WorldWideScience

Sample records for alter oxidative stress

  1. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  2. Oxidative stress can alter the antigenicity of immunodominant peptides

    DEFF Research Database (Denmark)

    Weiskopf, Daniela; Schwanninger, Angelika; Weinberger, Birgit

    2010-01-01

    APCs operate frequently under oxidative stress induced by aging, tissue damage, pathogens, or inflammatory responses. Phagocytic cells produce peroxides and free-radical species that facilitate pathogen clearance and can in the case of APCs, also lead to oxidative modifications of antigenic...... molecule is not impaired. Additionally, we show that CD8(+) T cells have a decreased proliferation and IFN-gamma production when stimulated with oxidized CMVpp65(495-503) peptide. Spectratyping the antigen-binding site of the TCR of responding T cells demonstrates that the CMVpp65(495-503) and the CMVoxpp...... of antigenic peptides may affect T cell responses severely by binding T cell clones with different affinity. This may lead to an altered immune response against infectious agents as well as against tumor or autoantigens under oxidative stress conditions....

  3. Oxidative stress alters physiological and morphological neuronal properties.

    Science.gov (United States)

    Hasan, Sonia M; Joe, Mary; Alshuaib, Waleed B

    2007-07-01

    We investigated the effects of H(2)O(2)-induced oxidative stress on the delayed-rectifier current (IK(DR)), neuronal physiological and morphological properties. Measurements were obtained from hippocampal CA1 neurons in control solution and from the same neurons after exposure to oxidative stress (short- and long-term H(2)O(2) external applications at 0.1, 1, and 10 mM). With short-term (6 min) H(2)O(2) (1 mM) treatment, IK(DR) measured in the H(2)O(2)-containing solution (778 +/- 23 pA, n=20), was smaller than that measured in the control Ca(2+)-free Hepes solution (1,112 +/- 38 pA, n=20). Coenzyme Q(10) (0.1 mM) pretreatment prevented the H(2)O(2)-induced inhibition of IK(DR). With long-term (40, 80 min) H(2)O(2) (0.1, 10 mM) treatment, the neuron lost its distinctive shape (rounded up) and the neurite almost disappeared. These results suggest that oxidative stress, which inhibits IK(DR), can alter neural activity. The morphological changes caused by H(2)O(2) support the idea that oxidative stress causes intracellular damage and compromises neural function.

  4. Alterations in magnesium and oxidative status during chronic emotional stress.

    Science.gov (United States)

    Cernak, I; Savic, V; Kotur, J; Prokic, V; Kuljic, B; Grbovic, D; Veljovic, M

    2000-03-01

    Magnesium and oxidative status were investigated in young volunteers exposed to chronic stress (political intolerance, awareness of potential military attacks, permanent stand-by duty and reduced holidays more than 10 years) or subchronic stress consisting of everyday mortal danger in military actions lasting more than 3 months. Significant decreases in plasma ionized Mg2+, total Mg and ionized Ca2+ concentrations were found in both groups. Similarly, both study groups exhibited oxidative stress as assessed by increased plasma superoxide anions and malondialdehyde and modified antioxidant defense. There were no significant differences between the two stress groups. A negative correlation between magnesium balance and oxidative stress was observed suggesting that the same etiological factor (chronic stress) initiate decreases in both free and total magnesium concentrations and simultaneously increase oxidative stress intensity. These findings support the need for magnesium supplementation with antioxidant vitamins for people living in conditions of chronic stress.

  5. Altered oxidative stress and carbohydrate metabolism in canine mammary tumors

    Directory of Open Access Journals (Sweden)

    K. Jayasri

    2016-12-01

    Full Text Available Aim: Mammary tumors are the most prevalent type of neoplasms in canines. Even though cancer induced metabolic alterations are well established, the clinical data describing the metabolic profiles of animal tumors is not available. Hence, our present investigation was carried out with the aim of studying changes in carbohydrate metabolism along with the level of oxidative stress in canine mammary tumors. Materials and Methods: Fresh mammary tumor tissues along with the adjacent healthy tissues were collected from the college surgical ward. The levels of thiobarbituric acid reactive substances (TBARS, glutathione, protein, hexose, hexokinase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, and glucose-6-phosphate dehydrogenase (G6PD were analyzed in all the tissues. The results were analyzed statistically. Results: More than two-fold increase in TBARS and three-fold increase in glutathione levels were observed in neoplastic tissues. Hexokinase activity and hexose concentration (175% was found to be increased, whereas glucose-6-phosphatase (33%, fructose-1, 6-bisphosphatase (42%, and G6PD (5 fold activities were reduced in tumor mass compared to control. Conclusion: Finally, it was revealed that lipid peroxidation was increased with differentially altered carbohydrate metabolism in canine mammary tumors.

  6. Mitochondrial alterations, oxidative stress and neuroinflammation in Alzheimer's disease.

    Science.gov (United States)

    Verri, M; Pastoris, O; Dossena, M; Aquilani, R; Guerriero, F; Cuzzoni, G; Venturini, L; Ricevuti, G; Bongiorno, A I

    2012-01-01

    Alzheimer's disease (AD) is a multifactorial disorder characterized by the progressive deterioration of neuronal networks. The primary cause and sequence of its progression are only partially understood but abnormalities in folding and accumulation of insoluble proteins such as beta-amyloid and Tau-protein are both associated with the pathogenesis of AD. Mitochondria play a crucial role in cell survival and death, and changes in mitochondrial structure and/or function are related to many human diseases. Increasing evidence suggests that compromised mitochondrial function contributes to the aging process and thus may increase the risk of AD. Dysfunctional mitochondria contribute to reactive oxygen species which can lead to extensive macromolecule oxidative damage and the progression of amyloid pathology. Oxidative stress and amyloid toxicity leave neurons chemically vulnerable. The mitochondrial toxicity induced by beta-amyloid is still not clear but may include numerous mechanisms, such as the increased permeability of mitochondrial membranes, the disruption of calcium homeostasis, the alteration of oxidative phosphorylation with a consequent overproduction of reactive oxygen species. Other mechanisms have been associated with the pathophysiology of AD. Inflammatory changes are observed in AD brain overall, particularly at the amyloid deposits, which are rich in activated microglia. Once stimulated, the microglia release a wide variety of pro-inflammatory mediators including cytokines, complement components and free radicals, all of which potentially contribute to further neuronal dysfunction and eventually death. Clinically, novel approaches to visualize early neuroinflammation in the human brain are needed to improve the monitoring and control of therapeutic strategies that target inflammatory and other pathological mechanisms. Similarly, there is growing interest in developing agents that modulate mitochondrial function.

  7. Oxidative Stress and Heart Failure in Altered Thyroid States

    Directory of Open Access Journals (Sweden)

    Pallavi Mishra

    2012-01-01

    Full Text Available Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with a faster heart rate, enhanced left ventricular systolic and diastolic function whereas hypothyroidism is characterized by the opposite changes. Hyperthyroidism and hypothyroidism represent opposite clinical conditions, albeit not mirror images. Recent experimental and clinical studies have suggested the involvement of ROS tissue damage under altered thyroid status. Altered-thyroid state-linked changes in heart modify their susceptibility to oxidants and the extent of the oxidative damage they suffer following oxidative challenge. Chronic increase in the cellular levels of ROS can lead to a catastrophic cycle of DNA damage, mitochondrial dysfunction, further ROS generation and cellular injury. Thus, these cellular events might play an important role in the development and progression of myocardial remodeling and heart failure in altered thyroid states (hypo- and hyper-thyroidism. The present review aims at elucidating the various signaling pathways mediated via ROS and their modulation under altered thyroid state and the possibility of antioxidant therapy.

  8. Oxidative stress and an altered methionine metabolism in alcoholism.

    Science.gov (United States)

    Bleich, S; Spilker, K; Kurth, C; Degner, D; Quintela-Schneider, M; Javaheripour, K; Rüther, E; Kornhuber, J; Wiltfang, J

    2000-11-03

    The exact mechanism of brain atrophy in patients with chronic alcoholism remains unknown. There is growing evidence that chronic alcoholism is associated with oxidative stress and with a derangement in sulphur amino acid metabolism (e.g. ethanol-induced hyperhomocysteinemia). Furthermore, it has been reported that homocysteine induces neuronal cell death by stimulating N-methyl-D-aspartate receptors as well as by producing free radicals. To further evaluate this latter hypothesis we analysed serum levels of both homocysteine and markers of oxidative stress (malondialdehyde) in alcoholic patients who underwent withdrawal from alcohol. Homocysteine and malondialdehyde were quantified by high performance liquid chromatography (HPLC) in serum samples of 35 patients (active drinkers). There was a significant correlation (Pbrain shrinkage.

  9. Renal Oxidative Stress Induced by Long-Term Hyperuricemia Alters Mitochondrial Function and Maintains Systemic Hypertension

    Directory of Open Access Journals (Sweden)

    Magdalena Cristóbal-García

    2015-01-01

    Full Text Available We addressed if oxidative stress in the renal cortex plays a role in the induction of hypertension and mitochondrial alterations in hyperuricemia. A second objective was to evaluate whether the long-term treatment with the antioxidant Tempol prevents renal oxidative stress, mitochondrial alterations, and systemic hypertension in this model. Long-term (11-12 weeks and short-term (3 weeks effects of oxonic acid induced hyperuricemia were studied in rats (OA, 750 mg/kg BW, OA+Allopurinol (AP, 150 mg/L drinking water, OA+Tempol (T, 15 mg/kg BW, or vehicle. Systolic blood pressure, renal blood flow, and vascular resistance were measured. Tubular damage (urine N-acetyl-β-D-glucosaminidase and oxidative stress markers (lipid and protein oxidation along with ATP levels were determined in kidney tissue. Oxygen consumption, aconitase activity, and uric acid were evaluated in isolated mitochondria from renal cortex. Short-term hyperuricemia resulted in hypertension without demonstrable renal oxidative stress or mitochondrial dysfunction. Long-term hyperuricemia induced hypertension, renal vasoconstriction, tubular damage, renal cortex oxidative stress, and mitochondrial dysfunction and decreased ATP levels. Treatments with Tempol and allopurinol prevented these alterations. Renal oxidative stress induced by hyperuricemia promoted mitochondrial functional disturbances and decreased ATP content, which represent an additional pathogenic mechanism induced by chronic hyperuricemia. Hyperuricemia-related hypertension occurs before these changes are evident.

  10. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  11. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway.

    Science.gov (United States)

    Campbell, Kate; Vowinckel, Jakob; Keller, Markus A; Ralser, Markus

    2016-04-01

    Nutrient uptake and metabolism have a significant impact on the way cells respond to stress. The amino acid methionine is, in particular, a key player in the oxidative stress response, and acting as a reactive oxygen species scavenger, methionine is implicated in caloric restriction phenotypes and aging. We here provide evidence that some effects of methionine in stress situations are indirect and caused by altered activity of the nicotinamide adenine dinucleotide phosphate (NADPH) producing oxidative part of the pentose phosphate pathway (PPP). In Saccharomyces cerevisiae, both methionine prototrophic (MET15) and auxotrophic (met15Δ) cells supplemented with methionine showed an increase in PPP metabolite concentrations downstream of the NADPH producing enzyme, 6-phosphogluconate dehydrogenase. Proteomics revealed this enzyme to also increase in expression compared to methionine self-synthesizing cells. Oxidant tolerance was increased in cells preincubated with methionine; however, this effect was abolished when flux through the oxidative PPP was prevented by deletion of its rate limiting enzyme, ZWF1. Stress resistance phenotypes that follow methionine supplementation hence involve the oxidative PPP. Effects of methionine on oxidative metabolism, stress signaling, and aging have thus to be seen in the context of an altered activity of this NADP reducing pathway.

  12. Correlation between oxidative stress and alteration of intracellular calcium handling in isoproterenol-induced myocardial infarction.

    Science.gov (United States)

    Díaz-Muñoz, Mauricio; Alvarez-Pérez, Marco Antonio; Yáñez, Lucía; Vidrio, Susana; Martínez, Lidia; Rosas, Gisele; Yáñez, Mario; Ramírez, Sotero; de Sánchez, Victoria Chagoya

    2006-09-01

    Myocardial Ca(2+) overload and oxidative stress are well documented effects associated to isoproterenol (ISO)-induced myocardial necrosis, but information correlating these two issues is scarce. Using an ISO-induced myocardial infarction model, 3 stages of myocardial damage were defined: pre-infarction (0-12 h), infarction (12-24 h) and post-infarction (24-96 h). Alterations in Ca(2+) homeostasis and oxidative stress were studied in mitochondria, sarcoplasmic reticulum and plasmalemma by measuring the Ca(2+) content, the activity of Ca(2+) handling proteins, and by quantifying TBARs, nitric oxide (NO) and oxidative protein damage (changes in carbonyl and thiol groups). Free radicals generated system, antioxidant enzymes and oxidative stress (GSH/GSSG ratio) were also monitored at different times of ISO-induced cardiotoxicity. The Ca(2+) overload induced by ISO was counterbalanced by a diminution in the ryanodine receptor activity and the Na(+)-Ca(+2) exchanger as well as by the increase in both calcium ATPases activities (vanadate- and thapsigargine-sensitive) and mitochondrial Ca(2+) uptake during pre-infarction and infarction stages. Pro-oxidative reactions and antioxidant defences during the 3 stages of cardiotoxicity were observed, with maximal oxidative stress during the infarction. Significant correlations were found among pro-oxidative reactions with plasmalemma and sarcoplasmic reticulum Ca(2+) ATPases, and ryanodine receptor activities at the onset and development of ISO-induced infarction. These findings could be helpful in the design of antioxidant therapies in this pathology.

  13. Restraint stress alters immune parameters and induces oxidative stress in the mouse uterus during embryo implantation.

    Science.gov (United States)

    Liu, Guanhui; Dong, Yulan; Wang, Zixu; Cao, Jing; Chen, Yaoxing

    2014-12-01

    The influence of stress on embryo implantation is not well understood. Prior studies have focused on later gestational stages and the long-term impact of stress on immune function. The objective of this study is to investigate the effects of restraint stress on the immune parameters and the oxidative states of the uterus during implantation. In this study, pregnant CD1 mice were subjected to restraint stress (4 h/d) on embryonic day 1 (E1) and sacrificed on E3, E5, and E7. Maternal plasma corticosterone (CORT) secretion and implantation sites in the uterus were examined. The uterine (excluding embryos) homogenate and uterine lymphocytes were collected to examine oxidative stress states and associated immune parameters. The results demonstrated that restraint stress increased maternal plasma CORT secretion and reduced the number of implantation sites by 15.3% on E5 and by 26.1% on E7. Moreover, restraint stress decreased the density of uterine natural killer (uNK) cells in the endometrium by 22.1-47.9% and increased the density of mast cells in the myometrium by 55.6-76.9%. Restraint stress remarkably decreased the CD3(+)CD4(+) T/CD3(+)CD8(+) T cell ratio (by 26.2-28.9%) and attenuated uterine lymphocyte proliferation and secretion of cytokines. In addition, restraint stress threatened the intracellular equilibrium between oxidants and antioxidants, resulting in decreased glutathione peroxidase (GSH-PX) (32.2% and 45.7%), superoxide dismutase (SOD) (15.5% and 26.1%), and total antioxidant capacity (T-AOC) (18.4% and 18.2%) activities and increased malondialdehyde (MDA) (34.4% and 43.0%) contents on E5 and E7. In conclusion, these findings demonstrate that restraint stress causes abnormal implantation and negatively impacts immune parameters in association with oxidative stress in mice.

  14. Nitric oxide synthase and nitric oxide alterations in chronically stressed rats: a model for nitric oxide in major depressive disorder.

    Science.gov (United States)

    Gao, Shang-Feng; Lu, Yun-Rong; Shi, Li-Gen; Wu, Xue-Yan; Sun, Bo; Fu, Xin-Yan; Luo, Jian-Hong; Bao, Ai-Min

    2014-09-01

    Nitric oxide (NO) and NO synthase-1 (NOS1) are involved in the stress response and in depression. We compared NOS-NO alterations in rats exposed to chronic unpredictable stress (CUS) with alterations in major depressive disorder (MDD) in humans. In the hypothalamus of male CUS rats we determined NOS activity, and in the paraventricular nucleus (PVN) we determined NOS1-immunoreactive (ir) cell densities and co-localization of NOS1 with stress-related neuropeptides corticotropin-releasing hormone (CRH), vasopressin (AVP) or oxytocin (OXT). We measured plasma NO levels and cortisol in male medicine-naïve MDD patients and plasma NO and corticosterone (CORT) in CUS rats. In the CUS rat total NOS activity in the hypothalamus (P=0.018) and NOS1-ir cell density in the PVN were both significantly decreased (P=0.018), while NOS1 staining was mainly expressed in OXT-ir neurons in this nucleus. Interestingly, plasma NO levels were significantly increased both in male CUS rats (P=0.001) and in male MDD patients (Pdepression.

  15. Conformational altered p53 as an early marker of oxidative stress in Alzheimer's disease.

    Science.gov (United States)

    Buizza, Laura; Cenini, Giovanna; Lanni, Cristina; Ferrari-Toninelli, Giulia; Prandelli, Chiara; Govoni, Stefano; Buoso, Erica; Racchi, Marco; Barcikowska, Maria; Styczynska, Maria; Szybinska, Aleksandra; Butterfield, David Allan; Memo, Maurizio; Uberti, Daniela

    2012-01-01

    In order to study oxidative stress in peripheral cells of Alzheimer's disease (AD) patients, immortalized lymphocytes derived from two peculiar cohorts of patients, referring to early onset AD (EOSAD) and subjects harboured AD related mutation (ADmut), were used. Oxidative stress was evaluated measuring i) the typical oxidative markers, such as HNE Michel adducts, 3 Nitro-Tyrosine residues and protein carbonyl on protein extracts, ii) and the antioxidant capacity, following the enzymatic kinetic of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRD). We found that the signs of oxidative stress, measured as oxidative marker levels, were evident only in ADmut but not in EOSAD patients. However, oxidative imbalance in EOSAD as well as ADmut lymphocytes was underlined by a reduced SOD activity and GRD activity in both pathological groups in comparison with cells derived from healthy subjects. Furthermore, a redox modulated p53 protein was found conformational altered in both EOSAD and ADmut B lymphocytes in comparison with control cells. This conformational altered p53 isoform, named "unfolded p53", was recognized by the use of two specific conformational anti-p53 antibodies. Immunoprecipitation experiments, performed with the monoclonal antibodies PAb1620 (that recognizes p53wt) and PAb240 (that is direct towards unfolded p53), and followed by the immunoblotting with anti-4-hydroxynonenal (HNE) and anti- 3-nitrotyrosine (3NT) antibodies, showed a preferential increase of nitrated tyrosine residues in unfolded p53 isoform comparing to p53 wt protein, in both ADmut and EOSAD. In addition, a correlation between unfolded p53 and SOD activity was further found. Thus this study suggests that ROS/RNS contributed to change of p53 tertiary structure and that unfolded p53 can be considered as an early marker of oxidative imbalance in these patients.

  16. Conformational altered p53 as an early marker of oxidative stress in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Laura Buizza

    Full Text Available In order to study oxidative stress in peripheral cells of Alzheimer's disease (AD patients, immortalized lymphocytes derived from two peculiar cohorts of patients, referring to early onset AD (EOSAD and subjects harboured AD related mutation (ADmut, were used. Oxidative stress was evaluated measuring i the typical oxidative markers, such as HNE Michel adducts, 3 Nitro-Tyrosine residues and protein carbonyl on protein extracts, ii and the antioxidant capacity, following the enzymatic kinetic of superoxide dismutase (SOD, glutathione peroxidase (GPx and glutathione reductase (GRD. We found that the signs of oxidative stress, measured as oxidative marker levels, were evident only in ADmut but not in EOSAD patients. However, oxidative imbalance in EOSAD as well as ADmut lymphocytes was underlined by a reduced SOD activity and GRD activity in both pathological groups in comparison with cells derived from healthy subjects. Furthermore, a redox modulated p53 protein was found conformational altered in both EOSAD and ADmut B lymphocytes in comparison with control cells. This conformational altered p53 isoform, named "unfolded p53", was recognized by the use of two specific conformational anti-p53 antibodies. Immunoprecipitation experiments, performed with the monoclonal antibodies PAb1620 (that recognizes p53wt and PAb240 (that is direct towards unfolded p53, and followed by the immunoblotting with anti-4-hydroxynonenal (HNE and anti- 3-nitrotyrosine (3NT antibodies, showed a preferential increase of nitrated tyrosine residues in unfolded p53 isoform comparing to p53 wt protein, in both ADmut and EOSAD. In addition, a correlation between unfolded p53 and SOD activity was further found. Thus this study suggests that ROS/RNS contributed to change of p53 tertiary structure and that unfolded p53 can be considered as an early marker of oxidative imbalance in these patients.

  17. Oxidative Stress and Erythrocyte Membrane Alterations in Children with Autism: Correlation with Clinical Features.

    Directory of Open Access Journals (Sweden)

    Alessandro Ghezzo

    Full Text Available It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD, but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD. Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl groups, erythrocyte superoxide dismutase and catalase activities were unchanged. A very significant reduction of Na(+/K(+-ATPase activity (-66%, p<0.0001, a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-ω3 with a consequent increase in ω6/ω3 ratio were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in NKA could be potentially utilized as a peripheral biomarker of ASD.

  18. Curcumin Supplementation Decreases Intestinal Adiposity Accumulation, Serum Cholesterol Alterations, and Oxidative Stress in Ovariectomized Rats

    Directory of Open Access Journals (Sweden)

    Maurilio da Silva Morrone

    2016-01-01

    Full Text Available The aim of this study was to investigate the potential of curcumin oral supplementation (50 and 100 mg/Kg/day, for 30 days in circumventing menopause-associated oxidative stress and lipid profile dysfunctions in a rat ovariectomy (OVX model. Female Wistar rats were operated and randomly divided into either sham-operated or OVX groups. Sham-operated group (n=8 and one OVX group (n=11 were treated with vehicle (refined olive oil, and the other two OVX groups received curcumin at 50 or 100 mg/Kg/day doses (n=8/group. OVX vehicle-treated animals presented a higher deposition of intestinal adipose tissue as well as increased serum levels of IL-6, LDL, and total cholesterol when compared to sham-operated rats. In addition, several oxidative stress markers in serum, blood, and liver (such as TBARS, carbonyl, reduced-sulphydryl, and nonenzymatic antioxidant defenses were altered toward a prooxidant status by OVX. Interestingly, curcumin supplementation attenuated most of these parameters to sham comparable values. Thus, the herein presented results show that curcumin may be useful to ameliorate lipid metabolism alterations and oxidative damage associated with hormone deprivation in menopause.

  19. Curcumin Supplementation Decreases Intestinal Adiposity Accumulation, Serum Cholesterol Alterations, and Oxidative Stress in Ovariectomized Rats.

    Science.gov (United States)

    Morrone, Maurilio da Silva; Schnorr, Carlos Eduardo; Behr, Guilherme Antônio; Gasparotto, Juciano; Bortolin, Rafael Calixto; da Boit Martinello, Katia; Saldanha Henkin, Bernardo; Rabello, Thallita Kelly; Zanotto-Filho, Alfeu; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2016-01-01

    The aim of this study was to investigate the potential of curcumin oral supplementation (50 and 100 mg/Kg/day, for 30 days) in circumventing menopause-associated oxidative stress and lipid profile dysfunctions in a rat ovariectomy (OVX) model. Female Wistar rats were operated and randomly divided into either sham-operated or OVX groups. Sham-operated group (n = 8) and one OVX group (n = 11) were treated with vehicle (refined olive oil), and the other two OVX groups received curcumin at 50 or 100 mg/Kg/day doses (n = 8/group). OVX vehicle-treated animals presented a higher deposition of intestinal adipose tissue as well as increased serum levels of IL-6, LDL, and total cholesterol when compared to sham-operated rats. In addition, several oxidative stress markers in serum, blood, and liver (such as TBARS, carbonyl, reduced-sulphydryl, and nonenzymatic antioxidant defenses) were altered toward a prooxidant status by OVX. Interestingly, curcumin supplementation attenuated most of these parameters to sham comparable values. Thus, the herein presented results show that curcumin may be useful to ameliorate lipid metabolism alterations and oxidative damage associated with hormone deprivation in menopause.

  20. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster.

    Science.gov (United States)

    Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da

    2017-01-01

    The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure.

  1. Ozone-induced injury and oxidative stress in bronchiolar epithelium are associated with altered pulmonary mechanics.

    Science.gov (United States)

    Sunil, Vasanthi R; Vayas, Kinal N; Massa, Christopher B; Gow, Andrew J; Laskin, Jeffrey D; Laskin, Debra L

    2013-06-01

    In these studies, we analyzed the effects of ozone on bronchiolar epithelium. Exposure of rats to ozone (2 ppm, 3 h) resulted in rapid (within 3 h) and persistent (up to 72 h) histological changes in the bronchiolar epithelium, including hypercellularity, loss of cilia, and necrotizing bronchiolitis. Perivascular edema and vascular congestion were also evident, along with a decrease in Clara cell secretory protein in bronchoalveolar lavage, which was maximal 24 h post-exposure. Ozone also induced the appearance of 8-hydroxy-2'-deoxyguanosine, Ym1, and heme oxygenase-1 in the bronchiolar epithelium. This was associated with increased expression of cleaved caspase-9 and beclin-1, indicating initiation of apoptosis and autophagy. A rapid and persistent increase in galectin-3, a regulator of epithelial cell apoptosis, was also observed. Following ozone exposure (3-24 h), increased expression of cyclooxygenase-2, inducible nitric oxide synthase, and arginase-1 was noted in bronchiolar epithelium. Ozone-induced injury and oxidative stress in bronchiolar epithelium were linked to methacholine-induced alterations in pulmonary mechanics. Thus, significant increases in lung resistance and elastance, along with decreases in lung compliance and end tidal volume, were observed at higher doses of methacholine. This indicates that ozone causes an increase in effective stiffness of the lung as a consequence of changes in the conducting airways. Collectively, these studies demonstrate that bronchiolar epithelium is highly susceptible to injury and oxidative stress induced by acute exposure to ozone; moreover, this is accompanied by altered lung functioning.

  2. Oxidative Stress Alters miRNA and Gene Expression Profiles in Villous First Trimester Trophoblasts

    Directory of Open Access Journals (Sweden)

    Courtney E. Cross

    2015-01-01

    Full Text Available The relationship between oxidative stress and miRNA changes in placenta as a potential mechanism involved in preeclampsia (PE is not fully elucidated. We investigated the impact of oxidative stress on miRNAs and mRNA expression profiles of genes associated with PE in villous 3A first trimester trophoblast cells exposed to H2O2 at 12 different concentrations (0-1 mM for 0.5, 4, 24, and 48 h. Cytotoxicity, determined using the SRB assay, was used to calculate the IC50 of H2O2. RNA was extracted after 4 h exposure to H2O2 for miRNA and gene expression profiling. H2O2 exerted a concentration- and time-dependent cytotoxicity on 3A trophoblast cells. Short-term exposure of 3A cells to low concentration of H2O2 (5% of IC50 significantly altered miRNA profile as evidenced by significant changes in 195 out of 595 evaluable miRNAs. Tool for annotations of microRNAs (TAM analysis indicated that these altered miRNAs fall into 43 clusters and 34 families, with 41 functions identified. Exposure to H2O2 altered mRNA expression of 22 out of 84 key genes involved in dysregulation of placental development. In conclusion, short-term exposure of villous first trimester trophoblasts to low concentrations of H2O2 significantly alters miRNA profile and expression of genes implicated in placental development.

  3. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  4. Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts

    DEFF Research Database (Denmark)

    Baraibar, Martin A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina;

    2011-01-01

    , and α-enolase were shifted to a more acidic isoelectric point upon oxidative stress, indicating posttranslational modifications. Oxidized proteins were evidenced by immunodetection of derivatized carbonyl groups followed by identification by mass spectrometry. The carbonylated proteins identified...

  5. Low oxygen alters mitochondrial function and response to oxidative stress in human neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Yury M. Lages

    2015-12-01

    Full Text Available Oxygen concentration should be carefully regulated in all living tissues, beginning at the early embryonic stages. Unbalances in oxygen regulation can lead to cell death and disease. However, to date, few studies have investigated the consequences of variations in oxygen levels for fetal-like cells. Therefore, in the present work, human neural progenitor cells (NPCs derived from pluripotent stem cells grown in 3% oxygen (v/v were compared with NPCs cultured in 21% (v/v oxygen. Low oxygen concentrations altered the mitochondrial content and oxidative functions of the cells, which led to improved ATP production, while reducing generation of reactive oxygen species (ROS. NPCs cultured in both conditions showed no differences in proliferation and glucose metabolism. Furthermore, antioxidant enzymatic activity was not altered in NPCs cultured in 3% oxygen under normal conditions, however, when exposed to external agents known to induce oxidative stress, greater susceptibility to DNA damage was observed. Our findings indicate that the management of oxygen levels should be considered for in vitro models of neuronal development and drug screening.

  6. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  7. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Michael T., E-mail: mttsen01@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Lu, Xiaoqin, E-mail: x0lu0003@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Duan, Xiaoxian, E-mail: x0duan02@louisville.edu [Dept of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky (United States); Hardas, Sarita S., E-mail: sarita.hardas@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Sultana, Rukhsana, E-mail: rsult2@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Wu, Peng, E-mail: peng.wu@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Unrine, Jason M., E-mail: jason.unrine@uky.edu [Dept of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky (United States); Graham, Uschi, E-mail: graham@caer.uky.edu [Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky (United States); Butterfield, D. Allan, E-mail: dabcns@uky.edu [Dept. of Chemistry, University of Kentucky, Lexington, Kentucky (United States); Grulke, Eric A., E-mail: eric.grulke@uky.edu [Dept of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky (United States); Yokel, Robert A., E-mail: ryokel@email.uky.edu [Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky (United States)

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3{sup +} T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures. -- Highlights: ► Time course study on nanoceria induced hepatic alterations in rats. ► Serum AST elevation indicated acute hepatotoxicity. ► Ceria is retained for up to 30 days in Kupffer cells

  8. Alterations of CNS structure & function by charged particle radiation & resultant oxidative stress

    Science.gov (United States)

    Nelson, Gregory; Chang, Polly; Favre, Cecile; Fike, John; Komarova, Natalia; Limoli, Charles; Mao, Xiao-Wen; Obenaus, Andre; Raber, Jacob; Spigelman, Igor; Soltesz, Ivan; Song, Sheng-Kwei; Stampanoni, Marco; Vlkolinsky, Roman; Wodarz, Dominik

    were complex and suggested continuous remodeling of the brain for up to 6 months. Thus we demonstrated a suite of CNS structural and functional changes after proton and iron ion exposure in the low dose regime. Based on these findings we will now test whether oxidative stress mediates the reactions of CNS to radiation exposure and what role radiation quality and dose rate play in the responses. We will use cultured neural precursor cells (mouse human) to detect changes in oxidative status and differentiation as functions of charged particle charge and velocity. These results will inform the selection of particles for many in vivo measurements that will compare wild type mice to a transgenic strain that over-expresses a human catalase gene (which inactivates hydrogen peroxide) in the mitochondrial compartment. This will explicitly test the role of reactive oxygen species in mediating the mechanisms underlying the CNS endpoints that we will measure. We will extend the electrophysiological measurements on individual nerves in hippocampal slices to characterize both inhibitory and excitatory synapses. Further, multi-electrode arrays will be used to follow correlated electrical activity in different hippocampal regions in order to understand network-level function as well as synaptic efficacy and plasticity. Controlled oxidative stress on irradiated samples will explore whether response mechanisms are shared. To link alterations in neurogenesis to performance we will explore behavioral changes mediated by the hippocampus simultaneously with measures of expression of the Arc gene in newly-born neurons. This will test whether decrements in performance correlate with loss of new cells and whether behavior properly stimulates functional integration of the new cells; the behavioral paradigm will be contextual fear conditioning. We will develop mathematical frameworks for CNS responses to radiation in order to inform risk estimates. Finally, we will couple a high

  9. Mitochondrial Dysfunctions and Altered Metals Homeostasis: New Weapons to Counteract HCV-Related Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Mario Arciello

    2013-01-01

    Full Text Available The hepatitis C virus (HCV infection produces several pathological effects in host organism through a wide number of molecular/metabolic pathways. Today it is worldwide accepted that oxidative stress actively participates in HCV pathology, even if the antioxidant therapies adopted until now were scarcely effective. HCV causes oxidative stress by a variety of processes, such as activation of prooxidant enzymes, weakening of antioxidant defenses, organelle damage, and metals unbalance. A focal point, in HCV-related oxidative stress onset, is the mitochondrial failure. These organelles, known to be the “power plants” of cells, have a central role in energy production, metabolism, and metals homeostasis, mainly copper and iron. Furthermore, mitochondria are direct viral targets, because many HCV proteins associate with them. They are the main intracellular free radicals producers and targets. Mitochondrial dysfunctions play a key role in the metal imbalance. This event, today overlooked, is involved in oxidative stress exacerbation and may play a role in HCV life cycle. In this review, we summarize the role of mitochondria and metals in HCV-related oxidative stress, highlighting the need to consider their deregulation in the HCV-related liver damage and in the antiviral management of patients.

  10. Effects of exercise training on stress-induced vascular reactivity alterations: role of nitric oxide and prostanoids

    Directory of Open Access Journals (Sweden)

    Thiago Bruder-Nascimento

    2015-06-01

    Full Text Available Background: Physical exercise may modify biologic stress responses. Objective: To investigate the impact of exercise training on vascular alterations induced by acute stress, focusing on nitric oxide and cyclooxygenase pathways. Method: Wistar rats were separated into: sedentary, trained (60-min swimming, 5 days/week during 8 weeks, carrying a 5% body-weight load, stressed (2 h-immobilization, and trained/stressed. Response curves for noradrenaline, in the absence and presence of L-NAME or indomethacin, were obtained in intact and denuded aortas (n=7-10. Results: None of the procedures altered the denuded aorta reactivity. Intact aortas from stressed, trained, and trained/stressed rats showed similar reduction in noradrenaline maximal responses (sedentary 3.54±0.15, stressed 2.80±0.10*, trained 2.82±0.11*, trained/stressed 2.97± 0.21*, *P<0.05 relate to sedentary. Endothelium removal and L-NAME abolished this hyporeactivity in all experimental groups, except in trained/stressed rats that showed a partial aorta reactivity recovery in L-NAME presence (L-NAME: sedentary 5.23±0,26#, stressed 5.55±0.38#, trained 5.28±0.30#, trained/stressed 4.42±0.41, #P<0.05 related to trained/stressed. Indomethacin determined a decrease in sensitivity (EC50 in intact aortas of trained rats without abolishing the aortal hyporeactivity in trained, stressed, and trained/stressed rats. Conclusions: Exercise-induced vascular adaptive response involved an increase in endothelial vasodilator prostaglandins and nitric oxide. Stress-induced vascular adaptive response involved an increase in endothelial nitric oxide. Beside the involvement of the endothelial nitric oxide pathway, the vascular response of trained/stressed rats involved an additional mechanism yet to be elucidated. These findings advance on the understanding of the vascular processes after exercise and stress alone and in combination.

  11. Altered DNA repair, oxidative stress and antioxidant status in coronary artery disease

    Indian Academy of Sciences (India)

    A Supriya Simon; V Chithra; Anoop Vijayan; Roy D Dinesh; T Vijayakumar

    2013-06-01

    Coronary artery disease (CAD) is a multifactorial disease caused by the interplay of environmental risk factors with multiple predisposing genes. The present study was undertaken to evaluate the role of DNA repair efficiency and oxidative stress and antioxidant status in CAD patients. Malonaldehyde (MDA), which is an indicator of oxidative stress, and mean break per cell (b/c) values, which is an indicator of decreased DNA repair efficiency, were found to be significantly increased in patients compared to normal controls ( < 0.05) whereas ascorbic acid and GSH were found to be lower among patients than the control group. It has been found that elevated oxidative stress decreased antioxidant level and decreased DNA repair efficiency can contribute to the development of CAD. This study also showed that high MDA, low ascorbic acid and GSH were significantly associated with high b/c value.

  12. Molecular hydrogen protects chondrocytes from oxidative stress and indirectly alters gene expressions through reducing peroxynitrite derived from nitric oxide

    Directory of Open Access Journals (Sweden)

    Hanaoka Teruyasu

    2011-08-01

    Full Text Available Abstract Background Molecular hydrogen (H2 functions as an extensive protector against oxidative stress, inflammation and allergic reaction in various biological models and clinical tests; however, its essential mechanisms remain unknown. H2 directly reacts with the strong reactive nitrogen species peroxynitrite (ONOO- as well as hydroxyl radicals (•OH, but not with nitric oxide radical (NO•. We hypothesized that one of the H2 functions is caused by reducing cellular ONOO-, which is generated by the rapid reaction of NO• with superoxides (•O2-. To verify this hypothesis, we examined whether H2 could restore cytotoxicity and transcriptional alterations induced by ONOO- derived from NO• in chondrocytes. Methods We treated cultured chondrocytes from porcine hindlimb cartilage or from rat meniscus fibrecartilage with a donor of NO•, S-nitroso-N-acetylpenicillamine (SNAP in the presence or absence of H2. Chondrocyte viability was determined using a LIVE/DEAD Viability/Cytotoxicity Kit. Gene expressions of the matrix proteins of cartilage and the matrix metalloproteinases were analyzed by reverse transcriptase-coupled real-time PCR method. Results SNAP treatment increased the levels of nitrated proteins. H2 decreased the levels of the nitrated proteins, and suppressed chondrocyte death. It is known that the matrix proteins of cartilage (including aggrecan and type II collagen and matrix metalloproteinases (such as MMP3 and MMP13 are down- and up-regulated by ONOO-, respectively. H2 restoratively increased the gene expressions of aggrecan and type II collagen in the presence of H2. Conversely, the gene expressions of MMP3 and MMP13 were restoratively down-regulated with H2. Thus, H2 acted to restore transcriptional alterations induced by ONOO-. Conclusions These results imply that one of the functions of H2 exhibits cytoprotective effects and transcriptional alterations through reducing ONOO-. Moreover, novel pharmacological strategies

  13. Correlation of enhanced oxidative stress with altered thyroid profile: Probable role in spontaneous abortion

    Science.gov (United States)

    Ramandeep, Kaur; Kapil, Gupta; Harkiran, Kaur

    2017-01-01

    Background: Spontaneous abortion or miscarriage is defined as the loss of a clinically recognized pregnancy that occurs before 20 weeks of gestational age. Changes in thyroid function can impact greatly on reproductive function before, during, and after conception. Oxidative stress affects both implantation and early embryo development by modifying the key of transcription. Malondialdehyde (MDA) is a major breakdown product of split off from lipid peroxidation. Superoxide dismutase (SOD) is responsible for detoxification of superoxide anion and required for normal health and reproduction. Aim: The aim of this study was to define the involvement of thyroid hormones, MDA and SOD levels and to establish MDA levels as an index of lipid peroxidation in women with spontaneous abortion by comparing the results with healthy pregnant females as controls. Materials and Methods: A cross-sectional case-control study was designed with two groups of women with 30 each in healthy pregnancy and with spontaneous abortion. Results: Demographic characteristics such as maternal age, paternal age, gestational age, body mass index, waist-hip ratio as well as biochemical parameters such as blood pressure, hemoglobin (Hb), sugar levels were found to be similar in both the participating groups. Characteristics like gravida and parity were found to be higher in the study group and differ significantly from control group. Spontaneous abortion before 24 weeks of gestational age was found to be associated with significant increase in mean serum thyroid stimulating hormone (TSH) (P = 0.0115) and MDA (P = 0.0001) levels and a significant decrease in mean serum T3 (P = 0.0003) and SOD (P = 0.0005) levels. The linear (Pearson) correlation analysis demonstrated a significant positive correlation of TSH with MDA and negative correlation with SOD in women with spontaneous abortion. Conclusion: The study demonstrates that altered thyroid profile, increased lipid peroxidation in terms of increased MDA

  14. Alteration of cyclic nucleotides levels and oxidative stress in saliva of human subjects with periodontitis.

    Science.gov (United States)

    Mashayekhi, Fereshteh; Aghahoseini, Farzaneh; Rezaie, Ali; Zamani, Mohammad J; Khorasani, Reza; Abdollahi, Mohammad

    2005-11-15

    Experimental findings suggest a protective role for cyclic nucleotides against induction of oxidative stress in saliva. Oxidative stress is a major contributor to the pathogenesis of inflammatory diseases. This study was conducted to evaluate salivary oxidative stress along with cGMP and cAMP levels in periodontitis subjects. cAMP and cGMP are second messengers that have important roles in salivary gland functions. Unstimulated whole saliva samples were obtained from periodontitis patients and age- and sex-matched healthy individuals. Saliva samples were analyzed for thiobarbituric reactive substances (TBARS) as a marker of lipid peroxidation, ferric reducing ability (total antioxidant power, TAP), and levels of cAMP and cGMP. Concentrations of cAMP and cGMP were reduced in the saliva of patients with moderate and severe periodontitis. Saliva of patients with severe periodontitis had higher TBARS and lower TAP than control subjects. The presence of oxidative stress and lower levels of salivary cGMP and cAMP in periodontitis are in association with disease severity.

  15. β-carotene treatment alters the cellular death process in oxidative stress-induced K562 cells.

    Science.gov (United States)

    Akçakaya, Handan; Tok, Sabiha; Dal, Fulya; Cinar, Suzan Adin; Nurten, Rustem

    2017-03-01

    Oxidizing agents (e.g., H2 O2 ) cause structural and functional disruptions of molecules by affecting lipids, proteins, and nucleic acids. As a result, cellular mechanisms related to disrupted macro molecules are affected and cell death is induced. Oxidative damage can be prevented at a certain point by antioxidants or the damage can be reversed. In this work, we studied the cellular response against oxidative stress induced by H2 O2 and antioxidant-oxidant (β-carotene-H2 O2 ) interactions in terms of time, concentration, and treatment method (pre-, co-, and post) in K562 cells. We showed that co- or post-treatment with β-carotene did not protect cells from the damage of oxidative stress furthermore co- and post-β-carotene-treated oxidative stress induced cells showed similar results with only H2 O2 treated cells. However, β-carotene pre-treatment prevented oxidative damage induced by H2 O2 at concentrations lower than 1,000 μM compared with only H2 O2 -treated and co- and post-β-carotene-treated oxidative stress-induced cells in terms of studied cellular parameters (mitochondrial membrane potential [Δψm ], cell cycle and apoptosis). Prevention effect of β-carotene pre-treatment was lost at concentrations higher than 1,000 μM H2 O2 (2-10 mM). These findings suggest that β-carotene pre-treatment alters the effects of oxidative damage induced by H2 O2 and cell death processes in K562 cells.

  16. Altered mitochondrial function and oxidative stress in leukocytes of anorexia nervosa patients.

    Directory of Open Access Journals (Sweden)

    Victor M Victor

    Full Text Available CONTEXT: Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress. OBJECTIVE: The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated. DESIGN AND SETTING: A multi-centre, cross-sectional case-control study was performed. PATIENTS: Our study population consisted of 20 anorexic patients and 20 age-matched controls, all of which were Caucasian women. MAIN OUTCOME MEASURES: Anthropometric and metabolic parameters were evaluated in the study population. To assess whether anorexia nervosa affects mitochondrial function and redox state in leukocytes of anorexic patients, we measured mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels, mitochondrial mass, and complex I and III activity in polymorphonuclear cells. RESULTS: Mitochondrial function was impaired in the leukocytes of the anorexic patients. This was evident in a decrease in mitochondrial O2 consumption (P<0.05, mitochondrial membrane potential (P<0.01 and GSH levels (P<0.05, and an increase in ROS production (P<0.05 with respect to control subjects. Furthermore, a reduction of mitochondrial mass was detected in leukocytes of the anorexic patients (P<0.05, while the activity of mitochondrial complex I (P<0.001, but not that of complex III, was found to be inhibited in the same population. CONCLUSIONS: Oxidative stress is produced in the leukocytes of anorexic patients and is closely related to mitochondrial dysfunction. Our results lead us to propose that the oxidative stress that occurs in anorexia takes place at mitochondrial complex I. Future research concerning mitochondrial dysfunction and oxidative stress should aim to determine the physiological mechanism involved in this effect and the physiological impact of anorexia.

  17. The biological basis of autism spectrum disorders: evaluation of oxidative stress and erytrocyte membrane alterations

    OpenAIRE

    Ghezzo, Alessandro

    2015-01-01

    This case-control study involved a total of 29 autistic children (Au) aged 6 to 12 years, and 28 gender and age-matched typically developing children (TD). We evaluated a high number of peripheral oxidative stress parameters, erythrocyte and lymphocyte membrane functional features and membrane lipid composition of erythrocyte. Erythrocyte TBARS, Peroxiredoxin II, Protein Carbonyl Groups and urinary HEL and isoprostane levels were elevated in AU (confirming an imbalance of the redox status of...

  18. Oxidative stress and alteration of biochemical markers in liver and kidney by malathion in rat pups.

    Science.gov (United States)

    Selmi, Slimen; El-Fazaa, Saloua; Gharbi, Najoua

    2015-09-01

    The present study was undertaken to determine the effects of malathion exposure through maternal milk on oxidative stress, functional an metabolic parameters in kidney and liver of rat pups. We found that lactational exposure to malation (200 mg/kg, body weight (bw)) induced an oxidative stress status assessed by an increase in malondialdhyde (MDA) content, reflecting lipoperoxidation, a decrease in thiol groups' content as well as depletion of enzyme activities as a superoxide dismutase (SOD) and catalase (CAT) on postnatal days (Pnds) 21 and 51. Moreover, the current study showed that malathion induced liver and kidney dysfunctions demonstrated by considerable increase in phosphatase alkaline (PAL), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as total and direct bilirubin, creatinine urea and acid uric contents. We also observed an increase in triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and a decrease in high-density lipoprotein cholesterol (HDL-C) in the plasma of treated rat pups. These findings evidenced that malathion exposure during lactation through maternal milk of rats pups induced kidney and liver oxidative stress as well as functional and metabolic disorders that play a role in the development of others pathologies as cardiovascular diseases and cancers.

  19. Inflammation in adult women with a history of child maltreatment: The involvement of mitochondrial alterations and oxidative stress.

    Science.gov (United States)

    Boeck, Christina; Koenig, Alexandra Maria; Schury, Katharina; Geiger, Martha Leonie; Karabatsiakis, Alexander; Wilker, Sarah; Waller, Christiane; Gündel, Harald; Fegert, Jörg Michael; Calzia, Enrico; Kolassa, Iris-Tatjana

    2016-09-01

    The experience of maltreatment during childhood is associated with chronic low-grade inflammation in adulthood. However, the molecular mechanisms underlying this pro-inflammatory phenotype remain unclear. Mitochondria were recently found to principally coordinate inflammatory processes via both inflammasome activation and inflammasome-independent pathways. To this end, we hypothesized that alterations in immune cell mitochondrial functioning and oxidative stress might be at the interface between the association of maltreatment experiences during childhood and inflammation. We analyzed pro-inflammatory biomarkers (levels of C-reactive protein, cytokine secretion by peripheral blood mononuclear cells (PBMC) in vitro, PBMC composition, lysophosphatidylcholine levels), serum oxidative stress levels (arginine:citrulline ratio, l-carnitine and acetylcarnitine levels) and mitochondrial functioning (respiratory activity and density of mitochondria in PBMC) in peripheral blood samples collected from 30 women (aged 22-44years) with varying degrees of maltreatment experiences in form of abuse and neglect during childhood. Exposure to maltreatment during childhood was associated with an increased ROS production, higher levels of oxidative stress and an increased mitochondrial activity in a dose-response relationship. Moreover, the increase in mitochondrial activity and ROS production were positively associated with the release of pro-inflammatory cytokines by PBMC. Decreased serum levels of lysophosphatidylcholines suggested higher inflammasome activation with increasing severity of child maltreatment experiences. Together these findings offer preliminary evidence for the association of alterations in immune cell mitochondrial functioning, oxidative stress and the pro-inflammatory phenotype observed in individuals with a history of maltreatment during childhood. The results emphasize that the early prevention of child abuse and neglect warrants more attention, as the

  20. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria.

    Science.gov (United States)

    Tseng, Michael T; Lu, Xiaoqin; Duan, Xiaoxian; Hardas, Sarita S; Sultana, Rukhsana; Wu, Peng; Unrine, Jason M; Graham, Uschi; Butterfield, D Allan; Grulke, Eric A; Yokel, Robert A

    2012-04-15

    Beyond the traditional use of ceria as an abrasive, the scope of nanoceria applications now extends into fuel cell manufacturing, diesel fuel additives, and for therapeutic intervention as a putative antioxidant. However, the biological effects of nanoceria exposure have yet to be fully defined, which gave us the impetus to examine its systemic biodistribution and biological responses. An extensively characterized nanoceria (5 nm) dispersion was vascularly infused into rats, which were terminated 1 h, 20 h or 30 days later. Light and electron microscopic tissue characterization was conducted and hepatic oxidative stress parameters determined. We observed acute ceria nanoparticle sequestration by Kupffer cells with subsequent bioretention in parenchymal cells as well. The internalized ceria nanoparticles appeared as spherical agglomerates of varying dimension without specific organelle penetration. In hepatocytes, the agglomerated nanoceria frequently localized to the plasma membrane facing bile canaliculi. Hepatic stellate cells also sequestered nanoceria. Within the sinusoids, sustained nanoceria bioretention was associated with granuloma formations comprised of Kupffer cells and intermingling CD3⁺ T cells. A statistically significant elevation of serum aspartate aminotransferase (AST) level was seen at 1 and 20 h, but subsided by 30 days after ceria administration. Further, elevated apoptosis was observed on day 30. These findings, together with increased hepatic protein carbonyl levels on day 30, indicate ceria-induced hepatic injury and oxidative stress, respectively. Such observations suggest a single vascular infusion of nanoceria can lead to persistent hepatic retention of particles with possible implications for occupational and therapeutic exposures.

  1. Presymptomatic alterations in energy metabolism and oxidative stress in the APP23 mouse model of Alzheimer disease.

    Science.gov (United States)

    Hartl, Daniela; Schuldt, Victoria; Forler, Stephanie; Zabel, Claus; Klose, Joachim; Rohe, Michael

    2012-06-01

    Glucose hypometabolism is the earliest symptom observed in the brains of Alzheimer disease (AD) patients. In a former study, we analyzed the cortical proteome of the APP23 mouse model of AD at presymptomatic age (1 month) using a 2-D electrophoresis-based approach. Interestingly, long before amyloidosis can be observed in APP23 mice, proteins associated with energy metabolism were predominantly altered in transgenic as compared to wild-type mice indicating presymptomatic changes in energy metabolism. In the study presented here, we analyzed whether the observed changes were associated with oxidative stress and confirmed our previous findings in primary cortical neurons, which exhibited altered ADP/ATP levels if transgenic APP was expressed. Reactive oxygen species produced during energy metabolism have important roles in cell signaling and homeostasis as they modify proteins. We observed an overall up-regulation of protein oxidation status as shown by increased protein carbonylation in the cortex of presymptomatic APP23 mice. Interestingly, many carbonylated proteins, such as Vilip1 and Syntaxin were associated to synaptic plasticity. This demonstrates an important link between energy metabolism and synaptic function, which is altered in AD. In summary, we demonstrate that changes in cortical energy metabolism and increased protein oxidation precede the amyloidogenic phenotype in a mouse model for AD. These changes might contribute to synaptic failure observed in later disease stages, as synaptic transmission is particularly dependent on energy metabolism.

  2. Red blood cells in Rett syndrome: oxidative stress, morphological changes and altered membrane organization.

    Science.gov (United States)

    Ciccoli, Lucia; De Felice, Claudio; Leoncini, Silvia; Signorini, Cinzia; Cortelazzo, Alessio; Zollo, Gloria; Pecorelli, Alessandra; Rossi, Marcello; Hayek, Joussef

    2015-11-01

    In this review, we summarize the current evidence on the erythrocyte as a previously unrecognized target cell in Rett syndrome, a rare (1:10 000 females) and devastating neurodevelopmental disorder caused by loss-of-function mutations in a single gene (i.e. MeCP2, CDKL5, or rarely FOXG1). In particular, we focus on morphological changes, membrane oxidative damage, altered membrane fatty acid profile, and aberrant skeletal organization in erythrocytes from patients with typical Rett syndrome and MeCP2 gene mutations. The beneficial effects of ω-3 polyunsaturated fatty acids (PUFAs) are also summarized for this condition to be considered as a 'model' condition for autism spectrum disorders.

  3. Advanced glycation end products, oxidative stress and metalloproteinases are altered in the cerebral microvasculature during aging.

    Science.gov (United States)

    Safciuc, Florentina; Constantin, Alina; Manea, Adrian; Nicolae, Manuela; Popov, Doina; Raicu, Monica; Alexandru, Dorin; Constantinescu, Elena

    2007-11-01

    Biological aging is associated with an increased incidence of cerebrovascular disease. Recent findings indicate that oxidative stress promoting age-related changes of cerebral circulation are involved in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease. The aim of this study was to evaluate the contribution of cerebral microvessels to the oxidative stress during brain aging, by: (i) assessment of precursors for advanced glycation end products (AGE) formation, (ii) activities of antioxidant enzymes, namely superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione disulfide reductase (GR), and (iii) the activities of metalloproteinases (MMPs), MMP-2 and MMP-9, involved in synaptogenesis and memory consolidation. The experiments were performed on two groups of male Wistar rats: 15 young (3-6 months old) and 15 aged (18-24 months old) animals. The cerebral microvessels were isolated by mechanical homogenization, the concentration of protein carbonyls and the activity of antioxidant enzymes were evaluated by spectrophotometry, and gelatin SDS-PAGE zymography was employed to evaluate MMP-2 and MMP-9 activities. The results showed that, by comparison with young rats, aged brain microvessels contain: (i) approximately 106 % increase of protein carbonyls production; (ii) approximately 68% higher GPx activity, unmodified activities of SOD and GR; (iii) approximately 30% diminishment in MMP-2 activity, and the specific occurrence of MMP-9 enzyme. The data suggest that the age-related changes of microvessels could increase the propensity for cerebral diseases and might represent, at least in part, a prerequisite for the deterioration of mental and physical status in the elderly.

  4. Dietary pollutants induce oxidative stress, altering maternal antioxidant provisioning and reproductive output in the temperate sea urchin Evechinus chloroticus.

    Science.gov (United States)

    Lister, Kathryn N; Lamare, Miles D; Burritt, David J

    2016-08-01

    Evidence is growing to suggest that the capacity to withstand oxidative stress may play an important role in shaping life-history trade-offs, although little is known on the relationship in broadcast spawning marine invertebrates. In this group, variation in gamete quantity and quality are important drivers of offspring survival and successful recruitment. Therefore the provisioning of eggs with antioxidants may be an important driver of life history strategies because they play a critical role in preventing damage from reactive oxygen species to macromolecules. In this study, a suite of oxidative stress biomarkers was measured in the gonads and eggs of the sea urchin Evechinus chloroticus exposed to polycyclic aromatic hydrocarbons (PAHs). Links between oxidative stress markers and core components of fitness including fecundity, gamete quality and maternal transfer of antioxidants were assessed. Experimental induction of oxidative stress was achieved via exposure to a mix of four PAHs over a 21-day period. In PAH exposed individuals, we observed a significant upregulation of the antioxidant defence and detoxification enzymes SOD, CAT, GR, GPx and GST, as well as a greater pool of the non-enzymatic antioxidant glutathione in gonad tissue and eggs. In contrast, glutathione redox status was not affected by PAH exposure, with the percentage of reduced glutathione remaining at approximately 80% in both gonad tissue and released eggs. PAH-exposed adults experienced greater than three- and five-fold increases in oxidative protein and lipid damage, respectively, in gonad tissue. In contrast, eggs maintained low levels of damage, not differing from baseline levels found in eggs released from PAH-naïve mothers. PAH exposure also resulted in a 2-fold reduction in fecundity of reproductively mature females but no significant alteration to egg diameter. Although PAH-exposed females released fewer eggs, successful fertilisation of those eggs was slightly enhanced with average

  5. Overexpression of plastidial thioredoxins f and m differentially alters photosynthetic activity and response to oxidative stress in tobacco plants

    Directory of Open Access Journals (Sweden)

    Pascal eREY

    2013-10-01

    Full Text Available Plants display a remarkable diversity of thioredoxins (Trxs, reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively. To further delineate their in planta function, we compared the photosynthetic characteristics, the level and/or activity of various Trx targets and the responses to oxidative stress in transplastomic tobacco plants overexpressing either Trx f or Trx m. We found that plants overexpressing Trx m specifically exhibit altered growth, reduced chlorophyll content, impaired photosynthetic linear electron transfer and decreased pools of glutathione and ascorbate. In both transplastomic lines, activities of two enzymes involved in carbon metabolism, NADP-malate dehydrogenase and NADP-glyceraldehyde-3-phosphate dehydrogenase are markedly and similarly altered. In contrast, plants overexpressing Trx m specifically display increased capacity for methionine sulfoxide reductases, enzymes repairing damaged proteins by regenerating methionine from oxidized methionine. Finally, we also observed that transplastomic plants exhibit distinct responses when exposed to oxidative stress conditions generated by methyl viologen or exposure to high light combined with low temperature, the plants overexpressing Trx m being notably more tolerant than Wt and those overexpressing Trx f. Altogether, these data indicate that Trxs f and m fulfill distinct physiological functions. They prompt us to propose that the m type is involved in key processes linking photosynthetic activity, redox homeostasis and antioxidant mechanisms in the chloroplast.

  6. Effects of dexamethasone on small bowel and kidney oxidative stress and histological alterations in bile duct-ligated rats.

    Science.gov (United States)

    Ozturk, Hayrettin; Eken, Halil; Ozturk, Hulya; Buyukbayram, Huseyin

    2006-09-01

    Oxidative stress plays an important role in the pathogenesis of toxic liver diseases and other hepatic alterations including obstruction of bile flow. It has been shown that the gastrointestinal tract and renal tissue is particularly affected during obstruction of bile flow. In this study, we aimed to evaluate the effects of dexamethasone on small bowel and kidney oxidative stress and histological alterations in bile duct-ligated (BDL) rats. A total of 40 male Sprague-Dawley rats weighing 200-240 g were used in this study. Group 1 (Sham-control, n = 10) rats underwent laparotomy and bile duct was dissected from the surrounding tissue. Group 2 (Dexa-control, n = 10) rats underwent laparotomy and bile duct was dissected from the surrounding tissue. The rats received daily dexamethasone. Group 3 (BDL/Untreated, n = 10) rats were subjected to bile duct ligation and no drug was applied. Group 4 (BDL/Dexa, n = 10) rats received daily dexamethasone by orogastric tube for 14 days after BDL. At the end of the 2-week period, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) were measured and biochemical and histological evaluation were processed. The mean serum bilirubin, liver enzymes, MDA level, and histopathological score significantly decreased and SOD, CAT, and GSH-Px values were significantly increased in group 4 when compared to group 3. Group 3 presented a significant increase in caecal count of E. coli and in aerobe/anaerobe ratio. In group 4, liver was moderately damaged. Ileal biopsies from group 4 demonstrated a significant increase in villus height, total mucosal thickness, and villus density when compared to group 3. Glomerular injury scores (GIS) and arterial injury scores (AIS) in group 3 rats were increased in the juxtamedullary region. In contrast to group 4, tubulo-interstitial lesions were diffuse in group 3 animals. Dexamethasone reduced small bowel and kidney oxidative stress and histological

  7. Implications of altered glutathione metabolism in aspirin-induced oxidative stress and mitochondrial dysfunction in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available We have previously reported that acetylsalicylic acid (aspirin, ASA induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO, prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC, cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.

  8. D-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs.

    Science.gov (United States)

    Cheng, Po-Wen; Liu, Shing-Hwa; Young, Yi-Ho; Lin-Shiau, Shoei-Yn

    2006-09-01

    Cisplatin has been used as a chemotherapeutic agent to treat many kinds of malignancies. Its damage to the vestibulo-ocular reflex (VOR) system has been reported. However, the underlying biochemical change in the inner ear or central vestibular nervous system is not fully understood. In this study, we attempted to examine whether cisplatin-induced vestibulotoxicity and D-methionine protection were correlated with the changes of ATPase activities and oxidative stress of ampullary tissue of vestibules as well as cerebellar cortex (the inhibitory center of VOR system) of guinea pigs. By means of a caloric test coupled with electronystagmographic recordings, we found that cisplatin exposure caused a dose-dependent (1, 3, or 5 mg/kg) vestibular dysfunction as revealed by a decrease of slow phase velocity (SPV). In addition, cisplatin significantly inhibited the Na(+), K(+)-ATPase and Ca(2+)-ATPase activities in the ampullary tissue with a good dose-response relationship but not those of cerebellar cortex. Regression analysis indicated that a decrease of SPV was well correlated with the reduction of Na(+), K(+)-ATPase and Ca(2+)-ATPase activities of the ampullary tissue. D-Methionine (300 mg/kg) reduced both abnormalities of SPV and ATPase activities in a correlated manner. Moreover, cisplatin exposure led to a significant dose-dependent increase of lipid peroxidation and nitric oxide concentrations of the vestibules, which could be significantly suppressed by D-methionine. However, cisplatin did not alter the levels of lipid peroxidation and nitric oxide of the cerebellum. In conclusion, cisplatin inhibited ATPase activities and increased oxidative stress in guinea pig vestibular labyrinths. D-Methionine attenuated cisplatin-induced vestibulotoxicity associated with ionic disturbance through its antioxidative property.

  9. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  10. The daily rhythms of mitochondrial gene expression and oxidative stress regulation are altered by aging in the mouse liver.

    Science.gov (United States)

    Gong, Changxia; Li, Chengwei; Qi, Xiaoqing; Song, Zhiyin; Wu, Jianguo; Hughes, Michael E; Li, Xiaodong

    2015-01-01

    The circadian clock regulates many cellular processes, notably including the cell cycle, metabolism and aging. Mitochondria play essential roles in metabolism and are the major sites of reactive oxygen species (ROS) production in the cell. The clock regulates mitochondrial functions by driving daily changes in NAD(+) levels and Sirt3 activity. In addition to this central route, in the present study, we find that the expression of some mitochondrial genes is also rhythmic in the liver, and that there rhythms are disrupted by the Clock(Δ19) mutation in young mice, suggesting that they are regulated by the core circadian oscillator. Related to this observation, we also find that the regulation of oxidative stress is rhythmic in the liver. Since mitochondria and ROS play important roles in aging, and mitochondrial functions are also disturbed by aging, these related observations prompt the compelling hypothesis that circadian oscillators influence aging by regulating ROS in mitochondria. During aging, the expression rhythms of some mitochondrial genes were altered in the liver and the temporal regulation over the dynamics of mitochondrial oxidative stress was disrupted. However, the expression of clock genes was not affected. Our results suggested that mitochondrial functions are combinatorially regulated by the clock and other age-dependent mechanism(s), and that aging disrupts mitochondrial rhythms through mechanisms downstream of the clock.

