-density lipoprotein cholesterol (HDL-C), statins or polymorphisms, such as the T-786C of eNOS. This study aimed at evaluating if the T-786C polymorphism is associated with changes of atorvastatin effects on the lipid profile, on the concentrations of metabolites of nitric oxide (NO) and of high sensitivity C-reactive protein (hsCRP). Thirty male volunteers, asymptomatic, aged between 18 and 56 years were genotyped and classified according to absence (TT, n = 15) or presence (CC, n = 15) of the polymorphism. They were randomly selected for the use of placebo or atorvastatin (10 mg/day/14 days). After each treatment lipids, lipoproteins, HDL2 and HDL3 composition, cholesteryl ester transfer protein (CETP) activity, metabolites of NO and hsCRP were evaluated. The comparisons between genotypes after placebo showed an increase in CETP activity in a polymorphism-dependent way (TT, 12±7; CC, 22±12; p < 0.05). The interaction analyses between treatments indicated that atorvastatin has an effect on cholesterol, LDL, nitrite and lipid-protein ratios (HDL2 and HDL3) (p < 0.001) in both genotypes. Interestingly, we observed genotype/drug interactions on CETP (p < 0.07) and lipoprotein (a) (Lp(a)) (p < 0.056), leading to a borderline decrease in CETP, but with no effect on Lp(a). HsCRP showed no alteration. These results suggest that statin treatment may be relevant for primary prevention of atherosclerosis in patients with the T-786C polymorphism of eNOS, considering the effects on lipid metabolism.

  14. Safety and lipid-altering efficacy of a new omega-3 fatty acid and antioxidant-containing medical food in men and women with elevated triacylglycerols.

    Science.gov (United States)

    Maki, K C; Geohas, J G; Dicklin, M R; Huebner, M; Udani, J K

    2015-08-01

    This randomized, double-blind, placebo-controlled multi-center trial investigated the lipid-altering effects of a medical food (PDL-0101) providing 1.8 g/d eicosapentaenoic acid; 12 mg/d astaxanthin, a marine algae-derived carotenoid; and 100 mg/d tocopherol-free gamma/delta tocotrienols enriched with geranylgeraniol, extracted from annatto, on triacylglycerols (TAG), other lipoprotein lipids, and oxidized low-density lipoprotein (LDL) in 102 subjects with TAG 150-499 mg/dL (1.69-5.63 mmol/L) and LDL cholesterol (LDL-C) ≥70 mg/dL (1.81 mmol/L). Compared to placebo, after eight weeks of treatment, PDL-0101 significantly reduced median TAG (-9.5% vs. 10.6%, p<0.001), while not significantly altering mean LDL-C (-3.0% vs. -8.0% for PDL-0101 and placebo, respectively, p=0.071), mean high-density lipoprotein cholesterol (~3% decrease in both groups, p=0.732), or median oxidized LDL concentrations (5% vs. -5% for PDL-0101 and placebo, respectively, p=0.112). These results demonstrate that PDL-0101 is an effective medical food for the management of elevated TAG. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Membrane Contact Sites: Complex Zones for Membrane Association and Lipid Exchange

    OpenAIRE

    Evan Quon; Christopher T. Beh

    2016-01-01

    Lipid transport between membranes within cells involves vesicle and protein carriers, but as agents of nonvesicular lipid transfer, the role of membrane contact sites has received increasing attention. As zones for lipid metabolism and exchange, various membrane contact sites mediate direct associations between different organelles. In particular, membrane contact sites linking the plasma membrane (PM) and the endoplasmic reticulum (ER) represent important regulators of lipid and ion transfer...

  16. Transglycosylated Starch Improves Insulin Response and Alters Lipid and Amino Acid Metabolome in a Growing Pig Model.

    Science.gov (United States)

    Newman, Monica A; Zebeli, Qendrim; Eberspächer, Eva; Grüll, Dietmar; Molnar, Timea; Metzler-Zebeli, Barbara U

    2017-03-16

    Due to the functional properties and physiological effects often associated with chemically modified starches, significant interest lies in their development for incorporation in processed foods. This study investigated the effect of transglycosylated cornstarch (TGS) on blood glucose, insulin, and serum metabolome in the pre- and postprandial phase in growing pigs. Eight jugular vein-catheterized barrows were fed two diets containing 72% purified starch (waxy cornstarch (CON) or TGS). A meal tolerance test (MTT) was performed with serial blood sampling for glucose, insulin, lipids, and metabolome profiling. TGS-fed pigs had reduced postprandial insulin ( p phosphatidylcholines and sphingomyelins were generally increased ( p phosphatidylcholines and lysophosphatidylcholines were decreased ( p insulin and glucose metabolism, which may have caused the alterations in serum amino acid and phospholipid metabolome profiles.

  17. Alteration of serum lipid profile, SRB1 loss, and impaired Nrf2 activation in CDKL5 disorder.

    Science.gov (United States)

    Pecorelli, Alessandra; Belmonte, Giuseppe; Meloni, Ilaria; Cervellati, Franco; Gardi, Concetta; Sticozzi, Claudia; De Felice, Claudio; Signorini, Cinzia; Cortelazzo, Alessio; Leoncini, Silvia; Ciccoli, Lucia; Renieri, Alessandra; Jay Forman, Henry; Hayek, Joussef; Valacchi, Giuseppe

    2015-09-01

    CDKL5 mutation is associated with an atypical Rett syndrome (RTT) variant. Recently, cholesterol homeostasis perturbation and oxidative-mediated loss of the high-density lipoprotein receptor SRB1 in typical RTT have been suggested. Here, we demonstrate an altered lipid serum profile also in CDKL5 patients with decreased levels of SRB1 and impaired activation of the defensive system Nrf2. In addition, CDKL5 fibroblasts showed an increase in 4-hydroxy-2-nonenal- and nitrotyrosine-SRB1 adducts that lead to its ubiquitination and probable degradation. This study highlights a possible common denominator between two different RTT variants (MECP2 and CDKL5) and a possible common future therapeutic target. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Multifaceted role of lipids in Mycobacterium leprae.

    Science.gov (United States)

    Kaur, Gurkamaljit; Kaur, Jagdeep

    2017-03-01

    Mycobacterium leprae must adopt a metabolic strategy and undergo various metabolic alterations upon infection to survive inside the human body for years in a dormant state. A change in lipid homeostasis upon infection is highly pronounced in Mycobacterium leprae. Lipids play an essential role in the survival and pathogenesis of mycobacteria. Lipids are present in several forms and serve multiple roles from being a source of nutrition, providing rigidity, evading the host immune response to serving as virulence factors, etc. The synthesis and degradation of lipids is a highly regulated process and is the key to future drug designing and diagnosis for mycobacteria. In the current review, an account of the distinct roles served by lipids, the mechanism of their synthesis and degradation has been elucidated.

  19. The effect of ultraviolet radiation on wheat root vesicles enriched in plasma membrane

    International Nuclear Information System (INIS)

    Wright, L.A. Jr.; Murphy, T.M.; Travis, R.L.

    1981-01-01

    The irradiation of plant cells with UV radiation (254 nm) causes various solutes to leak from the cells. Vesicles enriched in plasma membranes were prepared from wheat roots. These were used to determine whether UV radiation alters membrane function by direct action on the membranes and to distinguish between the chemical effects produced by high and low fluences of UV. The plasma membrane-associated K + -stimulated ATPase was very sensitive to UV radiation (100% inhibition with 2 ). ATPase activity measured in the absence of K + and K + -stimulated ATPase activity measured in the presence of diethylstilbestrol were much less sensitive. Lipid breakdown, as measured by malondialdehyde production, occurred only at UV fluences greater than 1.8 kJ/m 2 . (author)

  20. Tris(2-butoxyethyl)phosphate and triethyl phosphate alter embryonic development, hepatic mRNA expression, thyroid hormone levels, and circulating bile acid concentrations in chicken embryos

    Energy Technology Data Exchange (ETDEWEB)

    Egloff, Caroline [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Crump, Doug, E-mail: doug.crump@ec.gc.ca [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Porter, Emily; Williams, Kim L.; Letcher, Robert J.; Gauthier, Lewis T. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Kennedy, Sean W. [National Wildlife Research Centre, Environment Canada, Ottawa, ON K1A 0H3 (Canada); Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5 (Canada)

    2014-09-15

    The organophosphate flame retardants tris(2-butoxyethyl) phosphate (TBOEP) and triethyl phosphate (TEP) are used in a wide range of applications to suppress or delay the ignition and spread of fire. Both compounds have been detected in the environment and TBOEP was recently measured in free-living avian species. In this study, TBOEP and TEP were injected into the air cell of chicken embryos at concentrations ranging from 0 to 45,400 ng/g and 0 to 241,500 ng/g egg, respectively. Pipping success, development, hepatic mRNA expression of 9 target genes, thyroid hormone levels, and circulating bile acid concentrations were determined. Exposure to the highest doses of TBOEP and TEP resulted in negligible detection of the parent compounds in embryonic contents at pipping indicating their complete metabolic degradation. TBOEP exposure had limited effects on chicken embryos, with the exception of hepatic CYP3A37 mRNA induction. TEP exposure decreased pipping success to 68%, altered growth, increased liver somatic index (LSI) and plasma bile acids, and modulated genes associated with xenobiotic and lipid metabolism and the thyroid hormone pathway. Plasma thyroxine levels were decreased at all TEP doses, including an environmentally-relevant concentration (8 ng/g), and gallbladder hypotrophy was evident at ≥ 43,200 ng/g. Tarsus length and circulating thyroxine concentration emerged as potential phenotypic anchors for the modulation of transthyretin mRNA. The increase in plasma bile acids and LSI, gallbladder hypotrophy, and discoloration of liver tissue represented potential phenotypic outcomes associated with modulation of hepatic genes involved with xenobiotic and lipid metabolism. - Highlights: • TBOEP is not embryolethal to chicken embryos. • TEP affected embryonic viability, morphometric endpoints, and thyroid hormone levels. • TEP altered mRNA levels of xenobiotic and lipid metabolism genes. • TEP increased plasma bile acids and caused gallbladder hypotrophy

  1. Effect of Sacubitril/Valsartan on Exercise-Induced Lipid Metabolism in Patients With Obesity and Hypertension.

    Science.gov (United States)

    Engeli, Stefan; Stinkens, Rudi; Heise, Tim; May, Marcus; Goossens, Gijs H; Blaak, Ellen E; Havekes, Bas; Jax, Thomas; Albrecht, Diego; Pal, Parasar; Tegtbur, Uwe; Haufe, Sven; Langenickel, Thomas H; Jordan, Jens

    2018-01-01

    Sacubitril/valsartan (LCZ696), a novel angiotensin receptor-neprilysin inhibitor, was recently approved for the treatment of heart failure with reduced ejection fraction. Neprilysin degrades several peptides that modulate lipid metabolism, including natriuretic peptides. In this study, we investigated the effects of 8 weeks' treatment with sacubitril/valsartan on whole-body and adipose tissue lipolysis and lipid oxidation during defined physical exercise compared with the metabolically neutral comparator amlodipine. This was a multicenter, randomized, double-blind, active-controlled, parallel-group study enrolling subjects with abdominal obesity and moderate hypertension (mean sitting systolic blood pressure ≥130-180 mm Hg). Lipolysis during rest and exercise was assessed by microdialysis and [1,1,2,3,3- 2 H]-glycerol tracer kinetics. Energy expenditure and substrate oxidation were measured simultaneously using indirect calorimetry. Plasma nonesterified fatty acids, glycerol, insulin, glucose, adrenaline and noradrenaline concentrations, blood pressure, and heart rate were also determined. Exercise elevated plasma glycerol, free fatty acids, and interstitial glycerol concentrations and increased the rate of glycerol appearance. However, exercise-induced stimulation of lipolysis was not augmented on sacubitril/valsartan treatment compared with amlodipine treatment. Furthermore, sacubitril/valsartan did not alter energy expenditure and substrate oxidation during exercise compared with amlodipine treatment. In conclusion, sacubitril/valsartan treatment for 8 weeks did not elicit clinically relevant changes in exercise-induced lipolysis or substrate oxidation in obese patients with hypertension, implying that its beneficial cardiovascular effects cannot be explained by changes in lipid metabolism during exercise. URL: https://www.clinicaltrials.gov. Unique identifier: NCT01631864. © 2017 The Authors.

  2. Weight gain is associated with improved glycaemic control but with adverse changes in plasma lipids and blood pressure isn Type 1 diabetes.

    LENUS (Irish Health Repository)

    Ferriss, J B

    2012-02-03

    AIMS: To assess the effects of weight gain on metabolic control, plasma lipids and blood pressure in patients with Type 1 diabetes. METHODS: Patients in the EURODIAB Prospective Complications Study (n = 3250) were examined at baseline and 1800 (55%) were re-examined a mean of 7.3 years later. Patients had Type 1 diabetes, defined as a diagnosis made before age 36 years and with a need for continuous insulin therapy within a year of diagnosis. Patients were aged 15-60 years at baseline and were stratified for age, sex and duration of diabetes. RESULTS: The change in HbA(1c) from baseline to follow-up examination was significantly more favourable in those who gained 5 kg or more during follow-up (\\'marked weight gain\\') than in patients who gained less or no weight or lost weight (\\'less or no weight gain\\'). In those with marked weight gain, there was a significantly greater rise in plasma triglycerides and total cholesterol and significantly less favourable changes in low-density lipoprotein and high-density lipoprotein cholesterol compared with those with less or no weight gain, with or without adjustment for HbA(1c). Systolic and diastolic blood pressure also rose significantly more in the group with marked weight gain. CONCLUSION: Weight gain in patients with Type 1 diabetes has adverse effects on plasma lipids and blood pressure, despite a small improvement in glycaemic control.

  3. Heart, lipids and hormones

    Directory of Open Access Journals (Sweden)

    Peter Wolf

    2017-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.

  4. Effect of therapeutic concentration of lithium on live HEK293 cells; increase of Na+/K+-ATPase, change of overall protein composition and alteration of surface layer of plasma membrane.

    Science.gov (United States)

    Vosahlikova, Miroslava; Ujcikova, Hana; Chernyavskiy, Oleksandr; Brejchova, Jana; Roubalova, Lenka; Alda, Martin; Svoboda, Petr

    2017-05-01

    The effect of long-term exposure of live cells to lithium cations (Li) was studied in HEK293 cells cultivated in the presence of 1mM LiCl for 7 or 21days. The alteration of Na + /K + -ATPase level, protein composition and biophysical state of plasma membrane was determined with the aim to characterize the physiological state of Li-treated cells. Na + /K + -ATPase level was determined by [ 3 H]ouabain binding and immunoblot assays. Overall protein composition was determined by 2D electrophoresis followed by proteomic analysis by MALDI-TOF MS/MS and LFQ. Li interaction with plasma membrane was characterized by fluorescent probes DPH, TMA-DPH and Laurdan. Na + /K + -ATPase was increased in plasma membranes isolated from cells exposed to Li. Identification of Li-altered proteins by 2D electrophoresis, MALDI-TOF MS/MS and LFQ suggests a change of energy metabolism in mitochondria and cytosol and alteration of cell homeostasis of calcium. Measurement of Laurdan generalized polarization indicated a significant alteration of surface layer of isolated plasma membranes prepared from both types of Li-treated cells. Prolonged exposure of HEK293 cells to 1mM LiCl results in up-regulation of Na + /K + -ATPase expression, reorganization of overall cellular metabolism and alteration of the surface layer/polar head-group region of isolated plasma membranes. Our findings demonstrate adaptation of live HEK293 cell metabolism to prolonged exposure to therapeutic concentration of Li manifested as up-regulation of Na + /K + -ATPase expression, alteration of protein composition and change of the surface layer of plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Characterization of phospholipid composition and its control in the plasma membrane of developing soybean root

    International Nuclear Information System (INIS)

    Whitman, C.E.

    1985-01-01

    The phospholipid composition of plasma membrane enriched fractions from developing soybean root and several mechanisms which may regulate it have been examined. Plasma membrane vesicles were isolated from meristematic and mature sections of four-day-old dark grown soybean roots (Glycine max [L.] Merr. Cult. Wells II). Analysis of lipid extracts revealed two major phospholipid classes: phosphatidylcholine and phosphatidylethanolamine. Minor phospholipid classes were phosphatidylinositol, phosphatidylserine, phosphatidylgylcerol and diphosphatidylgylcerol. Phospholipid composition was similar at each developmental stage. Fatty acids of phosphatidylcholine and phosphatidylethanolamine were 16:0, 18:0, 18:2, and 18:3. Fatty acid composition varied with both phospholipid class and the developmental stage of the root. The degradation of phosphatidylcholine by endogenous phospholipase D during membrane isolation indicated that this enzyme might be involved in phospholipid turnover within the membrane. Phospholipase D activity was heat labile and increasing the pH of the enzyme assay from 5.3 to 7.8 resulted in 90% inhibition of activity. The turnover of fatty acids within the phospholipids of the plasma membrane was studied. Mature root sections were incubated with [1- 14 C] acetate, 1 mM Na acetate and 50 μg/ml chloramphenicol. Membrane lipid extracts analyzed for phospholipid class and acyl chain composition revealed that the long incubation times did not alter the phospholipid composition of the plasma membrane enriched fraction

  6. Coffee Consumption Increases the Antioxidant Capacity of Plasma and Has No Effect on the Lipid Profile or Vascular Function in Healthy Adults in a Randomized Controlled Trial.

