WorldWideScience

Sample records for alter heat chock

  1. Development of a pneumatic stowing and chocking system for packages containing radioactive waste

    International Nuclear Information System (INIS)

    Baekelandt, L.; Libon, H.; Vandorpe, M.; Lafontaine, I.

    1989-01-01

    Since that goods are transported, their chocking and stowing is very often done by improvisation, successfully or disastrously. When the disaster appears in comics it is always a source of an enormous amusement, when it appears in road or maritime accidents it is most of the time a source of death or severe damages. Even if transport of radioactive materials could be considered as the exception where chains and tie-down systems are used abundantly, their strength relies always on the weakness of their components. Special attention has been paid to the transport of type A or type B packages, but obviously there was a lack of interest for the transport of low level radioactive waste, even knowing that the quantities of this waste are a hunderfold or a thousandfold of the first ones. On the subject of stowing and chocking systems for radioactive waste packages, TRANSNUBEL together with the CEA-France performed under the sponsorship of the Commission of the European Communities between 1980 and 1985 a study which clearly showed that during a road accident, in case of a front end impact, the stowing system must be able to absorb entirely the kinetic energy generated by the package deceleration, which is proportional to the package mass. The chocks must be able to absorb a deceleration energy generated by the package of about 30 g at a speed of about 50 km/h. This energy of course decreases at the same time as the speed. These conclusions served as basic principles for the development by TRANSNUBEL of a pneumatic stowing and chocking system for packagings containing radioactive waste

  2. Mechanism and Prevention of a Chock Support Failure in the Longwall Top-Coal Caving Faces: A Case Study in Datong Coalfield, China

    Directory of Open Access Journals (Sweden)

    Zhu Li

    2018-01-01

    Full Text Available Longwall chock support failures seriously restrain the safety and high-efficiency of mining of extra thick coal seams, as well as causing a great waste of coal resources. During longwall top-coal caving (LTCC, the influential effect of the properties and the movement regulation of top-coal on strata behavior cannot be ignored, since the top-coal is the medium through which the load of the overlying strata is transferred to the chock supports. Taking Datong coalfield as an example, the mechanism of a chock support failure in the LTCC face was investigated. Research findings indicated that the hard top-coal and insufficient chock support capacity were primary reasons for chock support failure accidents. On account of the field-measured results, a new method to determine support capacity was proposed, which fully took the impact of the top-coal strength into consideration. The calculation revealed that the required support capacity had exceeded the existing production maximum, at about 22,000 KN. Since it was unrealistic to simply increase chock support capacity, other approaches, according to the theoretical analysis, were proposed, such as lowering the integrity and strength of the top-coal, and upgrading its crushing effect to weaken the support load effectively during the weighting period, which reduces the likelihood of chock support accidents occurring. Based on this, hydraulic fracturing for hard top-coal and optimization of the caving process (chock supports raised up and down repeatedly by manual operation before moving forward were presented. The proposed solutions were successfully applied in LTCC-west8101 for subsequent mining and achieved substantial benefits. The above research provides valuable references and ideas for the control of strata behavior to ensure safe and highly efficient mining in extremely thick and hard coal seams with the LTCC method.

  3. Effect of lithological variations of mine roof on chock shield support using numerical modeling technique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-09-15

    Interaction between chock shield supports, the most popular powered supports in Indian longwall mines, and surrounding coal measure strata is analyzed using finite element models. Thickness and material properties of the main roof, the immediate roof and the coal seam are varied to simulate various geological conditions of Indian coal measure strata. Contact/gap elements are inserted in between the main roof and overburden layer to allow strata separation. Nonlinear material properties are applied with plastic corrections based on Drucker-Prager yield criterion. This paper illustrates effects of lithological variations on shield load, abutment stress, yield zone and longwall face convergence.

  4. Heat-induced alterations in cashew allergen solubility and IgE binding

    Directory of Open Access Journals (Sweden)

    Christopher P. Mattison

    Full Text Available Cashew nuts are an increasingly common cause of food allergy. We compare the soluble protein profile of cashew nuts following heating. SDS-PAGE indicate that heating can alter the solubility of cashew nut proteins. The 11S legumin, Ana o 2, dominates the soluble protein content in ready to eat and mildly heated cashew nuts. However, we found that in dark-roasted cashew nuts, the soluble protein profile shifts and the 2S albumin Ana o 3 composes up to 40% of the soluble protein. Analysis of trypsin-treated extracts by LC/MS/MS indicate changes in the relative number and intensity of peptides. The relative cumulative intensity of the 5 most commonly observed Ana o 1 and 2 peptides are altered by heating, while those of the 5 most commonly observed Ana o 3 peptides remaine relatively constant. ELISA experiments indicate that there is a decrease in rabbit IgG and human serum IgE binding to soluble cashew proteins following heating. Our findings indicate that heating can alter the solubility of cashew allergens, resulting in altered IgE binding. Our results support the use of both Ana o 2 and Ana o 3 as potential cashew allergen diagnostic targets. Keywords: Cashew nut, Food allergy, Immunoglobulin E, Mass-spectrometry, Peptide, Solubility

  5. Alterations in reproductive hormones during heat stress in dairy cattle

    African Journals Online (AJOL)

    Alterations in reproductive hormones during heat stress in dairy cattle. ... Heat stress reduces the degree of dominance of the selected follicle and this can be seen as reduced steroidogenic capacity of its theca and ... from 32 Countries:.

  6. Heat shock gene expression and cytoskeletal alterations in mouse neuroblastoma cells

    NARCIS (Netherlands)

    Bergen en Henegouwen, P.M.P. van; Linnemans, W.A.M.

    The cytoskeleton of neuroblastoma cells, clone Neuro 2A, is altered by two stress conditions: heat shock and arsenite treatment. Microtubules are reorganized, intermediate filaments are aggregated around the nucleus, and the number of stress fibers is reduced. Since both stress modalities induce

  7. Alteration of fasting heat production during fescue toxicosis in Holstein steers

    Science.gov (United States)

    This study was designed to examine alteration of fasting heat production (FHP) during fescue toxicosis. Six ruminally cannulated Holstein steers (BW=348 ±13 kg) were weight-matched into pairs and utilized in a two period crossover design experiment. Each period consisted of two temperature segments,...

  8. Effect of Heating Method on Alteration of Protein Molecular Structure in Flaxseed: Relationship with Changes in Protein Subfraction Profile and Digestion in Dairy Cows.

    Science.gov (United States)

    Ahmad Khan, Nazir; Booker, Helen; Yu, Peiqiang

    2015-02-04

    This study evaluated the effect of heating methods on alteration of protein molecular structure in flaxseed (Linum usitatissimum L.) in relation to changes in protein subfraction profile and digestion in dairy cows. Seeds from two flaxseed varieties, sampled from two replicate plots at two locations, were evaluated. The seeds were either maintained in their raw state or heated in an air-draft oven (dry heating) or autoclave (moist heating) for 60 min at 120 °C or by microwave irradiation (MIR) for 5 min. Compared to raw seeds, moist heating decreased (P RUP) content (36.0 ± 5.19 to 46.9 ± 2.72% CP) and intestinal digestibility of RUP (61.0 ± 2.28 to 63.8 ± 2.67% RUP). Dry heating did not alter (P > 0.05) the protein subfraction profile and rumen degradation kinetics, whereas MIR increased (P RUP content from 36.0 ± 5.19 to 40.4 ± 4.67% CP. The MIR and dry heating did not alter (P > 0.05) the amide I to amide II ratio, but moist heating decreased (P RUP (R 2 = 0.71), and intestinal digestibility of RUP (R 2 = 0.72). Overall, heat-induced changes in protein nutritive value and digestion were strongly associated with heat-induced alteration in protein molecular structures.

  9. Small heat shock protein message in etiolated Pea seedlings under altered gravity

    Science.gov (United States)

    Talalaiev, O.

    Plants are subjected to various environmental changes during their life cycle To protect themselves against unfavorable influences plant cells synthesize several classes of small heat shock proteins sHsp ranging in size from 15 to 30 kDa This proteins are able to enhance the refolding of chemically denatured proteins in an ATP-independent manner in other words they can function as molecular chaperones The potential contribution of effects of space flight at the plant cellular and gene regulation level has not been characterized yet The object of our study is sHsp gene expression in etiolated Pisum sativum seedlings exposed to altered gravity and environmental conditions We designed primers to detect message for two inducible forms of the cytosolic small heat shock proteins sHsp 17 7 and sHsp 18 1 Applying the RT- PCR we explore sHsps mRNA in pea seedling cells subjected to two types of altered gravity achieved by centrifugation from 3 to 8g by clinorotation 2 rpm and temperature elevation 42oC Temperature elevation as the positive control significantly increased PsHspl7 7 PsHspl8 1 expression We investigate the expression of actin it was constant and comparable for unstressed controls for all variants Results are under discussion

  10. Heat Shock Protein 47: A Novel Biomarker of Phenotypically Altered Collagen-Producing Cells

    International Nuclear Information System (INIS)

    Taguchi, Takashi; Nazneen, Arifa; Al-Shihri, Abdulmonem A.; Turkistani, Khadijah A.; Razzaque, Mohammed S.

    2011-01-01

    Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that helps the molecular maturation of various types of collagens. A close association between increased expression of HSP47 and the excessive accumulation of collagens is found in various human and experimental fibrotic diseases. Increased levels of HSP47 in fibrotic diseases are thought to assist in the increased assembly of procollagen, and thereby contribute to the excessive deposition of collagens in fibrotic areas. Currently, there is not a good universal histological marker to identify collagen-producing cells. Identifying phenotypically altered collagen-producing cells is essential for the development of cell-based therapies to reduce the progression of fibrotic diseases. Since HSP47 has a single substrate, which is collagen, the HSP47 cellular expression provides a novel universal biomarker to identify phenotypically altered collagen-producing cells during wound healing and fibrosis. In this brief article, we explained why HSP47 could be used as a universal marker for identifying phenotypically altered collagen-producing cells

  11. Support systems for faces and workings (Le soutenement des tailles ou chantiers d'exploitation)

    Energy Technology Data Exchange (ETDEWEB)

    Stassen, P

    1978-01-01

    Various support systems for use in underground mining are discussed, these include: A. Props: wooden props, steel props and yielding props. B. Roofbars: wooden bars, solid steel bars, steel link bars, steel flange bars, cruciform steel bars. C. Chocks: working conditions, timber release chocks, steel-girder chocks, mechanical chocks and chock-type supports. D. Powered supports: classification of powered support systems, the parameters which have to be considered when selecting the right type of powered support, minimal load- bearing requirement for powered supports, characteristic features of some powered-support system. (10 refs.) (In French)

  12. Effects of Short-Term Thermal Alteration on Organic Matter in Experimentally-Heated Tagish Lake Observed by Raman Spectroscopy

    Science.gov (United States)

    Chan, Q. H. S.; Nakato, A.; Zolensky, M. E.; Nakamura, T.; Kebukawa, Y.; Maisano, J.; Colbert, M.; Martinez, J. E.

    2017-01-01

    Carbonaceous chondrites exhibit a wide range of aqueous and thermal alteration characteristics, while some are known to demonstrate mineralogical and petrologic evidence of having been thermally metamorphosed after aqueous alteration. This group of meteorites are commonly referred as thermally met-amorphosed carbonaceous chondrites (TMCCs), and their reflectance spectra show resemblances to that of C-type asteroids which typically have low albedos. This suggests that the surfaces of the C-type asteroids are also composed of both hydrous and dehydrated minerals, and thus TMCCs are among the best samples that can be studied in laboratory to reveal the true nature of the C-type asteroids. Although TMCCs are usually meteorites that were previously categorized as CI and CM chondrites, they are not strictly CI/CM because they exhibit isotopic and petrographic characteristics that significantly deviate from typical CI/CM. More appropriately, they are called CI-like and/or CM-like chondrites. Typical examples of TMCCs include the C2-ung/CM2TIV Belgica (B)-7904 and Yamato (Y) 86720. Thermal alteration is virtually complete in these meteorites and thus they are considered typical end-members of TMCCs exhibiting complete dehydration of matrix phyllosilicates. The estimated heating conditions are 10 to 103 days at 700 C to 1 to 100 hours at 890 C, i.e. short-term heating induced by impact and/or solar radiation. While the petrology and chemistry of TMCCs have only recently been extensively characterized, we have just begun to study in detail their organic contents. In order to understand how short-term heating affects the maturity of insoluble organic matter (IOM) in hydrous chondrites, we investigated experimentally-heated Tagish Lake meteorite using Raman spectroscopy, as the chemical and bulk oxygen isotopic compositions of the matrix of the carbonate (CO3)-poor lithology of the Tagish Lake (hereafter Tag) meteorite bears similarities to the TMCCs.

  13. Alterations in the nuclear matrix protein mass correlate with heat-induced inhibition of DNA single-strand-break repair

    International Nuclear Information System (INIS)

    Warters, R.L.; Brizgys, L.M.; Lyons, B.W.

    1987-01-01

    The total protein mass co-isolating with the nuclear matrix or nucleoid from Chinese hamster ovary (CHO) cells was observed to increase in heated cells as a function of increasing exposure temperature between 43 0 C and 45 0 C or of exposure time at any temperature. The sedimentation distance of the CHO cell nucleoid in sucrose gradients increased with increasing exposure time at 45 0 C. Both these nuclear alterations correlated in a log-linear manner with heat-induced inhibition of DNA strand break repair. A two-fold threshold increase in nuclear matrix protein mass preceded any substantial inhibition of repair of DNA single-strand breaks. When preheated cells were incubated at 37 0 C the nuclear matrix protein mass and nucleoid sedimentation recovered with a half-time of about 5 h, while DNA single-strand-break repair recovered with a half-time of about 2 h. When preheated cells were placed at 41 0 C a further increase was observed in the nuclear matrix protein mass and the half-time of DNA strand break repair, while nucleoid sedimentation recovered toward control values. These results implicate alterations in the protein mass of the nuclear matrix in heat-induced inhibition of repair of DNA single-strand breaks. (author)

  14. Heat-induced alterations in the cell nucleus

    International Nuclear Information System (INIS)

    Kampinga, H.H.

    1989-01-01

    Hyperthermia may kill eukaryotic cells and may also enhance the radiosensitivity of those cells that survive the heat treatment. Clinically, the possible use of hyperthermia as an adjuvant in the radiotherapeutic treatment of cancer needs the understanding of mechanisms that underlay heat-induced cell death and radiosensitization. By in vitro heating of established human (HeLaS3) and rodent (Ehrlich Ascites Tumor and LM fibroblast) cell lines, both killing and radiosensitization were investigated. (author). 1067 refs.; 76 figs.; 19 tabs

  15. Design breakthrough in roof support systems

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The technical experts of the Mining Services sections of Monier Resources Australia have designed and developed a superior roof system for installation in underground mines. The Monier Big Bag Grout Chock is a patented system utilising pumped grout. The advantages of grout chocks over conventional timber chocks are many and varied.

  16. Cold and Heat Stress Diversely Alter Both Cauliflower Respiration and Distinct Mitochondrial Proteins Including OXPHOS Components and Matrix Enzymes

    Science.gov (United States)

    Rurek, Michał; Czołpińska, Magdalena; Pawłowski, Tomasz Andrzej; Krzesiński, Włodzimierz; Spiżewski, Tomasz

    2018-01-01

    Complex proteomic and physiological approaches for studying cold and heat stress responses in plant mitochondria are still limited. Variations in the mitochondrial proteome of cauliflower (Brassica oleracea var. botrytis) curds after cold and heat and after stress recovery were assayed by two-dimensional polyacrylamide gel electrophoresis (2D PAGE) in relation to mRNA abundance and respiratory parameters. Quantitative analysis of the mitochondrial proteome revealed numerous stress-affected protein spots. In cold, major downregulations in the level of photorespiratory enzymes, porine isoforms, oxidative phosphorylation (OXPHOS) and some low-abundant proteins were observed. In contrast, carbohydrate metabolism enzymes, heat-shock proteins, translation, protein import, and OXPHOS components were involved in heat response and recovery. Several transcriptomic and metabolic regulation mechanisms are also suggested. Cauliflower plants appeared less susceptible to heat; closed stomata in heat stress resulted in moderate photosynthetic, but only minor respiratory impairments, however, photosystem II performance was unaffected. Decreased photorespiration corresponded with proteomic alterations in cold. Our results show that cold and heat stress not only operate in diverse modes (exemplified by cold-specific accumulation of some heat shock proteins), but exert some associations at molecular and physiological levels. This implies a more complex model of action of investigated stresses on plant mitochondria. PMID:29547512

  17. Whole-body pre-cooling does not alter human muscle metabolism during sub-maximal exercise in the heat.

    Science.gov (United States)

    Booth, J; Wilsmore, B R; Macdonald, A D; Zeyl, A; Mcghee, S; Calvert, D; Marino, F E; Storlien, L H; Taylor, N A

    2001-06-01

    Muscle metabolism was investigated in seven men during two 35 min cycling trials at 60% peak oxygen uptake, at 35 degrees C and 50% relative humidity. On one occasion, exercise was preceded by whole-body cooling achieved by immersion in water during a reduction in temperature from 29 to 24 degrees C, and, for the other trial, by immersion in water at a thermoneutral temperature (control, 34.8 degrees C). Pre-cooling did not alter oxygen uptake during exercise (P > 0.05), whilst the change in cardiac frequency and body mass both tended to be lower following pre-cooling (0.05 whole-body pre-cooling does not alter muscle metabolism during submaximal exercise in the heat. It is more likely that thermoregulatory and cardiovascular strain are reduced, through lower muscle and core temperatures.

  18. Expression of small heat shock proteins from pea seedlings under gravity altered conditions

    Science.gov (United States)

    Talalaev, Alexandr S.

    2005-08-01

    A goal of our study was to evaluate the stress gene expression in Pisum sativum seedlings exposed to altered gravity and temperature elevation. We investigate message for the two inducible forms of the cytosolic small heat shock proteins (sHsp), sHsp 17.7 and sHsp 18.1. Both proteins are able to enhance the refolding of chemically denatured proteins in an ATP- independent manner, in other words they can function as molecular chaperones. We studied sHsps expression in pea seedlings cells by Western blotting. Temperature elevation, as the positive control, significantly increased PsHsp 17.7 and PsHsp 18.1 expression. Expression of the housekeeping protein, actin was constant and comparable to unstressed controls for all treatments. We concluded that gravitational perturbations incurred by clinorotation did not change sHsp genes expression.

  19. Hydrothermal alteration at Roosevelt Hot Springs KGRA: DDH 1976-1

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, N.L.; Parry, W.T.

    1977-09-01

    Hot waters of the Roosevelt Thermal Area, Utah, have altered granitic rocks and detritus of the Mineral Range pluton, Utah. Alteration and mineral deposition recognized in a 200' drill core from DDH 1-76 is most intense in the upper 100 feet which consists of altered alluvium and opal deposits; the lower 100 feet is weakly altered quartz monzonite. Petrographic, x-ray, and chemical methods were used to characterize systematic changes in chemistry and mineralogy. Comparison of the alteration mineral assemblages with known water chemistry and equilibrium activity diagrams suggests that a simple solution equilibrium model cannot account for the alteration. A model is proposed in which upward moving thermal water supersaturated with respect to quartz and a downward moving cool water undersaturated with respect to quartz produces the observed alteration. An estimate of the heat flow contributions from hydrothermal alteration was made by calculating reaction enthalpies for alteration reactions at each depth. The estimated heat flow varied from .02 HFU (for 200' depth, 400,000 yr duration, and no sulfur oxidation) to 67 HFU (for 5,000' depth, 1,000 yr duration, and all sulfur oxidized from sulfide). Heat flow contributions from hydrothermal alteration are comparable with those from a cooling granitic magma.

  20. Preliminary experimental insights into differential heat impact among lithic artifacts

    Directory of Open Access Journals (Sweden)

    Guillermo Bustos-Pérez

    2016-09-01

    Full Text Available The presence of thermally altered and broken flint artifacts is common at archaeological sites. Most studies focus their attention on the effects of heat treatment on flint to improve knapping qualities, disregarding the effects of fire over flint under uncontrolled conditions. This paper aims to show how under uncontrolled heating processes flint artifacts develop different heat alterations (such as levels of breakage, presence of scales, etc. as a result of vertical distribution, volume or raw material and to establish a gradient of rock changes and behavior. Artifacts where macroscopically analyzed and a series of uncontrolled heating experiments through the distribution of flint blanks under two hearths were carried out, allowing a comparison of the before and after of the blanks. Preliminary results show how levels of breakage, surface alteration or development of heat alteration features can be differentiated according to artifact volume, vertical distribution and level of surface alteration. Results also show how two different raw materials react differently to similar thermal impact, and how surface alteration reacts at different rhythm in the case of recycled artifacts. We conclude that levels of thermal alteration can be differentiated through macroscopic analysis of flint surface.

  1. Passive Heat Exposure Alters Perception and Executive Function

    Directory of Open Access Journals (Sweden)

    Rachel A. Malcolm

    2018-05-01

    Full Text Available Findings regarding the influence of passive heat exposure on cognitive function remain equivocal due to a number of methodological issues including variation in the domains of cognition examined. In a randomized crossover design, forty-one male participants completed a battery of cognitive function tests [Visual Search, Stroop, Corsi Blocks and Rapid Visual Information Processing (RVIP tests] prior to and following 1 h of passive rest in either hot (39.6 ± 0.4°C, 50.8 ± 2.3% Rh or moderate (21.2 ± 1.8°C, 41.9 ± 11.4% Rh conditions. Subjective feelings of heat exposure, arousal and feeling were assessed alongside physiological measures including core temperature, skin temperature and heart rate, at baseline and throughout the protocol. Response times were slower in the hot trial on the simple (main effect of trial, P < 0.001 and complex (main effect of trial, P < 0.001 levels of the Stroop test (Hot: 872 ± 198 ms; Moderate: 834 ± 177 ms and the simple level of the visual search test (Hot: 354 ± 54 ms; Moderate: 331 ± 47 ms (main effect of trial, P < 0.001. Participants demonstrated superior accuracy on the simple level of the Visual Search test in the hot trial (Hot: 98.5 ± 3.1%; Moderate: 97.4 ± 3.6% (main effect of trial, P = 0.035. Participants also demonstrated an improvement in accuracy on the complex level of the visual search test following 1 h passive heat exposure (Pre: 96.8 ± 5.9%; Post: 98.1 ± 3.1%, whilst a decrement was seen across the trial in the moderate condition (Pre: 97.7 ± 3.5; Post: 97.0 ± 5.1% (time*trial interaction, P = 0.029. No differences in performance were observed on the RVIP or Corsi Blocks tests (all P > 0.05. Subjective feelings of thermal sensation and felt arousal were higher, feeling was lower in the hot trial, whilst skin temperature, core temperature and heart rate were higher (main effects of trial, all P < 0.001. The findings of the present study suggest that response times for perception

  2. The evolution of longwall face support in the Mines de Potasse d'Alsace

    Energy Technology Data Exchange (ETDEWEB)

    Deffontaine, P

    1978-06-01

    In the Alsace (France) potash mines, caved longwalls were supported up to 1949 by timber chocks and friction or hydraulic props. Powered advancing support by chock type supports appeared in 1950 when shearers were put into service. Discloses evolution, progress, and costing of advancing supports in 1978. (In French)

  3. Altered neural responses to heat pain in drug-naive patients with Parkinson disease.

    Science.gov (United States)

    Forkmann, Katarina; Grashorn, Wiebke; Schmidt, Katharina; Fründt, Odette; Buhmann, Carsten; Bingel, Ulrike

    2017-08-01

    Pain is a frequent but still neglected nonmotor symptom of Parkinson disease (PD). However, neural mechanisms underlying pain in PD are poorly understood. Here, we explored whether the high prevalence of pain in PD might be related to dysfunctional descending pain control. Using functional magnetic resonance imaging we explored neural responses during the anticipation and processing of heat pain in 21 PD patients (Hoehn and Yahr I-III) and 23 healthy controls (HC). Parkinson disease patients were naive to dopaminergic medication to avoid confounding drug effects. Fifteen heat pain stimuli were applied to the participants' forearm. Intensity and unpleasantness ratings were provided for each stimulus. Subjective pain perception was comparable for PD patients and HC. Neural processing, however, differed between groups: PD patients showed lower activity in several descending pain modulation regions (dorsal anterior cingulate cortex [dACC], subgenual anterior cingulate cortex, and dorsolateral prefrontal cortex [DLPFC]) and lower functional connectivity between dACC and DLPFC during pain anticipation. Parkinson disease symptom severity was negatively correlated with dACC-DLPFC connectivity indicating impaired functional coupling of pain modulatory regions with disease progression. During pain perception PD patients showed higher midcingulate cortex activity compared with HC, which also scaled with PD severity. Interestingly, dACC-DLPFC connectivity during pain anticipation was negatively associated with midcingulate cortex activity during the receipt of pain in PD patients. This study indicates altered neural processing during the anticipation and receipt of experimental pain in drug-naive PD patients. It provides first evidence for a progressive decline in descending pain modulation in PD, which might be related to the high prevalence of pain in later stages of PD.

  4. Incubation temperature alters thermal preference and response to heat stress of broiler chickens along the rearing phase.

    Science.gov (United States)

    Morita, V S; Almeida, V R; Matos Junior, J B; Vicentini, T I; van den Brand, H; Boleli, I C

    2016-08-01

    The current study aimed to investigate whether embryonic temperature manipulation may alter thermal preference throughout the rearing phase of broiler chickens and how this manipulation may affect response to thermal challenge, metabolism, growth rate and feed intake rate. Eggs were exposed to a constant incubation temperature [machine temperatures: 36°C (Low), 37.5°C (Control), and 39°C (High); eggshell temperature of 37.4 ± 0.08°C, 37.8 ± 0.15°C, and 38.8 ± 0.33°C, respectively] from d 13 till hatching. Low treatment chickens showed lower plasma T3 and GH levels at d 1 of age and lower T3 level at d 42 of age compared to the Control treatment. Preferred ambient, rectal temperature, T4 level, growth rate, food intake rate, and response to thermal challenge were not altered in these chickens. On the other hand, High-treatment chickens exhibited high preferred ambient temperature and rectal temperature during the first 2 wk post-hatch, lower plasma T3 level at d 21 and 42 and a delayed increase in respiratory movement in response to thermal challenge compared to the Control treatment. However, chickens subjected to the Control and High treatments did not differ in T4 and GH level and performance. We conclude that exposure to high temperature during late embryonic development has long-lasting effects on the thermoregulatory system of broiler chickens by affecting the heat tolerance of these chickens. Moreover, the preferred ambient temperature of the chickens from heat-treated eggs correspond to those recommended for the strain under study, whereas for the cold-treated and control-chickens it was 1°C below, indicating that incubation temperature might have consequences on the ambient temperature chickens require during the rearing phase. © 2016 Poultry Science Association Inc.

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Laboratoire de Physique Fondamentale et Applique (LPFA), Faculté des Sciences Ain Chock, Université Hassan II, B.P. 5366 Mâarif, Casablanca, Maroc; Laboratoire de Physique des Matériaux, Micro-électronique, Automatique et Thermique (LPMMAT), Faculté des Sciences Ain Chock, Université Hassan II, B.P. 5366 ...

  6. Exploring the potential of acquisition curves of the anhysteretic remanent magnetization as a tool to detect subtle magnetic alteration induced by heating

    Science.gov (United States)

    de Groot, Lennart V.; Dekkers, Mark J.; Mullender, Tom A. T.

    2012-03-01

    Recently, many new methods and improved protocols to determine the absolute paleointensity of lavas reliably have been proposed. Here we study eight recent flows from three different volcanic edifices (Mt. Etna, La Palma and Hawaii) with the so-called multispecimen parallel differential pTRM (MSP) method including the recently proposed domain-state correction (MSP-DSC) (Fabian and Leonhardt, 2010). Surprisingly, apart from approximately correct paleointensity values, we observe major underestimates of the paleofield. These deviations are possibly related to alteration that is not revealed by rock-magnetic analysis. We explore the potential of high-resolution acquisition curves of the anhysteretic remanent magnetization (ARM) to detect subtle alteration in the samples. It appears that assessing changes in the ARM acquisition properties before and after heating to the desired MSP temperature discriminates between underestimates and approximately correct estimations of the paleofield in the outcomes of the MSP-DSC protocol. By combining observations from the domain-state corrected MSP protocol and ARM acquisition experiments before and after heating, an extended MSP protocol is suggested which makes it possible to assess the best set temperature for the MSP-DSC protocol and to label MSP results as being approximately correct, or an underestimate of the paleofield.

  7. Preliminary experimental insights into differential heat impact among lithic artifacts

    OpenAIRE

    Guillermo Bustos-Pérez; Javier Baena Preysler

    2016-01-01

    The presence of thermally altered and broken flint artifacts is common at archaeological sites. Most studies focus their attention on the effects of heat treatment on flint to improve knapping qualities, disregarding the effects of fire over flint under uncontrolled conditions. This paper aims to show how under uncontrolled heating processes flint artifacts develop different heat alterations (such as levels of breakage, presence of scales, etc.) as a result of vertical distribution, volume or...

  8. Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?

    Science.gov (United States)

    Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J

    2015-01-01

    The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use.

  9. No effects of acclimation to heat on immune and hormonal responses to passive heating in healthy volunteers

    Science.gov (United States)

    Kanikowska, Dominika; Sato, Maki; Sugenoya, Junichi; Iwase, Satoshi; Shimizu, Yuuki; Nishimura, Naoki; Inukai, Yoko

    2012-01-01

    Heat acclimation results in whole body-adaptations that increase heat tolerance, and might also result in changed immune responses. We hypothesized that, after heat acclimation, tumor necrosis factor alpha, interleukin 6 and the lymphocyte count would be altered. Heat acclimation was induced in 6 healthy men by 100 min of heat exposure for 9 days. Heat exposure consisted of (1) 10 min of immersion up to chest-level in water at 42°C and (2) 90 min of passive heating by a warm blanket to maintain tympanic temperature at 37.5°C. The climatic chamber was maintained at 40°C and a relative humidity of 50%. Blood samples were analyzed before and after heat acclimation for natural killer (NK) cell activity, counts of lymphocytes B and T, before and after heat acclimation for peripheral blood morphology, interleukin 6, tumor necrosis factor alpha, and cortisol. A Japanese version of the profile of mood states questionnaire was also administered before and after acclimation. The concentrations of white blood cells, lymphocytes B and T, cortisol, interleukin 6, tumor necrosis factor alpha and NK cell activity showed no significant differences between pre- and post-acclimation, but there was a significantly lower platelet count after acclimation and, with the profile of mood states questionnaire, there was a significant rise in anger after acclimation. It is concluded that heat acclimation by passive heating does not induce alterations in immune or endocrine responses.

  10. Effects of heat stress on baroreflex function in humans

    Science.gov (United States)

    Crandall, Craig G.; Cui, Jian; Wilson, Thad E.

    2003-01-01

    INTRODUCTION: Heat stress significantly reduces orthostatic tolerance in humans. The mechanism(s) causing this response remain unknown. The purpose of this review article is to present data pertaining to the hypothesis that reduced orthostatic tolerance in heat stressed individuals is a result of heat stress induced alterations in baroflex function. METHODS: In both normothermic and heat stressed conditions baroreflex responsiveness was assessed via pharmacological and non-pharmacological methods. In addition, the effects of heat stress on post-synaptic vasoconstrictor responsiveness were assessed. RESULTS: Generally, whole body heating did not alter baroreflex sensitivity defined as the gain of the linear portion of the baroreflex curve around the operating point. However, whole body heating shifted the baroreflex curve to the prevailing (i.e. elevated) heart rate and muscle sympathetic nerve activity. Finally, the heat stress impaired vasoconstrictor responses to exogenous administration of adrenergic agonists. CONCLUSION: Current data do not support the hypothesis that reduced orthostatic tolerance associated with heat stress in humans is due to impaired baroreflex responsiveness. This phenomenon may be partially due to the effects of heat stress on reducing vasoconstrictor responsiveness.

  11. Theoretical modeling of heating and structure alterations in cartilage under laser radiation with regard to water evaporation and diffusion dominance

    Science.gov (United States)

    Sobol, Emil N.; Kitai, Moishe S.; Jones, Nicholas; Sviridov, Alexander P.; Milner, Thomas E.; Wong, Brian

    1998-05-01

    We develop a theoretical model to calculate the temperature field and the size of modified structure area in cartilaginous tissue. The model incorporates both thermal and mass transfer in a tissue regarding bulk absorption of laser radiation, water evaporation from a surface and temperature dependence of diffusion coefficient. It is proposed that due to bound- to free-phase transition of water in cartilage heated to about 70 degrees Celsius, some parts of cartilage matrix (proteoglycan units) became more mobile. The movement of these units takes place only when temperature exceed 70 degrees Celsius and results in alteration of tissue structure (denaturation). It is shown that (1) the maximal temperature is reached not on the surface irradiated at some distance from the surface; (2) surface temperature reaches a plateau quicker that the maximal temperature; (3) the depth of denatured area strongly depends on laser fluence and wavelength, exposure time and thickness of cartilage. The model allows to predict and control temperature and depth of structure alterations in the course of laser reshaping and treatment of cartilage.

  12. FTR europia gamma heating

    International Nuclear Information System (INIS)

    Ward, J.T. Jr.

    1975-01-01

    Calculated and experimental gamma heating rates of europia in the Engineering Mockup Critical Assembly (EMC) were correlated. A calculated to experimental (C/E) ratio of 1.086 was established in validating the theoretical approach and computational technique applied in the calculations. Gamma heat deposition rates in the FTR with Eu 2 O 3 control absorbers were determined from three-dimensional calculations. Maximum gamma heating was found to occur near the tip of a half-inserted row 5 control rod assembly--12.8 watts/gm of europia. Gamma heating profiles were established for a single half-inserted europia absorber assembly. Local heat peaking was found not to alter significantly heating rates computed in the FTR core model, where larger mesh interval sizes precluded examination of spatially-limited heating gradients. These computations provide the basis for thermal-hydraulic analyses to ascertain temperature profiles in the FTR under europia control

  13. Heat Damaged Forages: Effects on Forage Quality

    Science.gov (United States)

    Traditionally, heat damage in forages has been associated with alterations in forage protein quality as a result of Maillard reactions, and most producers and nutritionists are familiar with this concept. However, this is not necessarily the most important negative consequence of spontaneous heating...

  14. Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.

    Science.gov (United States)

    Bartosiewicz, Maciej; Laurion, Isabelle; Clayer, François; Maranger, Roxane

    2016-06-21

    Increasing air temperatures may result in stronger lake stratification, potentially altering nutrient and biogenic gas cycling. We assessed the impact of climate forcing by comparing the influence of stratification on oxygen, nutrients, and global-warming potential (GWP) of greenhouse gases (the sum of CH4, CO2, and N2O in CO2 equivalents) emitted from a shallow productive lake during an average versus a heat-wave year. Strong stratification during the heat wave was accompanied by an algal bloom and chemically enhanced carbon uptake. Solar energy trapped at the surface created a colder, isolated hypolimnion, resulting in lower ebullition and overall lower GWP during the hotter-than-average year. Furthermore, the dominant CH4 emission pathway shifted from ebullition to diffusion, with CH4 being produced at surprisingly high rates from sediments (1.2-4.1 mmol m(-2) d(-1)). Accumulated gases trapped in the hypolimnion during the heat wave resulted in a peak efflux to the atmosphere during fall overturn when 70% of total emissions were released, with littoral zones acting as a hot spot. The impact of climate warming on the GWP of shallow lakes is a more complex interplay of phytoplankton dynamics, emission pathways, thermal structure, and chemical conditions, as well as seasonal and spatial variability, than previously reported.