  11. Caffeine impacts in the clam Ruditapes philippinarum: Alterations on energy reserves, metabolic activity and oxidative stress biomarkers.

    Science.gov (United States)

    Cruz, Diogo; Almeida, Ângela; Calisto, Vânia; Esteves, Valdemar I; Schneider, Rudolf J; Wrona, Frederick J; Soares, Amadeu M V M; Figueira, Etelvina; Freitas, Rosa

    2016-10-01

    Caffeine is known to be one of the most consumed psychoactive drugs. For this reason, caffeine is continuously released into the environment with potential impacts on inhabiting organisms. The current study evaluated the biochemical alterations induced in the clam species Ruditapes philippinarum after exposure for 28 days to caffeine (0.5, 3.0 and 18.0 μg/L). The results obtained showed that, with the increasing caffeine concentrations, an increase in clams defense mechanisms (such as antioxidant and biotransformation enzymes activity) was induced which was accompanied by an increase in protein content. Nevertheless, although an increase on defense mechanisms was observed, clams were not able to prevent cells from lipid peroxidation that increased with the increase of caffeine concentration. Furthermore, with the increase of exposure concentrations, clams increased their metabolic activity (measured by electron transport activity), reducing their energy reserves (glycogen content), to fight against oxidative stress. Overall, the present study demonstrated that caffeine may impact bivalves, even at environmentally relevant concentrations, inducing oxidative stress in organisms. The present study is an important contribution to address knowledge gaps regarding the impacts of long-term exposures to pharmaceuticals since most of the studies assessed the effects after acute exposures, most of them up to 96 h.

  12. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    Science.gov (United States)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  13. Zn(II)-curcumin protects against hemorheological alterations, oxidative stress and liver injury in a rat model of acute alcoholism.

    Science.gov (United States)

    Yu, Chuan; Mei, Xue-Ting; Zheng, Yan-Ping; Xu, Dong-Hui

    2014-03-01

    Curcumin can chelate metal ions, forming metallocomplexes. We compared the effects of Zn(II)-curcumin with curcumin against hemorheological alterations, oxidative stress and liver injury in a rat model of acute alcoholism. Oral administration of Zn(II)-curcumin dose-dependently prevented the ethanol-induced elevation of serum malondialdehyde (MDA) content and reductions in glutathione level and superoxide dismutase (SOD) activity. Zn(II)-curcumin also inhibited ethanol-induced liver injury. Additionally, Zn(II)-curcumin dose-dependently inhibited hemorheological abnormalities, including the ethanol-induced elevation of whole blood viscosity, plasma viscosity, blood viscosity at corrected hematocrit (45%), erythrocyte aggregation index, erythrocyte rigidity index and hematocrit. Compared to curcumin at the same dose, Zn(II)-curcumin more effectively elevated SOD activity, ameliorated liver injury and improved hemorheological variables. These results suggest that Zn(II)-curcumin protected the rats from ethanol-induced liver injury and hemorheological abnormalities via the synergistic effect of curcumin and zinc.

  14. Ectopic expression of a stress-inducible glycosyltransferase from saffron enhances salt and oxidative stress tolerance in Arabidopsis while alters anchor root formation.

    Science.gov (United States)

    Ahrazem, Oussama; Rubio-Moraga, Angela; Trapero-Mozos, Almudena; Climent, María Fernanda López; Gómez-Cadenas, Aurelio; Gómez-Gómez, Lourdes

    2015-05-01

    Glycosyltransferases play diverse roles in cellular metabolism by modifying the activities of regulatory metabolites. Three stress-regulated UDP-glucosyltransferase-encoding genes have been isolated from the stigmas of saffron, UGT85U1, UGT85U2 and UGT85V1, which belong to the UGT85 family that includes members associated with stress responses and cell cycle regulation. Arabidopsis constitutively expressing UGT85U1 exhibited and increased anchor root development. No differences were observed in the timing of root emergence, in leaf, stem and flower morphology or flowering time. However, salt and oxidative stress tolerance was enhanced in these plants. Levels of glycosylated compounds were measured in these plants and showed changes in the composition of several indole-derivatives. Moreover, auxin levels in the roots were higher compared to wild type. The expression of several key genes related to root development and auxin homeostasis, including CDKB2.1, CDKB2.2, PIN2, 3 and 4; TIR1, SHR, and CYCD6, were differentially regulated with an increase of expression level of SHR, CYCD6, CDKB2.1 and PIN2. The obtained results showed that UGT85U1 takes part in root growth regulation via auxin signal alteration and the modified expression of cell cycle-related genes, resulting in significantly improved survival during oxidative and salt stress treatments.

  15. The Campylobacter jejuni Oxidative Stress Regulator RrpB Is Associated with a Genomic Hypervariable Region and Altered Oxidative Stress Resistance

    Science.gov (United States)

    Gundogdu, Ozan; da Silva, Daiani T.; Mohammad, Banaz; Elmi, Abdi; Wren, Brendan W.; van Vliet, Arnoud H. M.; Dorrell, Nick

    2016-01-01

    Campylobacter jejuni is the leading cause of bacterial foodborne diarrhoeal disease worldwide. Despite the microaerophilic nature of the bacterium, C. jejuni can survive the atmospheric oxygen conditions in the environment. Bacteria that can survive either within a host or in the environment like C. jejuni require variable responses to survive the stresses associated with exposure to different levels of reactive oxygen species. The MarR-type transcriptional regulators RrpA and RrpB have recently been shown to play a role in controlling both the C. jejuni oxidative and aerobic stress responses. Analysis of 3,746 C. jejuni and 486 C. coli genome sequences showed that whilst rrpA is present in over 99% of C. jejuni strains, the presence of rrpB is restricted and appears to correlate with specific MLST clonal complexes (predominantly ST-21 and ST-61). C. coli strains in contrast lack both rrpA and rrpB. In C. jejuni rrpB+ strains, the rrpB gene is located within a variable genomic region containing the IF subtype of the type I Restriction-Modification (hsd) system, whilst this variable genomic region in C. jejuni rrpB- strains contains the IAB subtype hsd system and not the rrpB gene. C. jejuni rrpB- strains exhibit greater resistance to peroxide and aerobic stress than C. jejuni rrpB+ strains. Inactivation of rrpA resulted in increased sensitivity to peroxide stress in rrpB+ strains, but not in rrpB- strains. Mutation of rrpA resulted in reduced killing of Galleria mellonella larvae and enhanced biofilm formation independent of rrpB status. The oxidative and aerobic stress responses of rrpB- and rrpB+ strains suggest adaptation of C. jejuni within different hosts and niches that can be linked to specific MLST clonal complexes. PMID:28082970

  16. Protection of hepatotoxicity using Spondias pinnata by prevention of ethanol-induced oxidative stress, DNA-damage and altered biochemical markers in Wistar rats

    Directory of Open Access Journals (Sweden)

    Shoaib Shadab Iqbal

    2016-12-01

    Conclusion: S. pinnata extracts AE and EE possess a potent hepatoprotective effect against ethanol-induced liver injury in Wistar rats, and protect them from hepatotoxicity by prevention of ethanol-induced oxidative stress, DNA-damage and altered biochemical markers.

  17. Creatine and pyruvate prevent the alterations caused by tyrosine on parameters of oxidative stress and enzyme activities of phosphoryltransfer network in cerebral cortex of Wistar rats.

    Science.gov (United States)

    de Andrade, Rodrigo Binkowski; Gemelli, Tanise; Rojas, Denise Bertin; Bonorino, Narielle Ferner; Costa, Bruna May Lopes; Funchal, Cláudia; Dutra-Filho, Carlos Severo; Wannmacher, Clovis Milton Duval

    2015-01-01

    Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II. In this disease caused by tyrosine aminotransferase deficiency, eyes, skin, and central nervous system disturbances are found. In the present study, we investigated the chronic effect of tyrosine methyl ester (TME) and/or creatine plus pyruvate on some parameters of oxidative stress and enzyme activities of phosphoryltransfer network in cerebral cortex homogenates of 21-day-old Wistar. Chronic administration of TME induced oxidative stress and altered the activities of adenylate kinase and mitochondrial and cytosolic creatine kinase. Total sulfhydryls content, GSH content, and GPx activity were significantly diminished, while DCFH oxidation, TBARS content, and SOD activity were significantly enhanced by TME. On the other hand, TME administration decreased the activity of CK from cytosolic and mitochondrial fractions but enhanced AK activity. In contrast, TME did not affect the carbonyl content and PK activity in cerebral cortex of rats. Co-administration of creatine plus pyruvate was effective in the prevention of alterations provoked by TME administration on the oxidative stress and the enzymes of phosphoryltransfer network, except in mitochondrial CK, AK, and SOD activities. These results indicate that chronic administration of TME may stimulate oxidative stress and alter the enzymes of phosphoryltransfer network in cerebral cortex of rats. In case this also occurs in the patients affected by these disorders, it may contribute, along with other mechanisms, to the neurological dysfunction of hypertyrosinemias, and creatine and pyruvate supplementation could be beneficial to the patients.

  18. Carbonated soft drinks induce oxidative stress and alter the expression of certain genes in the brains of Wistar rats.

    Science.gov (United States)

    El-Terras, Adel; Soliman, Mohamed Mohamed; Alkhedaide, Adel; Attia, Hossam Fouad; Alharthy, Abdullah; Banaja, Abdel Elah

    2016-04-01

    In Saudi Arabia, the consumption of carbonated soft drinks is common and often occurs with each meal. Carbonated soft drink consumption has been shown to exhibit effects on the liver, kidney and bone. However, the effects of these soft drinks on brain activity have not been widely examined, particularly at the gene level. Therefore, the current study was conducted with the aim of evaluating the effects of chronic carbonated soft drink consumption on oxidative stress, brain gene biomarkers associated with aggression and brain histology. In total, 40 male Wistar rats were divided into four groups: Group 1 served as a control and was provided access to food and water ad libitum; and groups 2‑4 were given free access to food and carbonated soft drinks only (Cola for group 2, Pepsi for group 3 and 7‑UP for group 4). Animals were maintained on these diets for 3 consecutive months. Upon completion of the experimental period, animals were sacrificed and serological and histopathological analyses were performed on blood and tissues samples. Reverse transcription‑polymerase chain reaction was used to analyze alterations in gene expression levels. Results revealed that carbonated soft drinks increased the serum levels of malondialdehyde (MDA). Carbonated soft drinks were also observed to downregulate the expression of antioxidants glutathione reductase (GR), catalase and glutathione peroxidase (GPx) in the brain when compared with that in the control rats. Rats administered carbonated soft drinks also exhibited decreased monoamine oxidase A (MAO‑A) and acetylcholine esterase (AChE) serum and mRNA levels in the brain. In addition, soft drink consumption upregulated mRNA expression of dopamine D2 receptor (DD2R), while 5-hydroxytryptamine transporter (5‑HTT) expression was decreased. However, following histological examination, all rats had a normal brain structure. The results of this study demonstrated that that carbonated soft drinks induced oxidative stress and

  19. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    Directory of Open Access Journals (Sweden)

    Harkema Jack R

    2011-07-01

    Full Text Available Abstract Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/- mice inhaled concentrated fine ambient PM (PM 2.5 or filtered air (FA for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT and brown adipose tissues (BAT, while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction.

  20. Histopathological Evaluation of Dose Dependent Sulfadiazine-Associated Nephrotoxicity and Alteration on Oxidative Stress in Chicken Embryos

    Directory of Open Access Journals (Sweden)

    Reza Sayrafi

    2016-06-01

    Full Text Available Background Numerous epidemiological and experimental researches indicate that in utero exposure to some environmental chemicals and prescribed drugs during pregnancy can mediate various embryonic abnormalities and complications via reactive oxygen species (ROS generation, which damages cellular macromolecules. Objectives The aim of the present study was to evaluate the sulfonamide-associated nephrotoxicity with possible underlying mechanisms in chicken embryo. Materials and Methods In this experimental study, one hundred fertile eggs were obtained and divided into five groups: 1 control group (without injection, 2 group injected with 2 mg sulfadiazine, 3 group injected with 10 mg sulfadiazine, 4 group injected with 30 mg sulfadiazine and 5 group injected with 70 mg sulfadiazine. After hatching, the renal tissue from the newly hatched chick was harvested for histopathologic investigation and also measurement of oxidative stress parameters [the ferric reducing capacity assay, the glutathione content (GSH and the situation of lipid peroxidation (LPO] by spectrophotometer. Results Histologic examination of the renal tissue revealed that sulfadiazine induces hydropic degeneration, tubular necrosis, glomerular and tubular atrophy, formation of hyaline cast, congestion, hemorrhage, interstitial nephritis and fibrosis. Conclusions Result showed the dose-dependent administration of sulfadiazine significantly altered the histopathologic structure of renal tissues of chickens. Furthermore, the major histopathologic events in the course of sulfadiazine cytotoxicity are renal tubule epithelial cell necrosis, interstitial nephritis and fibrosis, formation of hyaline cast and congestion and hemorrhage, although sulfadiazine at dose 30 mg and 70 mg caused perturbation in antioxidant defense system by marked increase in LPO, and decrease in GSH.

  1. DIABETES ASSOCIATED OXIDATIVE STRESS AND INFLAMMATION ALTERS THE PROTECTIVE EFFECT OF OBESITY ON SURVIVAL IN CHD PATIENTS

    Directory of Open Access Journals (Sweden)

    Serpil M. Deger

    2012-06-01

    Full Text Available In contrast to the adverse outcomes of obesity in general population, increased body mass index (BMI is associated with improved survival in hemodialysis (CHD patients. The aim of this retrospective study was to evaluate the association between obesity and mortality by diabetic status among 98 maintenance CHD patients. The median follow up was 33 (19, 56 months. Mean age was 49±13 years, 66% were male and 48 % had obesity. 45% of obese subjects were diabetic. Among the subgroups of study population, survival of diabetic obese patients was significantly lower compared to non-diabetic obese subjects (p=0.007 (Figure 1. The subgroup comparisons showed that diabetic obese patients tend to have higher truncal fat percentage (p<0.001 and lower lean body mass standardized by body surface area compared to nondiabetic counterparts although difference was not statistically significance. Diabetic obese patients had higher leptin (p=0.001 and high sensitivity C-reactive protein levels (0.005. Additionally, protein thiols (P-SH were significantly decreased in diabetic obese participants (p=0.03. Although, elevated body fatness appears to be protective for CHD population, presence of overt diabetes alters this advantage by increasing inflammation and oxidative stress.fx1

  2. Attenuation of oxidative stress and alteration of hepatic tissue ultrastructure by D-pinitol in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Sivakumar, Selvaraj; Palsamy, Periyasamy; Subramanian, Sorimuthu Pillai

    2010-06-01

    The present study was aimed to investigate the effect of D-pinitol on hyperglycaemia mediated oxidative stress by analysing the hepatic antioxidant competence, pro-inflammatory cytokines and ultrastructural changes in liver tissues of streptozotocin-induced diabetic rats. Oral administration of D-pinitol (50 mg/kg b.w.) resulted in significant (p pinitol instigated a significant escalation in the levels of hepatic tissue non-enzymatic antioxidants and the activities enzymatic antioxidants of diabetic rats with significant (p pinitol on the hepatic tissues from oxidative stress-induced liver damage. These biochemical observations were complemented by histological and ultrastructural examination of liver section. Thus, the present study demonstrates the hepatoprotective nature of D-pinitol by attenuating hyperglycaemia-mediated pro-inflammatory cytokines and oxidative stress.

  3. Oxidative stress in myopia.

    Science.gov (United States)

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem.

  4. Oxidative Stress in Myopia

    Directory of Open Access Journals (Sweden)

    Bosch-Morell Francisco

    2015-01-01

    Full Text Available Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem.

  5. Oxidative Stress and Antioxidant Defense

    OpenAIRE

    2012-01-01

    Abstract Reactive oxygen species (ROS) are produced by living organisms as a result of normal cellular metabolism and environmental factors, such as air pollutants or cigarette smoke. ROS are highly reactive molecules and can damage cell structures such as carbohydrates, nucleic acids, lipids, and proteins and alter their functions. The shift in the balance between oxidants and antioxidants in favor of oxidants is termed “oxidative stress.” Regulation of reducing and oxidizing (redox) state i...

  6. Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max)

    Energy Technology Data Exchange (ETDEWEB)

    Gillespie, K.M.; Rogers, A.; Ainsworth, E. A.

    2011-01-31

    Soybeans (Glycine max Merr.) were grown at elevated carbon dioxide concentration ([CO{sub 2}]) or chronic elevated ozone concentration ([O{sub 3}]; 90 ppb), and then exposed to an acute O{sub 3} stress (200 ppb for 4 h) in order to test the hypothesis that the atmospheric environment alters the total antioxidant capacity of plants, and their capacity to respond to an acute oxidative stress. Total antioxidant metabolism, antioxidant enzyme activity, and antioxidant transcript abundance were characterized before, immediately after, and during recovery from the acute O{sub 3} treatment. Growth at chronic elevated [O{sub 3}] increased the total antioxidant capacity of plants, while growth at elevated [CO{sub 2}] decreased the total antioxidant capacity. Changes in total antioxidant capacity were matched by changes in ascorbate content, but not phenolic content. The growth environment significantly altered the pattern of antioxidant transcript and enzyme response to the acute O{sub 3} stress. Following the acute oxidative stress, there was an immediate transcriptional reprogramming that allowed for maintained or increased antioxidant enzyme activities in plants grown at elevated [O{sub 3}]. Growth at elevated [CO{sub 2}] appeared to increase the response of antioxidant enzymes to acute oxidative stress, but dampened and delayed the transcriptional response. These results provide evidence that the growth environment alters the antioxidant system, the immediate response to an acute oxidative stress, and the timing over which plants return to initial antioxidant levels. The results also indicate that future elevated [CO{sub 2}] and [O{sub 3}] will differentially affect the antioxidant system.

  7. Diazeniumdiolate mediated nitrosative stress alters nitric oxide homeostasis through intracellular calcium and S-glutathionylation of nitric oxide synthetase.

    Directory of Open Access Journals (Sweden)

    Yefim Manevich

    Full Text Available BACKGROUND: PABA/NO is a diazeniumdiolate that acts as a direct nitrogen monoxide (NO donor and is in development as an anticancer drug. Its mechanism of action and effect on cells is not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: We used HPLC and mass spectrometry to identify a primary nitroaromatic glutathione metabolite of PABA/NO and used fluorescent assays to characterize drug effects on calcium and NO homeostasis, relating these to endothelial nitric oxide synthase (eNOS activity. Unexpectedly, the glutathione conjugate was found to be a competitive inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA presumably at the same site as thapsigargin, increasing intracellular Ca2+ release and causing auto-regulation of eNOS through S-glutathionylation. CONCLUSIONS/SIGNIFICANCE: The initial direct release of NO after PABA/NO was followed by an eNOS-mediated generation of NO as a consequence of drug-induced increase in Ca2+ flux and calmodulin (CaM activation. PABA/NO has a unique dual mechanism of action with direct intracellular NO generation combined with metabolite driven regulation of eNOS activation.

  8. Protection against 1,2-di-methylhydrazine-induced systemic oxidative stress and altered brain neurotransmitter status by probiotic Escherichia coli CFR 16 secreting pyrroloquinoline quinone.

    Science.gov (United States)

    Pandey, Sumeet; Singh, Ashish; Chaudhari, Nirja; Nampoothiri, Laxmipriya P; Kumar, G Naresh

    2015-05-01

    Exposure to environmental pollutant 1,2-dimethylhydrazine (DMH) is attributed to systemic oxidative stress and is known to cause neurotropic effect by altering brain neurotransmitter status. Probiotics are opted as natural therapeutic against oxidative stress and also have the ability to modulate gut-brain axis. Pyrroloquinoline quinone (PQQ) is water-soluble, heat-stable antioxidant molecule. Aim of the present study was to evaluate the antioxidant efficacy of PQQ-producing probiotic E. coli CFR 16 on DMH-induced systemic oxidative damage and altered neurotransmitter status in rat brain. Adult virgin Charles Forster rats (200-250 g) were given DMH dose (25 mg/kg body weight, s.c.) for 8 weeks. Blood lipid peroxidation levels exhibited a marked increase while antioxidant enzyme activities of superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase and glutathione peroxidase were found to be reduced in DMH-treated rats. Likewise, brain serotonin and norepinephrine levels displayed a significant decrease, whereas epinephrine levels demonstrated a marked increase in brain of these rats. PQQ-producing E. coli CFR 16 supplementation reduced systemic oxidative stress and also restored brain neurotransmitter status. However, E. coli CFR 16 did not show any effect on these parameters. In contrast, E. coli CFR 16:: vgb-gfp and E. coli CFR 16:: vgb-gfp vector exhibited some degree of protection again oxidative stress but they were not able to modulate neurotransmitter levels. In conclusion, continuous and sustained release of PQQ by probiotic E. coli in rat intestine ameliorates systemic oxidative stress and restored brain neurotransmitter levels.

  9. Altered expression and activities of enzymes involved in thiamine diphosphate biosynthesis in Saccharomyces cerevisiae under oxidative and osmotic stress.

    Science.gov (United States)

    Kowalska, Ewa; Kujda, Marta; Wolak, Natalia; Kozik, Andrzej

    2012-08-01

    Thiamine diphosphate (TDP) serves as a cofactor for enzymes engaged in pivotal carbohydrate metabolic pathways, which are known to be modulated under stress conditions to ensure the cell survival. Recent reports have proven a protective role of thiamine (vitamin B(1)) in the response of plants to abiotic stress. This work aimed at verifying a hypothesis that also baker's yeast, which can synthesize thiamine de novo similarly to plants and bacteria, adjust thiamine metabolism to adverse environmental conditions. Our analyses on the gene expression and enzymatic activity levels generally showed an increased production of thiamine biosynthesis enzymes (THI4 and THI6/THI6), a TDP synthesizing enzyme (THI80/THI80) and a TDP-requiring enzyme, transketolase (TKL1/TKL) by yeast subjected to oxidative (1 mM hydrogen peroxide) and osmotic (1 M sorbitol) stress. However, these effects differed in magnitude, depending on yeast growth phase and presence of thiamine in growth medium. A mutant thi4Δ with increased sensitivity to oxidative stress exhibited enhanced TDP biosynthesis as compared with the wild-type strain. Similar tendencies were observed in mutants yap1Δ and hog1Δ defective in the signaling pathways of the defense against oxidative and osmotic stress, respectively, suggesting that thiamine metabolism can partly compensate damages of yeast general defense systems.

  10. Oxidative Stress in BPH

    Directory of Open Access Journals (Sweden)

    Murat Savas

    2009-01-01

    The present study has shown that there were not relationship between potency of oxidative stress and BPH. Further well designed studies should be planned to find out whether the oxidative stress-related parameters play role in BPH as an interesting pathology in regard of the etiopathogenesis. Keywords: benign prostatic hyperplasia, oxidative stress, prostate

  11. Alterations in copper homeostasis and oxidative stress biomarkers in women using the intrauterine device TCu380A.

    Science.gov (United States)

    Arnal, Nathalie; de Alaniz, María J T; Marra, Carlos A

    2010-02-15

    Copper ions participate in the Häber-Weiss reaction to produce ROS, which can be toxic when in excess. The purpose of this study was to measure the copper concentration (Cu) in the plasma of women using Cu-IUDs and determine (i) the effect of Cu on oxidative stress biomarkers, (ii) the levels of copper transport proteins in the plasma and (iii) the status of some liver damage markers in relation to the length of the intrauterine device use. Thirty-nine controls and 35 T380-IUD users were recruited. Various oxidative stress biomarkers, ceruloplasmin (CRP), metallothioneins (MTs), Cu and enzyme activities involved in liver function were measured in the plasma. The Cu concentration was higher in women with IUDs, concomitantly with time-dependent increases in the main oxidative stress biomarkers (TBARS, protein carbonyls, glutathione and nitrates+nitrites), hepatic enzymes (LDH and transaminases), MTs and CRP. We concluded that the use of Cu-IUDs for more than 2 consecutive years should be avoided in order to prevent oxidative damage.

  12. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  13. Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress.

    Science.gov (United States)

    Baret, Pascal; Septembre-Malaterre, Axelle; Rigoulet, Michel; Lefebvre d'Hellencourt, Christian; Priault, Muriel; Gonthier, Marie-Paule; Devin, Anne

    2013-01-01

    Numerous studies indicate that an increase in reactive oxygen species (ROS) significantly affects white adipose tissue biology and leads to an inflammatory profile and insulin resistance, which could contribute to obesity-associated diabetes and cardiovascular diseases. Mitochondria play a key role in adipose tissue energy metabolism and constitute the main source of cellular ROS such as H(2)O(2). Polyphenols constitute the most abundant antioxidants provided by the human diet. Indeed, they are widely distributed in fruits, vegetables and some plant-derived beverages such as coffee and tea. Thus, the biological effects of dietary polyphenols that may increase the antioxidant capacity of the body against obesity-induced oxidative stress are of high interest. Here, we studied the capacity of polyphenols to modulate the impact of oxidative stress on the mitochondria of preadipocytes, which are important cells governing the adipose tissue development for energy homeostasis. Whereas H(2)O(2) treatment induces a proliferation arrest associated with an increase in mitochondrial content in 3T3-L1 preadipocytes, preconditioning with some major dietary polyphenols totally or partially protects the cells against oxidative stress consequences. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.

  14. Heat and oxidative stress alter the expression of orexin and its related receptors in avian liver cells.

    Science.gov (United States)

    Greene, Elizabeth; Khaldi, Stephanie; Ishola, Peter; Bottje, Walter; Ohkubo, Takeshi; Anthony, Nicholas; Dridi, Sami

    2016-01-01

    Orexins (A and B) or hypocretins (1 and 2) are hypothalamic orexigenic neuropeptides that are involved in the regulation of several physiological processes in mammals. Recently, orexin has been shown to activate the hypothalamic-pituitary-adrenal (HPA) stress axis and emerging evidences identify it as a stress modulator in mammals. However, the regulation of orexin system by stress itself remains unclear. Here, we investigate the effects of heat, 4-Hydroxynonenal (4-HNE) and hydrogen peroxide (H2O2) stress on the hepatic expression of orexin (ORX) and its related receptors (ORXR1/2) in avian species. Using in vivo and in vitro models, we found that heat stress significantly down-regulated ORX and ORXR1/2 mRNA and protein abundances in quail liver and LMH cells. H2O2, however, decreased ORX protein and increased ORX mRNA levels in a dose dependent manner (Porexin mRNA and protein levels suggests that H2O2 treatment modulates post-transcriptional mechanisms. 4-HNE had a biphasic effect on orexin system expression, with a significant up-regulation at low doses (10 and 20μM) and a significant down-regulation at a high dose (30μM). Taken together, our data indicated that hepatic orexin system could be a molecular signature in the heat and oxidative stress response.

  15. Iron Dextran Increases Hepatic Oxidative Stress and Alters Expression of Genes Related to Lipid Metabolism Contributing to Hyperlipidaemia in Murine Model

    Directory of Open Access Journals (Sweden)

    Maísa Silva

    2015-01-01

    Full Text Available The objective of this study was to investigate the effects of iron dextran on lipid metabolism and to determine the involvement of oxidative stress. Fischer rats were divided into two groups: the standard group (S, which was fed the AIN-93M diet, and the standard plus iron group (SI, which was fed the same diet but also received iron dextran injections. Serum cholesterol and triacylglycerol levels were higher in the SI group than in the S group. Iron dextran was associated with decreased mRNA levels of pparα, and its downstream gene cpt1a, which is involved in lipid oxidation. Iron dextran also increased mRNA levels of apoB-100, MTP, and L-FABP indicating alterations in lipid secretion. Carbonyl protein and TBARS were consistently higher in the liver of the iron-treated rats. Moreover, a significant positive correlation was found between oxidative stress products, lfabp expression, and iron stores. In addition, a negative correlation was found between pparα expression, TBARS, carbonyl protein, and iron stores. In conclusion, our results suggest that the increase observed in the transport of lipids in the bloodstream and the decreased fatty acid oxidation in rats, which was promoted by iron dextran, might be attributed to increased oxidative stress.

  16. Oxidative stress and myocarditis.

    Science.gov (United States)

    Tada, Yuko; Suzuki, Jun-Ichi

    2016-01-01

    Reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide are produced highly in myocarditis. ROS, which not only act as effectors for pathogen killing but also mediate signal transduction in the stress responsive pathways, are closely related with both innate and adaptive immunity. On the other hand, oxidative stress overwhelming the capacity of anti-oxidative system generated in severe inflammation has been suggested to damage tissues and exacerbate inflammation. Oxidative stress worsens the autoimmunological process of myocarditis, and suppression of the anti-oxidative system and long-lasting oxidative stress could be one of the pathological mechanisms of cardiac remodeling leading to inflammatory cardiomyopathy. Oxidative stress is considered to be one of the promising treatment targets of myocarditis. Evidences of anti-oxidative treatments in myocarditis have not been fully established. Basic strategies of anti-oxidative treatments include inhibition of ROS production, activation of anti-oxidative enzymes and elimination of generated free radicals. ROS are produced by mitochondrial respiratory chain reactions and enzymes including NADPH oxidases, cyclooxygenase, and xanthine oxidase. Other systems involved in inflammation and stress response, such as NF-κB, Nrf2/Keap1, and neurohumoral factors also influence oxidative stress in myocarditis. The efficacy of anti-oxidative treatments could also depend on the etiology and the phases of myocarditis. We review in this article the pathological significance of ROS and oxidative stress, and the potential anti-oxidative treatments in myocarditis.

  17. Oxidative Stress in Retinal Muller Cells contributes to Dysfunction of Retinal Glutamate Uptake and Altered Protein Expression

    DEFF Research Database (Denmark)

    Toft-Kehler, Anne Katrine; Skytt, Dorte Marie; Kolko, Miriam

    2015-01-01

    Purpose: The viability of retinal ganglion cells (RGC) is essential to maintain the neuronal function of the retina. Müller cells (MC) are assumed to be vital in neuroprotection of the RGC. In this study, we evaluate the ability of oxidative stressed and energy restricted MC to remove glutamate f...... from the extracellular space and evaluate related changes in gene and protein expressions. Methods: The human Müller glial cell line, MIO-M1, kindly provided by Astrid Limb, was used in all experiments. Changes in glutamate uptake were evaluated by kinetic uptake studies using 3H...

  18. Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies.

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Srinivas Bharath, Muchukunte Mukunda

    2014-01-03

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases.

  19. Desmodium gangeticum (Linn.) DC. exhibits antihypertrophic effect in isoproterenol-induced cardiomyoblasts via amelioration of oxidative stress and mitochondrial alterations.

    Science.gov (United States)

    Sankar, Vandana; Pangayarselvi, Balasubramaniam; Prathapan, Ayyappan; Raghu, Kozhiparambil Gopalan

    2013-01-01

    Cardiac hypertrophy occurs in response to increased workload, such as hypertension or valvular heart disease. Oxidative stress has been implicated in cardiac hypertrophy and in its transition to heart failure. This study was taken up with the objective to evaluate the role of oxidative stress in cardiomyoblast hypertrophy and its modulation by Desmodium gangeticum (DG) that has been traditionally used in Ayurveda, an Indian system of medicine. The methanolic root extract was analyzed for total phenolic content and tested for antioxidant potential. Hypertrophy was induced by exposing H9c2 cell line to β-adrenergic receptor agonist, isoproterenol (ISO), for 96 hours. Analyses of reactive oxygen species (ROS) generation, mitochondrial transmembrane potential ([INCREMENT]Ψm), and integrity of permeability transition were performed in ISO as well as Desmodium and ISO-cotreated cells. The results demonstrated potent free radical scavenging activity of DG. Cell line studies showed significant increase in ROS generation, dissipation of [INCREMENT]Ψm, and permeability transition pore opening in ISO-treated cells. Desmodium was found to attenuate ISO-induced hypertrophy by reduction of ROS generation, restoration of [INCREMENT]Ψm, and prevention of permeability transition pore opening. This study is the first documentation of the modulatory effect of DG on cardiac hypertrophy.

  20. Alteration of oxidative stress parameters in red blood cells of rats after chronic in vivo treatment with cisplatin and selenium

    Directory of Open Access Journals (Sweden)

    Marković Snežana D.

    2011-01-01

    Full Text Available In this study we evaluated the possible protective effects of selenium (Se on hematological and oxidative stress parameters in rats chronically treated with cisplatin (cisPt. Four groups of Wistar albino rats were examined: a control, untreated rats (I, rats treated with Se (II, rats treated with cisPt (III, and rats treated with Se and cisPt (IV. All animals were treated for 5 days successively and killed 24 h after the last treatment. Hematological and oxidative stress parameters were followed in whole blood and red blood cells (RBC. Results showed that the chronic application of Se was followed by a higher number of reticulocytes and platelets, increased lipid peroxidation and GSH content in the RBC. Cisplatin treatment induced depletion of RBC and platelet numbers and an elevation of the superoxide anion, nitrites and glutathione levels. Se and cisPt co-treatment was followed by an elevation of the hematological parameters and the recovery of the glutathione status when compared to the control and cisPt-treated rats.

  1. Ultrastructural changes, increased oxidative stress, inflammation, and altered cardiac hypertrophic gene expressions in heart tissues of rats exposed to incense smoke.

    Science.gov (United States)

    Al-Attas, Omar S; Hussain, Tajamul; Ahmed, Mukhtar; Al-Daghri, Nasser; Mohammed, Arif A; De Rosas, Edgard; Gambhir, Dikshit; Sumague, Terrance S

    2015-07-01

    Incense smoke exposure has recently been linked to cardiovascular disease risk, heart rate variability, and endothelial dysfunction. To test the possible underlying mechanisms, oxidative stress, and inflammatory markers, gene expressions of cardiac hypertrophic and xenobiotic-metabolizing enzymes and ultrastructural changes were measured, respectively, using standard, ELISA-based, real-time PCR, and transmission electron microscope procedures in heart tissues of Wistar rats after chronically exposing to Arabian incense. Malondialdehyde, tumor necrosis alpha (TNF)-α, and IL-4 levels were significantly increased, while catalase and glutathione levels were significantly declined in incense smoke-exposed rats. Incense smoke exposure also resulted in a significant increase in atrial natriuretic peptide, brain natriuretic peptide, β-myosin heavy chain, CYP1A1 and CYP1A2 messenger RNAs (mRNAs). Rats exposed to incense smoke displayed marked ultrastructural changes in heart muscle with distinct cardiac hypertrophy, which correlated with the augmented hypertrophic gene expression as well as markers of cardiac damage including creatine kinase-myocardial bound (CK-MB) and lactate dehydrogenase (LDH). Increased oxidative stress, inflammation, altered cardiac hypertrophic gene expression, tissue damage, and architectural changes in the heart may collectively contribute to increased cardiovascular disease risk in individuals exposed to incense smoke. Increased gene expressions of CYP1A1 and CYP1A2 may be instrumental in the incense smoke-induced oxidative stress and inflammation. Thus, incense smoke can be considered as a potential environmental pollutant and its long-term exposure may negatively impact human health.

  2. In Healthy Young Men, a Short Exhaustive Exercise Alters the Oxidative Stress Only Slightly, Independent of the Actual Fitness.

    Science.gov (United States)

    Finkler, Maya; Hochman, Ayala; Pinchuk, Ilya; Lichtenberg, Dov

    2016-01-01

    The aim of the present study was to evaluate the apparent disagreement regarding the effect of a typical cycling progressive exercise, commonly used to assess VO2max, on the kinetics of ex vivo copper induced peroxidation of serum lipids. Thirty-two (32) healthy young men, aged 24-30 years, who do not smoke and do not take any food supplements, participated in the study. Blood was withdrawn from each participant at three time points (before the exercise and 5 minutes and one hour after exercise). Copper induced peroxidation of sera made of the blood samples was monitored by spectrophotometry. For comparison, we also assayed TBARS concentration and the activity of oxidation-related enzymes. The physical exercise resulted in a slight and reversible increase of TBARS and slight changes in the activities of the studied antioxidant enzymes and the lag preceding peroxidation did not change substantially. Most altered parameters returned to baseline level one hour after exercise. Notably, the exercise-induced changes in OS did not correlate with the physical fitness of the subjects, as evaluated in this study (VO2max = 30-60 mL/min/kg). We conclude that in healthy young fit men a short exhaustive exercise alters only slightly the OS, independent of the actual physical fitness.

  3. Pro-Inflammatory and Oxidative Stress Pathways which Compromise Sperm Motility and Survival May Be Altered by L-Carnitine

    Directory of Open Access Journals (Sweden)

    Adel R. A. Abd-Allah

    2009-01-01

    Full Text Available The testis is an immunologically privileged organ. Sertoli cells can form a blood-testis barrier and protect sperm cells from self-immune system attacks. Spermatogenesis may be inhibited by severe illness, bacterial infections and chronic inflammatory diseases but the mechanism(s is poorly understood. Our objective is to help in understanding such mechanism(s to develop protective agents against temporary or permanent testicular dysfunction. Lipopolysaccaride (LPS is used as a model of animal sepsis while L-carnitine (LCR is used as a protective agent. A total of 60 male Swiss albino rats were divided into four groups (15/group. The control group received Saline; the 2nd group was given LCR (500 mg/kg i.p, once. The third group was treated with LPS (5 mg/kg i.p once and the fourth group received LCR then LPS after three hours. From each group, five rats were used for histopathological examination. Biochemical parameters were assessed in the remaining ten rats. At the end of the experiment, animals were lightly anaesthetized with ether where blood samples were collected and testes were dissected on ice. Sperm count and motility were evaluated from cauda epididymis in each animal. Also, oxidative stress was evaluated by measuring testicular contents of reduced glutathione (GSH, malondialdehyde (MDA and 8-hydroxydeoxyguanosine (8-HDG, the DNA adduct for oxidative damage in testicular DNA. The pro-inflammatory mediator nitric oxide (NO in addition to lactate dehydrogenase (LDHx isoenzyme-x activity as an indicator for normal spermatozoal metabolism were assessed in testicular homogenate. Serum interlukin (IL-2 level was also assessed as a marker for T-helper cell function. The obtained data revealed that LPS induced marked reductions in sperm's count and motility, obstruction in seminiferous tubules, hypospermia and dilated congested blood vessels in testicular sections concomitant with decreased testicular GSH content and LDHx activity. Moreover

  4. Aluminium oxide nanoparticles induce mitochondrial-mediated oxidative stress and alter the expression of antioxidant enzymes in human mesenchymal stem cells.

    Science.gov (United States)

    Alshatwi, Ali A; Subbarayan, Periasamy Vaiyapuri; Ramesh, E; Al-Hazzani, Amal A; Alsaif, Mohammed A; Alwarthan, Abdulrahman A

    2013-01-01

    An urgent need for toxicological studies on aluminium oxide nanoparticles (Al(2) [Formula: see text]NPs) has arisen from their rapidly emerging range of applications in the food and agricultural sectors. Despite the widespread use of nanoscale aluminium and its composites in the food industry, there is a serious lack of information concerning the biological activities of Al(2) [Formula: see text]NPs (ANPs) and their impact on human health. In this preliminary study, the effects of ANPs on metabolic stress in human mesenchymal stem cells (hMSCs) were analysed. The results showed dose-dependent effects, including cellular toxicity. The mitochondrial membrane potential in the hMSCs decreased with increasing ANP concentrations after 24 h of exposure. The expression levels of oxidative stress-responsive enzymes were monitored by RT-PCR. The expression levels of CYP1A and POR were up-regulated in response to ANPs, and a significant down-regulation in the expression of the antioxidant enzyme SOD was observed. Further, dose-dependent changes in the mRNA levels of GSTM3, GPX and GSR were noted. These findings suggest that the toxicity of ANPs in hMSCs may be mediated through an increase in oxidative stress. The results of this study clearly demonstrate the nanotoxicological effects of ANPs on hMSCs, which will be useful for nanotoxicological indexing.

  5. Curcumin prevents maleate-induced nephrotoxicity: relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I.

    Science.gov (United States)

    Tapia, E; Sánchez-Lozada, L G; García-Niño, W R; García, E; Cerecedo, A; García-Arroyo, F E; Osorio, H; Arellano, A; Cristóbal-García, M; Loredo, M L; Molina-Jijón, E; Hernández-Damián, J; Negrette-Guzmán, M; Zazueta, C; Huerta-Yepez, S; Reyes, J L; Madero, M; Pedraza-Chaverrí, J

    2014-11-01

    The potential protective effect of the dietary antioxidant curcumin (120 mg/Kg/day for 6 days) against the renal injury induced by maleate was evaluated. Tubular proteinuria and oxidative stress were induced by a single injection of maleate (400 mg/kg) in rats. Maleate-induced renal injury included increase in renal vascular resistance and in the urinary excretion of total protein, glucose, sodium, neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl β-D-glucosaminidase (NAG), upregulation of kidney injury molecule (KIM)-1, decrease in renal blood flow and claudin-2 expression besides of necrosis and apoptosis of tubular cells on 24 h. Oxidative stress was determined by measuring the oxidation of lipids and proteins and diminution in renal Nrf2 levels. Studies were also conducted in renal epithelial LLC-PK1 cells and in mitochondria isolated from kidneys of all the experimental groups. Maleate induced cell damage and reactive oxygen species (ROS) production in LLC-PK1 cells in culture. In addition, maleate treatment reduced oxygen consumption in ADP-stimulated mitochondria and diminished respiratory control index when using malate/glutamate as substrate. The activities of both complex I and aconitase were also diminished. All the above-described alterations were prevented by curcumin. It is concluded that curcumin is able to attenuate in vivo maleate-induced nephropathy and in vitro cell damage. The in vivo protection was associated to the prevention of oxidative stress and preservation of mitochondrial oxygen consumption and activity of respiratory complex I, and the in vitro protection was associated to the prevention of ROS production.

  6. Oxidative stress in mouse sperm impairs embryo development, fetal growth and alters adiposity and glucose regulation in female offspring.

    Directory of Open Access Journals (Sweden)

    Michelle Lane

    Full Text Available Paternal health cues are able to program the health of the next generation however the mechanism for this transmission is unknown. Reactive oxygen species (ROS are increased in many paternal pathologies, some of which program offspring health, and are known to induce DNA damage and alter the methylation pattern of chromatin. We therefore investigated whether a chemically induced increase of ROS in sperm impairs embryo, pregnancy and offspring health. Mouse sperm was exposed to 1500 µM of hydrogen peroxide (H2O2, which induced oxidative damage, however did not affect sperm motility or the ability to bind and fertilize an oocyte. Sperm treated with H2O2 delayed on-time development of subsequent embryos, decreased the ratio of inner cell mass cells (ICM in the resulting blastocyst and reduced implantation rates. Crown-rump length at day 18 of gestation was also reduced in offspring produced by H2O2 treated sperm. Female offspring from H2O2 treated sperm were smaller, became glucose intolerant and accumulated increased levels of adipose tissue compared to control female offspring. Interestingly male offspring phenotype was less severe with increases in fat depots only seen at 4 weeks of age, which was restored to that of control offspring later in life, demonstrating sex-specific impacts on offspring. This study implicates elevated sperm ROS concentrations, which are common to many paternal health pathologies, as a mediator of programming offspring for metabolic syndrome and obesity.

  7. PEGylated Carbon Nanotubes Impair Retrieval of Contextual Fear Memory and Alter Oxidative Stress Parameters in the Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Lidiane Dal Bosco

    2015-01-01

    Full Text Available Carbon nanotubes (CNT are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions.

  8. The Role of Oxidative Stress-Induced Epigenetic Alterations in Amyloid-β Production in Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Li Zuo

    2015-01-01

    Full Text Available An increasing number of studies have proposed a strong correlation between reactive oxygen species (ROS-induced oxidative stress (OS and the pathogenesis of Alzheimer’s disease (AD. With over five million people diagnosed in the United States alone, AD is the most common type of dementia worldwide. AD includes progressive neurodegeneration, followed by memory loss and reduced cognitive ability. Characterized by the formation of amyloid-beta (Aβ plaques as a hallmark, the connection between ROS and AD is compelling. Analyzing the ROS response of essential proteins in the amyloidogenic pathway, such as amyloid-beta precursor protein (APP and beta-secretase (BACE1, along with influential signaling programs of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and c-Jun N-terminal kinase (JNK, has helped visualize the path between OS and Aβ overproduction. In this review, attention will be paid to significant advances in the area of OS, epigenetics, and their influence on Aβ plaque assembly. Additionally, we aim to discuss available treatment options for AD that include antioxidant supplements, Asian traditional medicines, metal-protein-attenuating compounds, and histone modifying inhibitors.

  9. Alteration of hepatic cells glucose metabolism as a non-cholinergic detoxication mechanism in counteracting diazinon-induced oxidative stress.

    Science.gov (United States)

    Teimouri, Fatemeh; Amirkabirian, Nasim; Esmaily, Hadi; Mohammadirad, Azadeh; Aliahmadi, Atousa; Abdollahi, Mohammad

    2006-12-01

    The aim of this study was to evaluate effects of acute exposure to various doses of diazinon, a widely used synthetic organophosphorus (OP) insecticide on plasma glucose, hepatic cells key enzymes of glycogenolysis and gluconeogenesis, and oxidative stress in rats. Diazinon was administered by gavage at doses of 15, 30 and 60 mg/ kg. The liver was perfused and removed under anaesthesia. The activities of glycogen phosphorylase (GP), phosphoenolpyruvate carboxykinase (PEPCK), thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) were analysed in liver homogenate. Administration of diazinon (15, 30 and 60 mg/kg) increased plasma glucose concentrations by 101.43% (P = 0.001), 103.68% (P = 0.000) and 160.65% (P = 0.000) of control, respectively. Diazinon (15, 30 and 60 mg/kg) increased hepatic GP activity by 43.5% (P = 0.05), 70.3% (P = 0.00) and 117.2% (P = 0.02) of control, respectively. In addition, diazinon (30 and 60 mg/kg) increased hepatic PEPCK by 77.3% (P = 0.000) and 93.5% (P = 0.000) of control, respectively. Diazinon (30 and 60 mg/kg) decreased liver TAC by 38% (P = 0.046) and 48% (P = 0.000) of control, respectively. Also diazinon (30 and 60 mg/kg) increased hepatic cell liver lipid peroxidation by 77% (P = 0.05) and 280% (P = 0.000) of control. The correlations between plasma glucose and hepatic cells TBARS (r2 = 0.537, P = 0.02), between plasma glucose and ChE activity (r2 = 0.81, P = 0.049) and between plasma glucose and hepatic cells GP activity (r2 = 0.833, P = 0.04) were significant. It is concluded that the liver cells are a site of toxic action of diazinon. Diazinon increases glucose release from liver into blood through activation of glycogenolysis and gluconeogenesis as a detoxication non-cholinergic mechanism to overwhelm diazinon-induced toxic stress. The results are in accordance with the hypothesis that OPs are a predisposing factor of diabetes.

  10. Effects of cerium dioxide nanoparticles in Oncorhynchus mykiss liver after an acute exposure: assessment of oxidative stress, genotoxicity and histological alterations

    Directory of Open Access Journals (Sweden)

    Ana Cristina Nunes

    2015-12-01

    Full Text Available At present cerium oxide nanoparticles (CeO2 NP have numerous applications ranging from industry to the household, leading to its wide distribution namely in the aquatic environment. The hereby study aimed to assess the toxic effects of CeO2 NPs in Oncorhynchus mykiss liver following an acute exposure (96h to three different concentrations (0.25, 2.5 and 25 mg/L in terms of the genotoxicity (comet assay, oxidative stress response (Catalase CAT; Glutathione S-Transferases GSTs; Thiobarbituric Acid Reactive Substances TBARS and histopathology. CeO2 NP exposure resulted in genotoxic damage in all exposure treatments, inhibition of CAT in the highest concentration and histopathological changes in all exposure concentrations with predominance of progressive and circulatory alterations. However TBARS and GSTs showed no significant differences comparatively to the control (unexposed group. The results suggest that CeO2 NP are able to cause genotoxicity, biochemical impairment and histological alterations in the liver of rainbow trout.

  11. L-carnitine Mediated Reduction in Oxidative Stress and Alteration in Transcript Level of Antioxidant Enzymes in Sheep Embryos Produced In Vitro.

    Science.gov (United States)

    Mishra, A; Reddy, I J; Gupta, P S P; Mondal, S

    2016-04-01

    The objective of this study was to find out the effect of L-carnitine on oocyte maturation and subsequent embryo development, with L-carnitine-mediated alteration if any in transcript level of antioxidant enzymes (GPx, Cu/Zn-SOD (SOD1) and Mn-SOD (SOD2) in oocytes and developing sheep embryos produced in vitro. Different concentrations of L-carnitine (0 mm, 2.5 mm, 5 mm, 7.5 mm and 10 mm) were used in maturation medium. Oocytes matured with 10 mm L-carnitine showed significantly (p carnitine were not significantly different. Maturation rate was not influenced by supplementation of any experimental concentration of L-carnitine. There was a significant (p carnitine-treated oocytes and embryos than control group. Antioxidant effect of L-carnitine was proved by culturing oocytes and embryos with H2O2 in the presence of L-carnitine which could be able to protect oocytes and embryos from H2O2-induced oxidative damage. L-carnitine supplementation significantly (p carnitine supplementation during in vitro maturation reduces oxidative stress-induced embryo toxicity by decreasing intracellular ROS and increasing intracellular GSH that in turn improved developmental potential of oocytes and embryos and alters transcript level of antioxidant enzymes.

  12. Oxidative stress and altered steroidogenesis in the ovary by cholinergic stimulation of coeliac ganglion in the first proestrous in rats. Implication of nitric oxide.

    Science.gov (United States)

    Delsouc, María B; Della Vedova, María C; Ramírez, Darío; Anzulovich, Ana C; Delgado, Silvia M; Casais, Marilina

    2016-02-29

    An ex-vivo Coeliac Ganglion-Superior Ovarian Nerve-Ovary (CG-SON-O) system from virgin rats in the first proestrous was used to test whether cholinergic stimulation of CG affects oxidative status and steroidogenesis in the ovary. The CG and the O were placed in separate buffered-compartments, connected by the SON, and the CG was stimulated by acetylcholine (Ach). To test a possible role of nitric oxide (NO) in the ovarian response to cholinergic stimulation of CG, aminoguanidine (AG) - an inhibitor of inducible-NO synthase was added to the O compartment. After 180 min incubation, the oxidative status was assessed in O whereas nitrite and steroidogenesis were assessed at 30, 120 and 180 min. Ach in CG decreased the total antioxidant capacity, but increased NO production and protein carbonization in O. Ach stimulation of CG increased estradiol, but decreased progesterone release in O by reducing the mRNAs related to their synthesis and degradation. The addition of AG to the O compartment caused an opposite effect, which was more pronounced in the presence of Ach in the CG compartment than in its absence. These results show that the stimulation of the extrinsic-cholinergic innervation of the O increases the concentration of NO, causes oxidative stress and modulates steroidogenesis in the first rat proestrous.

  13. Methoxychlor-induced alteration in the levels of HSP70 and clusterin is accompanied with oxidative stress in adult rat testis.

    Science.gov (United States)

    Vaithinathan, S; Saradha, B; Mathur, P P

    2009-01-01

    Methoxychlor, an organochlorine pesticide, has been reported to induce abnormalities in male reproductive tract. However, the insight into the mechanisms of gonadal toxicity induced by methoxychlor is not well known. We investigated whether treatment with methoxychlor would alter the levels of stress proteins, heat shock proteins (HSP), and clusterin (CLU), and oxidative stress-related parameters in the testis of adult male rats. Animals were exposed to a single dose of methoxychlor (50 mg/kg body weight) orally and were terminated at various time points (0, 3, 6, 12, 24, and 72 h) using anesthetic ether. The levels of HSP70, CLU, and the activities of superoxide dismutase (SOD), catalase, and lipid peroxidation levels were evaluated in a 10% testis homogenate. A sequential reduction in the activities of catalase and SOD with concomitant increase in the levels of thiobarbituric acid reactive substance (TBARS) was observed. These changes elicited by methoxychlor were very significant between 6-12 h of posttreatment. Immunoblot analysis of HSP revealed the expression of HSP72, an inducible form of HSP, at certain time points (3-24 h) following exposure to methoxychlor. Similarly, the levels of secretory CLU (sCLU) were also found to be elevated between 3-24 h of treatment. The present data demonstrate methoxychlor-elicited increase in the levels of inducible HSP72 and sCLU, which could be a part of protective mechanism mounted to reduce cellular oxidative damage.

  14. Hemoglobin oxidative stress in cancer.

    Science.gov (United States)

    Della Rovere, F; Granata, A; Broccio, M; Zirilli, A; Broccio, G

    1995-01-01

    The role played by free radicals in carcinogenesis and their relationships with antioxidant pool and cancer have already been shown. Free radicals induce increased membrane permeability through membrane lipid peroxidation, protein oxidation and histamine release from mast cells. Free radicals also cause oxyhemoglobin oxidative stress which increases methemoglobin and hemichromes. For this reason, we studied the in vitro formation of methemoglobin at 0' and 90', dosed following the HPLC method, after oxidative stress of blood by means of acetylphenylhydrazine in 40 subjects with cancer and 40 healthy donors. The results showed that methemoglobin formation was highly significant in tumors as compared to controls (P < 0.0001). The statistical analyses we carried out showed that metHb formation is not affected by age, sex, smoking habit, red blood cell number, Hb, Ht or tumor staging. This makes us believe that free radicals alter erythrocyte membrane permeability and predenaturate oxyhemoglobin so that erythrocyte membrane becomes more susceptible to new oxidative stress. This caused the abnormal response we found. Our results clearly underline the role played by free radicals in tumorous disease and provide a successful and easy method to detect early, even in a pre-clinical stage, the presence of tumorous alterations in the human body.

  15. Staphylococcal response to oxidative stress

    Directory of Open Access Journals (Sweden)

    Rosmarie eGaupp

    2012-03-01

    Full Text Available Staphylococci are a versatile genus of bacteria that are capable of causing acute and chronic infections in diverse host species. The success of staphylococci as pathogens is due in part to their ability to mitigate endogenous and exogenous oxidative and nitrosative stress. Endogenous oxidative stress is a consequence of life in an aerobic environment; whereas, exogenous oxidative and nitrosative stress are often due to the bacteria’s interaction with host immune systems. To overcome the deleterious effects of oxidative and nitrosative stress, staphylococci have evolved protection, detoxification, and repair mechanisms that are controlled by a network of regulators. In this review, we summarize the cellular targets of oxidative stress, the mechanisms by which staphylococci sense oxidative stress and damage, oxidative stress protection and repair mechanisms, and regulation of the oxidative stress response. When possible, special attention is given to how the oxidative stress defense mechanisms help staphylococci control oxidative stress in the host.

  16. Erythropoietin and oxidative stress.

    Science.gov (United States)

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2008-05-01

    Unmitigated oxidative stress can lead to diminished cellular longevity, accelerated aging, and accumulated toxic effects for an organism. Current investigations further suggest the significant disadvantages that can occur with cellular oxidative stress that can lead to clinical disability in a number of disorders, such as myocardial infarction, dementia, stroke, and diabetes. New therapeutic strategies are therefore sought that can be directed toward ameliorating the toxic effects of oxidative stress. Here we discuss the exciting potential of the growth factor and cytokine erythropoietin for the treatment of diseases such as cardiac ischemia, vascular injury, neurodegeneration, and diabetes through the modulation of cellular oxidative stress. Erythropoietin controls a variety of signal transduction pathways during oxidative stress that can involve Janus-tyrosine kinase 2, protein kinase B, signal transducer and activator of transcription pathways, Wnt proteins, mammalian forkhead transcription factors, caspases, and nuclear factor kappaB. Yet, the biological effects of erythropoietin may not always be beneficial and may be poor tolerated in a number of clinical scenarios, necessitating further basic and clinical investigations that emphasize the elucidation of the signal transduction pathways controlled by erythropoietin to direct both successful and safe clinical care.

  17. Inhibitor of Phosphodiestearse-4 improves memory deficits, oxidative stress, neuroinflammation and neuropathological alterations in mouse models of dementia of Alzheimer's Type.

    Science.gov (United States)

    Kumar, Amit; Singh, Nirmal

    2017-04-01

    The study investigates the potential of Rolipram a phosphodiesterase-4 inhibitor in cognitive deficits induced by streptozotocin (STZ, 3mg/kg intracerebroventricularly) and natural ageing in mice. Morris water maze (MWM) test was employed to evaluate learning and memory of the animals. Extent of oxidative stress was measured by estimating the levels of brain glutathione (GSH) and thiobarbituric acid reactive species (TBARS). Brain acetylcholinestrase (AChE) activity was also estimated. The brain activity of myeloperoxidase (MPO) was measured as a marker of inflammation. STZ and ageing results in marked decline in MWM performance of the animals, reflecting impairment of learning and memory. STZ treated mice and aged mice exhibited a marked accentuation of AChE activity, TBARS and MPO activity along with fall in GSH level. Further the stained micrographs of STZ treated mice and aged mice indicate pathological changes, severe neutrophilic infiltration and amyloid deposition. Rolipram treatment significantly attenuated STZ induced and age related memory deficits, biochemical and histopathological alterations. The findings demonstrate the potential of Rolipram in memory dysfunctions which may probably be attributed to its anti-cholinesterase, anti-amyloid, anti-oxidative and anti-inflammatory effects. The study concludes that PDE-4 can be explored as a potential therapeutic target in dementia.

  18. Gamma-Glutamylcysteine Ethyl Ester Protects against Cyclophosphamide-Induced Liver Injury and Hematologic Alterations via Upregulation of PPARγ and Attenuation of Oxidative Stress, Inflammation, and Apoptosis

    Science.gov (United States)

    Alqahtani, Sultan

    2016-01-01

    Gamma-glutamylcysteine ethyl ester (GCEE) is a precursor of glutathione (GSH) with promising hepatoprotective effects. This investigation aimed to evaluate the hepatoprotective effects of GCEE against cyclophosphamide- (CP-) induced toxicity, pointing to the possible role of peroxisome proliferator activated receptor gamma (PPARγ). Wistar rats were given GCEE two weeks prior to CP. Five days after CP administration, animals were sacrificed and samples were collected. Pretreatment with GCEE significantly alleviated CP-induced liver injury by reducing serum aminotransferases, increasing albumin, and preventing histopathological and hematological alterations. GCEE suppressed lipid peroxidation and nitric oxide production and restored GSH and enzymatic antioxidants in the liver, which were associated with downregulation of COX-2, iNOS, and NF-κB. In addition, CP administration significantly increased serum proinflammatory cytokines and the expression of liver caspase-3 and BAX, an effect that was reversed by GCEE. CP-induced rats showed significant downregulation of PPARγ which was markedly upregulated by GCEE treatment. These data demonstrated that pretreatment with GCEE protected against CP-induced hepatotoxicity, possibly by activating PPARγ, preventing GSH depletion, and attenuating oxidative stress, inflammation, and apoptosis. Our findings point to the role of PPARγ and suggest that GCEE might be a promising agent for the prevention of CP-induced liver injury. PMID:28074115

  19. Reduction of oxidative stress during recovery accelerates normalization of primary cilia length that is altered after ischemic injury in murine kidneys.

    Science.gov (United States)

    Kim, Jee In; Kim, Jinu; Jang, Hee-Seong; Noh, Mi Ra; Lipschutz, Joshua H; Park, Kwon Moo

    2013-05-15

    The primary cilium is a microtubule-based nonmotile organelle that extends from the surface of cells, including renal tubular cells. Here, we investigated the alteration of primary cilium length during epithelial cell injury and repair, following ischemia/reperfusion (I/R) insult, and the role of reactive oxygen species in this alteration. Thirty minutes of bilateral renal ischemia induced severe renal tubular cell damage and an increase of plasma creatinine (PCr) concentration. Between 8 and 16 days following the ischemia, the increased PCr returned to normal range, although without complete histological restoration. Compared with the primary cilium length in normal kidney tubule cells, the length was shortened 4 h and 1 day following ischemia, increased over normal 8 days after ischemia, and then returned to near normal 16 days following ischemia. In the urine of I/R-subjected mice, acetylated tubulin was detected. The cilium length of proliferating cells was shorter than that in nonproliferating cells. Mature cells had shorter cilia than differentiating cells. Treatment with Mn(III) tetrakis(1-methyl-4-pyridyl) porphyrin (MnTMPyP), an antioxidant, during the recovery of damaged kidneys accelerated normalization of cilia length concomitant with a decrease of oxidative stress and morphological recovery in the kidney. In the Madin-Darby canine kidney (MDCK) cells, H(2)O(2) treatment caused released ciliary fragment into medium, and MnTMPyP inhibited the deciliation. The ERK inhibitor U0126 inhibited elongation of cilia in normal and MDCK cells recovering from H(2)O(2) stress. Taken together, our results suggest that primary cilia length reflects cell proliferation and the length of primary cilium is regulated, at least, in part, by reactive oxygen species through ERK.

  20. Early disruption of the actin cytoskeleton in cultured cerebellar granule neurons exposed to 3-morpholinosydnonimine-oxidative stress is linked to alterations of the cytosolic calcium concentration.

    Science.gov (United States)

    Tiago, Teresa; Marques-da-Silva, Dorinda; Samhan-Arias, Alejandro K; Aureliano, Manuel; Gutierrez-Merino, Carlos

    2011-03-01

    Cytoskeleton damage is a frequent feature in neuronal cell death and one of the early events in oxidant-induced cell injury. This work addresses whether actin cytoskeleton reorganization is an early event of SIN-1-induced extracellular nitrosative/oxidative stress in cultured cerebellar granule neurons (CGN). The actin polymerization state, i.e. the relative levels of G-/F-actin, was quantitatively assessed by the ratio of the fluorescence intensities of microscopy images obtained from CGN double-labelled with Alexa594-DNase-I (for actin monomers) and Bodipy-FL-phallacidin (for actin filaments). Exposure of CGN to a flux of peroxynitrite as low as 0.5-1μM/min during 30min (achieved with 0.1mM SIN-1) was found to promote alterations of the actin cytoskeleton dynamics as it increases the G-actin/F-actin ratio. Because L-type voltage-operated Ca(2+) channels (L-VOCC) are primary targets in CGN exposed to SIN-1, the possible role of Ca(2+) dynamics on the perturbation of the actin cytoskeleton was also assessed from the cytosolic Ca(2+) concentration response to the L-VOCC's agonist FPL-64176 and to the L-VOCC's blocker nifedipine. The results showed that SIN-1 induced changes in the actin polymerization state correlated with its ability to decrease Ca(2+) influx through L-VOCC. Combined analysis of cytosolic Ca(2+) concentration and G-actin/F-actin ratio alterations by SIN-1, cytochalasin D, latrunculin B and jasplakinolide support that disruption of the actin cytoskeleton is linked to cytosolic calcium concentration changes.