    Science.gov (United States)

    Agudelo-Ochoa, Gloria M; Pulgarín-Zapata, Isabel C; Velásquez-Rodriguez, Claudia M; Duque-Ramírez, Mauricio; Naranjo-Cano, Mauricio; Quintero-Ortiz, Mónica M; Lara-Guzmán, Oscar J; Muñoz-Durango, Katalina

    2016-03-01

    Coffee, a source of antioxidants, has controversial effects on cardiovascular health. We evaluated the bioavailability of chlorogenic acids (CGAs) in 2 coffees and the effects of their consumption on the plasma antioxidant capacity (AC), the serum lipid profile, and the vascular function in healthy adults. Thirty-eight men and 37 women with a mean ± SD age of 38.5 ± 9 y and body mass index of 24.1 ± 2.6 kg/m(2) were randomly assigned to 3 groups: a control group that did not consume coffee or a placebo and 2 groups that consumed 400 mL coffee/d for 8 wk containing a medium (MCCGA; 420 mg) or high (HCCGA; 780 mg) CGA content. Both were low in diterpenes (0.83 mg/d) and caffeine (193 mg/d). Plasma caffeic and ferulic acid concentrations were measured by GC, and the plasma AC was evaluated with use of the ferric-reducing antioxidant power method. The serum lipid profile, nitric oxide (NO) plasma metabolites, vascular endothelial function (flow-mediated dilation; FMD), and blood pressure (BP) were evaluated. After coffee consumption (1 h and 8 wk), caffeic and ferulic acid concentrations increased in the coffee-drinking groups, although the values of the 2 groups were significantly different (P consumption, the plasma AC in the control group was significantly lower than the baseline value (-2%) and significantly increased in the MCCGA (6%) and HCCGA (5%) groups (P profile, FMD, BP, or NO plasma metabolites. This trial was registered at registroclinico.sld.cu as RPCEC00000168. © 2016 American Society for Nutrition.

  7. Environmental toxin acrolein alters levels of endogenous lipids, including TRP agonists: A potential mechanism for headache driven by TRPA1 activation

    Directory of Open Access Journals (Sweden)

    Emma Leishman

    2017-01-01

    Full Text Available Exposure to airborne toxins can trigger headaches, but the mechanisms are not well understood. Some environmental toxins, such as acrolein, activate transient receptor potential ankyrin 1 (TRPA1, a receptor involved in pain sensation that is highly expressed in the trigeminovascular system. It has been shown in rat models that repeated exposure to acrolein induces trigeminovascular sensitization to both TRPA1 and TRP vanilloid 1 (TRPV1 agonists, a phenomenon linked to headache. In this study, we test the hypothesis that the sensitization of trigeminovascular responses in rats after acrolein exposure via inhalation is associated with changes in levels of endogenous lipids, including TRPV1 agonists, in the trigeminal ganglia, trigeminal nucleus, and cerebellum. Lipidomics analysis of 80 lipids was performed on each tissue after acute acrolein, chronic acrolein, or room air control. Both acute and chronic acrolein exposure drove widespread alterations in lipid levels. After chronic acrolein exposure, levels of all 6 N-acyl ethanolamines in the screening library, including the endogenous cannabinoid and TRPV1 agonist, N-arachidonoyl ethanolamine, were elevated in trigeminal tissue and in the cerebellum. This increase in TRPV1 ligands by acrolein exposure may indicate further downstream signaling, in that we also show here that a combination of these TRPV1 endogenous agonists increases the potency of the individual ligands in TRPV1-HEK cells. In addition to these TRPV1 agonists, 3 TRPV3 antagonists, 4 TRPV4 agonists, and 25 orphan lipids were up and down regulated after acrolein exposure. These data support the hypothesis that lipid signaling may represent a mechanism by which repeated exposure to the TRPA1 agonist and environmental toxin, acrolein, drives trigeminovascular sensitization. Keywords: Lipidomics, Endogenous cannabinoid, TRPA1, TRPV1, Lipoamine, Acrolein, Migraine

  8. Preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats.

    Science.gov (United States)

    Roy, Abhro Jyoti; Stanely Mainzen Prince, P

    2013-10-01

    The present study evaluated the preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats. Rats were pretreated with p-coumaric acid (8 mg/kg body weight) daily for a period of 7 days and then injected with isoproterenol (100mg/kg body weight) on 8th and 9th day to induce myocardial infarction. Myocardial infarction induced by isoproterenol was indicated by increased level of cardiac sensitive marker and elevated ST-segments in the electrocardiogram. Also, the levels/concentrations of serum and heart cholesterol, triglycerides and free fatty acids were increased in myocardial infarcted rats. Isoproterenol also increased the levels of serum low density and very low density lipoprotein cholesterol and decreased the levels of high density lipoprotein cholesterol. It also enhanced the activity of liver 3-hydroxy-3 methyl glutaryl-Coenzyme-A reductase. p-Coumaric acid pretreatment revealed preventive effects on all the biochemical parameters and electrocardiogram studied in myocardial infarcted rats. The in vitro study confirmed the free radical scavenging property of p-coumaric acid. Thus, p-coumaric acid prevented cardiac hypertrophy and alterations in lipids, lipoproteins, and electrocardiogram, by virtue of its antihypertrophic, antilipidemic, and free radical scavenging effects in isoproterenol induced myocardial infarcted rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Dairy cows affected by ketosis show alterations in innate immunity and lipid and carbohydrate metabolism during the dry off period and postpartum.

    Science.gov (United States)

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Goldansaz, Seyed Ali; Deng, Qilan; Dunn, Suzanna M; Ametaj, Burim N

    2016-08-01

    The objective of this investigation was to search for alterations in blood variables related to innate immunity and carbohydrate and lipid metabolism during the transition period in cows affected by ketosis. One hundred multiparous Holstein dairy cows were involved in the study. Blood samples were collected at -8, -4, week of disease diagnosis (+1 to +3weeks), and +4weeks relative to parturition from 6 healthy cows (CON) and 6 cows with ketosis and were analyzed for serum variables. Results showed that cows with ketosis had greater concentrations of serum β-hydroxybutyric acid (BHBA), interleukin (IL)-6, tumor necrosis factor (TNF), serum amyloid A (SAA), and lactate in comparison with the CON animals. Serum concentrations of BHBA, IL-6, TNF, and lactate were greater starting at -8 and -4weeks prior to parturition in cows with ketosis vs those of CON group. Cows with ketosis also had lower DMI and milk production vs CON cows. Milk fat also was lower in ketotic cows at diagnosis of disease. Cows affected by ketosis showed an activated innate immunity and altered carbohydrate and lipid metabolism several weeks prior to diagnosis of disease. Serum IL-6 and lactate were the strongest discriminators between ketosis cows and CON ones before the occurrence of ketosis, which might be useful as predictive biomarkers of the disease state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Data supporting beta-amyloid dimer structural transitions and protein–lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures

    Directory of Open Access Journals (Sweden)

    Sara Y. Cheng

    2016-06-01

    Full Text Available This data article supports the research article entitled “Maximally Asymmetric Transbilayer Distribution of Anionic Lipids Alters the Structure and interaction with Lipids of an Amyloidogenic Protein Dimer Bound to the Membrane Surface” [1]. We describe supporting data on the binding kinetics, time evolution of secondary structure, and residue-contact maps of a surface-absorbed beta-amyloid dimer protein on different membrane surfaces. We further demonstrate the sorting of annular and non-annular regions of the protein/lipid bilayer simulation systems, and the correlation of lipid-number mismatch and surface area per lipid mismatch of asymmetric lipid membranes.

  11. Analysis of human plasma lipids by using comprehensive two-dimensional gas chromatography with dual detection and with the support of high-resolution time-of-flight mass spectrometry for structural elucidation.

    Science.gov (United States)

    Salivo, Simona; Beccaria, Marco; Sullini, Giuseppe; Tranchida, Peter Q; Dugo, Paola; Mondello, Luigi

    2015-01-01

    The main focus of the present research is the analysis of the unsaponifiable lipid fraction of human plasma by using data derived from comprehensive two-dimensional gas chromatography with dual quadrupole mass spectrometry and flame ionization detection. This approach enabled us to attain both mass spectral information and analyte percentage data. Furthermore, gas chromatography coupled with high-resolution time-of-flight mass spectrometry was used to increase the reliability of identification of several unsaponifiable lipid constituents. The synergism between both the high-resolution gas chromatography and mass spectrometry processes enabled us to attain a more in-depth knowledge of the unsaponifiable fraction of human plasma. Additionally, information was attained on the fatty acid and triacylglycerol composition of the plasma samples, subjected to investigation by using comprehensive two-dimensional gas chromatography with dual quadrupole mass spectrometry and flame ionization detection and high-performance liquid chromatography with atmospheric pressure chemical ionization quadrupole mass spectrometry, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analysis of relationship between blood lipid metabolism levels and hs-CRP levels in patients with chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    You Fengjian

    2011-01-01

    Objective: To study the relationship between blood lipid metabolism levels and hs-CRP levels in the patients with chronic obstructive pulmonary disease. Methods: The levels of plasma blood lipid (with biochemistry) and serum hs-CRP(with high-sensitive immuno turbidimetry) were determined in 96 patients with chronic obstructive pulmonary disease as well as 68 normal controls. Results: The plasma blood lipid levels in 96 patients with chronic obstructive pulmonary disease were significantly lower than those in 68 controls, plasma TC and LDL-C levels were not much difference (P>0.05), plasma HDL-C level was significantly difference (P<0.05), but TG and Lp (a) levels were very prominently difference (P<0.01). And the plasma hs-CRP level was significantly increased also (P<0.01). The close relationship was between blood lipid and hs-CRP levels. Conclusion: The study of relationship between blood lipid levels and hs-CRP levels in patients with COPD was helpful for understand the disease process as well as possible mechanisms. (authors)

  13. Proatherogenic Lipid Profile in Early Childhood: Association with Weight Status at 4 Years and Parental Obesity.

    Science.gov (United States)

    Riaño-Galán, Isolina; Fernández-Somoano, Ana; Rodríguez-Dehli, Cristina; Valvi, Damaskini; Vrijheid, Martine; Tardón, Adonina

    2017-08-01

    To determine lipid profiles in early childhood and evaluate their association with weight status at 4 years of age. Additionally, we evaluated whether the risk of overweight or having an altered lipid profile was associated with parental weight status. Five hundred eighty two mothers and their 4-year-old children from 2 Spanish population-based cohorts were studied. Weight status in children at 4 years of age was classified as overweight or obese using the International Obesity Task Force criteria. Plasma total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol were determined in children and lipid ratios were calculated. A proatherogenic lipid profile was defined as having the 3 lipid ratios in the third tertile. A total of 12.9% of children were overweight and 6.4% were obese. Weight status at 4 years of age was related to maternal prepregnancy body mass index, paternal body mass index, gestational diabetes, and birth weight, but not with other sociodemographic characteristics of the mother. We found no association with gestational age, sex of the child, or breastfeeding. The risk of overweight/obesity was increased 4.17-fold if mothers were overweight/obese (95% CI 1.76-9.88) and 5.1-fold (95% CI 2.50-10.40) if both parents were overweight/obese. There were 133 children (22.8%) with a proatherogenic lipid profile. The risk of a proatherogenic lipid profile was increased 2.44-fold (95% CI 1.54-3.86) if they were overweight/obese at 4 years of age and 2-fold if the father was overweight/obese (95% CI 1.22-3.35). Four-year-old overweight/obese children have higher lipid risk profiles. Offspring of overweight/obese parents have an increased risk for obesity and a proatherogenic lipid profile. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  14. Relationship between Sustained Reductions in Plasma Lipid and Lipoprotein Concentrations with Apheresis and Plasma Levels and mRNA Expression of PTX3 and Plasma Levels of hsCRP in Patients with HyperLp(alipoproteinemia

    Directory of Open Access Journals (Sweden)

    Claudia Stefanutti

    2016-01-01

    Full Text Available The effect of lipoprotein apheresis (Direct Adsorption of Lipids, DALI (LA on plasma levels of pentraxin 3 (PTX3, an inflammatory marker that reflects coronary plaque vulnerability, and expression of PTX3 mRNA was evaluated in patients with hyperLp(alipoproteinemia and angiographically defined atherosclerosis/coronary artery disease. Eleven patients, aged 55±9.3 years (mean ± SD, were enrolled in the study. PTX3 soluble protein levels in plasma were unchanged by 2 sessions of LA; however, a downregulation of mRNA expression for PTX3 was observed, starting with the first session of LA (p<0.001. The observed reduction was progressively increased in the interval between the first and second LA sessions to achieve a maximum decrease by the end of the second session. A statistically significantly greater treatment-effect correlation was observed in patients undergoing weekly treatments, compared with those undergoing treatment every 15 days. A progressive reduction in plasma levels of C-reactive protein was also seen from the first session of LA, with a statistically significant linear correlation for treatment-effect in the change in plasma levels of this established inflammatory marker (R2=0.99; p<0.001. Our findings suggest that LA has anti-inflammatory and endothelium protective effects beyond its well-established efficacy in lowering apoB100-containing lipoproteins.

  15. Replication analysis of genetic association of the NCAN-CILP2 region with plasma lipid levels and non-alcoholic fatty liver disease in Asian and Pacific ethnic groups.

    Science.gov (United States)

    Boonvisut, Supichaya; Nakayama, Kazuhiro; Makishima, Saho; Watanabe, Kazuhisa; Miyashita, Hiroshi; Lkhagvasuren, Munkhtulga; Kagawa, Yasuo; Iwamoto, Sadahiko

    2016-01-13

    The Neurocan-cartilage intermediate layer protein 2 (NCAN-CILP2) region forms a tight linkage disequilibrium (LD) block and is associated with plasma lipid levels and non-alcoholic fatty liver disease (NAFLD) in individuals of European descent but not in the Malay and Japanese ethnic groups. Recent genome-wide resequence studies identified a missense single-nucleotide polymorphism (SNP) (rs58542926) of the transmembrane 6 superfamily member 2 (TM6SF2) gene in the NCAN-CILP2 region related to hepatic triglyceride content. This study aims to analyze the influences of SNPs in this region on NAFLD and plasma lipid levels in the Asian and Pacific ethnic groups and to reveal the reasons behind positive and negative genetic associations dependent on ethnicity. Samples and characteristic data were collected from 3,013 Japanese, 119 Palauan, 947 Mongolian, 212 Thai and 401 Chinese people. Hepatic sonography data was obtained from the Japanese individuals. Genotyping data of five SNPs, rs58542926, rs735273, rs1009136, rs1858999, and rs16996148, were used to verify the effect on serum lipid levels by multiple linear regression, and the association with NAFLD in the Japanese population was examined by logistic regression analysis. rs58542926 showed significant association with the plasma triglyceride (TG) level in Japanese (P = 0.0009, effect size = 9.5 (± 3.25) mg/dl/allele) and Thai (P = 0.0008, effect size = 31.6 (± 11.7) mg/dl/allele) study subjects. In Mongolian individuals, there was a significant association of rs58542926 with total cholesterol level (P = 0.0003, 11.7 (± 3.2) mg/dl/allele) but not with TG level. In multiple comparisons in Chinese individuals, rs58542926 was weakly (P = 0.022) associated with TG levels, although the threshold for statistical significance was not reached. In Palauan individuals, there was no significant association with the studied SNPs. rs58542926 also showed significant association with Japanese NAFLD. The minor allele (t) increased

  16. Clinical Symptoms in Fibromyalgia Are Better Associated to Lipid Peroxidation Levels in Blood Mononuclear Cells Rather than in Plasma

    Science.gov (United States)

    Cano-García, Francisco J.; De Miguel, Manuel; Carrión, Angel M.; Navas, Plácido; Sánchez Alcázar, José A.

    2011-01-01

    Background We examined lipid peroxidation (LPO) in blood mononuclear cells (BMCs) and plasma, as a marker of oxidative damage, and its association to clinical symptoms in Fibromyalgia (FM) patients. Methods We conducted a case–control and correlational study comparing 65 patients and 45 healthy controls. Clinical parameters were evaluated using the Fibromyalgia Impact Questionnaire (FIQ), visual analogues scales (VAS), and the Beck Depression Inventory (BDI). Oxidative stress was determined by measuring LPO in BMCs and plasma. Results We found increased LPO levels in BMCs and plasma from FM patients as compared to normal control (P<0.001). A significant correlation between LPO in BMCs and clinical parameters was observed (r = 0.584, P<0.001 for VAS; r = 0.823, P<0.001 for FIQ total score; and r = 0.875, P<0.01 for depression in the BDI). We also found a positive correlation between LPO in plasma and clinical symptoms (r = 0.452, P<0.001 for VAS; r = 0.578, P<0.001 for FIQ total score; and r = 0.579, P<0.001 for depression in the BDI). Partial correlation analysis controlling for age and BMI, and sex, showed that both LPO in cells and plasma were independently associated to clinical symptoms. However, LPO in cells, but not LPO in plasma, was independently associated to clinical symptoms when controlling for depression (BDI scores). Discussion The results of this study suggest a role for oxidative stress in the pathophysiology of fibromyalgia and that LPO in BMCs rather than LPO in plasma is better associated to clinical symptoms in FM. PMID:22046409

  17. Clinical symptoms in fibromyalgia are better associated to lipid peroxidation levels in blood mononuclear cells rather than in plasma.