  15. Geothermal alteration of clay minerals and shales: diagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.E.

    1979-07-01

    The objective of this report is to perform a critical review of the data on the mineral and chemical alterations that occur during diagenesis and low-grade metamorphism of shale and other clay-rich rocks - conditions similar to those expected from emplacement of heat-producing radioactive waste in a geologic repository. The conclusions drawn in this document are that the following type of alterations could occur: smectite alteration, ion mobilization, illitic shales, kaolinite reactions, chlorite reactions, organic reactions, paleotemperatures, low temperature shales, high temperature shales, and phase equilibrium changes.

  16. Geothermal alteration of clay minerals and shales: diagenesis

    International Nuclear Information System (INIS)

    Weaver, C.E.

    1979-07-01

    The objective of this report is to perform a critical review of the data on the mineral and chemical alterations that occur during diagenesis and low-grade metamorphism of shale and other clay-rich rocks - conditions similar to those expected from emplacement of heat-producing radioactive waste in a geologic repository. The conclusions drawn in this document are that the following type of alterations could occur: smectite alteration, ion mobilization, illitic shales, kaolinite reactions, chlorite reactions, organic reactions, paleotemperatures, low temperature shales, high temperature shales, and phase equilibrium changes

  17. Pore Pressure Distribution and Flank Instability in Hydrothermally Altered Stratovolcanoes

    Science.gov (United States)

    Ball, J. L.; Taron, J.; Hurwitz, S.; Reid, M. E.

    2015-12-01

    Field and geophysical investigations of stratovolcanoes with long-lived hydrothermal systems commonly reveal that initially permeable regions (such as brecciated layers of pyroclastic material) can become both altered and water-bearing. Hydrothermal alteration in these regions, including clay formation, can turn them into low-permeability barriers to fluid flow, which could increase pore fluid pressures resulting in flank slope instability. We examined elevated pore pressure conditions using numerical models of hydrothermal flow in stratovolcanoes, informed by geophysical data about internal structures and deposits. Idealized radially symmetric meshes were developed based on cross-sectional profiles and alteration/permeability structures of Cascade Range stratovolcanoes. We used the OpenGeoSys model to simulate variably saturated conditions in volcanoes heated only by regional heat fluxes, as well as 650°C intrusions at two km depth below the surface. Meteoric recharge was estimated from precipitation rates in the Cascade Range. Preliminary results indicate zones of elevated pore pressures form: 1) where slopes are underlain by continuous low-permeability altered layers, or 2) when the edifice has an altered core with saturated, less permeable limbs. The first scenario might control shallow collapses on the slopes above the altered layers. The second could promote deeper flank collapses that are initially limited to the summit and upper slopes, but could progress to the core of an edifice. In both scenarios, pore pressures can be further elevated by shallow intrusions, or evolve over longer time scales under forcing from regional heat flux. Geometries without confining low-permeability layers do not show these pressure effects. Our initial scenarios use radially symmetric models, but we are also simulating hydrothermal flow under real 3D geometries with asymmetric subsurface structures (Mount Adams). Simulation results will be used to inform 3D slope

  18. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress.

    Directory of Open Access Journals (Sweden)

    Olivier Girard

    Full Text Available Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C and CON (25°C conditions.Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting.Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001 and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05 temperatures, together with thermal comfort (P<0.001 were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001 and contact time (+3.2±2.4%; P<0.01 higher in HOT for the mean of sets 1-3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001, with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06. Mean vertical (-2.6±5.5%; P<0.01, horizontal (-9.1±4.4%; P<0.001 and resultant ground reaction forces (-3.0±2.8%; P<0.01 along with vertical stiffness (-12.9±2.3%; P<0.001 and leg stiffness (-8.4±2.7%; P<0.01 decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001, with lower propulsive power values in set 2 (-6.6%; P<0.05 in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise.Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations.

  19. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress

    Science.gov (United States)

    Brocherie, Franck; Morin, Jean-Benoit; Racinais, Sébastien; Millet, Grégoire P.; Périard, Julien D.

    2017-01-01

    Purpose Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C) and CON (25°C) conditions. Methods Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting. Results Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001) and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05) temperatures, together with thermal comfort (P<0.001) were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001) and contact time (+3.2±2.4%; P<0.01) higher in HOT for the mean of sets 1–3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001), with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06). Mean vertical (-2.6±5.5%; P<0.01), horizontal (-9.1±4.4%; P<0.001) and resultant ground reaction forces (-3.0±2.8%; P<0.01) along with vertical stiffness (-12.9±2.3%; P<0.001) and leg stiffness (-8.4±2.7%; P<0.01) decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001), with lower propulsive power values in set 2 (-6.6%; P<0.05) in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise. Conclusions Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations. PMID:28146582

  20. Long-term heat stress induces the inflammatory response in dairy cows revealed by plasma proteome analysis.

    Science.gov (United States)

    Min, Li; Zheng, Nan; Zhao, Shengguo; Cheng, Jianbo; Yang, Yongxin; Zhang, Yangdong; Yang, Hongjian; Wang, Jiaqi

    2016-03-04

    In this work we employed a comparative proteomic approach to evaluate seasonal heat stress and investigate proteomic alterations in plasma of dairy cows. Twelve lactating Holstein dairy cows were used and the treatments were: heat stress (n = 6) in hot summer (at the beginning of the moderate heat stress) and no heat stress (n = 6) in spring natural ambient environment, respectively. Subsequently, heat stress treatment lasted 23 days (at the end of the moderate heat stress) to investigate the alterations of plasma proteins, which might be employed as long-term moderate heat stress response in dairy cows. Changes in plasma proteins were analyzed by two-dimensional electrophoresis (2-DE) combined with mass spectrometry. Analysis of the properties of the identified proteins revealed that the alterations of plasma proteins were related to inflammation in long-term moderate heat stress. Furthermore, the increase in plasma tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) directly demonstrated that long-term moderate heat stress caused an inflammatory response in dairy cows. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Ohmic Heating: Concept and Applications-A Review.

    Science.gov (United States)

    Kaur, Nimratbir; Singh, A K

    2016-10-25

    Ohmic heating, also known as Joule heating, electrical resistance heating, and direct electrical resistance heating, is a process of heating the food by passing electric current. In ohmic heating the energy is dissipated directly into the food. Electrical conductivity is a key parameter in the design of an effective ohmic heater. A large number of potential applications exist for ohmic heating, including blanching, evaporation, dehydration, fermentation, sterilization, pasteurization, and heating of foods. Beyond heating, applied electric field under ohmic heating causes electroporation of cell membranes, which increase extraction rates, and reduce gelatinization temperature and enthalpy. Ohmic heating results in faster heating of food along with maintenance of color and nutritional value of food. Water absorption index, water solubility index, thermal properties, and pasting properties are altered with the application of ohmic heating. Ohmic heating results in pre-gelatinized starches, which reduce energy requirement during processing. But its higher initial cost, lack of its applications in foods containing fats and oils, and less awareness limit its use.

  2. Effect of pre-cooling and heat treatment on antioxidant enzymes ...

    African Journals Online (AJOL)

    Effect of pre-cooling and heat treatment on antioxidant enzymes profile of mango and banana. ... In banana, pre-cooling treatment (8 ºC) and heat treatment followed by cooling reduced CAT activity in peel and pulp, whereas POX activity increased. Pre-cooling and heat treatments altered normal homeostasis of these fruits, ...

  3. Alteration of kafirin and kafirin film structure by heating with microwave energy and tannin complexation

    CSIR Research Space (South Africa)

    Byaruhanga, YB

    2006-06-14

    Full Text Available . SDS-PAGE of heated wet kafirin showed an increase in kafirin oligomers. Disulfide groups increased in heated kafirin and in films made from the heated kafirin. Fourier transform infrared (FTIR) spectroscopy of heated kafirin and films made from...

  4. Heating and cooling rates and their effects upon heart rate in the ...

    African Journals Online (AJOL)

    The heating and cooling rates of adult Chersina angulata were investigated to ascertain whether these tortoises can physiologically alter their rates of heat exchange. In addition, heart rates were recorded to provide an insight into the control of heat exchange. C. angulata heats significantly faster than it cools. Heart rates ...

  5. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    Science.gov (United States)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and

  6. Morphologic alterations in normal and neoplastic tissues following hyperthermia treatment

    International Nuclear Information System (INIS)

    Badylak, S.F.; Babbs, C.F.

    1984-01-01

    The sequential morphologic alterations in normal skeletal muscle in rats, Walker 256 tumors in rats, and transmissible venereal tumors (TVT) in dogs following microwave-induced hyperthermia (43 0 C and 45 0 for 20 minutes) were studied by light and electron microscopy. Normal muscle and Walker 256 tumors showed vascular damage at 5 minutes post-heating (PH), followed by suppuration and thrombosis at 6 and 48 hours PH, and by regeneration and repair at 7 days PH. Endothelial damage and parenchymal degeneration were present 5 minutes PH. Progressive ischemic injury occurred for at least 48 hours PH. Two hyperthermia treatments, separated by a 30 or 60 minute cooling interval, were applied to rats implanted with Walker 256 tumors. Increased selective heating of tumor tissue versus surrounding normal tissue, and increased intratumoral temperatures were found during the second hyperthermia treatment. Canine TVTs were resistant to hyperthermia damage. These results characterized the sequential morphologic alterations following hyperthermia treatment and showed that: 1) vascular damage contributed to the immediate and latent cytotoxic effects of hyperthermia, 2) selective heating occurred in the neoplastic tissue disrupted by prior heat treatment, and 3) not all neoplasms are responsive to hyperthermia treatment

  7. Splenic Trapping of Heat-Treated Erythrocytes in Leukaemia and Allied Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Badrawi, H. S.; Razzak, M. A.; Guirgis, B. [Department of Medicine and Division of Nuclear Medicine, Faculty of Medicine, Cairo University, Cairo, United Arab Republic (Egypt)

    1971-02-15

    In a trial to find whether or not the enlarged spleen plays a role in the production of the form of anaemia commonly encountered in leukaemias and allied conditions, 44 patients suffering from these disease states were studied using {sup 51}Cr-labelled erythrocytes heated at 50 Degree-Sign C for 60 min. Cells altered in this manner have been shown by various workers to be selectively sequestered by the spleen. As a control, the test was performed on 24 normal subjects. In these normals, the disappearance half-time of radioactivity from the circulation (T{sub Vulgar-Fraction-One-Half} amounted to 172 {+-} 69 min (mean {+-} 1 S.D.), the lowest limit being 74 min. Accordingly, patients with less than 74 min were considered to have an abnormally rapid disappearance of heat-treated erythrocytes from the circulation and consequently exaggerated splenic sequestration of these altered cells. Splenic trapping of heat-treated erythrocytes was most marked in acute leukaemia (four out of six patients). However, three had associated normoblastic hypoplasia of the sternal marrow. Corticosteroids induced a remission with reversion of both processes responsible for the anaemia in two out of the four patients. In chronic myeloid leukaemia, exaggerated splenic sequestration of altered cells was seen in four of the 15 cases examined. This condition was of extra-erythrocytic origin, since repetition of the test using normal donor heat-treated erythrocytes did not significantly alter the disappearance half-time. However, there was no correlation between the size of the spleen and its avidity for trapping the altered cells. Follow-up studies showed that therapy caused prolongation of the half-time of heat-treated erythrocytes, the effect being more apparent after corticosteroids than with X-rays or Endoxan, In Hodgkin's disease, increased red cell trapping was observed in two out of the seven patients studied. In contrast, five cases of chronic lymphatic leukaemia, six lymphosarcoma and

  8. Does inflammation induced by ultraviolet B and heat rekindling alter pain-related behaviour in rats?

    Science.gov (United States)

    Smith, Melissa; Taylor, Collette; Weerasinghe, Nirosha; Koutsikou, Stella; Lumb, Bridget; Murrell, Jo

    2016-09-01

    To investigate whether induction of the ultraviolet B and heat rekindling (UVB/HR) model alters burrowing behaviour in rats. Randomized, blinded, prospective experimental study. Sixteen adult male Wistar rats weighing 250-300 g. In the UVB/HR group (n = 8), UV irradiation was delivered to the heel area of the right plantar pelvic limb paw at a dose of 1000 mJ cm(-2) , using a narrow-band UVB light source. Twenty-four hours later, heat rekindling was performed by placement of a feedback-controlled thermode set at a constant temperature of 45 °C over the area of UVB irradiation for 5 minutes. Both interventions were carried out under pentobarbital anaesthesia. The 'sham' group (n = 8) was anaesthetized only. In the burrowing test, rats were housed singly for 2 hours in cages furnished with a burrow filled with sand. The amount of sand remaining in the burrow after 2 hours was weighed and the amount displaced from the burrow calculated. The burrowing test was carried out for two consecutive days prior to UVB irradiation (day 0), on day 1 prior to HR, on days 2 and 3 after UVB exposure and at equivalent time points in the sham group. Rats in the sham group burrowed means (SD) of 2429 (73) g and 2358 (124) g of sand on days -2 and 3, respectively, while those in the UVB/HR group burrowed 2460 (26) and 2419 (58) g on days -2 and 3, respectively. There was no significant effect of treatment on the amount of sand burrowed at any time point. Pain associated with UVB/HR model induction is below the threshold required to affect rat burrowing behaviour and therefore questions the face validity of UVB/HR as a translational model of inflammatory pain. © 2016 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesia and Analgesia.

  9. Heating on the volatile composition and sensory aspects of extra-virgin olive oil

    Directory of Open Access Journals (Sweden)

    Cleiton Antônio Nunes

    2013-12-01

    Full Text Available The main ways by which extra-virgin olive oil is consumed include direct application on salads or as an ingredient in sauces, but it is also been used by some for cooking, including frying and baking. However, it has been reported that under heat stress, some nonglyceridic components of olive oil are degraded. So, the effect of heating (at 50, 100, 150, and 200 °C for 2 h on the volatile composition and sensory aspects of extra-virgin olive oil were evaluated. Heating altered the volatile composition of extra-virgin olive oil, mainly at higher temperatures (above 150 °C. The main modifications were related to the formation of large amounts of oxidized compounds, particularly large chain aldehydes. Sensory aspects were also altered when the oil was heated to higher temperatures, which might have occurred because of color alterations and mainly changes in the volatile composition of the oil.

  10. Mapping advanced argillic alteration at Cuprite, Nevada, using imaging spectroscopy

    Science.gov (United States)

    Swayze, Gregg A.; Clark, Roger N.; Goetz, Alexander F.H.; Livo, K. Eric; Breit, George N.; Kruse, Fred A.; Sutley, Stephen J.; Snee, Lawrence W.; Lowers, Heather A.; Post, James L.; Stoffregen, Roger E.; Ashley, Roger P.

    2014-01-01

    Mineral maps based on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data were used to study late Miocene advanced argillic alteration at Cuprite, Nevada. Distributions of Fe-bearing minerals, clays, micas, sulfates, and carbonates were mapped using the Tetracorder spectral-shape matching system. The Al content of white micas increases toward altered areas and near intrusive rocks. Alunite composition varies from pure K to intimate mixtures of Na-K endmembers with subpixel occurrences of huangite, the Ca analogue of alunite. Intimately mixed Na-K alunite marks areas of relatively lower alteration temperature, whereas co-occurring Na-alunite and dickite may delineate relict hydrothermal conduits. The presence of dickite, halloysite, and well-ordered kaolinite, but absence of disordered kaolinite, is consistent with acidic conditions during hydrothermal alteration. Partial lichen cover on opal spectrally mimics chalcedony, limiting its detection to lichen-free areas. Pods of buddingtonite are remnants of initial quartz-adularia-smectite alteration. Thus, spectral maps provide a synoptic view of the surface mineralogy, and define a previously unrecognized early steam-heated hydrothermal event.Faulting and episodes of hydrothermal alteration at Cuprite were intimately linked to upper plate movements above the Silver Peak-Lone Mountain detachment and growth, collapse, and resurgence of the nearby Stonewall Mountain volcanic complex between 8 and 5 Ma. Isotopic dating indicates that hydrothermal activity started at least by 7.61 Ma and ended by about 6.2 Ma. Spectral and stable isotope data suggest that Cuprite is a late Miocene low-sulfidation adularia-sericite type hot spring deposit overprinted by late-stage, steam-heated advanced argillic alteration formed along the margin of the Stonewall Mountain caldera.

  11. Heat and immunity: an experimental heat wave alters immune functions in three-spined sticklebacks (Gasterosteus aculeatus).

    Science.gov (United States)

    Dittmar, Janine; Janssen, Hannah; Kuske, Andra; Kurtz, Joachim; Scharsack, Jörn P

    2014-07-01

    Global climate change is predicted to lead to increased temperatures and more extreme climatic events. This may influence host-parasite interactions, immunity and therefore the impact of infectious diseases on ecosystems. However, little is known about the effects of rising temperatures on immune defence, in particular in ectothermic animals, where the immune system is directly exposed to external temperature change. Fish are ideal models for studying the effect of temperature on immunity, because they are poikilothermic, but possess a complete vertebrate immune system with both innate and adaptive immunity. We used three-spined sticklebacks ( Gasterosteus aculeatus) originating from a stream and a pond, whereby the latter supposedly were adapted to higher temperature variation. We studied the effect of increasing and decreasing temperatures and a simulated heat wave with subsequent recovery on body condition and immune parameters. We hypothesized that the immune system might be less active at low temperatures, but will be even more suppressed at temperatures towards the upper tolerable temperature range. Contrary to our expectation, we found innate and adaptive immune activity to be highest at a temperature as low as 13 °C. Exposure to a simulated heat wave induced long-lasting immune disorders, in particular in a stickleback population that might be less adapted to temperature variation in its natural environment. The results show that the activity of the immune system of an ectothermic animal species is temperature dependent and suggest that heat waves associated with global warming may immunocompromise host species, thereby potentially facilitating the spread of infectious diseases. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  12. Hydrothermal alteration at Roosevelt Hot Springs KGRA - DDH 1976-1

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, N.L.; Parry, W.T.

    1977-09-01

    Hot waters of the Roosevelt Thermal Area, Utah, have altered granitic rocks and detritus of the Mineral Range pluton, Utah. Petrographic, x-ray, and chemical methods were used to characterize systematic changes in chemistry and mineralogy. Major alteration zones include: 1) an advanced argillic zone in the upper 30 feet of altered detritus containing alunite, opal, vermiculite, and relic quartz; 2) an argillic zone from 30 feet to 105 feet containing kaolinite, muscovite, and minor alunite; and 3) a propylitic zone from 105 to 200 feet containing muscovite, pyrite, marcasite, montmorillonite, and chlorite in weakly altered quartz monzonite. Comparison of the alternation mineral assemblages with known water chemistry and equilibrium activity diagrams suggests that a simple solution equilibrium model cannot account for the alteration. A model is proposed in which upward moving thermal water supersaturated with respect to quartz and a downward moving cool water undersaturated with respect to quartz produces the observed alteration. An estimate of the heat flow contributions from hydrothermal alteration was made by calculating reaction enthalpies for alteration reactions at each depth.

  13. Evaluation of the deleterious health effects of consumption of repeatedly heated vegetable oil

    Directory of Open Access Journals (Sweden)

    Rekhadevi Perumalla Venkata

    Full Text Available Consumption of repeatedly heated cooking oil (RHCO has been a regular practice without knowing the harmful effects of use. The present study is based on the hypothesis that, heating of edible oils to their boiling points results in the formation of free radicals that cause oxidative stress and induce damage at the cellular and molecular levels. Peroxide value of heated oil, histopathological alterations, antioxidant enzyme levels and blood biochemistry were determined in Wistar rats treated with the RHCO. RHCO revealed higher peroxide value in comparison to oil that has been unheated or singly heated. Histopathological observation depicted significant damage in jejunum, colon and liver of animals that received oil heated repeatedly for 3 times. The altered antioxidant status reflects an adaptive response to oxidative stress. Alteration in the levels of these enzymes might be due to the formation of reactive oxygen species (ROS through auto oxidation or enzyme catalyzed oxidation of electrophilic components within RHCO. Analysis of blood samples revealed elevated levels of glucose, creatinine and cholesterol with declined levels of protein and albumin in repeatedly heated cooking oil group. Hematological parameters did not reveal any statistically significant difference between treated and control groups. Results of the present study confirm that the thermal oxidation of cooking oil generates free radicals and dietary consumption of such oil results in detrimental health effects. Keywords: Repeatedly heated cooking oil, Peroxide value, Oxidative stress, Hematological parameters

  14. Thermal remediation alters soil properties - a review.

    Science.gov (United States)

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Khan, Eakalak; Wick, Abbey F

    2018-01-15

    Contaminated soils pose a risk to human and ecological health, and thermal remediation is an efficient and reliable way to reduce soil contaminant concentration in a range of situations. A primary benefit of thermal treatment is the speed at which remediation can occur, allowing the return of treated soils to a desired land use as quickly as possible. However, this treatment also alters many soil properties that affect the capacity of the soil to function. While extensive research addresses contaminant reduction, the range and magnitude of effects to soil properties have not been explored. Understanding the effects of thermal remediation on soil properties is vital to successful reclamation, as drastic effects may preclude certain post-treatment land uses. This review highlights thermal remediation studies that have quantified alterations to soil properties, and it supplements that information with laboratory heating studies to further elucidate the effects of thermal treatment of soil. Notably, both heating temperature and heating time affect i) soil organic matter; ii) soil texture and mineralogy; iii) soil pH; iv) plant available nutrients and heavy metals; v) soil biological communities; and iv) the ability of the soil to sustain vegetation. Broadly, increasing either temperature or time results in greater contaminant reduction efficiency, but it also causes more severe impacts to soil characteristics. Thus, project managers must balance the need for contaminant reduction with the deterioration of soil function for each specific remediation project. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The alteration of intracellular enzymes. III. The effect of temperature on the kinetics of altered and unaltered yeast catalase.

    Science.gov (United States)

    FRASER, M J; KAPLAN, J G

    1955-03-20

    1. The very large increase in catalase activity (Euler effect) which follows treatment of yeast cells with CHCl(3), UV and n-propanol is accompanied by highly significant changes in kinetic properties. With respect to the enzymatic decomposition of H(2)O(2), the thermodynamic constants of the activation process micro, DeltaHdouble dagger, DeltaSdouble dagger, DeltaFdouble dagger, decrease, following treatment of the intracellular enzyme, by 4.5 kcal., 4.5 kcal., 10.1 e.u. and 1.7 kcal., respectively, all these differences being significant at the 1 per cent level. 2. Similar differences exist between the untreated, intracellular enzyme on the one hand, and the extracted yeast and crystalline beef liver catalases on the other. Significant differences in these thermodynamic constants do not exist among the treated intracellular, extracted yeast, and crystalline liver catalases. 3. These data provide unequivocal confirmation of the phenomenon of enzyme alteration reported previously, and confirm previous evidence that the extracted and crystalline enzymes have also undergone enzyme alteration and have properties which are identical with, or very similar to, those of the catalase altered in situ. 4. With respect to the process of heat destruction of catalase, the greatly diminished stability to heat of the altered enzymes, previously reported, has been confirmed. The thermodynamic constants of activation of this process have likewise changed following alteration, in the case of micro, DeltaHdouble dagger, and DeltaSdouble dagger an increase of 20.6 kcal., 20.6 kcal., and 70 e.u., respectively, and of DeltaFdouble dagger a decrease of 2.8 kcal. 5. All these data have been shown to be consistent with, and in some cases predictable from, the interfacial hypothesis, which states that the unaltered catalase exists within the cell adsorbed to some interface, in a partially, but reversibly, unfolded configuration of relatively low specificity; enzyme alteration consists, in

  16. Heat transfer in tube bundles of heat exchangers with flow baffles induced forced mixing

    International Nuclear Information System (INIS)

    AbuRomia, M.M.; Chu, A.W.; Cho, S.M.

    1976-01-01

    Thermal analysis of shell-and-tube heat exchangers is being investigated through geometric modeling of the unit configuration in addition to considering the heat transfer processes taking place within the tube bundle. The governing equations that characterize the heat transfer from the shell side fluid to the tube side fluid across the heat transfer tubewalls are indicated. The equations account for the heat transfer due to molecular conduction, turbulent thermal diffusion, and forced fluid mixing among various shell side fluid channels. The analysis, though general in principle, is being applied to the Clinch River Breeder Reactor Plant-Intermediate Heat Exchanger, which utilizes flow baffles appropriately designed for induced forced fluid mixing in the tube bundle. The results of the analysis are presented in terms of the fluid and tube wall temperature distributions of a non-baffled and baffled tube bundle geometry. The former case yields axial flow in the main bundle region while the latter is associated with axial/cross flow in the bundle. The radial components of the axial/cross flow yield the necessary fluid mixing that results in reducing the thermal unbalance among the heat transfer to the allowable limits. The effect of flow maldistribution, present on the tube or shell sides of the heat exchangers, in altering the temperature field of tube bundles is also noted

  17. Combination study of operation characteristics and heat transfer mechanism for pulsating heat pipe

    International Nuclear Information System (INIS)

    Cui, Xiaoyu; Zhu, Yue; Li, Zhihua; Shun, Shende

    2014-01-01

    Pulsating heat pipe (PHP) is becoming a promising heat transfer device for the application like electronics cooling. However, due to its complicated operation mechanism, the heat transfer properties of the PHP still have not been fully understood. This study experimentally investigated on a closed-loop PHP charged with four types of working fluids, deionized water, methanol, ethanol and acetone. Combined with the visualization experimental results from the open literature, the operation characteristics and the corresponding heat transfer mechanisms for different heat inputs (5 W up to 100 W) and different filling ratios (20% up to 95%) have been presented and elaborated. The results show that heat-transfer mechanism changed with the transition of operation patterns; before valid oscillation started, the thermal resistance was not like that described in the open literature where it decreased almost linearly, but would rather slowdown descending or even change into rise first before further decreasing (i.e. an inflection point existed); when the heat input further increased to certain level, e.g. 65 W or above, there presented a limit of heat-transfer performance which was independent of the types of working fluids and the filling ratios, but may be related to the structure, the material, the size and the inclination of the PHP. - Highlights: •The thermal mechanisms altered accordingly with the operation features in the PHP. •Unlike conventional heat pipes, continuous temperature soaring would not happen in the PHP. •Before the oscillation start-up, there existed a heat-transfer limit for the relatively stagnated flow in the PHP. •A limit of thermal performance existed in the PHP at relatively high heat inputs

  18. Thermalhydraulic behavior of electrically heated rods during critical heat flux transients

    International Nuclear Information System (INIS)

    Lima, Rita de Cassia Fernandes de

    1997-01-01

    In nuclear reactors, the occurrence of critical heat flux leads to fuel rod overheating with clad fusion and radioactive products leakage. To predict the effects of such phenomenon, experiments are performed utilizing heated rods to simulate operational and accidental conditions of nuclear fuel rods, with special attention to the phenomenon of boiling crisis. The use of mechanisms which detect the abrupt temperature rise allows the electric power switch off. These facts prevent the test section from damage. During the critical heat flux phenomenon the axial heat conduction becomes very important. The study of the dryout and rewetting fronts yields the analysis, planning and following of critical heat flux experiments. These facts are important during the reflooding of nuclear cores at severe accidents. In the present work it is performed a theoretical analysis of the drying and rewetting front propagation during a critical heat flux experiment, starting with the application of an electrical power step or power slope from steady state condition. After the occurrence of critical heat flux, it is predicted the drying front propagation. After a few seconds, a power cut is considered and the rewetting front behavior is analytically observed. In all these transients the coolant pressure is 13,5 MPa. For one of them, comparisons are done with a pressure of 8,00 MPa. Mass flow and enthalpy influences on the fronts velocities are also analysed. These results show that mass flow has more importance on the drying front velocities whereas the pressure alters strongly the rewetting ones. (author)

  19. An experimental study on the alteration of thermal enhancement ratio by combination of split dose hyperthermia irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ok; Kim, Hee Seup [Ewha Womens University College of Medicine, Seoul (Korea, Republic of)

    1983-06-15

    The study was undertaken to evaluate the alteration of thermal enhancement ratio as a function of time intervals between two split dose hyperthermias followed by irradiation. For the experiments, 330 mice were divided into 3 groups; the first, 72 mice were used to evaluate the heat reaction by single dose hyperthermia and heat resistance by split dose hyperthermia, the second, 36 mice were used to evaluate the radiation reaction by irradiation only, and the third, 222 mice were used for TER observation by combination of single dose hyperthermia and irradiation, and TER alteration by combination of split dose hyperthermia and irradiation. For each group the skin reaction score of mouse tail was used for observation and evaluation of the result of heat and irradiation. The results obtained are summarized as follows: 1. The heating time resulting 50% necrosis (ND{sub 5}0) Was 101 minutes in 43 .deg. C and 24 minutes in 45 .deg. C hyperthermia, which indicated that three is reciprocal proportion between temperature and heating time. 2. Development of heat resistance was observed by split dose hyperthermia. 3. The degree of skin reaction by irradiation only was increased proportionally as a function of radiation dose, and calculated radiation dose corresponding to skin score 1.5 (D{sub 1}.5) was 4,137 rads. 4. Obtained thermal enhancement ratio by combination of single dose hyperthermia and irradiation was increased proportionally as a function of heating time. 5. Thermal enhancement ratio was decreased by combination of split dose hyperthermia and irradiation, which was less intense and lasted longer than development of heat resistance. In summary, these studies indicate that the alteration of thermal enhancement ratio has influence on heat resistance by split dose hyperthermia and irradiation.

  20. Effect of heat treatment on carbon steel pipe welds

    International Nuclear Information System (INIS)

    Mohamad Harun.

    1987-01-01

    The heat treatment to improve the altered properties of carbon steel pipe welds is described. Pipe critical components in oil, gasification and nuclear reactor plants require adequate room temperature toughness and high strength at both room and moderately elevated temperatures. Microstructure and microhardness across the welds were changed markedly by the welding process and heat treatment. The presentation of hardness fluctuation in the welds can produce premature failure. A number of heat treatments are suggested to improve the properties of the welds. (author) 8 figs., 5 refs

  1. Hydrothermal surface alteration in the Copahue Geothermal Field (Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Graciela R.; Mas, Luis C.; Bengochea, Leandro

    1996-01-24

    In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Máquinas, Termas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H2SO4 by atmospheric oxidation at the water table in a steam heated environment of H2S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hidrothermal solutions and the major structures of the area are analized.

  2. Induction of heat-shock proteins and phagocytic function of chicken macrophage following in vitro heat exposure

    International Nuclear Information System (INIS)

    Miller, L.; Qureshi, M.A.

    1992-01-01

    The protein profiles and phagocytic ability of Sephadex-elicited chicken peritoneal macrophages were examined following heat-shock exposure. Macrophage cultures were exposed to various temperatures, time exposures and recovery periods. Densitometric analysis of SDS-PAGE autoradiographs revealed that heat-induced macrophages synthesized three major (23, 70 and 90 kD) heat-shock proteins (HSPs). The optimal temperature and time for induction of these HSPs was 45-46 degrees C for 1 h, with a variable recovery period for each HSP. Macrophages exposed to 45 degrees C for 30 and 60 min were significantly depressed in phagocytosis of uncoated sheep erythrocytes (SE) under 45 degrees C incubation conditions. However, phagocytosis of antibody-coated SE was not affected when compared to 41 degrees C control cultures. Macrophages allowed to recover at 41 degrees C following heat-shock exhibited no alterations in their phagocytic ability for either antibody-coated or uncoated SE. This study suggests that heat shock induces three major HSPs in chicken peritoneal macrophages in addition to maintaining their Fc-mediated phagocytic function while significantly depressing their nonspecific phagocytosis

  3. Manipulating heat shock protein expression in laboratory animals.

    Science.gov (United States)

    Tolson, J Keith; Roberts, Stephen M

    2005-02-01

    Upregulation of heat shock proteins (Hsps) has been observed to impart resistance to a wide variety of physical and chemical insults. Elucidation of the role of Hsps in cellular defense processes depends, in part, on the ability to manipulate Hsp expression in laboratory animals. Simple methods of inducing whole body hyperthermia, such as warm water immersion or heating pad application, are effective in producing generalized expression of Hsps. Hsps can be upregulated locally with focused direct or indirect heating, such as with ultrasound or with laser or microwave radiation. Increased Hsp expression in response to toxic doses of xenobiotics has been commonly observed. Some pharmacologic agents are capable of altering Hsps more specifically by affecting processes involved in Hsp regulation. Gene manipulation offers the ability to selectively increase or decrease individual Hsps. Knockout mouse strains and Hsp-overexpressing transgenics have been used successfully to examine the role of specific Hsps in protection against hyperthermia, chemical insults, and ischemia-reperfusion injury. Gene therapy approaches also offer the possibility of selective alteration of Hsp expression. Some methods of increasing Hsp expression have application in specialized areas of research, such cold response, myocardial protection from exercise, and responses to stressful or traumatic stimuli. Each method of manipulating Hsp expression in laboratory animals has advantages and disadvantages, and selection of the best method depends upon the experimental objectives (e.g., the alteration in Hsp expression needed, its timing, and its location) and resources available.

  4. Near-field/altered-zone models report

    Energy Technology Data Exchange (ETDEWEB)

    Hardin, E. L., LLNL

    1998-03-01

    nonlithophysal and lower lithophysal units. These units are made up of moderately to densely welded, devitrified, fractured tuff. The rock's chemical composition is comparable to that of typical granite, but has textural features and mineralogical characteristics of large-scale, silicic volcanism. Because the repository horizon will be approximately 300 m below the ground surface and 200 m above the water table, the repository will be partially saturated. The welded tuff matrix in the host units is highly impermeable, but water and gas flow readily through fractures. The degree of fracturing in these units is highly variable, and the hydrologic significance of fracturing is an important aspect of site investigation. This report describes the characterization and modeling of a region around the potential repository--the altered zone--a region in which the temperature will be increased significantly by waste-generated heat. Numerical simulation has shown that, depending on the boundary conditions, rock properties, and repository design features incorporated in the models, the altered zone (AZ) may extend from the water table to the ground surface. This report also describes models of the near field, the region comprising the repository emplacement drifts and the surrounding rock, which are critical to the performance of engineered components. Investigations of near-field and altered-zone (NF/AZ) processes support the design of underground repository facilities and engineered barriers and also provide constraint data for probabilistic calculations of waste-isolation performance (i.e., performance assessment). The approach to investigation, which is an iterative process involving hypothesis testing and experimentation, has relied on conceptualizing engineered barriers and on performance analysis. This report is a collection, emphasizing conceptual and numerical models, of the recent results contributed from studies of NF/AZ processes and of quantitative measures of NF

  5. Near-field/altered-zone models report

    International Nuclear Information System (INIS)

    Hardin, E. L.