  1. Oxidative stress in development: nature or nurture?

    Science.gov (United States)

    Dennery, Phyllis A

    2010-10-15

    An unavoidable consequence of aerobic respiration is the generation of reactive oxygen species (ROS). These may negatively impact development. Nevertheless, a certain amount of oxidative stress is required to allow for the normal progression of embryonic and fetal growth. Alterations in placental oxidative stress results in altered placental function and ultimately altered fetal growth and/or developmental programming leading to long-term consequences into adulthood. This article reviews the role of redox in fetal development and will focus on how developmental programming is influenced by the fetal and placental redox state as well as discuss potential therapeutic interventions.

  2. DIMETHYLARSINIC ACID ALTERS EXPRESSION OF OXIDATIVE STRESS AND DNA REPAIR GENES IN A DOSE DEPENDENT MANNER IN THE TRANSITIONAL EPITHELIUM OF THE URINARY BLADDER FROM FEMALE F344 RATS.

    Science.gov (United States)

    Dose-dependent alteration of oxidative stress and DNA repair gene expression by Dimethylarsinic acid [DMA(V)] in transitional epithelium of urinary bladder from female F344 rats.Arsenic (As) is a major concern as millions of people are at risk from drinking arsenic contaminat...

  3. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    OpenAIRE

    2016-01-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood bi...

  4. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging?

    Science.gov (United States)

    Salmon, Adam B; Richardson, Arlan; Pérez, Viviana I

    2010-03-01

    The oxidative stress theory of aging predicts that manipulations that alter oxidative stress/damage will alter aging. The gold standard for determining whether aging is altered is life span, i.e., does altering oxidative stress/damage change life span? Mice with genetic manipulations in their antioxidant defense system designed to directly address this prediction have, with few exceptions, shown no change in life span. However, when these transgenic/knockout mice are tested using models that develop various types of age-related pathology, they show alterations in progression and/or severity of pathology as predicted by the oxidative stress theory: increased oxidative stress accelerates pathology and reduced oxidative stress retards pathology. These contradictory observations might mean that (a) oxidative stress plays a very limited, if any, role in aging but a major role in health span and/or (b) the role that oxidative stress plays in aging depends on environment. In environments with minimal stress, as expected under optimal husbandry, oxidative damage plays little role in aging. However, under chronic stress, including pathological phenotypes that diminish optimal health, oxidative stress/damage plays a major role in aging. Under these conditions, enhanced antioxidant defenses exert an "antiaging" action, leading to changes in life span, age-related pathology, and physiological function as predicted by the oxidative stress theory of aging.

  5. Altered maternal micronutrients (folic acid, vitamin B(12)) and omega 3 fatty acids through oxidative stress may reduce neurotrophic factors in preterm pregnancy.

    Science.gov (United States)

    Dhobale, Madhavi; Joshi, Sadhana

    2012-04-01

    Preterm pregnancies account for approximately 10% of the total pregnancies and are associated with low birth weight (LBW) babies. Recent studies have shown that LBW babies are at an increased risk of developing brain disorders such as cognitive dysfunction and psychiatric disorders. Maternal nutrition, particularly, micronutrients involved in one-carbon metabolism (folic acid, vitamin B(12), and docosahexaenoic acid (DHA)) have a major role during pregnancy for developing fetus and are important determinants of epigenesis. A series of our studies in pregnancy complications have well established the importance of omega 3 fatty acids especially DHA. DHA regulates levels of neurotrophins like brain-derived neurotrophic factor and nerve growth factor, which are required for normal neurological development. We have recently described that in one carbon metabolic pathway, membrane phospholipids are major methyl group acceptors and reduced DHA levels may result in diversion of methyl groups toward deoxyribonucleic acid (DNA) ultimately resulting in DNA methylation. In this review, we propose that altered maternal micronutrients (folic acid, vitamin B(12)), increased homocysteine, and oxidative stress levels that cause epigenetic modifications may be one of the mechanisms that contribute to preterm birth and poor fetal outcome, increasing risk for behavioural disorders in children.

  6. Carbofuran induced oxidative stress mediated alterations in Na⁺-K⁺-ATPase activity in rat brain: amelioration by vitamin E.

    Science.gov (United States)

    Jaiswal, Sunil Kumar; Siddiqi, Nikhat Jamal; Sharma, Bechan

    2014-07-01

    Pesticides cause oxidative stress and adversely influence Na(+)-K(+)-ATPase activity in animals. Since impact of carbofuran has not been properly studied in the mammalian brain, the ability of carbofuran to induce oxidative stress and modulation in Na(+)-K(+)-ATPase activity and its amelioration by vitamin E was performed. The rats divided into six groups received two different doses of carbofuran (15% and 30% LD50) for 15 days. The results suggested that the carbofuran treatment caused a significant elevation in levels of malonaldehyde and reduced glutathione and sharp inhibition in the activities of super oxide dismutase, catalase, and glutathione-S-transferase; the effect being dose dependent. Carbofuran at different doses also caused sharp reduction in the activity of Na(+)-K(+)-ATPase. The pretreatment of vitamin E, however, showed a significant recovery in these indices. The pretreatment of rats with vitamin E offered protection from carbofuran-induced oxidative stress.

  7. Oxidative stress & male infertility.

    Science.gov (United States)

    Makker, Kartikeya; Agarwal, Ashok; Sharma, Rakesh

    2009-04-01

    The male factor is considered a major contributory factor to infertility. Apart from the conventional causes for male infertility such as varicocoele, cryptorchidism, infections, obstructive lesions, cystic fibrosis, trauma, and tumours, a new and important cause has been identified: oxidative stress. Oxidative stress is a result of the imbalance between reactive oxygen species (ROS) and antioxidants in the body. It is a powerful mechanism that can lead to sperm damage, deformity and eventually, male infertility. This review discusses the physiological need for ROS and their role in normal sperm function. It also highlights the mechanism of production and the pathophysiology of ROS in relation to the male reproductive system and enumerate the benefits of incorporating antioxidants in clinical and experimental settings.

  8. Environmental Enrichment Prevent the Juvenile Hypoxia-Induced Developmental Loss of Parvalbumin-Immunoreactive Cells in the Prefrontal Cortex and Neurobehavioral Alterations Through Inhibition of NADPH Oxidase-2-Derived Oxidative Stress.

    Science.gov (United States)

    Zhang, Mingqiang; Wu, Jing; Huo, Lan; Luo, Liang; Song, Xi; Fan, Fei; Lu, Yiming; Liang, Dong

    2016-12-01

    We compared the expression of phenotype of parvalbumin (PV)-immunoreactive cells in the prefrontal cortex (PFC) of juvenile rats reared in enriched environment (EE) after daily intermittent hypoxia (IH) exposure to those reared in standard environment (SE) and investigated the involvement of NADPH oxidase-2 (NOX2)-derived oxidative stress in the IH-induced neurodevelopmental and neurobehavioral consequences in a juvenile rat model of obstructive sleep apnea. Postnatal day 21 (P21) rats were exposed to IH or room air 8 h daily for 14 consecutive days. After the daily exposure, the rats were raised in SE or EE. In the PFC of P34 rats, we determined the impact (i) of IH exposures on NOX2-derived oxidative stress and PV immunoreactivity, (ii) of pharmacological NOX2 inhibition on IH-induced oxidative stress and PV immunoreactivity, and (iii) of EE on the IH-induced oxidative stress and PV immunoreactivity. Behavioral testing of psychiatric anxiety was carried out consecutively in the open-field test and elevated plus maze at P35 and P36. The results showed IH exposures increased NOX2 expression in the PFC of P34 rats, which was accompanied with elevation of NOX activity and indirect markers of oxidative stress (4-HNE). IH exposures increased 4-HNE immunoreactivity in cortical PV cells, which was accompanied with reduction of PV immunoreactivity. Treatment of IH rats with the antioxidant/NOX inhibitor apocynin prevented the PV cells loss in the PFC and reversed the IH-induced psychiatric anxiety. EE attenuated the NOX2-derived oxidative stress and reversed the PV-immunoreactivity reduction in the PFC induced by IH. Our data suggest that EE might prevent the juvenile hypoxia-induced developmental loss of PV cells in the PFC and attenuate the neurobehavioral alterations through inhibition of NOX2-derived oxidative stress.

  9. Pulmonary mitochondrial alterations and oxidative stress in response to ozone exposure: Effects of age and an omega-3 enriched diet; Alterations mitochondriales et stress oxydant pulmonaire en reponse a l'ozone: effets de l'age et d'une supplementation en omega-3

    Energy Technology Data Exchange (ETDEWEB)

    Servais, St.

    2004-04-15

    Ozone (O{sub 3}) is one of the molecular species most reactive to which are exposed living species. O{sub 3} acts primarily on the pulmonary system by inducing oxidative stress. Because susceptibility to oxidative stress varies with age, we studied alterations of pulmonary balance between production of reactive oxygen species (ROS) and their elimination, in immature (21 days), adult (6 months) and old rats (20 months) during O{sub 3} exposure (0,5 ppm, 12 h/day for 7 days). For this purpose we have specifically studied pulmonary mitochondria as ROS source, main antioxidant enzyme activities, contents in stress protein (HSP72), 8-oxodGuo and DNA adducts resulting from lipid peroxidation. These works have shown that our protocol of O{sub 3} exposure did not induce lung oxidative stress in adult rats. We confirmed that immature and old rats were more sensitive during O{sub 3} challenge than adults. Indeed, O{sub 3} generates oxidative stress which leads to modification of ventilatory function and pulmonary DNA oxidation in these two populations. Parameters which take part in greatest susceptibility to O{sub 3} differ according to the age. We concluded that the mitochondria is not a major source of pulmonary ROS in our model of O{sub 3} exposure. Secondly, with the sights of anti-inflammatory properties of polyunsaturated fatty acids {omega}3, we studied the effect of a {omega}3 supplementation in immature and old rats exposed to O{sub 3}. The supplementation in {omega}3 limits the pulmonary DNA oxidation in immature and old rats. Paradoxically, in old rats this supplementation provokes an increase in lipid peroxidation susceptibility. (author)

  10. Oxidative stress in neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    Xueping Chen; Chunyan Guo; Jiming Kong

    2012-01-01

    Reactive oxygen species are constantly produced in aerobic organisms as by-products of normal oxygen metabolism and include free radicals such as superoxide anion (O2-) and hydroxyl radical (OH-), and non-radical hydrogen peroxide (H2O2). The mitochondrial respiratory chain and enzymatic reactions by various enzymes are endogenous sources of reactive oxygen species. Exogenous reactive oxygen species -inducing stressors include ionizing radiation, ultraviolet light, and divergent oxidizing chemicals. At low concentrations, reactive oxygen species serve as an important second messenger in cell signaling; however, at higher concentrations and long-term exposure, reactive oxygen species can damage cellular macromolecules such as DNA, proteins, and lipids, which leads to necrotic and apoptotic cell death. Oxidative stress is a condition of imbalance between reactive oxygen species formation and cellular antioxidant capacity due to enhanced ROS generation and/or dysfunction of the antioxidant system. Biochemical alterations in these macromolecular components can lead to various pathological conditions and human diseases, especially neurodegenerative diseases. Neurodegenerative diseases are morphologically featured by progressive cell loss in specific vulnerable neuronal cells, often associated with cytoskeletal protein aggregates forming inclusions in neurons and/or glial cells. Deposition of abnormal aggregated proteins and disruption of metal ions homeostasis are highly associated with oxidative stress. The main aim of this review is to present as much detailed information as possible that is available on various neurodegenerative disorders and their connection with oxidative stress. A variety of therapeutic strategies designed to address these pathological processes are also described. For the future therapeutic direction, one specific pathway that involves the transcription factor nuclear factor erythroid 2-related factor 2 is receiving considerable attention.

  11. Oxidative Stress in Cystinosis Patients

    Directory of Open Access Journals (Sweden)

    Maria Helena Vaisbich

    2011-09-01

    Full Text Available Background/Aims: Nephropathic cystinosis (NC is a severe systemic disease and cysteamine improves its prognosis. Lysosomal cystine accumulation is the hallmark of cystinosis and is regarded as the primary defect due to mutations in the CTNS gene. However, there is great evidence that cystine accumulation itself is not responsible for all abnormalities observed in NC. Studies have demonstrated altered ATP metabolism, increased apoptosis, and cell oxidation. An increased number of autophagosomes and autophagic vacuoles have been observed in cystinotic fibroblasts and renal epithelial cells, suggesting that altered autophagy plays a role in NC, leading to increased production of reactive oxygen species. Therefore, cystinosis patients can be more susceptible to oxidative stress (OS and it can contribute to the progression of the renal disease. Our goal was to evaluate a marker of OS (serum TBARS in NC children, and to compare the results with those observed in healthy controls and correlated with renal function parameters. Methods: The study included patients aged under 18 years, with good adherence to the treatment and out of renal replacement therapy. The following parameters were evaluated: serum creatinine, BUN, creatinine clearance estimated by stature and serum TBARS levels. Results: We selected 20 patients aged 8.0 ±3.6 years and observed serum TBARS levels of 4.03 ±1.02 nmol/ml. Serum TBARS levels in the 43 healthy controls, aged 7.4 ±1.1 years, were 1.60 ±0.04 nmol/ml. There was a significant difference between the plasma TBARS levels among the 2 groups (p Conclusion: An increased level of serum TBARS in patients with NC was observed and this abnormality was not correlated with the renal function status degree. This is the first report that shows increased oxidative stress in serum of NC patients.

  12. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration.

    Science.gov (United States)

    Wang, Tao; Ge, Haiyan; Liu, Tingting; Tian, Xiwei; Wang, Zejian; Guo, Meijin; Chu, Ju; Zhuang, Yingping

    2016-06-20

    Salt stress as an effective stress factor that could improve the lipid content and lipid yield of glucose in the heterotrophic culture cells of Chlorella protothecoides was demonstrated in this study. The highest lipid content of 41.2% and lipid yield of 185.8mg/g were obtained when C. protothecoides was stressed under 30g/L NaCl condition at its late logarithmic growth phase. Moreover, the effects of salt and osmotic stress on lipid accumulation were comparatively analyzed, and it was found that the effects of NaCl and KCl stress had no significant differences at the same osmolarity level of 1150mOsm/kg with lipid contents of 41.7 and 40.8% as well as lipid yields of 192.9 and 186.8mg/g, respectively, whereas these results were obviously higher than those obtained under the iso-osmotic glycerol and sorbitol stresses. Furthermore, basing on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration, the superior performance of salt stress driving lipid over-synthesis was probably ascribed to the more ROS production as a result of additional ion effect besides the osmotic effect, subsequently mediating the alteration from carbohydrate storage to lipid accumulation in signal transduction process of C. protothecoides.

  13. Inflammation, Oxidative Stress, and Obesity

    Directory of Open Access Journals (Sweden)

    José A. Morales-González

    2011-05-01

    Full Text Available Obesity is a chronic disease of multifactorial origin and can be defined as an increase in the accumulation of body fat. Adipose tissue is not only a triglyceride storage organ, but studies have shown the role of white adipose tissue as a producer of certain bioactive substances called adipokines. Among adipokines, we find some inflammatory functions, such as Interleukin-6 (IL-6; other adipokines entail the functions of regulating food intake, therefore exerting a direct effect on weight control. This is the case of leptin, which acts on the limbic system by stimulating dopamine uptake, creating a feeling of fullness. However, these adipokines induce the production of reactive oxygen species (ROS, generating a process known as oxidative stress (OS. Because adipose tissue is the organ that secretes adipokines and these in turn generate ROS, adipose tissue is considered an independent factor for the generation of systemic OS. There are several mechanisms by which obesity produces OS. The first of these is the mitochondrial and peroxisomal oxidation of fatty acids, which can produce ROS in oxidation reactions, while another mechanism is over-consumption of oxygen, which generates free radicals in the mitochondrial respiratory chain that is found coupled with oxidative phosphorylation in mitochondria. Lipid-rich diets are also capable of generating ROS because they can alter oxygen metabolism. Upon the increase of adipose tissue, the activity of antioxidant enzymes such as superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx, was found to be significantly diminished. Finally, high ROS production and the decrease in antioxidant capacity leads to various abnormalities, among which we find endothelial dysfunction, which is characterized by a reduction in the bioavailability of vasodilators, particularly nitric oxide (NO, and an increase in endothelium-derived contractile factors, favoring atherosclerotic disease.

  14. Supplementation with fruit and vegetable soups and beverages increases plasma carotenoid concentrations but does not alter markers of oxidative stress or cardiovascular risk factors.

    Science.gov (United States)

    Paterson, Elaine; Gordon, Michael H; Niwat, Chutamat; George, Trevor W; Parr, Laura; Waroonphan, Saran; Lovegrove, Julie A

    2006-11-01

    This study was aimed at determining whether an increase of 5 portions of fruits and vegetables in the form of soups and beverages has a beneficial effect on markers of oxidative stress and cardiovascular disease risk factors. The study was a single blind, randomized, controlled, crossover dietary intervention study. After a 2-wk run-in period with fish oil supplementation, which continued throughout the dietary intervention to increase oxidative stress, the volunteers consumed carotenoid-rich or control vegetable soups and beverages for 4 wk. After a 10-wk wash-out period, the volunteers repeated the above protocol, consuming the other intervention foods. Both test and control interventions significantly increased the % energy from carbohydrates and decreased dietary protein and vitamin B-12 intakes. Compared with the control treatment, consumption of the carotenoid-rich soups and beverages increased dietary carotenoids, vitamin C, alpha-tocopherol, potassium, and folate, and the plasma concentrations of alpha-carotene (362%), beta-carotene (250%) and lycopene (31%) (P oxidative stress were not affected by treatment. Consumption of fruit and vegetable soups and beverages makes a useful contribution to meeting dietary recommendations for fruit and vegetable consumption.

  15. BRCA1 and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yong Weon Yi

    2014-04-01

    Full Text Available The breast cancer susceptibility gene 1 (BRCA1 has been well established as a tumor suppressor and functions primarily by maintaining genome integrity. Genome stability is compromised when cells are exposed to oxidative stress. Increasing evidence suggests that BRCA1 regulates oxidative stress and this may be another mechanism in preventing carcinogenesis in normal cells. Oxidative stress caused by reactive oxygen species (ROS is implicated in carcinogenesis and is used strategically to treat human cancer. Thus, it is essential to understand the function of BRCA1 in oxidative stress regulation. In this review, we briefly summarize BRCA1’s many binding partners and mechanisms, and discuss data supporting the function of BRCA1 in oxidative stress regulation. Finally, we consider its significance in prevention and/or treatment of BRCA1-related cancers.

  16. Oxidative stress, mitochondrial damage and neurodegenerative diseases****

    Institute of Scientific and Technical Information of China (English)

    Chunyan Guo; Li Sun; Xueping Chen; Danshen Zhang

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. Al these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive thera-peutic interventions for the treatment of various neurodegenerative diseases.

  17. Oxidative stress and hypertension.

    Science.gov (United States)

    Harrison, David G; Gongora, Maria Carolina

    2009-05-01

    This review has summarized some of the data supporting a role of ROS and oxidant stress in the genesis of hypertension. There is evidence that hypertensive stimuli, such as high salt and angiotensin II, promote the production of ROS in the brain, the kidney, and the vasculature and that each of these sites contributes either to hypertension or to the untoward sequelae of this disease. Although the NADPH oxidase in these various organs is a predominant source, other enzymes likely contribute to ROS production and signaling in these tissues. A major clinical challenge is that the routinely used antioxidants are ineffective in preventing or treating cardiovascular disease and hypertension. This is likely because these drugs are either ineffective or act in a non-targeted fashion, such that they remove not only injurious ROS Fig. 5. Proposed role of T cells in the genesis of hypertension and the role of the NADPH oxidase in multiple cells/organs in modulating this effect. In this scenario, angiotensin II stimulates an NADPH oxidase in the CVOs of the brain, increasing sympathetic outflow. Sympathetic nerve terminals in lymph nodes activate T cells, and angiotensin II also directly activates T cells. These stimuli also activate expression of homing signals in the vessel and likely the kidney, which attract T cells to these organs. T cells release cytokines that stimulate the vessel and kidney NADPH oxidases, promoting vasoconstriction and sodium retention. SFO, subfornical organ. 630 Harrison & Gongora but also those involved in normal cell signaling. A potentially important and relatively new direction is the concept that inflammatory cells such as T cells contribute to hypertension. Future studies are needed to understand the interaction of T cells with the CNS, the kidney, and the vasculature and how this might be interrupted to provide therapeutic benefit.

  18. Oxidative stress in Parkinson's disease.

    Science.gov (United States)

    Nikam, Shashikant; Nikam, Padmaja; Ahaley, S K; Sontakke, Ajit V

    2009-01-01

    Oxidative stress contributes to the cascade, leading to dopamine cell degeneration in Parkinson's disease. However, oxidative stress is intimately linked to other components of the degenerative process, such as mitochondrial dysfunction, excitotoxicity, nitric oxide toxicity and inflammation. It is therefore difficult to determine whether oxidative stress leads to or is a consequence of, these events. Oxidative stress was assessed by estimating lipid peroxidation product in the form of thiobarbituric acid reactive substances, nitric oxide in the form of nitrite & nitrate. Enzymatic antioxidants in the form of superoxide dismutase, glutathione peroxidase, catalase, ceruloplasmin and non enzymatic antioxidant vitamins e.g. vitamin E and C in either serum or plasma or erythrocyte in 40 patients of Parkinson's disease in the age group 40-80 years. Trace elements e.g. copper, zinc and selenium were also estimated. Plasma thiobarbituric acid reactive substances and nitric oxide levels were Significantly high but superoxide dismutase, glutathione peroxidase, catalase, ceruloplasmin, vitamin-E, vitamin-C, copper, zinc and selenium levels were significantly low in Parkinson's disease when compared with control subjects. Present study showed that elevated oxidative stress may be playing a role in dopaminergic neuronal loss in substentia nigra pars compacta and involved in pathogenesis of the Parkinson's disease.

  19. High-fat, low-carbohydrate diet alters myocardial oxidative stress and impairs recovery of cardiac function after ischemia and reperfusion in obese rats.

    Science.gov (United States)

    Liu, Jian; Lloyd, Steven G

    2013-04-01

    Obesity is associated with elevated risk of heart disease. A solid understanding of the safety and potential adverse effects of high-fat, low-carbohydrate diet (HFLCD) similar to that used by humans for weight loss on the heart is crucial. High fat intake is known to promote increases in reactive oxygen species and mitochondrial damage. We hypothesized that there would be adverse effects of HFLCD on myocardial ischemia/reperfusion injury through enhancing oxidative stress injury and impairing mitochondrial biogenesis in a nongenetic, diet-induced rat model of obesity. To test the hypothesis, 250-g male Sprague-Dawley rats were fed an obesity-promoting diet for 7 weeks to induce obesity, then switched to HFLCD or a low-fat control diet for 2 weeks. Isolated hearts underwent global low flow ischemia for 60 minutes and reperfusion for 60 minutes. High-fat, low-carbohydrate diet resulted in greater weight gain and lower myocardial glycogen, plasma adiponectin, and insulin. Myocardial antioxidant gene transcript and protein expression of superoxide dismutase and catalase were reduced in HFLCD, along with increased oxidative gene NADPH oxidase-4 transcript and xanthine oxidase activity, and a 37% increase in nitrated protein (nitrotyrosine) in HFLCD hearts. The cardiac expression of key mitochondrial regulatory factors such as nuclear respiratory factor-1 and transcription factor A-mitochondrial were inhibited and myocardial mitochondrial DNA copy number decreased. The cardiac expression of adiponectin and its receptors was down-regulated in HFLCD. High-fat, low-carbohydrate diet impaired recovery of left ventricular rate-pressure product after ischemia/reperfusion and led to 3.5-fold increased injury as measured by lactate dehydrogenase release. In conclusion, HFLCD leads to increased ischemic myocardial injury and impaired recovery of function after reperfusion and was associated with attenuation of mitochondrial biogenesis and enhanced oxidative stress in obese rats

  20. Asiatic Acid Alleviates Hemodynamic and Metabolic Alterations via Restoring eNOS/iNOS Expression, Oxidative Stress, and Inflammation in Diet-Induced Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Poungrat Pakdeechote

    2014-01-01

    Full Text Available Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS induced by a high-carbohydrate, high-fat (HCHF diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α levels (p < 0.05. Plasma nitrate and nitrite (NOx were markedly high with upregulation of inducible nitric oxide synthase (iNOS expression, but dowregulation of endothelial nitric oxide synthase (eNOS expression (p < 0.05. Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p < 0.05. In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.

  1. Interdependence of tetrapyrrole metabolism, the generation of oxidative stress and the mitigative oxidative stress response

    Directory of Open Access Journals (Sweden)

    Andrea W.U. Busch

    2015-04-01

    Full Text Available Tetrapyrroles are involved in light harvesting and light perception, electron-transfer reactions, and as co-factors for key enzymes and sensory proteins. Under conditions in which cells exhibit stress-induced imbalances of photosynthetic reactions, or light absorption exceeds the ability of the cell to use photoexcitation energy in synthesis reactions, redox imbalance can occur in photosynthetic cells. Such conditions can lead to the generation of reactive oxygen species (ROS associated with alterations in tetrapyrrole homeostasis. ROS accumulation can result in cellular damage and detrimental effects on organismal fitness, or ROS molecules can serve as signals to induce a protective or damage-mitigating oxidative stress signaling response in cells. Induced oxidative stress responses include tetrapyrrole-dependent and -independent mechanisms for mitigating ROS generation and/or accumulation. Thus, tetrapyrroles can be contributors to oxidative stress, but are also essential in the oxidative stress response to protect cells by contributing to detoxification of ROS. In this review, we highlight the interconnection and interdependence of tetrapyrrole metabolism with the occurrence of oxidative stress and protective oxidative stress signaling responses in photosynthetic organisms.

  2. Potential Modulation of Sirtuins by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Leonardo Santos

    2016-01-01

    Full Text Available Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1–7, all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions.

  3. Potential Modulation of Sirtuins by Oxidative Stress

    Science.gov (United States)

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1–7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions. PMID:26788256

  4. Potential Modulation of Sirtuins by Oxidative Stress.

    Science.gov (United States)

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1-7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions.

  5. Genetics of Oxidative Stress in Obesity

    Directory of Open Access Journals (Sweden)

    Azahara I. Rupérez

    2014-02-01

    Full Text Available Obesity is a multifactorial disease characterized by the excessive accumulation of fat in adipose tissue and peripheral organs. Its derived metabolic complications are mediated by the associated oxidative stress, inflammation and hypoxia. Oxidative stress is due to the excessive production of reactive oxygen species or diminished antioxidant defenses. Genetic variants, such as single nucleotide polymorphisms in antioxidant defense system genes, could alter the efficacy of these enzymes and, ultimately, the risk of obesity; thus, studies investigating the role of genetic variations in genes related to oxidative stress could be useful for better understanding the etiology of obesity and its metabolic complications. The lack of existing literature reviews in this field encouraged us to gather the findings from studies focusing on the impact of single nucleotide polymorphisms in antioxidant enzymes, oxidative stress-producing systems and transcription factor genes concerning their association with obesity risk and its phenotypes. In the future, the characterization of these single nucleotide polymorphisms (SNPs in obese patients could contribute to the development of controlled antioxidant therapies potentially beneficial for the treatment of obesity-derived metabolic complications.

  6. Maternal and cord blood LC-HRMS metabolomics reveal alterations in energy and polyamine metabolism, and oxidative stress in very-low birth weight infants.

    Science.gov (United States)

    Alexandre-Gouabau, Marie-Cécile; Courant, Frédérique; Moyon, Thomas; Küster, Alice; Le Gall, Gwénaëlle; Tea, Illa; Antignac, Jean-Philippe; Darmaun, Dominique

    2013-06-07

    To assess the global effect of preterm birth on fetal metabolism and maternal-fetal nutrient transfer, we used a mass spectrometric-based chemical phenotyping approach on cord blood obtained at the time of birth. We sampled umbilical venous, umbilical arterial, and maternal blood from mothers delivering very-low birth weight (VLBW, with a median gestational age and weight of 29 weeks, and 1210 g, respectively) premature or full-term (FT) neonates. In VLBW group, we observed a significant elevation in the levels and maternal-fetal gradients of butyryl-, isovaleryl-, hexanoyl- and octanoyl-carnitines, suggesting enhanced short- and medium chain fatty acid β-oxidation in human preterm feto-placental unit. The significant decrease in glutamine-glutamate in preterm arterial cord blood beside lower levels of amino acid precursors of Krebs cycle suggest increased glutamine utilization in the fast growing tissues of preterm fetus with a deregulation in placental glutamate-glutamine shuttling. Enhanced glutathione utilization is likely to account for the decrease in precursor amino acids (serine, betaine, glutamate and methionine) in arterial cord blood. An increase in both the circulating levels and maternal-fetal gradients of several polyamines in their acetylated form (diacetylspermine and acetylputrescine) suggests an enhanced polyamine metabolic cycling in extreme prematurity. Our metabolomics study allowed the identification of alterations in fetal energy, antioxidant defense, and polyamines and purines flux as a signature of premature birth.

  7. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies.

    Science.gov (United States)

    Rani, Vibha; Deep, Gagan; Singh, Rakesh K; Palle, Komaraiah; Yadav, Umesh C S

    2016-03-01

    Increased body weight and metabolic disorder including insulin resistance, type 2 diabetes and cardiovascular complications together constitute metabolic syndrome. The pathogenesis of metabolic syndrome involves multitude of factors. A number of studies however indicate, with some conformity, that oxidative stress along with chronic inflammatory condition pave the way for the development of metabolic diseases. Oxidative stress, a state of lost balance between the oxidative and anti-oxidative systems of the cells and tissues, results in the over production of oxidative free radicals and reactive oxygen species (ROS). Excessive ROS generated could attack the cellular proteins, lipids and nucleic acids leading to cellular dysfunction including loss of energy metabolism, altered cell signalling and cell cycle control, genetic mutations, altered cellular transport mechanisms and overall decreased biological activity, immune activation and inflammation. In addition, nutritional stress such as that caused by high fat high carbohydrate diet also promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation, and decreased antioxidant system and reduced glutathione (GSH) levels. These changes lead to initiation of pathogenic milieu and development of several chronic diseases. Studies suggest that in obese person oxidative stress and chronic inflammation are the important underlying factors that lead to development of pathologies such as carcinogenesis, obesity, diabetes, and cardiovascular diseases through altered cellular and nuclear mechanisms, including impaired DNA damage repair and cell cycle regulation. Here we discuss the aspects of metabolic disorders-induced oxidative stress in major pathological conditions and strategies for their prevention and therapy.

  8. Maternal consumption of organic trace minerals alters calf systemic and neutrophil mRNA and microRNA indicators of inflammation and oxidative stress.

    Science.gov (United States)

    Jacometo, Carolina B; Osorio, Johan S; Socha, Michael; Corrêa, Marcio N; Piccioli-Cappelli, Fiorenzo; Trevisi, Erminio; Loor, Juan J

    2015-11-01

    Organic trace mineral (ORG) supplementation to dairy cows in substitution of sulfate (INO) sources has been associated with improvement in immune function during stressful states such as the peripartal period. However, the effect of supplemental ORG during pregnancy on the neonatal calf is unknown. Therefore, our aim was to investigate the effects of ORG supplementation during late pregnancy on the immune system and growth of the neonatal calf. Of specific interest was the evaluation of inflammation-related microRNA (miRNA) and target gene expression in blood neutrophils as indicators of possible nutritional programming. Forty multiparous cows were supplemented for 30d prepartum with 40 mg/kg of Zn, 20 mg/kg of Mn, 5 mg/kg of Cu, and 1mg/kg of Co from either organic (ORG) or sulfate (INO) sources (total diet contained supplemental 75 mg/kg of Zn, 65 mg/kg of Mn, 11 mg/kg of Cu, and 1 mg/kg of Co, and additional Zn, Mn, and Co provided by sulfates), and a subset of calves (n=8/treatment) was used for blood immunometabolic marker and polymorphonuclear leukocyte (PMNL) gene and miRNA expression analyses. Samples were collected at birth (before colostrum feeding), 1d (24 h after colostrum intake), and 7 and 21d of age. Data were analyzed as a factorial design with the PROC MIXED procedure of SAS. No differences were detected in BW, but maternal ORG tended to increase calf withers height. Calves from INO-fed cows had greater concentrations of blood glucose, GOT, paraoxonase, myeloperoxidase, and reactive oxygen metabolites. Antioxidant capacity also was greater in INO calves. The PMNL expression of toll-like receptor pathway genes indicated a pro-inflammatory state in INO calves, with greater expression of the inflammatory mediators MYD88, IRAK1, TRAF6, NFKB, and NFKBIA. The lower expression of miR-155 and miR-125b in ORG calves indicated the potential for maternal organic trace minerals in regulating the PMNL inflammatory response at least via alterations in mRNA and

  9. Hemoglobin oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Croci, S.; Ortalli, I.; Pedrazzi, G. [University of Parma, Istituto di Scienze Fisiche, INFM-Udr Parma (Italy); Passeri, G. [University of Parma, Dipartimento di Medicina Interna e Scienze Biomediche (Italy); Piccolo, P. [University of Parma, Istituto di Clinica chirurgica Generale, Toracica e Vascolare (Italy)

    2000-07-15

    Venous blood obtained from healthy donors and from patients suffering from breast cancer have been treated with acetylphenylhydrazine (APH) for different time. Moessbauer spectra of the packed red cells have been recorded and compared. The largest difference occurs after 50 min of treatment with APH where the patient samples show a broad spectral pattern indicating an advanced hemoglobin oxidation. These results may have some relevance in early cancer diagnosis.

  10. Oxidative Stress and Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Jie Li

    2013-12-01

    Full Text Available Living cells continually generate reactive oxygen species (ROS through the respiratory chain during energetic metabolism. ROS at low or moderate concentration can play important physiological roles. However, an excessive amount of ROS under oxidative stress would be extremely deleterious. The central nervous system (CNS is particularly vulnerable to oxidative stress due to its high oxygen consumption, weakly antioxidative systems and the terminal-differentiation characteristic of neurons. Thus, oxidative stress elicits various neurodegenerative diseases. In addition, chemotherapy could result in severe side effects on the CNS and peripheral nervous system (PNS of cancer patients, and a growing body of evidence demonstrates the involvement of ROS in drug-induced neurotoxicities as well. Therefore, development of antioxidants as neuroprotective drugs is a potentially beneficial strategy for clinical therapy. In this review, we summarize the source, balance maintenance and physiologic functions of ROS, oxidative stress and its toxic mechanisms underlying a number of neurodegenerative diseases, and the possible involvement of ROS in chemotherapy-induced toxicity to the CNS and PNS. We ultimately assess the value for antioxidants as neuroprotective drugs and provide our comments on the unmet needs.

  11. Adaptive alterations in the fatty acids composition under induced oxidative stress in heavy metal-tolerant filamentous fungus Paecilomyces marquandii cultured in ascorbic acid presence.

    Science.gov (United States)

    Słaba, Mirosława; Gajewska, Ewa; Bernat, Przemysław; Fornalska, Magdalena; Długoński, Jerzy

    2013-05-01

    The ability of the heavy metal-tolerant fungus Paecilomyces marquandii to modulate whole cells fatty acid composition and saturation in response to IC50 of Cd, Pb, Zn, Ni, and Cu was studied. Cadmium and nickel caused the most significant growth reduction. In the mycelia cultured with all tested metals, with the exception of nickel, a rise in the fatty acid unsaturation was noted. The fungus exposure to Pb, Cu, and Ni led to significantly higher lipid peroxidation. P. marquandii incubated in the presence of the tested metals responded with an increase in the level of linoleic acid and escalation of electrolyte leakage. The highest efflux of electrolytes was caused by lead. In these conditions, the fungus was able to bind up to 100 mg g(-1) of lead, whereas the content of the other metals in the mycelium was significantly lower and reached from 3.18 mg g(-1) (Cu) to 15.21 mg g(-1) (Zn). Additionally, it was shown that ascorbic acid at the concentration of 1 mM protected fungal growth and prevented the changes in the fatty acid composition and saturation but did not alleviate lipid peroxidation or affect the increased permeability of membranes after lead exposure. Pro-oxidant properties of ascorbic acid in the copper-stressed cells manifested strong growth inhibition and enhanced metal accumulation as a result of membrane damage. Toxic metals action caused cellular modulations, which might contributed to P. marquandii tolerance to the studied metals. Moreover, these changes can enhance metal removal from contaminated environment.

  12. Electromagnetic Fields, Oxidative Stress, and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Claudia Consales

    2012-01-01

    Full Text Available Electromagnetic fields (EMFs originating both from both natural and manmade sources permeate our environment. As people are continuously exposed to EMFs in everyday life, it is a matter of great debate whether they can be harmful to human health. On the basis of two decades of epidemiological studies, an increased risk for childhood leukemia associated with Extremely Low Frequency fields has been consistently assessed, inducing the International Agency for Research on Cancer to insert them in the 2B section of carcinogens in 2001. EMFs interaction with biological systems may cause oxidative stress under certain circumstances. Since free radicals are essential for brain physiological processes and pathological degeneration, research focusing on the possible influence of the EMFs-driven oxidative stress is still in progress, especially in the light of recent studies suggesting that EMFs may contribute to the etiology of neurodegenerative disorders. This review synthesizes the emerging evidences about this topic, highlighting the wide data uncertainty that still characterizes the EMFs effect on oxidative stress modulation, as both pro-oxidant and neuroprotective effects have been documented. Care should be taken to avoid methodological limitations and to determine the patho-physiological relevance of any alteration found in EMFs-exposed biological system.

  13. Oxidative stress signaling to chromatin in health and disease

    KAUST Repository

    Kreuz, Sarah

    2016-06-20

    Oxidative stress has a significant impact on the development and progression of common human pathologies, including cancer, diabetes, hypertension and neurodegenerative diseases. Increasing evidence suggests that oxidative stress globally influences chromatin structure, DNA methylation, enzymatic and non-enzymatic post-translational modifications of histones and DNA-binding proteins. The effects of oxidative stress on these chromatin alterations mediate a number of cellular changes, including modulation of gene expression, cell death, cell survival and mutagenesis, which are disease-driving mechanisms in human pathologies. Targeting oxidative stress-dependent pathways is thus a promising strategy for the prevention and treatment of these diseases. We summarize recent research developments connecting oxidative stress and chromatin regulation.

  14. Methane oxidation needs less stressed plants.

    Science.gov (United States)

    Zhou, Xiaoqi; Smaill, Simeon J; Clinton, Peter W

    2013-12-01

    Methane oxidation rates in soil are liable to be reduced by plant stress responses to climate change. Stressed plants exude ethylene into soil, which inhibits methane oxidation when present in the soil atmosphere. Here we discuss opportunities to use 1-aminocyclopropane-1-carboxylate deaminase to manage methane oxidation by regulating plant stress responses.

  15. Skin aging and oxidative stress

    OpenAIRE

    Sayeeda Ahsanuddin; Minh Lam; Baron, Elma D.

    2016-01-01

    Skin aging occurs through two main pathways, intrinsic and extrinsic. These pathways have significant interaction in contributing to the aging phenotype, which includes skin laxity, wrinkling, pigmentation irregularities, and the appearance of neoplastic skin lesions. Here, we review the critical role that oxidative stress plays in skin aging, including its effects on signaling pathways involved in skin matrix formation and degradation, proteasome activity, as well as DNA structure. Furthermo...

  16. Improved Growth and Stress Tolerance in the Arabidopsis oxt1 Mutant Triggered by Altered Adenine Metabolism

    Institute of Scientific and Technical Information of China (English)

    Suchada Sukrong; Kil-Young Yun; Patrizia Stadler; Charan Kumar; Tony Facciuolo; Barbara A.Moffatt; Deane L.Falcone

    2012-01-01

    Plants perceive and respond to environmental stresses with complex mechanisms that are often associated with the activation of antioxidant defenses.A genetic screen aimed at isolating oxidative stress-tolerant lines of Arabidopsis thaliana has identified oxt1,a line that exhibits improved tolerance to oxidative stress and elevated temperature but displays no apparent deleterious growth effects under non-stress conditions.Oxt1 harbors a mutation that arises from the altered expression of a gene encoding adenine phosphoribosyltransferase (APT1),an enzyme that converts adenine to adenosine monophosphate (AMP),indicating a link between purine metabolism,whole-plant growth responses,and stress acclimation.The oxt1 mutation results in decreased APT1 expression that leads to reduced enzymatic activity.Correspondingly,oxt1 plants possess elevated levels of adenine.Decreased APT enzyme activity directly correlates with stress resistance in transgenic lines that ectopically express APT1.The metabolic alteration in oxt1 plants also alters the expression of several antioxidant defense genes and the response of these genes to oxidative challenge.Finally,it is shown that manipulation of adenine levels can induce stress tolerance to wild-type plants.Collectively,these results show that alterations in cellular adenine levels can trigger stress tolerance and improve growth,leading to increases in plant biomass.The results also suggest that adenine might play a part in the signals that modulate responses to abiotic stress and plant growth.

  17. Oxidative stress and glycemic regulation.

    Science.gov (United States)

    Ceriello, A

    2000-02-01

    Oxidative stress is an acknowledged pathogenetic mechanism in diabetic complications. Hyperglycemia is a widely known cause of enhanced free radical concentration, whereas oxidative stress involvement in glycemic regulation is still debated. Glucose transport is a cascade of events starting from the interaction of insulin with its own receptor at the plasma membrane and ending with intracellular glucose metabolism. In this complex series of events, each step plays an important role and can be inhibited by a negative effect of oxidative stress. Several studies show that an acute increase in the blood glucose level may impair the physiological homeostasis of many systems in living organisms. The mechanisms through which acute hyperglycemia exerts these effects may be identified in the production of free radicals. It has been suggested that insulin resistance may be accompanied by intracellular production of free radicals. In adipocytes cultured in vitro, insulin increases the production of hydrogen peroxide, which has been shown to mimic the action of insulin. These data allow us to hypothesize that a vicious circle between hyperinsulinemia and free radicals could be operating: insulin resistance might cause elevated plasma free radical concentrations, which, in turn, might be responsible for a deterioration of insulin action, with hyperglycemia being a contributory factor. Data supporting this hypothesis are available. Vitamin E improves insulin action in healthy, elderly, and non-insulin-dependent diabetic subjects. Similar results can be obtained by vitamin C administration.

  18. Role of oxidative stress and intracellular calcium in nickel carbonate hydroxide-induced sister-chromatid exchange, and alterations in replication index and mitotic index in cultured human peripheral blood lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    M' Bemba-Meka, Prosper [Universite de Montreal, Human Toxicology Research Group (TOXHUM), Department of Environmental and Occupational Health, Main Station, P.O. Box 6128, Montreal, QC (Canada); University of Louisville, Department of Pharmacology and Toxicology, Center for Genetics and Molecular Medicine, Louisville, KY (United States); Lemieux, Nicole [Universite de Montreal, Department of Pathology and Cellular Biology, Faculty of Medicine, Main Station, P.O. Box 6128, Montreal, QC (Canada); Chakrabarti, Saroj K. [Universite de Montreal, Human Toxicology Research Group (TOXHUM), Department of Environmental and Occupational Health, Main Station, P.O. Box 6128, Montreal, QC (Canada)

    2007-02-15

    of oxidative stress including iron-mediated oxidative stress involving the Fenton-Haber/Weiss reaction, and alterations in calcium homeostasis are involved in the genetic damage produced by the soluble form of NiCH. (orig.)

  19. Oxidative proteome alterations during skeletal muscle ageing

    Directory of Open Access Journals (Sweden)

    Sofia Lourenço dos Santos

    2015-08-01

    Full Text Available Sarcopenia corresponds to the degenerative loss of skeletal muscle mass, quality, and strength associated with ageing and leads to a progressive impairment of mobility and quality of life. However, the cellular and molecular mechanisms involved in this process are not completely understood. A hallmark of cellular and tissular ageing is the accumulation of oxidatively modified (carbonylated proteins, leading to a decreased quality of the cellular proteome that could directly impact on normal cellular functions. Although increased oxidative stress has been reported during skeletal muscle ageing, the oxidized protein targets, also referred as to the ‘oxi-proteome’ or ‘carbonylome’, have not been characterized yet. To better understand the mechanisms by which these damaged proteins build up and potentially affect muscle function, proteins targeted by these modifications have been identified in human rectus abdominis muscle obtained from young and old healthy donors using a bi-dimensional gel electrophoresis-based proteomic approach coupled with immunodetection of carbonylated proteins. Among evidenced protein spots, 17 were found as increased carbonylated in biopsies from old donors comparing to young counterparts. These proteins are involved in key cellular functions such as cellular morphology and transport, muscle contraction and energy metabolism. Importantly, impairment of these pathways has been described in skeletal muscle during ageing. Functional decline of these proteins due to irreversible oxidation may therefore impact directly on the above-mentioned pathways, hence contributing to the generation of the sarcopenic phenotype.

  20. How stress alters memory in 'smart' snails.

    Directory of Open Access Journals (Sweden)

    Sarah Dalesman

    Full Text Available Cognitive ability varies within species, but whether this variation alters the manner in which memory formation is affected by environmental stress is unclear. The great pond snail, Lymnaea stagnalis, is commonly used as model species in studies of learning and memory. The majority of those studies used a single laboratory strain (i.e. the Dutch strain originating from a wild population in the Netherlands. However, our recent work has identified natural populations that demonstrate significantly enhanced long-term memory (LTM formation relative to the Dutch strain following operant conditioning of aerial respiratory behaviour. Here we assess how two populations with enhanced memory formation (i.e. 'smart' snails, one from Canada (Trans Canada 1: TC1 and one from the U.K. (Chilton Moor: CM respond to ecologically relevant stressors. In control conditions the Dutch strain forms memory lasting 1-3 h following a single 0.5 h training session in our standard calcium pond water (80 mg/l [Ca(2+], whereas the TC1 and CM populations formed LTM lasting 5+ days following this training regime. Exposure to low environmental calcium pond water (20 mg/l [Ca(2+], which blocks LTM in the Dutch strain, reduced LTM retention to 24 h in the TC1 and CM populations. Crowding (20 snails in 100 ml immediately prior to training blocks LTM in the Dutch strain, and also did so in TC1 and CM populations. Therefore, snails with enhanced cognitive ability respond to these ecologically relevant stressors in a similar manner to the Dutch strain, but are more robust at forming LTM in a low calcium environment. Despite the two populations (CM and TC1 originating from different continents, LTM formation was indistinguishable in both control and stressed conditions. This indicates that the underlying mechanisms controlling cognitive differences among populations may be highly conserved in L. stagnalis.

  1. Erythrocyte oxidative stress is associated with cell deformability in patients with retinal vein occlusion.

    Science.gov (United States)

    Becatti, M; Marcucci, R; Gori, A M; Mannini, L; Grifoni, E; Alessandrello Liotta, A; Sodi, A; Tartaro, R; Taddei, N; Rizzo, S; Prisco, D; Abbate, R; Fiorillo, C

    2016-11-01

    Essentials Retinal vein occlusion (RVO), characterized by blood hyperviscosity, has an unclear pathogenesis. We aimed to find out if hemorheological profile is altered by oxidative stress in RVO patients. Red blood cell (RBC) oxidative stress is associated to whole blood viscosity and RBC deformability. Reactive oxygen species alter RBC membrane rigidity, playing a key role in RVO pathogenesis.

  2. Molecular mechanisms of ROS production and oxidative stress in diabetes.

    Science.gov (United States)

    Newsholme, Philip; Cruzat, Vinicius Fernandes; Keane, Kevin Noel; Carlessi, Rodrigo; de Bittencourt, Paulo Ivo Homem

    2016-12-15

    Oxidative stress and chronic inflammation are known to be associated with the development of metabolic diseases, including diabetes. Oxidative stress, an imbalance between oxidative and antioxidative systems of cells and tissues, is a result of over production of oxidative-free radicals and associated reactive oxygen species (ROS). One outcome of excessive levels of ROS is the modification of the structure and function of cellular proteins and lipids, leading to cellular dysfunction including impaired energy metabolism, altered cell signalling and cell cycle control, impaired cell transport mechanisms and overall dysfunctional biological activity, immune activation and inflammation. Nutritional stress, such as that caused by excess high-fat and/or carbohydrate diets, promotes oxidative stress as evident by increased lipid peroxidation products, protein carbonylation and decreased antioxidant status. In obesity, chronic oxidative stress and associated inflammation are the underlying factors that lead to the development of pathologies such as insulin resistance, dysregulated pathways of metabolism, diabetes and cardiovascular disease through impaired signalling and metabolism resulting in dysfunction to insulin secretion, insulin action and immune responses. However, exercise may counter excessive levels of oxidative stress and thus improve metabolic and inflammatory outcomes. In the present article, we review the cellular and molecular origins and significance of ROS production, the molecular targets and responses describing how oxidative stress affects cell function including mechanisms of insulin secretion and action, from the point of view of possible application of novel diabetic therapies based on redox regulation.

  3. Oxidative stress and hepatitis C virus

    OpenAIRE

    2013-01-01

    The disproportionate imbalance between the systemic manifestation of reactive oxygen species and body’s ability to detoxify the reactive intermediates is referred to as oxidative stress. Several biological processes as well as infectious agents, physiological or environmental stress, and perturbed antioxidant response can promote oxidative stress. Oxidative stress usually happens when cells are exposed to more electrically charged reactive oxygen species (ROS) such as H2O2 or O2-. The cells’ ...

  4. Effects of oxidative stress on fatty acid- and one-carbon-metabolism in psychiatric and cardiovascular disease comorbidity

    DEFF Research Database (Denmark)

    Assies, Johanna; Mocking, Roel J T; Lok, Christianne A;

    2014-01-01

    membrane peroxidizability and fluidity, eicosanoid synthesis, neuroprotection and epigenetics. CONCLUSION: While oxidative-stress-induced alterations in FA and 1-C metabolism may initially enhance oxidative stress resistance, persisting chronically, they may cause damage possibly underlying (co...

  5. Periodontal treatment decreases plasma oxidized LDL level and oxidative stress.

    Science.gov (United States)

    Tamaki, Naofumi; Tomofuji, Takaaki; Ekuni, Daisuke; Yamanaka, Reiko; Morita, Manabu

    2011-12-01

    Periodontitis induces excessive production of reactive oxygen species in periodontal lesions. This may impair circulating pro-oxidant/anti-oxidant balance and induce the oxidation of low-density lipoprotein (LDL) in blood. The purpose of this study was to monitor circulating oxidized LDL and oxidative stress in subjects with chronic periodontitis following non-surgical periodontal treatment. Plasma levels of oxidized LDL and oxidative stress in 22 otherwise healthy non-smokers with chronic periodontitis (mean age 44.0 years) were measured at baseline and at 1 and 2 months after non-surgical periodontal treatment. At baseline, chronic periodontitis patients had higher plasma levels of oxidized LDL and oxidative stress than healthy subjects (p surgical periodontal treatment were effective in decreasing oxLDL, which was positively associated with a reduction in circulating oxidative stress.

  6. Prolonged manganese exposure induces severe deficits in lifespan,development and reproduction possibly by altering oxidative stress response in Caenorhabditis elegans

    Institute of Scientific and Technical Information of China (English)

    XIAO Jing; RUI Qi; GUO Yuling; CHANG Xingya; WANG Dayong

    2009-01-01

    We examined the possible multiple defects induced by acute and prolonged exposure to high levels of manganese (Mn) solution by monitoring the endpoints of lifespan,development,reproduction,and stress response.Our data suggest that acute exposure (6 h) to Mn did not cause severe defects of life span,development,and reproduction.Similarly,no significant defects could be found for the life span,development,and reproduction in animals exposed to a low concentration of Mn (2.5 μmol/L) for 48 h.In contrast,prolonged exposure (48-h) to high concentrations of Mn (75 and 200 μmol/L) resulted in significant defects of life span,development,and reproduction,as well as the increase of the percentage of population with hsp-16.2::gfp expression indicating the obvious induction of stress responses in exposed animals.Moreover,prolonged exposure (48-h) to high concentrations (75 and 200 μmol/L) of Mn decreased the expression levels of antioxidant genes of sod-1,sod-2,sod-3,and sod-4 compared to control.Therefore,prolonged exposure to high concentrations of Mn will induce the severe defects of life span,development,and reproduction in nematodes possibly by affecting the stress response and expression of antioxidant genes in Caenorhabditis elegans.

  7. Management of oxidative stress by microalgae.

    Science.gov (United States)

    Cirulis, Judith T; Scott, J Ashley; Ross, Gregory M

    2013-01-01

    The aim of this review is to provide an overview of the current research on oxidative stress in eukaryotic microalgae and the antioxidant compounds microalgae utilize to control oxidative stress. With the potential to exploit microalgae for the large-scale production of antioxidants, interest in how microalgae manage oxidative stress is growing. Microalgae can experience increased levels of oxidative stress and toxicity as a result of environmental conditions, metals, and chemicals. The defence mechanisms for microalgae include antioxidant enzymes such as superoxide dismutase, catalase, peroxidases, and glutathione reductase, as well as non-enzymatic antioxidant molecules such as phytochelatins, pigments, polysaccharides, and polyphenols. Discussed herein are the 3 areas the literature has focused on, including how conditions stress microalgae and how microalgae respond to oxidative stress by managing reactive oxygen species. The third area is how beneficial microalgae antioxidants are when administered to cancerous mammalian cells or to rodents experiencing oxidative stress.

  8. Oxidative Stress in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Gábor Csányi

    2014-04-01

    Full Text Available In the special issue “Oxidative Stress in Cardiovascular Disease” authors were invited to submit papers that investigate key questions in the field of cardiovascular free radical biology. The original research articles included in this issue provide important information regarding novel aspects of reactive oxygen species (ROS-mediated signaling, which have important implications in physiological and pathophysiological cardiovascular processes. The issue also included a number of review articles that highlight areas of intense research in the fields of free radical biology and cardiovascular medicine.

  9. Oxidative Stress and HPV Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Federico De Marco

    2013-02-01

    Full Text Available Extensive experimental work has conclusively demonstrated that infection with certain types of human papillomaviruses, the so-called high-risk human papillomavirus (HR-HPV, represent a most powerful human carcinogen. However, neoplastic growth is a rare and inappropriate outcome in the natural history of HPV, and a number of other events have to concur in order to induce the viral infection into the (very rare neoplastic transformation. From this perspective, a number of putative viral, host, and environmental co-factors have been proposed as potential candidates. Among them oxidative stress (OS is an interesting candidate, yet comparatively underexplored. OS is a constant threat to aerobic organisms being generated during mitochondrial oxidative phosphorylation, as well as during inflammation, infections, ionizing irradiation, UV exposure, mechanical and chemical stresses. Epithelial tissues, the elective target for HPV infection, are heavily exposed to all named sources of OS. Two different types of cooperative mechanisms are presumed to occur between OS and HPV: I The OS genotoxic activity and the HPV-induced genomic instability concur independently to the generation of the molecular damage necessary for the emergence of neoplastic clones. This first mode is merely a particular form of co-carcinogenesis; and II OS specifically interacts with one or more molecular stages of neoplastic initiation and/or progression induced by the HPV infection. This manuscript was designed to summarize available data on this latter hypothesis. Experimental data and indirect evidences on promoting the activity of OS in viral infection and viral integration will be reviewed. The anti-apoptotic and pro-angiogenetic role of NO (nitric oxide and iNOS (inducible nitric oxide synthase will be discussed together with the OS/HPV cooperation in inducing cancer metabolism adaptation. Unexplored/underexplored aspects of the OS interplay with the HPV-driven carcinogenesis

  10. Stress-related alteration of urine compositions

    NARCIS (Netherlands)

    W. van den Berg; C. Uhlemann; A. Meissner; N. Laube

    2011-01-01

    Increased emotional stress in everyday life influences the way of living and metabolism of people living in developed countries. Contemporaneously, the incidence and prevalence of urolithiasis rises. Does a pathogenetically relevant relationship exist between chronic stress burden and permanently al

  11. Effects of cerium dioxide nanoparticles in Oncorhynchus mykiss gills after an acute exposure: assessment of oxidative stress, genotoxicity and histological alterations

    Directory of Open Access Journals (Sweden)

    Alberto Teodorico Correia

    2015-12-01

    Full Text Available Data about the toxicological effects of cerium dioxide nanoparticles (CeO2 NP in fish are scarce. This work aimed to assess the CeO2 NP possible deleterious effects on the gills of Oncorhynchus mykiss. A semi-continuous acute test was conducted to expose the rainbow trout to a freshwater control, 0.25, 2.50 and 25.00 mg/L CeO2 NPs for up to 96 hours. Gills pathological index showed a dose-effect relationship for the individuals exposed to CeO2. Gills showed aneurisms, epithelial lifting and hyperplasia. Furthermore exposure to CeO2 NPs caused statistical differences in some biomarkers determinations, namely a significant increase in the catalase activity and genotoxicity the higher concentrations. No significant changes were however observed in thiobarbituric acid reactive substances content, Na+-K+ ATPase and glutathione s-transferase activities. This study suggests that CeO2 nanoparticles are toxic compounds that can lead to histological, biochemical and genotoxic alterations.

  12. Oxidative stress in neonatology: a review.

    Science.gov (United States)

    Mutinati, M; Pantaleo, M; Roncetti, M; Piccinno, M; Rizzo, A; Sciorsci, R L

    2014-02-01

    Free radicals are highly reactive oxidizing agents containing one or more unpaired electrons. Both in human and veterinary neonathology, it is generally accepted that oxidative stress functions as an important catalysator of neonatal disease. Soon after birth, many sudden physiological and environmental conditions make the newborn vulnerable for the negative effects of oxidative stress, which potentially can impair neonatal vitality. As a clinician, it is important to have in depth knowledge about factors affecting maternal/neonatal oxidative status and the cascades of events that enrol when the neonate is subjected to oxidative stress. This report aims at providing clinicians with an up-to-date review about oxidative stress in neonates across animal species. It will be emphasized which handlings and treatments that are applied during neonatal care or resuscitation can actually impose oxidative stress upon the neonate. Views and opinions about maternal and/or neonatal antioxydative therapy will be shared.

  13. Impact of Oxidative Stress in Fetal Programming

    Directory of Open Access Journals (Sweden)

    Loren P. Thompson

    2012-01-01

    Full Text Available Intrauterine stress induces increased risk of adult disease through fetal programming mechanisms. Oxidative stress can be generated by several conditions, such as, prenatal hypoxia, maternal under- and overnutrition, and excessive glucocorticoid exposure. The role of oxidant molecules as signaling factors in fetal programming via epigenetic mechanisms is discussed. By linking oxidative stress with dysregulation of specific target genes, we may be able to develop therapeutic strategies that protect against organ dysfunction in the programmed offspring.

  14. Radical-free biology of oxidative stress

    OpenAIRE

    2008-01-01

    Free radical-induced macromolecular damage has been studied extensively as a mechanism of oxidative stress, but large-scale intervention trials with free radical scavenging antioxidant supplements show little benefit in humans. The present review summarizes data supporting a complementary hypothesis for oxidative stress in disease that can occur without free radicals. This hypothesis, which is termed the “redox hypothesis,” is that oxidative stress occurs as a consequence of disruption of thi...

  15. Dietary avocado oil supplementation attenuates the alterations induced by type I diabetes and oxidative stress in electron transfer at the complex II-complex III segment of the electron transport chain in rat kidney mitochondria.

    Science.gov (United States)

    Ortiz-Avila, Omar; Sámano-García, Carlos Alberto; Calderón-Cortés, Elizabeth; Pérez-Hernández, Ismael H; Mejía-Zepeda, Ricardo; Rodríguez-Orozco, Alain R; Saavedra-Molina, Alfredo; Cortés-Rojo, Christian

    2013-06-01

    Impaired complex III activity and reactive oxygen species (ROS) generation in mitochondria have been identified as key events leading to renal damage during diabetes. Due to its high content of oleic acid and antioxidants, we aimed to test whether avocado oil may attenuate the alterations in electron transfer at complex III induced by diabetes by a mechanism related with increased resistance to lipid peroxidation. 90 days of avocado oil administration prevented the impairment in succinate-cytochrome c oxidoreductase activity caused by streptozotocin-induced diabetes in kidney mitochondria. This was associated with a protection against decreased electron transfer through high potential chain in complex III related to cytochromes c + c1 loss. During Fe(2+)-induced oxidative stress, avocado oil improved the activities of complexes II and III and enhanced the protection conferred by a lipophilic antioxidant against damage by Fe(2+). Avocado oil also decreased ROS generation in Fe(2+)-damaged mitochondria. Alterations in the ratio of C20:4/C18:2 fatty acids were observed in mitochondria from diabetic animals that not were corrected by avocado oil treatment, which yielded lower peroxidizability indexes only in diabetic mitochondria although avocado oil caused an augment in the total content of monounsaturated fatty acids. Moreover, a protective effect of avocado oil against lipid peroxidation was observed consistently only in control mitochondria. Since the beneficial effects of avocado oil in diabetic mitochondria were not related to increased resistance to lipid peroxidation, these effects were discussed in terms of the antioxidant activity of both C18:1 and the carotenoids reported to be contained in avocado oil.

  16. A meta-analysis of oxidative stress markers in schizophrenia

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Oxidative stress has been identified as a possible element in the neuropathological processes of schizophrenia(SCZ).Alteration of oxidative stress markers has been reported in SCZ studies,but with inconsistent results.To evaluate the risk of oxidative stress to schizophrenia,a meta-analysis was conducted,including five markers of oxidative stress [thiobarbituric reactive substances(TBARS),nitric oxide(NO),catalase(CAT),glutathione peroxidase(GP) and superoxide dismutase(SOD)] in SCZ patients versus healthy controls.This study showed that TBARS and NO significantly increased in SCZ,while SOD activity significantly decreased in the disorganized type of SCZ patients.No significant effect size was found for the activities of GP and CAT in SCZ patients(P>0.05).Egger’s regression test observed no significant publication bias across the oxidative stress markers,but found high heterogeneities in all the 5 markers.The subgroup analysis suggested that the ethnicity,sample size of patients and sample sources may contribute to the heterogeneity of the results for TBARS,NO and SOD.The result further demonstrated the involvement of oxidative stress in the pathophysiology of schizophrenia.

  17. In vivo induction of antioxidant response and oxidative stress associated with genotoxicity and histopathological alteration in two commercial fish species due to heavy metals exposure in northern India (Kali) river.