    Directory of Open Access Journals (Sweden)

    Mario D Cordero

    Full Text Available BACKGROUND: We examined lipid peroxidation (LPO in blood mononuclear cells (BMCs and plasma, as a marker of oxidative damage, and its association to clinical symptoms in Fibromyalgia (FM patients. METHODS: We conducted a case-control and correlational study comparing 65 patients and 45 healthy controls. Clinical parameters were evaluated using the Fibromyalgia Impact Questionnaire (FIQ, visual analogues scales (VAS, and the Beck Depression Inventory (BDI. Oxidative stress was determined by measuring LPO in BMCs and plasma. RESULTS: We found increased LPO levels in BMCs and plasma from FM patients as compared to normal control (P<0.001. A significant correlation between LPO in BMCs and clinical parameters was observed (r = 0.584, P<0.001 for VAS; r = 0.823, P<0.001 for FIQ total score; and r = 0.875, P<0.01 for depression in the BDI. We also found a positive correlation between LPO in plasma and clinical symptoms (r = 0.452, P<0.001 for VAS; r = 0.578, P<0.001 for FIQ total score; and r = 0.579, P<0.001 for depression in the BDI. Partial correlation analysis controlling for age and BMI, and sex, showed that both LPO in cells and plasma were independently associated to clinical symptoms. However, LPO in cells, but not LPO in plasma, was independently associated to clinical symptoms when controlling for depression (BDI scores. DISCUSSION: The results of this study suggest a role for oxidative stress in the pathophysiology of fibromyalgia and that LPO in BMCs rather than LPO in plasma is better associated to clinical symptoms in FM.

  18. Comparison of lipid lowering effect of extra virgin olive oil and atorvastatin in dyslipidemia in type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Khan, T.M.

    2017-01-01

    Extra virgin olive oil (EVOO) is fruit oil with rich source of monounsaturated fats and powerful antioxidants. It acts as hypolipidemic agent and significant decrease of plasma lipids levelwas observed with EVOO use. Atorvastatin is hypolipidemic drug commonly used for treatment of hyperlipidaemia. The purpose of this study was to determine and compare the lipid lowering effect of EVOO with atorvastatin in type 2 diabetic dyslipidaemia which is leading cause of microvascular diseases. Methods: This cross-sectional study was conducted on 60 already diagnosed cases of type 2 diabetes mellitus with dyslipidaemia. All sixty subjects were divided into 2 groups. Atorvastatin 40mg was given to Group One and two tablespoons of extra virgin olive oil orally per day was given to Group Two. Blood was collected for estimation of plasma lipids level at base line, 4th week, and 6th weeks in two groups and was compared statistically. Results: The present study demonstrated 20-40% lipid lowering effect of atorvastatin on plasma lipids level with 9-16% increase in HDL while extra virgin olive oil showed 14 to 25% reduction in plasma lipids with 8-12% increase in HDL-cholesterol level. Conclusion: This study concludes that both atorvastatin and extra virgin olive oil are effective in reducing plasma lipids level in type 2 diabetic dyslipidaemia with more prominent effect of atorvastatin than EVOO. (author)

  19. Comparison Of Lipid Lowering Effect Of Extra Virgin Olive Oil And Atorvastatin In Dyslipidaemia In Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Khan, Tariq Mahmood; Iqbal, Sohail; Rashid, Muhammad Adnan

    2017-01-01

    Extra virgin olive oil (EVOO) is fruit oil with rich source of monounsaturated fats and powerful antioxidants. It acts as hypolipidemic agent and significant decrease of plasma lipids level was observed with EVOO use. Atorvastatin is hypolipidemic drug commonly used for treatment of hyperlipidaemia. The purpose of this study was to determine & compare the lipid lowering effect of EVOO with atorvastatin in type 2 diabetic dyslipidaemia which is leading cause of microvascular diseases. This randomised controlled trial was conducted on 60 already diagnosed cases of type 2 diabetes mellitus with dyslipidaemia. All sixty subjects were divided randomly into 2 groups. Atorvastatin 40 mg was given to Group One and two tablespoons of extra virgin olive oil orally per day was given to Group Two. Blood was collected for estimation of plasma lipids level at base line, 4th week, and 6th weeks in two groups and was compared statistically. The present study demonstrated 20-40% lipid lowering effect of atorvastatin on plasma lipids level with 9-16% increase in HDL while extra virgin olive oil showed 14-25% reduction in plasma lipids with 8-12% increase in HDL-cholesterol level. This study concludes that both atorvastatin and extra virgin olive oil are effective in reducing plasma lipids level in type 2 diabetic dyslipidaemia with more prominent effect of atorvastatin than EVOO.

  20. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    Science.gov (United States)

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  1. Tribbles-1: a novel regulator of hepatic lipid metabolism in humans.

    Science.gov (United States)

    Bauer, Robert C; Yenilmez, Batuhan O; Rader, Daniel J

    2015-10-01

    The protein tribbles-1, encoded by the gene TRIB1, is increasingly recognized as a major regulator of multiple cellular and physiological processes in humans. Recent human genetic studies, as well as molecular biological approaches, have implicated this intriguing protein in the aetiology of multiple human diseases, including myeloid leukaemia, Crohn's disease, non-alcoholic fatty liver disease (NAFLD), dyslipidaemia and coronary artery disease (CAD). Genome-wide association studies (GWAS) have repeatedly identified variants at the genomic TRIB1 locus as being significantly associated with multiple plasma lipid traits and cardiovascular disease (CVD) in humans. The involvement of TRIB1 in hepatic lipid metabolism has been validated through viral-mediated hepatic overexpression of the gene in mice; increasing levels of TRIB1 decreased plasma lipids in a dose-dependent manner. Additional studies have implicated TRIB1 in the regulation of hepatic lipogenesis and NAFLD. The exact mechanisms of TRIB1 regulation of both plasma lipids and hepatic lipogenesis remain undetermined, although multiple signalling pathways and transcription factors have been implicated in tribbles-1 function. Recent reports have been aimed at developing TRIB1-based lipid therapeutics. In summary, tribbles-1 is an important modulator of human energy metabolism and metabolic syndromes and worthy of future studies aimed at investigating its potential as a therapeutic target. © 2015 Authors; published by Portland Press Limited.

  2. Blood lipids and prostate cancer

    DEFF Research Database (Denmark)

    Bull, Caroline J; Bonilla, Carolina; Holly, Jeff M P

    2016-01-01

    Genetic risk scores were used as unconfounded instruments for specific lipid traits (Mendelian randomization) to assess whether circulating lipids causally influence prostate cancer risk. Data from 22,249 prostate cancer cases and 22,133 controls from 22 studies within the international PRACTICAL...... into logistic regression models to estimate the presence (and direction) of any causal effect of each lipid trait on prostate cancer risk. There was weak evidence for an association between the LDL genetic score and cancer grade: the odds ratio (OR) per genetically instrumented standard deviation (SD) in LDL.......95, 3.00; P = 0.08). The rs12916-T variant in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was inversely associated with prostate cancer (OR: 0.97; 95% CI: 0.94, 1.00; P = 0.03). In conclusion, circulating lipids, instrumented by our genetic risk scores, did not appear to alter prostate cancer risk...

  3. The Role of Angiopoietin-like 4 in Lipid Homeostasis

    OpenAIRE

    Gray, Nora

    2012-01-01

    AbstractThe Role of Angiopoietin-like 4 in Lipid HomeostasisbyNora Elizabeth Forbes GrayDoctor of Philosophy in Molecular and Biochemical NutritionUniversity of California, BerkeleyProfessor Jen-Chywan Wang, ChairAlterations in the regulation of lipid homeostasis are major causes of metabolic diseases like obesity, insulin resistance and the metabolic syndrome. These diseases affect millions of people and therefore constitute a pressing public health concern. The mobilization of lipids is a k...

  4. Venous plasma levels of endothelin-1 are not altered immediately after nitroglycerin infusion in healthy subjects

    DEFF Research Database (Denmark)

    Thomsen, L L; Iversen, Helle Klingenberg; Emmeluth, C

    1995-01-01

    before and immediately (5-30 s) after 80 min infusion of NTG (glyceryl trinitrate) or saline in 12 healthy subjects. On two different days separated by at least 1 week, NTG in four different doses, 0.015, 0.25, 1.0, and 2.0 micrograms. kg-1. min-1, or placebo (isotonic saline) was infused successively...... for 20 min each dose. During the infusion blood pressure and heart rate were measured. NTG infusion significantly decreased systolic blood pressure from 112.4 to 103.4 mmHg and pulse pressure from 39.3 to 29.5 mmHg. Heart rate increased from 62.7 to 73.1 beats. min-1. No changes in endothelin-1 plasma...... levels were induced by NTG infusion (2.4 pg.ml-1 before NTG vs. 2.7 pg.ml-1 after NTG) and placebo infusion also did not affect plasma endothelin-1. It is concluded that venous plasma levels of endothelin-1 are not altered immediately after NTG infusion....

  5. Effect of cadmium exposure on lipids, lipid peroxidation and metal distribution in rat brain regions

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, T; Ali, M M; Chandra, S V

    1985-01-01

    Effect of cadmium treatment on brain lipids, lipid peroxidation and distribution of Zn, Cu and Fe in rat brain regions was investigated. Adult male rats were exposed to Cd (100 ppm Cd as cadmium acetate) in drinking water for 30 days. The Cd exposure resulted in a significant decrease in the phospholipid content and an increase in the lipid peroxidation in the cerebral cortex and cerebellum. The total lipid content was not affected in any of the regions but a significant decrease in cholesterol and cerebroside contents were observed only in the cerebral cortex. A positive correlation between the increase in lipid peroxidation and decrease in the phospholipid content in the cerebral cortex and cerebellum was observed. A maximum accumulation of Cd occurred in the cerebral cortex. The Cu and Fe contents were significantly increased but the Zn levels decreased in the Cd-treated rats in all but the midbrain region. Results suggest that the increased peroxidation decomposition of structural lipids and the altered distribution of the essential trace metals in brain may play a significant role in Cd-induced neurotoxicity. 27 references, 2 tables.

  6. Krill protein hydrolysate reduces plasma triacylglycerol level with concurrent increase in plasma bile acid level and hepatic fatty acid catabolism in high-fat fed mice

    Directory of Open Access Journals (Sweden)

    Marie S. Ramsvik

    2013-11-01

    Full Text Available Background: Krill powder, consisting of both lipids and proteins, has been reported to modulate hepatic lipid catabolism in animals. Fish protein hydrolysate diets have also been reported to affect lipid metabolism and to elevate bile acid (BA level in plasma. BA interacts with a number of nuclear receptors and thus affects a variety of signaling pathways, including very low density lipoprotein (VLDL secretion. The aim of the present study was to investigate whether a krill protein hydrolysate (KPH could affect lipid and BA metabolism in mice. Method: C57BL/6 mice were fed a high-fat (21%, w/w diet containing 20% crude protein (w/w as casein (control group or KPH for 6 weeks. Lipids and fatty acid composition were measured from plasma, enzyme activity and gene expression were analyzed from liver samples, and BA was measured from plasma. Results: The effect of dietary treatment with KPH resulted in reduced levels of plasma triacylglycerols (TAG and non-esterified fatty acids (NEFAs. The KPH treated mice had also a marked increased plasma BA concentration. The increased plasma BA level was associated with induction of genes related to membrane canalicular exporter proteins (Abcc2, Abcb4 and to BA exporters to blood (Abcc3 and Abcc4. Of note, we observed a 2-fold increased nuclear farnesoid X receptor (Fxr mRNA levels in the liver of mice fed KPH. We also observed increased activity of the nuclear peroxiosme proliferator-activated receptor alpha (PPARα target gene carnitine plamitoyltransferase 2 (CPT-2. Conclusion: The KPH diet showed to influence lipid and BA metabolism in high-fat fed mice. Moreover, increased mitochondrial fatty acid oxidation and elevation of BA concentration may regulate the plasma level of TAGs and NEFAs.

  7. Alteration of the phospho- or neutral lipid content and fatty acid composition in Listeria monocytogenes due to acid adaptation mechanisms for hydrochloric, acetic and lactic acids at pH 5.5 or benzoic acid at neutral pH.

    Science.gov (United States)

    Mastronicolis, Sofia K; Berberi, Anita; Diakogiannis, Ioannis; Petrova, Evanthia; Kiaki, Irene; Baltzi, Triantafillia; Xenikakis, Polydoros

    2010-10-01

    This study provides a first approach to observe the effects on Listeria monocytogenes of cellular exposure to acid stress at low or neutral pH, notably how phospho- or neutral lipids are involved in this mechanism, besides the fatty acid profile alteration. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown at pH 5.5 in presence of hydrochloric, acetic and lactic acids, or at neutral pH 7.3 in presence of benzoic acid, is described relative to cells grown in acid-free medium. The results showed that only low pH values enhance the antimicrobial activity of an acid. We suggest that, irrespective of pH, the acid adaptation response will lead to a similar alteration in fatty acid composition [decreasing the ratio of branched chain/saturated straight fatty acids of total lipids], mainly originating from the neutral lipid class of adapted cultures. Acid adaptation in L. monocytogenes was correlated with a decrease in total lipid phosphorus and, with the exception of cells adapted to benzoic acid, this change in the amount of phosphorus reflected a higher content of the neutral lipid class. Upon acetic or benzoic acid stress the lipid phosphorus proportion was analysed in the main phospholipids present: cardiolipin, phosphatidylglycerol, phosphoaminolipid and phosphatidylinositol. Interestingly only benzoic acid had a dramatic effect on the relative quantities of these four phospholipids.

  8. Lipid droplet analysis in caveolin-deficient adipocytes: alterations in surface phospholipid composition and maturation defects

    OpenAIRE

    Blouin, Cedric M.; Le Lay, Soazig; Eberl, Anita; Koefeler, Harald C.; Guerrera, Ida Chiara; Klein, Christophe; Le Liepvre, Xavier; Lasnier, Francoise; Bourron, Olivier; Gautier, Jean-Francois; Ferre, Pascal; Hajduch, Eric; Dugail, Isabelle

    2010-01-01

    Caveolins form plasmalemnal invaginated caveolae. They also locate around intracellular lipid droplets but their role in this location remains unclear. By studying primary adipocytes that highly express caveolin-1, we characterized the impact of caveolin-1 deficiency on lipid droplet proteome and lipidome. We identified several missing proteins on the lipid droplet surface of caveolin-deficient adipocytes and showed that the caveolin-1 lipid droplet pool is organized as multi-protein complexe...

  9. Protein catabolism and high lipid metabolism associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses.

    Directory of Open Access Journals (Sweden)

    Laurence Le Moyec

    Full Text Available During long distance endurance races, horses undergo high physiological and metabolic stresses. The adaptation processes involve the modulation of the energetic pathways in order to meet the energy demand. The aims were to evaluate the effects of long endurance exercise on the plasma metabolomic profiles and to investigate the relationships with the individual horse performances. The metabolomic profiles of the horses were analyzed using the non-dedicated methodology, NMR spectroscopy and statistical multivariate analysis. The advantage of this method is to investigate several metabolomic pathways at the same time in a single sample. The plasmas were obtained before exercise (BE and post exercise (PE from 69 horses competing in three endurance races at national level (130-160 km. Biochemical assays were also performed on the samples taken at PE. The proton NMR spectra were compared using the supervised orthogonal projection on latent structure method according to several factors. Among these factors, the race location was not significant whereas the effect of the race exercise (sample BE vs PE of same horse was highly discriminating. This result was confirmed by the projection of unpaired samples (only BE or PE sample of different horses. The metabolomic profiles proved that protein, energetic and lipid metabolisms as well as glycoproteins content are highly affected by the long endurance exercise. The BE samples from finisher horses could be discriminated according to the racing speed based on their metabolomic lipid content. The PE samples could be discriminated according to the horse ranking position at the end of the race with lactate as unique correlated metabolite. As a conclusion, the metabolomic profiles of plasmas taken before and after the race provided a better understanding of the high energy demand and protein catabolism pathway that could expose the horses to metabolic disorders.