    1998-01-01

    lithophysal units. These units are made up of moderately to densely welded, devitrified, fractured tuff. The rock's chemical composition is comparable to that of typical granite, but has textural features and mineralogical characteristics of large-scale, silicic volcanism. Because the repository horizon will be approximately 300 m below the ground surface and 200 m above the water table, the repository will be partially saturated. The welded tuff matrix in the host units is highly impermeable, but water and gas flow readily through fractures. The degree of fracturing in these units is highly variable, and the hydrologic significance of fracturing is an important aspect of site investigation. This report describes the characterization and modeling of a region around the potential repository--the altered zone--a region in which the temperature will be increased significantly by waste-generated heat. Numerical simulation has shown that, depending on the boundary conditions, rock properties, and repository design features incorporated in the models, the altered zone (AZ) may extend from the water table to the ground surface. This report also describes models of the near field, the region comprising the repository emplacement drifts and the surrounding rock, which are critical to the performance of engineered components. Investigations of near-field and altered-zone (NF/AZ) processes support the design of underground repository facilities and engineered barriers and also provide constraint data for probabilistic calculations of waste-isolation performance (i.e., performance assessment). The approach to investigation, which is an iterative process involving hypothesis testing and experimentation, has relied on conceptualizing engineered barriers and on performance analysis. This report is a collection, emphasizing conceptual and numerical models, of the recent results contributed from studies of NF/AZ processes and of quantitative measures of NF/AZ performance. The selection and

  6. Snowpack radiative heating: Influence on Tibetan Plateau climate

    OpenAIRE

    Flanner, Mark G; Zender, C. S.

    2005-01-01

     Solar absorption decays exponentially with depth in snowpacks. However, most climate models constrain all snowpack absorption to occur uniformly in the top-most snow layer. We show that 20–45% of solar absorption by deep snowpacks occurs more than 2 cm beneath the surface. Accounting for vertically-resolved solar heating alters steady-state snow mass without changing bulk snow albedo, and ice-albedo feedback amplifies this effect. Vertically-resolved snowpack heating reduces winter snow mass...

  7. Thermally-induced voltage alteration for integrated circuit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.I. Jr.

    2000-06-20

    A thermally-induced voltage alteration (TIVA) apparatus and method are disclosed for analyzing an integrated circuit (IC) either from a device side of the IC or through the IC substrate to locate any open-circuit or short-circuit defects therein. The TIVA apparatus uses constant-current biasing of the IC while scanning a focused laser beam over electrical conductors (i.e. a patterned metallization) in the IC to produce localized heating of the conductors. This localized heating produces a thermoelectric potential due to the Seebeck effect in any conductors with open-circuit defects and a resistance change in any conductors with short-circuit defects, both of which alter the power demand by the IC and thereby change the voltage of a source or power supply providing the constant-current biasing. By measuring the change in the supply voltage and the position of the focused and scanned laser beam over time, any open-circuit or short-circuit defects in the IC can be located and imaged. The TIVA apparatus can be formed in part from a scanning optical microscope, and has applications for qualification testing or failure analysis of ICs.

  8. Causes of Potential Urban Heat Island Space Using Heat flux Budget Under Urban Canopy

    Science.gov (United States)

    Kwon, Y. J.; Lee, D. K.

    2017-12-01

    Raised concerns about possible contribution from urban heat island to global warming is about 30 percent. Therefore, mitigating urban heat island became one of major issues to solve among urban planners, urban designers, landscape architects, urban affair decision makers and etc. Urban heat island effect on a micro-scale is influenced by factors such as wind, water vapor and solar radiation. Urban heat island effect on a microscale is influenced by factors like wind, water vapor and solar radiation. These microscopic climates are also altered by factors affecting the heat content in space, like SVF and aspect ratio depending on the structural characteristics of various urban canyon components. Indicators of heat mitigation in urban design stage allows us to create a spatial structure considering the heat balance budget. The spatial characteristics affect thermal change by varying heat storage, emitting or absorbing the heat. The research defines characteristics of the space composed of the factors affecting the heat flux change as the potential urban heat island space. Potential urban heat island spaces are that having higher heat flux than periphery space. The study is to know the spatial characteristics that affects the subsequent temperature rise by the heat flux. As a research method, four types of potential heat island space regions were analyzed. I categorized the spatial types by comparing parameters' value of energy balance in day and night: 1) day severe areas, 2) day comfort areas, 3) night severe areas, 4) night comfort areas. I have looked at these four types of potential urban heat island areas from a microscopic perspective and investigated how various forms of heat influences on higher heat flux areas. This research was designed to investigate the heat indicators to be reflected in the design of urban canyon for heat mitigation. As a result, severe areas in daytime have high SVF rate, sensible heat is generated. Day comfort areas have shadow effect

  9. Combined facial heating and inhalation of hot air do not alter thermoeffector responses in humans

    Science.gov (United States)

    Wingo, Jonathan E.; Low, David A.; Keller, David M.; Kimura, Kenichi

    2015-01-01

    The influence of thermoreceptors in human facial skin on thermoeffector responses is equivocal; furthermore, the presence of thermoreceptors in the respiratory tract and their involvement in thermal homeostasis has not been elucidated. This study tested the hypothesis that hot air directed on the face and inhaled during whole body passive heat stress elicits an earlier onset and greater sensitivity of cutaneous vasodilation and sweating than that directed on an equal skin surface area away from the face. Six men and two women completed two trials separated by ∼1 wk. Participants were passively heated (water-perfused suit; core temperature increase ∼0.9°C) while hot air was directed on either the face or on the lower leg (counterbalanced). Skin blood flux (laser-Doppler flowmetry) and local sweat rate (capacitance hygrometry) were measured at the chest and one forearm. During hot-air heating, local temperatures of the cheek and leg were 38.4 ± 0.8°C and 38.8 ± 0.6°C, respectively (P = 0.18). Breathing hot air combined with facial heating did not affect mean body temperature onsets (P = 0.97 and 0.27 for arm and chest sites, respectively) or slopes of cutaneous vasodilation (P = 0.49 and 0.43 for arm and chest sites, respectively), or the onsets (P = 0.89 and 0.94 for arm and chest sites, respectively), or slopes of sweating (P = 0.48 and 0.65 for arm and chest sites, respectively). Based on these findings, respiratory tract thermoreceptors, if present in humans, and selective facial skin heating do not modulate thermoeffector responses during passive heat stress. PMID:26157054

  10. Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress.

    Science.gov (United States)

    Baumgard, L H; Rhoads, R P

    2012-06-01

    Heat stress compromises efficient animal production by marginalizing nutrition, management, and genetic selection efforts to maximize performance endpoints. Modifying farm infrastructure has yielded modest success in mitigating heat stress-related losses, yet poor production during the summer remains arguably the costliest issue facing livestock producers. Reduced output (e.g., milk yield and muscle growth) during heat stress was traditionally thought to result from decreased nutrient intake (i.e., a classic biological response shared by all animals during environmental-induced hyperthermia). Our recent observations have begun to challenge this belief and indicate heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independently of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident by increased basal and stimulated circulating insulin concentrations. Perhaps most intriguing given the energetic shortfall of the heat-stressed animal is the apparent lack of basal adipose tissue mobilization coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues. Interestingly, the systemic, cellular, and molecular changes appear conserved amongst different species and physiological states. Ultimately, these changes result in the reprioritization of fuel selection during heat stress, which appears to be primarily responsible for reduced ruminant animal productivity during the warm summer months.

  11. Effects of gamma radiation and heat on immunogenicity and morphology of Salmonella typhimurium

    International Nuclear Information System (INIS)

    Santos Araujo, E. dos; Silva, D.M.

    1979-01-01

    Results are presented about immunogenicity of vaccines prepared from Salmonella typhimurium suspensions submitted to 0,55 MR and 1,10 MR of gamma radiation and heating at 60 0 C, (60 min) and at 100 0 C, (3 min) correlated with the cell morphology alterations observed at electron microscopy. The results of mouse-protection tests showed that prepared vaccines with 0,55 MR and with heating at 60 0 C, 60 min were identical and more efficient than the two other treatments. The electronmicrografies also showed one positive correlation between morphological alterations caused by the treatments and the immunogenicities. (Author) [pt

  12. Using microwave heating to improve the desorption efficiency of high molecular weight VOC from beaded activated carbon.

    Science.gov (United States)

    Fayaz, Mohammadreza; Shariaty, Pooya; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark

    2015-04-07

    Incomplete regeneration of activated carbon loaded with organic compounds results in heel build-up that reduces the useful life of the adsorbent. In this study, microwave heating was tested as a regeneration method for beaded activated carbon (BAC) loaded with n-dodecane, a high molecular weight volatile organic compound. Energy consumption and desorption efficiency for microwave-heating regeneration were compared with conductive-heating regeneration. The minimum energy needed to completely regenerate the adsorbent (100% desorption efficiency) using microwave regeneration was 6% of that needed with conductive heating regeneration, owing to more rapid heating rates and lower heat loss. Analyses of adsorbent pore size distribution and surface chemistry confirmed that neither heating method altered the physical/chemical properties of the BAC. Additionally, gas chromatography (with flame ionization detector) confirmed that neither regeneration method detectably altered the adsorbate composition during desorption. By demonstrating improvements in energy consumption and desorption efficiency and showing stable adsorbate and adsorbent properties, this paper suggests that microwave heating is an attractive method for activated carbon regeneration particularly when high-affinity VOC adsorbates are present.

  13. Alteration of diaspore by thermal treatment

    Institute of Scientific and Technical Information of China (English)

    杨华明; 胡岳华; 杨武国; 敖伟琴; 邱冠周

    2004-01-01

    Diaspore (α-AlOOH) was heated at various temperatures from 300 to 1000 ℃ for 2 h. The alteration of diaspore by thermal treatment was investigated by differential thermal analysis, thermogravimetric analysis and X-ray diffraction. The mechanism of thermal decomposition of diaspore was discussed according to the Coats-Redfern equation. It is found that after thermal treatment at 500 ℃, diaspore is transformed entirely to corundum (α-Al2O3). Combined with the mass loss ratio obtained from the thermogravimetric analysis data, the activation energies for the thermal treatment of diaspore are calculated as Ea=10.4 kJ/mol below 400 ℃ and Eb=47.5 kJ/mol above 400 ℃, respectively, which is directly related to the structural alteration of diaspore during the thermal treatment. The results indicate that the thermal decomposition of diaspore is conducted primarily by means of an interfacial reaction.

  14. Hyperthermia-induced alteration of yeast susceptibility to mutation

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1985-01-01

    Diploid yeast (s. cerevisiae) were examined for alterations in susceptibility to induced mutation following hyperthermia treatment. In cells grown at 23 0 C, a non-lethal heat exposure (38 0 C, 30 min) markedly suppressed mutation induced by a subsequent non-killing dose of MNNG of MNU. Mutation by ENU, 8-MOP + UVA, or γ-rays was not affected. An intermediate level of mutation suppression was observed for mutation by 254nm UV or MMS. Mutation by MNNG was not suppressed by the same heat treatment delivered after the mutagen exposure. In a split dose experiment (two MNNG treatments separated by a heat exposure) no suppression of mutation was observed. Treatment with cycloheximide mimicked the effect of heat treatment. These data suggest that mutation induction by MNNG or MNU is protein synthesis dependent, i.e. an error-prone repair system is induced by exposure to MNNG or MNU but not by ENU, 8-MOP+UVA or γ-irradiation. We propose that hyperthermia treatment, by inducing stress protein synthesis at the expense of normal protein synthesis, precludes induction of this error-prone system. Therefore, in heat treated cells, DNA lesions produced by MNNG or MNU exposure must be resolved by an essentially constitutive system which is less error-prone than the inducible one

  15. Cell phone use and parotid salivary gland alterations: no molecular evidence.

    Science.gov (United States)

    de Souza, Fabrício T A; Correia-Silva, Jeane F; Ferreira, Efigênia F; Siqueira, Elisa C; Duarte, Alessandra P; Gomez, Marcus Vinícius; Gomez, Ricardo S; Gomes, Carolina C

    2014-07-01

    The association between cell phone use and the development of parotid tumors is controversial. Because there is unequivocal evidence that the microenvironment is important for tumor formation, we investigated in the parotid glands whether cell phone use alters the expression of gene products related to cellular stress. We used the saliva produced by the parotid glands of 62 individuals to assess molecular alterations compatible with cellular stress, comparing the saliva from the gland exposed to cell phone radiation (ipsilateral) to the saliva from the opposite, unexposed parotid gland (contralateral) of each individual. We compared salivary flow, total protein concentration, p53, p21, reactive oxygen species (ROS), and salivary levels of glutathione (GSH), heat shock proteins 27 and 70, and IgA between the ipsilateral and contralateral parotids. No difference was found for any of these parameters, even when grouping individuals by period of cell phone use in years or by monthly average calls in minutes. We provide molecular evidence that the exposure of parotid glands to cell phone use does not alter parotid salivary flow, protein concentration, or levels of proteins of genes that are directly or indirectly affected by heat-induced cellular stress. ©2014 American Association for Cancer Research.

  16. Thermal alterations of organic matter in coal wastes from Upper Silesia, Poland

    Science.gov (United States)

    Misz-Kennan, Magdalena

    2010-01-01

    Self-heating and self-combustion are currently taking place in some coal waste dumps in the Upper Silesian Coal Basin, Poland, e.g. the dumps at Rymer Cones, Starzykowiec, and the Marcel Coal Mine, all in the Rybnik area. These dumps are of similar age and self-heating and combustion have been occurring in all three for many years. The tools of organic petrography (maceral composition, rank, etc.), gas chromatography-mass spectrometry, and proximate and ultimate analysis are used to investigate the wastes. Organic matter occurs in quantities up to 85 vol.%, typically a few to several vol.%, in the wastes. All three maceral groups (vitrinite, liptinite, and inertinite) are present as unaltered and variously-altered constituents associated with newly-formed petrographic components (bitumen expulsions, pyrolytic carbon). The predominant maceral group is vitrinite with alterations reflected in the presence of irregular cracks, oxidation rims and, rarely, devolatilisation pores. In altered wastes, paler grey-vitrinite and/or coke dominates. The lack of plasticity, the presence of paler-coloured particles, isotropic massive coke, dispersed coked organic matter, and expulsions of bitumens all indicate that heating was slow and extended over a long time. Macerals belonging to other groups are present in unaltered form or with colours paler than the colours of the parent macerals. Based on the relative contents of organic compounds, the most important groups of these identified in the wastes are n-alkanes, acyclic isoprenoids, hopanes, polycyclic aromatic hydrocarbons (PAHs) and their derivatives, phenol and its derivatives. These compounds occur in all wastes except those most highly altered where they were probably destroyed by high temperatures. These compounds were generated mainly from liptinite-group macerals. Driven by evaporation and leaching, they migrated within and out of the dump. Their presence in some wastes in which microscopically visible organic matter is

  17. Turbulent current heating of dense plasma

    International Nuclear Information System (INIS)

    Suprunenko, V.A.; Sukhomlin, E.A.; Volkov, E.D.; Perepelkij, N.F.

    1976-01-01

    Based upon experimental results an attempt is made for systematizing and analysing conditions of experiments in anomalous resistance and turbulent heating of a plasma. The extensive program of such investigations aims at a direct practical study on quasistationary heating and plasma containment in magnetic traps. It has been shown that in real conditions turbulent heating turns out to be a far more complicated phenomenon than that described within the framework of theories developed so far. It has been established that the phenomenon alters in the transition through the critical values of electric and magnetic fields. This makes it possible to separate four characteristic experimental regimes. For all the regimes the stabilization of the electron current drift rate is typical. On the basis of the experimental results obtained an explanation is given of the sporadic character of the ultrathermal radiation in a quasistationary discharge

  18. Power loss analysis in altered tooth-sum spur gearing

    Directory of Open Access Journals (Sweden)

    Sachidananda H. K.

    2018-01-01

    Full Text Available The main cause of power loss or dissipation of heat in case of meshed gears is due to friction existing between gear tooth mesh and is a major concern in low rotational speed gears, whereas in case of high operating speed the power loss taking place due to compression of air-lubricant mixture (churning losses and windage losses due to aerodynamic trial of air lubricant mixture which controls the total efficiency needs to be considered. Therefore, in order to improve mechanical efficiency it is necessary for gear designer during gear tooth optimization to consider these energy losses. In this research paper the power loss analysis for a tooth-sum of 100 altered by ±4% operating between a specified center distance is considered. The results show that negative altered tooth-sum gearing performs better as compared to standard and positive altered tooth-sum gearing.

  19. TIDALLY HEATED TERRESTRIAL EXOPLANETS: VISCOELASTIC RESPONSE MODELS

    International Nuclear Information System (INIS)

    Henning, Wade G.; O'Connell, Richard J.; Sasselov, Dimitar D.

    2009-01-01

    Tidal friction in exoplanet systems, driven by orbits that allow for durable nonzero eccentricities at short heliocentric periods, can generate internal heating far in excess of the conditions observed in our own solar system. Secular perturbations or a notional 2:1 resonance between a hot Earth and hot Jupiter can be used as a baseline to consider the thermal evolution of convecting bodies subject to strong viscoelastic tidal heating. We compare results first from simple models using a fixed Quality factor and Love number, and then for three different viscoelastic rheologies: the Maxwell body, the Standard Anelastic Solid (SAS), and the Burgers body. The SAS and Burgers models are shown to alter the potential for extreme tidal heating by introducing the possibility of new equilibria and multiple response peaks. We find that tidal heating tends to exceed radionuclide heating at periods below 10-30 days, and exceed insolation only below 1-2 days. Extreme cases produce enough tidal heat to initiate global-scale partial melting, and an analysis of tidal limiting mechanisms such as advective cooling for earthlike planets is discussed. To explore long-term behaviors, we map equilibria points between convective heat loss and tidal heat input as functions of eccentricity. For the periods and magnitudes discussed, we show that tidal heating, if significant, is generally detrimental to the width of habitable zones.

  20. Air Circulation and Heat Exchange under Reduced Pressures

    Science.gov (United States)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  1. Study on nonstationary convective heat transfer in annular channels and rod bundles in conditions of arbitrary variation of heat duty in time and length

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.N.; Kalinin, E.I.; Naumov, M.A.

    1980-01-01

    The effect of variability of heat duty on the characteristics of heat exchange in ring channels and rod bundles is investigated with analytical methods. The plotting of calculation formulae for non-stationary heat exchange in an annular channel at a jump of heat duty is carried out on the basis of the method of the effect function. The formulae obtained permit to accomplish technical calculations of the processes of non-stationary heat exchange in annular channels in the case of any alterations of thermal duty in time, at any moment of time, for any channel cross section (including the entrance heat section) in a wide range of geometric and regime parameters of the turbulent current of a coolant. According to preliminary estimates, calculation results differ from the results oi a numerical solution less than 5%. The approach considered permits to transfer the data on the non-stationary heat exchange in annular channels in the case of changing the heat duty in time, in the case of a non-stationary heat exchange in longitudinally flown not very dense and infinite rod bundles

  2. Altered cortical causality after remifentanil administration in healthy volunteers

    DEFF Research Database (Denmark)

    Khodayari-Rostamabad, Ahmad; Graversen, Carina; Olesen, Soren S

    2014-01-01

    and after infusion of remifentanil and placebo. Additionally, to assess cognitive function and analgesic effect, continuous reaction time (CRT) and bone pressure and heat pain were assessed, respectively. The causality information was extracted from the EEG by phase slope index (PSI). Among the features...... being reproducible between the two baseline recordings, several PSI features were altered by remifentanil administration in comparison to placebo. Furthermore, several of the PSI features altered by remifentanil were correlated to changes in both CRT and pain scores. The results indicate...... that remifentanil administration influence the information flow between several brain areas. Hence, the EEG causality approach offers the potential to assist in deciphering the cortical effects of remifentanil administration....

  3. Heated water jet in coflowing turbulent stream

    International Nuclear Information System (INIS)

    Shirazi, M.A.; McQuivey, R.S.; Keefer, T.N.

    1974-01-01

    Effects of ambient turbulence on temperature and salinity distributions of heated water and neutrally buoyant saltwater jets were studied for a wide range of densimetric jet Froude numbers, jet discharge velocities, and ambient turbulence levels in a 4-ft-wide channel. Estimates of vertical and lateral diffusivity coefficients for heat and for salt were obtained from salinity and temperature distributions taken at several stations downstream of the injection point. Readily usable correlations are presented for plume center-line temperature, plume width, and trajectory. The ambient turbulence affects the gross behavior characteristics of the plume. The effects vary with the initial jet Froude number and the jet to ambient velocity ratio. Heat and salinity are transported similarly and the finite source dimensions and the initial jet characteristics alter the numerical value of the diffusivity

  4. Single-sweep spectral analysis of contact heat evoked potentials

    DEFF Research Database (Denmark)

    Hansen, Tine M; Graversen, Carina; Frøkjaer, Jens B

    2015-01-01

    AIMS: The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single-sweep ch......AIMS: The cortical response to nociceptive thermal stimuli recorded as contact heat evoked potentials (CHEPs) may be altered by morphine. However, previous studies have averaged CHEPs over multiple stimuli, which are confounded by jitter between sweeps. Thus, the aim was to assess single...... by 13% (P = 0.04) and 9% (P = 0.007), while the beta and gamma bands were increased by 10% (P = 0.006) and 24% (P = 0.04). CONCLUSION: The decreases in the delta and theta band are suggested to represent a decrease in the pain specific morphology of the CHEPs, which indicates a diminished pain response...

  5. Local heat transfer measurement and thermo-fluid characterization of a pulsating heat pipe

    International Nuclear Information System (INIS)

    Mameli, Mauro; Marengo, Marco; Khandekar, Sameer

    2014-01-01

    A compact Closed Loop Pulsating Heat Pipe (CLPHP), filled with ethanol (65% v/v), made of four transparent glass tubes forming the adiabatic section and connected with copper U-turns in the evaporator and condenser sections respectively, is designed in order to perform comprehensive thermal-hydraulic performance investigation. Local heat transfer coefficient is estimated by measurement of tube wall and internal fluid temperatures in the evaporator section. Simultaneously, fluid pressure oscillations are recorded together with the corresponding flow patterns. The thermal performances are measured for different heat input levels and global orientation of the device with respect to gravity. One exploratory test is also done with azeotropic mixture of ethanol and water. Results show that a stable device operation is achieved (i.e. evaporator wall temperatures can reach a pseudo-steady-state) only when a circulating flow mode is established superimposed on local pulsating flow. The heat transfer performance strongly depends on the heat input level and the inclination angle, which, in turn, also affect the ensuing flow pattern. The spectral analysis of the pressure signal reveals that even during the stable performance regimes, characteristic fluid oscillation frequencies are not uniquely recognizable. Equivalent thermal conductivities of the order of 10-15 times that of pure copper are achieved. Due to small number of turns horizontal mode operation is not feasible. Preliminary results indicate that filling azeotropic mixture of ethanol and water as working fluid does not alter the thermal performance as compared to pure ethanol case. (authors)

  6. [Change in the lipid composition of the inner mitochondrial membranes in rat organs during adaptation to heat].

    Science.gov (United States)

    Zubareva, E V; Seferova, R I; Denisova, N A

    1991-01-01

    Under conditions of adaptation to heating lipid composition in mitochondrial membranes of rat inner tissues was altered as follows: an increase in relative concentration of plasmalogenous forms of phospholipids (kidney, heart) and in content of saturated fatty acids (liver tissue), a decrease in the index of fatty acids unsaturation and in the ratio of fatty acids omega-3/omega-6. The alterations observed enabled the membranes to keep sufficient amount of liquidity essential for functional activity of mitochondria in heating.

  7. Numerical study of turbulent heat transfer along a heated rod in an annular cavity

    International Nuclear Information System (INIS)

    Batta, A.; Class, A.; Daubner, M.; Gnieser, S.; Stieglitz, R.

    2008-01-01

    Fundamental knowledge on the turbulent convective heat transfer from a rod into liquid metal is of crucial importance for the design of advanced liquid metal operated nuclear systems since a single rod is the basic element of a fuel rod assembly. Therefore, a numerical investigation of the heated rod experiment at KALLA (KArlsruhe Liquid metal LAboratory) has been performed. This experiment investigates the turbulent heat transfer from a heated rod placed concentrically within in a cylindrical tube in a developing flow of a heavy liquid metal (HLM, here Pb 45 Bi 55 Eutectic) at reactor typical power levels and dimensions. It is set up with thermocouples (TCs), a traversable Pitot tube and three thermocouple rakes consisting of numerous thermocouples (TCs). The concentricity is ensured by means of mechanical spacers placed axially equidistant. This article concentrates on the numerical investigation of the impact of the experimental instrumentation on the developing flow pattern and temperature field. In particular, the influence of spacers which distort the velocity profile as well of a potential contact of the spacer with the heated rod changing the heat conduction regime are considered numerically in this paper using the STAR-CD code. The turbulent flow simulation assumes axis-symmetry and uses the SST turbulence model. The simulation results exhibit a flow pattern that is substantially altered by spacers. Hence, the flow can not be considered to be axis-symmetric. This in turn yields that the convective heat transfer from the heated rod towards the spacer region is reduced leading to a temperature rise in spacer region, which represents the maximum value in this domain. As a consequence the entire three-dimensional test section must be modelled in order to correctly represent the physics and to allow an adequate interpretation of the experimental data. (orig.)

  8. Estimation of respiratory heat flows in prediction of heat strain among Taiwanese steel workers.

    Science.gov (United States)

    Chen, Wang-Yi; Juang, Yow-Jer; Hsieh, Jung-Yu; Tsai, Perng-Jy; Chen, Chen-Peng

    2017-01-01

    International Organization for Standardization 7933 standard provides evaluation of required sweat rate (RSR) and predicted heat strain (PHS). This study examined and validated the approximations in these models estimating respiratory heat flows (RHFs) via convection (C res ) and evaporation (E res ) for application to Taiwanese foundry workers. The influence of change in RHF approximation to the validity of heat strain prediction in these models was also evaluated. The metabolic energy consumption and physiological quantities of these workers performing at different workloads under elevated wet-bulb globe temperature (30.3 ± 2.5 °C) were measured on-site and used in the calculation of RHFs and indices of heat strain. As the results show, the RSR model overestimated the C res for Taiwanese workers by approximately 3 % and underestimated the E res by 8 %. The C res approximation in the PHS model closely predicted the convective RHF, while the E res approximation over-predicted by 11 %. Linear regressions provided better fit in C res approximation (R 2  = 0.96) than in E res approximation (R 2  ≤ 0.85) in both models. The predicted C res deviated increasingly from the observed value when the WBGT reached 35 °C. The deviations of RHFs observed for the workers from those predicted using the RSR or PHS models did not significantly alter the heat loss via the skin, as the RHFs were in general of a level less than 5 % of the metabolic heat consumption. Validation of these approximations considering thermo-physiological responses of local workers is necessary for application in scenarios of significant heat exposure.

  9. Localized Beampipe Heating due to $e^{-}$ Capture and Nuclear Excitation in Heavy Ion Colliders

    CERN Document Server

    Klein, S R

    2001-01-01

    At heavy ion colliders, two major sources of beam loss are expected to be $e^+e^-$ production, where the $e^-$ is bound to one of the nuclei, and photonuclear excitation and decay via neutron emission. Both processes alter the ions charged to mass ratio by well defined amounts, creating beams of particles with altered magnetic rigidity. These beams will deposit their energy in a localized region of the accelerator, causing localized heating, The size of the target region depends on the collider optics. For medium and heavy ions, at design luminosity at the Large Hadron Collider, local heating may be more than an order of magnitude higher than expected. This could cause magnet quenches if the local cooling is inadequate. The altered-rigidity beams will also produce localized radiation damage. The beams could also be extracted and used for fixed target experiments.

  10. Smart electric storage heating and potential for residential demand response

    OpenAIRE

    Darby, S

    2017-01-01

    Low-carbon transition plans for temperate and sub-polar regions typically involve some electrification of space heating. This poses challenges to electricity system operation and market design, as it increases overall demand and alters the temporal patterns of that demand. One response to the challenge is to ‘smarten’ electrical heating, enabling it to respond to network conditions by storing energy at times of plentiful supply, releasing it in response to customer demands and offering rapid-...

  11. Exertional heat illness: emerging concepts and advances in prehospital care.

    Science.gov (United States)

    Pryor, Riana R; Roth, Ronald N; Suyama, Joe; Hostler, David

    2015-06-01

    Exertional heat illness is a classification of disease with clinical presentations that are not always diagnosed easily. Exertional heat stroke is a significant cause of death in competitive sports, and the increasing popularity of marathons races and ultra-endurance competitions will make treating many heat illnesses more common for Emergency Medical Services (EMS) providers. Although evidence is available primarily from case series and healthy volunteer studies, the consensus for treating exertional heat illness, coupled with altered mental status, is whole body rapid cooling. Cold or ice water immersion remains the most effective treatment to achieve this goal. External thermometry is unreliable in the context of heat stress and direct internal temperature measurement by rectal or esophageal probes must be used when diagnosing heat illness and during cooling. With rapid recognition and implementation of effective cooling, most patients suffering from exertional heat stroke will recover quickly and can be discharged home with instructions to rest and to avoid heat stress and exercise for a minimum of 48 hours; although, further research pertaining to return to activity is warranted.

  12. MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Jeng-Shane Lin

    2018-02-01

    Full Text Available Global warming is causing a negative impact on plant growth and adversely impacts on crop yield. MicroRNAs (miRNAs are critical in regulating the expression of genes involved in plant development as well as defense responses. The effects of miRNAs on heat-stressed Arabidopsis warrants further investigation. Heat stress increased the expression of miR160 and its precursors but considerably reduced that of its targets, ARF10, ARF16, and ARF17. To study the roles of miR160 during heat stress, transgenic Arabidopsis plants overexpressing miR160 precursor a (160OE and artificial miR160 (MIM160, which mimics an inhibitor of miR160, were created. T-DNA insertion mutants of miR160 targets were also used to examine their tolerances to heat stress. Results presented that overexpressing miR160 improved seed germination and seedling survival under heat stress. The lengths of hypocotyl elongation and rachis were also longer in 160OE than the wild-type (WT plants under heat stress. Interestingly, MIM160 plants showed worse adaption to heat. In addition, arf10, arf16, and arf17 mutants presented similar phenotypes to 160OE under heat stress to advance abilities of thermotolerance. Moreover, transcriptome and qRT-PCR analyses revealed that HSP17.6A, HSP17.6II, HSP21, and HSP70B expression levels were regulated by heat in 160OE, MIM160, arf10, arf16, and arf17 plants. Hence, miR160 altered the expression of the heat shock proteins and plant development to allow plants to survive heat stress.

  13. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows.

    Science.gov (United States)

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-06-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (Pdairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future.

  14. Buoyancy induced convective flow in porous media with heat source

    International Nuclear Information System (INIS)

    Hwang, I.T.

    1978-01-01

    An unbounded fluid layer in a porous medium with an internal heat source and uniformly heated from below is studied. The layer is in the gravitational field. Linear theory predicts that the disturbances of infinitesimal amplitude will start to grow when the Rayleigh number exceeds its critical value. These disturbances do not grow without limit; but by advecting heat and momentum, the disturbances alter their forms to achieve a finite amplitude. Just like infinitesimal amplitude disturbances the degeneracies of possible solutions persist for finite amplitude solutions. This study evaluates these various forms of solutions. The small parameter method of Poincare is used to treat the problem in successive order

  15. Altered association of transcriptionally active DNA with the nuclear-matrix after heat shock

    NARCIS (Netherlands)

    Sakkers, RJ; Brunsting, JF; Filon, AR; Kampinga, HH; Konings, AWT; Mullenders, LHF

    Purpose: Exposure of human cells to heat leads to denaturation and aggregation of proteins. Within the nucleus, it has been suggested that protein aggregation is linked to the: selective inhibition by hyperthermia of nucleotide excision repair in transcriptionally active genes. Tn this study it was

  16. Vortex Ring Interaction with a Heated Screen

    Science.gov (United States)

    Smith, Jason; Krueger, Paul S.

    2008-11-01

    Previous examinations of vortex rings impinging on porous screens has shown the reformation of the vortex ring with a lower velocity after passing through the screen, the creation of secondary vortices, and mixing. A heated screen could, in principle, alter the vortex-screen interaction by changing the local liquid viscosity and density. In the present investigation, a mechanical piston-cylinder vortex ring generator was used to create vortex rings in an aqueous sucrose solution. The rings impinged on a screen of horizontal wires that were heated using electrical current. The flow was visualized with food color and video imaging. Tests with and without heat were conducted at a piston stroke-to-jet diameter ratio of 4 and a jet Reynolds number (Re) of 1000. The vortex rings slowed after passing through the screen, but in tests with heat, they maintained a higher fraction of their before-screen velocity due to reduction in fluid viscosity near the wires. In addition, small ``fingers'' that developed on the front of the vortex rings as they passed through the screen exhibited positive buoyancy effects in the heated case.

  17. Altered hypothalamic protein expression in a rat model of Huntington's disease.

    Directory of Open Access Journals (Sweden)

    Wei-na Cong

    Full Text Available Huntington's disease (HD is a neurodegenerative disorder, which is characterized by progressive motor impairment and cognitive alterations. Changes in energy metabolism, neuroendocrine function, body weight, euglycemia, appetite function, and circadian rhythm can also occur. It is likely that the locus of these alterations is the hypothalamus. We used the HD transgenic (tg rat model bearing 51 CAG repeats, which exhibits similar HD symptomology as HD patients to investigate hypothalamic function. We conducted detailed hypothalamic proteome analyses and also measured circulating levels of various metabolic hormones and lipids in pre-symptomatic and symptomatic animals. Our results demonstrate that there are significant alterations in HD rat hypothalamic protein expression such as glial fibrillary acidic protein (GFAP, heat shock protein-70, the oxidative damage protein glutathione peroxidase (Gpx4, glycogen synthase1 (Gys1 and the lipid synthesis enzyme acylglycerol-3-phosphate O-acyltransferase 1 (Agpat1. In addition, there are significant alterations in various circulating metabolic hormones and lipids in pre-symptomatic animals including, insulin, leptin, triglycerides and HDL, before any motor or cognitive alterations are apparent. These early metabolic and lipid alterations are likely prodromal signs of hypothalamic dysfunction. Gaining a greater understanding of the hypothalamic and metabolic alterations that occur in HD, could lead to the development of novel therapeutics for early interventional treatment of HD.

  18. Heat stress causes spatially-distinct membrane re-modelling in K562 leukemia cells.

    Directory of Open Access Journals (Sweden)

    Gábor Balogh

    Full Text Available Cellular membranes respond rapidly to various environmental perturbations. Previously we showed that modulations in membrane fluidity achieved by heat stress (HS resulted in pronounced membrane organization alterations which could be intimately linked to the expression and cellular distribution of heat shock proteins. Here we examine heat-induced membrane changes using several visualisation methods. With Laurdan two-photon microscopy we demonstrate that, in contrast to the enhanced formation of ordered domains in surface membranes, the molecular disorder is significantly elevated within the internal membranes of cells preexposed to mild HS. These results were compared with those obtained by anisotropy, fluorescence lifetime and electron paramagnetic resonance measurements. All probes detected membrane changes upon HS. However, the structurally different probes revealed substantially distinct alterations in membrane heterogeneity. These data call attention to the careful interpretation of results obtained with only a single label. Subtle changes in membrane microstructure in the decision-making of thermal cell killing could have potential application in cancer therapy.