    Science.gov (United States)

    Fatima, Mahino; Usmani, Nazura; Firdaus, Fakiha; Zafeer, Mohammad Faraz; Ahmad, Shafeeque; Akhtar, Kafil; Dawar Husain, S M; Ahmad, Mir Hilal; Anis, Ehraz; Mobarak Hossain, M

    2015-01-01

    Heavy metals can significantly bioaccumulate in fish tissues. The step wise mechanism of heavy metal toxicities on fish health is still limited. The present study assessed the tissue-specific antioxidant response and oxidative stress biomarkers of commercially important fish species namely, Channa striatus and Heteropneustes fossilis inhabiting Kali River of northern India where heavy-metal load is beyond the World Health Organisation - maximum permissible limits. Heavy metals chromium (Cr), nickel (Ni), lead (Pb) and cadmium (Cd) were elevated in both fish species compared to recommended values of the Federal Environmental Protection Agency (FEPA), 1999 for edible fishes. Reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CATA) activities in all tissues (brachial, neural, renal and hepatic) were altered. Cellular lipid and protein compromisation in both fishes induced by heavy metals was determined by lipid peroxidation (LPO) and protein carbonylation (PC) assays. Micronucleus (MN) test of erythrocytes and comet assay of liver cells confirmed genotoxicity. Histopathology of the liver, kidney and brain of affected fishes was distorted significantly with its reference fishes thereby affecting the quality and quantity of these fish stocks. This raises a serious concern as these fishes are consumed by the local population which would ultimately affect human health.

  18. Association of mercury and selenium with altered glutathione metabolism and oxidative stress in diving ducks from the San Francisco Bay region

    Science.gov (United States)

    Hoffman, D.J.; Ohlendorf, H.M.; Marn, C.M.; Pendleton, G.W.

    1998-01-01

    Adult male greater scaup (Aythya marila) (GS), surf scoters (Melanitta perspicillata)(SS), and ruddy ducks (Oxyura jamaicensis) (RD) were collected from Suisun Bay and coastal Tomales Bay in the greater San Francisco Bay area to assess exposure to inorganic contaminants. Hepatic selenium (Se) concentrations were highest in GS (geometric mean = 67 ppm, dw) and SS (119 ppm) in Suisun Bay, whereas hepatic mercury (Hg) was highest (19 ppm) in GS and SS from Tomales Bay. Hepatic Se and Hg were lower in RD and did not differ between locations. Hepatic supernatants were assayed for enzymes related to glutathione metabolism and antioxidant activity including: glucose-6-phosphate dehydrogenase (G-6-PDH), glutathione peroxidase (GSH-peroxidase), glutathione reductase (GSSG-reductase), and glutathione-S-transferase (GSH-transferase). GSH-peroxidase activity was higher in SS and RD, and G-6-PDH higher in GS and SS from Suisun Bay than Tomales Bay. GSSG-reductase was higher in SS from Suisun Bay. The ratio of oxidized glutathione (GSSG) to reduced glutathione (GSH) was greater in all species from Tomales Bay. The following significant relationships were found in one or more species with increasing hepatic Hg concentration: lower body, liver and heart weights; decreased hepatic GSH concentration, G-6-PDH and GSH-peroxidase activities; increased ratio of GSSG to GSH, and increased GSSG-reductase activity. With increasing hepatic Se concentration, GSH-peroxidase increased but GSH decreased. It is concluded that measurement of associated enzymes in conjunction with thiol status may be a useful bioindicator to discriminate between Hg and Se effects. Concentrations of mercury and selenium and variable affected have been associated with adverse effects on reproduction and neurological function in experimental studies with mallards.

  19. Less Stress : Oxidative stress and glutathione kinetics in preterm infants

    NARCIS (Netherlands)

    D. Rook (Denise)

    2013-01-01

    textabstractDue to immature antioxidant defenses, preterm infants are at susceptible to oxidative stress, which is associated with bronchopulmonary dysplasia, retinopathy of prematurity and periventricular leukomalacia. The general aim of this thesis was to study oxidative stress in preterm infants

  20. Intestinal Oxidative State Can Alter Nutrient and Drug Bioavailability

    Directory of Open Access Journals (Sweden)

    Faria Ana

    2009-01-01

    Full Text Available Organic cations (OCs are substances of endogenous (e.g., dopamine, choline or exogenous (e.g., drugs like cimetidine origin that are positively charged at physiological ph. since many of these compounds can not pass the cell membrane freely, their transport in or out of cells must be mediated by specific transport systems. Transport by organic cation transporters (OCTs can be regulated rapidly by altering their trafficking and/or affinities in response to stimuli. However, for example, a specific disease could lead to modifications in the expression of OCTs. Chronic exposure to oxidative stress has been suggested to alter regulation and functional activity of proteins through several pathways. According to results from a previous work, oxidation-reduction pathways were thought to be involved in intestinal organic cation uptake modulation. The present work was performed in order to evaluate the influence of oxidative stressors, especially glutathione, on the intestinal organic cation absorption. For this purpose, the effect of compounds with different redox potential (glutathione, an endogenous antioxidant, and procyanidins, diet antioxidants was assessed on MPP+ (1-methyl-4-phenylpyridinium iodide uptake in an enterocyte cell line (Caco-2. Caco-2 cells were subcultured with two different media conditions (physiological: 5 mM glucose, referred as control cells; and high-glucose: 25 mM glucose, referred as HG cells. In HG cells, the uptake was significantly lower than in control cells. Redox changing interventions affected Mpp+ uptake, both in control and in high-glucose Caco-2 cells. Cellular glutathione levels could have an important impact on membrane transporter activity. The results indicate that modifications in the cellular oxidative state modulate MPP+ uptake by Caco-2 cells. Such modifications may reflect in changes of nutrient and drug bioavailability.

  1. Stress alters personal moral decision making.

    Science.gov (United States)

    Youssef, Farid F; Dookeeram, Karine; Basdeo, Vasant; Francis, Emmanuel; Doman, Mekaeel; Mamed, Danielle; Maloo, Stefan; Degannes, Joel; Dobo, Linda; Ditshotlo, Phatsimo; Legall, George

    2012-04-01

    While early studies of moral decision making highlighted the role of rational, conscious executive processes involving frontal lobe activation more recent work has suggested that emotions and gut reactions have a key part to play in moral reasoning. Given that stress can activate many of the same brain regions that are important for and connected to brain centres involved in emotional processing we sought to evaluate if stress could influence moral decision making. Sixty-five undergraduate volunteers were randomly assigned to control (n=33) and experimental groups (n=32). The latter underwent the Trier Social Stress Test (TSST) and induction of stress was assessed by measurement of salivary cortisol levels. Subjects were then required to provide a response to thirty moral dilemmas via a computer interface that recorded both their decision and reaction time. Three types of dilemmas were used: non-moral, impersonal moral and personal moral. Using a binary logistic model there were no significant predicators of utilitarian response in non-moral and impersonal moral dilemmas. However the stressed group and females were found to predict utilitarian responses to personal moral dilemmas. When comparing percentage utilitarian responses there were no significant differences noted for the non-moral and impersonal moral dilemmas but the stressed group showed significantly less utilitarian responses compared to control subjects. The stress response was significantly negatively correlated with utilitarian responses. Females also showed significantly less utilitarian responses than males. We conclude that activation of the stress response predisposed participants to less utilitarian responses when faced with high conflict personal moral dilemmas and suggest that this offers further support for dual process theory of moral judgment. We also conclude that females tend to make less utilitarian personal moral decisions compared to males, providing further evidence that there are

  2. Oxidative stress in primary glomerular diseases

    DEFF Research Database (Denmark)

    Markan, Suchita; Kohli, Harbir Singh; Sud, Kamal;

    2008-01-01

    To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure.......To evaluate the status of oxidative stress in patients with different primary glomerular diseases (PGD) which have differential predisposition to renal failure....

  3. Chronic unpredictable stress deteriorates the chemopreventive efficacy of pomegranate through oxidative stress pathway.

    Science.gov (United States)

    Hasan, Shirin; Suhail, Nida; Bilal, Nayeem; Ashraf, Ghulam Md; Zaidi, Syed Kashif; AlNohair, Sultan; Banu, Naheed

    2016-05-01

    Chronic unpredictable stress (CUS) can influence the risk and progression of cancer through increased oxidative stress. Pomegranate is known to protect carcinogenesis through its anti-oxidative properties. This study is carried out to examine whether CUS affects the chemopreventive potential of pomegranate through oxidative stress pathway. Role of CUS on early stages of 7, 12 dimethyl benz(a) anthracene (DMBA) induced carcinogenesis, and its pre-exposure effect on chemopreventive efficacy of pomegranate juice (PJ) was examined in terms of in vivo antioxidant and biochemical parameters in Swiss albino rats. Rats were divided in various groups and were subjected to CUS paradigm, DMBA administration (65 mg/kg body weight, single dose), and PJ treatment. Exposure to stress (alone) and DMBA (alone) led to increased oxidative stress by significantly decreasing the antioxidant enzymes activities and altering the glutathione (GSH), malondialdehyde (MDA), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) levels. A significant increase in DNA damage demonstrated by comet assay was seen in the liver cells. Stress exposure to DMBA-treated rats further increased the oxidative stress and disturbed the biochemical parameters as compared to DMBA (alone)-treated rats. Chemoprevention with PJ in DMBA (alone)-treated rats restored the altered parameters. However, in the pre-stress DMBA-treated rats, the overall antioxidant potential of PJ was significantly diminished. Our results indicate that chronic stress not only increases the severity of carcinogenesis but also diminishes the anti-oxidative efficacy of PJ. In a broader perspective, special emphasis should be given to stress management and healthy diet during cancer chemoprevention.

  4. Oxidative stress response in sugarcane

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Soares Netto

    2001-12-01

    Full Text Available Oxidative stress response in plants is still poorly understood in comparison with the correspondent phenomenon in bacteria, yeast and mammals. For instance, nitric oxide is assumed to play various roles in plants although no nitric oxide synthase gene has yet been isolated. This research reports the results of a search of the sugarcane expressed sequence tag (SUCEST database for homologous sequences involved in the oxidative stress response. I have not found any gene similar to nitric oxide synthase in the SUCEST database although an alternative pathway for nitric oxide synthesis was proposed. I have also found several genes involved in antioxidant defense, e.g. metal chelators, low molecular weight compounds, antioxidant enzymes and repair systems. Ascorbate (vitamin C is a key antioxidant in plants because it reaches high concentrations in cells and is a substrate for ascorbate peroxidase, an enzyme that I found in different isoforms in the SUCEST database. I also found many enzymes involved in the biosynthesis of low molecular weight antioxidants, which may be potential targets for genetic manipulation. The engineering of plants for increased vitamin C and E production may lead to improvements in the nutritional value and stress tolerance of sugarcane. The components of the antioxidant defense system interact and their synthesis is probably closely regulated. Transcription factors involved in regulation of the oxidative stress response in bacteria, yeast and mammals differ considerably among themselves and when I used them to search the SUCEST database only genes with weak similarities were found, suggesting that these transcription regulators are not very conserved. The involvement of reactive oxygen species and antioxidants in plant defense against pathogens is also discussed.A resposta ao estresse oxidativo não é bem conhecida em plantas como em bactérias, leveduras e humanos. Por exemplo, assume-se que óxido nítrico tem várias fun

  5. Thoracic radiography and oxidative stress indices in heartworm affected dogs

    Directory of Open Access Journals (Sweden)

    P. K. Rath

    2014-09-01

    Full Text Available Aim: The aim was to study the pathomorphological changes through thoracic radiography and status of oxidative stress parameters in heartworm affected dogs in Odisha. Materials and Methods: A total of 16 dogs with clinically established diagnosis of dirofilariasis by wet blood smear and modified Knott’s test and equal numbers of dogs as control were included in this study. The present study was conducted in heartworm affected dogs to see the pathomorphological changes through thoracic radiography. Similarly, the evaluation was undertaken for observing any alterations in oxidative stress status in affected as well as non-affected, but healthy control dogs by adopting standard procedure. Results: Thoracic radiography revealed cardiac enlargement, round heart appearance suggestive of right ventricular hypertrophy, tortuous pulmonary artery and darkening of lungs. Alterations in oxidative stress indices showed a significant rise of lipid peroxidase activity, non-significant rise of superoxide dismutase and a significant although reverse trend for catalase levels in affected dogs in comparison to Dirofilaria negative control but apparently healthy dogs. Conclusions: Radiographic changes, as well as alterations in oxidative stress parameters, may not be diagnostic for heartworm infection, but useful for detecting heartworm disease, assessing severity and evaluating cardiopulmonary parenchyma changes and gives a fair idea about the degree of severity of the disease. It aids as contributing factors in disease pathogenesis.

  6. Simvastatin and oxidative stress in humans

    DEFF Research Database (Denmark)

    Rasmussen, Sanne Tofte; Andersen, Jon Thor Trærup; Nielsen, Torben Kjær;

    2016-01-01

    in mitochondrial respiratory complexes I and II and might thereby reduce the formation of reactive oxygen species, which have been implicated in the pathogenesis of arteriosclerosis. Therefore, we hypothesized that simvastatin may reduce oxidative stress in humans in vivo. We conducted a randomized, double......-blinded, placebo-controlled study in which subjects were treated with either 40 mg of simvastatin or placebo for 14 days. The endpoints were six biomarkers for oxidative stress, which represent intracellular oxidative stress to nucleic acids, lipid peroxidation and plasma antioxidants, that were measured in urine...... in parallel with the reduction in plasma cholesterol. In healthy young male volunteers, short-term simvastatin treatment, which considerably reduces cholesterol, does not lead to a clinically relevant reduction in a panel of measures of oxidative stress. Whether simvastatin has effects on oxidative stress...

  7. Anticholinesterase Toxicity and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Dejan Milatovic

    2006-01-01

    Full Text Available Anticholinesterase compounds, organophosphates (OPs and carbamates (CMs are commonly used for a variety of purposes in agriculture and in human and veterinary medicine. They exert their toxicity in mammalian system primarily by virtue of acetylcholinesterase (AChE inhibition at the synapses and neuromuscular junctions, leading into the signs of hypercholinergic preponderance. However, the mechanism(s involved in brain/muscle damage appear to be linked with alteration in antioxidant and the scavenging system leading to free radical-mediated injury. OPs and CMs cause excessive formation of F2-isoprostanes and F4-neuroprostanes, in vivo biomarkers of lipid peroxidation and generation of reactive oxygen species (ROS, and of citrulline, a marker of NO/NOS and reactive nitrogen species (RNS generation. In addition, during the course of these excitatory processes and inhibition of AChE, a high rate of ATP consumption, coupled with the inhibition of oxidative phosphorylation, compromise the cell's ability to maintain its energy levels and excessive amounts of ROS and RNS may be generated. Pretreatment with N-methyl D-aspartate (NMDA receptor antagonist memantine, in combination with atropine sulfate, provides significant protection against inhibition of AChE, increases of ROS/RNS, and depletion of high-energy phosphates induced by DFP/carbofuran. Similar antioxidative effects are observed with a spin trapping agent, phenyl-N-tert-butylnitrone (PBN or chain breaking antioxidant vitamin E. This review describes the mechanisms involved in anticholinesterase-induced oxidative/nitrosative injury in target organs of OPs/CMs, and protection by various agents.

  8. A STUDY OF OXIDATIVE STRESS IN DIABETES

    Directory of Open Access Journals (Sweden)

    Babu Rao

    2015-06-01

    Full Text Available Non - enzymatic free radical mediated oxidation of biological molecules, membranes and tissues is associated with a variety of pathological events such as cancer, aging and diabetes mellitus . [1] Increased oxidative stress is seen in both types of diabetes me llitus namely type 1 and type 2, irrespective of duration, complications and treatment. In diabetes mellitus, oxidative stress seems primarily due to both an increased plasma free radical concentration and a sharp decline in antioxidant defences . [1] Among the causes of enhanced free radical production, hyperglycemia and hyper insulinemia seem to play a major role , [2,3] Hyperglycemia is the more easily modifiable factor among the two and good glycemic control can reduce the oxidative stress. Controversy pers ists regarding the other possible mechanisms of increased oxidative stress in diabetes and whether oxidative stress normalizes with adequate metabolic control alone. The role of oxidative stress and diabetic complications has been extensively investigated. Oxidative stress has been suggested to be involved in the genesis of both macro and micro angiopathy [4,5] Prospective trials are now underway addressing the controversial issues of possible role of pharmacological antioxidants in preventing or at least de laying the onset of diabetic complications.

  9. Metal-related oxidative stress in birds

    Energy Technology Data Exchange (ETDEWEB)

    Koivula, Miia J., E-mail: miikoi@utu.f [Department of Biology, Section of Ecology, University of Turku, FI-20014 Turku (Finland); Eeva, Tapio, E-mail: teeva@utu.f [Department of Biology, Section of Ecology, University of Turku, FI-20014 Turku (Finland)

    2010-07-15

    Metals can cause oxidative stress by increasing the formation of reactive oxygen species (ROS), which render antioxidants incapable of defence against growing amounts of free radicals. Metal toxicity is related to their oxidative state and reactivity with other compounds. Our aim is to review the mechanisms on how metals cause oxidative stress and what is known about metal-induced oxidative stress in wildlife. Taking birds as model organisms, we summarize the mechanisms responsible for antioxidant depletion and give a view of how to detect metal-induced oxidative stress in birds by using different biomarkers. The mechanisms producing the harmful effects of oxidative stress are complex with different biomolecular mechanisms associated with ecotoxicological and ecological aspects. The majority of the studies concerning metals and ROS related to oxidative stress have focused on the biomolecular level, but little is known about the effects at the cellular level or at the level of individuals or populations. - Free-living birds can be used as effective indicators of metal-induced oxidative stress.

  10. Is the Oxidative Stress Really a Disease?

    Directory of Open Access Journals (Sweden)

    Fogarasi Erzsébet

    2016-03-01

    Full Text Available Oxidative stress is an imbalance between free radicals or other reactive species and the antioxidant activity of the organism. Oxidative stress can induce several illnesses such as cardiovascular disease, neurodegenerative disorders, diabetes, cancer, Alzheimer and Parkinson. The biomarkers of oxidative stress are used to test oxidative injury of biomolecules. The indicators of lipid peroxidation (malondialdehyde, 4-hydroxy- 2-nonenal, 2-propenal, isoprostanes, of protein oxidation (carbonylated proteins, tyrosine derivatives, of oxidative damage of DNA, and other biomarkers (glutathione level, metallothioneins, myeloperoxidase activity are the most used oxidative stress markers. Diseases caused by oxidative stress can be prevented with antioxidants. In human body are several enzymes with antioxidant capacity (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and spin traps. Antioxidants are synthetized in the organism (glutathione or arrive in the body by nutrition (ascorbic acid, vitamin E, carotenoids, flavonoids, resveratrol, xanthones. Different therapeutic strategies to reduce oxidative stress with the use of synthetic molecules such as nitrone-based antioxidants (phenyl-α-tert-butyl-nitrone (PBN, 2,4-disulphophenyl- N-tert-butylnitrone (NXY-059, stilbazulenyl nitrone (STAZN, which scavenge a wide variety of free radical species, increase endogenous antioxidant levels and inhibits free radical generation are also tested in animal models.

  11. Oxidative stress in the neonate.

    Science.gov (United States)

    Robles, R; Palomino, N; Robles, A

    2001-11-01

    The aim of this study is to determine the oxidative state of term and preterm neonates at the moment of birth and during the first days of life, and the influence of exposure to oxygen on the premature neonates.A total of 20 neonates were selected. Group A: 10 healthy full-term neonates, and Group B: 10 preterm neonates with no other pathology associated, requiring oxygen therapy. Venous samples were taken in cord at 3 and 72 h in Group A, and in cord at 3, 24 and 72 h and 7 days in Group B.Hydroperoxides, Q10 coenzyme (Co Q10) and alpha-tocopherol were measured within the erythrocyte membrane. Levels of hydroperoxides present in erythrocyte membrane were higher than normal both in Group A and in Group B at birth. This increase was greater in the group of premature neonates. Levels of alpha-tocopherol at birth increase significantly at 72 h in term neonates. Among the premature newborns, alpha-tocopherol levels are two to three times lower at birth and do not rise to higher levels as in the term neonate group. Fall in levels of Co Q10 in erythrocyte membranes is observed, and perhaps is due to the role of Co Q10 in maintaining the pool of reduced tocopherol. At birth, the neonate presents an increase of markers of oxidative stress and a decrease of their antioxidant defenses. This difference is greater as gestational age decreases. The application of oxygen therapy resulted in these levels which remain low throughout the study period.

  12. Oxidative-stress-induced epigenetic changes in chronic diabetic complications.

    Science.gov (United States)

    Feng, Biao; Ruiz, Michael Anthony; Chakrabarti, Subrata

    2013-03-01

    Oxidative stress plays an important role in the development and progression of chronic diabetic complications. Diabetes causes mitochondrial superoxide overproduction in the endothelial cells of both large and small vessels. This increased superoxide production causes the activation of several signal pathways involved in the pathogenesis of chronic complications. In particular, endothelial cells are major targets of glucose-induced oxidative damage in the target organs. Oxidative stress activates cellular signaling pathways and transcription factors in endothelial cells including protein kinase C (PKC), c-Jun-N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), forkhead box O (FOXO), and nuclear factor kappa-B (NF-κB). Oxidative stress also causes DNA damage and activates DNA nucleotide excision repair enzymes including the excision repair cross complimenting 1(ERCC1), ERCC4, and poly(ADP-ribose) polymerase (PARP). Augmented production of histone acetyltransferase p300, and alterations of histone deacetylases, including class III deacetylases sirtuins, are also involved in this process. Recent research has found that small noncoding RNAs, like microRNA, are a new kind of regulator associated with chronic diabetic complications. There are extensive and complicated interactions and among these molecules. The purpose of this review is to demonstrate the role of oxidative stress in the development of diabetic complications in relation to epigenetic changes such as acetylation and microRNA alterations.

  13. Is the oxidative stress theory of aging dead?

    Science.gov (United States)

    Pérez, Viviana I; Bokov, Alex; Van Remmen, Holly; Mele, James; Ran, Qitao; Ikeno, Yuji; Richardson, Arlan

    2009-10-01

    Currently, the oxidative stress (or free radical) theory of aging is the most popular explanation of how aging occurs at the molecular level. While data from studies in invertebrates (e.g., C. elegans and Drosophila) and rodents show a correlation between increased lifespan and resistance to oxidative stress (and in some cases reduced oxidative damage to macromolecules), direct evidence showing that alterations in oxidative damage/stress play a role in aging are limited to a few studies with transgenic Drosophila that overexpress antioxidant enzymes. Over the past eight years, our laboratory has conducted an exhaustive study on the effect of under- or overexpressing a large number and wide variety of genes coding for antioxidant enzymes. In this review, we present the survival data from these studies together. Because only one (the deletion of the Sod1 gene) of the 18 genetic manipulations we studied had an effect on lifespan, our data calls into serious question the hypothesis that alterations in oxidative damage/stress play a role in the longevity of mice.

  14. Nanoparticle Inhalation Increases Microvascular Oxidative Stress and Compromises Nitric Oxide Bioavailability

    Science.gov (United States)

    We have shown that pulmonary nanoparticle exposure impairs endothelium dependent dilation in systemic arterioles. However, the mechanism(s) through which this effect occurs are unclear. The purpose of this study was to identify alterations in the production of oxidative stress an...

  15. Computer diagnosis in cardiology: Oxidative stress hypothesis

    Directory of Open Access Journals (Sweden)

    Ezekiel Uba Nwose

    2009-10-01

    Full Text Available Background: Virtual scanning is one of the emerging technologies in complementary medicine practice. The diagnostic principle is hinged on perception and ultra weak light emission, while the treatment options associated with it includes diet, flash light, exercise and relaxation. However, a mechanism that links the diagnostic and treatment principles has yet to be elucidated. Aims: The objective here is to further explanation of oxidative stress concept as the biochemical basis of the technology. Materials and Methods: Using available literature and basic science textbook, the function of the hypothalamus-pituitary-adrenalin axis as neuro-endocrine physiological system that is strongly linked to the rate of alterations in biochemical processes through to cardiovascular complications is articulated. Results: The hypothesis brings to fore the potential of using the alterations in biochemical processes associated with cognition as tool to validate the Virtual Scanning technology for possible incorporation into clinical practice. Or vice versa to use Virtual Scanning technology to determine the chemiluminescence-related biochemical changes resulting from pathologies that could benefit from relaxation, light therapy, exercise and antioxidant nutrition. Conclusions: This article advances the applicability of cognitive test procedure for indication of the disease(s affecting heart function. The implication for some laboratory indices that are already available in clinical practice is highlighted. Investigation of this hypothesis will help provide clear link between plausible mechanism and the theory proposed.

  16. Computer diagnosis in cardiology: Oxidative stress hypothesis

    Directory of Open Access Journals (Sweden)

    Ezekiel Uba Nwose

    2009-01-01

    Full Text Available Background : Virtual scanning is one of the emerging technologies in complementary medicine practice. The diagnostic principle is hinged on perception and ultra weak light emission, while the treatment options associated with it includes diet, flash light, exercise and relaxation. However, a mechanism that links the diagnostic and treatment principles has yet to be elucidated. Aims: The objective here is to further explanation of oxidative stress concept as the biochemical basis of the technology. Materials and Methods: Using available literature and basic science textbook, the function of the hypothalamus-pituitary-adrenalin axis as neuro-endocrine physiological system that is strongly linked to the rate of alterations in biochemical processes through to cardiovascular complications is articulated. Results: The hypothesis brings to fore the potential of using the alterations in biochemical processes associated with cognition as tool to validate the Virtual Scanning technology for possible incorporation into clinical practice. Or vice versa to use Virtual Scanning technology to determine the chemiluminescence-related biochemical changes resulting from pathologies that could benefit from relaxation, light therapy, exercise and antioxidant nutrition. Conclusions: This article advances the applicability of cognitive test procedure for indication of the disease(s affecting heart function. The implication for some laboratory indices that are already available in clinical practice is highlighted. Investigation of this hypothesis will help provide clear link between plausible mechanism and the theory proposed.

  17. Influence of Oxidative Stress on Stored Platelets

    Directory of Open Access Journals (Sweden)

    K. Manasa

    2016-01-01

    Full Text Available Platelet storage and its availability for transfusion are limited to 5-6 days. Oxidative stress (OS is one of the causes for reduced efficacy and shelf-life of platelets. The studies on platelet storage have focused on improving the storage conditions by altering platelet storage solutions, temperature, and materials. Nevertheless, the role of OS on platelet survival during storage is still unclear. Hence, this study was conducted to investigate the influence of storage on platelets. Platelets were stored for 12 days at 22°C. OS markers such as aggregation, superoxides, reactive oxygen species, glucose, pH, lipid peroxidation, protein oxidation, and antioxidant enzymes were assessed. OS increased during storage as indicated by increments in aggregation, superoxides, pH, conjugate dienes, and superoxide dismutase and decrements in glucose and catalase. Thus, platelets could endure OS till 6 days during storage, due to the antioxidant defense system. An evident increase in OS was observed from day 8 of storage, which can diminish the platelet efficacy. The present study provides an insight into the gradual changes occurring during platelet storage. This lays the foundation towards new possibilities of employing various antioxidants as additives in storage solutions.

  18. Today’s oxidative stress markers

    Directory of Open Access Journals (Sweden)

    Marta Czerska

    2015-07-01

    Full Text Available Oxidative stress represents a situation where there is an imbalance between the reactive oxygen species (ROS and the availability and the activity of antioxidants. This balance is disturbed by increased generation of free radicals or decreased antioxidant activity. It is very important to develop methods and find appropriate biomarkers that may be used to assess oxidative stress in vivo. It is significant because appropriate measurement of such stress is necessary in identifying its role in lifestyle-related diseases. Previously used markers of oxidative stress, such as thiobarbituric acid reactive substances (TBARS or malondialdehyde (MDA, are progressively being supplemented by new ones, such as isoprostanes (IsoPs and their metabolites or allantoin. This paper is focusing on the presentation of new ones, promising markers of oxidative stress (IsoPs, their metabolites and allantoin, taking into account the advantage of those markers over markers used previously. Med Pr 2015;66(3:393–405

  19. Oxidative Stress Related Diseases in Newborns

    Directory of Open Access Journals (Sweden)

    Yasemin Ozsurekci

    2016-01-01

    Full Text Available We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases.

  20. Clinical Relevance of Biomarkers of Oxidative Stress

    DEFF Research Database (Denmark)

    Frijhoff, Jeroen; Winyard, Paul G; Zarkovic, Neven;

    2015-01-01

    SIGNIFICANCE: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino...... acids. RECENT ADVANCES: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES: The literature is very heterogeneous....... It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured...

  1. Interferon-¿ regulates oxidative stress during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Espejo, C.; Penkowa, Milena; Saez-Torres, I.;

    2002-01-01

    Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress......Neurobiology, experimental autoimmune encephalomyelitis IFN-d, multiple sclerosis, neurodegeneration, oxidative stress...

  2. Prenatal stress alters amygdala functional connectivity in preterm neonates.

    Science.gov (United States)

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Sze, Gordon; Sinha, Rajita; Constable, R Todd; Ment, Laura R

    2016-01-01

    Exposure to prenatal and early-life stress results in alterations in neural connectivity and an increased risk for neuropsychiatric disorders. In particular, alterations in amygdala connectivity have emerged as a common effect across several recent studies. However, the impact of prenatal stress exposure on the functional organization of the amygdala has yet to be explored in the prematurely-born, a population at high risk for neuropsychiatric disorders. We test the hypothesis that preterm birth and prenatal exposure to maternal stress alter functional connectivity of the amygdala using two independent cohorts. The first cohort is used to establish the effects of preterm birth and consists of 12 very preterm neonates and 25 term controls, all without prenatal stress exposure. The second is analyzed to establish the effects of prenatal stress exposure and consists of 16 extremely preterm neonates with prenatal stress exposure and 10 extremely preterm neonates with no known prenatal stress exposure. Standard resting-state functional magnetic resonance imaging and seed connectivity methods are used. When compared to term controls, very preterm neonates show significantly reduced connectivity between the amygdala and the thalamus, the hypothalamus, the brainstem, and the insula (p cortex (p subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  3. Oxidative stress and the ageing endocrine system.

    Science.gov (United States)

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  4. Fipronil insecticide toxicology: oxidative stress and metabolism.

    Science.gov (United States)

    Wang, Xu; Martínez, María Aránzazu; Wu, Qinghua; Ares, Irma; Martínez-Larrañaga, María Rosa; Anadón, Arturo; Yuan, Zonghui

    2016-11-01

    Fipronil (FIP) is widely used across the world as a broad-spectrum phenylpyrazole insecticide and veterinary drug. FIP was the insecticide to act by targeting the γ-aminobutyric acid (GABA) receptor and has favorable selective toxicity towards insects rather than mammals. However, because of accidental exposure, incorrect use of FIP or widespread FIP use leading to the contamination of water and soil, there is increasing evidence that FIP could cause a variety of toxic effects on animals and humans, such as neurotoxic, hepatotoxic, nephrotoxic, reproductive, and cytotoxic effects on vertebrate and invertebrates. In the last decade, oxidative stress has been suggested to be involved in the various toxicities induced by FIP. To date, few reviews have addressed the toxicity of FIP in relation to oxidative stress. The focus of this article is primarily intended to summarize the progress in research associated with oxidative stress as a possible mechanism for FIP-induced toxicity as well as metabolism. The present review reports that studies have been conducted to reveal the generation of reactive oxygen species (ROS) and oxidative stress as a result of FIP treatment and have correlated them with various types of toxicity. Furthermore, the metabolism of FIP was also reviewed, and during this process, various CYP450 enzymes were involved and oxidative stress might occur. The roles of various compounds in protecting against FIP-induced toxicity based on their anti-oxidative effects were also summarized to further understand the role of oxidative stress in FIP-induced toxicity.

  5. Adaptogenic potential of curcumin in experimental chronic stress and chronic unpredictable stress-induced memory deficits and alterations in functional homeostasis.

    Science.gov (United States)

    Bhatia, Nitish; Jaggi, Amteshwar Singh; Singh, Nirmal; Anand, Preet; Dhawan, Ravi

    2011-07-01

    The present study was designed to investigate the role of curcumin in chronic stress and chronic unpredictable stress-induced memory deficits and alteration of functional homeostasis in mice. Chronic stress was induced by immobilizing the animal for 2 h daily for 10 days, whereas chronic unpredictable stress was induced by employing a battery of stressors of variable magnitude and time for 10 days. Curcumin was administered to drug-treated mice prior to induction of stress. Body weight, adrenal gland weight, ulcer index and biochemical levels of glucose, creatine kinase, cholesterol, corticosterone, thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) were evaluated to assess stress-induced functional changes. Memory deficits were evaluated using the elevated plus maze (EPM) model. Chronic stress and chronic unpredictable stress significantly increased the levels of corticosterone, glucose and creatine kinase and decreased cholesterol levels. Moreover, chronic stress and chronic unpredictable stress resulted in severe memory deficits along with adrenal hypertrophy, weight loss and gastric ulceration. Chronic stress and chronic unpredictable stress also increased oxidative stress assessed in terms of increase in TBARS and decrease in GSH levels. Pretreatment with curcumin (25 and 50 mg/kg p.o.) attenuated chronic stress and chronic unpredictable stress-associated memory deficits, biochemical alterations, pathological outcomes and oxidative stress. It may be concluded that curcumin-mediated antioxidant actions and decrease in corticosterone secretion are responsible for its adaptogenic and memory restorative actions in chronic and chronic unpredictable stress.

  6. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    Directory of Open Access Journals (Sweden)

    Alexandra Avloniti

    2017-01-01

    Full Text Available Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.

  7. Pulmonary oxidative stress, inflammation and dysregulated iron homeostatis in rat models of cardiovascular disease

    Science.gov (United States)

    Underlying cardiovascular disease (CVD) is considered a risk factor for the exacerbation of air pollution health effects. Therefore, rodent models of CVD are increasingly used to examine mechanisms ofvariation in susceptibility. Pulmonary oxidative stress, inflammation and altere...

  8. Chinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats

    Directory of Open Access Journals (Sweden)

    Wajdy Al-Awaida

    2014-10-01

    Conclusion: Exposure of albino rat model to cigarette smoke caused oxidative stress, altered the cellular antioxidant defense system, induced apoptosis in lung tissue, inflammation and tissues damage, which could be prevented by supplementation of CGT.

  9. Oxidative stress and bivalves: a proteomic approach

    Directory of Open Access Journals (Sweden)

    B McDonagh

    2008-09-01

    Full Text Available Bivalves are of major importance in aquatic ecology, aquaculture, are widely used as sentinel species in environmental toxicology and show remarkable plasticity to molecular oxygen. Excess reactive oxygen species (ROS arising from molecular oxygen can cause oxidative stress and this is also a consequence of exposure to many common environmental pollutants. Indices of oxidative stress have therefore found favor as biomarkers of exposure and effect in environmental toxicology. However, there is a growing body of literature on the use of discovery-led proteomics methods to detect oxidative stress in bivalves. This is because proteins absorb up to 70 % of ROS leading to complication of the proteome. This article explores the background to these developments and assesses the practice and future potential of proteomics in the study of oxidative stress in bivalves.

  10. LINK BETWEEN OXIDATIVE STRESS AND INSULIN RESISTANCE

    Institute of Scientific and Technical Information of China (English)

    Lan-fang Li; Jian Li

    2007-01-01

    Many studies on oxidative stress, insulin resistance, and antioxidant treatment have shown that increased oxidative stress may accelerate the development of diabetic complications through the excessive glucose and free fatty acids metabolism in diabetic and insulin-resistant states. Many pathogenic mechanisms such as insulin receptor substrate phosphorylation are involved in insulin resistance induced by oxidative stress. And antioxidant treatments can show benefits in animal models of diabetes mellitus and insulin resistance. However, negative evidence from large clinical trials suggests that new and more powerful antioxidants need to be studied to demonstrate whether antioxidants can be effective in treating diabetic complications. Furthermore, it appears that oxidative stress is only one of the factors contributing to diabetic complications. Thus, antioxidant treatment would most likely be more effective if it were coupled with other treatments for diabetic complications.

  11. Studies on effect of stress preconditioning in restrain stress-induced behavioral alterations.

    Science.gov (United States)

    Kaur, Rajneet; Jaggi, Amteshwar Singh; Singh, Nirmal

    2010-02-01

    Stress preconditioning has been documented to confer on gastroprotective effects on stress-induced gastric ulcerations. However, the effects of prior exposure of stress preconditioning episodes on stress-induced behavioral changes have not been explored yet. Therefore the present study was designed to investigate the ameliorative effects of stress preconditioning in immobilization stress-induced behavioral alterations in rats. The rats were subjected to restrain stress by placing in restrainer (5.5 cm in diameter and 18 cm in length) for 3.5 h. Stress preconditioning was induced by subjecting the rats to two cycles of restraint and restrain-free periods of 15 min each. Furthermore, a similar type of stress preconditioning was induced using different time cycles of 30 and 45 min. The extent and severity of the stress-induced behavioral alterations were assessed using different behavioral tests such as hole-board test, social interaction test, open field test, and actophotometer. Restrain stress resulted in decrease in locomotor activity, frequency of head dips and rearing in hole board, line crossing and rearing in open field, and decreased following and increased avoidance in social interaction test. Stress preconditioning with two cycles of 15, 30 or 45 min respectively, did not attenuate stress-induced behavioral changes to any extent. It may be concluded that stress preconditioning does not seem to confer any protective effect in modulating restrain stress-induced behavioral alterations.

  12. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress

    DEFF Research Database (Denmark)

    Kästle, Marc; Reeg, Sandra; Rogowska-Wrzesinska, Adelina;

    2012-01-01

    After oxidative stress proteins which are oxidatively modified are degraded by the 20S proteasome. However, several studies documented an enhanced ubiquitination of yet unknown proteins. Since ubiqutination is a prerequisite for degradation by the 26S proteasome in an ATP-dependent manner......, we were able to confirm an increase of ubiquitinated proteins 16h upon oxidative stress. Therefore, we isolated ubiquitinated proteins from hydrogen peroxide treated cells, as well as from control and lactacystin, an irreversible proteasome inhibitor, treated cells, and identified some......, ubiquitinated proteins confirm the thesis that ubiquitination upon oxidative stress is no random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins....

  13. Role of Oxidative Stress in Prostate Cancer

    OpenAIRE

    Khandrika, Lakshmipathi; Kumar, Binod; Koul, Sweaty; Maroni, Paul; Koul, Hari K.

    2009-01-01

    As prostate cancer and aberrant changes in reactive oxygen species (ROS) become more common with aging, ROS signaling may play an important role in the development and progression of this malignancy. Increased ROS, otherwise known as oxidative stress, is a result of either increased ROS generation or a loss of antioxidant defense mechanisms. Oxidative stress is associated with several pathological conditions including inflammation and infection. ROS are products of normal cellular metabolism ...

  14. Oxidative stress effects of thinner inhalation

    OpenAIRE

    2011-01-01

    Thinners are chemical mixtures used as industrial solvents. Humans can come into contact with thinner by occupational exposure or by intentional inhalation abuse. Thinner sniffing causes damage to the brain, kidney, liver, lung, and reproductive system. We discuss some proposed mechanism by which thinner induces damage. Recently, the induction of oxidative stress has been suggested as a possible mechanism of damage. This paper reviews the current evidence for oxidative stress effects induced ...

  15. Oxidative stress and bivalves: a proteomic approach

    OpenAIRE

    2008-01-01

    Bivalves are of major importance in aquatic ecology, aquaculture, are widely used as sentinel species in environmental toxicology and show remarkable plasticity to molecular oxygen. Excess reactive oxygen species (ROS) arising from molecular oxygen can cause oxidative stress and this is also a consequence of exposure to many common environmental pollutants. Indices of oxidative stress have therefore found favor as biomarkers of exposure and effect in environmental toxicology. However, there i...

  16. Mechanisms of oxidative stress and vascular dysfunction

    Science.gov (United States)

    Nedeljkovic, Z; Gokce, N; Loscalzo, J

    2003-01-01

    The endothelium regulates vascular homoeostasis through local elaboration of mediators that modulate vascular tone, platelet adhesion, inflammation, fibrinolysis, and vascular growth. Impaired vascular function contributes to the pathogenesis of atherosclerosis and acute coronary syndromes. There is growing pathophysiological evidence that increased generation of reactive oxygen species and oxidative stress participates in proatherogenic mechanisms of vascular dysfunction and atherothrombosis. In this review, the role of oxidative stress in mechanisms of vascular dysfunction is discussed, and potential antioxidant strategies are reviewed. PMID:12743334

  17. Acute heat stress induces oxidative stress in broiler chickens.

    Science.gov (United States)

    Lin, Hai; Decuypere, Eddy; Buyse, Johan

    2006-05-01

    The stress responses and possible oxidative damage in plasma, liver and heart were investigated in broiler chickens acutely exposed to high temperature. Eighty 5-week old broiler chickens were exposed to 32 degrees C for 6h. The extent of lipid peroxidation, activities of superoxide dismutase and total antioxidant power in plasma, liver and heart tissues were investigated. Meanwhile, the blood metabolites such as glucose, urate, triiodothyronine, thyroxine, corticosterone, ceruloplasmin and creatine kinase were measured before and after 3 and 6h of heat exposure. The results showed that oxidative stress could be induced in 5-week old broiler chickens by acute heat exposure (32 degrees C, 6h). The results suggest that the elevated body temperature can induce the metabolic changes that are involved in the induction of oxidative stress. The liver is more susceptible to oxidative stress than heart during acute heat exposure in broiler chickens. The oxidative stress should be considered as part of the stress response of broiler chickens to heat exposure.

  18. Oxidative Stress and Maxi Calcium-Activated Potassium (BK Channels

    Directory of Open Access Journals (Sweden)

    Anton Hermann

    2015-08-01

    Full Text Available All cells contain ion channels in their outer (plasma and inner (organelle membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells, alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences.

  19. Alteraciones del desarrollo embrionario, poliaminas y estrés oxidativo inducidos por plaguicidas organofosforados en Rhinella Arenarum Alterations in embryonic development, polyamines and oxidative stress induced by organophosphates in Rhinella arenarum

    Directory of Open Access Journals (Sweden)

    Cecilia Inés Lascano

    2009-07-01

    use an amphibian embryonic model (Rhinella arenarum in order to assess the mechanisms by which the OP pesticides azinphos methyl (AM and chlorpyrifos (CP could cause teratogenesis. The embryos were developed in different concentrations of AM or CP until they reached the stage of complete operculum (CO. We analyzed malformations, histology, reduced gluthatione content (GSH and activity of antioxidant enzymes, polyamine content, ornithine decarboxilase (ODC and protein kinase C (PKC activities. Both OP pesticides caused a time- and dose-dependent increase in the number of malformations, reaching 100% teratogenesis in late embryonic development at the highest OP concentrations used. Malformations assessed include exogastrulation, caudal fin curvature, axial shortening, edema, and gill atrophy. Increasing evidence of oxidative stress was observed: GSH dependent enzymes (S- transferase, GST; peroxidase and reductase were early induced in embryos exposed to low concentrations of the OP pesticides, but their activities were inhibited in the stage of CO at high concentrations of OP. These changes were accompanied by a significant decrease in GSH content (62% in embryos exposed to AM. Besides, AM significantly increased (18X ODC activity in the stage of CO, along with putrescine levels (60% of increase but spermidine and spermine levels were significantly decreased (56% and 100%, respectively. The OP pesticide CP caused and early decrease in ODC activity and polyamine levels. The decrease in polyamine levels could be due to an increase in their degradation by polyamine oxidase, contributing to the oxidative stress induced by OP. This, in turn, would cause the decline in GSH levels and the activation of PKC in the embryonic stage of CO (55%, which is involved in the positive feedback of GST and ODC. Finally, the oxidative stress and the decrease in PA levels could be the cause of the observed embryonic alterations.

  20. Oxidative Stress and Anesthesia in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Peivandi Yazdi A

    2014-04-01

    Full Text Available Free radical and peroxide production lead to intracellular damage. On the other hand, free radicals are used by the human immune system to defend against pathogens. The aging process could be limited by oxidative stress in the short term. Chronic diseases like diabetes mellitus (DM are full-stress conditions in which remarkable metabolic functional destructions might happen. There is strong evidence regarding antioxidant impairment in diabetes. Performing a particular method for anesthesia in diabetic patients might prevent or modify excessive free radical formation and oxidative stress. It seems that prescribing antioxidant drugs could promote wound healing in diabetics.  

  1. Ovariectomy exacerbates oxidative stress and cardiopathy induced by adriamycin.

    Science.gov (United States)

    Muñoz-Castañeda, Juan Rafael; Muntané, Jordi; Herencia, Carmen; Muñoz, Maria C; Bujalance, Inmaculada; Montilla, Pedro; Túnez, Issac

    2006-02-01

    Ovarian hormone depletion in ovariectomized experimental animals is a useful model with which to study the physiopathological consequences of menopause in women. It has been suggested that menopause is a risk factor for the induction of several cardiovascular disorders. In the present study we analyzed the effects of ovarian hormone depletion by ovariectomy (OVX) in a model of oxidative stress and cardiopathy induced by adriamycin (AD). To evaluate these effects, we measured parameters related to cardiac damage (creatinine kinase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase) and oxidative stress (malondialdehyde, catalase, superoxide dismutase, glutathione peroxidase, reduced glutathione, nitric oxide and carbonyl proteins) in cardiac tissue and erythrocytes. OVX was found to alter all markers of oxidative stress and cell damage in cardiac tissue. Similarly, the OVX-derived loss of ovarian hormones enhanced cardiac damage and oxidative stress induced by AD. Our results suggest that antioxidant status in cardiac tissue and erythrocytes is seriously compromised by OVX during the cardiomyopathy induced by AD in experimental animals. In conclusion, the absence of hormones caused by OVX or menopause may induce or accelerate pre-existing cardiovascular dysfunctions.

  2. Pathogenesis of Chronic Hyperglycemia: From Reductive Stress to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yan

    2014-01-01

    Full Text Available Chronic overnutrition creates chronic hyperglycemia that can gradually induce insulin resistance and insulin secretion impairment. These disorders, if not intervened, will eventually be followed by appearance of frank diabetes. The mechanisms of this chronic pathogenic process are complex but have been suggested to involve production of reactive oxygen species (ROS and oxidative stress. In this review, I highlight evidence that reductive stress imposed by overflux of NADH through the mitochondrial electron transport chain is the source of oxidative stress, which is based on establishments that more NADH recycling by mitochondrial complex I leads to more electron leakage and thus more ROS production. The elevated levels of both NADH and ROS can inhibit and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH, respectively, resulting in blockage of the glycolytic pathway and accumulation of glycerol 3-phospate and its prior metabolites along the pathway. This accumulation then initiates all those alternative glucose metabolic pathways such as the polyol pathway and the advanced glycation pathways that otherwise are minor and insignificant under euglycemic conditions. Importantly, all these alternative pathways lead to ROS production, thus aggravating cellular oxidative stress. Therefore, reductive stress followed by oxidative stress comprises a major mechanism of hyperglycemia-induced metabolic syndrome.

  3. Oxidative stress and DNA methylation regulation in the metabolic syndrome.

    Science.gov (United States)

    Yara, Sabrina; Lavoie, Jean-Claude; Levy, Emile

    2015-01-01

    DNA methylation is implicated in tissue-specific gene expression and genomic imprinting. It is modulated by environmental factors, especially nutrition. Modified DNA methylation patterns may contribute to health problems and susceptibility to complex diseases. Current advances have suggested that the metabolic syndrome (MS) is a programmable disease, which is characterized by epigenetic modifications of vital genes when exposed to oxidative stress. Therefore, the main objective of this paper is to critically review the central context of MS while presenting the most recent knowledge related to epigenetic alterations that are promoted by oxidative stress. Potential pro-oxidant mechanisms that orchestrate changes in methylation profiling and are related to obesity, diabetes and hypertension are discussed. It is anticipated that the identification and understanding of the role of DNA methylation marks could be used to uncover early predictors and define drugs or diet-related treatments able to delay or reverse epigenetic changes, thereby combating MS burden.

  4. A Molecular Web: Endoplasmic Reticulum Stress, Inflammation and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Namrata eChaudhari

    2014-07-01

    Full Text Available Execution of fundamental cellular functions demands regulated protein folding homeostasis. Endoplasmic reticulum (ER is an active organelle existing to implement this function by folding and modifying secretory and membrane proteins. Loss of protein folding homeostasis is central to various diseases and budding evidences suggest ER stress as being a major contributor in the development or pathology of a diseased state besides other cellular stresses. The trigger for diseases may be diverse but, inflammation and/or ER stress may be basic mechanisms increasing the severity or complicating the condition of the disease. Chronic ER stress and activation of the unfolded protein response (UPR through endogenous or exogenous insults may result in impaired calcium and redox homeostasis, oxidative stress via protein overload thereby also influencing vital mitochondrial functions. Calcium released from the ER augments the production of mitochondrial Reactive Oxygen Species (ROS. Toxic accumulation of ROS within ER and mitochondria disturb fundamental organelle functions. Sustained ER stress is known to potentially elicit inflammatory responses via UPR pathways. Additionally, ROS generated through inflammation or mitochondrial dysfunction could accelerate ER malfunction. Dysfunctional UPR pathways has been associated with a wide range of diseases including several neurodegenerative diseases, stroke, metabolic disorders, cancer, inflammatory disease, diabetes mellitus, cardiovascular disease and others. In this review we have discussed the UPR signaling pathways, and networking between ER stress induced inflammatory pathways, oxidative stress and mitochondrial signaling events which further induce or exacerbate ER stress.

  5. Oxidative stress and inflammation in liver carcinogenesis

    Directory of Open Access Journals (Sweden)

    Natalia Olaya

    2007-02-01

    series of transcription factors. Moreover, in addition to direct production of ROS by these pathogens, liver infiltration by activated phagocytic cells provides an additional source of ROS production that promotes oxidative stress via interleukin or NO production that can damage proteins, lipids and DNA.

    Nuclear MSI was demonstrated first in familial hereditary colorectal cancer (HNPCC and then in sporadic cancers, primarily digestive tract cancers such as colorectal, gastric and pancreatic cancers.In HCC, although nuclear MSI has been shown in some studies (15,18, there is as yet no direct evidence of alteration of the MMR genes and the biological and the clinicopathological significance of the lowlevel MSI seen in HCC is unclear. MSI has also been shown to occur in inflammatory tissues such as chronic hepatitis and cirrhosis as well as in ulcerative colitis, chronic pancreatitis and in non digestive inflammatory diseases such as rheumatoid arthritis.

    Recently, the role of mitochondria in carcinogenesis has been under numerous investigation, in part because their prominent role in apoptosis, ROS production and other aspects of tumour biology. The mitochondrial genome is particularly susceptible to mutations because of the high level of ROS generation in this organelle, coupled with a relatively low level of DNA repair. Somatic mutations of mitochondrial DNA (mtDNA have been shown in HCC as was also observed MSI. These findings suggest a potential role for mitochondrial genome instability in the early steps of tumorigenesis.

    Ischemia-reperfusion injury can occur in several situations and is a major cause of cell damage during surgery. Cells and tissues subjected to hypoxia by prolonged ischemia become acidic

  6. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  7. Diabetic Cardiovascular Disease Induced by Oxidative Stress.

    Science.gov (United States)

    Kayama, Yosuke; Raaz, Uwe; Jagger, Ann; Adam, Matti; Schellinger, Isabel N; Sakamoto, Masaya; Suzuki, Hirofumi; Toyama, Kensuke; Spin, Joshua M; Tsao, Philip S

    2015-10-23

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  8. Diabetic Cardiovascular Disease Induced by Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Yosuke Kayama

    2015-10-01

    Full Text Available Cardiovascular disease (CVD is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM. DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD, cardiac hypertrophy, and heart failure (HF. HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS. ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease.

  9. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Asieh Hosseini

    2013-01-01

    Full Text Available Diabetic neuropathy (DN is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin, aldose reductase inhibitors (fidarestat, epalrestat, ranirestat, advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine, the hexosamine pathway inhibitor (benfotiamine, inhibitor of poly ADP-ribose polymerase (nicotinamide, and angiotensin-converting enzyme inhibitor (trandolapril. The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials.

  10. The impact of oxidative stress on hair.

    Science.gov (United States)

    Trüeb, R M

    2015-12-01

    Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Reactive oxygen species or free radicals are highly reactive molecules that can directly damage lipids, proteins, and DNA. They are generated by a multitude of endogenous and environmental challenges, while the body possesses endogenous defense mechanisms. With age, production of free radicals increases, while the endogenous defense mechanisms decrease. This imbalance leads to progressive damage of cellular structures, presumably resulting in the aging phenotype. While the role of oxidative stress has been widely discussed in skin aging, little focus has been placed on its impact on hair condition. Moreover, most literature on age-related hair changes focuses on alopecia, but it is equally important that the hair fibers that emerge from the scalp exhibit significant age-related changes that have equal impact on the overall cosmetic properties of hair. Sources of oxidative stress with impact on the pre-emerging fiber include: oxidative metabolism, smoking, UVR, and inflammation from microbial, pollutant, or irritant origins. Sources of oxidative stress with impact on the post-emerging fiber include: UVR (enhanced by copper), chemical insults, and oxidized scalp lipids. The role of the dermatologist is recognition and treatment of pre- and post-emerging factors for lifetime scalp and hair health.

  11. Cell differentiation versus cell death: extracellular glucose is a key determinant of cell fate following oxidative stress exposure

    OpenAIRE

    Poulsen, R C; Knowles, H.J.; Carr, A. J.; HULLEY, P. A.

    2014-01-01

    Cells, particularly mechano-sensitive musculoskeletal cells such as tenocytes, routinely encounter oxidative stress. Oxidative stress can not only stimulate tissue repair, but also cause damage leading to tissue degeneration. As diabetes is associated with increased oxidative damage as well as increased risk of tendon degeneration, the aim of this study was to determine if extracellular glucose levels alter the response of tendon cells to oxidative stress. Primary human tenocytes were culture...

  12. Drug-Induced Oxidative Stress and Toxicity

    Directory of Open Access Journals (Sweden)

    Damian G. Deavall

    2012-01-01

    Full Text Available Reactive oxygen species (ROS are a byproduct of normal metabolism and have roles in cell signaling and homeostasis. Species include oxygen radicals and reactive nonradicals. Mechanisms exist that regulate cellular levels of ROS, as their reactive nature may otherwise cause damage to key cellular components including DNA, protein, and lipid. When the cellular antioxidant capacity is exceeded, oxidative stress can result. Pleiotropic deleterious effects of oxidative stress are observed in numerous disease states and are also implicated in a variety of drug-induced toxicities. In this paper, we examine the nature of ROS-induced damage on key cellular targets of oxidative stress. We also review evidence implicating ROS in clinically relevant, drug-related side effects including doxorubicin-induced cardiac damage, azidothymidine-induced myopathy, and cisplatin-induced ototoxicity.

  13. SaliCylic Acid-Altering Arabidopsis Mutants Response to Cd Stress

    Institute of Scientific and Technical Information of China (English)

    Lu; Tian; Liang; Wu

    2012-01-01

    To evaluate the role of endogenous SA in plant response to Cd stress,Arabidopsis wild type(Columbia)and its SA-altering mutants snc1 (suppressor of npr1-1, constitutive) with high SA level, nahG(tansgenic line)with low SA level and npr1-1(non-expressor of PR gene)with SA signaling blockage were used in this study. Results showed that a greater growth inhibition occurred in snc1,while a less inhibition was observed in nahG and npr1-1 plants. Although the anti-oxidative enzymes SOD and POD increased upon Cd exposure,they were insufficient to remove oxidative stress,especially in snc1 plants. The accumulations of soluble sugar and proline in the tested plants were positively related to their tolerance to Cd stress.

  14. Cocoa phenolic extract protects pancreatic beta cells against oxidative stress.

    Science.gov (United States)

    Martín, María Angeles; Ramos, Sonia; Cordero-Herrero, Isabel; Bravo, Laura; Goya, Luis

    2013-07-31

    Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE) containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH) on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5-20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  15. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Laura Bravo

    2013-07-01

    Full Text Available Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  16. Oxidative stress and CCN1 protein in human skin connective tissue aging

    Directory of Open Access Journals (Sweden)

    Zhaoping Qin

    2016-06-01

    Full Text Available Reactive oxygen species (ROS is an important pathogenic factor involved in human aging. Human skin is a primary target of oxidative stress from ROS generated from both extrinsic and intrinsic sources, like ultraviolet irradiation (UV and endogenous oxidative metabolism. Oxidative stress causes the alterations of collagen-rich extracellular matrix (ECM, the hallmark of skin connective tissue aging. Age-related alteration of dermal collagenous ECM impairs skin structural integrity and creates a tissue microenvironment that promotes age-related skin diseases, such as poor wound healing and skin cancer. Here, we review recent advances in our understanding of oxidative stress and CCN1 protein (first member of CCN family proteins, a critical mediator of oxidative stress-induced skin connective tissue aging.

  17. Markers of Oxidative Stress in Pregnant Womenwith Sleep Disturbances

    Directory of Open Access Journals (Sweden)

    Soundravally Rajendiran

    2015-07-01

    Full Text Available Objective: The quality and duration of sleep is impaired during pregnancy. Our study aimed to determine whether maternal sleep deprivation occurring during the second and third trimester of pregnancy could alter fetal well-being with respect to birth weight and APGAR score by altering the inflammatory status and oxidative stress in the mothers. Methods: Sleep adequacy was assessed using the Pittsburgh Sleep Quality Index (PSQI. We investigated the inflammatory status and oxidative stress at term in the blood of pregnant subjects with and without sleep deprivation by measuring the levels of protein-bound sialic acid (PBSA, high-sensitivity C-reactive protein (hsCRP, malondialdehyde (MDA and protein carbonyl (PCO. Homocysteine (Hcy and its vitamin determinants were also measured. Fetal outcome with respect to birth weight and APGAR score were compared between study subjects. Results: A significant increase was observed in the levels of hsCRP, PBSA, Hcy, MDA, and PCO, in the sleep-deprived group when compared to the control group. Fetal outcome at birth showed a significant difference between the cases with high sleep deprivation and those with low sleep deprivation. Conclusion: Sleep deprivation in pregnancy leads to an increase in the inflammatory parameters, oxidative stress, and Hcy levels. Fetal outcome at birth was affected more in mothers with high sleep deprivation than those with low sleep deprivation. Follow-up in these babies are needed to reveal any differences in their growth and development.

  18. Biomarkers of oxidative stress in antioxidant therapy

    Directory of Open Access Journals (Sweden)

    Wilfredo Mañon Rossi

    2016-04-01

    Full Text Available Biomarkers are used regularly in medical practice to provide objective markers of health status of a person, as well as the physiological response of the body to a pharmacological therapeutic intervention. In the specific case of the use of antioxidant products (antioxidant therapy, it is necessary to measure both biomarkers of oxidative stress level of the person as those that are specific to a physiological or pathological progression of a disease disorder. This paper describes the main biomarkers of oxidative general and specific stress as well as laboratory techniques, which should be taken into account when measuring the effectiveness of antioxidant therapies.

  19. Oxidative Stress and Periodontal Disease in Obesity.

    Science.gov (United States)

    Dursun, Erhan; Akalin, Ferda Alev; Genc, Tolga; Cinar, Nese; Erel, Ozcan; Yildiz, Bulent Okan

    2016-03-01

    Periodontal disease is a chronic inflammatory disease of the jaws and is more prevalent in obesity. Local and systemic oxidative stress may be an early link between periodontal disease and obesity. The primary aim of this study was to detect whether increased periodontal disease susceptibility in obese individuals is associated with local and systemic oxidative stress. Accordingly; we analyzed periodontal status and systemic (serum) and local (gingival crevicular fluid [GCF]) oxidative status markers in young obese women in comparison with age-matched lean women.Twenty obese and 20 lean women participated. Periodontal condition was determined by clinical periodontal indices including probing depth, clinical attachment level, gingival index, gingival bleeding index, and plaque index. Anthropometric, hormonal, and metabolic measurements were also performed. Blood and GCF sampling was performed at the same time after an overnight fasting. Serum and GCF total antioxidant capacity (TAOC), and total oxidant status (TOS) levels were determined, and oxidative stress index (OSI) was calculated.Clinical periodontal analyses showed higher gingival index and gingival bleeding index in the obese group (P = 0.001 for both) with no significant difference in probing depth, clinical attachment level, and plaque index between the obese and the lean women. Oxidant status analyses revealed lower GCF and serum TAOC, and higher GCF and serum OSI values in the obese women (P periodontal indices showed significant correlations with body mass index, insulin, and lipid levels, and also oxidant status markers.Our results suggest that young obese, otherwise healthy, women show findings of early periodontal disease (gingival inflammation) compared with age-matched healthy lean women, and that local/periodontal oxidative stress generated by obesity seems to be associated with periodontal disease.

  20. Alterations in Hippocampal Oxidative Stress, Expression of AMPA Receptor GluR2 Subunit and Associated Spatial Memory Loss by Bacopa monnieri Extract (CDRI-08) in Streptozotocin-Induced Diabetes Mellitus Type 2 Mice.

    Science.gov (United States)

    Pandey, Surya P; Singh, Hemant K; Prasad, S

    2015-01-01

    Bacopa monnieri extract has been implicated in the recovery of memory impairments due to various neurological disorders in animal models and humans. However, the precise molecular mechanism of the role of CDRI-08, a well characterized fraction of Bacopa monnieri extract, in recovery of the diabetes mellitus-induced memory impairments is not known. Here, we demonstrate that DM2 mice treated orally with lower dose of CDRI-08 (50- or 100 mg/kg BW) is able to significantly enhance spatial memory in STZ-DM2 mice and this is correlated with a significant decline in oxidative stress and up regulation of the AMPA receptor GluR2 subunit gene expression in the hippocampus. Treatment of DM2 mice with its higher dose (150 mg/kg BW or above) shows anti-diabetic effect in addition to its ability to recover the spatial memory impairment by reversing the DM2-induced elevated oxidative stress and decreased GluR2 subunit expression near to their values in normal and CDRI-08 treated control mice. Our results provide evidences towards molecular basis of the memory enhancing and anti diabetic role of the Bacopa monnieri extract in STZ-induced DM2 mice, which may have therapeutic implications.

  1. The decreased expression of mitofusin-1 and increased fission-1 together with alterations in mitochondrial morphology in the kidney of rats with chronic fluorosis may involve elevated oxidative stress.

    Science.gov (United States)

    Qin, Shuang-Li; Deng, Jie; Lou, Di-Dong; Yu, Wen-Feng; Pei, Jinjing; Guan, Zhi-Zhong

    2015-01-01

    This study was designed to characterize changes in the expression of mitofusin-1 (Mfn1) and fission-1 (Fis1), as well as in mitochondrial morphology in the kidney of rats subjected to chronic fluorosis and to elucidate whether any mitochondrial injury observed is associated with increased oxidative stress. Sixty Sprague-Dawley (SD) rats were divided randomly into 3 groups of 20 each, i.e., the untreated control group (natural drinking water containing morphology of renal mitochondria was observed under the transmission electron microscope. In the renal tissues of rats with chronic fluorosis, expression of both Mfn1 protein and mRNA was clearly reduced, whereas that of Fis1 was elevated. The level of MDA was increased and the T-AOC lowered. Swollen or fragmented mitochondria in renal cells were observed under the electronic microscope. These findings indicate that chronic fluorosis can lead to the abnormal mitochondrial dynamics and changed morphology in the rat kidney, which in mechanism might be induced by a high level of oxidative stress in the disease.