  10. Lipid Bilayer Composition Affects Transmembrane Protein Orientation and Function

    Directory of Open Access Journals (Sweden)

    Katie D. Hickey

    2011-01-01

    Full Text Available Sperm membranes change in structure and composition upon ejaculation to undergo capacitation, a molecular transformation which enables spermatozoa to undergo the acrosome reaction and be capable of fertilization. Changes to the membrane environment including lipid composition, specifically lipid microdomains, may be responsible for enabling capacitation. To study the effect of lipid environment on proteins, liposomes were created using lipids extracted from bull sperm membranes, with or without a protein (Na+ K+-ATPase or -amylase. Protein incorporation, function, and orientation were determined. Fluorescence resonance energy transfer (FRET confirmed protein inclusion in the lipid bilayer, and protein function was confirmed using a colourometric assay of phosphate production from ATP cleavage. In the native lipid liposomes, ATPase was oriented with the subunit facing the outer leaflet, while changing the lipid composition to 50% native lipids and 50% exogenous lipids significantly altered this orientation of Na+ K+-ATPase within the membranes.

  11. Lipid structure does not modify incorporation of EPA and DHA into blood lipids in healthy adults: a randomised-controlled trial.

    Science.gov (United States)

    West, Annette L; Burdge, Graham C; Calder, Philip C

    2016-09-01

    Dietary supplementation is an effective means to improve EPA and DHA status. However, it is unclear whether lipid structure affects EPA+DHA bioavailability. We determined the effect of consuming different EPA and DHA lipid structures on their concentrations in blood during the postprandial period and during dietary supplementation compared with unmodified fish oil TAG (uTAG). In a postprandial cross-over study, healthy men (n 9) consumed in random order test meals containing 1·1 g EPA+0·37 g DHA as either uTAG, re-esterified TAG, free fatty acids (FFA) or ethyl esters (EE). In a parallel design supplementation study, healthy men and women (n 10/sex per supplement) consumed one supplement type for 12 weeks. Fatty acid composition was determined by GC. EPA incorporation over 6 h into TAG or phosphatidylcholine (PC) did not differ between lipid structures. EPA enrichment in NEFA was lower from EE than from uTAG (P=0·01). Plasma TAG, PC or NEFA DHA incorporation did not differ between lipid structures. Lipid structure did not affect TAG or NEFA EPA incorporation and PC or NEFA DHA incorporation following dietary supplementation. Plasma TAG peak DHA incorporation was greater (P=0·02) and time to peak shorter (P=0·02) from FFA than from uTAG in men. In both studies, the order of EPA and DHA incorporation was PC>TAG>NEFA. In conclusion, EPA and DHA lipid structure may not be an important consideration in dietary interventions.

  12. Genetic variation in lipid desaturases and its impact on the development of human disease.

    Science.gov (United States)

    Merino, Diana M; Ma, David W L; Mutch, David M

    2010-06-18

    Perturbations in lipid metabolism characterize many of the chronic diseases currently plaguing our society, such as obesity, diabetes, and cardiovascular disease. Thus interventions that target plasma lipid levels remain a primary goal to manage these diseases. The determinants of plasma lipid levels are multi-factorial, consisting of both genetic and lifestyle components. Recent evidence indicates that fatty acid desaturases have an important role in defining plasma and tissue lipid profiles. This review will highlight the current state-of-knowledge regarding three desaturases (Scd-1, Fads1 and Fads2) and their potential roles in disease onset and development. Although research in rodent models has provided invaluable insight into the regulation and functions of these desaturases, the extent to which murine research can be translated to humans remains unclear. Evidence emerging from human-based research demonstrates that genetic variation in human desaturase genes affects enzyme activity and, consequently, disease risk factors. Moreover, this genetic variation may have a trans-generational effect via breastfeeding. Therefore inter-individual variation in desaturase function is attributed to both genetic and lifestyle components. As such, population-based research regarding the role of desaturases on disease risk is challenged by this complex gene-lifestyle paradigm. Unravelling the contribution of each component is paramount for understanding the inter-individual variation that exists in plasma lipid profiles, and will provide crucial information to develop personalized strategies to improve health management.

  13. Lipid peroxidation and ascorbic acid levels in Nigeria children with ...

    African Journals Online (AJOL)

    This study was undertaken to establish data on the roles of lipid peroxidation and ascorbic acid in the pathology of malaria in Nigeria children. We measured the levels of malondialdehyde (MDA), a marker of lipid peroxidation and ascorbic acid in the plasma of 406 parasitaemic and 212 non-parasitaemic Nigerian children.

  14. Impacts of fat fromruminants’ meat on cardiovascular health and possible strategies to alter its lipid composition

    DEFF Research Database (Denmark)

    Vargas-Bello-Pérez, Einar; Larraín, Rafael E.

    2017-01-01

    intake of fat, saturated FAs and cholesterol as a means of reducing the risk of cardiovascular disease. Interestingly, ruminant meat has some bioactive lipids such as C18:1t11 and C18:2 c9, t11 which have been reported to have positive effects on human health. In order to improve muscle fat composition......In the last few decades there has been increased consumer interest in the fatty acid (FA) composition of ruminant meat due to its content of saturated FAs, which have been implicated in diseases associated with modern life. However, recent studies have questioned the recommendations to reduce...... from a human health standpoint, oilseeds, plant oils andmarine oils can be used in ruminant diets. On the other hand,molecular mechanisms play an important role in the alteration of the FA composition of muscle fat. Genetics offer a wide range of possibilities for improvement of muscle fat...

  15. HAMLET interacts with lipid membranes and perturbs their structure and integrity.

    Science.gov (United States)

    Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger

    2010-02-23

    Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.

  16. Influence of Polyethylene Glycol Lipid Desorption Rates on Pharmacokinetics and Pharmacodynamics of siRNA Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Barbara L Mui

    2013-01-01

    Full Text Available Lipid nanoparticles (LNPs encapsulating short interfering RNAs that target hepatic genes are advancing through clinical trials, and early results indicate the excellent gene silencing observed in rodents and nonhuman primates also translates to humans. This success has motivated research to identify ways to further advance this delivery platform. Here, we characterize the polyethylene glycol lipid (PEG-lipid components, which are required to control the self-assembly process during formation of lipid particles, but can negatively affect delivery to hepatocytes and hepatic gene silencing in vivo. The rate of transfer from LNPs to plasma lipoproteins in vivo is measured for three PEG-lipids with dialkyl chains 14, 16, and 18 carbons long. We show that 1.5 mol % PEG-lipid represents a threshold concentration at which the chain length exerts a minimal effect on hepatic gene silencing but can still modify LNPs pharmacokinetics and biodistribution. Increasing the concentration to 2.5 and 3.5 mol % substantially compromises hepatocyte gene knockdown for PEG-lipids with distearyl (C18 chains but has little impact for shorter dimyristyl (C14 chains. These data are discussed with respect to RNA delivery and the different rates at which the steric barrier disassociates from LNPs in vivo.

  17. Differential distribution of proteins and lipids in detergent-resistant and detergent-soluble domains in rod outer segment plasma membranes and disks.

    Science.gov (United States)

    Elliott, Michael H; Nash, Zack A; Takemori, Nobuaki; Fliesler, Steven J; McClellan, Mark E; Naash, Muna I

    2008-01-01

    Membrane heterogeneity plays a significant role in regulating signal transduction and other cellular activities. We examined the protein and lipid components associated with the detergent-resistant membrane (DRM) fractions from retinal rod outer segment (ROS) disk and plasma membrane-enriched preparations. Proteomics and correlative western blot analysis revealed the presence of alpha and beta subunits of the rod cGMP-gated ion channel and glucose transporter type 1, among other proteins. The glucose transporter was present exclusively in ROS plasma membrane (not disks) and was highly enriched in DRMs, as was the cGMP-gated channel beta-subunit. In contrast, the majority of rod opsin and ATP-binding cassette transporter A4 was localized to detergent-soluble domains in disks. As expected, the cholesterol : fatty acid mole ratio was higher in DRMs than in the corresponding parent membranes (disk and plasma membranes, respectively) and was also higher in disks compared to plasma membranes. Furthermore, the ratio of saturated : polyunsaturated fatty acids was also higher in DRMs compared to their respective parent membranes (disk and plasma membranes). These results confirm that DRMs prepared from both disks and plasma membranes are enriched in cholesterol and in saturated fatty acids compared to their parent membranes. The dominant fatty acids in DRMs were 16 : 0 and 18 : 0; 22 : 6n3 and 18 : 1 levels were threefold higher and twofold lower, respectively, in disk-derived DRMs compared to plasma membrane-derived DRMs. We estimate, based on fatty acid recovery that DRMs account for only approximately 8% of disks and approximately 12% of ROS plasma membrane.

  18. Alterations in Lipids and Adipocyte Hormones in Female-to-Male Transsexuals

    Directory of Open Access Journals (Sweden)

    Prakash Chandra

    2010-01-01

    Full Text Available Testosterone therapy in men and women results in decreased high-density lipoprotein cholesterol (HDL and increased low-density lipoprotein cholesterol (LDL. We sought to determine whether testosterone therapy has this same effect on lipid parameters and adipocyte hormones in female-to-male (FTM transsexuals. Twelve FTM transsexuals provided a fasting lipid profile including serum total cholesterol, HDL, LDL, and triglycerides prior to and after 1 year of testosterone therapy (testosterone enanthate or cypionate 50–125 mg IM every two weeks. Subjects experienced a significant decrease in mean serum HDL (52±11 to 40±7 mg/dL (P<.001. The mean LDL (P=.316, triglyceride (P=.910, and total cholesterol (P=.769 levels remained unchanged. In a subset of subjects, we measured serum leptin levels which were reduced by 25% but did not reach statistical significance (P=.181 while resistin levels remained unchanged. We conclude that testosterone therapy in FTM transsexuals can promote an increased atherogenic lipid profile by lowering HDL and possibly reduce serum leptin levels. However, long-term studies are needed to determine whether decreases in HDL result in adverse cardiovascular outcomes.

  19. Regulation of AMPA receptor localization in lipid rafts

    Science.gov (United States)

    Hou, Qingming; Huang, Yunfei; Amato, Stephen; Snyder, Solomon H.; Huganir, Richard L.; Man, Heng-Ye

    2009-01-01

    Lipid rafts are special microdomains enriched in cholesterol, sphingolipids and certain proteins, and play important roles in a variety of cellular functions including signal transduction and protein trafficking. We report that in cultured cortical and hippocampal neurons the distribution of lipid rafts is development-dependent. Lipid rafts in mature neurons exist on the entire cell-surface and display a high degree of mobility. AMPA receptors co-localize and associate with lipid rafts in the plasma membrane. The association of AMPARs with rafts is under regulation; through the NOS–NO pathway, NMDA receptor activity increases AMPAR localization in rafts. During membrane targeting, AMPARs insert into or at close proximity of the surface raft domains. Perturbation of lipid rafts dramatically suppresses AMPA receptor exocytosis, resulting in significant reduction in AMPAR cell-surface expression. PMID:18411055

  20. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  1. Relationship between Sustained Reductions in Plasma Lipid and Lipoprotein Concentrations with Apheresis and Plasma Levels and mRNA Expression of PTX3 and Plasma Levels of hsCRP in Patients with HyperLp(a)lipoproteinemia

    Science.gov (United States)

    Stefanutti, Claudia; Mazza, Fabio; Steiner, Michael; Watts, Gerald F.; De Nève, Joel; Pasqualetti, Daniela; Paal, Juergen

    2016-01-01

    The effect of lipoprotein apheresis (Direct Adsorption of Lipids, DALI) (LA) on plasma levels of pentraxin 3 (PTX3), an inflammatory marker that reflects coronary plaque vulnerability, and expression of PTX3 mRNA was evaluated in patients with hyperLp(a)lipoproteinemia and angiographically defined atherosclerosis/coronary artery disease. Eleven patients, aged 55 ± 9.3 years (mean ± SD), were enrolled in the study. PTX3 soluble protein levels in plasma were unchanged by 2 sessions of LA; however, a downregulation of mRNA expression for PTX3 was observed, starting with the first session of LA (p < 0.001). The observed reduction was progressively increased in the interval between the first and second LA sessions to achieve a maximum decrease by the end of the second session. A statistically significantly greater treatment-effect correlation was observed in patients undergoing weekly treatments, compared with those undergoing treatment every 15 days. A progressive reduction in plasma levels of C-reactive protein was also seen from the first session of LA, with a statistically significant linear correlation for treatment-effect in the change in plasma levels of this established inflammatory marker (R 2 = 0.99; p < 0.001). Our findings suggest that LA has anti-inflammatory and endothelium protective effects beyond its well-established efficacy in lowering apoB100-containing lipoproteins. PMID:26903710

  2. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men

    Directory of Open Access Journals (Sweden)

    Nejmeddine Ouerghi

    2017-12-01

    Full Text Available To examine the effects of short high-intensity interval training (HIIT on body composition, physical performance and plasma lipids in overweight/obese compared to normal-weight young men. Nine overweight/ obese and nine normal-weight men (control group aged 17 to 20 years underwent a HIIT programme three times per week for eight weeks. Body composition, indices of aerobic [maximal aerobic velocity (MAV and maximal oxygen uptake (VO 2max ] and anaerobic [squat jump (SJ, counter-movement jump (CMJ, five-jump test (FJT, 10-m and 30-m sprint] performances, as well as fasting plasma lipids, were assessed in the two groups at PRE and POST HIIT. The HIIT programme resulted in significant reductions in body mass (-1.62%, P=0.016, ES=0.11 and fat mass (-1.59%, P=0.021, ES=0.23 in obese, but not in normal-weight subjects. MAV (+5.55%, P=0.005, ES=0.60 and +2.96%, P=0.009, ES=0.82, VO 2max (+5.27%, P=0.006, ES=0.63 and +2.88%, P=0.009, ES=0.41, FJT (+3.63%, P=0.005, ES=0.28 and +2.94%, P=0.009, ES=0.52, SJ (+4.92%, P=0.009, ES=0.25 and +6.94%, P=0.009, ES=0.70 and CMJ (+6.84%, P=0.014, ES=0.30 and +6.69%, P=0.002, ES=0.64 significantly increased in overweight/obese and normal-weight groups, respectively. 30-m sprint time significantly decreased in both groups (-1.77%, P=0.038, ES=0.12 and -0.72%, P=0.030, ES=0.16. Plasma total cholesterol (-11.8%, P=0.026, ES=0.96, LDL cholesterol (-11.9%, P=0.050, ES=0.77 and triglycerides (-21.3%, P=0.023, ES=1.08 significantly decreased in the obese group, but not in the normalweight group. The eight-week HIIT programme resulted in a slight improvement in physical fitness and a significant decrease in plasma lipids in the obese. Short duration HIIT may contribute to an improved cardiometabolic profile in the obese.

  3. Effects of high-intensity interval training on body composition, aerobic and anaerobic performance and plasma lipids in overweight/obese and normal-weight young men.

    Science.gov (United States)

    Ouerghi, Nejmeddine; Fradj, Mohamed Kacem Ben; Bezrati, Ikram; Khammassi, Marwa; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2017-12-01

    To examine the effects of short high-intensity interval training (HIIT) on body composition, physical performance and plasma lipids in overweight/obese compared to normal-weight young men. Nine overweight/obese and nine normal-weight men (control group) aged 17 to 20 years underwent a HIIT programme three times per week for eight weeks. Body composition, indices of aerobic [maximal aerobic velocity (MAV) and maximal oxygen uptake (VO 2max )] and anaerobic [squat jump (SJ), counter-movement jump (CMJ), five-jump test (FJT), 10-m and 30-m sprint] performances, as well as fasting plasma lipids, were assessed in the two groups at PRE and POST HIIT. The HIIT programme resulted in significant reductions in body mass (-1.62%, P=0.016, ES=0.11) and fat mass (-1.59%, P=0.021, ES=0.23) in obese, but not in normal-weight subjects. MAV (+5.55%, P=0.005, ES=0.60 and +2.96%, P=0.009, ES=0.82), VO 2max (+5.27%, P=0.006, ES=0.63 and +2.88%, P=0.009, ES=0.41), FJT (+3.63%, P=0.005, ES=0.28 and +2.94%, P=0.009, ES=0.52), SJ (+4.92%, P=0.009, ES=0.25 and +6.94%, P=0.009, ES=0.70) and CMJ (+6.84%, P=0.014, ES=0.30 and +6.69%, P=0.002, ES=0.64) significantly increased in overweight/obese and normal-weight groups, respectively. 30-m sprint time significantly decreased in both groups (-1.77%, P=0.038, ES=0.12 and -0.72%, P=0.030, ES=0.16). Plasma total cholesterol (-11.8%, P=0.026, ES=0.96), LDL cholesterol (-11.9%, P=0.050, ES=0.77) and triglycerides (-21.3%, P=0.023, ES=1.08) significantly decreased in the obese group, but not in the normal-weight group. The eight-week HIIT programme resulted in a slight improvement in physical fitness and a significant decrease in plasma lipids in the obese. Short duration HIIT may contribute to an improved cardiometabolic profile in the obese.