  19. Effect of Morinda citrifolia (Noni)-enriched diet on hepatic heat shock protein and lipid metabolism-related genes in heat stressed broiler chickens

    Science.gov (United States)

    Heat stress (HS) has been reported to alter fat deposition in broilers, however the underlying molecular mechanisms are not well-defined. The objectives of the current study were, therefore: (1) to determine the effects of acute (2 h) and chronic (3 weeks) HS on the expression of key molecular signa...

  20. Heat processing (HTST of umbu (Spondias tuberosa Arruda Câmara pulp

    Directory of Open Access Journals (Sweden)

    Emanuelle Araújo de Oliveira

    2011-12-01

    Full Text Available Umbu pulp is an important product in the economy of the northeastern region of Brazil, and its preservation can be ensured by heat treatment. A complete factorial design with 2 factors (time and temperature and 3 central points was used to verify the effect of the HTST process on the physicochemical, chemical, physical, microbiological, and sensory qualities of umbu pulps. The results showed that the heat treatments applied resulted in products without significant alterations on the physicochemical, chemical, and microbiological characteristics. With respect to color, the parameters L and a* were altered by increases in temperature indicating by darkening of color. The sensory evaluation indicated that a treatment of 88 °C for 10 seconds was the best processing condition due to the greater similarity of the resulting product to the reference sample (blanched pulp.

  1. The origin and history of alteration and carbonatization of the Yucca Mountain ignimbrites. Volume I

    International Nuclear Information System (INIS)

    Szymanski, J.S.

    1992-04-01

    This document contains Volume I of the report entitled The Origin and History of Alteration and Carbonatization of the Yucca Mountain Ignimbrites by Jerry S. Szymanski and a related correspondence with comments by Donald E. Livingston. In the Great Basin, the flow of terrestrial heat through the crust is affected in part by the flow of fluids. At Yucca Mountain, the role of fluids in crustal heat transport is manifested at the surface by youthful calcretes, sinters, bedrock veins, hydrothermal eruption breccias and hydrothermal alteration. This report discusses evidence for recent metasomatism high in the stratigraphic section at Yucca Mountain. Over the last several hundred years, episodes of calcite emplacement contemporaneous with local mafic volcanism have occurred at intervals that are not long in comparison with the isolation time required for a High-Level Radioactive Waste repository

  2. 75 FR 4331 - Seaway Regulations and Rules: Periodic Update, Various Categories

    Science.gov (United States)

    2010-01-27

    ... below. Regulatory Notices: Privacy Act: Anyone is able to search the electronic form of all comments... by winches, capstans or windlasses. All lines shall be led through closed chocks or fairleads...

  3. DNA polymerase inhibitors and heat alter fixation of postirradiation sublethal damage in L5178Y-S cells

    International Nuclear Information System (INIS)

    Kapiszewska, M.; Szumiel, I.; Lange, C.S.

    1988-01-01

    We have used the inhibitor of DNA polymerase alpha, aphidicolin (apc) (0.5 μg/ml for 1 h), or that of DNA polymerase beta, dideoxythymidine triphosphate (ddTTP) (5 μg/ml), as well as heat (15 min at 43 deg C) to examine fixation of sublethal damage (SLD) induced by X-rays in L5178Y-S (LY-S) cells. This cell line has the unique property of responding to split X-ray doses at 37 deg C by decreased survival. This effect was partly abolished by heating the cells before irradiation with the second dose; the protection was most pronounced when the cells were heated 30-120 min. after the first dose of radiation. Since similar changes in postirradiation survival occurred when ddTTP was applied, we suggest that heat induces a loss of polymerase beta activity. Apc gave a smaller protective effect. We interpreted these results as suggesting that mismatching takes place during DNA semiconservative replication or repair; inhibition of replication results in survival increase, by preventing misrepair. A proper timing of treatment with the inhibitors or heat is essential to obtain the sparing effect, i.e. to prevent SLD fixation. 27 refs., 3 figs., 1 tab. (author)

  4. PWR-blowdown heat transfer separate effects program

    International Nuclear Information System (INIS)

    Thomas, D.G.

    1976-01-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results are obtained from the Thermal-Hydraulic Test Facility (THTF). Supporting experiments are carried out in several additional test loops - the Forced Convection Test Facility (FCTF), an air-water loop, a transient steam-water loop, and a low-temperature water mockup of the THTF heater rod bundle. The studies to date are described

  5. Tidally Heated Terrestrial Exoplanets

    Science.gov (United States)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity

  6. Effects of heat stress on serum insulin, adipokines, AMP-activated protein kinase, and heat shock signal molecules in dairy cows*

    Science.gov (United States)

    Min, Li; Cheng, Jian-bo; Shi, Bao-lu; Yang, Hong-jian; Zheng, Nan; Wang, Jia-qi

    2015-01-01

    Heat stress affects feed intake, milk production, and endocrine status in dairy cows. The temperature-humidity index (THI) is employed as an index to evaluate the degree of heat stress in dairy cows. However, it is difficult to ascertain whether THI is the most appropriate measurement of heat stress in dairy cows. This experiment was conducted to investigate the effects of heat stress on serum insulin, adipokines (leptin and adiponectin), AMP-activated protein kinase (AMPK), and heat shock signal molecules (heat shock transcription factor (HSF) and heat shock proteins (HSP)) in dairy cows and to research biomarkers to be used for better understanding the meaning of THI as a bioclimatic index. To achieve these objectives, two experiments were performed. The first experiment: eighteen lactating Holstein dairy cows were used. The treatments were: heat stress (HS, THI average=81.7, n=9) and cooling (CL, THI average=53.4, n=9). Samples of HS were obtained on August 16, 2013, and samples of CL were collected on April 7, 2014 in natural conditions. The second experiment: HS treatment cows (n=9) from the first experiment were fed for 8 weeks from August 16, 2013 to October 12, 2013. Samples for moderate heat stress, mild heat stress, and no heat stress were obtained, respectively, according to the physical alterations of the THI. Results showed that heat stress significantly increased the serum adiponectin, AMPK, HSF, HSP27, HSP70, and HSP90 (Pheat-stressed dairy cows. When heat stress treatment lasted 8 weeks, a higher expression of HSF and HSP70 was observed under moderate heat stress. Serum HSF and HSP70 are sensitive and accurate in heat stress and they could be potential indicators of animal response to heat stress. We recommend serum HSF and HSP70 as meaningful biomarkers to supplement the THI and evaluate moderate heat stress in dairy cows in the future. PMID:26055916

  7. Methyl CpG level at distal part of heat-shock protein promoter HSP70 exhibits epigenetic memory for heat stress by modulating recruitment of POU2F1-associated nucleosome-remodeling deacetylase (NuRD) complex.

    Science.gov (United States)

    Kisliouk, Tatiana; Cramer, Tomer; Meiri, Noam

    2017-05-01

    Depending on its stringency, exposure to heat in early life leads to either resilience or vulnerability to heat stress later in life. We hypothesized that epigenetic alterations in genes belonging to the cell proteostasis pathways are attributed to long-term responses to heat stress. Epigenetic regulation of the mRNA expression of the molecular chaperone heat-shock protein (HSP) 70 (HSPA2) was evaluated in the chick hypothalamus during the critical period of thermal-control establishment on day 3 post-hatch and during heat challenge on day 10. Both the level and duration of HSP70 expression during heat challenge a week after heat conditioning were more pronounced in chicks conditioned under harsh versus mild temperature. Analyzing different segments of the promoter in vitro indicated that methylation of a distal part altered its transcriptional activity. In parallel, DNA-methylation level of this segment in vivo was higher in harsh- compared to mild-heat-conditioned chicks. Hypermethylation of the HSP70 promoter in high-temperature-conditioned chicks was accompanied by a reduction in both POU Class 2 Homeobox 1 (POU2F1) binding and recruitment of the nucleosome remodeling deacetylase (NuRD) chromatin-remodeling complex. As a result, histone H3 acetylation levels at the HSP70 promoter were higher in harsh-temperature-conditioned chicks than in their mild-heat-conditioned counterparts. These results suggest that methylation level of a distal part of the HSP70 promoter and POU2F1 recruitment may reflect heat-stress-related epigenetic memory and may be useful in differentiating between individuals that are resilient or vulnerable to stress. © 2017 International Society for Neurochemistry.

  8. Magnetic comparison of abiogenic and biogenic alteration products of lepidocrocite

    Science.gov (United States)

    Till, J. L.; Guyodo, Y.; Lagroix, F.; Ona-Nguema, G.; Brest, J.

    2014-06-01

    Lepidocrocite is a potentially important Fe-bearing precursor phase for the production of nanoscale Fe-oxide particles in the environment. We present a detailed magnetic characterization of various alteration products of lepidocrocite resulting from thermal dehydroxylation reactions and bacterially induced bioreduction and remineralization, accompanied by characterization with x-ray diffraction (XRD) and transmission electron microscopy. Dehydroxylation during annealing at moderate temperatures produces a topotactic transformation from lepidocrocite to maghemite when heated in an oxidizing atmosphere, or to magnetite when heated in a reducing atmosphere. The abiotic Fe-oxide products form an oriented framework of strongly interacting superparamagnetic crystallites and are characterized by a distinctive porous nanostructure observed by electron microscopy. Lepidocrocite bioreduction by the iron-reducing bacterium Shewanella putrefaciens ATCC 8071 produces nanoscale particles of a strongly magnetic phase. This Fe(II)-bearing mineral produced by bioreduction is highly crystalline and euhedral in shape, with a broad grain size distribution and is indicated by magnetic and XRD measurements to be a cation-excess magnetite. We highlight the distinguishing microscopic characteristics of magnetite from both abiotic and bacterially induced mineralization that should allow them to be identified in natural settings. Moreover, both mechanisms of alteration represent potential pathways for the direct formation of strongly magnetic fine-grained Fe-oxide particles in sedimentary environments.

  9. 30 CFR 57.6202 - Vehicles.

    Science.gov (United States)

    2010-07-01

    ... in progress; and (8) Secured while parked by having— (i) The brakes set; (ii) The wheels chocked if... multipurpose dry-chemical fire extinguishers or one such extinguisher and an automatic fire suppression system...

  10. Hydraulics of combining flow in a right-angled compound open ...

    Indian Academy of Sciences (India)

    rectangular channels using Navier–Stokes equations based on Reynolds Stress Turbulence ... The chocking condition and breakdown of junction were also ..... cross-section by the turbulence-induced helical flow cells that cause transverse ...

  11. Laser heat hyperalgesia is not a feature of non-specific chronic low back pain.

    Science.gov (United States)

    Franz, M; Ritter, A; Puta, C; Nötzel, D; Miltner, W H R; Weiss, T

    2014-11-01

    Based upon studies using mechanical pin-prick, pressure, electrical or heat stimuli applied to painful and/or pain-free parts of the body, chronic low back pain (CLBP) has been shown to be associated with generalized and enhanced pain sensitivity and altered brain responses to noxious stimuli. To date, no study examined the processing of noxious laser heat pulses, which are known to selectively excite thermal nociceptors located in the superficial skin layers, in CLBP. We studied laser heat pain thresholds (LHPTs) and nociceptive laser-evoked brain electrical potentials (LEPs) following skin stimulation of the pain-affected back and the pain-free abdomen using noxious laser heat stimulation in 16 CLBP patients and 16 age- and gender-matched healthy controls (HCs). We observed no statistically significant differences in LHPTs between CLBP patients and HCs, neither on the back nor on the abdomen. Furthermore, we found no evidence for altered brain responses between CLBP patients and HCs in response to stimulation of the back and abdomen in single-trial latencies and amplitudes of LEP components (N2, P2). The results are in contrast to previous studies showing hypersensitivity to different experimental noxious stimuli (e.g., contact heat). We argue that these discrepancies may be due to low spatial and temporal summation within the central nervous system following laser heat stimulation. Our results indicate important methodological differences between laser heat and thermode stimulation that should be taken into account when interpreting results, such as from thermal quantitative sensory testing. © 2014 European Pain Federation - EFIC®

  12. Study on Spheroidization and Related Heat Treatments of Medium Carbon Alloy Steels

    Directory of Open Access Journals (Sweden)

    Harisha S. R.

    2018-01-01

    Full Text Available The importance of medium carbon steels as engineering materials is reflected by the fact that out of the vast majority of engineering grade ferrous alloys available and used in the market today, a large proportion of them are from the family of medium carbon steels. Typically medium carbon steels have a carbon range of 0.25 to 0.65% by weight, and a manganese content ranging from 0.060 to 1.65% by weight. Medium carbon steels are more resistive to cutting, welding and forming as compared to low carbon steels. From the last two decades a number of research scholars reported the use of verity of heat treatments to tailor the properties of medium carbon steels. Spheroidizing is the novel industrial heat treatment employed to improve formability and machinability of medium/high carbon low alloy steels. This exclusive study covers procedure, the effects and possible outcomes of various heat treatments on medium carbon steels. In the present work, other related heat treatments like annealing and special treatments for property alterations which serve as pretreatments for spheroidizing are also reviewed. Medium carbon steels with property alterations by various heat treatment processes are finding increased responsiveness in transportation, aerospace, space, underwater along with other variegated fields. Improved tribological and mechanical properties consisting of impact resistance, stiffness, abrasion and strength are the main reasons for the increased attention of these steels in various industries. In the present scenario for the consolidation of important aspects of various heat treatments and effects on mechanical properties of medium carbons steel, a review of different research papers has been attempted. This review may be used as a guide to provide practical data for heat treatment industry, especially as a tool to enhance workability and tool life.

  13. Effects of passive heating on central blood volume and ventricular dimensions in humans

    DEFF Research Database (Denmark)

    Crandall, C.G.; Wilson, T.E.; Marving, J.

    2008-01-01

    Mixed findings regarding the effects of whole-body heat stress on central blood volume have been reported. This study evaluated the hypothesis that heat stress reduces central blood volume and alters blood volume distribution. Ten healthy experimental and seven healthy time control (i.e. non-heat...... stressed) subjects participated in this protocol. Changes in regional blood volume during heat stress and time control were estimated using technetium-99m labelled autologous red blood cells and gamma camera imaging. Whole-body heating increased internal temperature (> 1.0 degrees C), cutaneous vascular...... conductance (approximately fivefold), and heart rate (52 +/- 2 to 93 +/- 4 beats min(-1)), while reducing central venous pressure (5.5 +/- 07 to 0.2 +/- 0.6 mmHg) accompanied by minor decreases in mean arterial pressure (all P heat stress reduced the blood volume of the heart (18 +/- 2%), heart...

  14. Compact flat-panel gas-gap heat switch operating at 295 K

    Science.gov (United States)

    Krielaart, M. A. R.; Vermeer, C. H.; Vanapalli, S.

    2015-11-01

    Heat switches are devices that can change from a thermally conducting (on-) state to an insulating (off-) state whenever the need arises. They enable adaptive thermal management strategies in which cooling rates are altered either spatially or temporally, leading to a substantial reduction in the energy and mass budget of a large range of systems. State-of-the-art heat switches are only rarely employed in thermal system architectures, since they are rather bulky and have a limited thermal performance (expressed as the heat transfer ratio between the on- and off-state heat conductance). Using selective laser melting additive manufacturing technology, also known as 3D printing, we developed a compact flat-panel gas-gap heat switch that offers superior thermal performance, is simpler and more economic to produce and assemble, contains no moving parts, and is more reliable because it lacks welded joints. The manufactured rectangular panel heat switch has frontal device dimensions of 10 cm by 10 cm, thickness of 3.2 mm and weighs just 121 g. An off heat conductance of 0.2 W/K and on-off heat conductance ratio of 38 is observed at 295 K.

  15. Brain activity and fatigue during prolonged exercise in the heat

    DEFF Research Database (Denmark)

    Nielsen, Bodil; Hyldig, Tino; Bidstrup, F.

    2001-01-01

    We hypothesized that fatigue due to hyperthermia during prolonged exercise in the heat is in part related to alterations in frontal cortical brain activity. The electroencephalographic activity (EEG) of the frontal cortex of the brain was measured in seven cyclists [maximal O2 uptake (VO2max) 4...... min of exercise; P

  16. The Ca(2+) status of the endoplasmic reticulum is altered by induction of calreticulin expression in transgenic plants

    Science.gov (United States)

    Persson, S.; Wyatt, S. E.; Love, J.; Thompson, W. F.; Robertson, D.; Boss, W. F.; Brown, C. S. (Principal Investigator)

    2001-01-01

    To investigate the endoplasmic reticulum (ER) Ca(2+) stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca(2+)-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca(2+) uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent (45)Ca(2+) accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca(2+) ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of (45)Ca(2+) released, and a 2- to 3-fold increase in the amount of (45)Ca(2+) retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca(2+) pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca(2+)-containing medium to Ca(2+)-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca(2+) stores and thereby enhances the survival of plants grown in low Ca(2+) medium.

  17. Heat pipe heat exchangers in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  18. Geological investigation of hydrothermal alteration haloes in Toyoha geothermal field, Hakkaido

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, T; Furukawa, Y; Sugawara, K; Nishimura, S; Okabe, K

    1978-01-01

    In Toyoha geothermal field, the altered haloes are located along a tectonic line extending on a NW-SE direction along the Yunosawa River, east of the Toyoha Mine, a well known Neogene epithermal ore deposit. The investigation was carried out to clarify the stage of alteration, based on the altered haloes geologic structure, composition, and size. The Quaternary distribution at the eastern foot of Mt. Yotei was also studied. The field is covered by various kinds of Miocene sediments but the altered haloes are found only in an area covered by the Takinosawa formation and its older formations. Among the Yunosawa, Koyanagizawa and Takinosawa alteration haloes, the Yunosawa is the most important. It is composed of blocky silicified rock extending along a river and surrounding argillaceous rock. The silicified rock is composed primarily of quartz and subordinate alunite and opal, while the argillaceous rock consists chiefly of kaloin and is characterized by the occasional presence of sericite and montmorillinite. Fission-track and /sup 14/C methods were employed to determine the stage of alteration, but the results were unsatisfactory. The sublimation sulfur ore deposits in the Yunosawa and Koyanagizawa areas were comparatively small, but their original depositional features remain intact, indicating that geothermal activity continued until recently. Yunosawa is the most promising area as it is closely related to the tectonic line and also it has extraordinarily high ground temperature determined by a recent heat flow survey. Twenty-three references are provided.

  19. Heat dissipation during hovering and forward flight in hummingbirds.

    Science.gov (United States)

    Powers, Donald R; Tobalske, Bret W; Wilson, J Keaton; Woods, H Arthur; Corder, Keely R

    2015-12-01

    Flying animals generate large amounts of heat, which must be dissipated to avoid overheating. In birds, heat dissipation is complicated by feathers, which cover most body surfaces and retard heat loss. To understand how birds manage heat budgets during flight, it is critical to know how heat moves from the skin to the external environment. Hummingbirds are instructive because they fly at speeds from 0 to more than 12 m s(-1), during which they transit from radiative to convective heat loss. We used infrared thermography and particle image velocimetry to test the effects of flight speed on heat loss from specific body regions in flying calliope hummingbirds (Selasphorus calliope). We measured heat flux in a carcass with and without plumage to test the effectiveness of the insulation layer. In flying hummingbirds, the highest thermal gradients occurred in key heat dissipation areas (HDAs) around the eyes, axial region and feet. Eye and axial surface temperatures were 8°C or more above air temperature, and remained relatively constant across speeds suggesting physiological regulation of skin surface temperature. During hovering, birds dangled their feet, which enhanced radiative heat loss. In addition, during hovering, near-body induced airflows from the wings were low except around the feet (approx. 2.5 m s(-1)), which probably enhanced convective heat loss. Axial HDA and maximum surface temperature exhibited a shallow U-shaped pattern across speeds, revealing a localized relationship with power production in flight in the HDA closest to the primary flight muscles. We conclude that hummingbirds actively alter routes of heat dissipation as a function of flight speed.

  20. Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress

    DEFF Research Database (Denmark)

    Cabral, Carmina; Ravnskov, Sabine; Tringovska, Ivanka

    2016-01-01

    - and micronutrient concentrations in aboveground biomass; evaluation of AM fungal structures in roots and assessment of light-use efficiency of plants. Results AM increased grain number in wheat under heat-stress, and altered nutrient allocation and tiller nutrient composition. Heat increased number of arbuscules...... in wheat root, whereas number of vesicles and total colonization were unaffected. Heat increased photosystem II yield and the electron transfer rate, whereas non-photochemical quenching decreased during the first 2 days of heat-stress. Conclusions Nutrient allocation and –composition in wheat grown under...

  1. Sensible heat has significantly affected the global hydrological cycle over the historical period.

    Science.gov (United States)

    Myhre, G; Samset, B H; Hodnebrog, Ø; Andrews, T; Boucher, O; Faluvegi, G; Fläschner, D; Forster, P M; Kasoar, M; Kharin, V; Kirkevåg, A; Lamarque, J-F; Olivié, D; Richardson, T B; Shawki, D; Shindell, D; Shine, K P; Stjern, C W; Takemura, T; Voulgarakis, A

    2018-05-15

    Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. Here we show, using a range of climate modelling results, that changes in sensible heat are the dominant contributor to the present global-mean precipitation change since preindustrial time, because the radiative impact of forcings and feedbacks approximately compensate. The model results show a dissimilar influence on sensible heat and precipitation from various drivers of climate change. Due to its strong atmospheric absorption, black carbon is found to influence the sensible heat very differently compared to other aerosols and greenhouse gases. Our results indicate that this is likely caused by differences in the impact on the lower tropospheric stability.

  2. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    Science.gov (United States)

    John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.

    2008-01-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8??km3 Osceola Mudflow (5600??y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1??km of the edifice axis, developed chiefly in porous breccias. The edifice was capped by a steam-heated alteration zone, most of which resulted from condensation of fumarolic vapor and oxidation of H2S in the unsaturated zone above the water table. Weakly developed smectite-pyrite alteration extended into

  3. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells.

    Science.gov (United States)

    Centomani, Isabella; Sgobba, Alessandra; D'Addabbo, Pietro; Dipierro, Nunzio; Paradiso, Annalisa; De Gara, Laura; Dipierro, Silvio; Viggiano, Luigi; de Pinto, Maria Concetta

    2015-11-01

    The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.

  4. Estimate of K-functionals and modulus of smoothness constructed ...

    Indian Academy of Sciences (India)

    2016-08-26

    functional and a modulus of smoothness for the Dunkl transform on Rd. Author Affiliations. M El Hamma1 R Daher1. Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco. Dates.

  5. Heat stress effects on the cumulus cells surrounding the bovine oocyte during maturation: altered matrix metallopeptidase 9 and progesterone production.

    Science.gov (United States)

    Rispoli, L A; Payton, R R; Gondro, C; Saxton, A M; Nagle, K A; Jenkins, B W; Schrick, F N; Edwards, J L

    2013-08-01

    When the effects of heat stress are detrimental during maturation, cumulus cells are intimately associated with the oocyte. To determine the extent to which heat stress affects these cells, in this study, transcriptome profiles of the cumulus that surrounded control and heat-stressed oocytes (41 °C during the first 12 h only and then shifted back to 38.5 °C) during in vitro maturation (IVM) were compared using Affymetrix bovine microarrays. The comparison of cumulus-derived profiles revealed a number of transcripts whose levels were increased (n=11) or decreased (n=13) ≥ twofold after heat stress exposure (P1.7-fold decrease in the protein levels of latent matrix metallopeptidase 9 (proMMP9). Heat-induced reductions in transcript levels were noted at 6 h IVM with reductions in proMMP9 protein levels at 18 h IVM (P=0.0002). Independent of temperature, proMMP9 levels at 24 h IVM were positively correlated with the development rate of blastocysts (R²=0.36; P=0.002). The production of progesterone increased during maturation; heat-induced increases were evident by 12 h IVM (P=0.002). Both MMP9 and progesterone are associated with the developmental competence of the oocyte; thus, it seems plausible for some of the negative consequences of heat stress on the cumulus-oocyte complex to be mediated through heat-induced perturbations occurring in the surrounding cumulus.

  6. The isothermal conductivity improvement in zirconia-based ceramics under 24 GHz microwave heating

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Ayano, Keiko; Teranishi, Takashi; Hayashi, Hidetaka

    2014-01-01

    Abstract Under 24-GHz millimetre-wave irradiation heating ionic conductivity of zirconia base ceramics was up to 20 times higher than that of a conventionally-heated sample at the same temperature of 400 °C. The degree of enhancement could be altered by changing the stabilising atom from Y to Yb. Enhancement of ionic conduction was prominent in the setup condition of larger self-heating ratio and larger MMW absorbing materials. The isothermal improvement of ionic conductivity under MMW irradiation would be ascribed to the non-thermal effect. - Highlights: • Under millimetre-wave irradiation heating ionic conductivity of zirconia ceramics was examined. • It was up to 20 times higher than that of a conventionally heating condition. • The activation process was examined in relation to the non-thermal effects. • The operation temperature could be lowered while maintaining the ionic conductivity

  7. The Impact of Urban Growth and Climate Change on Heat Stress in an Australian City

    Science.gov (United States)

    Chapman, S.; Mcalpine, C. A.; Thatcher, M. J.; Salazar, A.; Watson, J. R.

    2017-12-01

    Over half of the world's population lives in urban areas. Most people will therefore be exposed to climate change in an urban environment. One of the climate risks facing urban residents is heat stress, which can lead to illness and death. Urban residents are at increased risk of heat stress due to the urban heat island effect. The urban heat island is a modification of the urban environment and increases temperatures on average by 2°C, though the increase can be much higher, up to 8°C when wind speeds and cloud cover are low. The urban heat island is also expected to increase in the future due to urban growth and intensification, further exacerbating urban heat stress. Climate change alters the urban heat island due to changes in weather (wind speed and cloudiness) and evapotranspiration. Future urban heat stress will therefore be affected by urban growth and climate change. The aim of this study was to examine the impact of urban growth and climate change on the urban heat island and heat stress in Brisbane, Australia. We used CCAM, the conformal cubic atmospheric model developed by the CSIRO, to examine temperatures in Brisbane using scenarios of urban growth and climate change. We downscaled the urban climate using CCAM, based on bias corrected Sea Surface Temperatures from the ACCESS1.0 projection of future climate. We used Representative Concentration Pathway (RCP) 8.5 for the periods 1990 - 2000, 2049 - 2060 and 2089 - 2090 with current land use and an urban growth scenario. The present day climatology was verified using weather station data from the Australian Bureau of Meteorology. We compared the urban heat island of the present day with the urban heat island with climate change to determine if climate change altered the heat island. We also calculated heat stress using wet-bulb globe temperature and apparent temperature for the climate change and base case scenarios. We found the urban growth scenario increased present day temperatures by 0.5°C in the

  8. Heat Transfer in Health and Healing.

    Science.gov (United States)

    Diller, Kenneth R

    2015-10-01

    Our bodies depend on an exquisitely sensitive and refined temperature control system to maintain a state of health and homeostasis. The exceptionally broad range of physical activities that humans engage in and the diverse array of environmental conditions we face require remarkable strategies and mechanisms for regulating internal and external heat transfer processes. On the occasions for which the body suffers trauma, therapeutic temperature modulation is often the approach of choice for reversing injury and inflammation and launching a cascade of healing. The focus of human thermoregulation is maintenance of the body core temperature within a tight range of values, even as internal rates of energy generation may vary over an order of magnitude, environmental convection, and radiation heat loads may undergo large changes in the absence of any significant personal control, surface insulation may be added or removed, all occurring while the body's internal thermostat follows a diurnal circadian cycle that may be altered by illness and anesthetic agents. An advanced level of understanding of the complex physiological function and control of the human body may be combined with skill in heat transfer analysis and design to develop life-saving and injury-healing medical devices. This paper will describe some of the challenges and conquests the author has experienced related to the practice of heat transfer for maintenance of health and enhancement of healing processes.

  9. The Ca2+ Status of the Endoplasmic Reticulum Is Altered by Induction of Calreticulin Expression in Transgenic Plants1

    Science.gov (United States)

    Persson, Staffan; Wyatt, Sarah E.; Love, John; Thompson, William F.; Robertson, Dominique; Boss, Wendy F.

    2001-01-01

    To investigate the endoplasmic reticulum (ER) Ca2+ stores in plant cells, we generated tobacco (Nicotiana tabacum; NT1) suspension cells and Arabidopsis plants with altered levels of calreticulin (CRT), an ER-localized Ca2+-binding protein. NT1 cells and Arabidopsis plants were transformed with a maize (Zea mays) CRT gene in both sense and antisense orientations under the control of an Arabidopsis heat shock promoter. ER-enriched membrane fractions from NT1 cells were used to examine how altered expression of CRT affects Ca2+ uptake and release. We found that a 2.5-fold increase in CRT led to a 2-fold increase in ATP-dependent 45Ca2+ accumulation in the ER-enriched fraction compared with heat-shocked wild-type controls. Furthermore, after treatment with the Ca2+ ionophore ionomycin, ER microsomes from NT1 cells overproducing CRT showed a 2-fold increase in the amount of 45Ca2+ released, and a 2- to 3-fold increase in the amount of 45Ca2+ retained compared with wild type. These data indicate that altering the production of CRT affects the ER Ca2+ pool. In addition, CRT transgenic Arabidopsis plants were used to determine if altered CRT levels had any physiological effects. We found that the level of CRT in heat shock-induced CRT transgenic plants correlated positively with the retention of chlorophyll when the plants were transferred from Ca2+-containing medium to Ca2+-depleted medium. Together these data are consistent with the hypothesis that increasing CRT in the ER increases the ER Ca2+ stores and thereby enhances the survival of plants grown in low Ca2+ medium. PMID:11457960

  10. Measurement of the nonaxisymmetric heat load distribution on the first wall of TFTR due to locked modes

    International Nuclear Information System (INIS)

    Janos, A.C.; Fredrickson, E.; McGuire, K.M.; Nagayama, Y.; Owens, D.K.

    1992-01-01

    The first wall of TFTR is covered in large part (23%) by an inner-wall bumper limiter which is the primary power handling structure in TFTR. The limiter is comprised of more than 2000 tiles, and is instrumented with a large number (>100) of thermocouples in a two-dimensional (2D) array, primarily for protection of the wall. While only about 5% of the tiles are monitored, this thermocouple system is nevertheless capable of mapping details in the nonaxisymmetric, as well as symmetric, heat load patterns encountered under different conditions. In particular, helical heating patterns are observed in discharges which have locked modes. The helical patterns clearly match the expected trajectories based on the m/n mode numbers obtained from Mirnov coils (m/n=2/1 and 4/1), so that the thermocouple system can and was used to identify the existence and mode number of a locked mode. While TFTR discharges rarely suffer from locked modes, locked modes always alter the heating pattern. The locked modes are found to very significantly redistribute the heat load for both ohmic and NBI heated discharges. Locked modes can make what were the coldest areas into the hottest areas, and vice versa. Locked modes also can alter the heat pattern resulting from the frequent disruptions which occur as a result of a locked mode

  11. Precision heat forming of tetrafluoroethylene tubing

    Science.gov (United States)

    Ruiz, W. V.; Thatcher, C. S. (Inventor)

    1981-01-01

    An invention that provides a method of altering the size of tetrafluoroethylene tubing which is only available in limited combination of wall thicknesses and diameter are discussed. The method includes the steps of sliding the tetrafluoroethylene tubing onto an aluminum mandrel and clamping the ends of the tubing to the mandrel by means of clamps. The tetrafluorethylene tubing and mandrel are then placed in a supporting coil which with the mandrel and tetrafluorethylene tubing are then positioned in a insulated steel pipe which is normally covered with a fiber glass insulator to smooth out temperature distribution therein. The entire structure is then placed in an event which heats the tetrafluorethylene tubing which is then shrunk by the heat to the outer dimension of the aluminum mandrel. After cooling the aluminum mandrel is removed from the newly sized tetrafluorethylene tubing by a conventional chemical milling process.

  12. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    Science.gov (United States)

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  13. Autonomy and Proximity in Household Heating Practices: the Case of Wood-Burning Stoves

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf

    2008-01-01

    alter infrastructural conditions in order to pursue personal strategies for domestic heating and comfort, personal strategies that may have their root in economic considerations or may regard the construction of homeliness and sensuous pleasure - referring in turn to broader socio-cultural values...

  14. Brain mapping after prolonged cycling and during recovery in the heat.

    Science.gov (United States)

    De Pauw, Kevin; Roelands, Bart; Marusic, Uros; Tellez, Helio Fernandez; Knaepen, Kristel; Meeusen, Romain

    2013-11-01

    The aim of this study was to determine the effect of prolonged intensive cycling and postexercise recovery in the heat on brain sources of altered brain oscillations. After a max test and familiarization trial, nine trained male subjects (23 ± 3 yr; maximal oxygen uptake = 62.1 ± 5.3 ml·min(-1)·kg(-1)) performed three experimental trials in the heat (30°C; relative humidity 43.7 ± 5.6%). Each trial consisted of two exercise tasks separated by 1 h. The first was a 60-min constant-load trial, followed by a 30-min simulated time trial (TT1). The second comprised a 12-min simulated time trial (TT2). After TT1, active recovery (AR), passive rest (PR), or cold water immersion (CWI) was applied for 15 min. Electroencephalography was measured at baseline and during postexercise recovery. Standardized low-resolution brain electromagnetic tomography was applied to accurately pinpoint and localize altered electrical neuronal activity. After CWI, PR and AR subjects completed TT2 in 761 ± 42, 791 ± 76, and 794 ± 62 s, respectively. A prolonged intensive cycling performance in the heat decreased β activity across the whole brain. Postexercise AR and PR elicited no significant electrocortical differences, whereas CWI induced significantly increased β3 activity in Brodmann areas (BA) 13 (posterior margin of insular cortex) and BA 40 (supramarginal gyrus). Self-paced prolonged exercise in the heat seems to decrease β activity, hence representing decreased arousal. Postexercise CWI increased β3 activity at BA 13 and 40, brain areas involved in somatosensory information processing.

  15. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  16. Adaptations and mechanisms of human heat acclimation: Applications for competitive athletes and sports.

    Science.gov (United States)

    Périard, J D; Racinais, S; Sawka, M N

    2015-06-01

    Exercise heat acclimation induces physiological adaptations that improve thermoregulation, attenuate physiological strain, reduce the risk of serious heat illness, and improve aerobic performance in warm-hot environments and potentially in temperate environments. The adaptations include improved sweating, improved skin blood flow, lowered body temperatures, reduced cardiovascular strain, improved fluid balance, altered metabolism, and enhanced cellular protection. The magnitudes of adaptations are determined by the intensity, duration, frequency, and number of heat exposures, as well as the environmental conditions (i.e., dry or humid heat). Evidence is emerging that controlled hyperthermia regimens where a target core temperature is maintained, enable more rapid and complete adaptations relative to the traditional constant work rate exercise heat acclimation regimens. Furthermore, inducing heat acclimation outdoors in a natural field setting may provide more specific adaptations based on direct exposure to the exact environmental and exercise conditions to be encountered during competition. This review initially examines the physiological adaptations associated with heat acclimation induction regimens, and subsequently emphasizes their application to competitive athletes and sports. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Lunar heat flow: Regional prospective of the Apollo landing sites

    Science.gov (United States)

    Siegler, M. A.; Smrekar, S. E.