  2. Ultrastructural alterations of the hepatopancreas in Porcellio scaber under stress.

    Science.gov (United States)

    Znidaršič, Nada; Strus, Jasna; Drobne, Damjana

    2003-04-01

    Cellular ultrastructure varies in accordance with physiological processes, also reflecting responses to environmental stress factors. Ultrastructural changes of the hepatopancreatic cells in the terrestrial isopod Porcellio scaber exposed to sublethal concentrations of zinc or cadmium in their food were identified by transmission electron microscopy. The exclusive structural characteristic of the hepatopancreas of animals exposed to metal-dosed food was grain-like electrondense deposits (EDD) observed in the intercellular spaces and in vesicles of B cells. In addition, hepatopancreatic cells of metal-exposed animals displayed non-specific, stress-indicating alterations such as cellular disintegration, the reduction of energetic reserves (lipid droplets, glycogen), electron dense cytoplasm, ultrastructural alterations of granular endoplasmic reticulum (GER), the Golgi complex and mitochondria.

  3. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    Science.gov (United States)

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  4. Peroxisomes,oxidative stress,and inflammation

    Institute of Scientific and Technical Information of China (English)

    Stanley; R; Terlecky; Laura; J; Terlecky; Courtney; R; Giordano

    2012-01-01

    Peroxisomes are intracellular organelles mediating a wide variety of biosynthetic and biodegradative reactions.Included among these are the metabolism of hydrogen peroxide and other reactive species,molecules whose levels help define the oxidative state of cells.Loss of oxidative equilibrium in cells of tissues and organs potentiates inflammatory responses which can ultimately trigger human disease.The goal of this article is to review evidence for connections between peroxisome function,oxidative stress,and inflammation in the context of human health and degenerative disease.Dysregulated points in this nexus are identified and potential remedial approaches are presented.

  5. Oxidative Stress after Surgery on the Immature Heart

    Directory of Open Access Journals (Sweden)

    Daniel Fudulu

    2016-01-01

    Full Text Available Paediatric heart surgery is associated with increased inflammation and the production of reactive oxygen species. Use of the extracorporeal cardiopulmonary bypass during correction of congenital heart defects generates reactive oxygen species by various mechanisms: haemolysis, neutrophil activation, ischaemia reperfusion injury, reoxygenation injury, or depletion of the endogenous antioxidants. The immature myocardium is more vulnerable to reactive oxygen species because of developmental differences compared to the adult heart but also because of associated congenital heart diseases that can deplete its antioxidant reserve. Oxidative stress can be manipulated by various interventions: exogenous antioxidants, use of steroids, cardioplegia, blood prime strategies, or miniaturisation of the cardiopulmonary bypass circuit. However, it is unclear if modulation of the redox pathways can alter clinical outcomes. Further studies powered to look at clinical outcomes are needed to define the role of oxidative stress in paediatric patients.

  6. Good stress, bad stress and oxidative stress: insights from anticipatory cortisol reactivity.

    Science.gov (United States)

    Aschbacher, Kirstin; O'Donovan, Aoife; Wolkowitz, Owen M; Dhabhar, Firdaus S; Su, Yali; Epel, Elissa

    2013-09-01

    Chronic psychological stress appears to accelerate biological aging, and oxidative damage is an important potential mediator of this process. However, the mechanisms by which psychological stress promotes oxidative damage are poorly understood. This study investigates the theory that cortisol increases in response to an acutely stressful event have the potential to either enhance or undermine psychobiological resilience to oxidative damage, depending on the body's prior exposure to chronic psychological stress. In order to achieve a range of chronic stress exposure, forty-eight post-menopausal women were recruited in a case-control design that matched women caring for spouses with dementia (a chronic stress model) with similarly aged control women whose spouses were healthy. Participants completed a questionnaire assessing perceived stress over the previous month and provided fasting blood. Three markers of oxidative damage were assessed: 8-iso-prostaglandin F(2α) (IsoP), lipid peroxidation, 8-hydroxyguanosine (8-oxoG) and 8-hydroxy-2'-deoxyguanosine (8-OHdG), reflecting oxidative damage to RNA/DNA respectively. Within approximately one week, participants completed a standardized acute laboratory stress task while salivary cortisol responses were measured. The increase from 0 to 30 min was defined as "peak" cortisol reactivity, while the increase from 0 to 15 min was defined as "anticipatory" cortisol reactivity, representing a cortisol response that began while preparing for the stress task. Women under chronic stress had higher 8-oxoG, oxidative damage to RNA (pcortisol reactivity would mediate the relationship between perceived stress and elevated oxidative stress damage, but only among women under chronic stress. Consistent with this model, bootstrapped path analysis found significant indirect paths from perceived stress to 8-oxoG and IsoP (but not 8-OHdG) via anticipatory cortisol reactivity, showing the expected relations among chronically stressed

  7. Evidence of Oxidative Stress in Autism Derived from Animal Models

    Directory of Open Access Journals (Sweden)

    Xue Ming

    2008-01-01

    Full Text Available Autism is a pervasive neurodevelopmental disorder that leads to deficits in social interaction, communication and restricted, repetitive motor movements. Autism is a highly heritable disorder, however, there is mounting evidence to suggest that toxicant-induced oxidative stress may play a role. The focus of this article will be to review our animal model of autism and discuss our evidence that oxidative stress may be a common underlying mechanism of neurodevelopmental damage. We have shown that mice exposed to either methylmercury (MeHg or valproic acid (VPA in early postnatal life display aberrant social, cognitive and motor behavior. Interestingly, early exposure to both compounds has been clinically implicated in the development of autism. We recently found that Trolox, a water-soluble vitamin E derivative, is capable of attenuating a number of neurobehavioral alterations observed in mice postnatally exposed to MeHg. In addition, a number of other investigators have shown that oxidative stress plays a role in neural injury following MeHg exposure both in vitro and in vivo. New data presented here will show that VPA-induced neurobehavioral deficits are attenuated by vitamin E as well and that the level of glial fibrillary acidic protein (GFAP, a marker of astrocytic neural injury, is altered following VPA exposure. Collectively, these data indicate that vitamin E and its derivative are capable of protecting against neurobehavioral deficits induced by both MeHg and VPA. This antioxidant protection suggests that oxidative stress may be a common mechanism of injury leading to aberrant behavior in both our animal model as well as in the human disease state.

  8. Neuro-oxidative-nitrosative stress in sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Møller, Kirsten; Bailey, Damian M

    2011-01-01

    Neuro-oxidative-nitrosative stress may prove the molecular basis underlying brain dysfunction in sepsis. In the current review, we describe how sepsis-induced reactive oxygen and nitrogen species (ROS/RNS) trigger lipid peroxidation chain reactions throughout the cerebrovasculature and surrounding...

  9. Mitochondrial oxidative stress causes hyperphosphorylation of tau.

    Directory of Open Access Journals (Sweden)

    Simon Melov

    Full Text Available Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD: tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2 die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576 with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.

  10. Mitochondrial oxidative stress causes hyperphosphorylation of tau.

    Science.gov (United States)

    Melov, Simon; Adlard, Paul A; Morten, Karl; Johnson, Felicity; Golden, Tamara R; Hinerfeld, Doug; Schilling, Birgit; Mavros, Christine; Masters, Colin L; Volitakis, Irene; Li, Qiao-Xin; Laughton, Katrina; Hubbard, Alan; Cherny, Robert A; Gibson, Brad; Bush, Ashley I

    2007-06-20

    Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD): tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2) die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau) in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576) with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.

  11. Methylglyoxal promotes oxidative stress and endothelial dysfunction.

    Science.gov (United States)

    Sena, Cristina M; Matafome, Paulo; Crisóstomo, Joana; Rodrigues, Lisa; Fernandes, Rosa; Pereira, Paulo; Seiça, Raquel M

    2012-05-01

    Modern diets can cause modern diseases. Research has linked a metabolite of sugar, methylglyoxal (MG), to the development of diabetic complications, but the exact mechanism has not been fully elucidated. The present study was designed to investigate whether MG could directly influence endothelial function, oxidative stress and inflammation in Wistar and Goto-Kakizaki (GK) rats, an animal model of type 2 diabetes. Wistar and GK rats treated with MG in the drinking water for 3 months were compared with the respective control rats. The effects of MG were investigated on NO-dependent vasorelaxation in isolated rat aortic arteries from the different groups. Insulin resistance, NO bioavailability, glycation, a pro-inflammatory biomarker monocyte chemoattractant protein-1 (MCP-1) and vascular oxidative stress were also evaluated. Methylglyoxal treated Wistar rats significantly reduced the efficacy of NO-dependent vasorelaxation (pMethylglyoxal treated GK rats significantly aggravated endothelial dysfunction, oxidative stress, AGEs accumulation and diminished NO bioavailability when compared with control GK rats. These results indicate that methylglyoxal induced endothelial dysfunction in normal Wistar rats and aggravated the endothelial dysfunction present in GK rats. The mechanism is at least in part by increasing oxidative stress and/or AGEs formation with a concomitant increment of inflammation and a decrement in NO bioavailability. The present study provides further evidence for methylglyoxal as one of the causative factors in the pathogenesis of atherosclerosis and development of macrovascular diabetic complication.

  12. Mechanism of Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Sonia Gandhi

    2012-01-01

    Full Text Available Biological tissues require oxygen to meet their energetic demands. However, the consumption of oxygen also results in the generation of free radicals that may have damaging effects on cells. The brain is particularly vulnerable to the effects of reactive oxygen species due to its high demand for oxygen, and its abundance of highly peroxidisable substrates. Oxidative stress is caused by an imbalance in the redox state of the cell, either by overproduction of reactive oxygen species, or by dysfunction of the antioxidant systems. Oxidative stress has been detected in a range of neurodegenerative disease, and emerging evidence from in vitro and in vivo disease models suggests that oxidative stress may play a role in disease pathogenesis. However, the promise of antioxidants as novel therapies for neurodegenerative diseases has not been borne out in clinical studies. In this review, we critically assess the hypothesis that oxidative stress is a crucial player in common neurodegenerative disease and discuss the source of free radicals in such diseases. Furthermore, we examine the issues surrounding the failure to translate this hypothesis into an effective clinical treatment.

  13. Toxicological and pharmacological concerns on oxidative stress and related diseases

    Energy Technology Data Exchange (ETDEWEB)

    Saeidnia, Soodabeh [Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of); College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon (Canada); Abdollahi, Mohammad, E-mail: Mohammad@TUMS.Ac.Ir [Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran 1417614411 (Iran, Islamic Republic of)

    2013-12-15

    Although reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are generated as the natural byproduct of normal oxygen metabolism, they can create oxidative damage via interaction with bio-molecules. The role of oxidative stress as a remarkable upstream part is frequently reported in the signaling cascade of inflammation as well as chemo attractant production. Even though hydrogen peroxide can control cell signaling and stimulate cell proliferation at low levels, in higher concentrations it can initiate apoptosis and in very high levels may create necrosis. So far, the role of ROS in cellular damage and death is well documented with implicating in a broad range of degenerative alterations e.g. carcinogenesis, aging and other oxidative stress related diseases (OSRDs). Reversely, it is cleared that antioxidants are potentially able to suppress (at least in part) the immune system and to enhance the normal cellular protective responses to tissue damage. In this review, we aimed to provide insights on diverse OSRDs, which are correlated with the concept of oxidative stress as well as its cellular effects that can be inhibited by antioxidants. Resveratrol, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, statins, nebivolol and carvedilol, pentaerythritol tetranitrate, mitochondria-targeted antioxidants, and plant-derived drugs (alone or combined) are the potential medicines that can be used to control OSRD.

  14. In vitro oxidation of fibrinogen promotes functional alterations and formation of advanced oxidation protein products, an inflammation mediator.

    Science.gov (United States)

    Torbitz, Vanessa Dorneles; Bochi, Guilherme Vargas; de Carvalho, José Antônio Mainardi; de Almeida Vaucher, Rodrigo; da Silva, José Edson Paz; Moresco, Rafael Noal

    2015-01-01

    Fibrinogen (FB) is a soluble blood plasma protein and is a key molecule involved in coagulation. Oxidative modification of proteins, such as the formation of advanced oxidation protein products (AOPP), a heterogeneous family of protein compounds structurally modified and derived from oxidative stress, may be associated with the pathophysiology of a number of chronic inflammatory diseases. Therefore, the aim of this study was to determine whether the formation of this mediator of inflammation occurs from FB and whether its generation is associated with structural changes. Results of the present study suggest that the oxidation of FB may provoke the formation of AOPP, which in turn, may promote functional alterations in FB, thus causing changes in its structural domains and increasing its procoagulant activity.

  15. Oxidative stress in benign prostate hyperplasia.

    Science.gov (United States)

    Zabaiou, N; Mabed, D; Lobaccaro, J M; Lahouel, M

    2016-02-01

    To assess the status of oxidative stress in benign prostate hyperplasia, a very common disease in older men which constitutes a public health problem in Jijel, prostate tissues were obtained by transvesical adenomectomy from 10 men with benign prostate hyperplasia. We measured the cytosolic levels of malondialdehyde (MDA) and glutathione (GSH) and cytosolic enzyme activities of superoxide dismutase, catalase, glutathione peroxidase and glutathione S-transferase. The development of benign prostate hyperplasia is accompanied by impaired oxidative status by increasing levels of MDA, depletion of GSH concentrations and a decrease in the activity of all the antioxidant enzymes studied. These results have allowed us to understand a part of the aetiology of benign prostate hyperplasia related to oxidative stress.

  16. Piracetam improves mitochondrial dysfunction following oxidative stress.

    Science.gov (United States)

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2006-01-01

    1.--Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. 2.--Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. 3.--Piracetam treatment at concentrations between 100 and 1000 microM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 microM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. 4.--Piracetam treatment (100-500 mg kg(-1) daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. 5.--In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients.

  17. Restraint stress alters neutrophil and macrophage phenotypes during wound healing.

    Science.gov (United States)

    Tymen, Stéphanie D; Rojas, Isolde G; Zhou, Xiaofeng; Fang, Zong Juan; Zhao, Yan; Marucha, Phillip T

    2013-02-01

    Previous studies reported that stress delays wound healing, impairs bacterial clearance, and elevates the risk for opportunistic infection. Neutrophils and macrophages are responsible for the removal of bacteria present at the wound site. The appropriate recruitment and functions of these cells are necessary for efficient bacterial clearance. In our current study we found that restraint stress induced an excessive recruitment of neutrophils extending the inflammatory phase of healing, and the gene expression of neutrophil attracting chemokines MIP-2 and KC. However, restraint stress did not affect macrophage infiltration. Stress decreased the phagocytic abilities of phagocytic cells ex vivo, yet it did not affect superoxide production. The cell surface expression of adhesion molecules CD11b and TLR4 were decreased in peripheral blood monocytes in stressed mice. The phenotype of macrophages present at the wound site was also altered. Gene expression of markers of pro-inflammatory classically activated macrophages, CXCL10 and CCL5, were down-regulated; as were markers associated with wound healing macrophages, CCL22, IGF-1, RELMα; and the regulatory macrophage marker, chemokine CCL1. Restraint stress also induced up-regulation of IL10 gene expression. In summary, our study has shown that restraint stress suppresses the phenotype shift of the macrophage population, as compared to the changes observed during normal wound healing, while the number of macrophages remains constant. We also observed a general suppression of chemokine gene expression. Modulation of the macrophage phenotype could provide a new therapeutic approach in the treatment of wounds under stress conditions in the clinical setting.

  18. Nivalenol induces oxidative stress and increases deoxynivalenol pro-oxidant effect in intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Del Regno, Marisanta; Adesso, Simona; Popolo, Ada [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Quaroni, Andrea [Department of Biomedical Sciences, Cornell University, Veterinary Research Tower, Cornell University, Ithaca, NY 14853–6401 (United States); Autore, Giuseppina [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy); Severino, Lorella [Department of Pathology and Animal Health, Division of Toxicology, School of Veterinary Medicine, University of Naples “Federico II”, Via Delpino 1, 80137 Naples (Italy); Marzocco, Stefania, E-mail: smarzocco@unisa.it [Department of Pharmacy, School of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132–84084 Fisciano, Salerno (Italy)

    2015-06-01

    Mycotoxins are secondary fungal metabolites often found as contaminants in almost all agricultural commodities worldwide, and the consumption of food or feed contaminated by mycotoxins represents a major risk for human and animal health. Reactive oxygen species are normal products of cellular metabolism. However, disproportionate generation of reactive oxygen species poses a serious problem to bodily homeostasis and causes oxidative tissue damage. In this study we analyzed the effect of two trichothecenes mycotoxins: nivalenol and deoxynivalenol, alone and in combination, on oxidative stress in the non-tumorigenic intestinal epithelial cell line IEC-6. Our results indicate the pro-oxidant nivalenol effect in IEC-6, the stronger pro-oxidant effect of nivalenol when compared to deoxynivalenol and, interestingly, that nivalenol increases deoxynivalenol pro-oxidative effects. Mechanistic studies indicate that the observed effects were mediated by NADPH oxidase, calcium homeostasis alteration, NF-kB and Nrf2 pathways activation and by iNOS and nitrotyrosine formation. The toxicological interaction by nivalenol and deoxynivalenol reported in this study in IEC-6, points out the importance of the toxic effect of these mycotoxins, mostly in combination, further highlighting the risk assessment process of these toxins that are of growing concern. - Highlights: • Nivalenol induces oxidative stress in intestinal epithelial cells (IECs). • Nivalenol increases deoxynivalenol pro-oxidant effects in IECs. • Nivalenol and deoxynivalenol trigger antioxidant response IECs. • These results indicate the importance of mycotoxins co-contamination.

  19. Oxidative stress and Alzheimer disease.

    Science.gov (United States)

    Christen, Y

    2000-02-01

    Research in the field of molecular biology has helped to provide a better understanding of both the cascade of biochemical events that occurs with Alzheimer disease (AD) and the heterogeneous nature of the disease. One hypothesis that accounts for both the heterogeneous nature of AD and the fact that aging is the most obvious risk factor is that free radicals are involved. The probability of this involvement is supported by the fact that neurons are extremely sensitive to attacks by destructive free radicals. Furthermore, lesions are present in the brains of AD patients that are typically associated with attacks by free radicals (eg, damage to DNA, protein oxidation, lipid peroxidation, and advanced glycosylation end products), and metals (eg, iron, copper, zinc, and aluminum) are present that have catalytic activity that produce free radicals. beta-Amyloid is aggregated and produces more free radicals in the presence of free radicals; beta-amyloid toxicity is eliminated by free radical scavengers. Apolipoprotein E is subject to attacks by free radicals, and apolipoprotein E peroxidation has been correlated with AD. In contrast, apolipoprotein E can act as a free radical scavenger and this behavior is isoform dependent. AD has been linked to mitochondrial anomalies affecting cytochrome-c oxidase, and these anomalies may contribute to the abnormal production of free radicals. Finally, many free radical scavengers (eg, vitamin E, selegeline, and Ginkgo biloba extract EGb 761) have produced promising results in relation to AD, as has desferrioxamine-an iron-chelating agent-and antiinflammatory drugs and estrogens, which also have an antioxidant effect.

  20. Effect of Hemin on Brain Alterations and Neuroglobin Expression in Water Immersion Restraint Stressed Rats

    Directory of Open Access Journals (Sweden)

    Merhan Ragy

    2016-01-01

    Full Text Available In the brain, the heme oxygenase (HO system has been reported to be very active and its modulation seems to play a crucial role in the pathophysiology of neurodegenerative disorders. Hemin as HO-1 inducer has been shown to attenuate neuronal injury so the goal of this study was to assess the effect of hemin therapy on the acute stress and how it would modulate neurological outcome. Thirty male albino rats were divided into three groups: control group and stressed group with six-hour water immersion restraint stress (WIRS and stressed group, treated with hemin, in which each rat received a single intraperitoneal injection of hemin at a dose level of 50 mg/kg body weight at 12 hours before exposure to WIRS. Stress hormones, oxidative stress markers, malondialdehyde (MDA, and total antioxidant capacity (TAC were measured and expressions of neuroglobin and S100B mRNA in brain tissue were assayed. Our results revealed that hemin significantly affects brain alterations induced by acute stress and this may be through increased expression of neuroglobin and through antioxidant effect. Hemin decreased blood-brain barrier damage as it significantly decreased the expression of S100B. These results suggest that hemin may be an effective therapy for being neuroprotective against acute stress.

  1. Evaluating Oxidative Stress Factors Induced by Chlorpyrifos Poisoning in Plasma of Wistar Rat

    OpenAIRE

    Saberi, M.; A Zare’i Mahmoudabadi; M Fasihi Ramandi; A Kazemi; J Rasouli Vani

    2014-01-01

    Introduction: Chlorpyrifos (CPF) is a broad-spectrum organophosphorus insecticide that has been used abundantly over the globe during the past 40 years. Chemical pesticides may induce oxidative stress via generating free radicals and altering antioxidant levels of the free radical scavenging enzyme activity. Therefore, this study aimed to evaluate the toxicity of Chlorpyrifos-induced oxidative stress in the plasma samples of Wistar rat. Methods: Twenty-four male Wistar rats were selected r...

  2. Oxidative stress response in Paracoccidioides brasiliensis.

    Science.gov (United States)

    Campos, Elida G; Jesuino, Rosália Santos Amorim; Dantas, Alessandra da Silva; Brígido, Marcelo de Macedo; Felipe, Maria Sueli S

    2005-06-30

    Survival of pathogenic fungi inside human hosts depends on evasion from the host immune system and adaptation to the host environment. Among different insults that Paracoccidioides brasiliensis has to handle are reactive oxygen and nitrogen species produced by the human host cells, and by its own metabolism. Knowing how the parasite deals with reactive species is important to understand how it establishes infection and survives within humans. The initiative to describe the P. brasiliensis transcriptome fostered new approaches to study oxidative stress response in this organism. By examining genes related to oxidative stress response, one can evaluate the parasite's ability to face this condition and infer about possible ways to overcome this ability. We report the results of a search of the P. brasiliensis assembled expressed sequence tag database for homologous sequences involved in oxidative stress response. We described several genes coding proteins involved in antioxidant defense, for example, catalase and superoxide dismutase isoenzymes, peroxiredoxin, cytochrome c peroxidase, glutathione synthesis enzymes, thioredoxin, and the transcription factors Yap1 and Skn7. The transcriptome analysis of P. brasiliensis reveals a pathogen that has many resources to combat reactive species. Besides characterizing the antioxidant defense system in P. brasiliensis, we also compared the ways in which different fungi respond to oxidative damage, and we identified the basic features of this response.

  3. Tobacco smoking and oxidative stress to DNA

    DEFF Research Database (Denmark)

    Ellegaard, Pernille Kempel; Poulsen, Henrik Enghusen

    2016-01-01

    Oxidative stress to DNA from smoking was investigated in one randomized smoking cessation study and in 36 cohort studies from excretion of urinary 8-oxo-7-hydrodeoxyguanosine (8-oxodG). Meta-analysis of the 36 cohort studies showed smoking associated with a 15.7% (95% CL 11.0:20.3, p ....0001) increased oxidative stress to DNA, in agreement with the reduction of oxidative stress to DNA found in the smoking cessation study. Meta-analysis of the 22 studies that used chromatography methodology on 1709 persons showed a significant 29.3% increase in smokers (95% CL 17.3;41.3), but meta-analysis of 14...... studies on 3668 persons using ELISA methodology showed a non-significant effect of 8.7% [95% CL −1.2;18.6]. Tobacco smoke induces oxidative damage to DNA; however, this is not detected with ELISA methodology. Currently, the use of existing ELISA methodology to measure urinary excretion of 8-oxo-7...

  4. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  5. Oxidative stress and anti-oxidative mobilization in burn injury.

    Science.gov (United States)

    Parihar, Arti; Parihar, Mordhwaj S; Milner, Stephen; Bhat, Satyanarayan

    2008-02-01

    A severe burn is associated with release of inflammatory mediators which ultimately cause local and distant pathophysiological effects. Mediators including Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are increased in affected tissue, which are implicated in pathophysiological events observed in burn patients. The purpose of this article is to understand the role of oxidative stress in burns, in order to develop therapeutic strategies. All peer-reviewed, original and review articles published in the English language literature relevant to the topic of oxidative stress in burns in animals and human subjects were selected for this review and the possible roles of ROS and RNS in the pathophysiology of burns are discussed. Both increased xanthine oxidase and neutrophil activation appear to be the oxidant sources in burns. Free radicals have been found to have beneficial effects on antimicrobial action and wound healing. However following a burn, there is an enormous production of ROS which is harmful and implicated in inflammation, systemic inflammatory response syndrome, immunosuppression, infection and sepsis, tissue damage and multiple organ failure. Thus clinical response to burn is dependent on the balance between production of free radicals and its detoxification. Supplementation of antioxidants in human and animal models has proven benefit in decreasing distant organ failure suggesting a cause and effect relationship. We conclude that oxidative damage is one of the mechanisms responsible for the local and distant pathophysiological events observed after burn, and therefore anti-oxidant therapy might be beneficial in minimizing injury in burned patients.

  6. Oxidative stress and stress signaling: menace of diabetic cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Loren E WOLD; Asli F CEYLAN-ISIK; Jun REN

    2005-01-01

    Cardiovascular disease is the most common cause of death in the diabetic population and is currently one of the leading causes of death in the United States and other industrialized countries. The health care expenses associated with cardiovascular disease are staggering, reaching more than US$350 billion in 2003. The risk factors for cardiovascular disease include high fat/cholesterol levels,alcoholism, smoking, genetics, environmental factors and hypertension, which are commonly used to gauge an individual's risk of cardiovascular disease and to track their progress during therapy. Most recently, these factors have become important in the early prevention of cardiovascular diseases. Oxidative stress, the imbalance between reactive oxygen species production and breakdown by endogenous antioxidants, has been implicated in the onset and progression of cardiovascular diseases such as congestive heart failure and diabetes-associated heart dysfunction (diabetic cardiomyopathy). Antioxidant therapy has shown promise in preventing the development of diabetic heart complications. This review focuses on recent advances in oxidative stress theory and antioxidant therapy in diabetic cardiomyopathy, with an emphasis on the stress signaling pathways hypothesized to be involved. Many of these stress signaling pathways lead to activation of reactive oxygen species, major players in the development and progression of diabetic cardiomyopathy.

  7. Chronic unpredictable mild stress generates oxidative stress and systemic inflammation in rats.

    Science.gov (United States)

    López-López, Ana Laura; Jaime, Herlinda Bonilla; Escobar Villanueva, María Del Carmen; Padilla, Malinalli Brianza; Palacios, Gonzalo Vázquez; Aguilar, Francisco Javier Alarcón

    2016-07-01

    Stress is considered to be a causal agent of chronic degenerative diseases, such as cardiovascular disease, diabetes mellitus, arthritis and Alzheimer's. Chronic glucocorticoid and catecholamine release into the circulation during the stress response has been suggested to activate damage mechanisms, which in the long term produce metabolic alterations associated with oxidative stress and inflammation. However, the consequences of stress in animal models for periods longer than 40days have not been explored. The goal of this work was to determine whether chronic unpredictable mild stress (CUMS) produced alterations in the redox state and the inflammatory profile of rats after 20, 40, and 60days. CUMS consisted of random exposure of the animals to different stressors. The following activities were measured in the liver and pancreas: reduced glutathione (GSH), lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), and protein oxidation. Similarly, serum cytokine levels (IL-6, TNF-α, IL-1β, and IL-10) were determined. CUMS activated the stress response from day 20 until day 60. In the liver and pancreas, GHS levels were decreased from day 40, whereas protein lipid peroxidation and protein oxidation were increased. This is the first work to report that the pancreas redox state is subject to chronic stress conditions. The TAC was constant in the liver and reduced in the pancreas. An increase in the TNF-α, IL-1β, and IL-6 inflammatory markers and a decrease in the IL-10 level due to CUMS was shown, thereby resulting in the generation of a systemic inflammation state after 60days of treatment. Together, the CUMS consequences on day 60 suggest that both processes can contribute to the development of chronic degenerative diseases, such as cardiovascular disease and diabetes mellitus. CUMS is an animal model that in addition to avoiding habituation activates damage mechanisms such as oxidative stress and low-grade chronic

  8. Social stress reactivity alters reward and punishment learning.

    Science.gov (United States)

    Cavanagh, James F; Frank, Michael J; Allen, John J B

    2011-06-01

    To examine how stress affects cognitive functioning, individual differences in trait vulnerability (punishment sensitivity) and state reactivity (negative affect) to social evaluative threat were examined during concurrent reinforcement learning. Lower trait-level punishment sensitivity predicted better reward learning and poorer punishment learning; the opposite pattern was found in more punishment sensitive individuals. Increasing state-level negative affect was directly related to punishment learning accuracy in highly punishment sensitive individuals, but these measures were inversely related in less sensitive individuals. Combined electrophysiological measurement, performance accuracy and computational estimations of learning parameters suggest that trait and state vulnerability to stress alter cortico-striatal functioning during reinforcement learning, possibly mediated via medio-frontal cortical systems.

  9. Oxidative stress and Parkinson’s disease

    Science.gov (United States)

    Blesa, Javier; Trigo-Damas, Ines; Quiroga-Varela, Anna; Jackson-Lewis, Vernice R.

    2015-01-01

    Parkinson disease (PD) is a chronic, progressive neurological disease that is associated with a loss of dopaminergic neurons in the substantia nigra pars compacta of the brain. The molecular mechanisms underlying the loss of these neurons still remain elusive. Oxidative stress is thought to play an important role in dopaminergic neurotoxicity. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neuronal degeneration in PD. Environmental factors, such as neurotoxins, pesticides, insecticides, dopamine (DA) itself, and genetic mutations in PD-associated proteins contribute to mitochondrial dysfunction which precedes reactive oxygen species formation. In this mini review, we give an update of the classical pathways involving these mechanisms of neurodegeneration, the biochemical and molecular events that mediate or regulate DA neuronal vulnerability, and the role of PD-related gene products in modulating cellular responses to oxidative stress in the course of the neurodegenerative process. PMID:26217195

  10. Study of Oxidative Stress in Vitiligo

    OpenAIRE

    2010-01-01

    Vitiligo is an idiopathic, acquired, circumscribed, hypomelanotic skin disorder, characterized by milky white patches of different sizes and shapes. It is due to the destruction of melanocytes resulting in the absence of pigment production of the skin and mucosal surfaces. Oxidative stress has been implicated in pathophysiology of vitiligo. To study the activity of blood Superoxide dismutase (SOD) and Glutathione peroxidase (GPx) in vitiligo patients. A case–control study was conducted in whi...

  11. Oxidative stress in prostate hyperplasia and carcinogenesis

    OpenAIRE

    Udensi K. Udensi; Tchounwou, Paul B.

    2016-01-01

    Prostatic hyperplasia (PH) is a common urologic disease that affects mostly elderly men. PH can be classified as benign prostatic hyperplasia (BPH), or prostate cancer (PCa) based on its severity. Oxidative stress (OS) is known to influence the activities of inflammatory mediators and other cellular processes involved in the initiation, promotion and progression of human neoplasms including prostate cancer. Scientific evidence also suggests that micronutrient supplementation may restore the a...

  12. Piracetam improves mitochondrial dysfunction following oxidative stress

    OpenAIRE

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging.Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction fol...

  13. Oxidative stress and male reproductive health

    Directory of Open Access Journals (Sweden)

    Robert J Aitken

    2014-02-01

    Full Text Available One of the major causes of defective sperm function is oxidative stress, which not only disrupts the integrity of sperm DNA but also limits the fertilizing potential of these cells as a result of collateral damage to proteins and lipids in the sperm plasma membrane. The origins of such oxidative stress appear to involve the sperm mitochondria, which have a tendency to generate high levels of superoxide anion as a prelude to entering the intrinsic apoptotic cascade. Unfortunately, these cells have very little capacity to respond to such an attack because they only possess the first enzyme in the base excision repair (BER pathway, 8-oxoguanine glycosylase 1 (OGG1. The latter successfully creates an abasic site, but the spermatozoa cannot process the oxidative lesion further because they lack the downstream proteins (APE1, XRCC1 needed to complete the repair process. It is the responsibility of the oocyte to continue the BER pathway prior to initiation of S-phase of the first mitotic division. If a mistake is made by the oocyte at this stage of development, a mutation will be created that will be represented in every cell in the body. Such mechanisms may explain the increase in childhood cancers and other diseases observed in the offspring of males who have suffered oxidative stress in their germ line as a consequence of age, environmental or lifestyle factors. The high prevalence of oxidative DNA damage in the spermatozoa of male infertility patients may have implications for the health of children conceivedin vitro and serves as a driver for current research into the origins of free radical generation in the germ line.

  14. Chronic stress effects in contralateral medial pterygoid muscle of rats with occlusion alteration.

    Science.gov (United States)

    Loyola, Bruno Melo; Nascimento, Glauce Crivelaro; Fernández, Rodrigo Alberto Restrepo; Iyomasa, Daniela Mizusaki; Pereira, Yamba Carla Lara; Leite-Panissi, Christie Ramos Andrade; Issa, João Paulo Mardegan; Iyomasa, Mamie Mizusaki

    2016-10-01

    Temporomandibular disorder (TMD) has a high prevalence in our society, characterized by a severe pain condition of the masticatory muscles and temporomandibular joint. Despite the indication of multiple factor initiators of TMD, there is still controversy about its etiology and its pathophysiology is poorly understood. Using rats as experimental animals we investigated the effect of unpredictable chronic stress with or without unilateral molar extraction on the contralateral medial pterygoid muscle. Our hypothesis is that these two factors induce changes in morphology, oxidative metabolism and oxidative stress of muscle fibers. Young adult male Wistar rats (±200g) were divided into four groups: a group with extraction and unpredictable chronic stress (E+US); with extraction and without stress (E+C); without extraction and with unpredictable chronic stress (NO+US); and a control group without either extraction or stress (NO+C). The animals were subjected to unilateral extraction of the upper left molars, under intraperitoneal anesthesia with 4% Xylazine (10mg/kg) and 10% Ketamine (80mg/kg) on day zero. The rats of groups E+US and NO+US were submitted to different protocols of stress, from the 14th day after the extraction. The protocols were different every day for five consecutive days, which were repeated from the 6th day for five days more. Contralateral medial pterygoid muscles were obtained on the 24th day after the start of the experiment for morphological, metabolic, capillary density, and oxidative stress analysis. The data from capillary density showed a decrease of capillaries in animals subjected to dental extraction, compared with those without extraction and an increase of laminin expression in the group submitted to the unpredictable chronic stress when compared to the unexposed to stress. SDH test revealed a decrease of light fibers in the group submitted to unilateral extraction of molars, compared with this area in the control group. In E+US and NO

  15. Iron, Oxidative Stress and Gestational Diabetes

    Directory of Open Access Journals (Sweden)

    Taifeng Zhuang

    2014-09-01

    Full Text Available Both iron deficiency and hyperglycemia are highly prevalent globally for pregnant women. Iron supplementation is recommended during pregnancy to control iron deficiency. The purposes of the review are to assess the oxidative effects of iron supplementation and the potential relationship between iron nutrition and gestational diabetes. High doses of iron (~relative to 60 mg or more daily for adult humans can induce lipid peroxidation in vitro and in animal studies. Pharmaceutical doses of iron supplements (e.g., 10× RDA or more for oral supplements or direct iron supplementation via injection or addition to the cell culture medium for a short or long duration will induce DNA damage. Higher heme-iron intake or iron status measured by various biomarkers, especially serum ferritin, might contribute to greater risk of gestational diabetes, which may be mediated by iron oxidative stress though lipid oxidation and/or DNA damage. However, information is lacking about the effect of low dose iron supplementation (≤60 mg daily on lipid peroxidation, DNA damage and gestational diabetes. Randomized trials of low-dose iron supplementation (≤60 mg daily for pregnant women are warranted to test the relationship between iron oxidative stress and insulin resistance/gestational diabetes, especially for iron-replete women.

  16. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

    Science.gov (United States)

    Liu, Shaobin; Zeng, Tingying Helen; Hofmann, Mario; Burcombe, Ehdi; Wei, Jun; Jiang, Rongrong; Kong, Jing; Chen, Yuan

    2011-09-27

    Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model-Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O(2)(•-)) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves as redox state mediator in bacteria. Conductive rGO and Gt have higher oxidation capacities than insulating GO and GtO. Results suggest that antimicrobial actions are contributed by both membrane and oxidation stress. We propose that a three-step antimicrobial mechanism, previously used for carbon nanotubes, is applicable to graphene-based materials. It includes initial cell deposition on graphene-based materials, membrane stress caused by direct contact with sharp nanosheets, and the ensuing superoxide anion-independent oxidation. We envision that physicochemical properties of graphene-based materials, such as density of functional groups, size, and conductivity, can be precisely tailored to either reducing their health and environmental risks or increasing their application potentials.

  17. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    Science.gov (United States)

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs.

  18. Oxidative Stress and Anxiety: Relationship and Cellular Pathways

    Directory of Open Access Journals (Sweden)

    Jaouad Bouayed

    2009-01-01

    Full Text Available High O2 consumption, modest antioxidant defenses and a lipid-rich constitution make the brain highly vulnerable to redox imbalances. Oxidative damage in the brain causes nervous system impairment. Recently, oxidative stress has also been implicated in depression, anxiety disorders and high anxiety levels. The findings which establish a link between oxidative stress and pathological anxiety have inspired a number of other recent studies focusing on the link between oxidative status and normal anxiety and also on a possible causal relationship between cellular oxidative stress and emotional stress. This review examines the recent discoveries made on the link between oxidative status and normal anxiety levels and the putative role of oxidative stress in genesis of anxiety. We discuss the different opinions and questions that exist in the field and review the methodological approaches that are being used to determine a causal relationship between oxidative and emotional stress.

  19. Role of oxidative stress in female reproduction.

    Science.gov (United States)

    Agarwal, Ashok; Gupta, Sajal; Sharma, Rakesh K

    2005-07-14

    In a healthy body, ROS (reactive oxygen species) and antioxidants remain in balance. When the balance is disrupted towards an overabundance of ROS, oxidative stress (OS) occurs. OS influences the entire reproductive lifespan of a woman and even thereafter (i.e. menopause). OS results from an imbalance between prooxidants (free radical species) and the body's scavenging ability (antioxidants). ROS are a double-edged sword - they serve as key signal molecules in physiological processes but also have a role in pathological processes involving the female reproductive tract. ROS affect multiple physiological processes from oocyte maturation to fertilization, embryo development and pregnancy. It has been suggested that OS modulates the age-related decline in fertility. It plays a role during pregnancy and normal parturition and in initiation of preterm labor. Most ovarian cancers appear in the surface epithelium, and repetitive ovulation has been thought to be a causative factor. Ovulation-induced oxidative base damage and damage to DNA of the ovarian epithelium can be prevented by antioxidants. There is growing literature on the effects of OS in female reproduction with involvement in the pathophysiology of preeclampsia, hydatidiform mole, free radical-induced birth defects and other situations such as abortions. Numerous studies have shown that OS plays a role in the pathophysiology of infertility and assisted fertility. There is some evidence of its role in endometriosis, tubal and peritoneal factor infertility and unexplained infertility. This article reviews the role OS plays in normal cycling ovaries, follicular development and cyclical endometrial changes. It also discusses OS-related female infertility and how it influences the outcomes of assisted reproductive techniques. The review comprehensively explores the literature for evidence of the role of oxidative stress in conditions such as abortions, preeclampsia, hydatidiform mole, fetal embryopathies, preterm

  20. Role of oxidative stress in female reproduction

    Directory of Open Access Journals (Sweden)

    Sharma Rakesh K

    2005-07-01

    Full Text Available Abstract In a healthy body, ROS (reactive oxygen species and antioxidants remain in balance. When the balance is disrupted towards an overabundance of ROS, oxidative stress (OS occurs. OS influences the entire reproductive lifespan of a woman and even thereafter (i.e. menopause. OS results from an imbalance between prooxidants (free radical species and the body's scavenging ability (antioxidants. ROS are a double-edged sword – they serve as key signal molecules in physiological processes but also have a role in pathological processes involving the female reproductive tract. ROS affect multiple physiological processes from oocyte maturation to fertilization, embryo development and pregnancy. It has been suggested that OS modulates the age-related decline in fertility. It plays a role during pregnancy and normal parturition and in initiation of preterm labor. Most ovarian cancers appear in the surface epithelium, and repetitive ovulation has been thought to be a causative factor. Ovulation-induced oxidative base damage and damage to DNA of the ovarian epithelium can be prevented by antioxidants. There is growing literature on the effects of OS in female reproduction with involvement in the pathophsiology of preeclampsia, hydatidiform mole, free radical-induced birth defects and other situations such as abortions. Numerous studies have shown that OS plays a role in the pathoysiology of infertility and assisted fertility. There is some evidence of its role in endometriosis, tubal and peritoneal factor infertility and unexplained infertility. This article reviews the role OS plays in normal cycling ovaries, follicular development and cyclical endometrial changes. It also discusses OS-related female infertility and how it influences the outcomes of assisted reproductive techniques. The review comprehensively explores the literature for evidence of the role of oxidative stress in conditions such as abortions, preeclampsia, hydatidiform mole, fetal

  1. EFFECTS OF PROLONGED EXERCISE ON OXIDATIVE STRESS AND ANTIOXIDANT DEFENSE IN ENDURANCE HORSE

    Directory of Open Access Journals (Sweden)

    Susanna Kinnunen

    2005-12-01

    Full Text Available Increased oxidative stress during prolonged endurance exercise may end up with muscle damage, fatigue and decreased physical performance. We have recently shown that acute exercise at moderate intensity induced lipid peroxidation, protein oxidation and oxygen radical absorbance capacity (ORAC in trained trotters. The aim of this study was to measure the changes in oxidative stress and antioxidant defense following an 80-km ride in the blood of endurance horses. Blood samples were collected before and immediately after the ride. Unlike to our previous studies performed on trotters, in endurance horses there were no measurable changes in antioxidants or oxidative stress marker lipid hydroperoxides (LPO after prolonged exercise. ORAC, vitamin E and lipid hydroperoxide (LPO concentration or glutathione related enzyme activities were not altered due to the 80-km ride. However, the base line levels of oxidative stress marker were higher in endurance horses compared to trotters. A positive correlation between the pre-ride LPO concentration and erythrocyte glutathione peroxidase (GPx activity after the ride was observed, which may indicate a protective response of glutathione peroxidase against exercise-induced oxidative stress. Our results suggest that endurance horses have higher oxidative stress levels compared to trotters and a single 80-km ride probably did not suffice to induce oxidative stress and to activate antioxidant defense mechanisms.

  2. Pathway and mechanism of oxidative stress in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Current hypotheses of pathogenesis of neuronal degeneration in Alzheimer's disease (AD) have been proposed, including formation of free radicals, oxidative stress, mitochondrial dysfunction, inflammatory processes, genetic factors, environmental impact factors, apoptosis, and so on. Especially, oxidative stress plays an essential role in AD pathogenesis by the function of linking agent. Oxidative stress in AD mainly includes lipid peroxidation, protein oxidation and DNA oxidation. Lipid peroxidation plays a key role in the development and progression of AD. Protein oxidation is an important mechanism in AD. Oxidative damage to DNA may plays an important role in aging and AD.

  3. Nuclear damages and oxidative stress: new perspectives for laminopathies

    Directory of Open Access Journals (Sweden)

    G. Lattanzi

    2012-10-01

    Full Text Available Mutations in genes encoding nuclear envelope proteins, particularly LMNA encoding the A-type lamins, cause a broad range of diverse diseases, referred to as laminopathies. The astonishing variety of diseased phenotypes suggests that different mechanisms could be involved in the pathogenesis of laminopathies. In this review we will focus mainly on two of these pathogenic mechanisms: the nuclear damages affecting the chromatin organization, and the oxidative stress causing un-repairable DNA damages. Alteration in the nuclear profile and in chromatin organization, which are particularly impressive in systemic laminopathies whose cells undergo premature senescence, are mainly due to accumulation of unprocessed prelamin A. The toxic effect of these molecular species, which interfere with chromatin-associated proteins, transcription factors, and signaling pathways, could be reduced by drugs which reduce their farnesylation and/or stability. In particular, inhibitors of farnesyl transferase (FTIs, have been proved to be active in rescuing the altered cellular phenotype, and statins, also in association with other drugs, have been included into pilot clinical trials. The identification of a mechanism that accounts for accumulation of un-repairable DNA damage due to reactive oxygen species (ROS generation in laminopathic cells, similar to that found in other muscular dystrophies (MDs caused by altered expression of extracellular matrix (ECM components, suggests that anti-oxidant therapeutic strategies might prove beneficial to laminopathic patients.

  4. Central immune alterations in passive strategy following chronic defeat stress.

    Science.gov (United States)

    Joana, Perez-Tejada; Amaia, Arregi; Arantza, Azpiroz; Garikoitz, Beitia; Eneritz, Gomez-Lazaro; Larraitz, Garmendia

    2016-02-01

    The relationship between stress, mood disorders and immune disorders is known, but what remains to be resolved is why certain individuals are more susceptible than others to suffer different disorders, along with the biological mechanisms that underlie these differences. The objective of this study was to analyze the changes in the expression patterns of proinflammatory cytokines in the hypothalamus, hippocampus, amygdala and prefrontal cortex after chronic defeat, depending on the coping strategy used. The expression levels of α1b and α2a adrenergic receptors and cytokine-inducible nitric oxide synthase (iNOS) in the prefrontal cortex were also measured. The results indicated that subjects with a passive coping strategy showed high levels of interleukin-6 (IL-6) and interleukin-1β (IL-1β) expression in several cerebral structures in resting conditions after 21 days of chronic stress and increases in these cytokine levels in the hippocampus following an additional stress. Low expression levels of tumour necrosis factor-alpha (TNF-α) in the prefrontal cortex in active subjects at rest and in passive subjects after an additional defeat were detected. The iNOS expression levels were lower in the prefrontal cortex of the active group at rest. With respect to adrenergic receptor expression, there were no changes as a function of stress, but there were changes as a function of coping strategy. These results indicate differences in the variables studied in terms of the coping strategy adopted, with passive subjects having a biological profile that could be considered more vulnerable to the development of stress-related disorders.

  5. Renal Dopamine Receptors, Oxidative Stress, and Hypertension

    Directory of Open Access Journals (Sweden)

    Ines Armando

    2013-08-01

    Full Text Available Dopamine, which is synthesized in the kidney, independent of renal nerves, plays an important role in the regulation of fluid and electrolyte balance and systemic blood pressure. Lack of any of the five dopamine receptor subtypes (D1R, D2R, D3R, D4R, and D5R results in hypertension. D1R, D2R, and D5R have been reported to be important in the maintenance of a normal redox balance. In the kidney, the antioxidant effects of these receptors are caused by direct and indirect inhibition of pro-oxidant enzymes, specifically, nicotinamide adenine dinucleotide phosphate, reduced form (NADPH oxidase, and stimulation of anti-oxidant enzymes, which can also indirectly inhibit NADPH oxidase activity. Thus, stimulation of the D2R increases the expression of endogenous anti-oxidants, such as Parkinson protein 7 (PARK7 or DJ-1, paraoxonase 2 (PON2, and heme oxygenase 2 (HO-2, all of which can inhibit NADPH oxidase activity. The D5R decreases NADPH oxidase activity, via the inhibition of phospholipase D2, and increases the expression of HO-1, another antioxidant. D1R inhibits NADPH oxidase activity via protein kinase A and protein kinase C cross-talk. In this review, we provide an overview of the protective roles of a specific dopamine receptor subtype on renal oxidative stress, the different mechanisms involved in this effect, and the role of oxidative stress and impairment of dopamine receptor function in the hypertension that arises from the genetic ablation of a specific dopamine receptor gene in mice.

  6. Renal dopamine receptors, oxidative stress, and hypertension.

    Science.gov (United States)

    Cuevas, Santiago; Villar, Van Anthony; Jose, Pedro A; Armando, Ines

    2013-08-27

    Dopamine, which is synthesized in the kidney, independent of renal nerves, plays an important role in the regulation of fluid and electrolyte balance and systemic blood pressure. Lack of any of the five dopamine receptor subtypes (D1R, D2R, D3R, D4R, and D5R) results in hypertension. D1R, D2R, and D5R have been reported to be important in the maintenance of a normal redox balance. In the kidney, the antioxidant effects of these receptors are caused by direct and indirect inhibition of pro-oxidant enzymes, specifically, nicotinamide adenine dinucleotide phosphate, reduced form (NADPH) oxidase, and stimulation of anti-oxidant enzymes, which can also indirectly inhibit NADPH oxidase activity. Thus, stimulation of the D2R increases the expression of endogenous anti-oxidants, such as Parkinson protein 7 (PARK7 or DJ-1), paraoxonase 2 (PON2), and heme oxygenase 2 (HO-2), all of which can inhibit NADPH oxidase activity. The D5R decreases NADPH oxidase activity, via the inhibition of phospholipase D2, and increases the expression of HO-1, another antioxidant. D1R inhibits NADPH oxidase activity via protein kinase A and protein kinase C cross-talk. In this review, we provide an overview of the protective roles of a specific dopamine receptor subtype on renal oxidative stress, the different mechanisms involved in this effect, and the role of oxidative stress and impairment of dopamine receptor function in the hypertension that arises from the genetic ablation of a specific dopamine receptor gene in mice.

  7. Increased platelet oxidative metabolism, blood oxidative stress and neopterin levels after ultra-endurance exercise.

    Science.gov (United States)

    de Lucas, Ricardo Dantas; Caputo, Fabrizio; Mendes de Souza, Kristopher; Sigwalt, André Roberto; Ghisoni, Karina; Lock Silveira, Paulo Cesar; Remor, Aline Pertile; da Luz Scheffer, Débora; Guglielmo, Luiz Guilherme Antonacci; Latini, Alexandra

    2014-01-01

    The purpose of the present investigation was to identify muscle damage, inflammatory response and oxidative stress blood markers in athletes undertaking the ultra-endurance MultiSport Brazil race. Eleven well-trained male athletes (34.3 ± 3.1 years, 74.0 ± 7.6 kg; 172.2 ± 5.1 cm) participated in the study and performed the race, which consisted of about 90 km of alternating off-road running, mountain biking and kayaking. Twelve hours before and up to 15 minutes after the race a 10 mL blood sample was drawn in order to measure the following parameters: lactate dehydrogenase and creatine kinase activities, lipid peroxidation, catalase activity, protein carbonylation, respiratory chain complexes I, II and IV activities, oxygen consumption and neopterin concentrations. After the race, plasma lactate dehydrogenase and creatine kinase activities were significantly increased. Erythrocyte TBA-RS levels and plasma protein carbonylation were markedly augmented in post-race samples. Additionally, mitochondrial complex II activity and oxygen consumption in post-race platelet-rich plasma were also increased. These altered biochemical parameters were accompanied by increased plasma neopterin levels. The ultra-endurance event provoked systemic inflammation (increased neopterin) accompanied by marked oxidative stress, likely by increasing oxidative metabolism (increased oxidative mitochondrial function). This might be advantageous during prolonged exercise, mainly for efficient substrate oxidation at the mitochondrial level, even when tissue damage is induced.

  8. Apoptosis and oxidative stress in neurodegenerative diseases.

    Science.gov (United States)

    Radi, Elena; Formichi, Patrizia; Battisti, Carla; Federico, Antonio

    2014-01-01

    Neurodegenerative disorders affect almost 30 million individuals leading to disability and death. These disorders are characterized by pathological changes in disease-specific areas of the brain and degeneration of distinct neuron subsets. Despite the differences in clinical manifestations and neuronal vulnerability, the pathological processes appear similar, suggesting common neurodegenerative pathways. Apoptosis seems to play a key role in the progression of several neurologic disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis as demonstrated by studies on animal models and cell lines. On the other hand, research on human brains reported contradictory results. However, many dying neurons have been detected in brains of patients with neurodegenerative diseases, and these conditions are often associated with significant cell loss accompanied by typical morphological features of apoptosis such as chromatin condensation, DNA fragmentation, and activation of cysteine-proteases, caspases. Cell death and neurodegenerative conditions have been linked to oxidative stress and imbalance between generation of free radicals and antioxidant defenses. Multiple sclerosis, stroke, and neurodegenerative diseases have been associated with reactive oxygen species and nitric oxide. Here we present an overview of the involvement of neuronal apoptosis and oxidative stress in the most important neurodegenerative diseases, mainly focusing the attention on several genetic disorders, discussing the interaction between primary genetic abnormalities and the apoptotic pathways.

  9. Oxidative Stress and DNA Methylation in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Krishna Vanaja Donkena

    2010-01-01

    Full Text Available The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.

  10. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats

    Directory of Open Access Journals (Sweden)

    Gharib Ola

    2009-11-01

    Full Text Available Abstract Background Trichloroethylene (TCE may induce oxidative stress which generates free radicals and alters antioxidants or oxygen-free radical scavenging enzymes. Methods Twenty male albino rats were divided into four groups: (1 the control group treated with vehicle, (2 Kombucha (KT-treated group, (3 TCE-treated group and (4 KT/TCE-treated group. Kidney lipid peroxidation, glutathione content, nitric oxide (NO and total blood free radical concentrations were evaluated. Serum urea, creatinine level, gamma-glutamyl transferase (GGT and lactate dehydrogenase (LDH activities were also measured. Results TCE administration increased the malondiahyde (MDA and NO contents in kidney, urea and creatinine concentrations in serum, total free radical level in blood and GGT and LDH activities in serum, whereas it decreased the glutathione (GSH level in kidney homogenate. KT administration significantly improved lipid peroxidation and oxidative stress induced by TCE. Conclusion The present study indicates that Kombucha may repair damage caused by environmental pollutants such as TCE and may be beneficial to patient suffering from renal impairment.

  11. No Differences Between Alter G-Trainer And Active And Passive Recovery Strategies On Isokinetic Strength, Systemic Oxidative Stress And Perceived Muscle Soreness After Exercise-Induced Muscle Damage.

    Science.gov (United States)

    Cooke, Matthew B; Nix, Carrie; Greenwood, Lori; Greenwood, Mike

    2016-11-28

    The incidence of muscle injuries is prevalent in elite sport athletes as well as weekend warriors and strategies that safely and effectively hasten recovery are highly desirable. The purpose of this study was to examine the differences between three recovery methods after eliciting muscle damage in recreationally active men relative to maximal isokinetic contractions, perceived muscle soreness and psychological mood states. Twenty-five recreationally active men (22.15±3.53yrs, 75.75±11.91kg, 180.52±7.3cm) were randomly matched by VO2 peak (53.86±6.65ml·kg·min) and assigned to one of three recovery methods: Anti-gravity Treadmill (G-Trainer) (N = 8), Conventional Treadmill (N = 8) or Static Stretching (N = 9). Recovery methods were performed 30 minutes, 24, 48 and 72 hours following a 45 minute downhill run. Following eccentrically-biased running, no significant differences were noted in isokinetic knee flexion and extension peak torque, systemic markers of muscle damage, oxidative stress and lipid peroxidation such as serum creatine kinase (CK), superoxide dismutase (SOD), and malondialdehyde (MDA), respectively, and subjective ratings of perceived muscle soreness between recovery methods. The G-Trainer group did however display a higher mood state as indicated by the Profile of Mood State global scores at 24 hours post-exercise when compared to the conventional treadmill recovery group (p=0.035). The improved mood state following the use of the anti-gravity treadmill may provide clinical relevance to other populations.

  12. ALTERATION OF U(VI)-PHASES UNDER OXIDIZING CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    A.P. Deditius; S. Utsunomiya; R.C. Ewing

    2006-02-21

    Uranium-(VI) phases are the primary alteration products of the UO{sub 2} in spent nuclear fuel and the UO{sub 2+x}, in natural uranium deposits. The U(VI)-phases generally form sheet structures of edge-sharing UO{sub 2}{sup 2+} polyhedra. The complexity of these structures offers numerous possibilities for coupled-substitutions of trace metals and radionuclides. The incorporation of radionuclides into U(VI)-structures provides a potential barrier to their release and transport in a geologic repository that experiences oxidizing conditions. In this study, we have used natural samples of UO{sub 2+x}, to study the U(VI)-phases that form during alteration and to determine the fate of the associated trace elements.

  13. Oxidative stress at high altitude: genotype–phenotype correlations

    Directory of Open Access Journals (Sweden)

    Pandey P

    2014-05-01

    Full Text Available Priyanka Pandey,1,2 MA Qadar Pasha1,2 1CSIR-Institute of Genomics and Integrative Biology, Delhi, India; 2Department of Biotechnology, University of Pune, Ganeshkhind, Pune, India Abstract: It has been well-documented that the hypobaric hypoxic environment at high altitude (HA causes stress to both the permanent residents of HA and the sojourners. This oxidative stress primarily disturbs the oxygen-sensing and vascular homeostasis pathways, thereby upsetting normal human physiology, especially in sojourners. These environmental challenges have caused dynamic evolutionary changes within natives of HA, allowing them to develop adaptive plasticity. This review focuses on the genomic and biochemical features of the molecules involved in the oxygen-sensing and vascular homeostasis pathways with respect to HA pulmonary edema (HAPE and adaptation. We review the role of genetic markers such as HIF-prolyl hydroxylase 2, endothelial PAS domain-containing protein 1, endothelial nitric oxide synthase, endothelin 1, cytochrome b-245 alpha polypeptide, and glutathione S-transferase pi 1, as well as three circulatory biomarkers (nitric oxide, endothelin 1, and 8-iso-prostaglandin F2α, by highlighting approaches such as candidate gene and genome-wide, adopted in deciphering the pathways. A disagreement between the two approaches has also been highlighted. In addition, we discuss that an overrepresentation of wild-type alleles in HA natives and mutant alleles of same polymorphisms in HAPE patients implies that the allelic variants at the same locus are involved in adaptation and HAPE, respectively. Moreover, healthy sojourners present a number of genomic features similar to HA natives, further strengthening the concept of genetic predisposition. A trend in correlation between protective and risk alleles and altered levels of circulatory markers clearly documents the phenomenon of genotype–phenotype correlations. We conclude that the genetic and biochemical

  14. Oxidative stress and antioxidant vitamins in leprosy

    Directory of Open Access Journals (Sweden)

    Sangeeta B. Trimbake

    2013-06-01

    Full Text Available Background: Leprosy is a disease of great antiquity and it still continues to be a significant public health problem in few countries including India .Of the various mechanisms that influence the pathogenesis of leprosy, oxidative stress is important which occurs due to derangement in the balance between ROS and natural antioxidants. Hence this study attempted to assess the oxidative stress and antioxidant status in terms of MDA and vitamin E, vitamin C respectively in leprosy. Methods: Hundred untreated leprosy patients (50 PB and 50 MB were studied and compared with 50 healthy controls. Serum Malondialdehyde (MDA and vitamin E, vitamin C was measured by spectrophotometric method. Serum malondialdehyde (MDA was measured as an indicator of lipid peroxidation and antioxidant status was assessed by estimating serum vitamin E and vitamin C levels. Results: Significant rise in serum MDA (P <0.001 in both PB and MB leprosy was seen when compared with controls. The vitamin E level was significantly decreased in both PB and MB leprosy patients as compared to controls. The vitamin C level was significantly decrease (P<0.001 in MB leprosy patients as compared to controls. Conclusions: Elevated MDA levels indicate oxidative stress in leprosy patients, denoting its crucial involvement in the pathogenesis and tissue damage in leprosy. Hence MDA levels can be used to monitor prognosis, treatment and control of leprosy. Decreased vitamin E, C levels in leprosy can be improved by oral vitamin E, C supplementation. [Int J Res Med Sci 2013; 1(3.000: 226-229

  15. The point about oxidative stress in molluscs

    Directory of Open Access Journals (Sweden)

    H Manduzio

    2005-07-01

    Full Text Available In the normal metabolism of the aerobic cell, oxygen is used for various biochemical reactions.Because of its two lone electrons of parallel spins, the molecular oxygen is stable. However, oxygengenerates Reactive Oxygenated Species or ROS by successive transfer of electrons. The ROS have astrong reactivity and can potentially interact with all other cellular components (lipids, proteins, DNA.They are at the origin of oxidations in chain by creating radicals. The cell has antioxidant systemswhich limit the effects of the ROS. These systems are composed of enzymes such as glutathionereductase, glutathione peroxidase, etc., and molecules of nonenzymatic nature like the reducedglutathione or vitamins. The production and the destruction of the radicals of oxygen coexist in a weakbalance. If this balance is broken in favour of the ROS, an oxidative stress is generated. Xenobioticscould influence this balance by catalysing production of ROS.

  16. Oxidative stress inhibition and oxidant activity by fibrous clays.

    Science.gov (United States)

    Cervini-Silva, Javiera; Nieto-Camacho, Antonio; Gómez-Vidales, Virginia

    2015-09-01

    Fibrous clays (sepiolite, palygorskite) are produced at 1.2m tonnes per year and have a wide range of industrial applications needing to replace long-fibre length asbestos. However, information on the beneficial effects of fibrous clays on health remains scarce. This paper reports on the effect of sepiolite (Vallecas, Spain) and palygorskite (Torrejón El Rubio, Spain) on cell damage via oxidative stress (determined as the progress of lipid peroxidation, LP). The extent of LP was assessed using the Thiobarbituric Acid Reactive Substances assay. The oxidant activity by fibrous clays was quantified using Electron-Paramagnetic Resonance. Sepiolite and palygorskite inhibited LP, whereby corresponding IC50 values were 6557±1024 and 4250±289μgmL(-1). As evidenced by dose-response experiments LP inhibition by palygorskite was surface-controlled. Fibrous clay surfaces did not stabilize HO species, except for suspensions containing 5000μgmL(-1). A strong oxidant (or weak anti-oxidant) activity favours the inhibition of LP by fibrous clays.

  17. Flavonoids and oxidative stress in Drosophila melanogaster.

    Science.gov (United States)

    Sotibrán, América Nitxin Castañeda; Ordaz-Téllez, María Guadalupe; Rodríguez-Arnaiz, Rosario

    2011-11-27

    Flavonoids are a family of antioxidants that are widely represented in fruits, vegetables, dry legumes, and chocolate, as well as in popular beverages, such as red wine, coffee, and tea. The flavonoids chlorogenic acid, kaempferol, quercetin and quercetin 3β-d-glycoside were investigated for genotoxicity using the wing somatic mutation and recombination test (SMART). This test makes use of two recessive wing cell markers: multiple wing hairs (mwh) and flare (flr(3)), which are mutations located on the left arm of chromosome 3 of Drosophila melanogaster and are indicative of both mitotic recombination and various types of mutational events. In order to test the antioxidant capacities of the flavonoids, experiments were conducted with various combinations of oxidants and polyphenols. Oxidative stress was induced using hydrogen peroxide, the Fenton reaction and paraquat. Third-instar transheterozygous larvae were chronically treated for all experiments. The data obtained in this study showed that, at the concentrations tested, the flavonoids did not induce somatic mutations or recombination in D. melanogaster with the exception of quercetin, which proved to be genotoxic at only one concentration. The oxidants hydrogen peroxide and the Fenton reaction did not induce mutations in the wing somatic assay of D. melanogaster, while paraquat and combinations of flavonoids produced significant numbers of small single spots. Quercetin 3β-d-glycoside mixed with paraquat was shown to be desmutagenic. Combinations of the oxidants with the other flavonoids did not show any antioxidant activity.