  4. Steroidal saponin from Chlorophytum nimonii (Grah with lipid-lowering and antioxidant activity

    Directory of Open Access Journals (Sweden)

    Vijai Lakshmi

    2012-01-01

    Full Text Available Aim: Since drugs used these days to lower the lipids are all synthetic drugs, they have some or the other side effects, therefore in search of cheaper lipid-lowering drugs with no side effects, we have conducted a study on Chlorophytum nimonii for its lipid-lowering and antioxidant properties. Materials and Methods: Chloragin and Gemfibrozil both caused a significant decrease in the serum level of lipids in triton-induced hyperlipidemic rats, and this model has been successfully used for the evaluation of lipid-lowering activity of chloragin in the rats. Results and Discussion: The lipid-lowering action of steroidal saponin and chloragin of the C. nimonii has been studied in triton model (in cholesterol-fed hyperlipidemic rats in vivo and antioxidant activity in vitro model. Serum lipids were found to be lowered by the steroidal saponin (100 mg/kg body weight in triton WR-1339-induced hyperlipidemia. Chronic feeding of this compound (50 mg/kg in animals simultaneously fed with high-fat diet for 30 days caused lowering in the lipid and lipoproteins levels of low-density lipoproteins in experimental animals. Conclusion: Chloragin activates lipolytic enzymes in plasma and liver. Chloragin is mediated through inhibition of hepatic lipids, increased fecal bile acid excretion, and enhanced plasma lecithin cholesterol acyl transferase activities. Chloragin from the C. nimonii showed potent antioxidant activity as well.

  5. Effects of extruded linseed dietary supplementation on milk yield, milk quality and lipid metabolism of dairy cows

    Directory of Open Access Journals (Sweden)

    N. Brogna

    2010-04-01

    Full Text Available Twenty Italian Friesian dairy cows were used in an experimental trial to study the effects of extruded linseed dietary supplementation on milk production, milk quality and fatty acid (FA percentages of milk fat and total plasma lipids and plasma phospholipids. Control cows were fed a corn silage based total mixed ration (TMR while treated animals also received 700g/head/d of extruded linseed supplementation. Feed intake was similar between groups. Milk yields was tendentially greater for cows fed extruded linseed. Milk urea content (P<0.05 were reduced by treatment. Results showed a significant increase n-3 FA concentration (particularly alpha linolenic acid and a significant reduction of n-6/n-3 FA ratio in milk fat, total plasma lipids and plasma phospholipids (P<0.001; moreover a reduction trend (P<0.1 of arachidonic acid concentrations was observed in milk fat, total plasma lipids and plasma phospholipids. At last, treatment enhanced milk fat conjugated linoleic acid (CLA percentage (P<0.05.

  6. Normal and abnormal lipid and lipoprotein metabolism

    African Journals Online (AJOL)

    2009-03-20

    Mar 20, 2009 ... This article focuses on lipid and lipoprotein metabolism and introduces a range of genetic ... spherical structures that are suspended in the plasma and whose ..... atherosclerosis. Table II suggests a simple classification of.

  7. Natural honey lowers plasma glucose, C-reactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: comparison with dextrose and sucrose.

    Science.gov (United States)

    Al-Waili, Noori S

    2004-01-01

    This study included the following experiments: (1) effects of dextrose solution (250 mL of water containing 75 g of dextrose) or honey solution (250 mL of water containing 75 g of natural honey) on plasma glucose level (PGL), plasma insulin, and plasma C-peptide (eight subjects); (2) effects of dextrose, honey, or artificial honey (250 mL of water containing 35 g of dextrose and 40 g of fructose) on cholesterol and triglycerides (TG) (nine subjects); (3) effects of honey solution, administered for 15 days, on PGL, blood lipids, C-reactive protein (CRP), and homocysteine (eight subjects); (4) effects of honey or artificial honey on cholesterol and TG in six patients with hypercholesterolemia and five patients with hypertriglyceridemia; (5) effects of honey for 15 days on blood lipid and CRP in five patients with elevated cholesterol and CRP; (6) effects of 70 g of dextrose or 90 g of honey on PGL in seven patients with type 2 diabetes mellitus; and (7) effects of 30 g of sucrose or 30 g of honey on PGL, plasma insulin, and plasma C-peptide in five diabetic patients. In healthy subjects, dextrose elevated PGL at 1 (53%) and 2 (3%) hours, and decreased PGL after 3 hours (20%). Honey elevated PGL after 1 hour (14%) and decreased it after 3 hours (10%). Elevation of insulin and C-peptide was significantly higher after dextrose than after honey. Dextrose slightly reduced cholesterol and low-density lipoprotein-cholesterol (LDL-C) after 1 hour and significantly after 2 hours, and increased TG after 1, 2, and 3 hours. Artificial honey slightly decreased cholesterol and LDL-C and elevated TG. Honey reduced cholesterol, LDL-C, and TG and slightly elevated high-density lipoprotein-cholesterol (HDL-C). Honey consumed for 15 days decreased cholesterol (7%), LDL-C (1%), TG (2%), CRP (7%), homocysteine (6%), and PGL (6%), and increased HDL-C (2%). In patients with hypertriglyceridemia, artificial honey increased TG, while honey decreased TG. In patients with hyperlipidemia

  8. The role of lipid raft translocation of prohibitin in regulation of Akt and Raf-protected apoptosis of HaCaT cells upon ultraviolet B irradiation.

    Science.gov (United States)

    Wu, Qiong; Wu, Shiyong

    2017-07-01

    Prohibitin (PHB) plays a role in regulation of ultraviolet B light (UVB)-induced apoptosis of human keratinocytes, HaCaT cells. The regulatory function of PHB appears to be associated with its lipid raft translocation. However, the detailed mechanism for PHB-mediated apoptosis of these keratinocytes upon UVB irradiation is not clear. In this report, we determined the role of lipid raft translocation of PHB in regulation of UVB-induced apoptosis. Our data show that upon UVB irradiation PHB is translocated from the non-raft membrane to the lipid rafts, which is correlated with a release of both Akt and Raf from membrane. Overexpression of Akt and/or Raf impedes UVB-induced lipid raft translocation of PHB. Immunoprecipitation analysis indicates that UVB alters the interactions among PHB, Akt, and Raf. Reduced expression of PHB leads to a decreased phosphorylation of Akt and ERK, as well as a decreased activity of Akt, and increased apoptosis of the cells upon UVB irradiation. These results suggest that PHB regulates UVB-induced apoptosis of keratinocytes via a mechanism that involves detachment from Akt and Raf on the plasma membrane, and sequential lipid raft translocation. © 2017 Wiley Periodicals, Inc.

  9. Ellagitannins and Flavan-3-ols from Raspberry Pomace Modulate Caecal Fermentation Processes and Plasma Lipid Parameters in Rats.

    Science.gov (United States)

    Fotschki, Bartosz; Juśkiewicz, Jerzy; Sójka, Michał; Jurgoński, Adam; Zduńczyk, Zenon

    2015-12-21

    Raspberry pomace is a source of polyphenols, which nutritional and health promoting properties are not sufficiently known. The aim of this 8-weeks study was to scrutinize if raspberry extracts (REs) with different ellagitannins to flavan-3-ols ratios might favorably affect the caecal fermentation processes and blood lipid profile in rats. Forty male Wistar rats were fed with a standard diet or its modification with two types of REs (E1 and E2) characterized by different ratios of ellagitannins to flavan-3-ols (7.7 and 3.1 for E1 and E2, respectively) and added to a diet at two dosages of polyphenolic compounds (0.15 and 0.30% of a diet; L and H treatments, respectively). Irrespective of polyphenols dietary level, both REs reduced the activity of bacterial β-glucuronidase, increased production of butyric acid in the caecum and reduced triacylglycerols in blood plasma. The E1 treatment at both dosages caused more effective reduction in the concentration of ammonia and elevated acetate level in the caecal digesta than E2. On the other hand, only the E2 treatment lowered value of the atherogenic index when compared with control group. When comparing dosages of REs, a higher one was more potent to reduce the activity of bacterial β-glucosidase, β-, α-galactosidase and lowered value of the HDL profile in plasma. To conclude, REs may favorably modulate the activity of the caecal microbiota and blood lipid profile in rats; however, the intensity of these effects may be related to the dosages of dietary polyphenols and to their profile, e.g., ellagitannins to flavan-3-ols ratio.

  10. Ellagitannins and Flavan-3-ols from Raspberry Pomace Modulate Caecal Fermentation Processes and Plasma Lipid Parameters in Rats

    Directory of Open Access Journals (Sweden)

    Bartosz Fotschki

    2015-12-01

    Full Text Available Raspberry pomace is a source of polyphenols, which nutritional and health promoting properties are not sufficiently known. The aim of this 8-weeks study was to scrutinize if raspberry extracts (REs with different ellagitannins to flavan-3-ols ratios might favorably affect the caecal fermentation processes and blood lipid profile in rats. Forty male Wistar rats were fed with a standard diet or its modification with two types of REs (E1 and E2 characterized by different ratios of ellagitannins to flavan-3-ols (7.7 and 3.1 for E1 and E2, respectively and added to a diet at two dosages of polyphenolic compounds (0.15 and 0.30% of a diet; L and H treatments, respectively. Irrespective of polyphenols dietary level, both REs reduced the activity of bacterial β-glucuronidase, increased production of butyric acid in the caecum and reduced triacylglycerols in blood plasma. The E1 treatment at both dosages caused more effective reduction in the concentration of ammonia and elevated acetate level in the caecal digesta than E2. On the other hand, only the E2 treatment lowered value of the atherogenic index when compared with control group. When comparing dosages of REs, a higher one was more potent to reduce the activity of bacterial β-glucosidase, β-, α-galactosidase and lowered value of the HDL profile in plasma. To conclude, REs may favorably modulate the activity of the caecal microbiota and blood lipid profile in rats; however, the intensity of these effects may be related to the dosages of dietary polyphenols and to their profile, e.g., ellagitannins to flavan-3-ols ratio.

  11. The multifaceted interplay between lipids and epigenetics.

    Science.gov (United States)

    Dekkers, Koen F; Slagboom, P Eline; Jukema, J Wouter; Heijmans, Bastiaan T

    2016-06-01

    The interplay between lipids and epigenetic mechanisms has recently gained increased interest because of its relevance for common diseases and most notably atherosclerosis. This review discusses recent advances in unravelling this interplay with a particular focus on promising approaches and methods that will be able to establish causal relationships. Complementary approaches uncovered close links between circulating lipids and epigenetic mechanisms at multiple levels. A characterization of lipid-associated genetic variants suggests that these variants exert their influence on lipid levels through epigenetic changes in the liver. Moreover, exposure of monocytes to lipids persistently alters their epigenetic makeup resulting in more proinflammatory cells. Hence, epigenetic changes can both impact on and be induced by lipids. It is the combined application of technological advances to probe epigenetic modifications at a genome-wide scale and methodological advances aimed at causal inference (including Mendelian randomization and integrative genomics) that will elucidate the interplay between circulating lipids and epigenetics. Understanding its role in the development of atherosclerosis holds the promise of identifying a new category of therapeutic targets, since epigenetic changes are amenable to reversal.

  12. Induction of an altered lipid phenotype by two cancer promoting treatments in rat liver.

    Science.gov (United States)

    Riedel, S; Abel, S; Swanevelder, S; Gelderblom, W C A

    2015-04-01

    Changes in lipid metabolism have been associated with tumor promotion in rat liver. Similarities and differences of lipid parameters were investigated using the mycotoxin fumonisin B1 (FB1) and the 2-acetylaminofluorene/partial hepatectomy (AAF/PH) treatments as cancer promoters in rat liver. A typical lipid phenotype was observed, including increased membranal phosphatidylethanolamine (PE) and cholesterol content, increased levels of C16:0 and monounsaturated fatty acids in PE and phosphatidylcholine (PC), as well as a decrease in C18:0 and long-chained polyunsaturated fatty acids in the PC fraction. The observed lipid changes, which likely resulted in changes in membrane structure and fluidity, may represent a growth stimulus exerted by the cancer promoters that could provide initiated cells with a selective growth advantage. This study provided insight into complex lipid profiles induced by two different cancer promoting treatments and their potential role in the development of hepatocyte nodules, which can be used to identify targets for the development of chemopreventive strategies against cancer promotion in the liver. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Dietary supplementation with hybrid palm oil alters liver function in the common Marmoset.

    Science.gov (United States)

    Spreafico, Flavia; Sales, Rafael Carvalho; Gil-Zamorano, Judit; Medeiros, Priscylla da Costa; Latasa, Maria-Jesús; Lima, Monique Ribeiro; de Souza, Sergio Augusto Lopes; Martin-Hernández, Roberto; Gómez-Coronado, Diego; Iglesias-Gutierrez, Eduardo; Mantilla-Escalante, Diana C; das Graças Tavares do Carmo, Maria; Dávalos, Alberto

    2018-02-09

    Hybrid palm oil, which contains higher levels of oleic acid and lower saturated fatty acids in comparison with African palm oil, has been proposed to be somehow equivalent to extra virgin olive oil. However, the biological effects of its consumption are poorly described. Here we have explored the effects of its overconsumption on lipid metabolism in a non-human primate model, the common marmoset. Dietary supplementation of marmoset with hyperlipidic diet containing hybrid palm oil for 3 months did not modify plasma lipids levels, but increased glucose levels as compared to the supplementation with African palm oil. Liver volume was unexpectedly found to be more increased in marmosets consuming hybrid palm oil than in those consuming African palm oil. Hepatic total lipid content and circulating transaminases were dramatically increased in animals consuming hybrid palm oil, as well as an increased degree of fibrosis. Analysis of liver miRNAs showed a selective modulation of certain miRNAs by hybrid palm oil, some of which were predicted to target genes involved in cell adhesion molecules and peroxisomal pathways. Our data suggest that consumption of hybrid palm oil should be monitored carefully, as its overconsumption compared to that of African palm oil could involve important alterations to hepatic metabolism.

  14. The effect of fish oil enriched margarine on plasma lipids, low density lipoprotein particle composition, size and susceptibility to oxidation

    DEFF Research Database (Denmark)

    Nielsen, Nina Skall; Marckmann, Peter; Høy, Carl-Erik

    1998-01-01

    We investigated the effect of incorporating n-3 polyunsaturated fatty acids (PUFAs) into the diet on the lipid-class composition of LDLs, their size, and their susceptibility to oxidation. Forty-seven healthy volunteers incorporated 30 g sunflower-oil (SO) margarine/d into their habitual diet...... during a 3-wk run-in period and then used either SQ or a fish-oil-enriched sunflower oil (FO) margarine for the following 4 wk. Plasma concentrations of total cholesterol, triacylglycerols, HDL cholesterol, LDL cholesterol, and apolipoproteins A-I and B did not differ significantly between the groups...... to 86 min, P = 0.003) and lower maximum rate of oxidation (from 10.5 to 10.2 nmol.mg(-1).min(-1), P = 0.003) after intake of the FO margarine. The results indicate that consumption of the FO compared with the SO margarine had no effect on LDL size and lipid composition and led to minor changes in LDL...

  15. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    Science.gov (United States)

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers.

  16. induced hepatic oxidative stress and hyperlipidemia in

    African Journals Online (AJOL)

    SAM

    2014-04-09

    Apr 9, 2014 ... Therefore, agents/factors that compromise hepatocellular functionality and integrity alter plasma lipid profile patterns (Wolf, 1999; Ramcharran et al., 2011). Hyperlipidemia describes the elevation in plasma lipid components; triacylglycerol (TAG), low-density lipoprotein cholesterol (VLDL-C), low-density ...

  17. Pomegranate (Punicagranatum juice decreases lipid peroxidation, but has no effect on plasma advanced glycated end-products in adults with type 2 diabetes: a randomized double-blind clinical trial

    Directory of Open Access Journals (Sweden)

    Golbon Sohrab

    2015-09-01

    Full Text Available Introduction: Diabetes mellitus characterized by hyperglycemia could increase oxidative stress and formation of advanced glycated end-products (AGEs, which contribute to diabetic complications. The purpose of this study was to assess the effect of pomegranate juice (PJ containing natural antioxidant on lipid peroxidation and plasma AGEs in patients with type 2 diabetes (T2D. Materials and methods: In a randomized, double-blind, placebo-controlled trial, 44 patients (age range 56±6.8 years, T2D were randomly assigned to one of two groups: group A (PJ, n=22 and group B (Placebo, n=22. At the baseline and the end of 12-week intervention, biochemical markers including fasting plasma glucose, insulin, oxidative stress, and AGE markers including carboxy methyl lysine (CML and pentosidine were assayed. Results: At baseline, there were no significant differences in plasma total antioxidant capacity (TAC levels between the two groups, but malondialdehyde (MDA decreased levels were significantly different (P<0.001. After 12 weeks of intervention, TAC increased (P<0.05 and MDA decreased (P<0.01 in the PJ group when compared with the placebo group. However, no significant differences were observed in plasma concentration of CML and pentosidine between the two groups. Conclusions: The study showed that PJ decreases lipid peroxidation. Therefore, PJ consumption may delay onset of T2D complications related to oxidative stress.