    2014-01-01

    reexamine the Apollo Heat Flow Experiment in light of new orbital data. Using three-dimensional thermal conduction models, we examine effects of crustal thickness, density, and radiogenic abundance on measured heat flow values at the Apollo 15 and 17 sites. These models show the importance of regional context on heat flux measurements. We find that measured heat flux can be greatly altered by deep subsurface radiogenic content and crustal density. However, total crustal thickness and the presence of a near-surface radiogenic-rich ejecta provide less leverage, representing only minor (<1.5 mW m-2) perturbations on surface heat flux. Using models of the crust implied by Gravity Recovery and Interior Laboratory results, we found that a roughly 9-13 mW m-2 mantle heat flux best approximate the observed heat flux. This equates to a total mantle heat production of 2.8-4.1 × 1011 W. These heat flow values could imply that the lunar interior is slightly less radiogenic than the Earth's mantle, perhaps implying that a considerable fraction of terrestrial mantle material was incorporated at the time of formation. These results may also imply that heat flux at the crust-mantle boundary beneath the Procellarum potassium, rare earth element, and phosphorus (KREEP) Terrane (PKT) is anomalously elevated compared to the rest of the Moon. These results also suggest that a limited KREEP-rich layer exists beneath the PKT crust. If a subcrustal KREEP-rich layer extends below the Apollo 17 landing site, required mantle heat flux can drop to roughly 7 mW m-2, underlining the need for future heat flux measurements outside of the radiogenic-rich PKT region.

  18. A Preliminary Heat Flow Model for Cooling a Batholith near Ica, Peru

    Science.gov (United States)

    Gonzalez, L. U.; Clausen, B. L.; Molano, J. C.; Martinez, A. M.; Poma, O.

    2014-12-01

    This research models the cooling of a suite in the Linga Super-unit located at the north end of the Arequipa segment in the Cretaceous Peruvian Coastal Batholith. The monzogabbro to granite Linga suite is approximately 50 km long and 15 km wide, with an estimated vertical extent of about 5 km originally intruded to a depth of 3 km. The emplacement was in andesitic volcanics on the west and the Pampahuasi diorite Super-unit on the east and has incorporated earlier gabbroic bodies. The Linga suite is thought to be the result of a sequence of three pulses: an elongate unit to the west then two elliptical units to the northeast and southeast. The data for modeling comes from field observations on internal and external contacts, some well-defined magma chamber walls and roof, pendant and stoped blocks, magma chamber zoning, the nature and distribution of enclaves and xenoliths, magmatic fabric, evidences of magma mingling, rock porosity, mineralogical associations in metamorphic aureoles, extensive mineralization and brecciated conduits, and the types of hydrothermal alteration varying with distance from contacts. More than forty hand samples, thin sections, and geochemical analyses were used to estimate water content, magma and country rock temperature, liquid density, and viscosity. Further data will come from: zircon U-Pb ages for country rock and magma batch timeframes, fluid inclusions for magma pressure and temperature, and δ18O data for source of hydrothermal fluids. Simple heat conduction calculations using MATLAB and HEAT 3D for a single tabular intrusion estimated a cooling time to solidus of about 300 k.y. More complex modeling includes magma convection and multiple intrusions. Extensive veining and pervasive alteration suggested the use of HYDROTHERM to model possible additional heat flow effects from hydrothermal fluids. Extensive propylitic and significant potassic alteration were observed and, with TerraSpec infrared spectroscopy to identify

  19. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    Science.gov (United States)

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat

  20. Refrigerant charge, pressure drop, and condensation heat transfer in flattened tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M J; Newell, T A; Chato, J C [University of Illinois, Urbana, IL (United States). Dept. of Mechanical and Industrial Engineering; Infante Ferreira, C A [Delft University of Technology (Netherlands). Laboratory for Refrigeration and Indoor Climate Control

    2003-06-01

    Horizontal smooth and microfinned copper tubes with an approximate diameter of 9 mm were successively flattened in order to determine changes in flow field characteristics as a round tube is altered into a flattened tube profile. Refrigerants R134a and R410A were investigated over a mass flux range from 75 to 400 kg m{sup -2} s{sup -}2{sup 1} and a quality range from approximately 10-80%. For a given refrigerant mass flow rate, the results show that a significant reduction in refrigerant charge is possible. Pressure drop results show increases of pressure drop at a given mass flux and quality as a tube profile is flattened. Heat transfer results indicate enhancement of the condensation heat transfer coefficient as a tube is flattened. Flattened tubes with an 18{sup o} helix angle displayed the highest heat transfer coefficients. Smooth tubes and axial microfin tubes displayed similar levels of heat transfer enhancement. Heat transfer enhancement is dependent on the mass flux, quality and tube profile. (author)

  1. Experimental investigation of air side heat transfer and fluid flow performances of multi-port serpentine cross-flow mesochannel heat exchanger

    International Nuclear Information System (INIS)

    Siddiqui, Faisal A.; Dasgupta, Engr Sarbadaman; Fartaj, Amir

    2012-01-01

    Highlights: ► Air side heat transfer and flow characteristics of mesochannel cross-flow heat exchanger are studied experimentally. ► Hot ethylene glycol–water mixture (50:50) at constant mass flow rate is used against varying air flow. ► Air side heat transfer and fluid flow key parameters such as Nusselt number, Colburn factor, friction factor are obtained. ► General correlations are proposed for air side heat transfer and fluid flow parameters. - Abstract: Air side force convective heat transfer and flow characteristics of cross-flow mesochannel heat exchanger are investigated experimentally. A series of experiments representing 36 different operating conditions have been conducted on a finned mesochannel heat exchanger through the fully automated dynamic single-phase experimental facility which is capable of handling a wide variety of working fluids in air-to-liquid cross-flow orientation. The mesochannel heat exchanger is made of 15 aluminum slabs with arrays of wavy fins between slabs; 68 one millimeter circular diameter port located at each slab, and the air side frontal area of 304-mm × 304-mm. The ethylene glycol–water mixture as the working fluid in the liquid side was forced to flow through mesochannels maintaining constant inlet temperature and flow rate at 74 °C and 0.0345 kg/s respectively whereas the inlet flowing air into the arrays of wavy fins was changed at four different temperature levels from 28 °C to 43 °C. Frontal air velocity was altered in nine steps from 3 m/s to 11 m/s at each temperature level corresponding range of Reynolds number 752 a a ) and Colburn factor (j a ) were found higher in comparison with other studies.

  2. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    Science.gov (United States)

    John, David A.; Sisson, Thomas W.; Breit, George N.; Rye, Robert O.; Vallance, James W.

    2008-08-01

    Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8 km 3 Osceola Mudflow (5600 y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100 y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1 km of the edifice axis, developed chiefly in porous breccias

  3. Flow and heat transfer behaviour of nanofluids in microchannels

    Directory of Open Access Journals (Sweden)

    James Bowers

    2018-04-01

    Full Text Available Flow and heat transfer of aqueous based silica and alumina nanofluids in microchannels were experimentally investigated. The measured friction factors were higher than conventional model predictions at low Reynolds numbers particularly with high nanoparticle concentrations. A decrease in the friction factor was observed with increasing Reynolds number, possibly due to the augmentation of nanoparticle aggregate shape arising from fluid shear and alteration of local nanoparticle concentration and nanofluid viscosity. Augmentation of the silica nanoparticle morphology by fluid shear may also have affected the friction factor due to possible formation of a core/shell structure of the particles. Measured thermal conductivities of the silica nanofluids were in approximate agreement with the Maxwell-Crosser model, whereas the alumina nanofluids only showed slight enhancements. Enhanced convective heat transfer was observed for both nanofluids, relative to their base fluids (water, at low particle concentrations. Heat transfer enhancement increased with increasing Reynolds number and microchannel hydraulic diameter. However, the majority of experiments showed a larger increase in pumping power requirements relative to heat transfer enhancements, which may hinder the industrial uptake of the nanofluids, particularly in confined environments, such as Micro Electro-Mechanical Systems (MEMS. Keywords: Nanofluid, Microchannel, Heat transfer, Pressure drop, Friction factor, Thermal conductivity, Viscosity

  4. The Influence of Heat Flux Boundary Heterogeneity on Heat Transport in Earth's Core

    Science.gov (United States)

    Davies, C. J.; Mound, J. E.

    2017-12-01

    Rotating convection in planetary systems can be subjected to large lateral variations in heat flux from above; for example, due to the interaction between the metallic cores of terrestrial planets and their overlying silicate mantles. The boundary anomalies can significantly reorganise the pattern of convection and influence global diagnostics such as the Nusselt number. We have conducted a suite of numerical simulations of rotating convection in a spherical shell geometry comparing convection with homogeneous boundary conditions to that with two patterns of heat flux variation at the outer boundary: one hemispheric pattern, and one derived from seismic tomographic imaging of Earth's lower mantle. We consider Ekman numbers down to 10-6 and flux-based Rayleigh numbers up to 800 times critical. The heterogeneous boundary conditions tend to increase the Nusselt number relative to the equivalent homogeneous case by altering both the flow and temperature fields, particularly near the top of the convecting region. The enhancement in Nusselt number tends to increase as the amplitude and wavelength of the boundary heterogeneity is increased and as the system becomes more supercritical. In our suite of models, the increase in Nusselt number can be as large as 25%. The slope of the Nusselt-Rayleigh scaling also changes when boundary heterogeneity is included, which has implications when extrapolating to planetary conditions. Additionally, regions of effective thermal stratification can develop when strongly heterogeneous heat flux conditions are applied at the outer boundary.

  5. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  6. Thermal Expansivity Between 150 and 800°C of Hydrothermally Altered Conduit Dyke Samples from USDP-4 Drill Core (Mt Unzen, Shimabara, Japan)

    Science.gov (United States)

    Yilmaz, T. I.; Hess, K. U.; Vasseur, J.; Wadsworth, F. B.; Gilg, H. A.; Nakada, S.; Dingwell, D. B.

    2017-12-01

    When hot magma intrudes the crust, the surrounding rocks expand. Similarly, the cooling magma contracts. The expansion and contraction of these multiphase materials is not simple and often requires empirical constraint. Therefore, we constrained the thermal expansivity of Unzen dome and conduit samples using a NETZSCH® DIL 402C. Following experiments, those samples were scanned using a Phoenix v|tome|x m to observe the cracks that may have developed during the heating and cooling. The dome samples do not show petrological or chemical signs of alteration. However, the alteration of the conduit dykes is represented by the occurrence of the main secondary phases such as chlorite, sulfides, carbonates, R1 (Reichweite parameter) illite-smectite, and kaolinite. These alteration products indicate an (I) early weak to moderate argillic magmatic alteration, and a (II) second stage weak to moderate propylitic hydrothermal alteration. The linear thermal expansion coefficient aL of the dome material is K-1 between 150° and 800°C and shows a sharp peak of up to K-1 around the alpha-beta-quartz-transition ( 573°C). In contrast, aL of the hydrothermally altered conduit samples starts to increase around 180° and reaches K-1 at 400°C. We interpret this effect as being due to the water content of the kaolinite and the R1 illite-smectite, which induces larger expansions per degree temperature change. Furthermore, the altered conduit samples show a more pronounced increases of aL between 500 and 650°C of up to peaks at K-1, which is generated by the breakdown of chlorite, iron-rich dolomite solid solutions, calcite, and pyrite. We use a 1D conductive model of heat transfer to explore how the country rock around the Unzen conduit zone would heat up after intrusion. In turn, we convert these temperature profiles to thermal stress profiles, assuming the edifice is largely undeformable. We show that these high linear thermal expansion coefficients of the hydrothermally altered

  7. Heat pipes in modern heat exchangers

    International Nuclear Information System (INIS)

    Vasiliev, Leonard L.

    2005-01-01

    Heat pipes are very flexible systems with regard to effective thermal control. They can easily be implemented as heat exchangers inside sorption and vapour-compression heat pumps, refrigerators and other types of heat transfer devices. Their heat transfer coefficient in the evaporator and condenser zones is 10 3 -10 5 W/m 2 K, heat pipe thermal resistance is 0.01-0.03 K/W, therefore leading to smaller area and mass of heat exchangers. Miniature and micro heat pipes are welcomed for electronic components cooling and space two-phase thermal control systems. Loop heat pipes, pulsating heat pipes and sorption heat pipes are the novelty for modern heat exchangers. Heat pipe air preheaters are used in thermal power plants to preheat the secondary-primary air required for combustion of fuel in the boiler using the energy available in exhaust gases. Heat pipe solar collectors are promising for domestic use. This paper reviews mainly heat pipe developments in the Former Soviet Union Countries. Some new results obtained in USA and Europe are also included

  8. 1090-IJBCS-Article-Fatiha Zidane

    African Journals Online (AJOL)

    DR GATSING

    1Laboratoire Science de l'Eau et d'Environnement, Département de Chimie, Faculté des Sciences Ain Chock,. Université ... élevée en divers types de polluants. ... Mots clés: traitement, hydroxyde, coagulation, demande chimique en oxygène.

  9. Color alteration of the paint used for iris painting in ocular prostheses

    Directory of Open Access Journals (Sweden)

    Aline Úrsula Rocha Fernandes

    2009-12-01

    Full Text Available The purpose of this study was to assess color alteration of the paints used for iris painting in artificial eyes. Five disks of heat cured acrylic resin were confectioned by microwave energy for each paint analyzed, in a total of 40 specimens. Each specimen consisted of a colorless acrylic resin disk and another of equal size, of scleral white colored acrylic resin, with the painting interposed between the two disks. The specimens were submitted to an accelerated aging process in a chamber under ultraviolet radiation for 1,008 hours. To assess color variation, a reflective spectrophotometer was used. The results were statistically analyzed by ANOVA and the Tukey test (p < 0.05. All the paints underwent chromatic alteration. The oil paint presented the highest resistance to accelerated aging.

  10. Hydrodynamical tests with an original PWR heat removal pump

    International Nuclear Information System (INIS)

    Wietstock, P.

    1984-01-01

    GKSS-Forschungszentrum performes hydrodynamical tests with an original PWR heat removal pump to analyse the influences of fluid parameters on the capacity and cavitation behavior of the pump in order to get further improvements of the quantification of the reached safety-level. It can be concluded, that in case of the tested heat removal pump the additional loads during transition from cavitation free operation into fully cavitation for the investigated operation point with 980 m 3 /h will be smaller than the alteration of loads during passing through the total characteristic. The results from cavitation tests for other operation points indicate, that this very important consequence especially for accident operation will be valid for the total specified pump flow area. (orig.)

  11. Effect of thermal interface on heat flow in carbon nanofiber composites.

    Science.gov (United States)

    Gardea, F; Naraghi, M; Lagoudas, D

    2014-01-22

    The thermal transport process in carbon nanofiber (CNF)/epoxy composites is addressed through combined micromechanics and finite element modeling, guided by experiments. The heat exchange between CNF constituents and matrix is studied by explicitly accounting for interface thermal resistance between the CNFs and the epoxy matrix. The effects of nanofiber orientation and discontinuity on heat flow and thermal conductivity of nanocomposites are investigated through simulation of the laser flash experiment technique and Fourier's model of heat conduction. Our results indicate that when continuous CNFs are misoriented with respect to the average temperature gradient, the presence of interfacial resistance does not affect the thermal conductivity of the nanocomposites, as most of the heat flow will be through CNFs; however, interface thermal resistance can significantly alter the patterns of heat flow within the nanocomposite. It was found that very high interface resistance leads to heat entrapment at the interface near to the heat source, which can promote interface thermal degradation. The magnitude of heat entrapment, quantified via the peak transient temperature rise at the interface, in the case of high thermal resistance interfaces becomes an order of magnitude more intense as compared to the case of low thermal resistance interfaces. Moreover, high interface thermal resistance in the case of discontinuous fibers leads to a nearly complete thermal isolation of the fibers from the matrix, which will marginalize the contribution of the CNF thermal conductivity to the heat transfer in the composite.

  12. Resistive Heating and Ion Drag in Saturn's Thermosphere

    Science.gov (United States)

    Vriesema, Jess William; Koskinen, Tommi; Yelle, Roger V.

    2017-10-01

    One of the most puzzling observations of the jovian planets is that the thermospheres of Jupiter, Saturn, Uranus and Neptune are all several times hotter than solar heating can account for (Strobel and Smith 1973; Yelle and Miller 2004; Muller-Wodarg et al. 2006). On Saturn, resistive heating appears sufficient to explain these temperatures in auroral regions, but the particular mechanism(s) responsible for heating the lower latitudes remains unclear. The most commonly proposed heating mechanisms are breaking gravity waves and auroral heating at the poles followed by redistribution of energy to mid-and low latitudes. Both of these energy sources are potentially important but also come with significant problems. Wave heating would have to be continuous and global to produce consistently elevated temperatures and the strong Coriolis forces coupled with polar ion drag appear to hinder redistribution of auroral energy (see Strobel et al. 2016 for review). Here we explore an alternative: wind-driven electrodynamics that can alter circulation and produce substantial heating outside of the auroral region. Smith (2013) showed this in-situ mechanism to be potentially significant in Jupiter’s thermosphere. We present new results from an axisymmetric, steady-state model that calculates resistive (Joule) heating rates through rigorous solutions of the electrodynamic equations for the coupled neutral atmosphere and ionosphere of Saturn. At present, we assume a dipole magnetic field and neglect any contributions from the magnetosphere. We use ion mixing ratios from the model of Kim et al. (2014) and the observed temperature-pressure profile from Koskinen et al. (2015) to calculate the generalized conductivity tensor as described by Koskinen et al. (2014). We calculate the current density under the assumption that it has no divergence and use it to calculate the resistive heating rates and ion drag. Our results suggest that resistive heating and ion drag at low latitudes likely

  13. Alteration of azurite into paratacamite at the St. Alessandro Church (Lasnigo, Italy

    Directory of Open Access Journals (Sweden)

    Giovanni Cavallo

    2009-01-01

    Full Text Available Many case studies report the alteration of the pigment azurite into paratacamite on wall paintings in Europe (for instance in Italy, Portugal, Austria. The analytical research performed on the 16th century wall paintings in the St. Alessandro church at Lasnigo (North Italy pointed out an irregular and inhomogeneous alteration of azurite. It is well known that azurite can transform into malachite when the humidity is high and in alkaline conditions and into basic copper chlorides (atacamite, paratacamite, clinoatacamite when solutions containing chlorine ions are present. X-ray diffraction allowed to refer the green compounds to paratacamite. The remaining surfaces painted with azurite do not reveal any trace of alteration despite of the presence of chlorine; a few traces of azurite have been found inside the direct incisions of the Crucifixion painted scene where the original blue pigment was completely lost. The microclimatic conditions seem to play an important role in the process in addition to the presence of water and chlorides. The surface where alteration occurs is the only one to be cyclically heated by the solar radiation, causing the transport of the solutions containing chlorides. The relationship between the environment and the chemical processes occurring represents an important issue to be developed.

  14. District heating and energy efficiency in detached houses of differing size and construction

    Energy Technology Data Exchange (ETDEWEB)

    Joelsson, Anna; Gustavsson, Leif [Ecotechnology, Department of Engineering, Physics and Mathematics, Mid Sweden University, SE-831 25 Oestersund (Sweden)

    2009-02-15

    House envelope measures and conversion of heating systems can reduce primary energy use and CO{sub 2} emission in the existing Swedish building stock. We analysed how the size and construction of electrically heated detached houses affect the potential for such measures and the potential for cogenerated district heating. Our starting point was two typical houses built in the 1970s. We altered the floor plans to obtain 6 houses, with heated floor space ranging between 100 and 306 m{sup 2}. One of the houses was also analysed for three energy standards with differing heat loss rates. CO{sub 2} emission, primary energy use and heating cost were estimated after implementing house envelope measures, conversions to other heating systems and changes in the generation of district heat and electricity. The study accounted for primary energy, including energy chains from natural resources to useful heat in the houses. We showed that conversion to district heating based on biomass, together with house envelope measures, reduced the primary energy use by 88% and the CO{sub 2} emission by 96%, while reducing the annual societal cost by 7%. The choice of end-use heating system was decisive for the primary energy use, with district heating being the most efficient. Neither house size nor energy standard did significantly change the ranking of the heating systems, either from a primary energy or an economic viewpoint, but did affect the extent of the annual cost reduction after implementing the measures. (author)

  15. District heating and energy efficiency in detached houses of differing size and construction

    International Nuclear Information System (INIS)

    Joelsson, Anna; Gustavsson, Leif

    2009-01-01

    House envelope measures and conversion of heating systems can reduce primary energy use and CO 2 emission in the existing Swedish building stock. We analysed how the size and construction of electrically heated detached houses affect the potential for such measures and the potential for cogenerated district heating. Our starting point was two typical houses built in the 1970s. We altered the floor plans to obtain 6 houses, with heated floor space ranging between 100 and 306 m 2 . One of the houses was also analysed for three energy standards with differing heat loss rates. CO 2 emission, primary energy use and heating cost were estimated after implementing house envelope measures, conversions to other heating systems and changes in the generation of district heat and electricity. The study accounted for primary energy, including energy chains from natural resources to useful heat in the houses. We showed that conversion to district heating based on biomass, together with house envelope measures, reduced the primary energy use by 88% and the CO 2 emission by 96%, while reducing the annual societal cost by 7%. The choice of end-use heating system was decisive for the primary energy use, with district heating being the most efficient. Neither house size nor energy standard did significantly change the ranking of the heating systems, either from a primary energy or an economic viewpoint, but did affect the extent of the annual cost reduction after implementing the measures

  16. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  17. Major results of the electron cyclotron heating experiment in the PDX tokamak

    International Nuclear Information System (INIS)

    Hsuan, H.; Bol, K.; Bowen, N.

    1984-07-01

    Electron Cyclotron Heating (ECH) experiments on PDX have been carried out with two 60 GHz pulsed gyrotrons each yielding up to approximately 100 kW. The ECH system used two waveguide runs each about 30 meters long. One run included 5 bends and the other, 7 bends. Predetermined waveguide modes were transmitted. The electron cyclotron waves were launched in narrow beams from both the high field and the low field sides of the plasma torus. The major new physics results are: (1) efficient central electron heating for both ohmic and neutral beam heated target plasmas; (2) alteration of MHD behavior using ECH; (3) identification of the trapped electron population with ECH; and (4) signature of velocity-space time evolution during ECH. In the best heating results obtained, Thomson scattering data indicated a central temperature increase from less than or equal to 1.5 keV to greater than or equal to 2.5 keV. This occurred with an average density of about 10 13 cm -3 and approximately 80 kW outside-launch ordinary-mode heating

  18. Influence of porosity on artificial deterioration of marble and limestone by heating

    Science.gov (United States)

    Sassoni, Enrico; Franzoni, Elisa

    2014-06-01

    Testing of stone consolidants to be used on-site, as well as research on new consolidating products, requires suitable stone samples, with deteriorated but still uniform and controllable characteristics. Therefore, a new methodology to artificially deteriorate stone samples by heating, exploiting the anisotropic thermal deformation of calcite crystals, has recently been proposed. In this study, the heating effects on a variety of lithotypes was evaluated and the influence of porosity in determining the actual heating effectiveness was specifically investigated. One marble and four limestones, having comparable calcite amounts but very different porosity, were heated at 400 °C for 1 hour. A systematic comparison between porosity, pore size distribution, water absorption, sorptivity and ultrasonic pulse velocity of unheated and heated samples was performed. The results of the study show that the initial stone porosity plays a very important role, as the modifications in microstructural, physical and mechanical properties are way less pronounced for increasing porosity. Heating was thus confirmed as a very promising artificial deterioration method, whose effectiveness in producing alterations that suitably resemble those actually experienced in the field depends on the initial porosity of the stone to be treated.

  19. Blood amino acids profile responding to heat stress in dairy cows

    Directory of Open Access Journals (Sweden)

    Jiang Guo

    2018-01-01

    Full Text Available Objective The objective of this experiment was to investigate the effects of heat stress on milk protein and blood amino acid profile in dairy cows. Methods Twelve dairy cows with the similar parity, days in milk and milk yield were randomly divided into two groups with six cows raised in summer and others in autumn, respectively. Constant managerial conditions and diets were maintained during the experiment. Measurements and samples for heat stress and no heat stress were obtained according to the physical alterations of the temperature-humidity index. Results Results showed that heat stress significantly reduced the milk protein content (p<0.05. Heat stress tended to decrease milk yield (p = 0.09. Furthermore, heat stress decreased dry matter intake, the concentration of blood glucose and insulin, and glutathione peroxidase activity, while increased levels of non-esterified fatty acid and malondialdehyde (p<0.05. Additionally, the concentrations of blood Thr involved in immune response were increased under heat stress (p<0.05. The concentration of blood Ala, Glu, Asp, and Gly, associated with gluconeogenesis, were also increased under heat stress (p<0.05. However, the concentration of blood Lys that promotes milk protein synthesis was decreased under heat stress (p<0.05. Conclusion In conclusion, this study revealed that more amino acids were required for maintenance but not for milk protein synthesis under heat stress, and the decreased availability of amino acids for milk protein synthesis may be attributed to competition of immune response and gluconeogenesis.

  20. Failure analysis of radioisotopic heat source capsules tested under multi-axial conditions

    International Nuclear Information System (INIS)

    Zielinski, R.E.; Stacy, E.; Burgan, C.E.

    In order to qualify small radioisotopic heat sources for a 25-yr design life, multi-axial mechanical tests were performed on the structural components of the heat source. The results of these tests indicated that failure predominantly occurred in the middle of the weld ramp-down zone. Examination of the failure zone by standard metallographic techniques failed to indicate the true cause of failure. A modified technique utilizing chemical etching, scanning electron microscopy, and energy dispersive x-ray analysis was employed and dramatically indicated the true cause of failure, impurity concentration in the ramp-down zone. As a result of the initial investigation, weld parameters for the heat sources were altered. Example welds made with a pulse arc technique did not have this impurity buildup in the ramp-down zone

  1. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Department of Mathematics, Faculty of Sciences of Ain Chock, University of Hassan II, Casablanca, Morocco; Department of Mathematics, Keio University at Fujisawa, 5322 Endo, Kanagawa 252-8520, Japan; School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda-City 6691337, Japan ...

  2. Modelling of granular flows through inclined rotating chutes using a discrete particle model

    NARCIS (Netherlands)

    Shirsath, S.S.; Padding, J.T.; Clercx, H.J.H.; Kuipers, J.A.M.

    2012-01-01

    In blast furnaces, particles like coke, sinter and pellets enter from a hopper and are distributed on the burden surface by a rotating chute. Such particulate flows suffer occasionally from chocking and particle segregation at bottlenecks, which hinders efficient throughflow. To get a more

  3. New waste heat district heating system with combined heat and power based on absorption heat exchange cycle in China

    International Nuclear Information System (INIS)

    Sun Fangtian; Fu Lin; Zhang Shigang; Sun Jian

    2012-01-01

    A new waste heat district heating system with combined heat and power based on absorption heat exchange cycle (DHAC) was developed to increase the heating capacity of combined heat and power (CHP) through waste heat recovery, and enhance heat transmission capacity of the existing primary side district heating network through decreasing return water temperature by new type absorption heat exchanger (AHE). The DHAC system and a conventional district heating system based on CHP (CDH) were analyzed in terms of both thermodynamics and economics. Compared to CDH, the DHAC increased heating capacity by 31% and increased heat transmission capacity of the existing primary side district heating network by 75%. The results showed that the exergetic efficiency of DHAC was 10.41% higher and the product exergy monetary cost was 36.6¥/GJ less than a CHD. DHAC is an effective way to increase thermal utilization factor of CHP, and to reduce district heating cost. - Highlights: ► Absorption heat pumps are used to recover waste heat in CHP. ► Absorption heat exchanger can reduce exergy loss in the heat transfer process. ► New waste heat heating system (DHAC) can increase heating capacity of CHP by 31%. ► DHAC can enhance heat transmission capacity of the primary pipe network by 75%. ► DHAC system has the higher exergetic efficiency and the better economic benefit.

  4. Effect of a controlled burn on the thermophysical properties of a dry soil using a new model of soil heat flow and a new high temperature heat flux sensor

    Science.gov (United States)

    W. J. Massman; J. M. Frank

    2004-01-01

    Some fires can be beneficial to soils but, if a fire is sufficiently intense, soil can be irreversible altered. We measured soil temperatures and heat fluxes at several soil depths before, during, and after a controlled surface burn at Manitou Experimental Forest (southern Colorado, USA) to evaluate its effects on the soil's thermophysical properties (thermal...

  5. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  6. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  7. Can heat waves change the trophic role of the world's most invasive crayfish? Diet shifts in Procambarus clarkii.

    Science.gov (United States)

    Carreira, Bruno M; Segurado, Pedro; Laurila, Anssi; Rebelo, Rui

    2017-01-01

    In the Mediterranean basin, the globally increasing temperatures are expected to be accompanied by longer heat waves. Commonly assumed to benefit cold-limited invasive alien species, these climatic changes may also change their feeding preferences, especially in the case of omnivorous ectotherms. We investigated heat wave effects on diet choice, growth and energy reserves in the invasive red swamp crayfish, Procambarus clarkii. In laboratory experiments, we fed juvenile and adult crayfish on animal, plant or mixed diets and exposed them to a short or a long heat wave. We then measured crayfish survival, growth, body reserves and Fulton's condition index. Diet choices of the crayfish maintained on the mixed diet were estimated using stable isotopes (13C and 15N). The results suggest a decreased efficiency of carnivorous diets at higher temperatures, as juveniles fed on the animal diet were unable to maintain high growth rates in the long heat wave; and a decreased efficiency of herbivorous diets at lower temperatures, as juveniles in the cold accumulated less body reserves when fed on the plant diet. Heat wave treatments increased the assimilation of plant material, especially in juveniles, allowing them to sustain high growth rates in the long heat wave. Contrary to our expectations, crayfish performance decreased in the long heat wave, suggesting that Mediterranean summer heat waves may have negative effects on P. clarkii and that they are unlikely to boost its populations in this region. Although uncertain, it is possible that the greater assimilation of the plant diet resulted from changes in crayfish feeding preferences, raising the hypotheses that i) heat waves may change the predominant impacts of this keystone species and ii) that by altering species' trophic niches, climate change may alter the main impacts of invasive alien species.

  8. Can heat waves change the trophic role of the world's most invasive crayfish? Diet shifts in Procambarus clarkii.

    Directory of Open Access Journals (Sweden)

    Bruno M Carreira

    Full Text Available In the Mediterranean basin, the globally increasing temperatures are expected to be accompanied by longer heat waves. Commonly assumed to benefit cold-limited invasive alien species, these climatic changes may also change their feeding preferences, especially in the case of omnivorous ectotherms. We investigated heat wave effects on diet choice, growth and energy reserves in the invasive red swamp crayfish, Procambarus clarkii. In laboratory experiments, we fed juvenile and adult crayfish on animal, plant or mixed diets and exposed them to a short or a long heat wave. We then measured crayfish survival, growth, body reserves and Fulton's condition index. Diet choices of the crayfish maintained on the mixed diet were estimated using stable isotopes (13C and 15N. The results suggest a decreased efficiency of carnivorous diets at higher temperatures, as juveniles fed on the animal diet were unable to maintain high growth rates in the long heat wave; and a decreased efficiency of herbivorous diets at lower temperatures, as juveniles in the cold accumulated less body reserves when fed on the plant diet. Heat wave treatments increased the assimilation of plant material, especially in juveniles, allowing them to sustain high growth rates in the long heat wave. Contrary to our expectations, crayfish performance decreased in the long heat wave, suggesting that Mediterranean summer heat waves may have negative effects on P. clarkii and that they are unlikely to boost its populations in this region. Although uncertain, it is possible that the greater assimilation of the plant diet resulted from changes in crayfish feeding preferences, raising the hypotheses that i heat waves may change the predominant impacts of this keystone species and ii that by altering species' trophic niches, climate change may alter the main impacts of invasive alien species.

  9. Modification of the original color of the Eucalyptus grandis wood by heat treatments

    Directory of Open Access Journals (Sweden)

    Rosilei Aparecida Garcia

    2014-09-01

    Full Text Available The objective of this study was to determine the modification of original color of Eucalyptus grandis Hill ex. Maiden wood after heat-treatment. Wood samples were heat-treated under different temperatures (180, 200, 215 and 230ºC and time conditions (15 minutes, 2 and 4 hours. Color analysis were performed on the CIE L*a*b* system by using a Color Eye XTH-X-Rite 200d spectrophotometer. All heat treatments promoted an alteration of the original color of wood. Heat-treated woods presented lower L* (lightness values than untreated wood (control, characterizing the wood darkness, mainly for more severe conditions of temperature and time. Chromatic coordinates (a* and b* showed different behaviors depending on the temperature-time combination. The modification of the original color of the wood allowed the creation of new color patterns, which can add greater value to the studied wood.

  10. Future heat supply of our cities. Heating by waste heat

    Energy Technology Data Exchange (ETDEWEB)

    Brachetti, H E [Stadtwerke Hannover A.G. (Germany, F.R.); Technische Univ. Hannover (Germany, F.R.))

    1976-08-01

    The energy-price crisis resulted in structural changes of the complete energy supply and reactivated the question of energy management with respect to the optimum solution of meeting the energy requirements for space heating. Condensation power plants are increasingly replaced by thermal stations, the waste heat of which is used as so-called district heat. Thermal power stations must be situated close to urban areas. The problem of emission of harmful materials can partly be overcome by high-level emission. The main subject of the article, however, is the problem of conducting and distributing the heat. The building costs of heat pipeline systems and the requirements to be met by heat pipelines such as strength, heat insulation and protection against humidity and ground water are investigated.

  11. The extent of aqueous alteration in C-class asteroids, and the survival of presolar isotopic signatures in chondrites

    Science.gov (United States)

    Trigo-Rodriguez, J. M.