  18. Oxidative stress and antioxidants: Distress or eustress?

    Science.gov (United States)

    Niki, Etsuo

    2016-04-01

    There is a growing consensus that reactive oxygen species (ROS) are not just associated with various pathologies, but that they act as physiological redox signaling messenger with important regulatory functions. It is sometimes stated that "if ROS is a physiological signaling messenger, then removal of ROS by antioxidants such as vitamins E and C may not be good for human health." However, it should be noted that ROS acting as physiological signaling messenger and ROS removed by antioxidants are not the same. The lipid peroxidation products of polyunsaturated fatty acids and cholesterol induce adaptive response and enhance defense capacity against subsequent oxidative insults, but it is unlikely that these lipid peroxidation products are physiological signaling messenger produced on purpose. The removal of ROS and inhibition of lipid peroxidation by antioxidants should be beneficial for human health, although it has to be noted also that they may not be an effective inhibitor of oxidative damage mediated by non-radical oxidants. The term ROS is vague and, as there are many ROS and antioxidants which are different in chemistry, it is imperative to explicitly specify ROS and antioxidant to understand the effects and role of oxidative stress and antioxidants properly.

  19. Oxidative stress tolerance of early stage diabetic endothelial progenitor cell

    Directory of Open Access Journals (Sweden)

    Dewi Sukmawati

    2015-06-01

    Conclusions: Primitive BM-EPCs showed vasculogenic dysfunction in early diabetes. However the oxidative stress is not denoted as the major initiating factor of its cause. Our results suggest that primitive BM-KSL cell has the ability to compensate oxidative stress levels in early diabetes by increasing the expression of anti-oxidative enzymes.

  20. Biocompatibility of implantable materials: An oxidative stress viewpoint.

    Science.gov (United States)

    Mouthuy, Pierre-Alexis; Snelling, Sarah J B; Dakin, Stephanie G; Milković, Lidija; Gašparović, Ana Čipak; Carr, Andrew J; Žarković, Neven

    2016-12-01

    Oxidative stress occurs when the production of oxidants surpasses the antioxidant capacity in living cells. Oxidative stress is implicated in a number of pathological conditions such as cardiovascular and neurodegenerative diseases but it also has crucial roles in the regulation of cellular activities. Over the last few decades, many studies have identified significant connections between oxidative stress, inflammation and healing. In particular, increasing evidence indicates that the production of oxidants and the cellular response to oxidative stress are intricately connected to the fate of implanted biomaterials. This review article provides an overview of the major mechanisms underlying the link between oxidative stress and the biocompatibility of biomaterials. ROS, RNS and lipid peroxidation products act as chemo-attractants, signalling molecules and agents of degradation during the inflammation and healing phases. As chemo-attractants and signalling molecules, they contribute to the recruitment and activation of inflammatory and healing cells, which in turn produce more oxidants. As agents of degradation, they contribute to the maturation of the extracellular matrix at the healing site and to the degradation of the implanted material. Oxidative stress is itself influenced by the material properties, such as by their composition, their surface properties and their degradation products. Because both cells and materials produce and react with oxidants, oxidative stress may be the most direct route mediating the communication between cells and materials. Improved understanding of the oxidative stress mechanisms following biomaterial implantation may therefore help the development of new biomaterials with enhanced biocompatibility.

  1. The effect of oxidant and the non-oxidant alteration of cellular thiol concentration on the formation of protein mixed-disulfides in HEK 293 cells.

    Directory of Open Access Journals (Sweden)

    Jasen Lee Gilge

    Full Text Available Cellular molecules possess various mechanisms in responding to oxidant stress. In terms of protein responses, protein S-glutathionylation is a unique post-translational modification of protein reactive cysteines forming disulfides with glutathione molecules. This modification has been proposed to play roles in antioxidant, regulatory and signaling in cells under oxidant stress. Recently, the increased level of protein S-glutathionylation has been linked with the development of diseases. In this report, specific S-glutathionylated proteins were demonstrated in human embryonic kidney 293 cells treated with two different oxidative reagents: diamide and hydrogen peroxide. Diamide is a chemical oxidizing agent whereas hydrogen peroxide is a physiological oxidant. Under the experimental conditions, these two oxidants decreased glutathione concentration without toxicity. S-glutathionylated proteins were detected by immunoblotting and glutathione concentrations were determined by high performance liquid chromatography. We further show the effect of alteration of the cellular thiol pool on the amount of protein S-glutathionylation in oxidant-treated cells. Cellular thiol concentrations were altered either by a specific way using buthionine sulfoximine, a specific inhibitor of glutathione biosynthesis or by a non-specific way, incubating cells in cystine-methionine deficient media. Cells only treated with either buthionine sulfoximine or cystine-methionine deficient media did not induce protein S-glutathionylation, even though both conditions decreased 65% of cellular glutathione. Moreover, the amount of protein S-glutathionylation under both conditions in the presence of oxidants was not altered when compared to the amount observed in regular media with oxidants present. Protein S-glutathionylation is a dynamic reaction which depends on the rate of adding and removing glutathione. Phenylarsine oxide, which specifically forms a covalent adduct with

  2. Alpha-tocopherol ameliorates cypermethrin-induced toxicity and oxidative stress in the nematode Caenorhabdtis elegans.

    Science.gov (United States)

    Shashikumar, Shivaiah; Rajini, P S

    2011-06-01

    Oxidative stress and other effects induced by cypermethrin (CYP, 15 mM) and their amelioration by alpha-tocopherol (400 microM) was studied in the nematode Caenorhabditis elegans. The worms exposed for 4 h to CYP showed increased levels of reactive oxygen species (46%), H2O2 (37%) and protein carbonyls (29%), accompanied by decreased lifespan and brood size. However, exposure to both CYP and alpha-tocopherol resulted in diminution of above alterations with the worms exhibiting relatively lower levels of ROS (30%), H2O2 (15%), protein carbonyls (14%), altered antioxidant enzyme activities and normal lifespan and brood size. The results suggest that CYP induces oxidative stress in C. elegans and the strategy of intervention with alpha-tocopherol could be exploited to offset this induced oxidative stress.

  3. Oxidative stress: Biomarkers and novel therapeutic pathways.

    Science.gov (United States)

    Maiese, Kenneth; Chong, Zhao Zhong; Hou, Jinling; Shang, Yan Chen

    2010-03-01

    Oxidative stress significantly impacts multiple cellular pathways that can lead to the initiation and progression of varied disorders throughout the body. It therefore becomes imperative to elucidate the components and function of novel therapeutic strategies against oxidative stress to further clinical diagnosis and care. In particular, both the growth factor and cytokine erythropoietin (EPO) and members of the mammalian forkhead transcription factors of the O class (FoxOs) may offer the greatest promise for new treatment regimens since these agents and the cellular pathways they oversee cover a range of critical functions that directly influence progenitor cell development, cell survival and degeneration, metabolism, immune function, and cancer cell invasion. Furthermore, both EPO and FoxOs function not only as therapeutic targets, but also as biomarkers of disease onset and progression, since their cellular pathways are closely linked and overlap with several unique signal transduction pathways. However, biological outcome with EPO and FoxOs may sometimes be both unexpected and undesirable that can raise caution for these agents and warrant further investigations. Here we present the exciting as well as complicated role EPO and FoxOs possess to uncover the benefits as well as the risks of these agents for cell biology and clinical care in processes that range from stem cell development to uncontrolled cellular proliferation.

  4. Melamine Induces Oxidative Stress in Mouse Ovary.

    Science.gov (United States)

    Dai, Xiao-Xin; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS) levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPX) were analyzed, and the concentration of malondialdehyde (MDA) were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  5. Melamine Induces Oxidative Stress in Mouse Ovary.

    Directory of Open Access Journals (Sweden)

    Xiao-Xin Dai

    Full Text Available Melamine is a nitrogen heterocyclic triazine compound which is widely used as an industrial chemical. Although melamine is not considered to be acutely toxic with a high LD50 in animals, food contaminated with melamine expose risks to the human health. Melamine has been reported to be responsible for the renal impairment in mammals, its toxicity on the reproductive system, however, has not been adequately assessed. In the present study, we examined the effect of melamine on the follicle development and ovary formation. The data showed that melamine increased reactive oxygen species (ROS levels, and induced granulosa cell apoptosis as well as follicle atresia. To further analyze the mechanism by which melamine induces oxidative stress, the expression and activities of two key antioxidant enzymes superoxide dismutase (SOD and glutathione peroxidase (GPX were analyzed, and the concentration of malondialdehyde (MDA were compared between control and melamine-treated ovaries. The result revealed that melamine changed the expression and activities of SOD and GPX in the melamine-treated mice. Therefore, we demonstrate that melamine causes damage to the ovaries via oxidative stress pathway.

  6. [Selenium and oxidative stress in cancer patients].

    Science.gov (United States)

    Gorozhanskaia, É G; Sviridova, S P; Dobrovol'skaia, M M; Zybrikhina, G N; Kashnia, Sh R

    2013-01-01

    In order to identify the features of violations of free-radical processes in blood serum of 94 untreated cancer patients with different localization of the tumor (cancer of the stomach, colon, breast, ovarian, hemoblastoses) were determined selenium levels and indicators of oxidative stress (sum of metabolites of nitrogen--NOx, the level of superoxide dismutase--Cu/ZnSOD and malondiialdehyde-MDA, and the activity of catalase). In addition, 40 patients with malignant liver disease and clinical signs of liver failure in the early postoperative period was carried out a comparative evaluation of the efficacy of selenium-containing drug "Selenaze" (sodium selenite pentahydrate). It was found that selenium levels in cancer patients by 25-30% below the norm of 110-120 mg/l at a rate of 73.0 +/- 2.6 mg/l. Low levels of NOx was detected in patients with all tumor localizations (22.1 +/- 1.1 microM, with normal range 28.4 +/- 0.9 microM). The exceptions were patients with extensive malignant process in the liver, in which the NOx levels were significantly higher than normal (p selenium levels by 10-12%, which was accompanied by a decrease in the content of SOD and NOx, and contributed to earlier recovery of detoxic and synthetic liver function. These findings point to an intensification of oxidative stress and metabolic disorders in the malignant process, which is the basis for metabolic correction.

  7. Vascular oxidant stress and inflammation in hyperhomocysteinemia.

    Science.gov (United States)

    Papatheodorou, Louisa; Weiss, Norbert

    2007-11-01

    Elevated plasma levels of homocysteine are a metabolic risk factor for atherosclerotic vascular disease, as shown in numerous clinical studies that linked elevated homocysteine levels to de novo and recurrent cardiovascular events. High levels of homocysteine promote oxidant stress in vascular cells and tissue because of the formation of reactive oxygen species (ROS), which have been strongly implicated in the development of atherosclerosis. In particular, ROS have been shown to cause endothelial injury, dysfunction, and activation. Elevated homocysteine stimulates proinflammatory pathways in vascular cells, resulting in leukocyte recruitment to the vessel wall, mediated by the expression of adhesion molecules on endothelial cells and circulating monocytes and neutrophils, in the infiltration of leukocytes into the arterial wall mediated by increased secretion of chemokines, and in the differentiation of monocytes into cholesterol-scavenging macrophages. Furthermore, it stimulates the proliferation of vascular smooth muscle cells followed by the production of extracellular matrix. Many of these events involve redox-sensitive signaling events, which are promoted by elevated homocysteine, and result in the formation of atherosclerotic lesions. In this article, we review current knowledge about the role of homocysteine on oxidant stress-mediated vascular inflammation during the development of atherosclerosis.

  8. Nutritionally Mediated Oxidative Stress and Inflammation

    Directory of Open Access Journals (Sweden)

    Alexandra Muñoz

    2013-01-01

    Full Text Available There are many sources of nutritionally mediated oxidative stress that trigger inflammatory cascades along short and long time frames. These events are primarily mediated via NFκB. On the short-term scale postprandial inflammation is characterized by an increase in circulating levels of IL-6 and TNF-α and is mirrored on the long-term by proinflammatory gene expression changes in the adipocytes and peripheral blood mononuclear cells (PBMCs of obese individuals. Specifically the upregulation of CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CXCL2/MIP-2α, and CXCL3/MIP-2β is noted because these changes have been observed in both adipocytes and PBMC of obese humans. In comparing numerous human intervention studies it is clear that pro-inflammatory and anti-inflammatory consumption choices mediate gene expression in humans adipocytes and peripheral blood mononuclear cells. Arachidonic acid and saturated fatty acids (SFAs both demonstrate an ability to increase pro-inflammatory IL-8 along with numerous other inflammatory factors including IL-6, TNFα, IL-1β, and CXCL1 for arachidonic acid and IGB2 and CTSS for SFA. Antioxidant rich foods including olive oil, fruits, and vegetables all demonstrate an ability to lower levels of IL-6 in PBMCs. Thus, dietary choices play a complex role in the mediation of unavoidable oxidative stress and can serve to exacerbate or dampen the level of inflammation.

  9. A Nucleocytoplasmic Shuttling Protein in Oxidative Stress Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Ow, David W.; Song, Wen

    2003-03-26

    Plants for effective extraction of toxic metals and radionuclides must tolerate oxidative stress. To identify genes that enhance oxidative stress tolerance, an S. pombe cDNA expression plasmid library was screened for the ability to yield hypertolerant colonies. Here, we report on the properties of one gene that confers hypertolerance to cadmium and oxidizing chemicals. This gene appears to be conserved in other organisms as homologous genes are found in human, mouse, fruitfly and Arabidopsis. The fruitfly and Arabidopsis genes likewise enhance oxidative stress tolerance in fission yeast. During oxidative stress, the amount of mRNA does not change, but protein fusions to GFP relocate from the cytoplasm to the nucleus. The same pattern is observed with the Arabidopsis homologue-GFP fusion protein. This behavior suggests a signaling role in oxidative stress tolerance and these conserved proteins may be targets for engineering stress tolerant plants for phytoremediation.

  10. Chasing great paths of Helmut Sies "Oxidative Stress".

    Science.gov (United States)

    Majima, Hideyuki J; Indo, Hiroko P; Nakanishi, Ikuo; Suenaga, Shigeaki; Matsumoto, Ken-Ichiro; Matsui, Hirofumi; Minamiyama, Yukiko; Ichikawa, Hiroshi; Yen, Hsiu-Chuan; Hawkins, Clare L; Davies, Michael J; Ozawa, Toshihiko; St Clair, Daret K

    2016-04-01

    Prof. Dr. Helmut Sies is a pioneer of "Oxidative Stress", and has published over 18 papers with the name of "Oxidative Stress" in the title. He has been Editor-in-Chief of the journal "Archives of Biochemistry and Biophysics" for many years, and is a former Editor-in-Chief of the journal "Free Radical Research". He has clarified our understanding of the causes of chronic developing diseases, and has studied antioxidant factors. In this article, importance of "Oxidative Stress" and our mitochondrial oxidative stress studies; roles of mitochondrial ROS, effects of vitamin E and its homologues in oxidative stress-related diseases, effects of antioxidants in vivo and in vitro, and a mitochondrial superoxide theory for oxidative stress diseases and aging are introduced, and some of our interactions with Helmut are described, congratulating and appreciating his great path.

  11. Oxidative stress action in cellular aging

    Directory of Open Access Journals (Sweden)

    Monique Cristine de Oliveira

    2010-12-01

    Full Text Available Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the factors such as cellular oxidative damage, its consequences and the main protective measures taken to prevent or delay this process. Tests with antioxidants: vitamins A, E and C, flavonoids, carotenoids and minerals, the practice of caloric restriction and physical exercise, seeking the beneficial effects on human health, increasing longevity, reducing the level of oxidative stress, slowing the cellular senescence and origin of certain diseases, are discussed.Diferentes teorias tentam explicar o envelhecimento biológico através da alteração das funções e estrutura dos sistemas orgânicos e células. Ao longo da vida, os radicais livres presentes no estresse oxidativo conduzem à peroxidação dos lipídios das membranas celulares, desequilíbrio da homeostase, formação de resíduos químicos, mutações gênicas no DNA, disfunção de certas organelas, bem como ao surgimento de doenças devido à lesão e/ou morte celular. Nesta revisão descreve-se a ação do estresse oxidativo no processo de envelhecimento das células, enfatizando fatores como os danos oxidativos celulares, suas conseqüências e as principais medidas protetoras adotadas para se prevenir ou retardar este processo. Testes com antioxidantes: vitaminas A, E e C, flavonóides, carotenóides e minerais; a prática de restrição calórica e exercícios físicos, que buscam efeitos benéficos sobre a saúde humana, aumentando a longevidade, reduzindo o nível de estresse oxidativo

  12. Alteration of coffinite under reducing and oxidizing conditions

    Science.gov (United States)

    Deditius, Artur P.; Utsunomiya, Satoshi; Pointeau, Veronique; Ewing, Rodney C.

    2010-05-01

    Coffinite, USiO4, is a one of the two naturally occurring actinide silicates (second is thorite, ThSiO4) studied to elucidate the alteration of spent nuclear fuel (SNF) under reducing conditions in a Si-rich environment. In order to understand the stability of coffinite under different redox condition in natural systems, we have investigated coffinite the Grants Uranium Belt, New Mexico, USA (reducing and oxidizing conditions) utilizing a variety of electron microbeam techniques. Fine-grained coffinite (≤10 μm) from Woodrow Mine coexists with carbonate-fluorapatite (CFAp) and (Ca,Sr)-(meta)autunite (M-Aut). It precipitated under reducing conditions replacing CFAp, pyrite and aluminosilicates. Electron-microprobe analyses (EMPA) of coffinite indicate limited incorporation of P2O5 and CaO, below 2.7 and 3.0 wt.%, respectively, into the coffinite structure during replacement of CFAp. The chemical formula of coffinite is (U0.95±0.09Ca0.15±0.02)Σ1.10±0.1(Si0.84±0.08P0.06±0.02)Σ0.90±0.08. Analysis by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) revealed that coffinite initially formed as crystals as large as 100 nm at the edges of altered CFAp. Subsequently, infiltration of (Na,Ba,Sr)-rich oxidizing fluids into fractures resulted in precipitation of Sr-rich M-Aut (up to 4 wt.% of SrO) at the expense of coffinite and CFAp. High-resolution TEM reveals that Na-rich fluids caused a distortion of the ideal coffinite structure and stabilized amorphous domains that formed due to alpha-decay event radiation damage. Subsequently, the Na-enriched amorphous areas of coffinite were preferentially altered, and secondary porosity formed at the scale of ~1 μm. Porosity also was formed during alteration of CFAp to M-Aut, which facilitated the migration of oxidizing fluids over distances of ~150 μm into CFAp, as evidenced by precipitation of M-Aut. These results show that micro-scale dissolution of apatite can create conditions

  13. Diabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy

    Directory of Open Access Journals (Sweden)

    María Muriach

    2014-01-01

    Full Text Available Diabetes mellitus is a common metabolic disorder associated with chronic complications including a state of mild to moderate cognitive impairment, in particular psychomotor slowing and reduced mental flexibility, not attributable to other causes, and shares many symptoms that are best described as accelerated brain ageing. A common theory for aging and for the pathogenesis of this cerebral dysfunctioning in diabetes relates cell death to oxidative stress in strong association to inflammation, and in fact nuclear factor κB (NFκB, a master regulator of inflammation and also a sensor of oxidative stress, has a strategic position at the crossroad between oxidative stress and inflammation. Moreover, metabolic inflammation is, in turn, related to the induction of various intracellular stresses such as mitochondrial oxidative stress, endoplasmic reticulum (ER stress, and autophagy defect. In parallel, blockade of autophagy can relate to proinflammatory signaling via oxidative stress pathway and NFκB-mediated inflammation.

  14. Oxidative stress in marine environments: biochemistry and physiological ecology.

    Science.gov (United States)

    Lesser, Michael P

    2006-01-01

    Oxidative stress-the production and accumulation of reduced oxygen intermediates such as superoxide radicals, singlet oxygen, hydrogen peroxide, and hydroxyl radicals-can damage lipids, proteins, and DNA. Many disease processes of clinical interest and the aging process involve oxidative stress in their underlying etiology. The production of reactive oxygen species is also prevalent in the world's oceans, and oxidative stress is an important component of the stress response in marine organisms exposed to a variety of insults as a result of changes in environmental conditions such as thermal stress, exposure to ultraviolet radiation, or exposure to pollution. As in the clinical setting, reactive oxygen species are also important signal transduction molecules and mediators of damage in cellular processes, such as apoptosis and cell necrosis, for marine organisms. This review brings together the voluminous literature on the biochemistry and physiology of oxidative stress from the clinical and plant physiology disciplines with the fast-increasing interest in oxidative stress in marine environments.

  15. “Cumulative Stress”: The Effects of Maternal and Neonatal Oxidative Stress and Oxidative Stress-Inducible Genes on Programming of Atopy

    Science.gov (United States)

    D'Angelo, Gabriella; Cuppari, Caterina; Cusumano, Erika; Arrigo, Teresa; Gitto, Eloisa; Salpietro, Carmelo

    2016-01-01

    Although extensive epidemiological and laboratory studies have been performed to identify the environmental and immunological causes of atopy, genetic predisposition seems to be the biggest risk factor for allergic diseases. The onset of atopic diseases may be the result of heritable changes of gene expression, without any alteration in DNA sequences occurring in response to early environmental stimuli. Findings suggest that the establishment of a peculiar epigenetic pattern may also be generated by oxidative stress (OS) and perpetuated by the activation of OS-related genes. Analyzing the role of maternal and neonatal oxidative stress and oxidative stress-inducible genes, the purpose of this review was to summarize what is known about the relationship between maternal and neonatal OS-related genes and the development of atopic diseases. PMID:27504149

  16. Perinatal Oxidative Stress May Affect Fetal Ghrelin Levels in Humans

    OpenAIRE

    Zhong-Cheng Luo; Jean-François Bilodeau; Anne Monique Nuyt; Fraser, William D; Pierre Julien; Francois Audibert; Lin Xiao; Carole Garofalo; Emile Levy

    2015-01-01

    In vitro cell model studies have shown that oxidative stress may affect beta-cell function. It is unknown whether oxidative stress may affect metabolic health in human fetuses/newborns. In a singleton pregnancy cohort (n = 248), we studied maternal (24–28 weeks gestation) and cord plasma biomarkers of oxidative stress [malondialdehyde (MDA), F2-isoprostanes] in relation to fetal metabolic health biomarkers including cord plasma glucose-to-insulin ratio (an indicator of insulin sensitivity), p...

  17. Oxidative and nitrosative stress in ammonia neurotoxicity.

    Science.gov (United States)

    Skowrońska, Marta; Albrecht, Jan

    2013-04-01

    Increased ammonia accumulation in the brain due to liver dysfunction is a major contributor to the pathogenesis of hepatic encephalopathy (HE). Fatal outcome of rapidly progressing (acute) HE is mainly related to cytotoxic brain edema associated with astrocytic swelling. An increase of brain ammonia in experimental animals or treatment of cultured astrocytes with ammonia generates reactive oxygen and nitrogen species in the target tissues, leading to oxidative/nitrosative stress (ONS). In cultured astrocytes, ammonia-induced ONS is invariably associated with the increase of the astrocytic cell volume. Interrelated mechanisms underlying this response include increased nitric oxide (NO) synthesis which is partly coupled to the activation of NMDA receptors and increased generation of reactive oxygen species by NADPH oxidase. ONS and astrocytic swelling are further augmented by excessive synthesis of glutamine (Gln) which impairs mitochondrial function following its accumulation in there and degradation back to ammonia ("the Trojan horse" hypothesis). Ammonia also induces ONS in other cell types of the CNS: neurons, microglia and the brain capillary endothelial cells (BCEC). ONS in microglia contributes to the central inflammatory response, while its metabolic and pathophysiological consequences in the BCEC evolve to the vasogenic brain edema associated with HE. Ammonia-induced ONS results in the oxidation of mRNA and nitration/nitrosylation of proteins which impact intracellular metabolism and potentiate the neurotoxic effects. Simultaneously, ammonia facilitates the antioxidant response of the brain, by activating astrocytic transport and export of glutathione, in this way increasing the availability of precursors of neuronal glutathione synthesis.

  18. Modulatory effect of Tinospora cordifolia extract on Cd-induced oxidative stress in Wistar rats

    Directory of Open Access Journals (Sweden)

    Viswanadha Vijaya Padma

    2016-03-01

    Conclusion: Our results suggested that TCE with its antioxidant effect offered cytoprotection against Cd-induced toxicity in kidneys by restoring the altered cellular antioxidants and renal markers. TCE treatment for 28 days reversed ATPase activity and tissue glycoprotein levels. These results revealed the protective effect of TCE on Cd-induced toxicity in kidneys and oxidative stress.

  19. Oxidative Stress: A Link between Diabetes Mellitus and Periodontal Disease

    Directory of Open Access Journals (Sweden)

    Adriana Monea

    2014-01-01

    Full Text Available Objective. To investigate oxidative stress (OS and histological changes that occur in the periodontium of subjects with type 2 diabetes mellitus without signs of periodontal disease and to establish if oxidative stress is a possible link between diabetes mellitus and periodontal changes. Materials and Methods. Tissue samples from ten adult patients with type 2 diabetes mellitus (T2D and eight healthy adults were harvested. The specimens were examined by microscope using standard hematoxylin-eosin stain, at various magnifications, and investigated for tissue levels of malondialdehyde (MDA and glutathione (GSH. Results. Our results showed that periodontal tissues in patients with T2D present significant inflammation, affecting both epithelial and connective tissues. Mean MDA tissue levels were 3.578 ± 0.60 SD in diabetics versus 0.406 ± 0.27 SD in controls (P < 0.0001, while mean GSH tissue levels were 2.48 ± 1.02 SD in diabetics versus 9.7875 ± 2.42 SD in controls (P < 0.0001. Conclusion. Diabetic subjects had higher MDA levels in their periodontal tissues, suggesting an increased lipid peroxidation in T2D, and decreased GSH tissue levels, suggesting an alteration of the local antioxidant defense mechanism. These results are in concordance with the histological changes that we found in periodontal tissues of diabetic subjects, confirming the hypothesis of OS implication, as a correlation between periodontal disease incidence and T2D.

  20. Evaluation of oxidative stress in Insulin Dependent Diabetes Mellitus (IDDM patients

    Directory of Open Access Journals (Sweden)

    Ramakrishna Vadde

    2007-07-01

    Full Text Available Abstract Background Free radical mediated oxidative stress is mainly involved in the pathogenesis of diabetic complications. Proteins and lipids are among the prime targets for oxidative stress. In the present study, we evaluated the oxidative stress in chronic IDDM patients by estimating the lipid peroxidation, protein oxidation, and antioxidants status. Subjects and design A total of 35 (15 IDDM + 20 normal healthy children were examined in the study and estimated the lipid peroxidation, protein oxidation, and antioxidants – vitamin A (β-carotene, retinol, vitamin C, vitamin E and enzymatic antioxidants and nitric oxide. Results A statistically significant higher values of protein carbonyl groups and MDA as lipid peroxides were observed in diabetic patients with slight reduction in the synthesis of nitric oxide. It is interesting to note that there was a decrease in the antioxidant levels with corresponding increased protein and lipid oxidation. On PAGE under native conditions, we observed decreased levels of proteins – albumin, transferrin, ceruloplasmin and heptoglobulins and variable GC globulin fractions in IDDM compared to normal healthy controls. Conclusion Hyperglycemia induces the overproduction of oxygen free radicals and consequently increases the protein oxidation and lipid oxidation. A significance difference in the mean plasma concentration of total antioxidant status was observed in IDDM patients. The findings of the present study suggest that diabetes in an altered metabolic state of oxidation-reduction and that it is convenient to give therapeutic interventions with antioxidants.

  1. Biphasic regulation of lysosomal exocytosis by oxidative stress.

    Science.gov (United States)

    Ravi, Sreeram; Peña, Karina A; Chu, Charleen T; Kiselyov, Kirill

    2016-11-01

    Oxidative stress drives cell death in a number of diseases including ischemic stroke and neurodegenerative diseases. A better understanding of how cells recover from oxidative stress is likely to lead to better treatments for stroke and other diseases. The recent evidence obtained in several models ties the process of lysosomal exocytosis to the clearance of protein aggregates and toxic metals. The mechanisms that regulate lysosomal exocytosis, under normal or pathological conditions, are only beginning to emerge. Here we provide evidence for the biphasic effect of oxidative stress on lysosomal exocytosis. Lysosomal exocytosis was measured using the extracellular levels of the lysosomal enzyme beta-hexosaminidase (ß-hex). Low levels or oxidative stress stimulated lysosomal exocytosis, but inhibited it at high levels. Deletion of the lysosomal ion channel TRPML1 eliminated the stimulatory effect of low levels of oxidative stress. The inhibitory effects of oxidative stress appear to target the component of lysosomal exocytosis that is driven by extracellular Ca(2+). We propose that while moderate oxidative stress promotes cellular repair by stimulating lysosomal exocytosis, at high levels oxidative stress has a dual pathological effect: it directly causes cell damage and impairs damage repair by inhibiting lysosomal exocytosis. Harnessing these adaptive mechanisms may point to pharmacological interventions for diseases involving oxidative proteotoxicity or metal toxicity.

  2. Thyroid Hormones, Oxidative Stress, and Inflammation

    Directory of Open Access Journals (Sweden)

    Antonio Mancini

    2016-01-01

    Full Text Available Inflammation and oxidative stress (OS are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS that typically manifests as reduced conversion of thyroxine (T4 to triiodothyronine (T3 in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases.

  3. Thyroid Hormones, Oxidative Stress, and Inflammation.

    Science.gov (United States)

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases.

  4. Oxidative stress, free radicals and protein peroxides.

    Science.gov (United States)

    Gebicki, Janusz M

    2016-04-01

    Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione.

  5. The Role of Oxidative Stress and Antioxidants in Liver Diseases

    Directory of Open Access Journals (Sweden)

    Sha Li

    2015-11-01

    Full Text Available A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.

  6. Strategies for Reducing or Preventing the Generation of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    B. Poljsak

    2011-01-01

    Full Text Available The reduction of oxidative stress could be achieved in three levels: by lowering exposure to environmental pollutants with oxidizing properties, by increasing levels of endogenous and exogenous antioxidants, or by lowering the generation of oxidative stress by stabilizing mitochondrial energy production and efficiency. Endogenous oxidative stress could be influenced in two ways: by prevention of ROS formation or by quenching of ROS with antioxidants. However, the results of epidemiological studies where people were treated with synthetic antioxidants are inconclusive and contradictory. Recent evidence suggests that antioxidant supplements (although highly recommended by the pharmaceutical industry and taken by many individuals do not offer sufficient protection against oxidative stress, oxidative damage or increase the lifespan. The key to the future success of decreasing oxidative-stress-induced damage should thus be the suppression of oxidative damage without disrupting the wellintegrated antioxidant defense network. Approach to neutralize free radicals with antioxidants should be changed into prevention of free radical formation. Thus, this paper addresses oxidative stress and strategies to reduce it with the focus on nutritional and psychosocial interventions of oxidative stress prevention, that is, methods to stabilize mitochondria structure and energy efficiency, or approaches which would increase endogenous antioxidative protection and repair systems.

  7. Oxidative stress decreases with elevation in the lizard Psammodromus algirus.

    Science.gov (United States)

    Reguera, Senda; Zamora-Camacho, Francisco J; Trenzado, Cristina E; Sanz, Ana; Moreno-Rueda, Gregorio

    2014-06-01

    Oxidative stress is considered one of the main ecological and evolutionary forces. Several environmental stressors vary geographically and thus organisms inhabiting different sites face different oxidant environments. Nevertheless, there is scarce information about how oxidative damage and antioxidant defences vary geographically in animals. Here we study how oxidative stress varies from lowlands (300-700 m asl) to highlands (2200-2500 m asl) in the lizard Psammodromus algirus. To accomplish this, antioxidant enzymatic activity (catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione transferase, DT-diaphorase) and lipid peroxidation were assayed in tissue samples from the lizards' tail. Lipid peroxidation was higher in individuals from lowlands than from highlands, indicating higher oxidative stress in lowland lizards. These results suggest that environmental conditions are less oxidant at high elevations with respect to low ones. Therefore, our study shows that oxidative stress varies geographically, which should have important consequences for our understanding of geographic variation in physiology and life-history of organisms.

  8. Diclofenac-enriched artificial sediment induces oxidative stress in Hyalella azteca.

    Science.gov (United States)

    Oviedo-Gómez, Dennis Gloria Carolina; Galar-Martínez, Marcela; García-Medina, Sandra; Razo-Estrada, Celene; Gómez-Oliván, Leobardo Manuel

    2010-01-01

    Diclofenac is a nonsteroidal anti-inflammatory drug widely used in Mexico where it is sold over the counter. It enters water bodies through municipal and industrial discharges, posing a risk to water systems and aquatic organisms. Diclofenac-enriched artificial sediment was used to evaluate the toxicity of this pharmaceutical on the sentinel species Hyalella azteca, using oxidative stress biomarkers in order to determine if the set of tests used in this study is a suitable early damage biomarker. The median lethal concentration (72-h LC(50)) was determined and oxidative stress was evaluated using lipid peroxidation, protein carbonyl content to evaluate oxidized protein content, and the activity of superoxide dismutase, catalase, and glutathione peroxidase. All biomarkers were significantly altered. Diclofenac induces oxidative stress in H. azteca and the set of tests used (lipid peroxidation, protein carbonyl content, antioxidant enzyme activities) constitutes an adequate early damage biomarker for evaluating the toxicity of this pharmaceutical group in aquatic species.

  9. Interrelation Between Oxidative Stress and Complement Activation in Models of Age-Related Macular Degeneration.

    Science.gov (United States)

    Pujol-Lereis, Luciana M; Schäfer, Nicole; Kuhn, Laura B; Rohrer, Bärbel; Pauly, Diana

    2016-01-01

    Millions of individuals older than 50-years suffer from age-related macular degeneration (AMD). Associated with this multifactorial disease are polymorphisms of complement factor genes and a main environmental risk factor-oxidative stress. Until now the linkage between these risk factors for AMD has not been fully understood. Recent studies, integrating results on oxidative stress, complement activation, epidemiology and ocular pathology suggested the following sequence in AMD-etiology: initially, chronic oxidative stress results in modification of proteins and lipids in the posterior of the eye; these tissue alterations trigger chronic inflammation, involving the complement system; and finally, invasive immune cells facilitate pathology in the retina. Here, we summarize the results for animal studies which aim to elucidate this molecular interplay of oxidative events and tissue-specific complement activation in the eye.

  10. Oxidative stress in atherosclerosis and diabetes.

    Science.gov (United States)

    Lankin, V Z; Lisina, M O; Arzamastseva, N E; Konovalova, G G; Nedosugova, L V; Kaminnyi, A I; Tikhaze, A K; Ageev, F T; Kukharchuk, V V; Belenkov, Yu N

    2005-07-01

    We measured the content of lipid peroxides in plasma LDL from patients with chronic CHD not accompanied by hypercholesterolemia; CHD and hypercholesterolemia; type 2 diabetes mellitus and decompensation of carbohydrate metabolism; and CHD, circulatory insufficiency, and type 2 diabetes mellitus (without hypercholesterolemia). The content of lipid peroxides in LDL isolated from blood plasma by differential ultracentrifugation in a density gradient was estimated by a highly specific method with modifications (reagent Fe(2+) xylene orange and triphenylphosphine as a reducing agent for organic peroxides). The content of lipid peroxides in LDL from patients was much higher than in controls (patients without coronary heart disease and diabetes). Hypercholesterolemia and diabetes can be considered as factors promoting LDL oxidation in vivo. Our results suggest that stimulation of lipid peroxidation in low-density lipoproteins during hypercholesterolemia and diabetes is associated with strong autooxidation of cholesterol and glucose during oxidative and carbonyl (aldehyde) stress, respectively. These data illustrate a possible mechanism of the progression of atherosclerosis in patients with diabetes mellitus.

  11. Evolution of residual stresses in micro-arc oxidation ceramic coatings on 6061 Al alloy

    Science.gov (United States)

    Shen, Dejiu; Cai, Jingrui; Guo, Changhong; Liu, Peiyu

    2013-11-01

    Most researches on micro-arc oxidation mainly focus on the application rather than discovering the evolution of residual stresses. However, residual stresses in the surface coatings of structural components have adverse effects on their properties, such as fatigue life, dimensional stability and corrosion resistance, etc. The micro-arc oxidation ceramic coatings are produced on the surfaces of 6061 aluminum alloy by a homemade asymmetric AC type of micro-arc oxidation equipment of 20 kW. A constant current density of 4.4±0.1 A/dm2 and a self-regulated composite electrolyte are used. The micro-arc oxidation treatment period ranges from 10 min to 40 min, and the thickness of the ceramic coatings is more than 20 μm. Residual stresses attributed to γ-Al2O3 constituent in the coatings at different micro-arc oxidation periods are analyzed by an X-ray diffractometer using the sin2 ψ method. The analysis results show that the residual stress in the ceramic coatings is compressive in nature, and it increases first and then decreases with micro-arc oxidation time increase. The maximum stress value is 1 667±20 MPa for period of 20 min. Through analyzing the coating thickness, surface morphology and phase composition, it is found that the residual stress in the ceramic coatings is linked closely with the coating growth, the phase composition and the micro cracks formed. It is also found that both the heat treatment and the ultrasonic action release remarkably the residual compressive stress. The heat treatment makes the residual compressive stress value decrease 1 378 MPa. The ultrasonic action even alters the nature of the residual stress, making the residual compressive stress change into a residual tensile stress.

  12. Blood and Oxidative Stress (BOS): Soyuz mission "Eneide"

    Science.gov (United States)

    Rizzo, Angela Maria; Adorni, Laura; Montorfano, Gigliola; Negroni, Manuela; Zava, Stefania; Berra, Bruno

    2007-09-01

    The aim of this experiment was to assay astronaut antioxidant status, to analyse red blood cell membrane composition of astronauts prior and after flight and to study the correlation with oxidative stress that erythrocytes have undergone due to space radiations. Results obtained from this single case study, indicate that during a short time flight, erythrocytes decrease their antioxidant defences, to counteract oxidative stress.

  13. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes.

    Science.gov (United States)

    Daverey, Amita; Agrawal, Sandeep K

    2016-10-01

    Oxidative stress plays a critical role in various neurodegenerative diseases, thus alleviating oxidative stress is a potential strategy for therapeutic intervention and/or prevention of neurodegenerative diseases. In the present study, alleviation of oxidative stress through curcumin is investigated in A172 (human glioblastoma cell line) and HA-sp (human astrocytes cell line derived from the spinal cord) astrocytes. H2O2 was used to induce oxidative stress in astrocytes (A172 and HA-sp). Data show that H2O2 induces activation of astrocytes in dose- and time-dependent manner as evident by increased expression of GFAP in A172 and HA-sp cells after 24 and 12h respectively. An upregulation of Prdx6 was also observed in A172 and HA-sp cells after 24h of H2O2 treatment as compared to untreated control. Our data also showed that curcumin inhibits oxidative stress-induced cytoskeleton disarrangement, and impedes the activation of astrocytes by inhibiting upregulation of GFAP, vimentin and Prdx6. In addition, we observed an inhibition of oxidative stress-induced inflammation, apoptosis and mitochondria fragmentation after curcumin treatment. Therefore, our results suggest that curcumin not only protects astrocytes from H2O2-induced oxidative stress but also reverses the mitochondrial damage and dysfunction induced by oxidative stress. This study also provides evidence for protective role of curcumin on astrocytes by showing its effects on attenuating reactive astrogliosis and inhibiting apoptosis.

  14. Protein Sulfenylation: A Novel Readout of Environmental Oxidant Stress

    Science.gov (United States)

    Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ)induce oxidative stress by redox cycling, which generates hydrogen peroxide (H202). Cysteinylthio...

  15. FREE RADICALS, REACTIVE OXYGEN SPECIES, OXIDATIVE STRESSES AND THEIR CLASSIFICATIONS.

    Science.gov (United States)

    Lushchak, V I

    2015-01-01

    The phrases "free radicals" and "reactive oxygen species" (ROS) are frequently used interchangeably although this is not always correct. This article gives a brief description of two mentioned oxygen forms. During the first two-three decades after ROS discovery in biological systems (1950-1970 years) they were considered only as damaging agents, but later their involvement in organism protection and regulation of the expression of certain genes was found. The physiological state of increased steady-state ROS level along with certain physiological effects has been called oxidative stress. This paper describes ROS homeostasis and provides several classifications of oxidative stresses. The latter are based on time-course and intensity principles. Therefore distinguishing between acute and chronic stresses on the basis of the dynamics, and the basal oxidative stress, low intensity oxidative stress, strong oxidative stress, and finally a very strong oxidative stress based on the intensity of the action of the inductor of the stress are described. Potential areas of research include the development of this field with complex classification of oxidative stresses, an accurate identification of cellular targets of ROS action, determination of intracellular spatial and temporal distribution of ROS and their effects, deciphering the molecular mechanisms responsible for cell response to ROS attacks, and their participation in the normal cellular functions, i.e. cellular homeostasis and its regulation.

  16. Oxidative stress associated with exercise, psychological stress and life-style factors

    DEFF Research Database (Denmark)

    Møller, P; Wallin, H; Knudsen, Lisbeth E.

    1996-01-01

    Oxidative stress is a cellular or physiological condition of elevated concentrations of reactive oxygen species that cause molecular damage to vital structures and functions. Several factors influence the susceptibility to oxidative stress by affecting the antioxidant status or free oxygen radical...... generation. Here, we review the effect of alcohol, air pollution, cigarette smoke, diet, exercise, non-ionizing radiation (UV and microwaves) and psychological stress on the development of oxidative stress. Regular exercise and carbohydrate-rich diets seem to increase the resistance against oxidative stress....... Air pollution, alcohol, cigarette smoke, non-ionizing radiation and psychological stress seem to increase oxidative stress. Alcohol in lower doses may act as an antioxidant on low density lipoproteins and thereby have an anti-atherosclerotic property....

  17. Oxidative stress, innate immunity, and age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2016-05-01

    Full Text Available Age-related macular degeneration (AMD is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE. These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD or choroidal neovascularization (CNV, or wet AMD. Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer’s disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory

  18. Oxidative stress, innate immunity, and age-related macular degeneration.

    Science.gov (United States)

    Shaw, Peter X; Stiles, Travis; Douglas, Christopher; Ho, Daisy; Fan, Wei; Du, Hongjun; Xiao, Xu

    Age-related macular degeneration (AMD) is a leading cause of vision loss affecting tens of millions of elderly worldwide. Early AMD is characterized by the appearance of soft drusen, as well as pigmentary changes in the retinal pigment epithelium (RPE). These soft, confluent drusen can progress into two forms of advanced AMD: geographic atrophy (GA, or dry AMD) or choroidal neovascularization (CNV, or wet AMD). Both forms of AMD result in a similar clinical progression in terms of loss of central vision. The exact mechanism for developing early AMD, as well as triggers responsible for progressing to advanced stage of disease, is still largely unknown. However, significant evidence exists demonstrating a complex interplay of genetic and environmental factors as causes of AMD progression. Multiple genes and/or single nucleotide polymorphisms (SNPs) have been found associated with AMD, including various genes involved in the complement pathway, lipid metabolism and extracellular matrix (ECM) remodeling. Of the known genetic contributors to disease risk, the CFH Y402H and HTRA1/ARMS polymorphisms contribute to more than 50% of the genetic risk for AMD. Environmentally, oxidative stress plays a critical role in many aging diseases including cardiovascular disease, cancer, Alzheimer's disease and AMD. Due to the exposure to sunlight and high oxygen concentration, the oxidative stress burden is higher in the eye than other tissues, which can be further complicated by additional oxidative stressors such as smoking. Increasingly, evidence is accumulating suggesting that functional abnormalities of the innate immune system incurred via high risk genotypes may be contributing to the pathogenesis of AMD by altering the inflammatory homeostasis in the eye, specifically in the handling of oxidation products. As the eye in non-pathological instances maintains a low level of inflammation despite the presence of a relative abundance of potentially inflammatory molecules, we have

  19. Beneficial effects of Chrysin against Methotrexate-induced hepatotoxicity via attenuation of oxidative stress and apoptosis.

    Science.gov (United States)

    Ali, Nemat; Rashid, Summya; Nafees, Sana; Hasan, Syed Kazim; Sultana, Sarwat

    2014-01-01

    Methotrexate (MTX), a folic acid antagonist, an effective chemotherapeutic agent is used in the treatment of a wide range of tumors and autoimmune diseases. Moreover, hepatotoxicity limits its clinical use. Several studies have already confirmed that the oxidative stress plays a major role in the pathogenesis of MTX-induced damage in the various organs especially in liver. The aim of this study was to determine the protective effect of Chrysin against MTX-induced hepatic oxidative stress and apoptosis in rats. In the present study, efficacy of Chrysin was investigated against hepatotoxicity caused by MTX in terms of biochemical investigations of antioxidant enzymes, apoptosis, and histopathological alteration in rat liver. In the MTX-treated group there was a significant increase in alanine transaminase, aspartate aminotransferase, lactate dehydrogenase activity and malondialdehyde content as well as decreased glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase activities and reduced glutathione content were also observed compared to the control group as a marker of oxidative stress. Histopathological alterations and apoptosis through the immunopositive staining of p53, cleaved caspases-3 and Bcl-2-associated X protein in rat liver were observed. Pretreatment of Chrysin at both doses prevents the hepatotoxicity by ameliorating oxidative stress, histopathological alterations, and apoptosis and thus our results suggest that Chrysin has a protective effect against hepatotoxicity induced by MTX and it may, therefore, improve the therapeutic index of MTX if co-administration is done.

  20. Induction of Mitochondrial Dysfunction and Oxidative Stress in Leishmania donovani by Orally Active Clerodane Diterpene

    Science.gov (United States)

    Kathuria, Manoj; Bhattacharjee, Arindam; Sashidhara, Koneni V.; Singh, Suriya Pratap

    2014-01-01

    This study was performed to investigate the mechanistic aspects of cell death induced by a clerodane diterpene (K-09) in Leishmania donovani promastigotes that was previously demonstrated to be safe and orally active against visceral leishmaniasis (VL). K-09 caused depolarization of the mitochondrion and the generation of reactive oxygen species, triggering an apoptotic response in L. donovani promastigotes. Mitochondrial dysfunction subsequently resulted in the release of cytochrome c into the cytosol, impairing ATP production. Oxidative stress caused the depletion of reduced glutathione, while pretreatment with antioxidant N-acetyl cysteine (NAC) was able to abrogate oxidative stress. However, NAC failed to restore the mitochondrial membrane potential or intracellular calcium homeostasis after K-09 treatment, suggesting that the generation of oxidative stress is a downstream event relative to the other events. Caspase-3/-7-like protease activity and genomic DNA fragmentation were observed. Electron microscopy studies revealed gross morphological alterations typical of apoptosis, including severe mitochondrial damage, pyknosis of the nucleus, structural disruption of the mitochondrion-kinetoplast complex, flagellar pocket alterations, and the displacement of organelles. Moreover, an increased number of lipid droplets was detected after K-09 treatment, which is suggestive of altered lipid metabolism. Our results indicate that K-09 induces mitochondrial dysfunction and oxidative stress-mediated apoptotic cell death in L. donovani promastigotes, sharing many features with metazoan apoptosis. These mechanistic insights provide a basis for further investigation toward the development of K-09 as a potential drug candidate for VL. PMID:25070112

  1. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    Science.gov (United States)

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  2. Oxidative stress-induced autophagy: Role in pulmonary toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Malaviya, Rama [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854 (United States); Laskin, Debra L., E-mail: laskin@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854 (United States)

    2014-03-01

    Autophagy is an evolutionarily conserved catabolic process important in regulating the turnover of essential proteins and in elimination of damaged organelles and protein aggregates. Autophagy is observed in the lung in response to oxidative stress generated as a consequence of exposure to environmental toxicants. Whether autophagy plays role in promoting cell survival or cytotoxicity is unclear. In this article recent findings on oxidative stress-induced autophagy in the lung are reviewed; potential mechanisms initiating autophagy are also discussed. A better understanding of autophagy and its role in pulmonary toxicity may lead to the development of new strategies to treat lung injury associated with oxidative stress. - Highlights: • Exposure to pulmonary toxicants is associated with oxidative stress. • Oxidative stress is known to induce autophagy. • Autophagy is upregulated in the lung following exposure to pulmonary toxicants. • Autophagy may be protective or pathogenic.

  3. The role of oxidative stress in alcoholic liver injury

    Directory of Open Access Journals (Sweden)

    Radosavljević Tatjana

    2009-01-01

    Full Text Available Introduction. Oxidative stress plays an important role in pathogenesis of alcoholic liver injury. The main source of free oxygen species is cytochrome P450-dependent monooxygenase, which can be induced by ethanol. Role of cytochrome P4502E1 in ethanol-induced oxidative stress. Reactive oxygen species produced by this enzyme are more important in intracellular oxidative damage compared to species derived from activated phagocytes. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. Role of mitochondria in alcohol-induced oxidative stress. Production of mitochondrial reactive oxygen species is increased, and glutathione content is decreased in chronically ethanolfed animals. Oxidative stress in mitochondria leads to mitochondrial DNA damage and has a dual effect on apoptosis. Role of Kupffer cells in alcohol-induced liver injury. Chronic ethanol consumption is associated with increased release of endotoxin from gut lumen into portal circulation. Endotoxin activates Kupffer cells, which then release proinflammatory cytokines and oxidants. Role of neutrophils in alcohol-induced liver injury. Alcoholic liver injury leads to the accumulation of neutrophils, which release reactive oxygen species and lysosomal enzymes and contribute to hepatocyte damage and necrosis. Role of nitric oxide in alcohol-induced oxidative stress. High amounts of nitric oxide contribute to the oxidative damage, mainly by generating peroxynitrites. Role of antioxidants in ethanol-induced oxidative stress. Chronic ethanol consumption is associated with reduced liver glutathione and α-tocopherol level and with reduced superoxide dismutase, catalase and glutathione peroxidase activity. Conclusion. Oxidative stress in alcoholic liver disease is a consequence of increased production of oxidants and decreased antioxidant defense in the liver.

  4. Influence of temperature in thermal and oxidative stress responses in estuarine fish.

    Science.gov (United States)

    Madeira, D; Narciso, L; Cabral, H N; Vinagre, C; Diniz, M S

    2013-10-01

    The influence of increasing temperatures in thermal and oxidative stress responses were studied in the muscle of several estuarine fish species (Diplodus vulgaris, Diplodus sargus, Dicentrarchus labrax, Gobius niger and Liza ramada). Selected fish were collected in July at the Tagus estuary (24±0.9°C; salinity of 30±4‰; pH=8). Fish were subjected to a temperature increase of 1°C.h(-1) until they reached their Critical Thermal Maximum (CTMax), starting at 24°C (control temperature). Muscle samples were collected during the trial and results showed that oxidative stress biomarkers are highly sensitive to temperature. Results from stress oxidative enzymes show alterations with increasing temperature in all tested species. Catalase (CAT; EC 1.11.1.6) activity significantly increased in L. ramada, D. labrax and decreased in D. vulgaris. Glutathione S-transferase (GST; EC 2.5.1.18) activity increased in L. ramada, D. sargus, D. vulgaris, and D. labrax. In G. niger it showed a cycle of increase-decrease. Lipid peroxidation (LPO) increased in L. ramada, D. sargus and D. labrax. With respect to correlation analysis (Pearson; Spearman r), the results showed that oxidation products and antioxidant defenses were correlated in L. ramada (LPO-CAT and LPO-GST, D. sargus (LPO-CAT), and D. labrax (LPO-CAT). Oxidative biomarkers were correlated with thermal stress biomarker (Hsp70) in L. ramada (CAT-Hsp70), D. vulgaris (LPO-Hsp70), D. labrax (GST-Hsp70) and G. niger (LPO-Hsp70). In conclusion, oxidative stress does occur with increasing temperatures and there seems to be a relation between thermal stress response and oxidative stress response. The results suggest that oxidative stress biomarkers should be applied with caution, particularly in field multi-species/multi-environment studies.

  5. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells.

    Science.gov (United States)

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2016-09-17

    Renal Cell Carcinoma (RCC) in humans is positively influenced by oxidative stress status in kidneys. We recently reported that adaptive response to low level of chronic oxidative stress induces malignant transformation of immortalized human renal tubular epithelial cells. Epigenetic alterations in human RCC are well documented, but its role in oxidative stress-induced malignant transformation of kidney cells is not known. Therefore, the objective of this study was to evaluate the potential role of epigenetic changes in chronic oxidative stress-induced malignant transformation of HK-2, human renal tubular epithelial cells. The results revealed aberrant expression of epigenetic regulatory genes involved in DNA methylation (DNMT1, DNMT3a and MBD4) and histone modifications (HDAC1, HMT1 and HAT1) in HK-2 cells malignantly transformed by chronic oxidative stress. Additionally, both in vitro soft agar assay and in vivo nude mice study showing decreased tumorigenic potential of malignantly transformed HK-2 cells following treatment with DNA de-methylating agent 5-aza 2' dC further confirmed the crucial role of DNA hypermethyaltion in oxidative stress-induced malignant transformation. Changes observed in global histone H3 acetylation (H3K9, H3K18, H3K27 and H3K14) and decrease in phospho-H2AX (Ser139) also suggest potential role of histone modifications in increased survival and malignant transformation of HK-2 cells by oxidative stress. In summary, the results of this study suggest that epigenetic reprogramming induced by low levels of oxidative stress act as driver for malignant transformation of kidney epithelial cells. Findings of this study are highly relevant in potential clinical application of epigenetic-based therapeutics for treatments of kidney cancers.

  6. Oxidative stress response after laparoscopic versus conventional sigmoid resection

    DEFF Research Database (Denmark)

    Madsen, Michael Tvilling; Kücükakin, Bülent; Lykkesfeldt, Jens;

    2012-01-01

    Surgery is accompanied by a surgical stress response, which results in increased morbidity and mortality. Oxidative stress is a part of the surgical stress response. Minimally invasive laparoscopic surgery may result in reduced oxidative stress compared with open surgery. Nineteen patients...... scheduled for sigmoid resection were randomly allocated to open or laparoscopic sigmoid resection in a double-blind, prospective clinical trial. Three biochemical markers of oxidative stress (malondialdehyde, ascorbic acid, and dehydroascorbic acid) were measured at 6 different time points (preoperatively......, 1 h, 6 h, 24 h, 48 h, and 72 h postoperatively). There were no statistical significant differences between laparoscopic and open surgery for any of the 3 oxidative stress parameters. Malondialdehyde was reduced 1 hour postoperatively (P...

  7. Protective mechanisms of Cucumis sativus in diabetes-related models of oxidative stress and carbonyl stress

    Directory of Open Access Journals (Sweden)

    Himan Heidari

    2016-03-01

    Conclusion: It can be concluded that C. sativus has protective effects in diabetes complications and can be considered a safe and suitable candidate for decreasing the oxidative stress and carbonyl stress that is typically observed in diabetes mellitus.

  8. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    Science.gov (United States)

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  9. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    Science.gov (United States)

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R.; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨm), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress. PMID:26180820

  10. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Omar Ortiz-Avila

    2015-01-01

    Full Text Available Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats. Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential ΔΨm, besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  11. Oxidative stress and psychological functioning among medical students

    OpenAIRE

    Rani Srivastava; Jyoti Batra

    2014-01-01

    Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA) levels) and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression) among medical/paramedical students of 1 st and 3 rd year). Materials and Methods: A total of 150 students; 75 fro...

  12. Diaphragmatic Breathing Reduces Exercise-Induced Oxidative Stress

    OpenAIRE

    Daniele Martarelli; Mario Cocchioni; Stefania Scuri; Pierluigi Pompei

    2011-01-01

    Diaphragmatic breathing is relaxing and therapeutic, reduces stress, and is a fundamental procedure of Pranayama Yoga, Zen, transcendental meditation and other meditation practices. Analysis of oxidative stress levels in people who meditate indicated that meditation correlates with lower oxidative stress levels, lower cortisol levels and higher melatonin levels. It is known that cortisol inhibits enzymes responsible for the antioxidant activity of cells and that melatonin is a strong antioxid...

  13. Plasma lipoproteins as mediators of the oxidative stress induced by UV light in human skin: a review of biochemical and biophysical studies on mechanisms of apolipoprotein alteration, lipid peroxidation, and associated skin cell responses.

    Science.gov (United States)

    Filipe, Paulo; Morlière, Patrice; Silva, João N; Mazière, Jean-Claude; Patterson, Larry K; Freitas, João P; Santus, R

    2013-01-01

    There are numerous studies concerning the effect of UVB light on skin cells but fewer on other skin components such as the interstitial fluid. This review highlights high-density lipoprotein (HDL) and low-density lipoprotein (LDL) as important targets of UVB in interstitial fluid. Tryptophan residues are the sole apolipoprotein residues absorbing solar UVB. The UVB-induced one-electron oxidation of Trp produces (•)Trp and (•)O2 (-) radicals which trigger lipid peroxidation. Immunoblots from buffered solutions or suction blister fluid reveal that propagation of photooxidative damage to other residues such as Tyr or disulfide bonds produces intra- and intermolecular bonds in apolipoproteins A-I, A-II, and B100. Partial repair of phenoxyl tyrosyl radicals (TyrO(•)) by α -tocopherol is observed with LDL and HDL on millisecond or second time scales, whereas limited repair of α -tocopherol by carotenoids occurs in only HDL. More effective repair of Tyr and α -tocopherol is observed with the flavonoid, quercetin, bound to serum albumin, but quercetin is less potent than new synthetic polyphenols in inhibiting LDL lipid peroxidation or restoring α -tocopherol. The systemic consequences of HDL and LDL oxidation and the activation and/or inhibition of signalling pathways by oxidized LDL and their ability to enhance transcription factor DNA binding activity are also reviewed.

  14. Plasma Lipoproteins as Mediators of the Oxidative Stress Induced by UV Light in Human Skin: A Review of Biochemical and Biophysical Studies on Mechanisms of Apolipoprotein Alteration, Lipid Peroxidation, and Associated Skin Cell Responses

    Directory of Open Access Journals (Sweden)

    Paulo Filipe

    2013-01-01

    Full Text Available There are numerous studies concerning the effect of UVB light on skin cells but fewer on other skin components such as the interstitial fluid. This review highlights high-density lipoprotein (HDL and low-density lipoprotein (LDL as important targets of UVB in interstitial fluid. Tryptophan residues are the sole apolipoprotein residues absorbing solar UVB. The UVB-induced one-electron oxidation of Trp produces •Trp and O2•- radicals which trigger lipid peroxidation. Immunoblots from buffered solutions or suction blister fluid reveal that propagation of photooxidative damage to other residues such as Tyr or disulfide bonds produces intra- and intermolecular bonds in apolipoproteins A-I, A-II, and B100. Partial repair of phenoxyl tyrosyl radicals (TyrO• by α-tocopherol is observed with LDL and HDL on millisecond or second time scales, whereas limited repair of α-tocopherol by carotenoids occurs in only HDL. More effective repair of Tyr and α-tocopherol is observed with the flavonoid, quercetin, bound to serum albumin, but quercetin is less potent than new synthetic polyphenols in inhibiting LDL lipid peroxidation or restoring α-tocopherol. The systemic consequences of HDL and LDL oxidation and the activation and/or inhibition of signalling pathways by oxidized LDL and their ability to enhance transcription factor DNA binding activity are also reviewed.

  15. Attenuation of oxidative stress and cardioprotective effects of zinc supplementation in experimental diabetic rats.

    Science.gov (United States)

    Barman, Susmita; Srinivasan, Krishnapura

    2017-03-01

    Oxidative stress plays a major role in the pathogenesis of diabetes mellitus, which further exacerbates damage of cardiac, hepatic and other tissues. We have recently reported that Zn supplementation beneficially modulates hyperglycaemia and hypoinsulinaemia, with attendant reduction of associated metabolic abnormalities in diabetic rats. The present study assessed the potential of Zn supplementation in modulating oxidative stress and cardioprotective effects in diabetic rats. Diabetes was induced in Wistar rats with streptozotocin, and groups of diabetic rats were treated with 5- and 10-fold dietary Zn interventions (0·19 and 0·38 g Zn/kg diet) for 6 weeks. The markers of oxidative stress, antioxidant enzyme activities and concentrations of antioxidant molecules, lipid profile, and expressions of fibrosis and pro-apoptotic factors in the cardiac tissue were particularly assessed. Supplemental Zn showed significant attenuation of diabetes-induced oxidative stress in terms of altered antioxidant enzyme activities and increased the concentrations of antioxidant molecules. Hypercholesterolaemia and hyperlipidaemia were also significantly countered by Zn supplementation. Along with attenuated oxidative stress, Zn supplementation also showed significant cardioprotective effects by altering the mRNA expressions of fibrosis and pro-apoptotic factors (by >50 %). The expression of lipid oxidative marker 4-hydroxy-2-nonenal (4-HNE) protein in cardiac tissue of diabetic animals was rectified (68 %) by Zn supplementation. Elevated cardiac and hepatic markers in circulation and pathological abnormalities in cardiac and hepatic tissue architecture of diabetic animals were ameliorated by dietary Zn intervention. The present study indicates that Zn supplementation can attenuate diabetes-induced oxidative stress in circulation as well as in cardiac and hepatic tissues.

  16. Oxidative stress and Kawasaki disease: how is oxidative stress involved from the acute stage to the chronic stage?

    Science.gov (United States)

    Yahata, Tomoyo; Hamaoka, Kenji

    2017-01-01

    Inflammation and oxidative stress are closely related. Further, oxidative stress plays an important role in the pathology of inflammation-based Kawasaki disease. An excessive in vivo production of reactive oxygen species increases oxidative stress in the body, which triggers an endless vicious spiral of inflammation reactions and reactive oxygen metabolites. This presumably forms diffuse vasculitis in the acute phase. Acute inflammation and oxidative stress can be rapidly controlled by treatments; however, they may remain for a long time. This has recently been identified as a problem in the chronic phase of Kawasaki disease. Generally, the presence of vascular inflammation and oxidative stress impairs blood vessels, leading to the onset of atherosclerosis, which is a widely recognized risk. The current discussion focuses on whether the same is valid for blood vessels in the chronic phase of Kawasaki disease.