  18. Plasma endocannabinoid levels in lean, overweight and obese humans: relationships with intestinal permeability markers, inflammation and incretin secretion.

    Science.gov (United States)

    Little, Tanya J; Cvijanovic, Nada; DiPatrizio, Nicholas V; Argueta, Donovan A; Rayner, Christopher K; Feinle-Bisset, Christine; Young, Richard L

    2018-02-13

    Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation, however little is known of these effects in humans. This study aimed to: (i) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl-sn-glycerol (2-AG) and OEA in humans, and (ii) examine relationships with intestinal permeability, inflammation markers and incretin hormone secretion. 20 lean, 18 overweight and 19 obese participants underwent intraduodenal Intralipid® infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumour necrosis factor-α (TNF-α), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and toll-like receptor-4 (TLR4) (RT-PCR), were assessed. Fasting plasma AEA was increased in obese, compared with lean and overweight (Plean (Plean and overweight. The relationships between plasma AEA with duodenal ZO-1 and IAP, and GIP, suggest that altered endocannabinoid signalling may contribute to changes in intestinal permeability, inflammation and incretin release in human obesity.

  19. Fluorescent Lipids: Functional Parts of Fusogenic Liposomes and Tools for Cell Membrane Labeling and Visualization

    Directory of Open Access Journals (Sweden)

    Christian Kleusch

    2012-01-01

    Full Text Available In this paper a rapid and highly efficient method for controlled incorporation of fluorescent lipids into living mammalian cells is introduced. Here, the fluorescent molecules have two consecutive functions: First, they trigger rapid membrane fusion between cellular plasma membranes and the lipid bilayers of their carrier particles, so called fusogenic liposomes, and second, after insertion into cellular membranes these molecules enable fluorescence imaging of cell membranes and membrane traffic processes. We tested the fluorescent derivatives of the following essential membrane lipids for membrane fusion: Ceramide, sphingomyelin, phosphocholine, phosphatidylinositol-bisphosphate, ganglioside, cholesterol, and cholesteryl ester. Our results show that all probed lipids could more efficiently be incorporated into the plasma membrane of living cells than by using other methods. Moreover, labeling occurred in a gentle manner under classical cell culture conditions reducing cellular stress responses. Staining procedures were monitored by fluorescence microscopy and it was observed that sphingolipids and cholesterol containing free hydroxyl groups exhibit a decreased distribution velocity as well as a longer persistence in the plasma membrane compared to lipids without hydroxyl groups like phospholipids or other artificial lipid analogs. After membrane staining, the fluorescent molecules were sorted into membranes of cell organelles according to their chemical properties and biological functions without any influence of the delivery system.

  20. Alteration in plasma corticosterone levels following long term oral administration of lead produces depression like symptoms in rats.

    Science.gov (United States)

    Haider, Saida; Saleem, Sadia; Tabassum, Saiqa; Khaliq, Saima; Shamim, Saima; Batool, Zehra; Parveen, Tahira; Inam, Qurat-ul-ain; Haleem, Darakhshan J

    2013-03-01

    Lead toxicity is known to induce a broad range of physiological, biochemical and behavioral dysfunctions that may result in adverse effects on several organs, including the central nervous system. Long-term exposure to low levels of lead (Pb(2+)) has been shown to produce behavioral deficits in rodents and humans by affecting hypothalamic-pituitary-adrenal (HPA) axis. These deficits are thought to be associated with altered brain monoamine neurotransmission and due to changes in glucocorticoids levels. This study was designed to investigate the effects of Pb(2+)exposure on growth rate, locomotor activity, anxiety, depression, plasma corticosterone and brain serotonin (5-HT) levels in rats. Rats were exposed to lead in drinking water (500 ppm; lead acetate) for 5 weeks. The assessment of depression was done using the forced swimming test (FST). Estimation of brain 5-HT was determined by high-performance liquid chromatography with electrochemical detection. Plasma corticosterone was determined by spectrofluorimetric method. The present study showed that long term exposure to Pb(2+) significantly decreased the food intake followed by the decrease in growth rate in Pb(2+)exposed rats as compared to control group. No significant changes in open field activity were observed following Pb(2+)exposure while significant increase in anxiogenic effect was observed. Increased plasma corticosterone and decreased 5-HT levels were exhibited by Pb(2+)exposed rats as compared to controls. A significant increase in depressive like symptoms was exhibited by Pb(2+)exposed rats as compared to control rats. The results are discussed in the context of Pb(2+) inducing a stress-like response in rats leading to changes in plasma corticosterone and brain 5-HT levels via altering tryptophan pyrrolase activity.

  1. Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Dylan Myers Owen

    2013-12-01

    Full Text Available The lipid bilayer of model membranes, liposomes reconstituted from cell lipids, and plasma membrane vesicles and spheres can separate into two distinct liquid phases to yield lipid domains with liquid-ordered and liquid-disordered properties. These observations are the basis of the lipid raft hypothesis that postulates the existence of cholesterol-enriched ordered-phase lipid domains in cell membranes that could regulate protein mobility, localization and interaction. Here we review the evidence that nano-scaled lipid complexes and meso-scaled lipid domains exist in cell membranes and how new fluorescence microscopy techniques that overcome the diffraction limit provide new insights into lipid organization in cell membranes.

  2. Lipid Profile and Atherogenic Index of Plasma (AIP in Vegetarians

    Directory of Open Access Journals (Sweden)

    AN Wahida Sultana

    2015-01-01

    Full Text Available Background: Diet deficient in fresh fruits and vegetables are associated with an increased risk of coronary diseases. Low levels of vitamin C, vitamin E and other antioxidants may enhance the production of oxidized LDL and are important independent risk factors for coronary disease. Objective: To make a comparative evaluation of lipid profile and atherogenic index of plasma (AIP between vegetarians and nonvegetarians. Materials and Methods: This case-control study was carried out in the Department of Biochemistry of Bangabandhu Sheikh Mujib Medical University (BSMMU, Dhaka between July 2011 to June 2012. Vegetarian and nonvegetarian subjects of male sex were the study population. Vegetarians were considered as cases while nonvegetarians as controls. After proper ethical consideration a total of 30 vegetarians and 40 nonvegetarians were consecutively included in the study based on predefined inclusion and exclusion criteria. Laboratory investigations were done in the Department of Biochemistry, BSMMU, Dhaka. Results: The vegetarians had significantly lower total cholesterol and LDLcholesterol than the nonvegetarians (p=0.000 and p=0.000 respectively. Serum HDL cholesterol was also lower among the vegetarians (p=0.002 and triglycerides were almost identical in both the groups (p=0.272. Conclusion: The study reveals lower level of total cholesterol, LDLcholesterol and HDL-cholesterol in vegetarians. No difference regarding triglycerides and AIP was found between the groups. So, the findings of this study do not indicate any superiority of vegetarian diet in control and prevention of cardiac diseases.

  3. A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin-induced changes in muscle.

    Directory of Open Access Journals (Sweden)

    Reijo Laaksonen

    Full Text Available BACKGROUND: Aggressive lipid lowering with high doses of statins increases the risk of statin-induced myopathy. However, the cellular mechanisms leading to muscle damage are not known and sensitive biomarkers are needed to identify patients at risk of developing statin-induced serious side effects. METHODOLOGY: We performed bioinformatics analysis of whole genome expression profiling of muscle specimens and UPLC/MS based lipidomics analyses of plasma samples obtained in an earlier randomized trial from patients either on high dose simvastatin (80 mg, atorvastatin (40 mg, or placebo. PRINCIPAL FINDINGS: High dose simvastatin treatment resulted in 111 differentially expressed genes (1.5-fold change and p-value<0.05, while expression of only one and five genes was altered in the placebo and atorvastatin groups, respectively. The Gene Set Enrichment Analysis identified several affected pathways (23 gene lists with False Discovery Rate q-value<0.1 in muscle following high dose simvastatin, including eicosanoid synthesis and Phospholipase C pathways. Using lipidomic analysis we identified previously uncharacterized drug-specific changes in the plasma lipid profile despite similar statin-induced changes in plasma LDL-cholesterol. We also found that the plasma lipidomic changes following simvastatin treatment correlate with the muscle expression of the arachidonate 5-lipoxygenase-activating protein. CONCLUSIONS: High dose simvastatin affects multiple metabolic and signaling pathways in skeletal muscle, including the pro-inflammatory pathways. Thus, our results demonstrate that clinically used high statin dosages may lead to unexpected metabolic effects in non-hepatic tissues. The lipidomic profiles may serve as highly sensitive biomarkers of statin-induced metabolic alterations in muscle and may thus allow us to identify patients who should be treated with a lower dose to prevent a possible toxicity.

  4. Effect of tofacitinib on lipid levels and lipid-related parameters in patients with moderate to severe psoriasis

    DEFF Research Database (Denmark)

    Wolk, Robert; Armstrong, Ehrin J; Hansen, Peter R

    2017-01-01

    BACKGROUND: Psoriasis is a systemic inflammatory disease associated with increased cardiovascular (CV) risk and altered lipid metabolism. Tofacitinib is an oral Janus kinase inhibitor. OBJECTIVE: The aim of the study was to investigate the effects of tofacitinib on traditional and nontraditional ...

  5. Effect of a barley-vegetable soup on plasma carotenoids and biomarkers of cardiovascular disease.

    Science.gov (United States)

    Bacchetti, Tiziana; Tullii, Domenico; Masciangelo, Simona; Gesuita, Rosaria; Skrami, Edlira; Brugè, Francesca; Silvestri, Sonia; Orlando, Patrick; Tiano, Luca; Ferretti, Gianna

    2015-07-01

    Functional foods that provide benefits beyond their traditional nutritional value have attracted much interest. Aim of the study was to evaluate the nutritional and the functional properties of a frozen ready-to-eat soup containing barley and pigmented vegetables. Both glycaemic index and the glyceamic load of ready-to-eat soup were evaluated in vivo. Moreover the bioavailability of carotenoids (lutein and beta-carotene) and the effect on lipid profile and lipid peroxidation were studied in 38 volunteers whose diet was supplemented for two weeks with a daily portion (250 g) of the ready-to-eat soup. Plasma levels of carotenoids (lutein and beta-carotene) and plasma total antioxidant capacity significantly increased after 2 weeks of treatment. Furthermore, we observed a decrease in the levels of lipids (total cholesterol and low density lipoprotein-cholesterol) and of markers of lipid peroxidation (oxidized low density lipoprotein and lipid hydroperoxides) in plasma of all subjects. The glyceamic index of the product was 36, therefore it could be considered a low glyceamic index food. An accurate selection of vegetable foods results in a palatable and healthy product that provides benefits on plasma lipids and lipid peroxidation (Protocol number 211525).

  6. Exercise effects on fitness, lipids, glucose tolerance and insulin levels in young adults.

    Science.gov (United States)

    Israel, R G; Davidson, P C; Albrink, M J; Krall, J M

    1981-07-01

    The effect of 3 different physical training programs on cardiorespiratory (cr) fitness, fasting plasma lipids, glucose and insulin levels, and scapular skinfold thickness was assessed in 64 healthy college men. Training sessions were held 4 times a week for 5 weeks. The cr fitness improved significantly and skinfold thickness decreased following the aerobic, the pulse workout (interval training), and the anaerobic training compared to the control group. Skinfold thickness, plasma insulin, and triglyceride concentrations were significantly intercorrelated before and after training. The exercise programs had no significant effect on plasma cholesterol, triglycerides, phospholipids, glucose tolerance, or insulin levels. Change in adipose mass was thus dissociated from change in plasma insulin and triglyceride concentrations. It was concluded that in young men plasma triglycerides, the lipid component mostly readily reduced by exercise, were too low to be reduced further by a physical training program.

  7. Lipid and lipoprotein abnormalities in acute lymphoblastic leukemia survivors.

    Science.gov (United States)

    Morel, Sophia; Leahy, Jade; Fournier, Maryse; Lamarche, Benoit; Garofalo, Carole; Grimard, Guy; Poulain, Floriane; Delvin, Edgard; Laverdière, Caroline; Krajinovic, Maja; Drouin, Simon; Sinnett, Daniel; Marcil, Valérie; Levy, Emile

    2017-05-01

    Survivors of acute lymphoblastic leukemia (ALL), the most common cancer in children, are at increased risk of developing late cardiometabolic conditions. However, the mechanisms are not fully understood. This study aimed to characterize the plasma lipid profile, Apo distribution, and lipoprotein composition of 80 childhood ALL survivors compared with 22 healthy controls. Our results show that, despite their young age, 50% of the ALL survivors displayed dyslipidemia, characterized by increased plasma triglyceride (TG) and LDL-cholesterol, as well as decreased HDL-cholesterol. ALL survivors exhibited lower plasma Apo A-I and higher Apo B-100 and C-II levels, along with elevated Apo C-II/C-III and B-100/A-I ratios. VLDL fractions of dyslipidemic ALL survivors contained more TG, free cholesterol, and phospholipid moieties, but less protein. Differences in Apo content were found between ALL survivors and controls for all lipoprotein fractions except HDL 3 HDL 2 , especially, showed reduced Apo A-I and raised Apo A-II, leading to a depressed Apo A-I/A-II ratio. Analysis of VLDL-Apo Cs disclosed a trend for higher Apo C-III 1 content in dyslipidemic ALL survivors. In conclusion, this thorough investigation demonstrates a high prevalence of dyslipidemia in ALL survivors, while highlighting significant abnormalities in their plasma lipid profile and lipoprotein composition. Special attention must, therefore, be paid to these subjects given the atherosclerotic potency of lipid and lipoprotein disorders. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. Plasma and serum from nonfasting men and women differ in their lipidomic profiles.

    Science.gov (United States)

    Ishikawa, Masaki; Tajima, Yoko; Murayama, Mayumi; Senoo, Yuya; Maekawa, Keiko; Saito, Yoshiro

    2013-01-01

    Biomarkers will play important roles in disease diagnosis, drug development, and the proper use of drugs. Blood is considered the best biofluid for biomarker research because it is easy to access and a wealth of data are available. However, previous studies revealed that several ionic metabolites showed different levels (including presence or absence) in plasma and serum. Thus, attention should be paid to selecting the best biofluid for biomarker exploration. Many lipid molecules have biological significance and thus would be candidate biomarkers. However, no comprehensive study revealing differences in lipid metabolite levels between plasma and serum has been undertaken. Furthermore, gender differences have not been reported. To clarify the difference in the levels of lipid metabolites between human plasma and serum from both genders, we performed lipid metabolomic analysis using liquid chromatography-mass spectrometry-based systems for phospholipids (PLs), lysoPLs, sphingomyelins, ceramides and oxidative fatty acids. Our results revealed that most of the lipid metabolites were present at similar levels in plasma and serum and in males and females. However, several oxidative fatty acid metabolites showed differences. Of the metabolites related to clotting processes, three showed higher levels in serum than in plasma, and three were detected only in serum. Furthermore, four metabolites were present at different levels between males and females, and two were detected only in males. Thus, attention should be paid to the selection of plasma or serum when utilizing these lipid metabolites as biomarkers.

  9. Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphide

    International Nuclear Information System (INIS)

    Losev, Yu.P.; Amadyan, M.G.; Oganesyan, N.M.; Fedulov, A.S.; Abramyan, A.K.; Shagoyan, A.G.; Khachkavanktsyan, A.S.

    1999-01-01

    Inhibition of radiation-induced lipid peroxidation by means of gallic polydisulphade has been studied. Rats were exposed to X-rays in doses 4,8 and 5,25 Gy. Lipid peroxidation was analysed in blood plasma, membranes of erythrocytes and homogenates of liver and spleen tissues of rats. Polydisulphide of gallic acid was used as inhibitor of lipid peroxidation because of its effective antioxidant properties as have been reported previously. It has been demonstrated that gallic disulphide exhibited high inhibition efficiency in conditions of radiation-induced lipid peroxidation due to the effect of intra-molecular synergism

  10. Do perfluoroalkyl substances affect metabolic function and plasma lipids?--Analysis of the 2007-2009, Canadian Health Measures Survey (CHMS) Cycle 1.