    2011-05-01

    Several sample return missions are being planned by different space agencies for in situ sampling of undifferentiated bodies. Such missions wish to bring back to Earth pristine samples from C-class asteroids and comets to obtain clues on solar system formation conditions. A careful selection of targeted areas is required as many C-class asteroids and periodic comets have been subjected to collisional and space weathering processing since their formation. Their surfaces have been reworked by impacts as pointed out by the brecciated nature of many chondrites arrived to Earth, exhibiting different levels of thermal and aqueous alteration. It is not surprising that pristine chondrites can be considered quite rare in meteorite collections because they were naturally sampled in collisions, but several groups of carbonaceous chondrites contain a few members with promising unaltered properties. The CI and CM groups suffered extensive aqueous alteration [1], but for the most part escaped thermal metamorphism (only a few CMs evidence heating temperature over several hundred K). Both chondrite groups are water-rich, containing secondary minerals as consequence of the pervasive alteration of their primary mineral phases [2]. CO, CV, and CR chondrite groups suffered much less severe aqueous alteration, but some CRs are moderately aqueously altered. All five groups are good candidates to find unequilibrated materials between samples unaffected by aqueous alteration or metamorphism. The water was incorporated during accretion, and was released as consequence of shock after impact compaction, and/or by mild radiogenic heating. Primary minerals were transformed by water into secondary ones. Water soaking the bodies participated in chemical homogenization of the different components [1]. Hydrothermal alteration and collisional metamorphism changed the abundances of isotopically distinguishable presolar silicates [3]. Additional instruments in the landers to identify aqueous

  12. Genotoxic and carcinogenic risks associated with the dietary consumption of repeatedly heated coconut oil.

    Science.gov (United States)

    Srivastava, Smita; Singh, Madhulika; George, Jasmine; Bhui, Kulpreet; Murari Saxena, Anand; Shukla, Yogeshwer

    2010-11-01

    Repeated heating of vegetable oils at high temperatures during cooking is a very common cooking practice. Repeated heating of edible oils can generate a number of compounds, including polycyclic aromatic hydrocarbons (PAH), some of which have been reported to have carcinogenic potential. Consumption of these repeatedly heated oils can pose a serious health hazard. The objectives of the present study were to evaluate the genotoxic and carcinogenic risks associated with the consumption of repeatedly heated coconut oil (RCO), which is one of the commonly consumed cooking and frying medium. The PAH were analysed using HPLC in fresh CO, single-heated CO (SCO) and RCO. Results revealed the presence of certain PAH, known to possess carcinogenic potential, in RCO when compared with SCO. Oral intake of RCO in Wistar rats resulted in a significant induction of aberrant cells (P<0·05) and micronuclei (P<0·05) in a dose-dependent manner. Oxidative stress analysis showed a significant (P<0·05) decrease in the levels of antioxidant enzymes such as superoxide dismutase and catalase with a concurrent increase in reactive oxygen species and lipid peroxidation in the liver. In addition, RCO given alone and along with diethylnitrosamine for 12 weeks induced altered hepatic foci as noticed by alteration in positive (γ-glutamyl transpeptidase and glutathione-S-transferase) and negative (adenosine triphosphatase, alkaline phosphatase and glucose-6-phosphatase) hepatospecific biomarkers. A significant decrease in the relative and absolute hepatic weight of RCO-supplemented rats was recorded (P<0·05). In conclusion, dietary consumption of RCO can cause a genotoxic and preneoplastic change in the liver.

  13. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  14. Heat stress and reduced plane of nutrition decreases intestinal integrity and function in pigs.

    Science.gov (United States)

    Pearce, S C; Mani, V; Weber, T E; Rhoads, R P; Patience, J F; Baumgard, L H; Gabler, N K

    2013-11-01

    Heat stress can compromise intestinal integrity and induce leaky gut in a variety of species. Therefore, the objectives of this study were to determine if heat stress (HS) directly or indirectly (via reduced feed intake) increases intestinal permeability in growing pigs. We hypothesized that an increased heat-load causes physiological alterations to the intestinal epithelium, resulting in compromised barrier integrity and altered intestinal function that contributes to the overall severity of HS-related illness. Crossbred gilts (n=48, 43±4 kg BW) were housed in constant climate controlled rooms in individual pens and exposed to 1) thermal neutral (TN) conditions (20°C, 35-50% humidity) with ad libitum intake, 2) HS conditions (35°C, 20-35% humidity) with ad libitum feed intake, or 3) pair-fed in TN conditions (PFTN) to eliminate confounding effects of dissimilar feed intake. Pigs were sacrificed at 1, 3, or 7 d of environmental exposure and jejunum samples were mounted into modified Ussing chambers for assessment of transepithelial electrical resistance (TER) and intestinal fluorescein isothiocyanate (FITC)-labeled lipopolysaccharide (LPS) permeability (expressed as apparent permeability coefficient, APP). Further, gene and protein markers of intestinal integrity and stress were assessed. Irrespective of d of HS exposure, plasma endotoxin levels increased 45% (Pwarm summer months.

  15. Industrial waste heat for district heating

    International Nuclear Information System (INIS)

    Heitner, K.L.; Brooks, P.P.

    1982-01-01

    Presents 2 bounding evaluations of industrial waste heat availability. Surveys waste heat from 29 major industry groups at the 2-digit level in Standard Industrial Codes (SIC). Explains that waste heat availability in each industry was related to regional product sales, in order to estimate regional waste heat availability. Evaluates 4 selected industries at the 4-digit SIC level. Finds that industrial waste heat represents a significant energy resource in several urban areas, including Chicago and Los Angeles, where it could supply all of these areas residential heating and cooling load. Points out that there is a strong need to evaluate the available waste heat for more industries at the 4-digit level. Urges further studies to identify other useful industrial waste heat sources as well as potential waste heat users

  16. Mapping of potential heat sources for heat pumps for district heating in Denmark

    International Nuclear Information System (INIS)

    Lund, Rasmus; Persson, Urban

    2016-01-01

    The ambitious policy in Denmark on having a 100% renewable energy supply in 2050 requires radical changes to the energy systems to avoid an extensive and unsustainable use of biomass resources. Currently, wind power is being expanded and the increasing supply of electricity is slowly pushing the CHP (combined heat and power) plants out of operation, reducing the energy efficiency of the DH (district heating) supply. Here, large heat pumps for district heating is a frequently mentioned solution as a flexible demand for electricity and an energy efficient heat producer. The idea is to make heat pump use a low temperature waste or ambient heat source, but it has so far been very unclear which heat sources are actually available for this purpose. In this study eight categories of heat sources are analysed for the case of Denmark and included in a detailed spatial analysis where the identified heat sources are put in relation to the district heating areas and the corresponding demands. The analysis shows that potential heat sources are present near almost all district heating areas and that sea water most likely will have to play a substantial role as a heat source in future energy systems in Denmark. - Highlights: • The availability of heat sources for heat pumps in Denmark are mapped and quantified. • A novel methodology for assessment of low temperature industrial excess heat is presented. • There are heat sources available for 99% of district heating networks in Denmark. • The concentration of heat sources is generally bigger around bigger cities than smaller. • Ambient temperature heat sources will be more needed in district heating of big cities.

  17. Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003-2100

    Science.gov (United States)

    E.S. Euskirchen; A.D. McGuire; T.S. Rupp; F.S. Chapin; J.E. Walsh

    2009-01-01

    In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003-2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1)...

  18. Getting a Read on the App Stores: A Market Scan and Analysis of Children's Literacy Apps. Executive Summary

    Science.gov (United States)

    Vaala, Sarah; Ly, Anna; Levine, Michael H.

    2015-01-01

    In previous research the "Joan Ganz Cooney Center" and "New America" have characterized the children's educational app market as a "Digital Wild West" (Guernsey, Levine, Chiong & Severns, 2012; Shuler, 2011). The marketplace is chock full of choices but lacks essential information to aid parents' and educators'…

  19. Getting a Read on the App Stores: A Market Scan and Analysis of Children's Literacy Apps. Full Report

    Science.gov (United States)

    Vaala, Sarah; Ly, Anna; Levine, Michael H.

    2015-01-01

    In previous research the "Joan Ganz Cooney Center" and "New America" have characterized the children's educational app market as a "Digital Wild West" (Guernsey, Levine, Chiong & Severns, 2012; Shuler, 2011). The marketplace is chock full of choices but lacks essential information to aid parents' and educators'…

  20. Sleep Deprivation Alters Choice Strategy Without Altering Uncertainty or Loss Aversion Preferences

    Directory of Open Access Journals (Sweden)

    O'Dhaniel A Mullette-Gillman

    2015-10-01

    Full Text Available Sleep deprivation alters decision making; however, it is unclear what specific cognitive processes are modified to drive altered choices. In this manuscript, we examined how one night of total sleep deprivation (TSD alters economic decision making. We specifically examined changes in uncertainty preferences dissociably from changes in the strategy with which participants engage with presented choice information. With high test-retest reliability, we show that TSD does not alter uncertainty preferences or loss aversion. Rather, TSD alters the information the participants rely upon to make their choices. Utilizing a choice strategy metric which contrasts the influence of maximizing and satisficing information on choice behavior, we find that TSD alters the relative reliance on maximizing information and satisficing information, in the gains domain. This alteration is the result of participants both decreasing their reliance on cognitively-complex maximizing information and a concomitant increase in the use of readily-available satisficing information. TSD did not result in a decrease in overall information use in either domain. These results show that sleep deprivation alters decision making by altering the informational strategies that participants employ, without altering their preferences.

  1. Sleep deprivation alters choice strategy without altering uncertainty or loss aversion preferences.

    Science.gov (United States)

    Mullette-Gillman, O'Dhaniel A; Kurnianingsih, Yoanna A; Liu, Jean C J

    2015-01-01

    Sleep deprivation alters decision making; however, it is unclear what specific cognitive processes are modified to drive altered choices. In this manuscript, we examined how one night of total sleep deprivation (TSD) alters economic decision making. We specifically examined changes in uncertainty preferences dissociably from changes in the strategy with which participants engage with presented choice information. With high test-retest reliability, we show that TSD does not alter uncertainty preferences or loss aversion. Rather, TSD alters the information the participants rely upon to make their choices. Utilizing a choice strategy metric which contrasts the influence of maximizing and satisficing information on choice behavior, we find that TSD alters the relative reliance on maximizing information and satisficing information, in the gains domain. This alteration is the result of participants both decreasing their reliance on cognitively-complex maximizing information and a concomitant increase in the use of readily-available satisficing information. TSD did not result in a decrease in overall information use in either domain. These results show that sleep deprivation alters decision making by altering the informational strategies that participants employ, without altering their preferences.

  2. Sizing of type B package tie-downs on the basis of criteria related to hypothetical road transport accident conditions

    International Nuclear Information System (INIS)

    Phalippou, C.

    1986-01-01

    The aim is to guarantee intactness of the type B package containment system under hypothetical road accident conditions. Some experiments performed in France have led to analytical studies taking into account: a) the head-on collision, which is modelised by a uniform deceleration of 35 g, b) the side-on collision, which is modelised by a colliding object 3 times heavier than the package and an impact at 31.9 km/h. In the first case, the adopted criterion is the holding of the package on the vehicle by the strenght of the stowing members (tie-downs and chocks). In the second case, the adopted criterion is the desired breaking of the tie-downs in order to undamage package containment system; therefore it is assumed that no chock is acting against lateral impacts. Analytical and abacus methods have been developed for sizing the strenght of the stowing members in respect with the two above criteria [fr

  3. Maximum skin hyperaemia induced by local heating: possible mechanisms.

    Science.gov (United States)

    Gooding, Kim M; Hannemann, Michael M; Tooke, John E; Clough, Geraldine F; Shore, Angela C

    2006-01-01

    Maximum skin hyperaemia (MH) induced by heating skin to > or = 42 degrees C is impaired in individuals at risk of diabetes and cardiovascular disease. Interpretation of these findings is hampered by the lack of clarity of the mechanisms involved in the attainment of MH. MH was achieved by local heating of skin to 42-43 degrees C for 30 min, and assessed by laser Doppler fluximetry. Using double-blind, randomized, placebo-controlled crossover study designs, the roles of prostaglandins were investigated by inhibiting their production with aspirin and histamine, with the H1 receptor antagonist cetirizine. The nitric oxide (NO) pathway was blocked by the NO synthase inhibitor, NG-nitro-L-arginine methyl esther (L-NAME), and enhanced by sildenafil (prevents breakdown of cGMP). MH was not altered by aspirin, cetirizine or sildenafil, but was reduced by L-NAME: median placebo 4.48 V (25th, 75th centiles: 3.71, 4.70) versus L-NAME 3.25 V (3.10, 3.80) (p = 0.008, Wilcoxon signed rank test). Inhibition of NO production (L-NAME) resulted in a more rapid reduction in hyperaemia after heating (p = 0.011), whereas hyperaemia was prolonged in the presence of sildenafil (p = 0.003). The increase in skin blood flow was largely confined to the directly heated area, suggesting that the role of heat-induced activation of the axon reflex was small. NO, but not prostaglandins, histamine or an axon reflex, contributes to the increase in blood flow on heating and NO is also a component of the resolution of MH after heating. Copyright 2006 S. Karger AG, Basel.

  4. Excision of x-ray-induced thymine damage in chromatin from heated cells

    International Nuclear Information System (INIS)

    Warters, R.L.; Roti Roti, J.L.

    1979-01-01

    Experiments were performed to distinguish between two possible modes of hyperthermia-induced inhibition of thymine base damage excision from the DNA of CHO cells: (1) heat denaturation of excision enzyme(s) or (2) heat-induced alteration of the substrate for damage excision (chromatin). While hyperthermia (45 0 C, 15 min) had no apparent effect on the capacity of the excision enzymes to excise damage from DNA it had a dramatic effect (ca. 80% inhibition) on the ability of chromatin to serve as a substrate for unheated enzymes. These results suggest that hyperthermia-induced radiosensitization of CHO cells may be due primarily to lesions in the cellular chromatin

  5. Alteration related to hydrothermal activity of the Nevado del Ruiz volcano (NRV), Colombia

    International Nuclear Information System (INIS)

    Forero, Jhon; Zuluaga, Carlos; Mojica, Jaime

    2011-01-01

    The hydrothermal activity in the NRV generates alteration characterized by mineral associations depending one number of physic-chemical factors of the hydrothermal system. Petrography of unaltered rocks was used to establish the mineral assemblage prior to rock-fluid interaction. XRD was used in altered rocks, where it was not possible to recognize the alteration products. the observed mineral assemblages indicate advanced and intermediate argillic alterations, this and the observation of very low modal proportion of sulphates, sulphides and native sulphur in some areas could point to a low sulphidation zone. However, the proximity to the volcano and the presence of acid thermal waters and steam pose an apparent contradiction with an expected high sulphidation zone which is explained by climatic conditions, where excess water has dissolved and leached sulfides, sulphur and sulphates close to the volcano. fault zones serve as conducts for fluid transport and have acid-sulphate mineral associations produced by atmospheric oxidation at the water table in a steam-heated environment of H 2 S released by deeper, boiling fluids or by the disproportionation of magmatic SO 2 to H 2 S and H 2 SO 4 during condensation of magmatic vapor plume at intermedia depths in magmatic hydrothermal environment in andesitic volcanic terrain characteristic of high sulphidation zones.

  6. Determination of Heat Capacity of Yucca Mountain Stratigraphic Layers

    International Nuclear Information System (INIS)

    T. Hadgu; C. Lum; J.E. Bean

    2006-01-01

    The heat generated from the radioactive waste to be placed in the proposed geologic repository at Yucca Mountain, Nevada, will affect the thermal-hydrology of the Yucca Mountain stratigraphic layers. In order to assess the effect of the movement of repository heat into the fractured rocks accurate determination of thermodynamic and hydraulic properties is important. Heat capacity is one of the properties that are required to evaluate energy storage in the fractured rock. Rock-grain heat capacity, the subject of this study, is the heat capacity of the solid part of the rock. Yucca Mountain consists of alternating lithostratigraphic units of welded and non-welded ash-flow tuff, mainly rhyolitic in composition and displaying varying degrees of vitrification and alteration. A number of methods exist that can be used to evaluate heat capacity of the stratigraphic layers that consist of different compositions. In this study, the mineral summation method has been used to quantify the heat capacity of the stratigraphic layers based on Kopp's rule. The mineral summation method is an addition of the weighted heat capacity of each mineral found in a specific layer. For this study the weighting was done based on the mass percentage of each mineral in the layer. The method utilized a mineralogic map of the rocks at the Yucca Mountain repository site. The Calico Hills formation and adjacent bedded tuff layers display a bimodal mineral distribution of vitric and zeolitic zones with differing mineralogies. Based on this bimodal distribution in zeolite abundance, the boundary between the vitric and zeolitic zones was selected to be 15% zeolitic abundance. Thus, based on the zeolite abundance, subdivisions have been introduced to these layers into ''vitric'' and ''zeolitic'' zones. Heat capacity values have been calculated for these layers both as ''layer average'' and ''zone average''. The heat capacity determination method presented in this report did not account for spatial

  7. Salivary Alpha-Amylase Correlates with Subjective Heat Pain Perception.

    Science.gov (United States)

    Wittwer, Amrei; Krummenacher, Peter; La Marca, Roberto; Ehlert, Ulrike; Folkers, Gerd

    2016-06-01

    Self-reports of pain are important for an adequate therapy. This is a problem with patients and infants who are restricted in providing an accurate verbal estimation of their pain. Reliable, real-time, economical, and non-invasive physiological correlates might contribute to a more comprehensive description of pain. Salivary alpha-amylase constitutes one candidate biomarker, which reflects predominantly sympathetic nervous system alterations under stressful conditions and can be measured non-invasively. The current study investigated the effects of acute heat pain on salivary alpha-amylase activity. Heat pain tolerance was measured on the non-dominant forearm. Participants completed visual analog scales on pain intensity and unpleasantness. Saliva samples were collected directly after pain induction. Twenty-seven healthy volunteers were recruited for this study. While salivary alpha-amylase levels correlated positively with intensity and unpleasantness ratings in response to acute heat pain stimuli, there was no corresponding association with pain tolerance. Salivary alpha-amylase is suggested to be an indirect physiologic correlate of subjective heat pain perception. Future studies should address the role of salivary alpha-amylase depending on the origin of pain, the concerned tissue, and other pain assessment methods. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Implications of recent research on microstructure modifications, through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, metabolic characteristics and nutrition in cool-climate cereal grains and other types of seeds with advanced molecular techniques.

    Science.gov (United States)

    Ying, Yuguang; Zhang, Huihua; Yu, Peiqiang

    2018-02-16

    The cutting-edge synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy have recently been developed. These novel techniques are able to reveal structure features at cellular and molecular levels with the tested tissues being intact. However, to date, the advanced techniques are unfamiliar or unknown to food and feed scientists and have not been used to study the molecular structure changes in cool-climate cereal grain seeds and other types of bio-oil and bioenergy seeds. This article aims to provide some recent research in cool-climate cereal grains and other types of seeds on molecular structures and metabolic characteristics of carbohydrate and protein, and implication of microstructure modification through heat-related processing and trait alteration to bio-functions, molecular thermal stability and mobility, and nutrition with advanced molecular techniques- synchrotron radiation based and globar-sourced vibrational infrared microspectroscopy in the areas of (1) Inherent microstructure of cereal grain seeds; (2) The nutritional values of cereal grains; (3) Impact and modification of heat-related processing to cereal grain; (4) Conventional nutrition evaluation methodology; (5) Synchrotron radiation-based and globar-sourced vibrational (micro)-spectroscopy for molecular structure study and molecular thermal stability and mobility, and (6) Recent molecular spectroscopic technique applications in research on raw, traits altered and processed cool-climate cereal grains and other types of seeds. The information described in this article gives better insights of research progress and update in cool-climate cereal grains and other seeds with advanced molecular techniques.

  9. Review: heat pipe heat exchangers at IROST

    OpenAIRE

    E. Azad

    2012-01-01

    The use of the heat pipe as a component in a heat recovery device has gained worldwide acceptance. Heat pipes are passive, highly reliable and offer high heat transfer rates. This study summarizes the investigation of different types of heat pipe heat recovery systems (HPHRSs). The studies are classified on the basis of the type of the HPHRS. This research is based on 30 years of experience on heat pipe and heat recovery systems that are presented in this study. Copyright , Oxford University ...

  10. Short term post-partum heat stress in dairy cows

    Science.gov (United States)

    Fuquay, J. W.; Chapin, L. T.; Brown, W. H.

    1980-06-01

    Since many dairy cows calve during late summer, the objective was to determine if heat stress immediately post-partum would (1) alter metabolism, thus, increasing susceptibility to metabolic disorders, (2) affect lactation and/or (3) affect reproduction. Forty four cows, calving during late summer, were paired with one member of each pair stressed (HS) for the first 10 post-partum days in a hot barn. Controls (CC) were kept in a cooled section of the barn. Plasma drawn weekly for 7 weeks was analyzed in an autoanalyzer for calcium, inor. phosphorus, protein, glucose and cholesterol and by radioimmunoassay for cortisol and progesterone. Ovaries and uteri were palpated weekly. Rectal temperatures were significant higher for HS during the first 10 post-partum days. No significant effects on plasma constituents were observed during the 10-day treatment period. For the 7-week period, glucose and cholesterol were lower in HS, as were cyclic peaks of progesterone and cortisol. Both calcium and inorganic phosphorus remained clinically low for the 7 weeks, but no treatment effects were seen. Uteri of HS involuted more rapidly than the CC. Treatment did not affect reproductive efficiency. Lactation milk yields did not differ, but milk fat percent was lower in HS. Heat stress immediately post-partum altered lipid metabolism, but the animal's compensatory mechanisms prevented reduction in milk production or reproductive efficiency.

  11. Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound

    Science.gov (United States)

    Canney, Michael S.; Khokhlova, Vera A.; Bessonova, Olga V.; Bailey, Michael R.; Crum, Lawrence A.

    2009-01-01

    Nonlinear propagation causes high intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have previously been investigated and found not to significantly alter high intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves. In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector, and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared to calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and from measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating due to shock waves is therefore important to HIFU and clinicians should be aware of the potential for very rapid boiling since it alters treatments. PMID:20018433

  12. Targeting the maximum heat recovery for systems with heat losses and heat gains

    International Nuclear Information System (INIS)

    Wan Alwi, Sharifah Rafidah; Lee, Carmen Kar Mun; Lee, Kim Yau; Abd Manan, Zainuddin; Fraser, Duncan M.

    2014-01-01

    Graphical abstract: Illustration of heat gains and losses from process streams. - Highlights: • Maximising energy savings through heat losses or gains. • Identifying location where insulation can be avoided. • Heuristics to maximise heat losses or gains. • Targeting heat losses or gains using the extended STEP technique and HEAT diagram. - Abstract: Process Integration using the Pinch Analysis technique has been widely used as a tool for the optimal design of heat exchanger networks (HENs). The Composite Curves and the Stream Temperature versus Enthalpy Plot (STEP) are among the graphical tools used to target the maximum heat recovery for a HEN. However, these tools assume that heat losses and heat gains are negligible. This work presents an approach that considers heat losses and heat gains during the establishment of the minimum utility targets. The STEP method, which is plotted based on the individual, as opposed to the composite streams, has been extended to consider the effect of heat losses and heat gains during stream matching. Several rules to guide the proper location of pipe insulation, and the appropriate procedure for stream shifting have been introduced in order to minimise the heat losses and maximise the heat gains. Application of the method on two case studies shows that considering heat losses and heat gains yield more realistic utility targets and help reduce both the insulation capital cost and utility cost of a HEN

  13. Heating networks and domestic central heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Kamler, W; Wasilewski, W

    1976-08-01

    This is a comprehensive survey of the 26 contributions from 8 European countries submitted to the 3rd International District Heating Conference in Warsaw held on the subject 'Heating Networks and Domestic Central Heating Systems'. The contributions are grouped according to 8 groups of subjects: (1) heat carriers and their parameters; (2) system of heating networks; (3) calculation and optimization of heating networks; (4) construction of heating networks; (5) operation control and automation; (6) operational problems; (7) corrosion problems; and (8) methods of heat accounting.

  14. Heat transfer and critical heat flux in a asymmetrically heated tube helicoidal flow

    International Nuclear Information System (INIS)

    Boscary, J.

    1995-10-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author). 198 refs., 126 figs., 21 tabs

  15. Aqueous alteration of Japanese simulated waste glass P0798: Effects of alteration-phase formation on alteration rate and cesium retention

    International Nuclear Information System (INIS)

    Inagaki, Y.; Shinkai, A.; Idemistu, K.; Arima, T.; Yoshikawa, H.; Yui, M.

    2006-01-01

    Aqueous alteration tests were performed with a Japanese simulated waste glass P0798 in alkaline solutions as a function of pH or species/concentration of alkaline metals in the solution in order to evaluate the alteration conditions determining whether smectite (2:1 clay mineral) or analcime (zeolite) forms as the major alteration-phase. XRD analysis of the alteration-phases showed that smectite forms at any pH between 9.5 and 12, and analcime forms at pH above 11, though the formation also depends on species and concentrations of alkaline metals in the solution. These results cannot agree with the thermodynamically predicted phase stability, e.g., smectite is more stable than the thermodynamic prediction shows. On the basis of the results of alteration conditions, the alteration tests were performed under smectite forming conditions, where only smectite forms or no crystalline phases form, in order to evaluate the alteration rate and the mechanism of cesium release/retention. The results showed that the glass alteration proceeds slowly in proportion to square root of time under smectite forming conditions, which indicates that the alteration rate can be controlled by a diffusion process. It was suggested that the alteration rate under smectite forming conditions is independent of the pH, alkaline metal species/concentration in the solution and whether smectite actually forms or not. The results also indicated that most of cesium dissolved from the glass can be retained in the alteration-phases by reversible sorption onto smectite or irreversible incorporation into analcime, pollucite or solid solutions of them

  16. Effect of surface roughness on the heating rates of large-angled hypersonic blunt cones

    Science.gov (United States)

    Irimpan, Kiran Joy; Menezes, Viren

    2018-03-01

    Surface-roughness caused by the residue of an ablative Thermal Protection System (TPS) can alter the turbulence level and surface heating rates on a hypersonic re-entry capsule. Large-scale surface-roughness that could represent an ablated TPS, was introduced over the forebody of a 120° apex angle blunt cone, in order to test for its influence on surface heating rates in a hypersonic freestream of Mach 8.8. The surface heat transfer rates measured on smooth and roughened models under the same freestream conditions were compared. The hypersonic flow-fields of the smooth and rough-surfaced models were visualized to analyse the flow physics. Qualitative numerical simulations and pressure measurements were carried out to have an insight into the high-speed flow physics. Experimental observations under moderate Reynolds numbers indicated a delayed transition and an overall reduction of 17-46% in surface heating rates on the roughened model.

  17. Industrial excess heat for district heating in Denmark

    International Nuclear Information System (INIS)

    Bühler, Fabian; Petrović, Stefan; Karlsson, Kenneth; Elmegaard, Brian

    2017-01-01

    Highlights: •Method for utilisation potential of industrial excess heat for district heating. •Industrial excess heat from thermal processes is quantified at single production units. •Linking of industrial excess heat sources and district heating demands done in GIS. •Excess heat recovery using direct heat transfer and heat pumps. •5.1% of the Danish district heating demand could be supplied by industrial excess heat. -- Abstract: Excess heat is available from various sources and its utilisation could reduce the primary energy use. The accessibility of this heat is however dependent amongst others on the source and sink temperature, amount and potential users in its vicinity. In this work a new method is developed which analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal processes which equals 5.1% of the current demand. More than half of this heat was found to be usable directly, without the need for a heat pump.

  18. Analysis of boundary layer control by heat transfer strips using an asymptotic approach to the PSE

    Energy Technology Data Exchange (ETDEWEB)

    Brooker, A.M.H.; Severin, J. [Technische Univ. Chemnitz (Germany). Technische Thermodynamik; Herwig, H. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Abt. Technische Thermodynamik

    2002-05-01

    The effect of heating strips on the stability of boundary layer flow over a flat plate is investigated. Heating strips alter the flow stability through the temperature dependence of the fluid properties. A stability study is carried out using the parabolized stability equations (PSE) that calculates the effects of temperature dependent fluid properties in terms of asymptotic expansions based on the total heat input. The leading order influence is obtained as a general result and, for the particular Prandtl number taken, is independent of any special set of property laws. In a fluid for which the intrinsic viscosity increases with temperature and the density decreases with temperature (such as air) the results show that the optimal location for a heating strip to stabilise the flow is upstream of the neutral point. The optimal location moves further upstream as the total heat input level is increased. For a given heat input widening the heating strip further stabilises the flow. Finally, the potential of the asymptotic method as a tool for further analysis of the flow is discussed. (orig.)

  19. Assessment of the heat carrier movement in the primary coolant circuit by its own momentum

    International Nuclear Information System (INIS)

    Kadalev, Stoyan

    2014-01-01

    Highlights: • We model the heat carrier flow alteration after the circulation pump(s) stop. • The general mathematical model used is described in details. • The model is adapted and applied to a particular example research reactor. • Assessment is presented in detail, step by step with references. • The information provided is enough to apply calculations to another facility. - Abstract: In the presented paper is considered the approach to an assessment of the heat carrier flow alteration in the primary water–water reactor coolant circuit after the circulation pump(s) stop. This topic is highly relevant trough advanced and increased nuclear safety requirements because such a process is observed in case of black-out accident or damaged pump(s). The general mathematical model used is described; enabling preparation of this evaluation adapted and applied to a particular example facility namely a pool type research reactor. The factors influencing to the heat carrier movement by its own momentum are examined. The evaluation measures and includes the factors influencing the heat carrier flow rate from the moment the pump(s) stops down to a negligible value. Assessment is presented in detail, step by step and where needed with references to specific data and/or formulae from reference books to allow repetition of the calculations and/or apply to another facility. The calculations are presented utilizing all necessary data according to the design and technological documentation. No account is given to the pressure of the natural circulation caused by the residual heat generation in the fuel after the reactor scram system extinction of the fission reaction

  20. Effect of annealing and heat moisture conditioning on the physicochemical characteristics of bambarra groundnut (Voandzeia subterranea) starch

    International Nuclear Information System (INIS)

    Adebowale, K.O.; Lawal, O.S.

    2002-05-01

    Isolated starch of bambarra groundnut (Voandzeia subterranea) was subjected to hydrothermal modifications through annealing and heat moisture conditioning. Both annealing and heat moisture conditioning reduced the swelling power and solubility of the starch. Water binding capacity reduced after annealing, heat moisture conditioning at 18% moisture level (HMB 18 ) and heat moisture conditioning at 21% moisture level (HMB 21 ). Both heat moisture conditioning at 24% moisture level (HMB 24 ) and heat moisture conditioning at 27% moisture level (HMB 27 ) increased the water binding capacity. Hydrothermal modifications reduced the oil absorption capacity of the raw starch. Annealing and heat moisture conditioning reduced the peak viscosity, (Pv) viscosity at 95 deg C (Hv) and viscosity at 95 deg. C after 30 minutes holding (Hv 30 ). However, viscosity increased on cooling down to 50 deg. C after annealing. Annealing and heat moisture treatments as revealed by scanning electron micrograph and light micrograph did not alter the shape and size of the raw starch. The results indicate a rearrangement within the starch granule following hydrothermal treatments. (author)

  1. Comparative proteome analysis of metabolic proteins from seeds of durum wheat (cv. Svevo) subjected to heat stress

    DEFF Research Database (Denmark)

    Laino, Paolo; Shelton, Dale; Finnie, Christine

    2010-01-01

    of nonprolamin proteins were monitored to identify polypeptides affected by heat stress during grain fill. This study shows that heat stress alters significantly the durum wheat seed proteome, although the changes range is only between 1.2- and 2.2-fold. This analysis revealed 132 differentially expressed...... include proteins with metabolic activity or structural function. In order to investigate the consequences of heat stress on the accumulation of nonprolamin proteins in mature durum wheat kernels, the Italian cultivar Svevo was subjected to two thermal regimes (heat stress versus control). The 2-D patterns...... polypeptides, 47 of which were identified by MALDI-TOF and MALDI-TOF-TOF MS and included HSPs, proteins involved in the glycolysis and carbohydrate metabolism, as well as stress-related proteins. Many of the heat-induced polypeptides are considered to be allergenic for sensitive individuals....

  2. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    Science.gov (United States)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  3. Effects of chemical alteration on fracture mechanical properties in hydrothermal systems

    Science.gov (United States)

    Callahan, O. A.; Eichhubl, P.; Olson, J. E.

    2015-12-01

    Fault and fracture networks often control the distribution of fluids and heat in hydrothermal and epithermal systems, and in related geothermal and mineral resources. Additional chemical influences on conduit evolution are well documented, with dissolution and precipitation of mineral species potentially changing the permeability of fault-facture networks. Less well understood are the impacts of chemical alteration on the mechanical properties governing fracture growth and fracture network geometry. We use double-torsion (DT) load relaxation tests under ambient air conditions to measure the mode-I fracture toughness (KIC) and subcritical fracture growth index (SCI) of variably altered rock samples obtained from outcrop in Dixie Valley, NV. Samples from southern Dixie Valley include 1) weakly altered granite, characterized by minor sericite in plagioclase, albitization and vacuolization of feldspars, and incomplete replacement of biotite with chlorite, and 2) granite from an area of locally intense propylitic alteration with chlorite-calcite-hematite-epidote assemblages. We also evaluated samples of completely silicified gabbro obtained from the Dixie Comstock epithermal gold deposit. In the weakly altered granite KIC and SCI are 1.3 ±0.2 MPam1/2 (n=8) and 59 ±25 (n=29), respectively. In the propylitic assemblage KIC is reduced to 0.6 ±0.1 MPam1/2 (n=11), and the SCI increased to 75 ±36 (n = 33). In both cases, the altered materials have lower fracture toughness and higher SCI than is reported for common geomechanical standards such as Westerly Granite (KIC ~1.7 MPam1/2; SCI ~48). Preliminary analysis of the silicified gabbro shows a significant increase in fracture toughness, 3.6 ±0.4 MPam1/2 (n=2), and SCI, 102 ±45 (n=19), compared to published values for gabbro (2.9 MPam1/2 and SCI = 32). These results suggest that mineralogical and textural changes associated with different alteration assemblages may result in spatially variable rates of fracture

  4. A quasilinear, Fokker--Planck description of fast wave minority heating permitting off-axis tangency interactions

    International Nuclear Information System (INIS)

    Catto, P.J.; Myra, J.R.; Russell, D.A.

    1994-01-01

    The off-axis quasilinear fast wave minority heating description of Catto and Myra [Phys. Fluids B 4, 187 (1992)] has been improved and implemented in a code which solves the combined quasilinear and collision operator equation for the minority distribution function. Geometrical complications of a minority resonance nearly tangent to a flux surface in the presence of trapped as well as passing particles are retained. The tangency interactions alter the moments and the fusion reaction rate parameter in a model which explores heating on a single flux surface. The strong tangency interactions enhance the more familiar interactions due to trapped particles turning in the vicinity of the minority resonance. An asymmetry in off-axis heating effects occurs because heating on the low field side of the magnetic axis heats more trapped particles than high field side heating. This asymmetry is responsible for the better performance of the low field side case relative to the high and on-axis cases and provides some control over the power absorbed by and the energy stored in the trapped particles

  5. Incubation temperature alters thermal preference and response to heat stress of broiler chickens along the rearing phase

    NARCIS (Netherlands)

    Morita, V.S.; Almeida, V.R.; Matos Junior, J.B.; Vicentini, T.I.; Brand, van den H.; Boleli, I.C.

    2016-01-01

    The current study aimed to investigate whether embryonic temperature manipulation may alter thermal preference throughout the rearing phase of broiler chickens and how this manipulation may affect response to thermal challenge, metabolism, growth rate and feed intake rate. Eggs were exposed to a

  6. Investigation of Mineral Alteration in Andesite and Dacite from Three Different Volcano Hydrothermal Systems on Dominica, Lesser Antilles

    Science.gov (United States)

    Smith, C. I. V.; Frey, H. M.; Joseph, E. P.; Manon, M. R. F.