  17. Neuromodulatory Effects of Hesperidin in Mitigating Oxidative Stress in Streptozotocin Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Mohammad Ashafaq

    2014-01-01

    Full Text Available Oxidative stress has been implicated in pathogenesis of streptozotocin- (STZ- induced diabetes mellitus and its complication in central nervous system (CNS. Recent studies have provided insights on antioxidants and their emergence as potential therapeutic and nutraceutical. The present study examined the hypothesis that hesperidin (HP ameliorates oxidative stress and may be a limiting factor in the extent of CNS complication following diabetes. To test this hypothesis rats were divided into four groups: control, diabetic, diabetic-HP treated, and vehicle for HP treatment group. Diabetes mellitus was induced by a single injection of STZ (65 mg/kg body weight. Three days after STZ injection, HP was given (50 mg/kg b.wt. orally once daily for four weeks. The results of the present investigation suggest that the significant elevated levels of oxidative stress markers were observed in STZ-treated animals, whereas significant depletion in the activity of nonenzymatic antioxidants and enzymatic antioxidants was witnessed in diabetic rat brain. Neurotoxicity biomarker activity was also altered significantly. HP treatment significantly attenuated the altered levels of oxidative stress and neurotoxicity biomarkers. Our results demonstrate that HP exhibits potent antioxidant and neuroprotective effects on the brain tissue against the diabetic oxidative damage in STZ-induced rodent model.

  18. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    Directory of Open Access Journals (Sweden)

    Fu-Wei Liu

    Full Text Available Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  19. Blood Contamination in Saliva: Impact on the Measurement of Salivary Oxidative Stress Markers

    Directory of Open Access Journals (Sweden)

    Natália Kamodyová

    2015-01-01

    Full Text Available Salivary oxidative stress markers represent a promising tool for monitoring of oral diseases. Saliva can often be contaminated by blood, especially in patients with periodontitis. The aim of our study was to examine the impact of blood contamination on the measurement of salivary oxidative stress markers. Saliva samples were collected from 10 healthy volunteers and were artificially contaminated with blood (final concentration 0.001–10%. Next, saliva was collected from 12 gingivitis and 10 control patients before and after dental hygiene treatment. Markers of oxidative stress were measured in all collected saliva samples. Advanced oxidation protein products (AOPP, advanced glycation end products (AGEs, and antioxidant status were changed in 1% blood-contaminated saliva. Salivary AOPP were increased in control and patients after dental treatment (by 45.7% and 34.1%, p<0.01. Salivary AGEs were decreased in patients after microinjury (by 69.3%, p<0.001. Salivary antioxidant status markers were decreased in both control and patients after dental treatment (p<0.05 and p<0.01. One % blood contamination biased concentrations of salivary oxidative stress markers. Saliva samples with 1% blood contamination are visibly discolored and can be excluded from analyses without any specific biochemic detection of blood constituents. Salivary markers of oxidative stress were significantly altered in blood-contaminated saliva in control and patients with gingivitis after dental hygiene treatment.

  20. Oxidative Stress Modulates DNA Methylation during Melanocyte Anchorage Blockade Associated with Malignant Transformation

    Directory of Open Access Journals (Sweden)

    Ana C.E. Campos

    2007-12-01

    Full Text Available Both oxidative/nitrosative stress and alterations in DNA methylation are observed during carcinogenesis of different tumor types, but no clear correlation between these events has been demonstrated until now. Melanoma cell lines were previously established after submitting the nontumorigenic melanocyte lineage, melan-a, to cycles of anchorage blockade. In this work, increased intracellular oxidative species and nitric oxide levels, as well as alterations in the DNA methylation, were observed after melan-a detachment, which were also associated with a decrease in intracellular homocysteine (Hey, an element in the methionine (universal methyl donor cycle. This alteration was accompanied by increase in glutathione (GSH levels and methylated DNA content. Furthermore, a significant increase in dnmti and 3b expression was identified along melan-a anchorage blockade. LG-Nitro-L-arginine methyl esther (L-NAME, known as a nitric oxide synthase (NOS inhibitor, and N-acetyl-L-cysteine (NAC prevented the increase in global DNA methylation, as well as the increase in dnmti and 3b expression, observed during melan-a detachment. Interestingly, both L-NAME and NAC did not inhibit nitric oxide (NO production in these cells, but abrogated superoxide anion production during anchorage blockade. In conclusion, oxidative stress observed during melanocyte anchorage blockade seems to modulate DNA methylation levels and may directly contribute to the acquisition of an anoikis-resistant phenotype through an epigenetic mechanism.

  1. Alterations in the growth and adhesion pattern of Vero cells induced by nutritional stress conditions.

    Science.gov (United States)

    Genari, S C; Gomes, L; Wada, M L

    1998-01-01

    The pattern of growth, adhesion and protein synthesis in Vero cells submitted to nutritional stress conditions was investigated. The control cells presented a characteristic pattern, with monolayer growth, while the stressed cells presented multilayered growth, with aggregate or spheroid formation which detached on the flask surface and continued their growth in another region. In the soft agar assay, with reduced amount of nutrients, only the stressed cells presented growth, indicating physical and nutritional independence. A 44-kDa protein was observed in stressed cells and was absent in non-stressed cells. The adhesion index and fibronectin synthesis and distribution were altered in stressed cells. After confluence, control cells presented fibronectin accumulation in lateral cell-cell contact regions, while this fibronectin accumulation pattern was not observed in stressed cells. These alterations may be responsible for the multilayered growth and decreased adhesion index observed in stressed cells which were transformed by nutritional stress conditions.

  2. Nitric oxide reduces oxidative damage induced by water stress in sunflower plants

    Directory of Open Access Journals (Sweden)

    Inês Cechin

    2015-06-01

    Full Text Available Drought is one of the main environmental constraints that can reduce plant yield. Nitric oxide (NO is a signal molecule involved in plant responses to several environmental stresses. The objective of this study was to investigate the cytoprotective effect of a single foliar application of 0, 1, 10 or 100 µM of the NO donor sodium nitroprusside (SNP in sunflower plants under water stress. Water stressed plants treated with 1μM SNP showed an increase in the relative water content compared with 0 μM SNP. Drought reduced the shoot dry weight but SNP applications did not result in alleviation of drought effects. Neither drought nor water stress plus SNP applications altered the content of photosynthetic pigments. Stomatal conductance was reduced by drought and this reduction was accompanied by a significant reduction in intercellular CO2 concentration and photosynthesis. Treatment with SNP did not reverse the effect of drought on the gas exchange characteristics. Drought increased the level of malondialdehyde (MDA and proline and reduced pirogalol peroxidase (PG-POD activity, but did not affect the activity of superoxide dismutase (SOD. When the water stressed plants were treated with 10 μM SNP, the activity of PG-POD and the content of proline were increased and the level of MDA was decreased. The results show that the adverse effects of water stress on sunflower plants are dependent on the external NO concentration. The action of NO may be explained by its ability to increase the levels of antioxidant compounds and the activity of ROS-scavenging enzymes.

  3. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus.

    Science.gov (United States)

    Zhao, Xiao-Jie; Zhao, Zhan; Yang, Dan-Dan; Cao, Lu-Lu; Zhang, Ling; Ji, Juan; Gu, Jun; Huang, Ji-Ye; Sun, Xiu-Lan

    2017-02-01

    Stress-induced disturbance of the hypothalamic-pituitary-adrenal (HPA) axis is strongly implicated in incidence of mood disorders. A heightened neuroinflammatory response and oxidative stress play a fundamental role in the dysfunction of the HPA axis. We have previously demonstrated that iptakalim (Ipt), a new ATP-sensitive potassium (K-ATP) channel opener, could prevent oxidative injury and neuroinflammation against multiple stimuli-induced brain injury. The present study was to demonstrate the impacts of Ipt in stress-induced HPA axis disorder and depressive behavior. We employed 2 stress paradigms: 8 weeks of continuous restraint stress (chronic restraint stress, CRS) and 2h of restraint stress (acute restraint stress, ARS), to mimic both chronic stress and severe acute stress. Prolonged (4 weeks) and short-term (a single injection) Ipt treatment was administered 30min before each stress paradigm. We found that HPA axis was altered after stress, with different responses to CRS (lower ACTH and CORT, higher AVP, but normal CRH) and ARS (higher CRH, ACTH and CORT, but normal AVP). Both prolonged and short-term Ipt treatment normalized stress-induced HPA axis disorders and abnormal behaviors in mice. CRS and ARS up-regulated mRNA levels of inflammation-related molecules (TNFα, IL-1β, IL-6 and TLR4) and oxidative stress molecules (gp91phox, iNOS and Nrf2) in the mouse hypothalamus. Double immunofluorescence showed CRS and ARS increased microglia activation (CD11b and TNFα) and oxidative stress in neurons (NeuN and gp91phox), which were alleviated by Ipt. Therefore, the present study reveals that Ipt could prevent against stress-induced HPA axis disorders and depressive behavior by alleviating inflammation and oxidative stress in the hypothalamus.

  4. Aldose reductase, oxidative stress and diabetic mellitus

    Directory of Open Access Journals (Sweden)

    Waiho eTang

    2012-05-01

    Full Text Available Diabetes mellitus (DM is a complex metabolic disorder arising from lack of insulin production or insulin resistance 1. DM is a leading cause of morbidity and mortality in the developed world, particularly from vascular complications such as atherothrombosis in the coronary vessels. Aldose reductase (AR [ALR2; EC 1.1.1.21], a key enzyme in the polyol pathway, catalyzes NADPH-dependent reduction of glucose to sorbitol, leading to excessive accumulation of intracellular reactive oxygen species (ROS in various tissues of DM including the heart, vasculature, neurons, eyes and kidneys. As an example, hyperglycemia through such polyol pathway induced oxidative stress, may have dual heart actions, on coronary blood vessel (atherothrombosis and myocardium (heart failure leading to severe morbidity and mortality (reviewed in 2. In cells cultured under high glucose conditions, many studies have demonstrated similar AR-dependent increases in ROS production, confirming AR as an important factor for the pathogenesis of many diabetic complications. Moreover, recent studies have shown that AR inhibitors may be able to prevent or delay the onset of cardiovascular complications such as ischemia/reperfusion injury, atherosclerosis and atherothrombosis. In this review, we will focus on describing pivotal roles of AR in the pathogenesis of cardiovascular diseases as well as other diabetic complications, and the potential use of AR inhibitors as an emerging therapeutic strategy in preventing DM complications.

  5. Oxidative stress and antioxidant status in cervical cancer patients.

    Science.gov (United States)

    Naidu, M Smita K; Suryakar, A N; Swami, Sanjay C; Katkam, R V; Kumbar, K M

    2007-09-01

    Cervical cancer (CaCx) is a global public health problem as it is the second most common cancer leading to the death of women worldwide. Many references revealed that the low levels of antioxidants induce the generation of free radicals leading to DNA damage and further mutations. In the present study attempt have been made to evaluate the levels of serum Lipid peroxide, Nitric Oxide (NO(.)) Erythrocytic-Superoxide Dismutase (RBC-SOD), Vitamin-C, serum Copper (Cu) and serum Zinc (Zn). 120 patients were divided in 4 groups according to the increasing CaCx stages i.e. stage I, II, III & IV respectively. All the patients were around the age group of 25-65 years. 30 healthy women between the same age group were treated as controls. Highly significant increased values of MDA, NO(.) and Cu were observed (p<0.001) whereas the activity of RBC-SOD, levels of Vitamin-C and Zn were significantly decreased in CaCx patients as compared with healthy controls (p<0.001). Cu/Zn ratio was found to be altered in CaCx patients. From our findings it can be concluded that the oxidative stress is induced among CaCx patients, which inturn increases the risk of CaCx.

  6. Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers

    Directory of Open Access Journals (Sweden)

    Tao Zuo

    2016-01-01

    Full Text Available Oxidative stress (OS has received extensive attention in the last two decades, because of the discovery that abnormal oxidation status was related to patients with chronic diseases, such as diabetes, cardiovascular, polycystic ovary syndrome (PCOS, cancer, and neurological diseases. OS is considered as a potential inducing factor in the pathogenesis of PCOS, which is one of the most common complex endocrine disorders and a leading cause of female infertility, affecting 4%–12% of women in the world, as OS has close interactions with PCOS characteristics, just as insulin resistance (IR, hyperandrogenemia, and chronic inflammation. It has also been shown that DNA mutations and alterations induced by OS are involved in cancer pathogenesis, tumor cell survival, proliferation, invasion, angiogenesis, and so on. Furthermore, recent studies show that the females with PCOS are reported to have an increasing risk of cancers. As a result, the more serious OS in PCOS is regarded as an important potential incentive for the increasing risk of cancers, and this study aims to analyze the possibility and potential pathogenic mechanism of the above process, providing insightful thoughts and evidences for preventing cancer potentially caused by PCOS in clinic.

  7. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...... age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8......-oxodG and 8-oxoGuo, respectively). The main hypothesis was that psychological stress states are associated with increased DNA/RNA damage from oxidation. In a study of 40 schizophrenia patients and 40 healthy controls matched for age and gender, we found that 8-oxodG/8-oxoGuo excretion was increased...

  8. [Oxidative stress in patients on regular hemodialysis and peritoneal dialysis].

    Science.gov (United States)

    Vostálová, J; Galandáková, A; Strebl, P; Zadražil, J

    2012-06-01

    Hemodialysis and peritoneal dialysis are methods of blood purification, which partially replaced excretory renal function in patients with chronic renal failure, which was depleted regime, dietary and pharmaco-therapeutic remedy, and who are not eligible for kidney transplantation. Both two methods are accompanied by increased oxidative stress. In peritoneal dialysis particularly the composition of dialysis solution contributes to oxidative stress. In extracorporeal hemodialysis the oxidative stress is associated with the character of hemodialysis membranes, non-specific loss of low molecular weight antioxidants, activation of leukocytes (oxidative burst), feroteraphy, supplementation with low molecular weight antioxidants and other factors. To improve and maintain the quality of life of dialysis patients, the continuous monitoring of oxidative stress-related parameters as non-traditional risk factors for cardiovascular complications development is suitable.

  9. [Experimental and clinical aspects of oxidative stress and redox regulation].

    Science.gov (United States)

    Nakamura, Hajime

    2003-02-01

    Although excess amounts of oxidative stress damage proteins and nucleotides, small amounts of oxidative stress transduce intracellular signals for cellular activation, differentiation and proliferation. Reduction/oxidation(redox) regulation is defined as a biological response to maintain homeostasis against oxidative stress. Thioredoxin, a 12 kD small protein with a redox-active dithiol/disulfide in the conserved active site: -Cys-Gly-Pro-Cys-, is a key molecule for redox regulation as well as glutathione(GSH). Thioredoxin is induced by a variety of oxidative stresses and secreted from cells. Thioredoxin plays crucial roles as a redox-regulator of intracellular signal transduction and as a radical scavenger. Plasma levels of thioredoxin are good biomarkers for oxidative stress. Thioredoxin-transgenic mice are more resistant to cerebral infarction, infection or inflammation and survive longer than control mice. Administration of thioredoxin may have a good potential for anti-aging and anti-stress effects. Redox regulation mechanisms by thioredoxin and other thioredoxin family members will clarify the pathophysiology of oxidative stress-associated disorders.

  10. Chronic oxidative stress after irradiation: an unproven hypothesis

    Science.gov (United States)

    Cohen, Samuel R; Cohen, Eric P

    2012-01-01

    Injury and organ failure after irradiation of late-responding tissues is a substantial problem in radiation oncology and a major threat after accidental or belligerent exposures. The mechanisms of injury may include death of clonogens, vascular injury, activation of cytokine networks, and/or chronic oxidative stress. Knowledge of mechanisms may guide optimal use of mitigators. The hypothesis of chronic oxidative stress as a mechanism of late radiation injury has received much attention. We review herein the published evidence for chronic oxidative stress in vivo, and for use of antioxidants as mitigators of normal tissue radiation injury. We conclude that there is only indirect evidence for chronic oxidative stress after irradiation, and there are only limited published reports of mitigation by antioxidants. We did not find a differentiation of persistent markers of oxidative stress from an ongoing production of oxygen radicals. It is thus unproven that chronic oxidative stress plays a major role in causing radiation injury and organ failure in late-responding tissues. Further investigation is justified, to identify persistent oxidative stress and to identify optimal mitigators of radiation injury. PMID:23245910

  11. Potential role of punicalagin against oxidative stress induced testicular damage

    Directory of Open Access Journals (Sweden)

    Faiza Rao

    2016-01-01

    Full Text Available Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98% on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility.

  12. Pharmacological consequences of oxidative stress in ocular tissues

    Energy Technology Data Exchange (ETDEWEB)

    Ohia, Sunny E. [Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 141 Science and Research Building 2, University of Houston, Houston, TX 77204 (United States)]. E-mail: seohia@uh.edu; Opere, Catherine A. [Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University Medical Center, Omaha, NE 68178 (United States); LeDay, Angela M. [Professional and Scientific Relations, Procter and Gamble Pharmaceuticals Inc., Mason, OH 45040 (United States)

    2005-11-11

    The eye is a unique organ because of its constant exposure to radiation, atmospheric oxygen, environmental chemicals and physical abrasion. That oxidative stress mechanisms in ocular tissues have been hypothesized to play a role in diseases such as glaucoma, cataract, uveitis, retrolental fibroplasias, age-related macular degeneration and various forms of retinopathy provides an opportunity for new approaches to their prevention and treatment, In the anterior uvea, both H{sub 2}O{sub 2} and synthetic peroxides exert pharmacological/toxicological actions tissues of the anterior uvea especially on the sympathetic nerves and smooth muscles of the iris-ciliary bodies of several mammalian species. Effects produced by peroxides require the presence of trace amounts of extracellular calcium and the functional integrity of mitochondrial calcium stores. Arachidonic acid metabolites appear to be involved in both the excitatory action of peroxides on sympathetic neurotransmission and their inhibitory effect on contractility of the iris smooth muscle to muscarinic receptor activation. In addition to the peroxides, isoprostanes (products of free radical catalyzed peroxidation of arachidonic acid independent of the cyclo-oxygenase enzyme) can also alter sympathetic neurotransmission in anterior uveal tissues. In the retina, both H{sub 2}O{sub 2} and synthetic peroxides produced an inhibitory action on potassium depolarization induced release of [{sup 3}H] D-aspartate, in vitro and on the endogenous glutamate and glycine concentrations in vivo. Effects caused by peroxides in the retina are mediated, at least in part, by second messengers such as nitric oxide, prostaglandins and isoprostanes. The ability of H{sub 2}O{sub 2} to alter the integrity of neurotransmitter pools from sympathetic nerves in the anterior uvea and glutaminergic nerves in the retina could underlie its role in the etiology of glaucoma.

  13. Oxidative stress and psychological functioning among medical students

    Directory of Open Access Journals (Sweden)

    Rani Srivastava

    2014-01-01

    Full Text Available Background: Oxidative stress has gained attention recently in behavioral medicine and has been reported to be associated with various psychological disturbances and their prognoses. Objectives: Study aims to evaluate the oxidative stress (malonylaldehyde (MDA levels and its relation with psychological factors (dimensions of personality, levels of anxiety, stress, and depression among medical/paramedical students of 1 st and 3 rd year. Materials and Methods: A total of 150 students; 75 from 1 st year (2010-2011 and75 from 3 rd year (2009-2010; of medical and paramedical background were assessed on level of MDA (oxidative stress and personality variables, that is, level of anxiety, stress, and depression. These psychological variables were correlated with the level of their oxidative stress. Results: Findings revealed that both groups are influenced by oxidative stress and their psychological variables are also compatible in order to confirm their vulnerabilities to stress. Conclusions: Stress in 3 rd year students was significantly higher and it was noted that it adversely affects the psychological parameters. Hence, special attention on mental health aspect in these students may be given.

  14. The Protective and Therapeutic Roles of Hexamethylenetetramine and N-Acetyl-Cysteine on Sulfur Mustard-Induced Oxidative Stress in Rat Serum

    Directory of Open Access Journals (Sweden)

    M Jafari

    2016-04-01

    Conclusion: The study findings revealed that SM induces oxidative stress in rat serum. HMT and NAC can ameliorate SM-induced oxidative stress by altering antioxidant defense system in serum. The protective effect of HMT against the toxicity of SM is higher than NAC.

  15. The Role of Flavonoids on Oxidative Stress in Epilepsy

    Directory of Open Access Journals (Sweden)

    Tâmara Coimbra Diniz

    2015-01-01

    Full Text Available Backgrounds. Oxidative stress can result from excessive free-radical production and it is likely implicated as a possible mechanism involved in the initiation and progression of epileptogenesis. Flavonoids can protect the brain from oxidative stress. In the central nervous system (CNS several flavonoids bind to the benzodiazepine site on the GABAA-receptor resulting in anticonvulsive effects. Objective. This review provides an overview about the role of flavonoids in oxidative stress in epilepsy. The mechanism of action of flavonoids and its relation to the chemical structure is also discussed. Results/Conclusions. There is evidence that suggests that flavonoids have potential for neuroprotection in epilepsy.

  16. Reference range of blood biomarkers for oxidative stress in Thoroughbred racehorses (2–5 years old)

    Science.gov (United States)

    KUSANO, Kanichi; YAMAZAKI, Masahiko; KIUCHI, Masataka; KANEKO, Kouki; KOYAMA, Katsuhiro

    2016-01-01

    ABSTRACT The oxidant and antioxidant equilibrium is known to play an important role in equine medicine and equine exercise physiology. There are abundant findings in this field; however, not many studies have been conducted for reference ranges of oxidative stress biomarkers in horses. This study was conducted to determine the reference values of reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) using blood samples from 372 (191 males, 181 females) Thoroughbred racehorse aged 2 to 5 (3.43 ± 1.10 (mean ± SD)) years old. There were obvious gender differences in oxidative biomarkers, and growth/age-related changes were observed especially in females. Gender and age must be considered when interpreting obtained oxidative stress biomarkers for diagnosis of disease or fitness alterations in Thoroughbred racehorses. PMID:27703408

  17. Association of oxidative DNA damage, protein oxidation and antioxidant function with oxidative stress induced cellular injury in pre-eclamptic/eclamptic mothers during fetal circulation.

    Science.gov (United States)

    Negi, Reena; Pande, Deepti; Karki, Kanchan; Kumar, Ashok; Khanna, Ranjana S; Khanna, Hari D

    2014-02-05

    Pre-eclampsia is a devastating multi system syndrome and a major cause of maternal, fetal, neonatal morbidity and mortality. Pre-eclampsia is associated with oxidative stress in the maternal circulation. To have an insight on the effect of pre-eclampsia/eclampsia on the neonates, the study was made to explore the oxidative status by quantification of byproducts generated during protein oxidation and oxidative DNA damage and deficient antioxidant activity in umbilical cord blood of pre-eclamptic/eclamptic mothers during fetal circulation. Umbilical cord blood during delivery from neonates born to 19 pre-eclamptic mothers, 14 eclamptic mothers and 18 normotensive mothers (uncomplicated pregnancy) as control cases was collected. 8-OHdG (8-hydroxy-2-deoxyguanosine), protein carbonyl, nitrite, catalase, non-enzymatic antioxidants (vitamin A, E, C), total antioxidant status and iron status were determined. Significant elevation in the levels of 8-OHdG, protein carbonyl, nitrite and iron along with decreased levels of catalase, vitamin A, E, C, total antioxidant status were observed in the umbilical cord blood of pre-eclamptic and eclamptic pregnancies. These parameters might be influential variables for the risk of free radical damage in infants born to pre-eclamptic/eclamptic pregnancies. Increased oxidative stress causes oxidation of DNA and protein which alters antioxidant function. Excess iron level and decreased unsaturated iron binding capacity may be the important factor associated with oxidative stress and contribute in the pathogenesis of pre-eclampsia/eclampsia which is reflected in fetal circulation.

  18. The war within : Neurobiological alterations in posttraumatic stress disorder

    NARCIS (Netherlands)

    Geuze, E.

    2006-01-01

    For a large number of veterans, war does not end after they are removed from a combat zone. Traumatic stress affects nearly all veterans, but while the majority of veterans learn to live with their experiences, for some veterans traumatic stress seethes inside. In this dissertation posttraumatic str

  19. Crosstalk between oxidative and nitrosative stress and arterial stiffness.

    Science.gov (United States)

    Mozos, Ioana; Luca, Constantin Tudor

    2017-02-01

    Arterial stiffness, the expression of reduced arterial elasticity, is an effective predictor of cardiovascular disorders. Oxidative stress is an imbalance between exposure to toxic reactive oxygen species (ROS) and antioxidant systems. The increase in reactive nitrogen species (RNS) is termed nitrosative stress. We review the main mechanisms and products linking arterial stiffness with oxidative and nitrosative stress in several disorders, focusing on recent experimental and clinical data, and the mechanisms explaining benefits of antioxidant therapy. Oxidative and nitrosative stress play important roles in arterial stiffness elevation in several disorders, including diabetes mellitus, hypertension, metabolic syndrome, obesity, peripheral arterial disease, chronic obstructive pulmonary disease, systemic lupus erythematosus, thalassemia, Kawasaki disease and malignant disorders. Oxidative and nitrosative stress are responsible for endothelial dysfunction due to uncoupling of the nitric oxide synthase, oxidative damage to lipids, proteins and DNA in vascular endothelial cells, associated with inflammation, arteriosclerosis and atherosclerosis. Regular physical exercise, caloric restriction, red wine, statins, sartans, metformin, oestradiol, curcumin and combinations of antioxidant vitamins are therapeutic strategies that may decrease arterial stiffness and oxidative stress thus reducing the risk of cardiovascular events. ROS and RNS represent potential therapeutic targets for preventing progression of arterial stiffness.

  20. Oxidative stress induces senescence in human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, Anita [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Meyer, Matthias; Bechmann, Volker [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Nerlich, Michael [Department of Anesthesiology, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany); Angele, Peter, E-mail: Peter.Angele@klinik.uni-regensburg.de [Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg (Germany)

    2011-07-01

    Mesenchymal stem cells (MSCs) contribute to tissue repair in vivo and form an attractive cell source for tissue engineering. Their regenerative potential is impaired by cellular senescence. The effects of oxidative stress on MSCs are still unknown. Our studies were to investigate into the proliferation potential, cytological features and the telomere linked stress response system of MSCs, subject to acute or prolonged oxidant challenge with hydrogen peroxide. Telomere length was measured using the telomere restriction fragment assay, gene expression was determined by rtPCR. Sub-lethal doses of oxidative stress reduced proliferation rates and induced senescent-morphological features and senescence-associated {beta}-galactosidase positivity. Prolonged low dose treatment with hydrogen peroxide had no effects on cell proliferation or morphology. Sub-lethal and prolonged low doses of oxidative stress considerably accelerated telomere attrition. Following acute oxidant insult p21 was up-regulated prior to returning to initial levels. TRF1 was significantly reduced, TRF2 showed a slight up-regulation. SIRT1 and XRCC5 were up-regulated after oxidant insult and expression levels increased in aging cells. Compared to fibroblasts and chondrocytes, MSCs showed an increased tolerance to oxidative stress regarding proliferation, telomere biology and gene expression with an impaired stress tolerance in aged cells.

  1. Oxidative stress correlates with Wolbachia-mediated antiviral protection in Wolbachia-Drosophila associations.

    Science.gov (United States)

    Wong, Zhee Sheen; Brownlie, Jeremy C; Johnson, Karyn N

    2015-05-01

    Wolbachia mediates antiviral protection in insect hosts and is being developed as a potential biocontrol agent to reduce the spread of insect-vectored viruses. Definition of the molecular mechanism that generates protection is important for understanding the tripartite interaction between host insect, Wolbachia, and virus. Elevated oxidative stress was previously reported for a mosquito line experimentally infected with Wolbachia, suggesting that oxidative stress is important for Wolbachia-mediated antiviral protection. However, Wolbachia experimentally introduced into mosquitoes impacts a range of host fitness traits, some of which are unrelated to antiviral protection. To explore whether elevated oxidative stress is associated with antiviral protection in Wolbachia-infected insects, we analyzed oxidative stress of five Wolbachia-infected Drosophila lines. In flies infected with protective Wolbachia strains, hydrogen peroxide concentrations were 1.25- to 2-fold higher than those in paired fly lines cured of Wolbachia infection. In contrast, there was no difference in the hydrogen peroxide concentrations in flies infected with nonprotective Wolbachia strains compared to flies cured of Wolbachia infection. Using a Drosophila mutant that produces increased levels of hydrogen peroxide, we investigated whether flies with high levels of endogenous reactive oxygen species had altered responses to virus infection and found that flies with high levels of endogenous hydrogen peroxide were less susceptible to virus-induced mortality. Taken together, these results suggest that elevated oxidative stress correlates with Wolbachia-mediated antiviral protection in natural Drosophila hosts.

  2. Global metabolomic responses of Nitrosomonas europaea 19718 to cold stress and altered ammonia feeding patterns

    KAUST Repository

    Lu, Huijie

    2015-11-05

    © 2015 Springer-Verlag Berlin Heidelberg The model ammonia-oxidizing bacterium Nitrosomonas europaea represents one of the environmentally and biotechnologically significant microorganisms. Genome-based studies over the last decade have led to many intriguing discoveries about its cellular biochemistry and physiology. However, knowledge regarding the regulation of overall metabolic routes in response to various environmental stresses is limited due to a lack of comprehensive, time-resolved metabolomic analyses. In this study, gas chromatography–mass spectrometry (GC-MS)-based metabolic profiling was performed to characterize the temporal variations of N. europaea 19718 intercellular metabolites in response to varied temperature (23 and 10 °C) and ammonia feeding patterns (shock loading and continuous feeding of 20 mg N/L). Approximately 87 metabolites were successfully identified and mapped to the existing pathways of N. europaea 19718, allowing interpretation of the influence of temperature and feeding pattern on metabolite levels. In general, varied temperature had a more profound influence on the overall metabolism than varied feeding patterns. Total extracellular metabolite concentrations (relative to internal standards and normalized to biomass weight) were lower under cold stress and shock loading conditions compared with the control (continuous feeding at 23 °C). Cold stress caused the widespread downregulation of metabolites involved in central carbon metabolism, amino acid, and lipid synthesis (e.g., malonic acid, succinic acid, putrescine, and phosphonolpyruvate). Metabolites that showed differences under varied feeding patterns were mainly involved in nucleotide acid, amino acid, and lipid metabolism (e.g., adenine, uracil, and spermidine). This study highlighted the roles of central carbon and nitrogen metabolism in countering cold stress and altered ammonia availability. In addition, transcriptomic, proteomic, and metabolomic data from three

  3. Effect of St. John's Wort (Hypericum perforatum treatment on restraint stress-induced behavioral and biochemical alteration in mice

    Directory of Open Access Journals (Sweden)

    Prakash Atish K

    2010-05-01

    Full Text Available Abstract Background A stressful stimulus is a crucial determinant of health and disease. Antidepressants are used to manage stress and their related effects. The present study was designed to investigate the effect of St. John's Wort (Hypericum perforatum in restraint stress-induced behavioral and biochemical alterations in mice. Methods Animals were immobilized for a period of 6 hr. St. John's Wort (50 and 100 mg/kg was administered 30 minutes before the animals were subjecting to acute immobilized stress. Various behavioral tests parameters for anxiety, locomotor activity and nociceptive threshold were assessed followed by biochemical assessments (malondialdehyde level, glutathione, catalase, nitrite and protein subsequently. Results 6-hr acute restraint stress caused severe anxiety like behavior, antinociception and impaired locomotor activity as compared to unstressed animals. Biochemical analyses revealed an increase in malondialdehyde, nitrites concentration, depletion of reduced glutathione and catalase activity as compared to unstressed animal brain. Five days St. John's Wort treatment in a dose of 50 mg/kg and 100 mg/kg significantly attenuated restraint stress-induced behavioral (improved locomotor activity, reduced tail flick latency and antianxiety like effect and oxidative damage as compared to control (restraint stress. Conclusion Present study highlights the modest activity of St. John's Wort against acute restraint stress induced modification.

  4. HCV-Induced Oxidative Stress: Battlefield-Winning Strategy

    Science.gov (United States)

    Rebbani, Khadija; Tsukiyama-Kohara, Kyoko

    2016-01-01

    About 150 million people worldwide are chronically infected with hepatitis C virus (HCV). The persistence of the infection is controlled by several mechanisms including the induction of oxidative stress. HCV relies on this strategy to redirect lipid metabolism machinery and escape immune response. The 3β-hydroxysterol Δ24-reductase (DHCR24) is one of the newly discovered host markers of oxidative stress. This protein, as HCV-induced oxidative stress responsive protein, may play a critical role in the pathogenesis of HCV chronic infection and associated liver diseases, when aberrantly expressed. The sustained expression of DHCR24 in response to HCV-induced oxidative stress results in suppression of nuclear p53 activity by blocking its acetylation and increasing its interaction with MDM2 in the cytoplasm leading to its degradation, which may induce hepatocarcinogenesis. PMID:27293514

  5. The Role of Oxidative Stress in Neurodegenerative Diseases.

    Science.gov (United States)

    Kim, Geon Ha; Kim, Jieun E; Rhie, Sandy Jeong; Yoon, Sujung

    2015-12-01

    Oxidative stress is induced by an imbalanced redox states, involving either excessive generation of reactive oxygen species (ROS) or dysfunction of the antioxidant system. The brain is one of organs especially vulnerable to the effects of ROS because of its high oxygen demand and its abundance of peroxidation-susceptible lipid cells. Previous studies have demonstrated that oxidative stress plays a central role in a common pathophysiology of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Antioxidant therapy has been suggested for the prevention and treatment of neurodegenerative diseases, although the results with regard to their efficacy of treating neurodegenerative disease have been inconsistent. In this review, we will discuss the role of oxidative stress in the pathophysiology of neurodegenerative diseases and in vivo measurement of an index of damage by oxidative stress. Moreover, the present knowledge on antioxidant in the treatment of neurodegenerative diseases and future directions will be outlined.

  6. Prenatal stress alters amygdala functional connectivity in preterm neonates

    Directory of Open Access Journals (Sweden)

    Dustin Scheinost

    2016-01-01

    Functional connectivity from the amygdala to other subcortical regions is decreased in preterm neonates compared to term controls. In addition, these data, for the first time, suggest that prenatal stress exposure amplifies these decreases.

  7. 柚皮苷改善束缚性应激引起的小鼠生化指标及行为变化的一氧化氮调节机制%Amelioration of immobilization stress-induced biochemical and behavioral alterations and mitochondrial dysfunction by naringin in mice: possible mechanism of nitric oxide modulation

    Institute of Scientific and Technical Information of China (English)

    Gollapalle L.Viswanatha; Hanumanthappa Shylaja; K.Sadashiva Sandeep Rao; Yathiraj Ashwini; V. Ramaiah Santhosh Kumar; C. Gangadharaiah Mohan; Venkate Gowda Sunil; M. Venkateshappa Sarvesh Kumar; Subbanna Rajesh

    2011-01-01

    Objective:The present study was undertaken to evaluate the effects of naringin on immobilization stress-induced biochemical-behavioral changes and mitochondrial dysfunction in mice.Methods:Mice were randomized and grouped based on body weights.Respective drug treatments were given for 14 d,and on the 15th day all the animals were subjected to a 6-hour immobilization stress; then all the animals were subjected to various behavioral paradigms and were sacrificed.Various biochemical parameters and mitochondrial functions were analyzed using brain homogenate.Results:The 6-hour acute immobilization stress significantly altered the behavioral (anxiety and memory) and biochemical parameters coupled with mitochondrial dysfunction in mice.Fourteen days pretreatment with naringin (50 and 100 mg/kg,per oral) significantly inhibited the behavioral and biochemical alterations and mitochondrial dysfunction caused by acute immobilization stress (P<0.05).Further,pretreatment with L-arginine (50 mg/kg,intraperitoneally),a nitric oxide precursor,reversed the protective effect of naringin (P<0.05).In addition,pretreatment with NG-nitro-L-arginine methyl ester (5 mg/kg,intraperitoneally) caused potentiation in the protective effect of naringin.Conclusion:These results suggest the possible involvement of nitrergic pathway in the protective effect of naringin against immobilization stress-induced behavioral,biochemical and mitochondrial dysfunctions in mice.%目的:研究柚皮苷对束缚性应激引起的小鼠生化指标改变、行为变化及线粒体功能紊乱的影响.方法:将小鼠按照体质量随机分组,分别给予不同药物治疗14 d.在第15天让所有小鼠接受束缚性应激刺激6h,然后在接受各种不同的行为测试后处死.取小鼠的大脑匀浆进行各种生化指标测量和线粒体功能分析.结果:6h的急性束缚性应激刺激能显著改变小鼠的行为(焦虑和记忆),引起生化指标变化和线粒体功

  8. Nitric oxide alterations following acute ductal constriction in the fetal lamb: a role for superoxide.

    Science.gov (United States)

    Hsu, Jong-Hau; Oishi, Peter; Wiseman, Dean A; Hou, Yali; Chikovani, Omar; Datar, Sanjeev; Sajti, Eniko; Johengen, Michael J; Harmon, Cynthia; Black, Stephen M; Fineman, Jeffrey R

    2010-06-01

    Acute partial compression of the fetal ductus arteriosus (DA) results in an initial abrupt increase in pulmonary blood flow (PBF), which is followed by a significant reduction in PBF to baseline values over the ensuing 2-4 h. We have previously demonstrated that this potent vasoconstricting response is due, in part, to an endothelin-1 (ET-1)-mediated decrease in nitric oxide synthase (NOS) activity. In addition, in vitro data demonstrate that ET-1 increases superoxide levels in pulmonary arterial smooth muscle cells and that oxidative stress alters NOS activity. Therefore, the objectives of this study were to determine the potential role of superoxide in the alterations of hemodynamics and NOS activity following acute ductal constriction in the late-gestation fetal lamb. Eighteen anesthetized near-term fetal lambs were instrumented, and a lung biopsy was performed. After a 48-h recovery, acute constriction of the DA was performed by inflating a vascular occluder. Polyethylene glycol-superoxide dismutase (PEG-SOD; 1,000-1,500 units/kg, n = 7) or PEG-alone (vehicle control group, n = 5) was injected into the pulmonary artery before ductal constriction. Six animals had a sham operation. In PEG-alone-treated lambs, acute ductal constriction rapidly decreased pulmonary vascular resistance (PVR) by 88%. However, by 4 h, PVR returned to preconstriction baseline. This vasoconstriction was associated with an increase in lung superoxide levels (82%), a decrease in total NOS activity (50%), and an increase in P-eNOS-Thr495 (52%) (P < 0.05). PEG-SOD prevented the increase of superoxide after ductal constriction, attenuated the vasoconstriction, preserved NOS activity, and increased P-eNOS Ser1177 (307%, P < 0.05). Sham procedure induced no changes. These data suggest that an acute decrease in NOS activity that is mediated, in part, by increased superoxide levels, and alterations in the phosphorylation status of the endothelial NOS isoform, underlie the pulmonary vascular

  9. Current concepts in the pathophysiology of fibromyalgia: the potential role of oxidative stress and nitric oxide.

    Science.gov (United States)

    Ozgocmen, Salih; Ozyurt, Huseyin; Sogut, Sadik; Akyol, Omer

    2006-05-01

    Fibromyalgia (FM) is a common chronic pain syndrome with an unknown etiology. Recent years added new information to our understanding of FM pathophysiology. Researches on genetics, biogenic amines, neurotransmitters, hypothalamic-pituitary-adrenal axis hormones, oxidative stress, and mechanisms of pain modulation, central sensitization, and autonomic functions in FM revealed various abnormalities indicating that multiple factors and mechanisms are involved in the pathogenesis of FM. Oxidative stress and nitric oxide may play an important role in FM pathophysiology, however it is still not clear whether oxidative stress abnormalities documented in FM are the cause or the effect. This should encourage further researches evaluating the potential role of oxidative stress and nitric oxide in the pathophysiology of FM and the efficacy of antioxidant treatments (omega-3 and -6 fatty acids, vitamins and others) in double blind and placebo controlled trials. These future researches will enhance our understanding of the complex pathophysiology of this disorder.

  10. Effect of Free Radicals & Antioxidants on Oxidative Stress: A Review

    Directory of Open Access Journals (Sweden)

    Ashok Shinde

    2012-01-01

    Full Text Available Recently free radicals have attracted tremendous importance in the field of medicine including dentistry and molecular biology. Free radicals can be either harmful or helpful to the body. When there is an imbalance between formation and removal of free radicals then a condition called as oxidative stress is developed in body. To counteract these free radicals body has protective antioxidant mechanisms which have abilities to lower incidence of various human morbidities and mortalities. Many research groups in the past have tried to study and confirm oxidative stress. Many authors also have studied role of antioxidants in reducing oxidative stress. They have come across with controversial results and furthermore it is not yet fully confirmed whether oxidative stress increases the need for dietary antioxidants. Recently, an association between periodontitis and cardiovascular disease has received considerable attention. Various forms of antioxidants have been introduced as an approach to fight dental diseases and improve general gingival health. The implication of oxidative stress in the etiology of many chronic and degenerative diseases suggests that antioxidant therapy represents a promising avenue for treatment. This study was conducted with the objective of reviewing articles relating to this subject. A Pub Med search of all articles containing key words free radicals, oxidative stress, and antioxidants was done. A review of these articles was undertaken.

  11. Bridges between mitochondrial oxidative stress, ER stress and mTOR signaling in pancreatic β cells.

    Science.gov (United States)

    Wang, Jing; Yang, Xin; Zhang, Jingjing

    2016-08-01

    Pancreatic β cell dysfunction, i.e., failure to provide insulin in concentrations sufficient to control blood sugar, is central to the etiology of all types of diabetes. Current evidence implicates mitochondrial oxidative stress and endoplasmic reticulum (ER) stress in pancreatic β cell loss and impaired insulin secretion. Oxidative and ER stress are interconnected so that misfolded proteins induce reactive oxygen species (ROS) production; likewise, oxidative stress disturbs the ER redox state thereby disrupting correct disulfide bond formation and proper protein folding. mTOR signaling regulates many metabolic processes including protein synthesis, cell growth, survival and proliferation. Oxidative stress inhibits mTORC1, which is considered an important suppressor of mitochondrial oxidative stress in β cells, and ultimately, controls cell survival. The interplay between ER stress and mTORC1 is complicated, since the unfolded protein response (UPR) activation can occur upstream or downstream of mTORC1. Persistent activation of mTORC1 initiates protein synthesis and UPR activation, while in the later phase induces ER stress. Chronic activation of ER stress inhibits Akt/mTORC1 pathway, while under particular settings, acute activation of UPR activates Akt-mTOR signaling. Thus, modulating mitochondrial oxidative stress and ER stress via mTOR signaling may be an approach that will effectively suppress obesity- or glucolipotoxicity-induced metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM). In this review, we focus on the regulations between mTOR signaling and mitochondrial oxidative or ER stress in pancreatic β cells.

  12. Evaluation of parameters of oxidative stress after in vitro exposure to FMCW- and CDMA-modulated radiofrequency radiation fields.

    Science.gov (United States)

    Hook, Graham J; Spitz, Douglas R; Sim, Julia E; Higashikubo, Ryuji; Baty, Jack D; Moros, Eduardo G; Roti Roti, Joseph L

    2004-11-01

    The goal of this study was to determine whether radiofrequency (RF) radiation is capable of inducing oxidative stress or affecting the response to oxidative stress in cultured mammalian cells. The two types of RF radiation investigated were frequency-modulated continuous-wave with a carrier frequency of 835.62 MHz (FMCW) and code division multiple access centered on 847.74 MHz (CDMA). To evaluate the effect of RF radiation on oxidative stress, J774.16 mouse macrophage cells were stimulated with gamma-interferon (IFN) and bacterial lipopolysaccharide (LPS) prior to exposure. Cell cultures were exposed for 20-22 h to a specific absorption rate of 0.8 W/kg at a temperature of 37.0 +/- 0.3 degrees C. Oxidative stress was evaluated by measuring oxidant levels, antioxidant levels, oxidative damage and nitric oxide production. Oxidation of thiols was measured by monitoring the accumulation of glutathione disulfide (GSSG). Cellular antioxidant defenses were evaluated by measuring superoxide dismutase activity (CuZnSOD and MnSOD) as well as catalase and glutathione peroxidase activity. The trypan blue dye exclusion assay was used to measure any changes in viability. The results of these studies indicated that FMCW- and CDMA-modulated RF radiation did not alter parameters indicative of oxidative stress in J774.16 cells. FMCW- and CDMA-modulated fields did not alter the level of intracellular oxidants, accumulation of GSSG or induction of antioxidant defenses in IFN/LPS-stimulated cells. Consistent with the lack of an effect on oxidative stress parameters, no change in toxicity was observed in J774.16 cells after either optimal (with or without inhibitors of nitric oxide synthase) or suboptimal stimulation.

  13. Inhibition of rat brain microsomal cytochrome P450-dependent dealkylation activities by an oxidative stress.

    Science.gov (United States)

    Lagrange, P; El-Bachá, R D; Netter, P; Minn, A

    2001-08-01

    There is increasing evidence that an oxidative stress not only alters cellular lipids and nucleic acids, but also numerous proteins. This oxidation results in alterations of some cellular functions, either by reversible modifications allowing a post-transcriptional regulation of enzyme activities or receptor affinities, or by irreversible modifications of the protein, triggering its inactivation and destruction. In the present work, we examined the effects of an experimental oxidative stress on rat brain microsomal cytochrome P450-dependent dealkylation activities. For that purpose, superoxide anions were produced either by the NADPH-dependent redox cycling of a quinine, menadione, or by the addition of apomorphine, which produces by autoxidation both superoxide anions and apomorphine-derived quinones. The inhibition of brain cytochrome P450-dependent alkoxyresorufin O-dealkylase activities was dependent on both menadione or apomorphine concentrations. Simultaneously, an increase of microsomal carbonyl groups was recorded. Immunoblotting characterization of brain microsomal oxidized protein was carried out, using antibodies raised against 2,4-dinitrophenylhydrazine as a reagent of protein carbonyl groups, and a revelation by a chemiluminescence method. We observed an increase in cerebral CYP1A protein oxidation, related to menadione concentration, suggesting that oxidation of cytochrome P450 protein may result in its catalytic inactivation.

  14. Infrared Dielectric Properties of Low-Stress Silicon Oxide

    Science.gov (United States)

    Cataldo, Giuseppe; Wollack, Edward J.; Brown, Ari D.; Miller, Kevin H.

    2016-01-01

    Silicon oxide thin films play an important role in the realization of optical coatings and high-performance electrical circuits. Estimates of the dielectric function in the far- and mid-infrared regime are derived from the observed transmittance spectrum for a commonly employed low-stress silicon oxide formulation. The experimental, modeling, and numerical methods used to extract the dielectric function are presented.

  15. CONCENTRATED AMBIENT AIR POLLUTION CREATES OXIDATIVE STRESS IN CNS MICROGLIA.

    Science.gov (United States)

    Nanometer size particles carry free radical activity on their surface and can produce oxidative stress (OS)-mediated damage upon impact to target cells. The initiating event of phage cell activation (i.e., the oxidative burst) is unknown, although many proximal events have been i...

  16. ELECTROSTATIC CHARGE STIMULATES OXIDATIVE STRESS IN CNS MICROGLIA.

    Science.gov (United States)

    Nanometer size particles carry free radical activity on their surface and can create oxidative stress (OS)-mediated inflammatory changes upon impact. The oxidative burst signals the activation of phage-lineage cells such as peripheral macrophages, Kupffer cells and CNS microgl...

  17. Infrared dielectric properties of low-stress silicon oxide

    CERN Document Server

    Cataldo, Giuseppe; Brown, Ari D; Miller, Kevin H

    2016-01-01

    Silicon oxide thin films play an important role in the realization of optical coatings and high-performance electrical circuits. Estimates of the dielectric function in the far- and mid-infrared regime are derived from the observed transmittance spectrum for a commonly employed low-stress silicon oxide formulation. The experimental, modeling, and numerical methods used to extract the dielectric function are presented.

  18. Regulation of epidermal growth factor receptor signaling during oxidative stress

    NARCIS (Netherlands)

    Wit, Renate de

    2001-01-01

    This thesis described the effects of exposure of cells to oxidative stress,induced by H 2 O 2 ,on the functioning of proteins involved in signal transduction pathways.In addition, H 2 O 2 was chosen as oxidant in order to produce cellular screening assays to measure antioxidant efficacy in preventin

  19. N-acetylcysteine reduces oxidative stress in sickle cell patients

    NARCIS (Netherlands)

    Nur, Erfan; Brandjes, Dees P.; Teerlink, Tom; Otten, Hans-Martin; Elferink, Ronald P. J. Oude; Muskiet, Frits; Evers, Ludo M.; ten Cate, Hugo; Biemond, Bart J.; Duits, Ashley J.; Schnog, John-John B.

    2012-01-01

    Oxidative stress is of importance in the pathophysiology of sickle cell disease (SCD). In this open label randomized pilot study the effects of oral N-acetylcysteine (NAC) on phosphatidylserine (PS) expression as marker of cellular oxidative damage (primary end point), and markers of hemolysis, coag

  20. Hepatic and renal oxidative stress in acute toxicity of N-nitrosodiethylamine in rats.

    Science.gov (United States)

    Bansal, A K; Trivedi, R; Soni, G L; Bhatnagar, D

    2000-09-01

    Nitrosoamines such as N-nitrosodiethylamine (NDEA) produce oxidative stress due to generation of reactive oxygen species and may alter antioxidant defence system in the tissues. NDEA was administered ip as a single dose to rats in LD50 or in lower amounts and the animals were sacrificed after 0-48 hr of treatment. The results showed that lipid peroxidation in liver increased, however no significant increase in kidney LPO was observed after NDEA administration. Superoxide dismutase (SOD) and glutathione reductase (GSH-R) activity increased in liver, however, catalase (CAT) activity in liver was inhibited in NDEA treated rats. Kidney showed an increase in SOD activity after an initial decrease along with increase in GSH-R activity in NDEA treated rats. However, kidney CAT activity was not significantly altered in NDEA intoxicated rats. Serum transaminases, serum alkaline phosphatase blood urea nitrogen, serum creatinine and scrum proteins were elevated in NDEA treated rats. The results indicate NDEA-induced oxidative stress and alteration in antioxidant enzymes in liver and kidney to neutralise oxidative stress.

  1. Hormonal contraception use alters stress responses and emotional memory.

    Science.gov (United States)

    Nielsen, Shawn E; Segal, Sabrina K; Worden, Ian V; Yim, Ilona S; Cahill, Larry

    2013-02-01

    Emotionally arousing material is typically better remembered than neutral material. Since norepinephrine and cortisol interact to modulate emotional memory, sex-related influences on stress responses may be related to sex differences in emotional memory. Two groups of healthy women - one naturally cycling (NC women, n=42) and one using hormonal contraceptives (HC women, n=36) - viewed emotionally arousing and neutral images. Immediately after, they were assigned to Cold Pressor Stress (CPS) or a control procedure. One week later, participants received a surprise free recall test. Saliva samples were collected and later assayed for salivary alpha-amylase (biomarker for norepinephrine) and cortisol. Compared to NC women, HC women exhibited significantly blunted stress hormone responses to the images and CPS. Recall of emotional images differed between HC and NC women depending on noradrenergic and cortisol responses. These findings may have important implications for understanding the neurobiology of emotional memory disorders, especially those that disproportionately affect women.

  2. Biologic Stress, Oxidative Stress, and Resistance to Drugs: What Is Hidden Behind

    Directory of Open Access Journals (Sweden)

    Maria Pantelidou

    2017-02-01

    Full Text Available Stress can be defined as the homeostatic, nonspecific defensive response of the organism to challenges. It is expressed by morphological, biochemical, and functional changes. In this review, we present biological and oxidative stress, as well as their interrelation. In addition to the mediation in biologic stress (central nervous, immune, and hormonal systems and oxidative stress, the effect of these phenomena on xenobiotic metabolism and drug response is also examined. It is concluded that stress decreases drug response, a result which seems to be mainly attributed to the induction of hepatic drug metabolizing enzymes. A number of mechanisms are presented. Structure-activity studies are also discussed. Vitamin E, as well as two synthetic novel compounds, seem to reduce both oxidative and biological stress and, consequently, influence drug response and metabolism.

  3. Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging.

    Science.gov (United States)

    Kong, Yahui; Trabucco, Sally E; Zhang, Hong

    2014-01-01

    Aging is characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-associated diseases and death. One potential cause of aging is the progressive accumulation of dysfunctional mitochondria and oxidative damage with age. Considerable efforts have been made in our understanding of the role of mitochondrial dysfunction and oxidative stress in aging and age-associated diseases. This chapter outlines the interplay between oxidative stress and mitochondrial dysfunction, and discusses their impact on senescence, cell death, stem cell function, age-associated diseases and longevity.

  4. Evaluation of Oxidative Stress in Sheep Affected with Peste des petits ruminants

    Directory of Open Access Journals (Sweden)

    Kataria A. K.

    2012-11-01

    Full Text Available The aim of the investigation was to evaluate oxidative stress in sheep affected with peste des petits ruminants (PPR. Oxidative stress in the affected sheep was evaluated by determining various serum biomarkers viz. vitamin A, vitamin C, vitamin E, glutathione, catalase, superoxide dismutase, glutathione reductase and xanthine oxidase, the mean values of which were 1.70±0.07µmol L-1, 13.00± 0.10 µmol L-1, 2.25 ±0.07 µmol L-1, 3.10 ±0.06 µmol L-1, 140.00 ±8.00 kU L-1, 294.22 ±9.91 kU L-1, 6.99± 0.05 kU L-1 and 100.10 ±3.00 m U L-1, respectively. The levels of vitamins A, C, E and glutathione decreased significantly (p≤0.05 and the serum catalase, superoxide dismutase, glutathione reductase and xanthine oxidase activities increased significantly (p≤0.05 in affected sheep as compared to that in healthy ones. On the basis of the altered levels of serum biomarkers of oxidative stress it was concluded that the animals affected with PPR developed oxidative stress. The findings suggested the relevance of periodic assessment of oxidative status in ruminants for healthier management through supplementation of proper antioxidants as supportive treatment in PPR and in healthy in-contact animals.

  5. Blood Contamination in Saliva: Impact on the Measurement of Salivary Oxidative Stress Markers.

    Science.gov (United States)

    Kamodyová, Natália; Baňasová, Lenka; Janšáková, Katarína; Koborová, Ivana; Tóthová, Ľubomíra; Stanko, Peter; Celec, Peter

    2015-01-01

    Salivary oxidative stress markers represent a promising tool for monitoring of oral diseases. Saliva can often be contaminated by blood, especially in patients with periodontitis. The aim of our study was to examine the impact of blood contamination on the measurement of salivary oxidative stress markers. Saliva samples were collected from 10 healthy volunteers and were artificially contaminated with blood (final concentration 0.001-10%). Next, saliva was collected from 12 gingivitis and 10 control patients before and after dental hygiene treatment. Markers of oxidative stress were measured in all collected saliva samples. Advanced oxidation protein products (AOPP), advanced glycation end products (AGEs), and antioxidant status were changed in 1% blood-contaminated saliva. Salivary AOPP were increased in control and patients after dental treatment (by 45.7% and 34.1%, p Saliva samples with 1% blood contamination are visibly discolored and can be excluded from analyses without any specific biochemic detection of blood constituents. Salivary markers of oxidative stress were significantly altered in blood-contaminated saliva in control and patients with gingivitis after dental hygiene treatment.

  6. Stress during Adolescence Alters Palatable Food Consumption in a Context-Dependent Manner.

    Science.gov (United States)

    Handy, Christine; Yanaga, Stephanie; Reiss, Avery; Zona, Nicole; Robinson, Emily; Saxton, Katherine B

    2016-01-01

    Food consumption and preferences may be shaped by exposure to stressful environments during sensitive periods in development, and even small changes in consumption can have important effects on long term health. Adolescence is increasingly recognized as a sensitive period, in which adverse experiences can alter development, but the specific programming effects that may occur during adolescence remain incompletely understood. The current study seeks to explore the effects of stress during late adolescence on consumption of a palatable, high-fat, high-sugar food in adulthood-under basal conditions, as well following acute stress. Male Long-Evans rats were exposed to a regimen of variable stress for seven days in late adolescence (PND 45-51). During the stress regimen, stressed animals gained significantly less weight than control animals, but weight in adulthood was unaffected by adolescent stress. Palatable food consumption differed between experimental groups, and the direction of effect depended on context; stressed rats ate significantly more palatable food than controls upon first exposure, but ate less following an acute stressor. Leptin levels and exploratory behaviors did not differ between stressed and non-stressed groups, suggesting that other factors regulate preference for a palatable food. Altered food consumption following adolescent stress suggests that rats remain sensitive to stress during late adolescence, and that adult feeding behavior may be affected by previous adverse experiences. Such programming effects highlight adolescence as a period of plasticity, with the potential to shape long term food consumption patterns and preferences.

  7. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer's disease.

    Science.gov (United States)

    Mota, Sandra I; Costa, Rui O; Ferreira, Ildete L; Santana, Isabel; Caldeira, Gladys L; Padovano, Carmela; Fonseca, Ana C; Baldeiras, Inês; Cunha, Catarina; Letra, Liliana; Oliveira, Catarina R; Pereira, Cláudia M F; Rego, Ana Cristina

    2015-07-01

    Oxidative stress and endoplasmic reticulum (ER) stress have been associated with Alzheimer's disease (AD) progression. In this study we analyzed whether oxidative stress involving changes in Nrf2 and ER stress may constitute early events in AD pathogenesis by using human peripheral blood cells and an AD transgenic mouse model at different disease stages. Increased oxidative stress and increased phosphorylated Nrf2 (p(Ser40)Nrf2) were observed in human peripheral blood mononuclear cells (PBMCs) isolated from individuals with mild cognitive impairment (MCI). Moreover, we observed impaired ER Ca2+ homeostasis and increased ER stress markers in PBMCs from MCI individuals and mild AD patients. Evidence of early oxidative stress defense mechanisms in AD was substantiated by increased p(Ser40)Nrf2 in 3month-old 3xTg-AD male mice PBMCs, and also with increased nuclear Nrf2 levels in brain cortex. However, SOD1 protein levels were decreased in human MCI PBMCs and in 3xTg-AD mice brain cortex; the latter further correlated with reduced SOD1 mRNA levels. Increased ER stress was also detected in the brain cortex of young female and old male 3xTg-AD mice. We demonstrate oxidative stress and early Nrf2 activation in AD human and mouse models, which fails to regulate some of its targets, leading to repressed expression of antioxidant defenses (e.g., SOD-1), and extending to ER stress. Results suggest markers of prodromal AD linked to oxidative stress associated with Nrf2 activation and ER stress that may be followed in human peripheral blood mononuclear cells.

  8. Social stress reactivity alters reward and punishment learning

    OpenAIRE

    Cavanagh, James F.; Frank, Michael J.; Allen, John J.B.

    2010-01-01

    To examine how stress affects cognitive functioning, individual differences in trait vulnerability (punishment sensitivity) and state reactivity (negative affect) to social evaluative threat were examined during concurrent reinforcement learning. Lower trait-level punishment sensitivity predicted better reward learning and poorer punishment learning; the opposite pattern was found in more punishment sensitive individuals. Increasing state-level negative affect was directly related to punishme...

  9. The Effect of Oxidative Stress and Antioxidants on Men Fertility

    Directory of Open Access Journals (Sweden)

    Abolfazl Akbari

    2013-07-01

    Full Text Available Background: Various factors affects men fertility and oxidative stress as an important factor which affects fertility has recently got great concern. Oxidative stress refers to conditions of imbalance between productions of reactive oxygen species (ROS and antioxidant defense mechanism. Reactive species of oxygen, free radicals and peroxide are produced in the cell when metabolism of oxygen is incomplete in the mitochondrial respiratory chain.Materials and Methods: In this review we will consider effect of oxidative stress on male fertility and the principal antioxidant defences.Results: Factors such as hypoxia, cytokines, growth factors, chemotherapy, radio frequency waves and UV radiation can increase ROS production. Oxidative stress as one of the strongest physiological factors can lead to damage of sperm and reduction of seminal plasma quality and thereby cause infertility in men. Enzymatic and non-enzymatic defences inhibit oxidant attack. The enzymatic defense include: superoxide dismutases, glutathione peroxidases, and catalase. The non-enzymatic defences include ascorbate (vitamin C and a-tocopherol (vitamin E, beta carotene, and albumin, which neutralize free radicals. Conclusion: Oxidative stress affects male fertility through induction of lipid peroxidation, inactivation of proteins, impair of sperm motility and DNA damage.

  10. Salivary markers of oxidative stress in oral diseases

    Directory of Open Access Journals (Sweden)

    Ľubomíra eTóthová

    2015-10-01

    Full Text Available Saliva is an interesting alternative diagnostic body fluid with several specific advantages over blood. These include non-invasive and easy collection and related possibility to do repeated sampling. One of the obstacles that hinders the wider use of saliva for diagnosis and monitoring of systemic diseases is its composition, which is affected by local oral status. However, this issue makes saliva very interesting for clinical biochemistry of oral diseases. Periodontitis, caries, oral precancerosis and other local oral pathologies are associated with oxidative stress. Several markers of lipid peroxidation, protein oxidation and DNA damage induced by reactive oxygen species can be measured in saliva. Clinical studies have shown an association with oral pathologies at least for some of the established salivary markers of oxidative stress. This association is currently limited to the population level and none of the widely used markers can be applied for individual diagnostics. Oxidative stress seems to be of local oral origin, but it is currently unclear whether it is caused by an overproduction of reactive oxygen species due to inflammation or by the lack of antioxidants. Interventional studies, both, in experimental animals as well as humans indicate that antioxidant treatment could prevent or slow-down the progress of periodontitis. This makes the potential clinical use of salivary markers of oxidative stress even more attractive. This review summarizes basic information on the most commonly used salivary markers of oxidative damage, antioxidant status and carbonyl stress and the studies analyzing these markers in patients with caries or periodontitis.

  11. Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Alejandra Guillermina Miranda-Díaz

    2016-01-01

    Full Text Available The increase in the prevalence of diabetes mellitus (DM and the secondary kidney damage produces diabetic nephropathy (DN. Early nephropathy is defined as the presence of microalbuminuria (30–300 mg/day, including normal glomerular filtration rate (GFR or a mildly decreased GFR (60–89 mL/min/1.73 m2, with or without overt nephropathy. The earliest change caused by DN is hyperfiltration with proteinuria. The acceptable excretion rate of albumin in urine is 300 mg/day. Chronic kidney disease (CKD is characterized by abnormalities in renal function that persist for >3 months with health implications. Alterations in the redox state in DN are caused by the persistent state of hyperglycemia and the increase in advanced glycation end products (AGEs with ability to affect the renin-angiotensin system and the transforming growth factor-beta (TGF-β, producing chronic inflammation and glomerular and tubular hypertrophy and favoring the appearance of oxidative stress. In DN imbalance between prooxidant/antioxidant processes exists with an increase in reactive oxygen species (ROS. The overproduction of ROS diminishes expression of the antioxidant enzymes (manganese superoxide dismutase, glutathione peroxidase, and catalase. The early detection of CKD secondary to DN and the timely identification of patients would permit decreasing its impact on health.