    Science.gov (United States)

    Fisher, Mandy; Arbuckle, Tye E; Wade, Mike; Haines, Douglas A

    2013-02-01

    Perfluorinated compounds (PFCs) are man-made chemicals that are heat stable, non-flammable and able to repel both water and oils. Biomonitoring research shows global distribution in human, animal and aquatic environments of these chemicals. PFCs have been shown to activate the peroxisome proliferator-activated receptors which play a large role in metabolism and the regulation of energy homeostasis. Previous epidemiological research has also suggested a potential role of PFCs on lipid and glucose metabolism. The objectives of this study were to examine the association between the levels of perfluorinated compounds perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorohexane sulfonate (PFHxS) in plasma and metabolic function and plasma lipid levels. Using cross-sectional data from the Canadian Health Measures Survey (Cycle 1 2007-2009) we examined the association in adults between plasma levels of PFOA, PFOS and PFHxS (n=2700) on cholesterol outcomes, metabolic syndrome and glucose homeostasis using multivariate linear and logistic regression models. We found some evidence of a significant association between perfluoroalkyl substances, notably PFHxS, with total cholesterol (TC), low-density lipoprotein cholesterol (LDL), total cholesterol/high density lipoprotein cholesterol ratio (TC/HDL) and non-HDL cholesterol as well as an elevated odds of high cholesterol. We found some associations with PFOA and PFOS in our unweighted models but these results did not remain significant after weighting for sampling strategy. We found no association with metabolic syndrome, or glucose homeostasis parameters. This study showed lower levels of PFOA and PFOS and slightly higher levels of PFHxS than other published population studies. Our results did not give significant evidence to support the association with cholesterol outcomes with PFOS and PFOA. However, we did observe several significant associations with the PFHxS and cholesterol outcomes (LDL, TC, NON

  11. Homogenization of the lipid profile values.

    Science.gov (United States)

    Pedro-Botet, Juan; Rodríguez-Padial, Luis; Brotons, Carlos; Esteban-Salán, Margarita; García-Lerín, Aurora; Pintó, Xavier; Lekuona, Iñaki; Ordóñez-Llanos, Jordi

    Analytical reports from the clinical laboratory are essential to guide clinicians about what lipid profile values should be considered altered and, therefore, require intervention. Unfortunately, there is a great heterogeneity in the lipid values reported as "normal, desirable, recommended or referenced" by clinical laboratories. This can difficult clinical decisions and be a barrier to achieve the therapeutic goals for cardiovascular prevention. A recent international recommendation has added a new heterogeneity factor for the interpretation of lipid profile, such as the possibility of measuring it without previous fasting. All this justifies the need to develop a document that adapts the existing knowledge to the clinical practice of our health system. In this regard, professionals from different scientific societies involved in the measurement and use of lipid profile data have developed this document to establish recommendations that facilitate their homogenization. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  12. Plasma Dihydroceramides Are Diabetes Susceptibility Biomarker Candidates in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Leonore Wigger

    2017-02-01

    Full Text Available Summary: Plasma metabolite concentrations reflect the activity of tissue metabolic pathways and their quantitative determination may be informative about pathogenic conditions. We searched for plasma lipid species whose concentrations correlate with various parameters of glucose homeostasis and susceptibility to type 2 diabetes (T2D. Shotgun lipidomic analysis of the plasma of mice from different genetic backgrounds, which develop a pre-diabetic state at different rates when metabolically stressed, led to the identification of a group of sphingolipids correlated with glucose tolerance and insulin secretion. Quantitative analysis of these and closely related lipids in the plasma of individuals from two population-based prospective cohorts revealed that specific long-chain fatty-acid-containing dihydroceramides were significantly elevated in the plasma of individuals who will progress to diabetes up to 9 years before disease onset. These lipids may serve as early biomarkers of, and help identify, metabolic deregulation in the pathogenesis of T2D. : Wigger et al. find that several sphingolipids in mouse plasma correlate with glucose tolerance and insulin secretion. Quantitative analysis of these and closely related lipids in human plasma from two cohorts reveal that dihydroceramides are significantly elevated in individuals progressing to diabetes, up to 9 years before disease onset. Keywords: diabetes, T2D, ceramides, dihydroceramides, biomarkers, lipidomics, prognostic, mouse, human, high-fat diet, metabolic challenge, glucose intolerance, insulin sensitivity, prospective cohort

  13. Excess abdominal adiposity remains correlated with altered lipid concentrations in healthy older women.

    Science.gov (United States)

    DiPietro, L; Katz, L D; Nadel, E R

    1999-04-01

    To determine associations between overall adiposity, absolute and relative abdominal adiposity, and lipid concentrations in healthy older women. Cross-sectional analysis of baseline data. Subjects were 21 healthy, untrained older women (71 +/- 1 y) entering a randomized, controlled aerobic training program. Overall adiposity was assessed by anthropometry and the body mass index (BMI=kg/m2). Absolute and relative abdominal adiposity was determined by computed tomography (CT) and circumference measures. Fasting serum lipid concentrations of total-, high density lipoprotein (HDL)-, and low density lipoprotein (LDL)-cholesterol (C) and triglycerides (TGs) were determined by standard enzymatic procedures. Compared to the measures of overall adiposity, we observed much stronger correlations between measures more specific to absolute or relative abdominal adiposity and lipid concentrations. Visceral fat area was the strongest correlate of HDL-C (r = -0.75; P HDL-C ratio (r = 0.86; P correlated with TGs (r = 0.54; P HDL-C (r= -0.69; P HDL-C ratio (r = 0.75; P adiposity remains an important correlate of lipid metabolism, even in healthy older women of normal weight. Thus, overall obesity is not a necessary condition for the correlation between excess abdominal fat and metabolic risk among postmenopausal women.

  14. Effect of Mucuna pruriens on semen profile and biochemical parameters in seminal plasma of infertile men.

    Science.gov (United States)

    Ahmad, Mohammad Kaleem; Mahdi, Abbas Ali; Shukla, Kamla Kant; Islam, Najmul; Jaiswar, Shyam Pyari; Ahmad, Sohail

    2008-09-01

    To investigate the impact of Mucuna pruriens seeds on semen profiles and biochemical levels in seminal plasma of infertile men. Prospective study. Departments of Biochemistry and Obstetrics and Gynecology, King George's Medical University, Lucknow, India. Sixty normal healthy fertile men (controls) and 60 men undergoing infertility screening. High-performance liquid chromatography assay procedure for quantitation of vitamin A and E in seminal plasma. Biochemical parameters in seminal plasma, namely lipids, fructose, and vitamin C, were estimated by standard spectrophotometric procedures. Before and after the treatment, seminal plasma lipid profile, lipid peroxide, fructose, and antioxidant vitamin levels were measured. Treatment with M. pruriens significantly inhibited lipid peroxidation, elevated spermatogenesis, and improved sperm motility. Treatment also recovered the levels of total lipids, triglycerides, cholesterol, phospholipids, and vitamin A, C, and E and corrected fructose in seminal plasma of infertile men. Treatment with M. pruriens increased sperm concentration and motility in all the infertile study groups. Oligozoospermic patients recovered sperm concentration significantly, but sperm motility was not restored to normal levels in asthenozoospermic men. Furthermore, in the seminal plasma of all the infertile groups, the levels of lipids, antioxidant vitamins, and corrected fructose were recovered after a decrease in lipid peroxides after treatment. The present study is likely to open new vistas on the possible role of M. pruriens seed powder as a restorative and invigorating agent for infertile men.

  15. No Evidence for Spontaneous Lipid Transfer at ER-PM Membrane Contact Sites.

    Science.gov (United States)

    Merklinger, Elisa; Schloetel, Jan-Gero; Spitta, Luis; Thiele, Christoph; Lang, Thorsten

    2016-04-01

    Non-vesicular lipid transport steps play a crucial role in lipid trafficking and potentially include spontaneous exchange. Since membrane contact facilitates this lipid transfer, it is most likely to occur at membrane contact sites (MCS). However, to date it is unknown whether closely attached biological membranes exchange lipids spontaneously. We have set up a system for studying the exchange of lipids at MCS formed between the endoplasmic reticulum (ER) and the plasma membrane. Contact sites were stably anchored and the lipids cholesterol and phosphatidylcholine (PC) were not capable of transferring spontaneously into the opposed bilayer. We conclude that physical contact between two associated biological membranes is not sufficient for transfer of the lipids PC and cholesterol.

  16. Easy, Fast, and Reproducible Quantification of Cholesterol and Other Lipids in Human Plasma by Combined High Resolution MSX and FTMS Analysis

    DEFF Research Database (Denmark)

    Gallego, Sandra F; Højlund, Kurt; Ejsing, Christer S

    2018-01-01

    Reliable, cost-effective, and gold-standard absolute quantification of non-esterified cholesterol in human plasma is of paramount importance in clinical lipidomics and for the monitoring of metabolic health. Here, we compared the performance of three mass spectrometric approaches available for di...... can be shortened for high throughput-oriented clinical lipidomics studies or extended with more advanced MS(ALL) technology (Almeida R. et al., J. Am. Soc. Mass Spectrom. 26, 133-148 [1]) to support in-depth structural elucidation of lipid molecules. Graphical Abstract ᅟ....

  17. Biological, clinical and population relevance of 95 loci for blood lipids

    DEFF Research Database (Denmark)

    Teslovich, Tanya M; Musunuru, Kiran; Smith, Albert V

    2010-01-01

    polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits...... in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken...

  18. Drinking orange juice increases total antioxidant status and decreases lipid peroxidation in adults.

    Science.gov (United States)

    Foroudi, Shahrzad; Potter, Andrew S; Stamatikos, Alexis; Patil, Bhimanagouda S; Deyhim, Farzad

    2014-05-01

    Cardiovascular disease (CVD) is the leading cause of death in the world and is the primary cause of mortality among Americans. One of the many reasons for the pathogenesis of CVD is attributed to eating diets high in saturated fat and refined carbohydrates and low in fruits and vegetables. Epidemiological evidence has supported a strong association between eating diets rich in fruits and vegetables and cardiovascular health. An experiment was conducted utilizing 24 adults with hypercholesterolemia and hypertriglyceridemia to evaluate the impact of drinking 20 fl oz of freshly squeezed orange juice daily for 90 days on blood pressure, lipid panels, plasma antioxidant capacity, metabolic hormones, lipid peroxidation, and inflammatory markers. Except for addition of drinking orange juice, subjects did not modify their eating habits. The findings suggested that drinking orange juice does not affect (P>.1) blood pressure, lipid panels, metabolic hormones, body fat percentage, or inflammatory markers. However, total plasma antioxidant capacity was significantly increased (Pjuice consumption. Drinking orange juice may protect the cardiovascular system by increasing total plasma antioxidant status and by lowering lipid peroxidation independent of other cardiovascular risk markers evaluated in this study.

  19. Plasma ceramide levels are altered in low and normal birth weight men in response to short-term high-fat overfeeding

    DEFF Research Database (Denmark)

    Ribel-Madsen, Amalie; Ribel-Madsen, Rasmus; Nielsen, Kristian Fog

    2018-01-01

    Low birth weight (LBW) individuals have an increased risk of developing insulin resistance and type 2 diabetes compared with normal birth weight (NBW) individuals. We hypothesised that LBW individuals exhibit an increased fatty acid flux into lipogenesis in non-adipose tissue with a resulting...... accumulation of lipotoxic lipids, including ceramides, in the blood. Therefore, we measured fasting plasma levels of 27 ceramides in 18 young, healthy, LBW men and 25 NBW controls after an isocaloric control diet and a 5-day high-fat, high-calorie diet by HPLC-HRMS. LBW men did not show elevated plasma......:0–18:1/d18:1–18:0 and d18:1–24:2/d18:2–24:1 levels and increased the d18:0–24:1a level in response to overfeeding. Plasma d18:0–24:1a and total ceramide levels were positively associated with the fasting blood glucose level and endogenous glucose production after the control diet, and the total ceramide...

  20. Correlation of plasma and peritoneal diasylate clomipramine concentration with hemodynamic recovery after intralipid infusion in rabbits.

    Science.gov (United States)

    Harvey, Martyn; Cave, Grant; Hoggett, Kerry

    2009-02-01

    Drug sequestration to an expanded plasma lipid phase has been proposed as a potential mechanism of action for lipid emulsions in lipophilic cardiotoxin overdose. The authors set out to document plasma and peritoneal diasylate clomipramine concentration after resuscitation with lipid emulsion in a rabbit model of clomipramine-induced hypotension. Twenty sedated mechanically ventilated New Zealand White rabbits were allocated to receive either 12 mL/kg 20% Intralipid or 12 mL/kg saline solution, following clomipramine infusion to 50% baseline mean arterial pressure (MAP). Hemodynamic parameters and serum clomipramine concentration were determined to 59 minutes. Peritoneal dialysis with 20% Intralipid or saline solution was evaluated for clomipramine concentration. Mean arterial pressure was greater in lipid-treated animals as assessed by repeated-measures analysis of variance (F[1,14] = 6.84; p = 0.020). Lipid infusion was associated with elevated plasma clomipramine concentration and reduced initial volume of distribution (Vd; 5.7 [+/-1.6] L/kg lipid vs. 15.9 [+/-7.2] L/kg saline; p = 0.0001). Peritoneal diasylate clomipramine concentration was greater in lipid-treated animals (366.2 [+/-186.2] microg/L lipid vs. 37.7 [+/-13.8] microg/L saline; p = 0.002). Amelioration of clomipramine-induced hypotension with lipid infusion is associated with reduced initial Vd and elevated plasma clomipramine concentration consistent with intravascular drug-lipid sequestration. Concomitant peritoneal dialysis with lipid emulsion enhances clomipramine extraction.

  1. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder.

    Science.gov (United States)

    Debashree, Bandopadhyay; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Natarajan, Archana; Christopher, Rita; Nalini, Atchayaram; Bindu, Parayil Sankaran; Gayathri, Narayanappa; Srinivas Bharath, Muchukunte Mukunda

    2018-02-09

    Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. © 2018 International Society for Neurochemistry.

  2. Lipid remodeling and an altered membrane-associated proteome may drive the differential effects of EPA and DHA treatment on skeletal muscle glucose uptake and protein accretion.

    Science.gov (United States)

    Jeromson, Stewart; Mackenzie, Ivor; Doherty, Mary K; Whitfield, Phillip D; Bell, Gordon; Dick, James; Shaw, Andy; Rao, Francesco V; Ashcroft, Stephen P; Philp, Andrew; Galloway, Stuart D R; Gallagher, Iain; Hamilton, D Lee

    2018-06-01

    In striated muscle, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have differential effects on the metabolism of glucose and differential effects on the metabolism of protein. We have shown that, despite similar incorporation, treatment of C 2 C 12 myotubes (CM) with EPA but not DHA improves glucose uptake and protein accretion. We hypothesized that these differential effects of EPA and DHA may be due to divergent shifts in lipidomic profiles leading to altered proteomic profiles. We therefore carried out an assessment of the impact of treating CM with EPA and DHA on lipidomic and proteomic profiles. Fatty acid methyl esters (FAME) analysis revealed that both EPA and DHA led to similar but substantials changes in fatty acid profiles with the exception of arachidonic acid, which was decreased only by DHA, and docosapentanoic acid (DPA), which was increased only by EPA treatment. Global lipidomic analysis showed that EPA and DHA induced large alterations in the cellular lipid profiles and in particular, the phospholipid classes. Subsequent targeted analysis confirmed that the most differentially regulated species were phosphatidylcholines and phosphatidylethanolamines containing long-chain fatty acids with five (EPA treatment) or six (DHA treatment) double bonds. As these are typically membrane-associated lipid species we hypothesized that these treatments differentially altered the membrane-associated proteome. Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics of the membrane fraction revealed significant divergence in the effects of EPA and DHA on the membrane-associated proteome. We conclude that the EPA-specific increase in polyunsaturated long-chain fatty acids in the phospholipid fraction is associated with an altered membrane-associated proteome and these may be critical events in the metabolic remodeling induced by EPA treatment.

  3. Estrogen Interactions With Lipid Rafts Related to Neuroprotection. Impact of Brain Ageing and Menopause

    Directory of Open Access Journals (Sweden)

    Raquel Marin

    2018-03-01

    Full Text Available Estrogens (E2 exert a plethora of neuroprotective actions against aged-associated brain diseases, including Alzheimer's disease (AD. Part of these actions takes place through binding to estrogen receptors (ER embedded in signalosomes, where numerous signaling proteins are clustered. Signalosomes are preferentially located in lipid rafts which are dynamic membrane microstructures characterized by a peculiar lipid composition enriched in gangliosides, saturated fatty acids, cholesterol, and sphingolipids. Rapid E2 interactions with ER-related signalosomes appear to trigger intracellular signaling ultimately leading to the activation of molecular mechanisms against AD. We have previously observed that the reduction of E2 blood levels occurring during menopause induced disruption of ER-signalosomes at frontal cortical brain areas. These molecular changes may reduce neuronal protection activities, as similar ER signalosome derangements were observed in AD brains. The molecular impairments may be associated with changes in the lipid composition of lipid rafts observed in neurons during menopause and AD. These evidences indicate that the changes in lipid raft structure during aging may be at the basis of alterations in the activity of ER and other neuroprotective proteins integrated in these membrane microstructures. Moreover, E2 is a homeostatic modulator of lipid rafts. Recent work has pointed to this relevant aspect of E2 activity to preserve brain integrity, through mechanisms affecting lipid uptake and local biosynthesis in the brain. Some evidences have demonstrated that estrogens and the docosahexaenoic acid (DHA exert synergistic effects to stabilize brain lipid matrix. DHA is essential to enhance molecular fluidity at the plasma membrane, promoting functional macromolecular interactions in signaling platforms. In support of this, DHA detriment in neuronal lipid rafts has been associated with the most common age-associated neuropathologies

  4. Physical and lipids alterations of irradiated camel meat

    International Nuclear Information System (INIS)

    Salem, F.A.; Shehata, M.I.; Abd-El-Baki, M.M.; Dessouki, T.M.