    2017-12-01

    The thermal discharges of Dominica are classified as steam-heated acidic-sulphate waters, produced by the mixing of shallow ground waters heated by sulphur bearing gases coming from magmatic sources. This study investigates the mineral alteration associated with three hydrothermal areas in Dominica that exhibit different temperature, pH, water composition and surface water abundance. Hydrothermal features (fumaroles, pools, springs) from Sulphur Springs ranged in temperature from 41 - 97 °C and pH from 1-3 in a predominantly gaseous environment, whereas the Valley of Desolation (69-98 °C and pH 1- 4) and the Cold Soufriere (18-32 °C and pH 1-4) have significant inputs of surface water. At each location, the host andesite-dacite rock was enveloped by a thin rind (up 2 cm) of precipitates, but the degree of alteration and rind thickness/composition varied with location. Cobbles from Sulphur Springs (SS) are grayish white in color with a thin outer rind (3-13 mm), and seemingly unaltered cores. Valley of Desolation (VoD) samples have a variety of patterns of alteration, with some clasts a uniform white-orange color, whereas others have variable thicknesses of an altered rind (1-20 mm), with relatively unaltered cores. Multiple hydrothermal minerals precipitated in the outer rinds display distinctive colors, suggestive of sulphides (dark gray), sulphates (orange and yellow), and iron oxides(?) (pink and purple). Cold Soufriere (CS) samples appear to be the most altered, often crumbling at touch. Others had rinds (2-10 mm) and pinkish gray cores that suggest more alteration compared to VoD and SS samples. Preliminary mineral identification of rind compositions was determined by XRD. Scans indicate the presence of silica polymorphs cristobalite and tridymite, as well as pyrite and sulphur. Elemental maps created using a SEM to identify any gradation caused by the elemental leaching and/or precipitation show that the boundaries between the weathering rind and the host

  7. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange

    DEFF Research Database (Denmark)

    Rist, Wolfgang; Jørgensen, Thomas J D; Roepstorff, Peter

    2003-01-01

    Stress conditions such as heat shock alter the transcriptional profile in all organisms. In Escherichia coli the heat shock transcription factor, sigma 32, out-competes upon temperature up-shift the housekeeping sigma-factor, sigma 70, for binding to core RNA polymerase and initiates heat shock...... gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37...... degrees C, indicating that sigma 32 adopts a highly flexible structure. At 42 degrees C we observed a slow correlated exchange of 30 additional amide hydrogens and localized it to a helix-loop-helix motif within domain sigma 2 that is responsible for the recognition of the -10 region in heat shock...

  8. Diesel exhaust particle exposure in vitro alters monocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Nazia Chaudhuri

    Full Text Available Air pollution by diesel exhaust particles is associated with elevated mortality and increased hospital admissions in individuals with respiratory diseases such as asthma and chronic obstructive pulmonary disease. During active inflammation monocytes are recruited to the airways and can replace resident alveolar macrophages. We therefore investigated whether chronic fourteen day exposure to low concentrations of diesel exhaust particles can alter the phenotype and function of monocytes from healthy individuals and those with chronic obstructive pulmonary disease. Monocytes were purified from the blood of healthy individuals and people with a diagnosis of chronic obstructive pulmonary disease. Monocyte-derived macrophages were generated in the presence or absence of diesel exhaust particles and their phenotypes studied through investigation of their lifespan, cytokine generation in response to Toll like receptor agonists and heat killed bacteria, and expression of surface markers. Chronic fourteen day exposure of monocyte-derived macrophages to concentrations of diesel exhaust particles >10 µg/ml caused mitochondrial and lysosomal dysfunction, and a gradual loss of cells over time both in healthy and chronic obstructive pulmonary disease individuals. Chronic exposure to lower concentrations of diesel exhaust particles impaired CXCL8 cytokine responses to lipopolysaccharide and heat killed E. coli, and this phenotype was associated with a reduction in CD14 and CD11b expression. Chronic diesel exhaust particle exposure may therefore alter both numbers and function of lung macrophages differentiating from locally recruited monocytes in the lungs of healthy people and patients with chronic obstructive pulmonary disease.

  9. Study of Two-Phase Heat Transfer in Nano-fluids for Nuclear Applications

    International Nuclear Information System (INIS)

    Kim, S.J.; Truong, B.; Buongiorno, J.; Hu, L.W.; Bang, I.C.

    2006-01-01

    Nano-fluids are engineered colloidal suspensions of nano-particles in a base fluid. We are investigating the two-phase heat transfer behavior of water-based nano-fluids, to evaluate their potential use in nuclear applications, including the PWR primary coolant and PWR and BWR safety systems. A simple pool boiling wire experiment shows that a significant increase in Critical Heat Flux (CHF) can be achieved at modest nano-particle concentrations. For example, the CHF increases by 50% in nano-fluids with alumina nano-particles at 0.001%v concentration. The CHF enhancement appears to correlate with the presence of a layer of nano-particles that builds up on the heated surface during nucleate boiling. A review of the prevalent Departure from Nucleate Boiling (DNB) theories suggests that an alteration of the nucleation site density (brought about by the nano-particle layer) could plausibly explain the CHF enhancement. (authors)

  10. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    International Nuclear Information System (INIS)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol

    2014-01-01

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  11. Heat Transfer Characteristics of SiC-coated Heat Pipe for Passive Decay Heat Removal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Mo; Kim, In Guk; Jeong, Yeong Shin; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    The main concern with the Fukushima accident was the failure of active and passive core cooling systems. The main function of existing passive decay heat removal systems is feeding additional coolant to the reactor core. Thus, an established emergency core cooling system (ECCS) cannot operate properly because of impossible depressurization under the station blackout (SBO) condition. Therefore, a new concept for passive decay heat removal system is required. In this study, an innovative hybrid control rod concept is considered for passive in-core decay heat removal that differs from the existing direct vessel injection core cooling system and passive auxiliary feedwater system (PAFS). The heat transfer between the evaporator and condenser sections occurs by phase change of the working fluid and capillary action induced by wick structures installed on the inner wall of the heat pipe. In this study, a hybrid control rod is developed to take the roles of both neutron absorption and heat removal by combining the functions of a heat pipe and control rod. Previous studies on enhancing the heat removal capacity of heat pipes used nanofluids, self-rewetting fluids, various wick structures and condensers. Many studies have examined the thermal performances of heat pipes using various nanofluids. They concluded that the enhanced thermal performance of the heat pipe using nanofluids is due to nanoparticle deposition on the wick structures. Thus, the wick structure of heat pipes has been modified by nanoparticle deposition to enhance the heat removal capacity. However, previous studies used relatively small heat pipes and narrow ranges of heat loads. The environment of a nuclear reactor is very specific, and the decay heat produced by fission products after shutdown is relatively large. Thus, this study tested a large-scale heat pipe over a wide range of power. The concept of a hybrid heat pipe for an advanced in-core decay heat removal system was introduced for complete

  12. Acute brief heat stress in late gestation alters neonatal calf innate immune functions.

    Science.gov (United States)

    Strong, R A; Silva, E B; Cheng, H W; Eicher, S D

    2015-11-01

    Heat stress, as one of the environmental stressors affecting the dairy industry, compromises the cow milk production, immune function, and reproductive system. However, few studies have looked at how prenatal heat stress (HS) affects the offspring. The objective of this study was to evaluate the effect of HS during late gestation on calf immunity. Calves were born to cows exposed to evaporative cooling (CT) or HS (cyclic 23-35°C) for 1 wk at 3 wk before calving. Both bull and heifer calves (CT, n=10; HS, n=10) were housed in similar environmental temperatures after birth. Both CT and HS calves received 3.78 L of pooled colostrum within 12 h after birth and were fed the same diet throughout the study. In addition to tumor necrosis factor α, IL-1β, IL-1 receptor antagonist (IL-1RA), and toll-like receptor (TLR)2, and TLR4 mRNA expression, the expression of CD14(+) and CD18(+) cells, and DEC205(+) dendritic cells were determined in whole blood samples at d 0, 3, 7, 14, 21, and 28. The neutrophil to lymphocyte ratio, differential cell counts, and the hematocrit were also determined. During late gestation, the HS cows had greater respiration rates, rectal temperatures, and tended to spend more time standing compared with the CT cows. The HS calves had less expression of tumor necrosis factor-α and TLR2 and greater levels of IL-1β, IL-1RA, and TLR4 compared with CT calves. The HS calves also had a greater percentage of CD18(+) cells compared with the CT calves. Additionally, a greater percentage of neutrophils and lesser percentage of lymphocytes were in the HS calves compared with the CT calves. The results indicate that biomarkers of calves' immunity are affected in the first several weeks after birth by HS in the dam during late gestation. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Optimal usage of low temperature heat sources to supply district heating by heat pumps

    DEFF Research Database (Denmark)

    Pieper, Henrik; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    This paper presents a theoretical study on the optimal usage of different low temperature heat sources to supply district heating by heat pumps. The study is based on data for the Copenhagen region. The heat sources were prioritized based on the coefficient of performance calculated for each hour...... and the covered demand of each heat source as well as required peak unit capacity. The results showed that heat pumps using different heat sources yield better performance than a heat pump based on a single one. The performance was influenced by the composition of the different heat sources. It was found that 78......% groundwater, 22% seawater and 0% air resulted in highest COP of 3.33 for the given heat demand. Furthermore, the implementation of rule based short term storage made peak units redundant. The variation in base load capacity showed that heat pumps utilizing the analyzed heat sources could perform very...

  14. Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating, and due to storage. Heat demand is reduced due to direct solar heating, due to storage and due to lower heat losses through the ground. In theory, by running the system flow backwards through the sand storage, active heating...... can be achieved.The objective of the report is to present results from measured system evaluation andcalculations and to give guidelines for the design of such solar heating systems with building integrated sand storage. The report is aimed to non-technicians. In another report R-006 the main results...

  15. Personalized Hydration Strategy Attenuates the Rise in Heart Rate and in Skin Temperature Without Altering Cycling Capacity in the Heat.

    Science.gov (United States)

    de Melo-Marins, Denise; Souza-Silva, Ana Angélica; da Silva-Santos, Gabriel Lucas Leite; Freire-Júnior, Francisco de Assis; Lee, Jason Kai Wei; Laitano, Orlando

    2018-01-01

    The optimal hydration plan [i.e., drink to thirst, ad libitum (ADL), or personalized plan] to be adopted during exercise in recreational athletes has recently been a matter of debate and, due to conflicting results, consensus does not exist. In the present investigation, we tested whether a personalized hydration strategy based on sweat rate would affect cardiovascular and thermoregulatory responses and exercise capacity in the heat. Eleven recreational male cyclists underwent two familiarization cycling sessions in the heat (34°C, 40% RH) where sweat rate was also determined. A fan was used to enhance sweat evaporation. Participants then performed three randomized time-to-exhaustion (TTE) trials in the heat with different hydration strategies: personalized volume (PVO), where water was consumed, based on individual sweat rate, every 10 min; ADL, where free access to water was allowed; and a control (CON) trial with no fluids. Blood osmolality and urine-specific gravity were measured before each trial. Heart rate (HR), rectal, and skin temperatures were monitored throughout trials. Time to exhaustion at 70% of maximal workload was used to define exercise capacity in the heat, which was similar in all trials ( p  = 0.801). Body mass decreased after ADL ( p  = 0.008) and CON ( p  skin temperature during PVO trial in comparison with CON (2.1 ± 0.6 vs. 2.9 ± 0.5°C, p  = 0.0038). HR was lower toward the end of TTE in PVO (162 ± 8 bpm) in comparison with ADL (168 ± 12 bpm) and CON (167 ± 10 bpm), p  hydration strategy can reduce HR during a moderate to high intensity exercise session in the heat and halt the increase in skin temperature. Despite these advantages, cycling capacity in the heat remained unchanged.

  16. Properties of matter reading levels 3-4

    CERN Document Server

    Graybill, George

    2007-01-01

    Discover what matter is, and is not. Learn about and the difference between a mixture and a solution. Chocked full with hands - on activities to understand the various physical and chemical changes to matter. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary.

  17. Split heat pipe heat recovery system

    OpenAIRE

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  18. Heat stress redistributes blood flow in arteries of the brain during dynamic exercise.

    Science.gov (United States)

    Sato, Kohei; Oue, Anna; Yoneya, Marina; Sadamoto, Tomoko; Ogoh, Shigehiko

    2016-04-01

    We hypothesized that heat stress would decrease anterior and posterior cerebral blood flow (CBF) during exercise, and the reduction in anterior CBF would be partly associated with large increase in extracranial blood flow (BF). Nine subjects performed 40 min of semirecumbent cycling at 60% of the peak oxygen uptake in hot (35°C; Heat) and thermoneutral environments (25°C; Control). We evaluated BF and conductance (COND) in the external carotid artery (ECA), internal carotid artery (ICA), and vertebral artery (VA) using ultrasonography. During the Heat condition, ICA and VA BF were significantly increased 10 min after the start of exercise (P Heat. Compared with the Control, either BF or COND of ICA and VA at the end of Heat tended to be lower, but not significantly. In contrast, ECA BF and COND at the end of Heat were both higher than levels in the Control condition (P Heat, a reduction in ICA BF appears to be associated with a decline in end-tidal CO2 tension (r = 0.84), whereas VA BF appears to be affected by a change in cardiac output (r = 0.87). In addition, a change in ECA BF during Heat was negatively correlated with a change in ICA BF (r = -0.75). Heat stress resulted in modification of the vascular response of head and brain arteries to exercise, which resulted in an alteration in the distribution of cardiac output. Moreover, a hyperthermia-induced increase in extracranial BF might compromise anterior CBF during exercise with heat stress. Copyright © 2016 the American Physiological Society.

  19. Heat cascading regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.

  20. Modeling of heat transfer into a heat pipe for a localized heat input zone

    International Nuclear Information System (INIS)

    Rosenfeld, J.H.

    1987-01-01

    A general model is presented for heat transfer into a heat pipe using a localized heat input. Conduction in the wall of the heat pipe and boiling in the interior structure are treated simultaneously. The model is derived from circumferential heat transfer in a cylindrical heat pipe evaporator and for radial heat transfer in a circular disk with boiling from the interior surface. A comparison is made with data for a localized heat input zone. Agreement between the theory and the model is good. This model can be used for design purposes if a boiling correlation is available. The model can be extended to provide improved predictions of heat pipe performance

  1. Industrial excess heat for district heating in Denmark

    DEFF Research Database (Denmark)

    Bühler, Fabian; Petrovic, Stefan; Karlsson, Kenneth Bernard

    2017-01-01

    analyses excess heat sources from the industrial sector and how they could be used for district heating. This method first allocates excess heat to single production units by introducing and validating a new approach. Spatial analysis of the heat sources and consumers are then performed to evaluate...... the potential for using them for district heating. In this way the theoretical potential of using the excess heat for covering the heating demand of buildings is determined. Through the use of industry specific temperature profiles the heat usable directly or via heat pumps is further found. A sensitivity...... analysis investigates the impact of future energy efficiency measures in the industry, buildings and the district heating grid on the national potential. The results show that for the case study of Denmark, 1.36 TWh of district heat could be provided annually with industrial excess heat from thermal...

  2. Linking lowermost mantle structure, core-mantle boundary heat flux and mantle plume formation

    Science.gov (United States)

    Li, Mingming; Zhong, Shijie; Olson, Peter

    2018-04-01

    The dynamics of Earth's lowermost mantle exert significant control on the formation of mantle plumes and the core-mantle boundary (CMB) heat flux. However, it is not clear if and how the variation of CMB heat flux and mantle plume activity are related. Here, we perform geodynamic model experiments that show how temporal variations in CMB heat flux and pulses of mantle plumes are related to morphologic changes of the thermochemical piles of large-scale compositional heterogeneities in Earth's lowermost mantle, represented by the large low shear velocity provinces (LLSVPs). We find good correlation between the morphologic changes of the thermochemical piles and the time variation of CMB heat flux. The morphology of the thermochemical piles is significantly altered during the initiation and ascent of strong mantle plumes, and the changes in pile morphology cause variations in the local and the total CMB heat flux. Our modeling results indicate that plume-induced episodic variations of CMB heat flux link geomagnetic superchrons to pulses of surface volcanism, although the relative timing of these two phenomena remains problematic. We also find that the density distribution in thermochemical piles is heterogeneous, and that the piles are denser on average than the surrounding mantle when both thermal and chemical effects are included.

  3. ECOLOGICAL SAFETY OF MINING REGIONS THROUGH CREATION OF POWER‐HEATING COMPLEXES (in Russian

    Directory of Open Access Journals (Sweden)

    I. A. YEFREMOV

    2014-04-01

    Full Text Available There was presented a method of use of alterative source of energy, namely coal mine methane, the use of which as a fuel for power and heatiing generation is a main direction in coal mines. By this means some ecological problems of the region are solved. Highly efficient power and heating technologies are implemented and energy complexes are established.

  4. Geothermal heating, diapycnal mixing and the abyssal circulation

    Directory of Open Access Journals (Sweden)

    J. Emile-Geay

    2009-06-01

    near-surface temperature gradients onto the bottom, thereby altering the density structure that supports a geothermal circulation. For strong vertical mixing rates, geothermal heating enhances the AABW cell by about 15% (2.5 Sv and heats up the last 2000 m by ~0.15°C, reaching a maximum of by 0.3°C in the deep North Pacific. Prescribing a realistic spatial distribution of the heat flux acts to enhance this temperature rise at mid-depth and reduce it at great depth, producing a more modest increase in overturning than in the uniform case. In all cases, however, poleward heat transport increases by ~10% in the Southern Ocean. The three approaches converge to the conclusion that geothermal heating is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies.

  5. Design of serially connected district heating heat pumps utilising a geothermal heat source

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix

    2017-01-01

    The design of two heat pumps (HP), connected in series, was investigated for operation in the district heating (DH) network of the Greater Copenhagen area, Denmark. The installation was dimensioned to supply 7.2 MW of heat at a temperature of 85 °C. The heat pumps utilise a geothermal heat source...

  6. Utilising heat from nuclear waste for space heating

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A heating unit utilising the decay heat from irradiated material comprises a storage envelope for the material associated with a heat exchange system, means for producing a flow of air over the heat exchange system to extract heat from the material, an exhaust duct capable of discharging the heated air to the atmosphere, and means for selectively diverting at least some of the heated air to effect the required heating. With the flow of air over the heat exchange system taking place by a natural thermosyphon process the arrangement is self regulating and inherently reliable. (author)

  7. Heat pumps in district heating networks

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  8. Experimental device for the residential heating with heat pipe and electric heat storage blocks

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Boldak, I M; Domorod, L S; Rabetsky, M I; Schirokov, E I [AN Belorusskoj SSR, Minsk (Belarus). Inst. Teplo- i Massoobmena

    1992-01-01

    Residential heating using electric heat storage blocks nowadays is an actual problem from the point of view of heat recovery and nature protection. In the Luikov Heat and Mass Transfer Institute a new residential electrical heater capable of heating chambers by controlling air temperature and heat output using heat pipes and an electric heat storage block was developed. This heater (BETA) is fed from the source of energy and during 7 h of night time accumulates energy sufficiently to heat 10 m{sup 3} during 24 h. Heating device BETA has a ceramic thermal storage block, electric heaters and a heat pipe with evaporator inside the ceramic block and constant temperature (65{sup o}C) finned condenser outside it. The condenser temperature could be controlled easily. BETA is compact, has high thermal response, accurate air temperature control and safe operation. Such types of residential heaters are necessary for heating residential and office building in the Mogilev and Gomel regions in Byelorussia which suffered after the Chernobyl catastrophe. (Author).

  9. Hydrolysis of native and heat-treated starches at sub-gelatinization temperature using granular starch hydrolyzing enzyme.

    Science.gov (United States)

    Uthumporn, U; Shariffa, Y N; Karim, A A

    2012-03-01

    The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.

  10. The Influence of Heat Treatments on the Porosity of Suspension Plasma-Sprayed Yttria-Stabilized Zirconia Coatings

    Science.gov (United States)

    Ekberg, Johanna; Ganvir, Ashish; Klement, Uta; Creci, Simone; Nordstierna, Lars

    2018-02-01

    Suspension plasma-sprayed coatings are produced using fine-grained feedstock. This allows to control the porosity and to achieve low thermal conductivity which makes the coatings attractive as topcoats in thermal barrier coatings (TBCs). Used in gas turbine applications, TBCs are exposed to high temperature exhaust gases which lead to microstructure alterations. In order to obtain coatings with optimized thermomechanical properties, microstructure alterations like closing of pores and opening of cracks have to be taken into account. Hence, in this study, TBC topcoats consisting of 4 mol.% yttria-stabilized zirconia were heat-treated in air at 1150 °C and thereafter the coating porosity was investigated using image analysis (IA) and nuclear magnetic resonance (NMR) cryoporometry. Both IA and NMR cryoporometry showed that the porosity changed as a result of the heat treatment for all investigated coatings. In fact, both techniques showed that the fine porosity decreased as a result of the heat treatment, while IA also showed an increase in the coarse porosity. When studying the coatings using scanning electron microscopy, it was noticed that finer pores and cracks disappeared and larger pores grew slightly and achieved a more distinct shape as the material seemed to become more compact.

  11. Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent.

    Science.gov (United States)

    Lamarche, Dallon T; Notley, Sean R; Poirier, Martin P; Kenny, Glen P

    2018-03-01

    What is the central question of this study? Aerobic fitness modulates heat loss, albeit the heat load at which fitness-related differences occur in young healthy women remains unclear. What is the main finding and its importance? We demonstrate using direct calorimetry that fitness modulates heat loss in a heat-load dependent manner, with differences occurring between young women of low and high fitness and matched physical characteristics when the metabolic heat load is at least 400 W in hot, dry conditions. Although fitness has been known for some time to modulate heat loss, our findings define the metabolic heat load at which fitness-related differences occur. Aerobic fitness has recently been shown to alter heat loss capacity in a heat-load dependent manner in young men. However, given that sex-related differences in heat loss capacity exist, it is unclear whether this response is consistent in women. We therefore assessed whole-body total heat loss in young (21 ± 3 years old) healthy women matched for physical characteristics, but with low (low-fit; 35.8 ± 4.5 ml O 2  kg -1  min -1 ) or high aerobic fitness (high-fit; 53.1 ± 5.1 ml O 2  kg -1  min -1 ; both n = 8; indexed by peak oxygen consumption), during three 30 min bouts of cycling performed at increasing rates of metabolic heat production of 250 (Ex1), 325 (Ex2) and 400 W (Ex3), each separated by a 15 min recovery, in hot, dry conditions (40°C, 11% relative humidity). Whole-body total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat content was measured as the temporal summation of heat production and loss. Total heat loss did not differ during Ex1 (low-fit, 215 ± 16 W; high-fit, 231 ± 20 W; P > 0.05) and Ex2 (low-fit, 278 ± 15 W; high-fit, 301 ± 20 W; P > 0.05), but was lower in the low-fit (316 ± 21 W) compared with the high-fit women (359 ± 32

  12. Solar heat storages in district heating networks

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, AArhus (DK)); Engberg Pedersen, T. (COWI A/S, Kgs. Lyngby (DK))

    2007-07-15

    This report gives information on the work carried out and the results obtained in Denmark on storages for large solar heating plants in district heating networks. Especially in Denmark the share of district heating has increased to a large percentage. In 1981 around 33% of all dwellings in DK were connected to a district heating network, while the percentage in 2006 was about 60% (in total 1.5 mio. dwellings). In the report storage types for short term storage and long term storages are described. Short term storages are done as steel tanks and is well established technology widely used in district heating networks. Long term storages are experimental and used in connection with solar heating. A number of solar heating plants have been established with either short term or long term storages showing economy competitive with normal energy sources. Since, in the majority of the Danish district heating networks the heat is produced in co-generation plants, i.e. plants producing both electricity and heat for the network, special attention has been put on the use of solar energy in combination with co-generation. Part of this report describes that in the liberalized electricity market central solar heating plants can also be advantageous in combination with co-generation plants. (au)

  13. Heating energy flexibility of dwellings. Asuinrakennusten laemmityksen energiajoustavuus

    Energy Technology Data Exchange (ETDEWEB)

    Haapalahti, P [Valtion Teknillinen Tutkimuskeskus, Espoo (Finland). Yhdyskunta- ja rakennussuojelun Lab

    1989-02-01

    The problem area under study concens the heating of dwellings fluctuations in energy supply. The research has been restricted to dwellings only and those activities linked to energy production and transportation have been excluded. During energy shortage, home-owners are faced with two alternatives: to cut down their energy consumption or to use other forms of energy as substitutes for primary energy. In the case of a serious crisis regarding domestic fuel, wood in particular can be considered as a viable alternative. However, when considering present-day installations, any increase in use of wood as a fuel must be seen as limited. Thus the saving of energy in times of shortage is rendered still more important. Energy-savings is, of course, possible in terms of reduced comfort and quality factors in comparison to those preveiling under normal circumstances. For example, indoor temperatures can be lowered, ventilation diminished or the consumption of warm water deccreased. With respect to saving activities, the adjustability of heating and ventilation should be as efficient as possible. With regard to altering situations regarding energy prices, energy flexibility means, primarily, changing energy sources. Replacing an energy source is, however, a quite an expensive operation and economic dependence on the chosen system is considerable.Energy flexibility, particularly in the choice of main heating system, is easiest to achieve during new building phases and can be improved by recourse to various main solutions such as, for instance, the construction of fireplace. Mechanical incoming and exhaust air system can be chosen for direct electrical heating for a ventilation system. The control of the indoor temperature and ventilation of each separate room can be developed in all heating systems.

  14. Short communication: Effect of maternal heat stress in late gestation on blood hormones and metabolites of newborn calves.

    Science.gov (United States)

    Guo, J-R; Monteiro, A P A; Weng, X-S; Ahmed, B M; Laporta, J; Hayen, M J; Dahl, G E; Bernard, J K; Tao, S

    2016-08-01

    Maternal heat stress alters immune function of the offspring, as well as metabolism and future lactational performance, but its effect on the hormonal and metabolic responses of the neonate immediately after birth is still not clear. The objective of this study was to investigate the blood profiles of hormones and metabolites of calves born to cows that were cooled (CL) or heat-stressed (HS) during the dry period. Within 2 h after birth, but before colostrum feeding, blood samples were collected from calves [18 bulls (HS: n=10; CL: n=8) and 20 heifers (HS: n=10; CL: n=10)] born to CL or HS dry cows, and hematocrit and plasma concentrations of total protein, prolactin, insulin-like growth factor-I, insulin, glucose, nonesterified fatty acid, and β-hydroxybutyrate were measured. Compared with CL, HS calves had lower hematocrit and tended to have lower plasma concentrations of insulin, prolactin, and insulin-like growth factor-I. However, maternal heat stress had no effect on plasma levels of total protein, glucose, fatty acid, and β-hydroxybutyrate immediately after birth. These results suggest that maternal heat stress desensitizes a calf's stress response and alters the fetal development by reducing the secretion of insulin-like growth factor-I, prolactin, and insulin. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. 24 CFR 3280.506 - Heat loss/heat gain.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Heat loss/heat gain. 3280.506... URBAN DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.506 Heat loss/heat gain. The manufactured home heat loss/heat gain shall be determined by methods outlined in...

  16. Automation of heating system with heat pump

    OpenAIRE

    Ferdin, Gašper

    2016-01-01

    Because of high prices of energy, we are upgrading our heating systems with newer, more fuel efficient heating devices. Each new device has its own control system, which operates independently from other devices in a heating system. With a relatively low investment costs in automation, we can group devices in one central control system and increase the energy efficiency of a heating system. In this project, we show how to connect an oil furnace, a sanitary heat pump, solar panels and a heat p...

  17. Regenerative heat sources for heating networks

    International Nuclear Information System (INIS)

    Huenges, Ernst; Sperber, Evelyn; Eggers, Jan-Bleicke; Noll, Florian; Kallert, Anna Maria; Reuss, Manfred

    2015-01-01

    The ambitious goal, the German Federal Government has set itself, to reduce the emissions of greenhouse gases by 80% to 95% by the year 2050. As there are currently more than half of German energy consumption for the production of heat is required, big contributions to climate protection can be expected from this area if more renewable heat sources are used. Renewable heat sources such as bioenergy, solar thermal and geothermal energy in particular can be provided as compared to fossil fuels with significantly lower specific CO 2 emissions. Objectives in the heating market and scenarios for the transformation of the heat sector have been elaborated in the BMU Lead Study 2011. The main pillar of this scenario is the reduction of final energy consumption for heat by the energy-efficient renovation of existing buildings and further increasing demands on the energetic quality of new buildings. To cover the remaining energy demand, a focus is on the expansion of heating networks based on renewable energies. [de

  18. Prediction of heat-illness symptoms with the prediction of human vascular response in hot environment under resting condition.

    Science.gov (United States)

    Aggarwal, Yogender; Karan, Bhuwan Mohan; Das, Barsa Nand; Sinha, Rakesh Kumar

    2008-04-01

    The thermoregulatory control of human skin blood flow is vital to maintain the body heat storage during challenges of thermal homeostasis under heat stress. Whenever thermal homeostasis disturbed, the heat load exceeds heat dissipation capacity, which alters the cutaneous vascular responses along with other body physiological variables. Whole body skin blood flow has been calculated from the forearm blood flow. Present model has been designed using electronics circuit simulator (Multisim 8.0, National Instruments, USA), is to execute a series of predictive equations for early prediction of physiological parameters of young nude subjects during resting condition at various level of dry heat stress under almost still air to avoid causalities associated with hot environmental. The users can execute the model by changing the environmental temperature in degrees C and exposure time in minutes. The model would be able to predict and detect the changes in human vascular responses along with other physiological parameters and from this predicted values heat related-illness symptoms can be inferred.

  19. Exomoon habitability constrained by illumination and tidal heating.

    Science.gov (United States)

    Heller, René; Barnes, Rory

    2013-01-01

    The detection of moons orbiting extrasolar planets ("exomoons") has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary "habitable edge." We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. If either planet hosted a satellite at a distance greater than 10 planetary radii, then this could indicate the presence of a habitable moon.

  20. Heat pipes for ground heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L

    1988-01-01

    Different versions of heat pipe ground heating and cooling devices are considered. Solar energy, biomass, ground stored energy, recovered heat of industrial enterprises and ambient cold air are used as energy and cold sources. Heat pipe utilization of air in winter makes it possible to design accumulators of cold and ensures deep freezing of ground in order to increase its mechanical strength when building roadways through the swamps and ponds in Siberia. Long-term underground heat storage systems are considered, in which the solar and biomass energy is accumulated and then transferred to heat dwellings and greenhouses, as well as to remove snow from roadways with the help of heat pipes and solar collectors.

  1. Effect of heated length on the Critical Heat Flux of subcooled flow boiling. 2. Effective heated length under axially nonuniform heating condition

    International Nuclear Information System (INIS)

    Kinoshita, Hidetaka; Yoshida, Takuya; Nariai, Hideki; Inasaka, Fujio

    1998-01-01

    Effect of heated length on the Critical Heat Flux (CHF) of subcooled flow boiling with water was experimentally investigated by using direct current heated tube made of stainless steel a part of whose wall thickness was axially cut for realizing nonuniform heat flux condition. The higher enhancement of the CHF was derived for shorter tube length. The effective heated length was determined for the tube under axially nonuniform heat flux condition. When the lower heat flux part below the Net Vapor Generation (NVG) heat flux exists at the middle of tube length, then the effective heated length becomes the tube length downstream the lower heat flux parts. However, when the lower heat flux part is above the NVG, then the effective heated length is full tube length. (author)

  2. Heat Roadmap Europe: Identifying strategic heat synergy regions

    International Nuclear Information System (INIS)

    Persson, U.; Möller, B.; Werner, S.

    2014-01-01

    This study presents a methodology to assess annual excess heat volumes from fuel combustion activities in energy and industry sector facilities based on carbon dioxide emission data. The aim is to determine regional balances of excess heat relative heat demands for all third level administrative regions in the European Union (EU) and to identify strategic regions suitable for large-scale implementation of district heating. The approach is motivated since the efficiency of current supply structures to meet building heat demands, mainly characterised by direct use of primary energy sources, is low and improvable. District heating is conceived as an urban supply side energy efficiency measure employable to enhance energy system efficiency by increased excess heat recoveries; hereby reducing primary energy demands by fuel substitution. However, the importance of heat has long been underestimated in EU decarbonisation strategies and local heat synergies have often been overlooked in energy models used for such scenarios. Study results indicate that 46% of all excess heat in EU27, corresponding to 31% of total building heat demands, is located within identified strategic regions. Still, a realisation of these rich opportunities will require higher recognition of the heat sector in future EU energy policy. - Highlights: • EU27 energy and industry sector heat recycling resources are mapped and quantified. • Target regions for large-scale implementation of district heating are identified. • 46% of total EU27 excess heat volume is seized in 63 strategic heat synergy regions. • Large urban zones have lead roles to play in transition to sustainability in Europe. • Higher recognition of heat sector is needed in future EU energy policy for realisation

  3. Native American Languages Act. Hearing before the Committee on Indian Affairs, United States Senate. One Hundred Eighth Congress, First Session on S. 575 To Amend the Native American Languages Act To Provide for the Support of Native American Language Survival Schools (May 15, 2003).

    Science.gov (United States)

    Congress of the U.S., Washington, DC. Senate Committee on Indian Affairs.

    This document includes statements given at this hearing by the following: William Y. Brown; John Cheek, Jennifer Chock; Rita Coosewon; David Dinwoodie; William Demmert, Jr.; Joycelyn DesRosier; Mary Hermes; Carla Herrera; Leanne Hinton; Holo Ho'opai; Hon. Daniel K. Inouye; Lawrence D. Kaplan; Keiki Kawaiaea; Rosalyn, LaPier; Lisa LaRonge; Vina…

  4. Personalized Hydration Strategy Attenuates the Rise in Heart Rate and in Skin Temperature Without Altering Cycling Capacity in the Heat

    Directory of Open Access Journals (Sweden)

    Denise de Melo-Marins

    2018-04-01

    Full Text Available The optimal hydration plan [i.e., drink to thirst, ad libitum (ADL, or personalized plan] to be adopted during exercise in recreational athletes has recently been a matter of debate and, due to conflicting results, consensus does not exist. In the present investigation, we tested whether a personalized hydration strategy based on sweat rate would affect cardiovascular and thermoregulatory responses and exercise capacity in the heat. Eleven recreational male cyclists underwent two familiarization cycling sessions in the heat (34°C, 40% RH where sweat rate was also determined. A fan was used to enhance sweat evaporation. Participants then performed three randomized time-to-exhaustion (TTE trials in the heat with different hydration strategies: personalized volume (PVO, where water was consumed, based on individual sweat rate, every 10 min; ADL, where free access to water was allowed; and a control (CON trial with no fluids. Blood osmolality and urine-specific gravity were measured before each trial. Heart rate (HR, rectal, and skin temperatures were monitored throughout trials. Time to exhaustion at 70% of maximal workload was used to define exercise capacity in the heat, which was similar in all trials (p = 0.801. Body mass decreased after ADL (p = 0.008 and CON (p < 0.001 and was maintained in PVO trials (p = 0.171. Participants consumed 0 ml in CON, 166 ± 167 ml in ADL, and 1,080 ± 166 ml in PVO trials. The increase in mean body temperature was similar among trials despite a lower increase in skin temperature during PVO trial in comparison with CON (2.1 ± 0.6 vs. 2.9 ± 0.5°C, p = 0.0038. HR was lower toward the end of TTE in PVO (162 ± 8 bpm in comparison with ADL (168 ± 12 bpm and CON (167 ± 10 bpm, p < 0.001. In conclusion, a personalized hydration strategy can reduce HR during a moderate to high intensity exercise session in the heat and halt the increase in skin

  5. Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90

    Science.gov (United States)

    Kitson, Russell R. A.; Chang, Chuan-Hsin; Xiong, Rui; Williams, Huw E. L.; Davis, Adrienne L.; Lewis, William; Dehn, Donna L.; Siegel, David; Roe, S. Mark; Prodromou, Chrisostomos; Ross, David; Moody, Christopher J.