  12. Metabolic effects of melatonin on oxidative stress and diabetes mellitus.

    Science.gov (United States)

    Nishida, Shigeru

    2005-07-01

    Melatonin, which is synthesized in the pineal gland and other tissues, has a variety of physiological, immunological, and biochemical functions. It is a direct scavenger of free radicals and has indirect antioxidant effects due to its stimulation of the expression and activity of antioxidative enzymes such as glutathione peroxidase, superoxide dismutase and catalase, and NO synthase, in mammalian cells. Melatonin also reduces serum lipid levels in mammalian species, and helps to prevent oxidative stress in diabetic subjects. Long-term melatonin administration to diabetic rats reduced their hyperlipidemia and hyperinsulinemia, and restored their altered ratios of polyunsaturated fatty acid in serum and tissues. It was recently reported that melatonin enhanced insulin-receptor kinase and IRS-1 phosphorylation, suggesting the potential existence of signaling pathway cross-talk between melatonin and insulin. Because TNF-alpha has been shown to impair insulin action by suppressing insulin receptor-tyrosine kinase activity and its IRS-1 tyrosine phosphorylation in peripheral tissues such as skeletal muscle cells, it was speculated that melatonin might counteract TNF-alpha-associated insulin resistance in type 2 diabetes. This review will focus on the physiological and metabolic effects of melatonin and highlight its potential use for the treatment of cholesterol/lipid and carbohydrate disorders.

  13. Heart disease link to fetal hypoxia and oxidative stress.

    Science.gov (United States)

    Giussani, Dino A; Niu, Youguo; Herrera, Emilio A; Richter, Hans G; Camm, Emily J; Thakor, Avnesh S; Kane, Andrew D; Hansell, Jeremy A; Brain, Kirsty L; Skeffington, Katie L; Itani, Nozomi; Wooding, F B Peter; Cross, Christine M; Allison, Beth J

    2014-01-01

    The quality of the intrauterine environment interacts with our genetic makeup to shape the risk of developing disease in later life. Fetal chronic hypoxia is a common complication of pregnancy. This chapter reviews how fetal chronic hypoxia programmes cardiac and endothelial dysfunction in the offspring in adult life and discusses the mechanisms via which this may occur. Using an integrative approach in large and small animal models at the in vivo, isolated organ, cellular and molecular levels, our programmes of work have raised the hypothesis that oxidative stress in the fetal heart and vasculature underlies the mechanism via which prenatal hypoxia programmes cardiovascular dysfunction in later life. Developmental hypoxia independent of changes in maternal nutrition promotes fetal growth restriction and induces changes in the cardiovascular, metabolic and endocrine systems of the adult offspring, which are normally associated with disease states during ageing. Treatment with antioxidants of animal pregnancies complicated with reduced oxygen delivery to the fetus prevents the alterations in fetal growth, and the cardiovascular, metabolic and endocrine dysfunction in the fetal and adult offspring. The work reviewed offers both insight into mechanisms and possible therapeutic targets for clinical intervention against the early origin of cardiometabolic disease in pregnancy complicated by fetal chronic hypoxia.

  14. Oxidative Stress in Diabetic Nephropathy with Early Chronic Kidney Disease

    Science.gov (United States)

    Andrade-Sierra, Jorge

    2016-01-01

    The increase in the prevalence of diabetes mellitus (DM) and the secondary kidney damage produces diabetic nephropathy (DN). Early nephropathy is defined as the presence of microalbuminuria (30–300 mg/day), including normal glomerular filtration rate (GFR) or a mildly decreased GFR (60–89 mL/min/1.73 m2), with or without overt nephropathy. The earliest change caused by DN is hyperfiltration with proteinuria. The acceptable excretion rate of albumin in urine is 300 mg/day. Chronic kidney disease (CKD) is characterized by abnormalities in renal function that persist for >3 months with health implications. Alterations in the redox state in DN are caused by the persistent state of hyperglycemia and the increase in advanced glycation end products (AGEs) with ability to affect the renin-angiotensin system and the transforming growth factor-beta (TGF-β), producing chronic inflammation and glomerular and tubular hypertrophy and favoring the appearance of oxidative stress. In DN imbalance between prooxidant/antioxidant processes exists with an increase in reactive oxygen species (ROS). The overproduction of ROS diminishes expression of the antioxidant enzymes (manganese superoxide dismutase, glutathione peroxidase, and catalase). The early detection of CKD secondary to DN and the timely identification of patients would permit decreasing its impact on health. PMID:27525285

  15. High glucose-mediated oxidative stress impairs cell migration.

    Directory of Open Access Journals (Sweden)

    Marcelo L Lamers

    Full Text Available Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG, 25 mM D-glucose (high glucose, HG or 25 mM L-glucose medium (osmotic control--OC, we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC. We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.

  16. Signaling Pathways and Molecular Mechanisms of Oxidative Stress in Skeletal Muscle

    Institute of Scientific and Technical Information of China (English)

    Haibing HU; Wenjing LI; Zhi FANG; Bo XUE; Longzhou LIU; Ye YANG

    2015-01-01

    Oxidative stress is a major factor affecting animal health and production performance. This paper briefly introduced the signaling pathways(i.e. NF-κB signal-ing pathway, MAPK, AP-1 and PGC-1α) of oxidative stress and the main genes regulating the signals of oxidative stress in skeletal muscle, providing a theoretical basis for reducing oxidative stress damage.

  17. Markers of Oxidative Stress and Neuroprogression in Depression Disorder

    Directory of Open Access Journals (Sweden)

    Magdaléna Vaváková

    2015-01-01

    Full Text Available Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed.

  18. Markers of Oxidative Stress and Neuroprogression in Depression Disorder.

    Science.gov (United States)

    Vaváková, Magdaléna; Ďuračková, Zdeňka; Trebatická, Jana

    2015-01-01

    Major depression is multifactorial disorder with high prevalence and alarming prognostic in the nearest 15 years. Several mechanisms of depression are known. Neurotransmitters imbalance and imbalance between neuroprogressive and neuroprotective factors are observed in major depression. Depression is accompanied by inflammatory responses of the organism and consequent elevation of proinflammatory cytokines and increased lipid peroxidation are described in literature. Neuropsychiatric disorders including major depression are also associated with telomerase shortening, oxidative changes in nucleotides, and polymorphisms in several genes connected to metabolism of reactive oxygen species. Mitochondrion dysfunction is directly associated with increasing levels of oxidative stress. Oxidative stress plays significant role in pathophysiology of major depression via actions of free radicals, nonradical molecules, and reactive oxygen and nitrogen species. Products of oxidative stress represent important parameters for measuring and predicting of depression status as well as for determining effectiveness of administrated antidepressants. Positive effect of micronutrients, vitamins, and antioxidants in depression treatment is also reviewed.

  19. Morphine as a Potential Oxidative Stress-Causing Agent.

    Science.gov (United States)

    Skrabalova, Jitka; Drastichova, Zdenka; Novotny, Jiri

    2013-11-01

    Morphine exhibits important pharmacological effects for which it has been used in medical practice for quite a long time. However, it has a high addictive potential and can be abused. Long-term use of this drug can be connected with some pathological consequences including neurotoxicity and neuronal dysfunction, hepatotoxicity, kidney dysfunction, oxidative stress and apoptosis. Therefore, most studies examining the impact of morphine have been aimed at determining the effects induced by chronic morphine exposure in the brain, liver, cardiovascular system and macrophages. It appears that different tissues may respond to morphine diversely and are distinctly susceptible to oxidative stress and subsequent oxidative damage of biomolecules. Importantly, production of reactive oxygen/nitrogen species induced by morphine, which have been observed under different experimental conditions, can contribute to some pathological processes, degenerative diseases and organ dysfunctions occurring in morphine abusers or morphine-treated patients. This review attempts to provide insights into the possible relationship between morphine actions and oxidative stress.

  20. Statins lower calcium-induced oxidative stress in isolated mitochondria.

    Science.gov (United States)

    Parihar, A; Parihar, M S; Zenebe, W J; Ghafourifar, P

    2012-04-01

    Statins are widely used cholesterol-lowering agents that exert cholesterol-independent effects including antioxidative. The present study delineates the effects of statins, atorvastatin, and simvastatin on oxidative stress and functions of mitochondria that are the primary cellular sources of oxidative stress. In isolated rat liver mitochondria, both the statins prevented calcium-induced cytochrome c release, lipid peroxidation, and opening of the mitochondrial membrane permeability transition (MPT). Both the statins decreased the activity of mitochondrial nitric oxide synthase (mtNOS), lowered the intramitochondrial ionized calcium, and increased the mitochondrial transmembrane potential. Our findings suggest that statins lower intramitochondrial ionized calcium that decreases mtNOS activity, lowers oxidative stress, prevents MPT opening, and prevents the release of cytochrome c from the mitochondria. These results provide a novel framework for understanding the antioxidative properties of statins and their effects on mitochondrial functions.

  1. Cognition and biomarkers of oxidative stress in obstructive sleep apnea

    Directory of Open Access Journals (Sweden)

    Leticia Viana Sales

    2013-04-01

    Full Text Available OBJECTIVES: The aim of this study was to investigate neuropsychological performance and biomarkers of oxidative stress in patients with obstructive sleep apnea and the relationships between these factors. METHODS: This was an observational, cross-sectional study of 14 patients (36.0±6.5 years old with obstructive sleep apnea and 13 controls (37.3±6.9 years old. All of the participants were clinically evaluated and underwent full-night polysomnography as well as neuropsychological tests. Blood samples were used to assay superoxide dismutase, catalase, glutathione and homocysteine, as well as vitamins E, C, B11 and B12. RESULTS: The patients performed poorly relative to the controls on several neuropsychological tests, such as the attention test and tests of long-term memory and working memory/executive function. They also had lower levels of vitamin E (p<0.006, superoxide dismutase (p<0.001 and vitamin B11 (p<0.001, as well as higher concentrations of homocysteine (p<0.02. Serum concentrations of vitamin C, catalase, glutathione and vitamin B12 were unaltered. Vitamin E levels were related to performance in the backward digit span task (F = 15.9; p = 0.002 and this correlation remained after controlling for age and body mass index (F = 6.3, p = 0.01. A relationship between superoxide dismutase concentrations and executive non-perseveration errors in the Wisconsin Card Sorting Test (F = 7.9; p = 0.01 was also observed. CONCLUSIONS: Decreased levels of antioxidants and lower performance on the neuropsychological tasks were observed in patients with obstructive sleep apnea. This study suggests that an imbalance between antioxidants and pro-oxidants may contribute to neuropsychological alterations in this patient population.

  2. MARKERS OF OXIDATIVE STRESS AND SERUM LIPIDS IN PAT IENTS WITH POLYCYSTIC OVARIAN SYNDROME

    Directory of Open Access Journals (Sweden)

    Madhu Latha

    2012-11-01

    Full Text Available ABSTRACT: Dyslipidemia and oxidative stress were evaluated in patients with polycystic ovarian syndrome. MATERIALS AND METHODS: Total cholesterol, Triglyceride, HDL cholesterol, LDL cholesterol, Malondialdehyde (MDA and Total antioxidant capacity were measured in serum of PCOS subjects and age matche d controls. RESULTS: Study group comprised of 31 women with PCOS and control group wit h 31 healthy volunteers. Mean serum levels of MDA, Cholesterol, Triglycerides and LDL c holesterol were significantly increased and TAC and HDL cholesterol were significantly decrease d in PCOS subjects compared to controls. CONCLUSION: Our results revealed that PCOS is associated with d yslipidemia and altered oxidative status.

  3. The effect of oxidative stress during exercise in the horse.

    Science.gov (United States)

    Williams, C A

    2016-10-01

    Oxidative stress is an imbalance of the oxidant-to-antioxidant ratio in the body. Increases in oxidative stress and changes in antioxidant status have been shown during endurance and intense exercise and eventing competition in horses. Antioxidants include vitamins, minerals, enzymes, and proteins that must be synthesized in the body or obtained from the diet. Therefore, exercise level and diet are both factors that play a role in influencing the oxidative stress and antioxidant status of the equine athlete. Along with exercise intensity and duration, diet, age, and training program can also affect oxidative stress in the horse. Several studies using exogenous supplementation of vitamin E, vitamin C, and alpha-lipoic acid have shown positive results in decreasing the effects of exercise (endurance and intense exercise)-induced oxidative stress and increasing the antioxidant status based on the markers and antioxidants measured, whereas other studies using superoxide dismutase showed little effects on the exercise horse. The "free radical theory of aging" states that long-term effects of the degenerative changes associated with aging may induce oxidative stress. However, in old horses (22 ± 2 yr), lipid peroxidation levels and blood antioxidant concentrations were similar to those found in younger but mature (12 ± 2 yr) horses both at rest and during exercise. Other studies found that yearlings (18 ± 2.4 mo) that are novel to forced exercise had less lipid peroxidation and greater antioxidant status than mature mares (13 ± 2.1 yr) prior to exercise training. Exercise training reduced oxidative stress markers and improved antioxidant status in mares, whereas few effects were seen in yearlings. This indicates that youth provided more defense against oxidative stress due to exercise than the exercise training program. Other studies during competition (endurance, jumping, eventing, and racing) have investigated the influence on oxidative stress with varying results

  4. Altered Inflammatory, Oxidative, and Metabolic Responses to Exercise in Pediatric Obesity and Type 1 Diabetes

    Science.gov (United States)

    Rosa, Jaime S.; Oliver, Stacy R.; Flores, Rebecca L.; Ngo, Jerry; Milne, Ginger L.; Zaldivar, Frank P.; Galassetti, Pietro R.

    2010-01-01

    Obesity (Ob) and type 1 diabetes (T1DM) are associated with increased inflammation and oxidative stress, which are major pathogenetic pathways toward higher cardiovascular risks. While long-term exercise protects against systemic inflammation and oxidation, acute exercise actually exerts pro-inflammatory and oxidative effects, prompting the necessity for better defining these molecular processes in at-risk patients; in particular, very little is known regarding obese and T1DM children. We therefore examined key inflammatory and oxidative stress variables during exercise in 138 peripubertal children (47 Ob, 12.7±0.4 yr, 22F, BMI% 97.6±0.2; 49 T1DM, 13.9±0.2 yr, 20F, BMI% 63.0±3.6; 42 healthy, CL, 13.5±0.5 yr, 24F, BMI% 57.0±3.6), who performed 10 bouts of 2-min cycling ~80% VO2max, separated by 1-min rest intervals. Blood samples were drawn at baseline and peak-exercise. Ob displayed elevated baseline interleukin-6 (IL-6, 2.1±0.2 pg/mL, p<0.005) vs. CL (1.5±0.3), while T1DM displayed the greatest maximum exercise-induced change in IL-6 (1.2±0.3) than in both Ob (0.7±0.1, p< 0.001) and CL (0.6±0.1, p<0.0167). Myeloperoxidase (MPO) was elevated in T1DM (143±30 ng/mL, p<0.0167) vs. CL (89±10) and Ob (76±6), while increases in exercise only occurred in Ob and CL. Disparate baseline and exercise responses were also observed for 8-hydroxy-2′-deoxyguanosine, glutathione, and F2-isoprostane. This data show distinct patterns of dysregulation in baseline and adaptive immunologic and oxidative responses to exercise in Ob and T1DM. A full understanding of these alterations is required so that developing exercise regimens aimed at maximizing health benefits for specific dysmetabolic states can be achieved based on complete scientific characterization rather than empirical implementation. PMID:21443585

  5. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2012-11-01

    cell viability, induced oxidative stress, and DNA fragmentation.Conclusion: The antibacterial activities of GO and rGO against P. aeruginosa were compared. The loss of P. aeruginosa viability increased in a dose- and time-dependent manner. Exposure to GO and rGO induced significant production of superoxide radical anion compared to control. GO and rGO showed dose-dependent antibacterial activity against P. aeruginosa cells through the generation of reactive oxygen species, leading to cell death, which was further confirmed through resulting nuclear fragmentation. The data presented here are novel in that they prove that GO and rGO are effective bactericidal agents against P. aeruginosa, which would be used as a future antibacterial agent.Keywords: graphene oxide, reduced graphene oxide, beta-mercaptoethanol, oxidative stress, antimicrobial activity

  6. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Kwok Yeung Tsang

    2007-03-01

    Full Text Available In protein folding and secretion disorders, activation of endoplasmic reticulum (ER stress signaling (ERSS protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del, misfolded alpha1(X chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.

  7. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress

    Science.gov (United States)

    Brocherie, Franck; Morin, Jean-Benoit; Racinais, Sébastien; Millet, Grégoire P.; Périard, Julien D.

    2017-01-01

    Purpose Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C) and CON (25°C) conditions. Methods Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting. Results Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001) and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05) temperatures, together with thermal comfort (P<0.001) were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001) and contact time (+3.2±2.4%; P<0.01) higher in HOT for the mean of sets 1–3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001), with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06). Mean vertical (-2.6±5.5%; P<0.01), horizontal (-9.1±4.4%; P<0.001) and resultant ground reaction forces (-3.0±2.8%; P<0.01) along with vertical stiffness (-12.9±2.3%; P<0.001) and leg stiffness (-8.4±2.7%; P<0.01) decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001), with lower propulsive power values in set 2 (-6.6%; P<0.05) in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise. Conclusions Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations. PMID:28146582

  8. Nitric Oxide Signaling in Plant Responses to Abiotic Stresses

    Institute of Scientific and Technical Information of China (English)

    Weihua Qiao; LiuMin Fan

    2008-01-01

    Nitric oxide (NO) plays important roles in diverse physiological processes In plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.

  9. Evaluation of the effects of fructose on oxidative stress and inflammatory parameters in rat brain.

    Science.gov (United States)

    Lopes, Abigail; Vilela, Thais Ceresér; Taschetto, Luciane; Vuolo, Franciele; Petronilho, Fabricia; Dal-Pizzol, Felipe; Streck, Emilio Luiz; Ferreira, Gustavo Costa; Schuck, Patrícia Fernanda

    2014-12-01

    Hereditary fructose intolerance is an autosomal recessive disorder characterized by the accumulation of fructose in tissues and biological fluids of patients. The disease results from a deficiency of aldolase B, responsible for metabolizing fructose in the liver, kidney, and small intestine. We investigated the effect of acute fructose administration on oxidative stress and neuroinflammatory parameters in the cerebral cortex of 30-day-old Wistar rats. Animals received subcutaneous injection of sodium chloride (0.9 %) (control group) or fructose solution (5 μmol/g) (fructose group). One hour later, the animals were euthanized and the cerebral cortex was isolated. Oxidative stress (levels of thiobarbituric acid-reactive substances (TBA-RS), carbonyl content, nitrate and nitrite levels, 2',7'-dihydrodichlorofluorescein (DCFH) oxidation, glutathione (GSH) levels, as well as the activities of catalase (CAT) and superoxide dismutase (SOD)) and neuroinflammatory parameters (TNF-α, IL-1β, and IL-6 levels and myeloperoxidase (MPO) activity) were investigated. Acute fructose administration increased levels of TBA-RS and carbonyl content, indicating lipid peroxidation and protein damage. Furthermore, SOD activity increased, whereas CAT activity was decreased. The levels of GSH, nitrate, and nitrite and DCFH oxidation were not altered by acute fructose administration. Finally, cytokines IL-1β, IL-6, and TNF-α levels, as well as MPO activity, were not altered. Our present data indicate that fructose provokes oxidative stress in the cerebral cortex, which induces oxidation of lipids and proteins and changes of CAT and SOD activities. It seems therefore reasonable to propose that antioxidants may serve as an adjuvant therapy to diets or to other pharmacological agents used for these patients, to avoid oxidative damage to the brain.

  10. Role of Magnesium in Oxidative Stress in Individuals with Obesity.

    Science.gov (United States)

    Morais, Jennifer Beatriz Silva; Severo, Juliana Soares; Santos, Loanne Rocha Dos; de Sousa Melo, Stéfany Rodrigues; de Oliveira Santos, Raisa; de Oliveira, Ana Raquel Soares; Cruz, Kyria Jayanne Clímaco; do Nascimento Marreiro, Dilina

    2017-03-01

    Adipose tissue is considered an endocrine organ that promotes excessive production of reactive oxygen species when in excess, thus contributing to lipid peroxidation. Magnesium deficiency contributes to the development of oxidative stress in obese individuals, as this mineral plays a role as an antioxidant, participates as a cofactor of several enzymes, maintains cell membrane stability and mitigates the effects of oxidative stress. The objective of this review is to bring together updated information on the participation of magnesium in the oxidative stress present in obesity. We conducted a search of articles published in the PubMed, SciELO and LILACS databases, using the keywords 'magnesium', 'oxidative stress', 'malondialdehyde', 'superoxide dismutase', 'glutathione peroxidase', 'reactive oxygen species', 'inflammation' and 'obesity'. The studies show that obese subjects have low serum concentrations of magnesium, as well as high concentrations of oxidative stress marker in these individuals. Furthermore, it is evident that the adequate intake of magnesium contributes to its appropriate homeostasis in the body. Thus, this review of current research can help define the need for intervention with supplementation of this mineral for the prevention and treatment of disorders associated with this chronic disease.

  11. Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, Sophie [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); ED515 UPMC, 4 place Jussieu 75005 Paris (France); Sliwa, Dominika [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Rustin, Pierre [Inserm, U676, Physiopathology and Therapy of Mitochondrial Disease Laboratory, 75019 Paris (France); Universite Paris-Diderot, Faculte de Medecine Denis Diderot, IFR02 Paris (France); Camadro, Jean-Michel [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France); Santos, Renata, E-mail: santos.renata@ijm.univ-paris-diderot.fr [Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod, CNRS-Universite Paris-Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris cedex 13 (France)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Yeast frataxin-deficiency leads to increased proportion of fragmented mitochondria. Black-Right-Pointing-Pointer Oxidative stress induces complete mitochondrial fragmentation in {Delta}yfh1 cells. Black-Right-Pointing-Pointer Oxidative stress increases mitochondrial fragmentation in patient fibroblasts. Black-Right-Pointing-Pointer Inhibition of mitochondrial fission in {Delta}yfh1 induces oxidative stress resistance. -- Abstract: Friedreich ataxia (FA) is the most common recessive neurodegenerative disease. It is caused by deficiency in mitochondrial frataxin, which participates in iron-sulfur cluster assembly. Yeast cells lacking frataxin ({Delta}yfh1 mutant) showed an increased proportion of fragmented mitochondria compared to wild-type. In addition, oxidative stress induced complete fragmentation of mitochondria in {Delta}yfh1 cells. Genetically controlled inhibition of mitochondrial fission in these cells led to increased resistance to oxidative stress. Here we present evidence that in yeast frataxin-deficiency interferes with mitochondrial dynamics, which might therefore be relevant for the pathophysiology of FA.

  12. A study of oxidative stress in paucibacillary and multibacillary leprosy

    Directory of Open Access Journals (Sweden)

    Jyothi P

    2008-01-01

    Full Text Available Background: The study and assessment of oxidative stress plays a significant role in the arena of leprosy treatment. Once the presence of oxidative stress is proved, antioxidant supplements can be provided to reduce tissue injury and deformity. Aim: To study oxidative stress in paucibacillary (PB and multibacillary (MB leprosy and to compare it with that in a control group. Methods: Fifty-eight untreated leprosy patients (23 PB and 35 MB cases were studied and compared with 58 healthy controls. Superoxide dismutase (SOD level as a measure of antioxidant status; malondialdehyde (MDA level, an indicator of lipid peroxidation; and MDA/SOD ratio, an index of oxidative stress were estimated in the serum. Results: The SOD level was decreased in leprosy patients, especially in MB leprosy. The MDA level was increased in PB and MB leprosy. The MDA/SOD ratio was significantly elevated in MB patients. There was a steady increase in this ratio along the spectrum from tuberculoid to lepromatous leprosy (LL. Conclusion: There is increased oxidative stress in MB leprosy, especially in LL. This warrants antioxidant supplements to prevent tissue injury.

  13. Diaphragmatic Breathing Reduces Exercise-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Daniele Martarelli

    2011-01-01

    Full Text Available Diaphragmatic breathing is relaxing and therapeutic, reduces stress, and is a fundamental procedure of Pranayama Yoga, Zen, transcendental meditation and other meditation practices. Analysis of oxidative stress levels in people who meditate indicated that meditation correlates with lower oxidative stress levels, lower cortisol levels and higher melatonin levels. It is known that cortisol inhibits enzymes responsible for the antioxidant activity of cells and that melatonin is a strong antioxidant; therefore, in this study, we investigated the effects of diaphragmatic breathing on exercise-induced oxidative stress and the putative role of cortisol and melatonin hormones in this stress pathway. We monitored 16 athletes during an exhaustive training session. After the exercise, athletes were divided in two equivalent groups of eight subjects. Subjects of the studied group spent 1 h relaxing performing diaphragmatic breathing and concentrating on their breath in a quiet place. The other eight subjects, representing the control group, spent the same time sitting in an equivalent quite place. Results demonstrate that relaxation induced by diaphragmatic breathing increases the antioxidant defense status in athletes after exhaustive exercise. These effects correlate with the concomitant decrease in cortisol and the increase in melatonin. The consequence is a lower level of oxidative stress, which suggests that an appropriate diaphragmatic breathing could protect athletes from long-term adverse effects of free radicals.

  14. Pneumococcal gene complex involved in resistance to extracellular oxidative stress.

    Science.gov (United States)

    Andisi, Vahid Farshchi; Hinojosa, Cecilia A; de Jong, Anne; Kuipers, Oscar P; Orihuela, Carlos J; Bijlsma, Jetta J E

    2012-03-01

    Streptococcus pneumoniae is a gram-positive bacterium which is a member of the normal human nasopharyngeal flora but can also cause serious disease such as pneumonia, bacteremia, and meningitis. Throughout its life cycle, S. pneumoniae is exposed to significant oxidative stress derived from endogenously produced hydrogen peroxide (H(2)O(2)) and from the host through the oxidative burst. How S. pneumoniae, an aerotolerant anaerobic bacterium that lacks catalase, protects itself against hydrogen peroxide stress is still unclear. Bioinformatic analysis of its genome identified a hypothetical open reading frame belonging to the thiol-specific antioxidant (TlpA/TSA) family, located in an operon consisting of three open reading frames. For all four strains tested, deletion of the gene resulted in an approximately 10-fold reduction in survival when strains were exposed to external peroxide stress. However, no role for this gene in survival of internal superoxide stress was observed. Mutagenesis and complementation analysis demonstrated that all three genes are necessary and sufficient for protection against oxidative stress. Interestingly, in a competitive index mouse pneumonia model, deletion of the operon had no impact shortly after infection but was detrimental during the later stages of disease. Thus, we have identified a gene complex involved in the protection of S. pneumoniae against external oxidative stress, which plays an important role during invasive disease.

  15. Apoptosis of wound fibroblasts induced by oxidative stress.

    Science.gov (United States)

    Takahashi, Atsushi; Aoshiba, Kazutetsu; Nagai, Atsushi

    2002-06-01

    Irreversible lung parenchymal injury is usually healed by fibrosis, which depends on the abilities of fibroblasts to proliferate, migrate into the wound, and survive. Because the lung is frequently exposed to increased oxidative stress, which is thought to mediate apoptosis, we examined whether oxidative stress induces apoptosis in fibroblasts during wound healing. We performed an in vitro scratch wound assay where cultured fibroblast monolayers were exposed to H2O2 (10-500 microM) after artificial wounding. Apoptosis was evaluated by nuclear staining with Hoechst33342 or terminal deoxynucleotidyl transferase (TdT)-mediated nucleotide nick end-labeling (TUNEL). Intracellular oxidants were assessed with the peroxide-sensitive fluorochrome carboxydichlorodihydrofluorescein (CDCF). We found that repopulating fibroblasts at the wound margin, but not quiescent fibroblasts at the intact site, selectively underwent oxidant accumulation and apoptosis in response to H2O2 exposure. Some of the apoptotic cells had incorporated bromodeoxyuridine (BrdU), an indicator of proliferating cells. These results suggest that oxidative stress selectively induces apoptosis in fibroblasts that are stimulated to proliferate and/or migrate into the wound. Fibroblast apoptosis induced by oxidative stress during wound repopulation may be relevant to intractable wound healing.

  16. Reproductive effects in hybrid sparrow from a polluted area in Tunisia: Oxidative damage and altered testicular histomorphology.

    Science.gov (United States)

    Amri, Nahed; Hammouda, Abdessalem; Rahmouni, Fatma; Chokri, Med Ali; Chaabane, Rim; Selmi, Slaheddine; Rebai, Tarek; Badraoui, Riadh

    2016-07-01

    Air pollution is a threat for human health and wildlife. The aim of this study is to assess the pathophysiological changes and the oxidative-antioxidative status in testicular tissues of 40 Hybrid sparrows collected from four areas in Gabès city, one of the most polluted areas in Tunisia. The testis histopathological analysis revealed alterations in birds from Ghannouche, the polluted area. The thiobarbituric acid reactive substance (TBARS) levels were higher in testis of birds from the contaminated site compared to less polluted areas indicating oxidative damage to membrane lipids. Antioxidant enzyme activities (superoxide dismutase and catalase) were lower in testis sparrows from the polluted site compared with the reference site, suggesting deficiency of the antioxidant system to compensate for oxidative stress. Overall, our results suggest that the hybrid sparrow offers a suitable model for biomonitoring programs of atmosphere pollutants and the selected biomarkers could be useful tool to evaluate pollution impacts in living organisms.

  17. Can Architectural Design alter the Physiological reaction to Psychosocial Stress ?

    DEFF Research Database (Denmark)

    Brorson Fich, Lars; Jönsson, Peter; Kirkegaard, Poul Henning

    2014-01-01

    Is has long been established, that views to natural scenes can a have a dampening effect on physiological stress responses. However, as people in Europe, Canada and North America today spent 50-85% of their time indoors, attention might also be paid to how the artificial man-made indoor environment...... is computer generated and properties of the space therefore can be systematically varied, we measured saliva cortisol and heart rate variability in participants in a closed room versus a room with openings. As shown by a significant linear contrast interaction between groups and TSST conditions, participants...

  18. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease.

    Science.gov (United States)

    Sung, Chih-Chien; Hsu, Yu-Chuan; Chen, Chun-Chi; Lin, Yuh-Feng; Wu, Chia-Chao

    2013-01-01

    Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies.

  19. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Chih-Chien Sung

    2013-01-01

    Full Text Available Patients with chronic kidney disease (CKD have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate, deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies.

  20. Oxidative stress, circulating antioxidants, and dietary preferences in songbirds.

    Science.gov (United States)

    Alan, Rebecca R; McWilliams, Scott R

    2013-03-01

    Oxidative stress is an unavoidable consequence of metabolism and increases during intensive exercise. This is especially problematic for migratory birds that metabolize fat to fuel long-distance flight. Birds can mitigate damage by increasing endogenous antioxidants (e.g. uric acid) or by consuming dietary antioxidants (e.g. tocopherol). During flight, birds may increase protein catabolism of lean tissue which may increase circulating uric acid and many birds also consume an antioxidant-rich frugivorous diet during autumn migration. We evaluated three related hypotheses in a migratory passerine: (1) protein consumption is positively related to circulating antioxidants, (2) a dietary oxidative stressor [i.e. polyunsaturated fatty acid (PUFA)] influences antioxidant capacity and oxidative damage, and (3) oxidative stress influences dietary antioxidant preferences. White-throated Sparrows (Zonotrichia albicollis) consuming a high protein diet increased circulating uric acid; however, uric acid, antioxidant capacity, and oxidative stress did not differ between birds consuming a high PUFA versus a low PUFA diet, despite increased oxidative damage in high PUFA birds. Birds did not prefer antioxidant-rich diets even when fed high PUFA, low protein. We conclude that White-throated Sparrows successfully mitigated oxidative damage associated with a high PUFA diet and mounted an endogenous antioxidant response independent of uric acid, other circulating antioxidants, and dietary antioxidants.

  1. Oxidative stress and life histories: unresolved issues and current needs.

    Science.gov (United States)

    Speakman, John R; Blount, Jonathan D; Bronikowski, Anne M; Buffenstein, Rochelle; Isaksson, Caroline; Kirkwood, Tom B L; Monaghan, Pat; Ozanne, Susan E; Beaulieu, Michaël; Briga, Michael; Carr, Sarah K; Christensen, Louise L; Cochemé, Helena M; Cram, Dominic L; Dantzer, Ben; Harper, Jim M; Jurk, Diana; King, Annette; Noguera, Jose C; Salin, Karine; Sild, Elin; Simons, Mirre J P; Smith, Shona; Stier, Antoine; Tobler, Michael; Vitikainen, Emma; Peaker, Malcolm; Selman, Colin

    2015-12-01

    Life-history theory concerns the trade-offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life-history trade-offs, but the details remain obscure. As life-history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life-history trade-offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life-history information is available, cannot generally be performed without compromising the aims of the studies that generated the life-history data. There is a need therefore for novel non-invasive measurements of multi-tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life-history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life-history trade-offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting

  2. Toxicity and oxidative stress of canine mesenchymal stromal cells from adipose tissue in different culture passages

    Directory of Open Access Journals (Sweden)

    Arícia Gomes Sprada

    2015-12-01

    Full Text Available Abstract: Stem cells in regenerative therapy have received attention from researchers in recent decades. The culture of these cells allows studies about their behavior and metabolism. Thus, cell culture is the basis for cell therapy and tissue engineering researches. A major concern regarding the use of cultivated stem cell in human or veterinary clinical routine is the risk of carcinogenesis. Cellular activities require a balanced redox state. However, when there is an imbalance in this state, oxidative stress occurs. Oxidative stress contributes to cytotoxicity, which may result in cell death or genomic alterations, favoring the development of cancer cells. The aim of this study was to determine whether there are differences in the behavior of cultured mesenchymal stem cells from canine adipose tissue according to its site of collection (omentum and subcutaneous evaluating the rate of proliferation, viability, level of oxidative stress and cytotoxicity over six passages. For this experiment, two samples of adipose tissue from subcutaneous and omentum where taken from a female dog corpse, 13 years old, Pitbull. The results showed greater levels of oxidative stress in the first and last passages of both groups, favoring cytotoxicity and cell death.

  3. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain.

    Science.gov (United States)

    Ashok, Iyaswamy; Sheeladevi, Rathinasamy; Wankhar, Dapkupar

    2015-09-01

    The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress.

  4. Oxidative stress in blood and testicle of rat following intraperitoneal administration of aluminum and indium.

    Science.gov (United States)

    Maghraoui, S; Clichici, Simona; Ayadi, A; Login, C; Moldovan, R; Daicoviciu, D; Decea, N; Mureşan, A; Tekaya, L

    2014-03-01

    Aluminum (Al) and indium (In) have embryotoxic, neurotoxic and genotoxic effects, oxidative stress being one of the possible mechanisms involved in their cytotoxicity. We have recently demonstrated that indium intraperitoneal (ip) administration induced histological disorganization of testicular tissue. In the present research we aimed at investigating the effect of Al and In ip administration on systemic and testicular oxidative stress status. Studies were performed on Wistar rats ip injected with Al, In or physiological solution for two weeks. Our results showed that In significantly decreased the absolute weight of testicles. Measurements of lactate dehydrogenase (LDH) and paraoxonase (PON) activities showed that In induced a significant augmentation in the first parameter but no changes were observed in the second. Both Al and In caused oxidative stress in testicles by increasing malondialdehyde (MDA) and protein carbonyls (PC) production. Concomitantly, thiol group (-SH) and glutathione (GSH) level were enhanced in the testicles. In the blood, while concentrations of MDA was not changed, those of GSH was significantly decreased in the Al and In groups. Our results indicated that Al and In cause oxidative stress both in blood and testicles but In has cytotoxic effect as well as negative impact on testicle weights. These findings could explain the testicular histological alterations previously described after In ip administration.

  5. Discovery of biomarkers for oxidative stress based on cellular metabolomics.

    Science.gov (United States)

    Wang, Ningli; Wei, Jianteng; Liu, Yewei; Pei, Dong; Hu, Qingping; Wang, Yu; Di, Duolong

    2016-07-01

    Oxidative stress has a close relationship with various pathologic physiology phenomena and the potential biomarkers of oxidative stress may provide evidence for clinical diagnosis or disease prevention. Metabolomics was employed to identify the potential biomarkers of oxidative stress. High-performance liquid chromatography-diode array detector, mass spectrometry and partial least squares discriminate analysis were used in this study. The 10, 15 and 13 metabolites were considered to discriminate the model group, vitamin E-treated group and l-glutathione-treated group, respectively. Some of them have been identified, namely, malic acid, vitamin C, reduced glutathione and tryptophan. Identification of other potential biomarkers should be conducted and their physiological significance also needs to be elaborated.

  6. Peripheral biomarkers of oxidative stress in aging and Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Tania Marcourakis

    Full Text Available Abstract Aging is associated with a greatly increased incidence of a number of neurodegenerative disorders, including Alzheimer's disease (AD, Parkinson's disease (PD and amyotrophic lateral sclerosis (ALS. These conditions are associated with chronic inflammation, which generates oxygen reactive species, ultimately responsible for a process known as oxidative stress. It is well established that this process is the culprit of neurodegeneration, and there are also mounting evidences that it is not restricted to the central nervous system. Indeed, several studies, including some by our group, have demonstrated that increased peripheral oxidative stress markers are associated to aging and, more specifically, to AD. Therefore, it is very instigating to regard aging and AD as systemic conditions that might be determined by studying peripheral markers of oxidative stress.

  7. Inflammation and Oxidative Stress in Obesity-Related Glomerulopathy

    Directory of Open Access Journals (Sweden)

    Jinhua Tang

    2012-01-01

    Full Text Available Obesity-related glomerulopathy is an increasing cause of end-stage renal disease. Obesity has been considered a state of chronic low-grade systemic inflammation and chronic oxidative stress. Augmented inflammation in adipose and kidney tissues promotes the progression of kidney damage in obesity. Adipose tissue, which is accumulated in obesity, is a key endocrine organ that produces multiple biologically active molecules, including leptin, adiponectin, resistin, that affect inflammation, and subsequent deregulation of cell function in renal glomeruli that leads to pathological changes. Oxidative stress is also associated with obesity-related renal diseases and may trigger the initiation or progression of renal damage in obesity. In this paper, we focus on inflammation and oxidative stress in the progression of obesity-related glomerulopathy and possible interventions to prevent kidney injury in obesity.

  8. Reactive species and diabetes: counteracting oxidative stress to improve health.

    Science.gov (United States)

    Pérez-Matute, Patricia; Zulet, M Angeles; Martínez, J Alfredo

    2009-12-01

    Oxidative stress is at the very core of metabolism. Reactive species behave as true second messengers that control important cellular functions. However, under pathological conditions, abnormally large concentrations of these species may lead to permanent changes in signal transduction and gene expression. Attenuation of oxidative stress as a way to improve several diseases such as diabetes has flourished as one of the main challenges of research. The lack of evidence to prove the benefits from antioxidant compounds has led to boost these strategies. Inhibition of reactive oxygen species (ROS) production through the development of inhibitors against NADPH oxidase and mitochondria offers an alternative approach to conventional antioxidant therapies. There is a need to understand oxidative stress process to implement health-disorder approaches.

  9. Impacts of Oxidative Stress and Antioxidants on Semen Functions

    Directory of Open Access Journals (Sweden)

    Amrit Kaur Bansal

    2011-01-01

    Full Text Available Oxidative stress (OS has been considered a major contributory factor to the infertility. Oxidative stress is the result of imbalance between the reactive oxygen species (ROS and antioxidants in the body which can lead to sperm damage, deformity, and eventually male infertility. Although high concentrations of the ROS cause sperm pathology (ATP depletion leading to insufficient axonemal phosphorylation, lipid peroxidation, and loss of motility and viability but, many evidences demonstrate that low and controlled concentrations of these ROS play an important role in sperm physiological processes such as capacitation, acrosome reaction, and signaling processes to ensure fertilization. The supplementation of a cryopreservation extender with antioxidant has been shown to provide a cryoprotective effect on mammalian sperm quality. This paper reviews the impacts of oxidative stress and reactive oxygen species on spermatozoa functions, causes of ROS generation, and antioxidative strategies to reduce OS. In addition, we also highlight the emerging concept of utilizing OS as a tool of contraception.

  10. Engrailed Homeoprotein Protects Mesencephalic Dopaminergic Neurons from Oxidative Stress

    Science.gov (United States)

    Rekaik, Hocine; Blaudin de Thé, François-Xavier; Fuchs, Julia; Massiani-Beaudoin, Olivia; Prochiantz, Alain; Joshi, Rajiv L.

    2016-01-01

    Summary Engrailed homeoproteins are expressed in adult dopaminergic neurons of the substantia nigra. In Engrailed1 heterozygous mice, these neurons start dying at 6 weeks, are more sensitive to oxidative stress, and progressively develop traits similar to those observed following an acute and strong oxidative stress inflected to wild-type neurons. These changes include DNA strand breaks and the modification (intensity and distribution) of several nuclear and nucleolar heterochromatin marks. Engrailed1 and Engrailed2 are biochemically equivalent transducing proteins previously used to antagonize dopaminergic neuron death in Engrailed1 heterozygous mice and in mouse models of Parkinson disease. Accordingly, we show that, following an acute oxidative stress, a single Engrailed2 injection restores all nuclear and nucleolar heterochromatin marks, decreases the number of DNA strand breaks, and protects dopaminergic neurons against apoptosis. PMID:26411690

  11. Combined neonicotinoid pesticide and parasite stress alter honeybee queens’ physiology and survival

    Science.gov (United States)

    Dussaubat, Claudia; Maisonnasse, Alban; Crauser, Didier; Tchamitchian, Sylvie; Bonnet, Marc; Cousin, Marianne; Kretzschmar, André; Brunet, Jean-Luc; Le Conte, Yves

    2016-01-01

    Honeybee colony survival strongly relies on the queen to overcome worker losses exposed to combined stressors like pesticides and parasites. Queen’s capacity to withstand these stressors is however very little known. The effects of the common neonicotinoid pesticide imidacloprid in a chronic and sublethal exposure together with the wide distributed parasite Nosema ceranae have therefore been investigated on queen’s physiology and survivorship in laboratory and field conditions. Early physiological changes were observed on queens, particularly the increase of enzyme activities (catalase [CAT] and glutathione-S-transferase [GST] in the heads) related to protective responses to xenobiotics and oxidative stress against pesticide and parasite alone or combined. Stressors also alter the activity of two other enzymes (carboxylesterase alpha [CaE α] and carboxylesterase para [CaE p] in the midguts) involved in metabolic and detoxification functions. Furthermore, single and combined effects of pesticide and parasite decrease survivorship of queens introduced into mating hives for three months. Because colony demographic regulation relies on queen’s fertility, the compromise of its physiology and life can seriously menace colony survival under pressure of combined stressors. PMID:27578396

  12. Combined neonicotinoid pesticide and parasite stress alter honeybee queens' physiology and survival.

    Science.gov (United States)

    Dussaubat, Claudia; Maisonnasse, Alban; Crauser, Didier; Tchamitchian, Sylvie; Bonnet, Marc; Cousin, Marianne; Kretzschmar, André; Brunet, Jean-Luc; Le Conte, Yves

    2016-01-01

    Honeybee colony survival strongly relies on the queen to overcome worker losses exposed to combined stressors like pesticides and parasites. Queen's capacity to withstand these stressors is however very little known. The effects of the common neonicotinoid pesticide imidacloprid in a chronic and sublethal exposure together with the wide distributed parasite Nosema ceranae have therefore been investigated on queen's physiology and survivorship in laboratory and field conditions. Early physiological changes were observed on queens, particularly the increase of enzyme activities (catalase [CAT] and glutathione-S-transferase [GST] in the heads) related to protective responses to xenobiotics and oxidative stress against pesticide and parasite alone or combined. Stressors also alter the activity of two other enzymes (carboxylesterase alpha [CaE α] and carboxylesterase para [CaE p] in the midguts) involved in metabolic and detoxification functions. Furthermore, single and combined effects of pesticide and parasite decrease survivorship of queens introduced into mating hives for three months. Because colony demographic regulation relies on queen's fertility, the compromise of its physiology and life can seriously menace colony survival under pressure of combined stressors.

  13. Salt stress alters DNA methylation levels in alfalfa (Medicago spp).

    Science.gov (United States)

    Al-Lawati, A; Al-Bahry, S; Victor, R; Al-Lawati, A H; Yaish, M W

    2016-02-26

    Modification of DNA methylation status is one of the mechanisms used by plants to adjust gene expression at both the transcriptional and posttranscriptional levels when plants are exposed to suboptimal conditions. Under abiotic stress, different cultivars often show heritable phenotypic variation accompanied by epigenetic polymorphisms at the DNA methylation level. This variation may provide the raw materials for plant breeding programs that aim to enhance abiotic stress tolerance, including salt tolerance. In this study, methylation-sensitive amplified polymorphism (MSAP) analysis was used to assess cytosine methylation levels in alfalfa (Medicago spp) roots exposed to increasing NaCl concentrations (0.0, 8.0, 12.0, and 20.0 dS/m). Eleven indigenous landraces were analyzed, in addition to a salt-tolerant cultivar that was used as a control. There was a slight increase in DNA methylation upon exposure to high levels of soil salinity. Phylogenetic analysis using MSAP showed epigenetic variation within and between the alfalfa landraces when exposed to saline conditions. Based on MSAP and enzyme-linked immunosorbent assay results, we found that salinity increased global DNA methylation status, particularly in plants exposed to the highest level of salinity (20 dS/m). Quantitative reverse transcription-polymerase chain reaction indicated that this might be mediated by the overexpression of methyltransferase homolog genes after exposure to saline conditions. DNA demethylation using 5-azacytidine reduced seedling lengths and dry and fresh weights, indicating a possible decrease in salinity tolerance. These results suggest that salinity affects DNA methylation flexibility.

  14. Effect of Plasma Uric Acid on Antioxidant Capacity, Oxidative Stress, and Insulin Sensitivity in Obese Subjects

    Science.gov (United States)

    Fabbrini, Elisa; Serafini, Mauro; Colic Baric, Irena; Hazen, Stanley L.; Klein, Samuel

    2014-01-01

    Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m2) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20–90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45–95% decrease in NEAC and a 25–40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. PMID:24353177

  15. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage

    Science.gov (United States)

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked: considerable variation in oxidative stress resistance exists among and within species and ...

  16. Effect of oxidative stress on homer scaffolding proteins.

    Directory of Open Access Journals (Sweden)

    Igor Nepliouev

    Full Text Available Homer proteins are a family of multifaceted scaffolding proteins that participate in the organization of signaling complexes at the post-synaptic density and in a variety of tissues including striated muscle. Homer isoforms form multimers via their C-terminal coiled coil domains, which allows for the formation of a polymeric network in combination with other scaffolding proteins. We hypothesized that the ability of Homer isoforms to serve as scaffolds would be influenced by oxidative stress. We have found by standard SDS-PAGE of lysates from adult mouse skeletal muscle exposed to air oxidation that Homer migrates as both a dimer and monomer in the absence of reducing agents and solely as a monomer in the presence of a reducing agent, suggesting that Homer dimers exposed to oxidation could be modified by the presence of an inter-molecular disulfide bond. Analysis of the peptide sequence of Homer 1b revealed the presence of only two cysteine residues located adjacent to the C-terminal coiled-coil domain. HEK 293 cells were transfected with wild-type and cysteine mutant forms of Homer 1b and exposed to oxidative stress by addition of menadione, which resulted in the formation of disulfide bonds except in the double mutant (C246G, C365G. Exposure of myofibers from adult mice to oxidative stress resulted in decreased solubility of endogenous Homer isoforms. This change in solubility was dependent on disulfide bond formation. In vitro binding assays revealed that cross-linking of Homer dimers enhanced the ability of Homer 1b to bind Drebrin, a known interacting partner. Our results show that oxidative stress results in disulfide cross-linking of Homer isoforms and loss of solubility of Homer scaffolds. This suggests that disulfide cross-linking of a Homer polymeric network may contribute to the pathophysiology seen in neurodegenerative diseases and myopathies characterized by oxidative stress.

  17. Increased DNA damage and oxidative stress among silver jewelry workers.

    Science.gov (United States)

    Aktepe, Necmettin; Kocyigit, Abdurrahim; Yukselten, Yunus; Taskin, Abdullah; Keskin, Cumali; Celik, Hakim

    2015-04-01

    Silver has long been valued as a precious metal, and it is used to make ornaments, jewelry, high-value tableware, utensils, and currency coins. Human exposures to silver and silver compounds can occur oral, dermal, or by inhalation. In this study, we investigated genotoxic and oxidative effects of silver exposure among silver jewelry workers. DNA damage in peripheral mononuclear leukocytes was measured by using the comet assay. Serum total antioxidative status (TAS), total oxidative status (TOS), total thiol contents, and ceruloplasmin levels were measured by using colorimetric methods among silver jewelry workers. Moreover, oxidative stress index (OSI) was calculated. Results were compared with non-exposed healthy subjects. The mean values of mononuclear leukocyte DNA damage were significantly higher than control subjects (p jewelry workers caused oxidative stress and accumulation of severe DNA damage.

  18. Oxidative stress and nutritional prevention in autoimmune rheumatic diseases.

    Science.gov (United States)

    Sukkar, Samir G; Rossi, Edoardo

    2004-03-01

    The hypothesis that oxidative stress favours flogistic and immune processes inducing autoimmune rheumatic diseases (ARDs) and their complications is still under discussion. In this review we take into consideration both the aetiopathological role of the diet in such diseases and the possible efficacy of dietary supports as adjuvants for the usual specific therapies. Moreover, we shall examine the hypothetical pathophysiological role of oxidative stress on ARDs and their complications, the methods for its evaluation and the possibility of intervening on oxidative pathways by means of nutritional modulation. It is possible that in the future we will be able to control connective pathology by associating an immuno-modulating therapy ('re-educating') with natural products having an anti-oxidant activity to current immunosuppressive treatment (which has potentially toxic effects).

  19. Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails.

    Science.gov (United States)

    Hermes-Lima, M; Storey, J M; Storey, K B

    1998-07-01

    early minutes of recovery during reoxygenation or thawing. Thus, a wide range of stress tolerant animals display coordinated changes in antioxidant defenses that allow them to deal with oxidative stress that occurs as part of natural cycles of stress/recovery that alter oxygen levels in tissues. The molecular mechanisms that trigger and regulate changes in antioxidant enzyme activities in these species are still unknown but could prove to have key relevance for the development of new intervention strategies in the treatment of cardiovascular ischemia/reperfusion injuries in humans.

  20. Oxidative stress impairs the heat stress response and delays unfolded protein recovery.

    Directory of Open Access Journals (Sweden)

    Masaaki Adachi

    Full Text Available BACKGROUND: Environmental changes, air pollution and ozone depletion are increasing oxidative stress, and global warming threatens health by heat stress. We now face a high risk of simultaneous exposure to heat and oxidative stress. However, there have been few studies investigating their combined adverse effects on cell viability. PRINCIPAL FINDINGS: Pretreatment of hydrogen peroxide (H(2O(2 specifically and highly sensitized cells to heat stress, and enhanced loss of mitochondrial membrane potential. H(2O(2 exposure impaired the HSP40/HSP70 induction as heat shock response (HSR and the unfolded protein recovery, and enhanced eIF2alpha phosphorylation and/or XBP1 splicing, land marks of ER stress. These H(2O(2-mediated effects mimicked enhanced heat sensitivity in HSF1 knockdown or knockout cells. Importantly, thermal preconditioning blocked H(2O(2-mediated inhibitory effects on refolding activity and rescued HSF1 +/+ MEFs, but neither blocked the effects nor rescued HSF1 -/- MEFs. These data strongly suggest that inhibition of HSR and refolding activity is crucial for H(2O(2-mediated enhanced heat sensitivity. CONCLUSIONS: H(2O(2 blocks HSR and refolding activity under heat stress, thereby leading to insufficient quality control and enhancing ER stress. These uncontrolled stress responses may enhance cell death. Our data thus highlight oxidative stress as a crucial factor affecting heat tolerance.

  1. Effect of aqueous extract of Tribulus terrestris on oxalate-induced oxidative stress in rats.

    Science.gov (United States)

    Kamboj, P; Aggarwal, M; Puri, S; Singla, S K

    2011-07-01

    The present study was aimed at studying the effect of Tribulus terrestris on different parameters of oxidative stress and gene expression profiles of antioxidant enzymes in renal tissues of male wistar rats after induction of hyperoxaluria. The animals were divided into three groups. The animals in group I (control) were administered vehicle only. In group II, the animals were treated with ethylene glycol (hyperoxaluric agent) and those in group III were administered T. terrestris plant extract in addition to ethylene glycol. All treatments were continued for a period of seven weeks. Ethylene glycol feeding resulted in hyperoxaluria as well as increased excretion of calcium and phosphate. Serum creatinine, uric acid and blood urea nitrogen levels were also altered in hyperoxaluric animals. Various oxidative stress parameters viz. lipid peroxidation and activity of antioxidant enzymes were used to confirm the peroxidant state. Reverse transcription-polymerase chain reaction (RT-PCR) analysis was used to confirm whether steady-state transcription level of different antioxidant enzymes was altered. T. terrestris significantly reduced the excretion of oxalate, calcium, and phosphate along with decreased levels of blood urea nitrogen, uric acid and creatinine in serum. T. terrestris also reduced hyperoxaluria- caused oxidative stress, and restored antioxidant enzyme activity and their expression profile in kidney tissue. Histological analysis depicted that T. terrestris treatment decreased renal epithelial damage, inflammation, and restored normal glomerular morphology.

  2. MECP2 Duplication Syndrome: Evidence of Enhanced Oxidative Stress. A Comparison with Rett Syndrome.

    Science.gov (United States)

    Signorini, Cinzia; De Felice, Claudio; Leoncini, Silvia; Møller, Rikke S; Zollo, Gloria; Buoni, Sabrina; Cortelazzo, Alessio; Guerranti, Roberto; Durand, Thierry; Ciccoli, Lucia; D'Esposito, Maurizio; Ravn, Kirstine; Hayek, Joussef

    2016-01-01

    Rett syndrome (RTT) and MECP2 duplication syndrome (MDS) are neurodevelopmental disorders caused by alterations in the methyl-CpG binding protein 2 (MECP2) gene expression. A relationship between MECP2 loss-of-function mutations and oxidative stress has been previously documented in RTT patients and murine models. To date, no data on oxidative stress have been reported for the MECP2 gain-of-function mutations in patients with MDS. In the present work, the pro-oxidant status and oxidative fatty acid damage in MDS was investigated (subjects n = 6) and compared to RTT (subjects n = 24) and healthy condition (subjects n = 12). Patients with MECP2 gain-of-function mutations showed increased oxidative stress marker levels (plasma non-protein bound iron, intraerythrocyte non-protein bound iron, F2-isoprostanes, and F4-neuroprostanes), as compared to healthy controls (P ≤ 0.05). Such increases were similar to those observed in RTT patients except for higher plasma F2-isoprostanes levels (P < 0.0196). Moreover, plasma levels of F2-isoprostanes were significantly correlated (P = 0.0098) with the size of the amplified region. The present work shows unique data in patients affected by MDS. For the first time MECP2 gain-of-function mutations are indicated to be linked to an oxidative damage and related clinical symptoms overlapping with those of MECP2 loss-of-function mutations. A finely tuned balance of MECP2 expression appears to be critical to oxidative stress homeostasis, thus shedding light on the relevance of the redox balance in the central nervous system integrity.

  3. Stathmin mediates hepatocyte resistance to death from oxidative stress by down regulating JNK.

    Science.gov (United States)

    Zhao, Enpeng; Amir, Muhammad; Lin, Yu; Czaja, Mark J

    2014-01-01

    Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK). The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth.

  4. Stathmin mediates hepatocyte resistance to death from oxidative stress by down regulating JNK.

    Directory of Open Access Journals (Sweden)

    Enpeng Zhao

    Full Text Available Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK. The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth.

  5. MECP2 Duplication Syndrome: Evidence of Enhanced Oxidative Stress. A Comparison with Rett Syndrome.

    Directory of Open Access Journals (Sweden)

    Cinzia Signorini

    Full Text Available Rett syndrome (RTT and MECP2 duplication syndrome (MDS are neurodevelopmental disorders caused by alterations in the methyl-CpG binding protein 2 (MECP2 gene expression. A relationship between MECP2 loss-of-function mutations and oxidative stress has been previously documented in RTT patients and murine models. To date, no data on oxidative stress have been reported for the MECP2 gain-of-function mutations in patients with MDS. In the present work, the pro-oxidant status and oxidative fatty acid damage in MDS was investigated (subjects n = 6 and compared to RTT (subjects n = 24 and healthy condition (subjects n = 12. Patients with MECP2 gain-of-function mutations showed increased oxidative stress marker levels (plasma non-protein bound iron, intraerythrocyte non-protein bound iron, F2-isoprostanes, and F4-neuroprostanes, as compared to healthy controls (P ≤ 0.05. Such increases were similar to those observed in RTT patients except for higher plasma F2-isoprostanes levels (P < 0.0196. Moreover, plasma levels of F2-isoprostanes were significantly correlated (P = 0.0098 with the size of the amplified region. The present work shows unique data in patients affected by MDS. For the first time MECP2 gain-of-function mutations are indicated to be linked to an oxidative damage and related clinical symptoms overlapping with those of MECP2 loss-of-function mutations. A finely tuned balance of MECP2 expression appears to be critical to oxidative stress homeostasis, thus shedding light on the relevance of the redox balance in the central nervous system integrity.

  6. Influence of Synbiotics on Selected Oxidative Stress Parameters

    Science.gov (United States)

    2017-01-01

    The aim of the present study was to assess synbiotic (Lactobacillus casei + inulin) influence on oxidative stress parameters such as concentrations of malondialdehyde (MDA), hydrogen peroxide (H2O2), glutathione, and free sulfhydryl groups content. Experiments were carried out on healthy volunteers (n = 32). The subjects were divided into women group (n = 16) and men group (n = 16) and randomly assigned to synbiotic and control groups. Blood samples were collected before synbiotic supplementation and after 7 wks, at the end of the study. The administration of synbiotic resulted in a significant decrease in MDA (p inulin may have positive influence on selected oxidative stress markers. PMID:28286605

  7. Chronic Kidney Disease—Effect of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Subha Palaneeswari Meenakshi Sundaram

    2014-01-01

    Full Text Available Chronic kidney disease (CKD is a growing health problem with increasing incidence. The annual mortality of end-stage renal disease patients is about 9%, which is 10–20 fold higher than the general population, approximately 50% of these deaths are due to cardiovascular (CV disease. CV risk factors, such as diabetes, hypertension, and hyperlipidemia, are strongly associated with poor outcome. Many other nontraditional risk factors such as inflammation, infection, oxidative stress, anemia, and malnutrition are also present. In this review we will focus on the role of oxidative stress in chronic kidney disease.

  8. Periodontal Disease-Induced Atherosclerosis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Tomoko Kurita-Ochiai

    2015-09-01

    Full Text Available Periodontal disease is a highly prevalent disorder affecting up to 80% of the global population. Recent epidemiological studies have shown an association between periodontal disease and cardiovascular disease, as oxidative stress plays an important role in chronic inflammatory diseases such as periodontal disease and cardiovascular disease. In this review, we focus on the mechanisms by which periodontopathic bacteria cause chronic inflammation through the enhancement of oxidative stress and accelerate cardiovascular disease. Furthermore, we comment on the antioxidative activity of catechin in atherosclerosis accelerated by periodontitis.

  9. Oxidative stress: Lipid peroxidation products as predictors in disease progression

    Directory of Open Access Journals (Sweden)

    Suranjana Ray Halder

    2014-09-01

    Full Text Available Oxidative stress is implicated in the pathogenesis of numerous disease processes, including diabetes mellitus, atherosclerosis, ischemia reperfusion injury, rheumatoid arthritis, neurodegenerative diseases as well as in the aging process. Chemical modification of amino acids in protein during lipid peroxidation (LPO results in the formation of lipoxidation products, which may serve as indicators of oxidative stress in vivo. The various types of aldehydes such as 4-hydroxynonenal, malondialdehyde, acrolein and others produced during LPO may serve as potent oxidative stress biomarkers. Their activation in different signaling cascades lead to apoptosis, differentiation, proliferation, etc., Increased amount of these aldehydes in aging or with metabolic complications or in other diseases indicate their pathophysiological significance. Thus, LPO products or other oxidative stress biomarkers may open the way for the development of early detection, prevention, and therapeutic strategies for stress associated human diseases. Now-a-days, antioxidant supplementation has become an increasingly popular practice to restore the redox homeostatic condition of the cell. Disease specific, target directed, bioavailable antioxidants may be beneficial for sustenance of the quality-of-life in future days. [J Exp Integr Med 2014; 4(3.000: 151-164

  10. Activation of the hypothalamic-pituitary-adrenal stress axis induces cellular oxidative stress

    Directory of Open Access Journals (Sweden)

    Jereme G. Spiers

    2015-01-01

    Full Text Available Glucocorticoids released from the adrenal gland in response to stress-induced activation of the hypothalamic-pituitary-adrenal (HPA axis induce activity in the cellular reduction-oxidation (redox system. The redox system is a ubiquitous chemical mechanism allowing the transfer of electrons between donor/acceptors and target molecules during oxidative phosphorylation while simultaneously maintaining the overall cellular environment in a reduced state. The objective of this review is to present an overview of the current literature discussing the link between HPA axis-derived glucocorticoids and increased oxidative stress, particularly focussing on the redox changes observed in the hippocampus following glucocorticoid exposure.

  11. Stress dependent oxidation of sputtered niobium and effects on superconductivity

    Science.gov (United States)

    David Henry, M.; Wolfley, Steve; Monson, Todd; Clark, Blythe G.; Shaner, Eric; Jarecki, Robert

    2014-02-01

    We report on the suppression of room temperature oxidation of DC sputtered niobium films and the effects upon the superconductive transition temperature, Tc. Niobium was sputter-deposited on silicon dioxide coated 150 mm wafers and permitted to oxidize at room temperature and pressure for up to two years. Resistivity and stress measurements indicate that tensile films greater than 400 MPa resist bulk oxidation with measurements using transmission electron microscope, electron dispersive X-ray spectroscopy, x-ray photoelectric spectroscopy, and secondary ion mass spectrometry confirming this result. Although a surface oxide, Nb2O5, consumed the top 6-10 nm, we measure less than 1 at. % oxygen and nitrogen in the bulk of the films after the oxidation period. Tc measurements using a SQUID magnetome