    1991-01-01

    Camel meat is considered to be one of the toughest kind of meat. If camel meat could be tenderized, the demand on it may be increased. Aging oof camel meat is usually carried out at low temperature (Abd-El-Baki etal., 1957). Aging could be accelerated if storage temperature could be raised. Such condition enhances the microbial spoilage of meat (Sokolov, 1965). However, with the aid of ionizing radiation, preheating, and/or antibiotics the marked growth of microorganisms may be decreased during storage. It was also claimed that ionizing radiation affects the lipids, water holding capacity and color of meat (Lawrie, 1974). (author) 19 refs

  5. Alterations in serum lipid, lipoprotein and visceral abdominal fat pad ...

    African Journals Online (AJOL)

    Commercially available garlic preparation in the form of garlic oil, garlic powder and pills are widely used for certain therapeutic purposes, including lowering blood pressure and improving lipid profile. The aim of the present study was to determine short term effects of dietary consumption of garlic on the serum levels of ...

  6. Lipid spectrum of the newborn rats' blood at the radioactive and chemical effects in the prenatal period

    International Nuclear Information System (INIS)

    Buzan, Kh.

    1998-01-01

    The radioactive and chemical factors used in complex or separately during the prenatal period in the experiment induce ambiguous effects on the lipid metabolism in blood plasma and erythrocytes of newborn rats. The chemicals cause more significant changes in the blood plasma lipid metabolism than the radioactive irradiation does. Being used combined the radioactive and chemical factors do not increase each other's effect- their effects have opposite directions. The radiochemical exposure induce more significant shifts in the lipid spectrum in erythrocytic membranes than the separate factors

  7. The effect of cinnamon extract and long-term aerobic training on heart function, biochemical alterations and lipid profile following exhaustive exercise in male rats.

    Science.gov (United States)

    Badalzadeh, Reza; Shaghaghi, Mehrnoush; Mohammadi, Mustafa; Dehghan, Gholamreza; Mohammadi, Zeynab

    2014-12-01

    Regular training is suggested to offer a host of benefits especially on cardiovascular system. In addition, medicinal plants can attenuate oxidative stress-mediated damages induced by stressor insults. In this study, we investigated the concomitant effect of cinnamon extract and long-term aerobic training on cardiac function, biochemical alterations and lipid profile following exhaustive exercise. Male Wistar rats (250-300 g) were divided into five groups depending on receiving regular training, cinnamon bark extraction, none or both of them, and then encountered with an exhausted exercise in last session. An 8-week endurance training program was designed with a progressive increase in training speed and time. Myocardial hemodynamics was monitored using a balloon-tipped catheter inserted into left ventricles. Blood samples were collected for analyzing biochemical markers, lipid profiles and lipid-peroxidation marker, malondealdehyde (MDA). Trained animals showed an enhanced cardiac force and contractility similar to cinnamon-treated rats. Co-application of regular training and cinnamon had additive effect in cardiac hemodynamic (Ptraining and supplementation with cinnamon significantly decreased serum levels of total cholesterol, low-density lipoprotein (LDL), and increased high-density lipoprotein (HDL) level and HDL/LDL ratio as compared to control group (Ptraining significantly reduced MDA level elevation induced by exhausted exercise (Ptraining improved cardiac hemodynamic through an additive effect. The positive effects of cinnamon and regular training on cardiac function were associated with a reduced serum MDA level and an improved blood lipid profile.

  8. Air pollutant sulfur dioxide-induced alterations on the levels of lipids, lipid peroxidation and lipase activity in various regions of the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Haider, S S; Hasan, M; Khan, N H

    1982-07-01

    The exposure of rats to SO/sub 2/ (10 p.p.m.) for one hour daily for 30 days caused depletion of total lipids in all brain areas. The contents of phospholipid were elevated in cerebellum and brain stem, but were depleted in cerebral hemisphere. Cholesterol levels showed an increase in various brain regions. On the other hand, gangliosides were increased in cerebellum and brain stem, but were decreased in cerebral hemisphere. Interestingly, cholesterol/phospholipid ratio was increased in different regions of the brain. Lipase activity was elevated in cerebral hemisphere. Lipid peroxidation showed marked increment in whole brain and in all the brain areas studied. The results suggest that SO/sub 2/-exposure induces degradation of lipids. Interestingly, the lipid contents are affected differentially in the various parts of the brain.

  9. Altered lipid metabolism in residual white adipose tissues of Bscl2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Weiqin Chen

    Full Text Available Mutations in BSCL2 underlie human congenital generalized lipodystrophy type 2 disease. We previously reported that Bscl2 (-/- mice develop lipodystrophy of white adipose tissue (WAT due to unbridled lipolysis. The residual epididymal WAT (EWAT displays a browning phenotype with much smaller lipid droplets (LD and higher expression of brown adipose tissue marker proteins. Here we used targeted lipidomics and gene expression profiling to analyze lipid profiles as well as genes involved in lipid metabolism in WAT of wild-type and Bscl2(-/- mice. Analysis of total saponified fatty acids revealed that the residual EWAT of Bscl2(-/- mice contained a much higher proportion of oleic 18:1n9 acid concomitant with a lower proportion of palmitic 16:0 acid, as well as increased n3- polyunsaturated fatty acids (PUFA remodeling. The acyl chains in major species of triacylglyceride (TG and diacylglyceride (DG in the residual EWAT of Bscl2(-/- mice were also enriched with dietary fatty acids. These changes could be reflected by upregulation of several fatty acid elongases and desaturases. Meanwhile, Bscl2(-/- adipocytes from EWAT had increased gene expression in lipid uptake and TG synthesis but not de novo lipogenesis. Both mitochondria and peroxisomal β-oxidation genes were also markedly increased in Bscl2(-/- adipocytes, highlighting that these machineries were accelerated to shunt the lipolysis liberated fatty acids through uncoupling to dissipate energy. The residual subcutaneous white adipose tissue (ScWAT was not browning but displays similar changes in lipid metabolism. Overall, our data emphasize that, other than being essential for adipocyte differentiation, Bscl2 is also important in fatty acid remodeling and energy homeostasis.

  10. The effect of 5 intravenous lipid emulsions on plasma phytosterols in preterm infants receiving parenteral nutrition: a randomized clinical trial.

    Science.gov (United States)

    Savini, Sara; D'Ascenzo, Rita; Biagetti, Chiara; Serpentini, Giulia; Pompilio, Adriana; Bartoli, Alice; Cogo, Paola E; Carnielli, Virgilio P

    2013-08-01

    Elevated plasma phytosterol concentrations are an untoward effect of parenteral nutrition (PN) with vegetable oil-based lipid emulsions (LEs). Phytosterols are elevated in neonatal cholestasis, but the relation remains controversial. The objective was to study the effect of 5 LEs on plasma phytosterols in preterm infants. One hundred forty-four consecutive admitted preterm infants (birth weight: 500-1249 g) were studied. Patients were randomly assigned to receive 1 of 5 different LEs: S [100% soybean oil (SO)], MS [50% medium-chain triglycerides (MCTs) and 50% SO], MSF (50% MCTs, 40% SO, and 10% fish oil (FO)], OS (80% olive oil and 20% SO), or MOSF (30% MCTs, 25% olive oil, 30% SO, and 15% FO). Phytosterols in the LEs and in plasma (on postnatal day 7 and day 14) were measured by gas chromatography-mass spectrometry. Patients in the S group had significantly higher total phytosterol intakes than did the other study groups. On PN days 7 and 14, plasma phytosterol concentrations were highest in the S group and lowest in the MOSF group. Despite similar β-sitosterol intakes between the MS and MSF groups, plasma concentrations were significantly lower in the MSF than in the MS group. Only 3 patients (2.1%) developed cholestasis: 1 in the MS, 1 in the MSF, and 1 in the MOSF group. No cases of cholestasis were observed in the S and OS groups. In uncomplicated preterm infants receiving routine PN, we found a correlation between phytosterol intake and plasma phytosterol concentrations; however, cholestasis was rare and no difference in liver function at 6 wk was observed.

  11. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools

    Science.gov (United States)

    Taha, Ameer Y.; Cheon, Yewon; Faurot, Keturah F.; MacIntosh, Beth; Majchrzak-Hong, Sharon F.; Mann, J. Douglas; Hibbeln, Joseph R.; Ringel, Amit; Ramsden, Christopher E.

    2014-01-01

    Background Dietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations. Objective To evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, change unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache. Design Secondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to: (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3-L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet. Results Compared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3-L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations. Conclusion Dietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFA for 12 weeks further increases n-3 PUFA plasma concentrations, but also reduces AA. PMID:24675168

  12. Assessing the nature of lipid raft membranes

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Ollila, Samuli; Hyvönen, Marja T

    2007-01-01

    of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL). These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins......-scale simulations to elucidate the properties of ternary raft mixtures with CHOL, palmitoylsphingomyelin (PSM), and palmitoyloleoylphosphatidylcholine. We simulate two bilayers of 1,024 lipids for 100 ns in the liquid-ordered phase and one system of the same size in the liquid-disordered phase. The studies provide...... heterogeneity more difficult. The findings reveal aspects of the role of favored (specific) lipid-lipid interactions within rafts and clarify the prominent role of CHOL in altering the properties of the membrane locally in its neighborhood. Also, we show that the presence of PSM and CHOL in rafts leads...

  13. Characterization of nanostructures in the live cell plasma membrane utilizing advanced single molecule fluorescence techniques

    International Nuclear Information System (INIS)

    Brameshuber, M.

    2009-01-01

    Unrevealing the detailed structure of the cellular plasma membrane at a nanoscopic length scale is the key for understanding the regulation of various signaling pathways or interaction mechanism. Hypotheses postulate the existence of nanoscopic lipid platforms in the cell membrane which are termed lipid- or membrane rafts. Based on biochemical studies, rafts are believed to play a crucial role in many signaling processes. However, there is currently not much information on their size, shape, stability, surface density, composition and heterogeneity. In this thesis I present an ultra-sensitive fluorescence based method which allows for the first time the direct imaging of single mobile rafts in the live cell plasma membrane. The method senses rafts by their property to assemble a characteristic set of fluorescent marker-proteins or lipids on a time-scale of seconds. A special photobleaching protocol was developed and used to reduce the surface density of labeled mobile rafts down to the level of well-isolated diffraction-limited spots, without altering the single spot brightness. The statistical distribution of probe molecules per raft was determined by single molecule brightness analysis. For demonstration, I used the consensus markers Bodipy-GM1, a fluorescent lipid analogue, and glycosylphosphatidyl-inositol-anchored monomeric GFP. For both markers I found cholesterol-dependent association in the plasma membrane of living CHO and Jurkat T cells in the resting state, indicating the presence of mobile, stable rafts hosting these probes. I further characterized these structures by taking cell-to-cell variations under consideration. By comparing Bodipy-GM1 with mGFP-GPI homo-association upon temperature variation, two different states - a non-equilibrated and an equilibrated state - could be identified. I conclude that rafts are loaded non-randomly; the characteristic load is maintained during its lifetime in the plasma membrane of a non-activated cell. Beside these

  14. Exposure to a northern contaminant mixture (NCM alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    Full Text Available Non-alcoholic fatty liver disease (NAFLD, defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to 10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with

  15. Toxoplasma gondii infection induces lipid metabolism alterations in the murine host

    Directory of Open Access Journals (Sweden)

    Ivan Milovanović

    2009-03-01

    Full Text Available Host lipids have been implicated in the pathogenesis of Toxoplasma gondiiinfection. To determine if Toxoplasmainfection influences the lipid status in the normal host, we assessed serum lipids of Swiss-Webster mice during infection with the BGD-1 strain (type-2 at a series of time points. Mice were bled at days zero and 42 post-infection, and subgroups were additionally bled on alternating weeks (model 1, or sacrificed at days zero, 14 and 42 (model 2 for the measurement of total cholesterol (Chl, high density lipoproteins (HDL, low density lipoproteins (LDL and triglycerides and adiponectin. At day 42, brains were harvested for cyst enumeration. A significant decrease (p = 0.02 in HDL and total Chl was first noted in infected vs. control mice at day 14 and persisted to day 42 (p = 0.013. Conversely, LDL was unaltered until day 42, when it increased (p = 0.043. Serum LDL levels at day 42 correlated only with cyst counts of above 300 (found in 44% mice, while the change in HDL between days zero and 42 correlated with both the overall mean cyst count (p = 0.041 and cyst counts above 300 (p = 0.044. Calculated per cyst, this decrease in HDL in individual animals ranged from 0.1-17 µmol/L, with a mean of 2.43 ± 4.14 µmol/L. Serum adiponectin levels remained similar between infected and control mice throughout the experiment.

  16. [Review: plant polyphenols modulate lipid metabolism and related molecular mechanism].

    Science.gov (United States)

    Dai, Yan-li; Zou, Yu-xiao; Liu, Fan; Li, Hong-zhi

    2015-11-01

    Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms.

  17. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W

    2011-01-01

    Previous work has showed that ergosterol and sphingolipids become sorted to secretory vesicles immunoisolated using a chimeric, artificial raft membrane protein as bait. In this study, we have extended this analysis to three populations of secretory vesicles isolated using natural yeast plasma...... a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...

  18. Cluster of atherosclerosis in a captive population of black kites (Milvus migrans subsp.) in France and effect of nutrition on the plasma lipid profile.

    Science.gov (United States)

    Facon, Charles; Beaufrere, Hugues; Gaborit, Christophe; Albaric, Olivier; Plassiart, Georges; Ammersbach, Melanie; Liegeois, Jean-Louis

    2014-03-01

    From January 2010 to March 2013, a captive colony of 83 black kites (Milvus migrans subsp.) in France experienced increased mortality related to atherosclerosis with an incidence of 4.4% per year. On histopathology, all kites had advanced atherosclerotic lesions, with several birds presenting abdominal hemorrhage and aortic rupture. In January 2012, a dietary change was instituted and consisted of introducing fish into the kites' diet. During the following 15 mo, the plasma lipid profile was monitored as well as body weight, food offered, and flight activity. Total and low-density lipoprotein cholesterol initially increased, but in December 2012 and March 2013, an overall decrease from initial values was observed. High-density lipoprotein cholesterol also increased during this period. Despite positive plasma lipid changes induced by dietary modifications, there was no decrease in mortality from atherosclerosis, which was probably associated with the severity of the atherosclerotic lesions at time of dietary management. However, owing to the long and progressive development of atherosclerotic lesions, long-term beneficial effects are probable. This report suggests that black kites are particularly susceptible to atherosclerosis and aortic dissection in captivity. To prevent degenerative diseases associated with captivity in birds of prey, species-specific lifestyle and dietary requirements and susceptibility to these diseases should be considered.

  19. Cocoa butter and safflower oil elicit different effects on hepatic gene expression and lipid metabolism in rats.

    Science.gov (United States)

    Gustavsson, Carolina; Parini, Paolo; Ostojic, Jovanca; Cheung, Louisa; Hu, Jin; Zadjali, Fahad; Tahir, Faheem; Brismar, Kerstin; Norstedt, Gunnar; Tollet-Egnell, Petra

    2009-11-01

    The aim of this study was to compare the effects of cocoa butter and safflower oil on hepatic transcript profiles, lipid metabolism and insulin sensitivity in healthy rats. Cocoa butter-based high-fat feeding for 3 days did not affect plasma total triglyceride (TG) levels or TG-rich VLDL particles or hepatic insulin sensitivity, but changes in hepatic gene expression were induced that might lead to increased lipid synthesis, lipotoxicity, inflammation and insulin resistance if maintained. Safflower oil increased hepatic beta-oxidation, was beneficial in terms of circulating TG-rich VLDL particles, but led to reduced hepatic insulin sensitivity. The effects of safflower oil on hepatic gene expression were partly overlapping with those exerted by cocoa butter, but fewer transcripts from anabolic pathways were altered. Increased hepatic cholesterol levels and increased expression of hepatic CYP7A1 and ABCG5 mRNA, important gene products in bile acid production and cholesterol excretion, were specific effects elicited by safflower oil only. Common effects on gene expression included increased levels of p8, DIG-1 IGFBP-1 and FGF21, and reduced levels of SCD-1 and SCD-2. This indicates that a lipid-induced program for hepatic lipid disposal and cell survival was induced by 3 days of high-fat feeding, independent on the lipid source. Based on the results, we speculate that hepatic TG infiltration leads to reduced expression of SCD-1, which might mediate either neutral, beneficial or unfavorable effects on hepatic metabolism upon high-fat feeding, depending on which fatty acids were provided by the diet.

  20. DHA-fluorescent probe is sensitive to membrane order and reveals molecular adaptation of DHA in ordered lipid microdomains☆

    Science.gov (United States)

    Teague, Heather; Ross, Ron; Harris, Mitchel; Mitchell, Drake C.; Shaikh, Saame Raza

    2012-01-01

    Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo. PMID:22841541