    2013-01-01

    The benzoquinone ansamycin geldanamycin and its derivatives are inhibitors of heat shock protein Hsp90, an emerging target for novel therapeutic agents both in cancer and in neurodegeneration. However, toxicity of these compounds to normal cells has been ascribed to reaction with thiol nucleophiles at the quinone 19-position. We reasoned that blocking this position would ameliorate toxicity, and that it might also enforce a favourable conformational switch of the trans-amide group into the cis-form required for protein binding. We report here an efficient synthesis of such 19-substituted compounds and realization of our hypotheses. Protein crystallography established that the new compounds bind to Hsp90 with, as expected, a cis-amide conformation. Studies on Hsp90 inhibition in cells demonstrated the molecular signature of Hsp90 inhibitors: decreases in client proteins with compensatory increases in other heat shock proteins in both human breast cancer and dopaminergic neural cells, demonstrating their potential for use in the therapy of cancer or neurodegenerative diseases. PMID:23511419

  6. Heat transfer and critical heat flux in a spiral flow in an asymmetrical heated tube

    International Nuclear Information System (INIS)

    Boscary, J.; Association Euratom-CEA, Centre d'Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance

    1997-03-01

    The design of plasma facing components is crucial for plasma performance in next fusion reactors. These elements will be submitted to very high heat flux. They will be actively water-cooled by swirl tubes in the subcooled boiling regime. High heat flux experiments were conducted in order to analyse the heat transfer and to evaluate the critical heat flux. Water-cooled mock-ups were one-side heated by an electron beam gun for different thermal-hydraulic conditions. The critical heat flux was detected by an original method based on the isotherm modification on the heated surface. The wall heat transfer law including forced convection and subcooled boiling regimes was established. Numerical calculations of the material heat transfer conduction allowed the non-homogeneous distribution of the wall temperature and of the wall heat flux to be evaluated. The critical heat flux value was defined as the wall maximum heat flux. A critical heat flux model based on the liquid sublayer dryout under a vapor blanket was established. A good agreement with test results was found. (author)

  7. Combined treatments of heat, irradiation, and pH effects on infectivity of foot-and-mouth disease virus in bovine tissues

    International Nuclear Information System (INIS)

    Lasta, J.; Blackwell, J.H.; Sadir, A.; Gallinger, M.; Marcoveccio, F.; Zamorano, M.; Ludden, B.; Rodriguez, R.

    1992-01-01

    Various traditional methods for processing meat products were examined for their virucidal effects on the A, O, and C serotypes of foot-and-mouth disease virus. Aging, curing, heating at 78 degrees C for 20 min or irradiation (1.5 Mrad, 2.4 Mrad) that did not alter the sensory characteristics of the product were used singly or in combination. The only processing treatment that was virucidal was the combination of heat and gamma irradiation

  8. Modeling soil heating and moisture transport under extreme conditions: Forest fires and slash pile burns

    Science.gov (United States)

    W. J. Massman

    2012-01-01

    Heating any soil during a sufficiently intense wildfire or prescribed burn can alter it irreversibly, causing many significant, long-term biological, chemical, and hydrological effects. Given the climate-change-driven increasing probability of wildfires and the increasing use of prescribed burns by land managers, it is important to better understand the dynamics of the...

  9. Temperature and blood flow distribution in the human leg during passive heat stress.

    Science.gov (United States)

    Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José

    2016-05-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.

  10. Parallel gradient effects on ICRH (Ion Cyclotron Resonance Heating) in Tokamaks

    International Nuclear Information System (INIS)

    Smithe, D.N.

    1987-01-01

    This dissertation examines the effects on Ion Cyclotron Resonance Heating of parallel nonuniformity in the magnetic field which arises from the poloidal field in a tokamak and the universal (major radius)/sup /minus/1/ scaling of the cyclotron frequency. The goal of the analysis is the macroscopic warm plasma current including temperature in the sense of the finite Larmor radius expansion and the quasilocal approximation of the parallel guiding center motion. A 1-D numerical application of the fully nonlocal integral dielectric is performed. Parallel gradient effects are studied for He-3 minority, 2nd harmonic deuterium, and hydrogen minority heating in tokamaks. The results show quite significant alteration of the toroidal wavenumber absorption spectrum, and a wealth of new behavior on the local propagation scale. 95 refs., 37 figs

  11. Urban district heating using nuclear heat - a survey

    International Nuclear Information System (INIS)

    Beresovski, T.; Oliker, I.

    1979-01-01

    The use of heat from nuclear power plants is of great interest in connection with projected future expansions of large urban district heating systems. Oil price escalation and air pollution from increased burning of fossil fuels are substantial incentivers for the adoption of nuclear heat and power plants. The cost of the hot water piping system from the nuclear plant to the city is a major factor in determining the feasibility of using nuclear heat. To achieve reasonable costs, the heat load should be at least 1500 MW(th), transport temperatures 125-200 0 C and distances preferably 50 km or less. Heat may be extracted from the turbines of conventional power reactors. Alternatively, some special-purpose smaller reactors are under development which are specially suited to production of heat with little or no power coproduct. Many countries are conducting studies of future expansions of district heating systems to use nuclear heat. Several countries are developing technology suitable for this application. Actual experience with the use of nuclear heat for district heating is currently being gained only in the USSR, however. While district heating appears to be a desirable technology at a time of increasing fossil-fuel costs, the use of nuclear heat will require siting of nuclear plants within transmission radius of cities. The institutional barries toward use of nuclear heating will have to be overcome before the energy conservation potential of this approach can be realized on a significant scale. (author)

  12. Reactor waste heat utilization and district heating reactors. Nuclear district heating in Sweden - Regional reject heat utilization schemes and small heat-only reactors

    International Nuclear Information System (INIS)

    Hannerz, K.; Larsson, Y.; Margen, P.

    1977-01-01

    A brief review is given of the current status of district heating in Sweden. In future, district heating schemes will become increasingly interesting as a means of utilizing heat from nuclear reactors. Present recommendations in Sweden are that large reactors should not be located closer than about 20 km from large population centres. Reject heat from such reactors is cheap at source. To minimize the cost of long distance hot water transmission large heat rates must be transmitted. Only areas with large populations can meet this requirement. The three areas of main interest are Malmoe/Lund/Helsingborg housing close to 0.5 million; Greater Stockholm housing 1 to 1.5 million and Greater Gothenburg housing about 0.5 million people. There is an active proposal that the Malmoe/Lund/Helsingborg region would be served by a third nuclear unit at Barsebaeck, located about 20 km from Malmoe/Lund and supplying 950 MW of base load heat. Preliminary proposals for Stockholm involve a 2000 MW heat supply; proposals for Gothenburg are more tentative. The paper describes progress on these proposals and their technology. It also outlines technology under development to increase the economic range of large scale heat transport and to make distribution economic even for low heat-density family housing estates. Regions apart from the few major urban areas mentioned above require the adoption of a different approach. To this end the development of a small, simple low-temperature reactor for heat-only production suitable for urban location has been started in Sweden in close contact with Finland. Some results of the work in progress are presented, with emphasis on the safety requirements. An outline is given in the paper as to how problems of regional heat planning and institutional and legislative issues are being approached

  13. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  14. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  15. Heat-treatment and heat-to-heat variations in the fracture toughness of Alloy 718

    International Nuclear Information System (INIS)

    Mills, W.J.

    1981-07-01

    The effect of heat-treatment and heat-to-heat variations on the J Ic fracture toughness response of Alloy 718 was examined at room and elevated temperatures using the multiple-specimen R-curve technique. Six heats of alloy 718 were tested in the conventional and modified heat-treated conditions. The fracture toughness response for the modified superalloy was found to be superior to that exhibited by the conventional material. Heat-to-heat variations in the J Ic response of Alloy 718 were observed in both heat-treated conditions; the modified treatment exhibited much larger variability. The J Ic and corresponding K Ic fracture toughness values were analyzed statistically to establish minimum expected toughness, values for use in design and safety analyses. 26 refs., 10 figs., 9 tabs

  16. Molecular programs induced by heat acclimation confer neuroprotection against TBI and hypoxic insults via cross-tolerance mechanisms

    Directory of Open Access Journals (Sweden)

    Michal eHorowitz

    2015-07-01

    Full Text Available Neuroprotection following prolonged exposure to high ambient temperatures (heat acclimation HA develops via altered molecular programs such as cross-tolerance (Heat Acclimation -Neuroprotection Cross-Tolerance -HANCT. The mechanisms underlying cross-tolerance depend on enhanced on-demand protective pathways evolving during acclimation. The protection achieved is long lasting and limits the need for de novo recruitment of cytoprotective pathways upon exposure to novel stressors. Using mouse and rat acclimated phenotypes, we will focus on the impact of heat acclimation on Angiotensin II-AT2 receptors in neurogenesis and on HIF-1 as key mediators in spontaneous recovery and HANCT after traumatic brain injury (TBI. The neuroprotective consequences of heat acclimation on NMDA and AMPA receptors will be discussed using the global hypoxia model. A behavioral-molecular link will be crystallized. The differences between HANCT and consensus preconditioning will be reviewed.

  17. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Energy Technology Data Exchange (ETDEWEB)

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  18. THE EFFECT OF HEAT TREATMENT ON THE DURABILITY OF BAMBOO Gigantochloa scortechinii

    Directory of Open Access Journals (Sweden)

    Norashikin Kamarudin

    2012-07-01

    Full Text Available Bamboo signifies as one of the fastest growing plants and it can be used for various products. In tropical countries such as Indonesia and Malaysia, bamboo is abundantly available at reasonable prices, therefore it is used for numerous purposes. However, as lignocellulosic material, bamboo is susceptible to fungal and insect attacks. Heat treatment is an option to improve bamboo's durability. The objective of this study was to improve the durability of bamboo using hot oil palm treatment. A Malaysian grown bamboo species, Buluh Semantan (Gigantochloa scortechinii, as a study material was soaked in hot oil palm for various temperatures and soaking time, before being inoculated with the basidiomycete Coriolus versicolor in an agar block test. The results demonstrated that the longer the heating time, the more improved the durability of bamboo. Altering the temperature in the palm oil treatment produced varying results. Bamboo blocks that heated in hot oil palm at 100°C for 60 minutes shows considerably less weight eduction that indicates less fungal attack. Overall, the higher the temperature, the better the durability of bamboo. Please indicates what the meaning of heat treatment in this experiment, it is not clear.

  19. Waste heat of HTR power stations for district heating

    International Nuclear Information System (INIS)

    Bonnenberg, H.; Schlenker, H.V.

    1975-01-01

    The market situation, the applied techniques, and the transport, for district heating in combination with HTR plants are considered. Analysis of the heat market indicates a high demand for heat at temperatures between 100 and 150 0 C in household and industry. This market for district heating can be supplied by heat generated in HTR plants using two methods: (1) the combined heat and power generation in steam cycle plants by extracting steam from the turbine, and (2) the use of waste heat of a closed gas turbine cycle. The heat generation costs of (2) are negligible. The cost for transportation of heat over the average distance between existing plant sites and consumer regions (25 km) are between 10 and 20% of the total heat price, considering the high heat output of nuclear power stations. Comparing the price of heat gained by use of waste heat in HTR plants with that of conventional methods, considerable advantages are indicated for the combined heat and power generation in HTR plants. (author)

  20. Postaccident heat removal. II. Heat transfer from an internally heated liquid to a melting solid

    International Nuclear Information System (INIS)

    Faw, R.E.; Baker, L. Jr.

    1976-01-01

    Microwave heating has been used in studies of heat transfer from a horizontal layer of internally heated liquid to a melting solid. Experiments were designed to simulate heat transfer and meltthrough processes of importance in the analysis of postaccident heat removal capabilities of nuclear reactors. Glycerin, heated by 2.45-GHz microwave radiation, was used to simulate molten fuel. Paraffin wax was used to simulate a melting barrier confining the fuel. Experimentally measured heat fluxes and melting rates were consistent with a model based on downward heat transfer by conduction through a stagnant liquid layer and upward heat transfer augmented by natural convection. Melting and displacement of the barrier material occurred by upward-moving droplets randomly distributed across the melting surface. Results indicated that the melting and displacement process had no effect on the heat transfer process

  1. Mining Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Shik; Lee, Kyung Woon; Kim, Oak Hwan; Kim, Dae Kyung [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    The reducing coal market has been enforcing the coal industry to make exceptional rationalization and restructuring efforts since the end of the eighties. To the competition from crude oil and natural gas has been added the growing pressure from rising wages and rising production cost as the workings get deeper. To improve the competitive position of the coal mines against oil and gas through cost reduction, studies to improve mining system have been carried out. To find fields requiring improvements most, the technologies using in Tae Bak Colliery which was selected one of long running mines were investigated and analyzed. The mining method appeared the field needing improvements most to reduce the production cost. The present method, so-called inseam roadway caving method presently is using to extract the steep and thick seam. However, this method has several drawbacks. To solve the problems, two mining methods are suggested for a long term and short term method respectively. Inseam roadway caving method with long-hole blasting method is a variety of the present inseam roadway caving method modified by replacing timber sets with steel arch sets and the shovel loaders with chain conveyors. And long hole blasting is introduced to promote caving. And pillar caving method with chock supports method uses chock supports setting in the cross-cut from the hanging wall to the footwall. Two single chain conveyors are needed. One is installed in front of chock supports to clear coal from the cutting face. The other is installed behind the supports to transport caved coal from behind. This method is superior to the previous one in terms of safety from water-inrushes, production rate and productivity. The only drawback is that it needs more investment. (author). 14 tabs., 34 figs.

  2. Effects of Symmetrically Arranged Heat Sources on the Heat Release Performance of Extruded-Type Heat Sinks

    Energy Technology Data Exchange (ETDEWEB)

    Ku, Min Ye [Chonbuk National Univ., Chonju (Korea, Republic of)

    2016-02-15

    In this study we investigated the effects of symmetrically arranged heat sources on the heat release performances of extruded-type heat sinks through experiments and thermal fluid simulations. Also, based on the results we suggested a high-efficiency and cost-effective heat sink for a solar inverter cooling system. In this parametric study, the temperatures between heaters on the base plate and the heat release rates were investigated with respect to the arrangements of heat sources and amounts of heat input. Based on the results we believe that the use of both sides of the heat sink is the preferred method for releasing the heat from the heat source to the ambient environment rather than the use of a single side of the heat sink. Also from the results, it is believed that the symmetric arrangement of the heat sources is recommended to achieve a higher rate of heat transfer. From the results of the thermal fluid simulation, it was possible to confirm the qualitative agreement with the experimental results. Finally, quantitative comparison with respect to mass flow rates, heat inputs, and arrangements of the heat source was also performed.

  3. Estimate of K-functionals and modulus of smoothness constructed ...

    Indian Academy of Sciences (India)

    ... and -functionals. The main result of the paper is the proof of the equivalence theorem for a -functional and a modulus of smoothness for the Dunkl transform on R d . Author Affiliations. M El Hamma1 R Daher1. Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco ...

  4. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    International Nuclear Information System (INIS)

    Alkmim, Danielle Gomides; Almeida, Frederico Ozanan Tomaz de; Lameiras, Fernando Soares

    2017-01-01

    Beryl, Be_3Al_2(SiO_3)_6, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR) can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm"-"1 may be related to the position of Na"+ ion in the crystal lattice of beryl. (author)

  5. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    Directory of Open Access Journals (Sweden)

    Danielle Gomides Alkmim

    Full Text Available Abstract Beryl, Be3Al2(SiO36, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm-1 may be related to the position of Na+ ion in the crystal lattice of beryl.

  6. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  7. Radiation effects on heat transfer in heat exchangers, (2)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.

    1980-01-01

    In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)

  8. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  9. Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation

    International Nuclear Information System (INIS)

    Sinha, A.; Shit, G.C.

    2015-01-01

    This paper presents a comprehensive theoretical study on heat transfer characteristics together with fully developed electromagnetohydrodynamic flow of blood through a capillary, having electrokinetic effects by considering the constant heat flux at the wall. The effect of thermal radiation and velocity slip condition have been taken into account. A rigorous mathematical model for describing Joule heating in electro-osmotic flow of blood including the Poisson–Boltzmann equation, the momentum equation and the energy equation is developed. The alterations in the thermal transport phenomenon, induced by the variation of imposed electromagnetic effects, are thoroughly explained through an elegant mathematical formalism. Results presented here pertain to the case where the height of the capillary is much greater than the thickness of electrical double layer comprising the stern and diffuse layers. The essential features of the electromagnetohydrodynamic flow of blood and associated heat transfer characteristics through capillary are clearly highlighted by the variations in the non-dimensional parameters for velocity profile, temperature profile and the Nusselt number. The study reveals that the temperature of blood can be controlled by regulating Joule heating parameter. - Highlights: • Electromagnetohydrodynamic flow of blood in capillary is studied. • Potential electric field is applied for driving elecroosmotic flow of blood. • Effect of thermal radiation, Joule heating and velocity slip is investigated. • Thermal radiation bears the significant change in the temperature field

  10. Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, A. [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Shit, G.C., E-mail: gopal_iitkgp@yahoo.co.in [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Institute of Mathematical Sciences, Chennai 600113 (India)

    2015-03-15

    This paper presents a comprehensive theoretical study on heat transfer characteristics together with fully developed electromagnetohydrodynamic flow of blood through a capillary, having electrokinetic effects by considering the constant heat flux at the wall. The effect of thermal radiation and velocity slip condition have been taken into account. A rigorous mathematical model for describing Joule heating in electro-osmotic flow of blood including the Poisson–Boltzmann equation, the momentum equation and the energy equation is developed. The alterations in the thermal transport phenomenon, induced by the variation of imposed electromagnetic effects, are thoroughly explained through an elegant mathematical formalism. Results presented here pertain to the case where the height of the capillary is much greater than the thickness of electrical double layer comprising the stern and diffuse layers. The essential features of the electromagnetohydrodynamic flow of blood and associated heat transfer characteristics through capillary are clearly highlighted by the variations in the non-dimensional parameters for velocity profile, temperature profile and the Nusselt number. The study reveals that the temperature of blood can be controlled by regulating Joule heating parameter. - Highlights: • Electromagnetohydrodynamic flow of blood in capillary is studied. • Potential electric field is applied for driving elecroosmotic flow of blood. • Effect of thermal radiation, Joule heating and velocity slip is investigated. • Thermal radiation bears the significant change in the temperature field.

  11. Heat transfer from two-side heated helical channels

    International Nuclear Information System (INIS)

    Shimonis, V.; Ragaishis, V.; Poshkas, P.

    1995-01-01

    Experimental results are presented on the heat transfer from two-side heated helical channels to gas (air) flows. The study covered six configurations and wide ranges of geometrical (D/h=5.5 to 84.2) and performance (Re=10 3 to 2*10 5 ) parameters. Under the influence of Re and of the channel curvature, the heat transfer from both the convex and the concave surfaces for two-side heating (q w1 ≅ q w2 ) is augmented by 20-30% over one-side heating. Improved relations to predict the critical values of Reynolds Re cr1 and Re cr2 are suggested. They enable more exact predictions of the heat transfer from convex surface in transient flows for one-side heating. The relation for annular channels is suggested for the turbulent heat transfer from the convex and concave surfaces of two-side heated helical channels. It can be adapted by introducing earlier expresions for one-side heated helical channels. (author). 6 refs., 2 tabs., 3 figs

  12. Modelling glass alteration in an altered argillaceous environment

    International Nuclear Information System (INIS)

    Bildstein, O.; Trotignon, L.; Pozo, C.; Jullien, M.

    2007-01-01

    The long term behaviour of materials such as glass, steel and clay has been investigated in the context of deep geological disposal of radioactive wastes. The interactions between vitrified wastes, canister corrosion products (CPs) and clay are studied using a modified version of the reaction-transport code Crunch, especially looking at pH changes and possible cementation at the interface with the clayey materials. These perturbations may indeed affect the lifetime of glass matrix in deep repositories, e.g., high pH enhances the rate of glass alteration. This work focuses on the argillite of Bure. The calculations were performed at 323 K with a glass alteration rate switching from a high initial rate to a residual rate according to the sorption capacity of CPs. The time at which this sorption capacity is saturated is crucial to the system in terms of wastes package lifetime. The results show that the glass alteration imposes a high pH value at the interface with CPs and clay: up to a value of 9.2, compared to 7.3 which is the initial pH value in the argillite. Experimental data show that the rate of glass alteration is much higher in such pH conditions. For a R7T7-type glass, the rate is about five times higher at pH 9 than at pH 7. This pH perturbation migrates through the clayey domain as a result of the migration of mobile elements such as boron and sodium, and despite the existence of strong pH buffers in the argillite. The cementation of porosity at the interface between glass and clay is predicted by the model due to the massive precipitation of iron corrosion products and glass alteration products. At this point of the evolution of the system, the pH starts to decrease and the alteration rate of the glass could be significantly reduced. This porosity clogging effect is difficult to confirm by experiments especially since existing data on short term experiments tend to show a pervasive precipitation of silica in the domain instead of a localized precipitation

  13. District heating and heat storage using the solution heat of an ammonia/water system

    International Nuclear Information System (INIS)

    Taube, M.; Peier, W.; Mayor, J.C.

    1976-01-01

    The article describes a model for the optimum use of the heat energy generated in a nuclear power station for district heating and heat storage taking account of the electricity and heat demand varying with time. (HR/AK) [de

  14. Effect of water content on specific heat capacity of porcine septum cartilage

    Science.gov (United States)

    Chae, Yongseok; Lavernia, Enrique J.; Wong, Brian J.

    2002-06-01

    The effect of water content on specific heat capacity was examined using temperature modulated Differential Scanning Calorimetry (TMDSC). This research was motivated in part by the development laser cartilage reshaping operations, which use photothermal heating to accelerate stress relaxation and shape change. Deposition of thermal energy leads to mechanical stress relaxation and redistribution of cartilage internal stresses, which may lead to a permanent shape change. The specific heat of cartilage specimens (dia: 3 mm and thickness 1-2 mm) was measured using a heating rate of 2 degree(s)C/min for conventional DSC and 2 degree(s)C/min with an amplitude 0.38-0.45 degree(s)C and a period 60-100 sec for TMDSC. The amount of water in cartilaginous tissue was determined using thermogravimetry analysis (TGA) under ambient conditions. In order to correlate changes in heat flow with alterations in cartilage mechanical behavior, dynamic mechanical temperature analysis (DMTA) was used to estimate the specific transition temperatures where stress relaxation occurs. With decreasing water content, we identified a phase transition that shifted to a higher temperature after 35-45% water content was measured. The phase transition energy increased from 0.12 J/g to 1.68 J/g after a 45% weight loss. This study is a preliminary investigation focused on understanding the mechanism of the stress relaxation of cartilage during heating. The energy requirement of such a transition estimated using TMDSC and temperature range, where cartilage shape changes likely occur, was estimated.

  15. Winter-regime surface heat loss from heated streams

    International Nuclear Information System (INIS)

    Paily, P.P.; Macagno, E.O.; Kennedy, J.F.

    1974-01-01

    Evaluation of the rate of surface heat exchange between the water and air is a significant factor in any study of the thermal response of heated streams to heat inputs. Existing methods to determine the amount of heat transfer across the water surface are surveyed, and the different formulas developed for determining the heat exchange components are compiled. Heat-transfer models that have been proposed in the literature are reviewed, and a new linearized model for determining the rate of surface heat exchange is proposed. Generalized relations between the major climatological factors and the coefficients of the linearized heat-loss rate are established by multiple-regression analysis. The analysis is limited to cold-period conditions, in the sense that air temperatures below the freezing point of water only are considered in developing the regression equations. A computer program, using FORTRAN, is presented which enables the computation of the coefficients appearing in the linearized heat-loss rate for all combinations of the various climatological factors

  16. Nuclear heat for industrial purposes and district heating

    International Nuclear Information System (INIS)

    1974-01-01

    Studies on the various possibilities for the application of heat from nuclear reactors in the form of district heat or process steam for industrial purposes had been made long before the present energy crisis. Although these studies have indicated technical feasibility and economical justification of such utilization, the availability of relatively cheap oil and difficulties in locating a nuclear heat source inside industrial areas did not stimulate much further development. Since the increase of oil prices, the interest in nuclear heat application is reawakened, and a number of new potential areas have been identified. It now seems generally recognized that the heat from nuclear reactors should play an important role in primary energy supply, not only for electricity production but also as direct heat. At present three broad areas of nuclear heat application are identified: Direct heat utilization in industrial processing requiring a temperature above 800 deg. C; Process steam utilization in various industries, requiring a temperature mainly in the range of 200-300 deg. C; Low temperature and waste heat utilization from nuclear power plants for desalination of sea water and district heating. Such classification is mainly related to the type and characteristics of the heat source or nuclear reactor which could be used for a particular application. Modified high temperature reactor types (HTR) are the candidates for direct heat application, while the LWR reactors can satisfy most of the demands for process steam. Production of waste heat is a characteristic of all thermal power plants, and its utilization is a major challenge in the field of power production

  17. Effects of heat on meat proteins - Implications on structure and quality of meat products.

    Science.gov (United States)

    Tornberg, E

    2005-07-01

    Globular and fibrous proteins are compared with regard to structural behaviour on heating, where the former expands and the latter contracts. The meat protein composition and structure is briefly described. The behaviour of the different meat proteins on heating is discussed. Most of the sarcoplasmic proteins aggregate between 40 and 60 °C, but for some of them the coagulation can extend up to 90°C. For myofibrillar proteins in solution unfolding starts at 30-32°C, followed by protein-protein association at 36-40°C and subsequent gelation at 45-50°C (conc.>0.5% by weight). At temperatures between 53 and 63°C the collagen denaturation occurs, followed by collagen fibre shrinkage. If the collagen fibres are not stabilised by heat-resistant intermolecular bonds, it dissolves and forms gelatine on further heating. The structural changes on cooking in whole meat and comminuted meat products, and the alterations in water-holding and texture of the meat product that it leads to, are then discussed.

  18. The log mean heat transfer rate method of heat exchanger considering the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, K.-L.; Ke, M.-T.; Ku, S.-S.

    2009-01-01

    The log mean temperature difference (LMTD) method is conventionally used to calculate the total heat transfer rate of heat exchangers. Because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations, thus LMTD method neglects the influence of heat radiation. From the recent investigation of a circular duct in some practical situations, it is found that even in the situation of the temperature difference between outer duct surface and surrounding is low to 1 deg. C, the heat radiation effect can not be ignored in the situations of lower ambient convective heat coefficient and greater surface emissivities. In this investigation, the log mean heat transfer rate (LMHTR) method which considering the influence of heat radiation, is developed to calculate the total heat transfer rate of heat exchangers.

  19. Characterizing the altered zone at Yucca Mountain: The beginning of a testing strategy

    International Nuclear Information System (INIS)

    Chesnut, D.A.

    1992-01-01

    The concept of a disturbed zone surrounding the mined openings of a potential geologic repository for high-level radioactive waste was introduced by the US Nuclear Regulatory Commission (NRC) as a region to be excluded for determining groundwater travel time to the accessible environment, but to be included for determining the impact of underground construction and radioactive decay heat on groundwater movement and radionuclide transport for total system performance analysis. This paper explores both the regulatory and technical necessity for characterizing and modeling a larger region -- the altered zone -- within which the temperature is increased significantly by heat from the high-level waste. Particular attention is given to addressing the effects of heterogeneity on groundwater flux and travel time, showing how these effects might be modeled simply on a macroscopic scale, and outlining its parameters. The effect of uncertainty in the parameter values on the performance of a potential repository can then be easily handled by probabilistic analysis

  20. Heat pump augmentation of nuclear process heat

    International Nuclear Information System (INIS)

    Koutz, S.L.

    1986-01-01

    A system is described for increasing the temperature of a working fluid heated by a nuclear reactor. The system consists of: a high temperature gas cooled nuclear reactor having a core and a primary cooling loop through which a coolant is circulated so as to undergo an increase in temperature, a closed secondary loop having a working fluid therein, the cooling and secondary loops having cooperative association with an intermediate heat exchanger adapted to effect transfer of heat from the coolant to the working fluid as the working fluid passes through the intermediate heat exchanger, a heat pump connected in the secondary loop and including a turbine and a compressor through which the working fluid passes so that the working fluid undergoes an increase in temperature as it passes through the compressor, a process loop including a process chamber adapted to receive a process fluid therein, the process chamber being connected in circuit with the secondary loop so as to receive the working fluid from the compressor and transfer heat from the working fluid to the process fluid, a heat exchanger for heating the working fluid connected to the process loop for receiving heat therefrom and for transferring heat to the secondary loop prior to the working fluid passing through the compressor, the secondary loop being operative to pass the working fluid from the process chamber to the turbine so as to effect driving relation thereof, a steam generator operatively associated with the secondary loop so as to receive the working fluid from the turbine, and a steam loop having a feedwater supply and connected in circuit with the steam generator so that feedwater passing through the steam loop is heated by the steam generator, the steam loop being connected in circuit with the process chamber and adapted to pass steam to the process chamber with the process fluid

  1. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    Science.gov (United States)

    Larson, P.B.; Cunningham, C.G.; Naeser, C.W.

    1994-01-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar

  2. Investigation on Solar Heating System with Building-Integrated Heat Storage

    DEFF Research Database (Denmark)

    Heller, Alfred

    1996-01-01

    Traditional solar heating systems cover between 5 and 10% of the heat demand fordomestic hot water and comfort heating. By applying storage capacity this share can beincreased much. The Danish producer of solar heating systems, Aidt-Miljø, markets such a system including storage of dry sand heated...... by PP-pipe heat exchanger. Heat demand is reduced due to direct solar heating and due to storage. The storage affects the heat demand passively due to higher temperatures. Hence heat loss is reduced and passive heating is optioned. In theory, by running the system flow backwards, active heating can...... solar collector area of the system, was achieved. Active heating from the sand storage was not observed. The pay-back time for the system can be estimated to be similar to solar heated domestic hot water systems in general. A number of minor improvements on the system could be pointed out....

  3. Project description: ORNL PWR blowdown heat transfer separate-effects program, Thermal-Hydraulic Test Facility (THTF)

    International Nuclear Information System (INIS)

    1976-02-01

    The ORNL Pressurized-Water Reactor Blowdown Heat Transfer (PWR-BDHT) Program is an experimental separate-effects study of the relations among the principal variables that can alter the rate of blowdown, the presence of flow reversal and rereversal, time delay to critical heat flux, the rate at which dryout progresses, and similar time-related functions that are important to LOCA analysis. Primary test results will be obtained from the Thermal-Hydraulic Test Facility (THTF), a large nonnuclear pressurized-water loop that incorporates a 49-rod electrically heated bundle. Supporting experiments will be carried out in two additional test loops - the Forced Convection Test Facility (FCTF), a small high-pressure facility in which single heater rods can be tested in annular geometry; and an air-water loop which is used to evaluate two-phase flow-measuring instrumentation

  4. Spin-wave excitations and magnetism of sputtered Fe/Au multilayers

    Indian Academy of Sciences (India)

    2LMPG, Ecole supérieure de technologie, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Morocco. 3LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II de Casablanca, B.P. 5366 Mâarif, Morocco. MS received 15 September 2015; accepted 15 February 2016. Abstract. The spin-wave excitations and ...

  5. Media Multitasking among American Youth: Prevalence, Predictors and Pairings

    Science.gov (United States)

    Foehr, Ulla G.

    2006-01-01

    In the past, multitasking was a juggling act performed by busy adults, as they tried to manage jobs, chores, carpools, and PTA meetings. But recently, teens and tweens have turned into the real experts at multitasking, as their lives become chock-full of organized activities. For them, multitasking has simply become a way of life: "If I couldn't…

  6. Web life: ComplexityBlog.com

    Science.gov (United States)

    2010-02-01

    The site's homepage calls it "a repository of ideas and perspectives regarding the science, engineering and philosophy of complexity", and it pretty much does what it says on the tin. Part blog, part links archive, part library of modelling tips and tricks, the site is chock full of information that comes under the general heading of "complexity".

  7. Heat transfer in an asymmetrically heated duct, 2

    International Nuclear Information System (INIS)

    Satoh, Isao; Kurosaki, Yasuo

    1986-01-01

    The objective of this article is to study theoretically and experimentally the effects of nonuniform heating on turbulent heat transfer characteristics for flow in a horizontal rectangular duct ; a vertical side wall was uniformly heated, and the other wall were insulated. In our theoretical approach, the zero-equation model for turbulent eddy viscosity was employed. The effects of mesh size of finite difference on the calculation results were examined, and some refined compensation for wall temperatures and wall shear stresses by no use of fine mesh were proposed to reduce the calculation time. The heat transfer coefficients in thermally developing region for a nonuniformly heated duct obtained from numerical solutions are larger than the one for uniformly heated case. The buoyancy effects on heat transfer were evaluated. However, it was seen that the secondary flow due to buoyancy force was hardly expected to enhance heat transfer in a turbulent duct flow. Experiments were performed to measure the velocity and temperature profiles in a turbulent duct flow with a nonuniform heated wall. The experimental results were in good agreement with the theoretical ones. (author)

  8. Experimental study on heat pipe assisted heat exchanger used for industrial waste heat recovery

    International Nuclear Information System (INIS)

    Ma, Hongting; Yin, Lihui; Shen, Xiaopeng; Lu, Wenqian; Sun, Yuexia; Zhang, Yufeng; Deng, Na

    2016-01-01

    Highlights: • A heat pipe heat exchanger (HPHE) was used to recycle the waste heat in a slag cooling process of steel industry. • An specially designed on-line cleaning device was construed and used to enhance the heat transfer of HPHE. • The performance characteristics of a HPHE has been assessed by integrating the first and second law of thermodynamics. • The optimum operation conditions was determined by integrating the first and the second law of thermodynamics. - Abstract: Steel industry plays an important role economically in China. A great amount of hot waste liquids and gases are discharged into environment during many steelmaking processes. These waste liquids and gases have crucial energy saving potential, especially for steel slag cooling process. It could be possible to provide energy saving by employing a waste heat recovery system (WHRS). The optimum operation condition was assessed by integrating the first and the second law of thermodynamics for a water–water heat pipe heat exchanger (HPHE) for a slag cooling process in steel industry. The performance characteristics of a HPHE has been investigated experimentally by analyzing heat transfer rate, heat transfer coefficient, effectiveness, exergy efficiency and number of heat transfer units (NTU). A specially designed on-line cleaning device was used to clean the heat exchange tubes and enhance heat transfer. The results indicated that the exergy efficiency increased with the increment of waste water mass flow rate at constant fresh water mass flow rate, while the effectiveness decreased at the same operation condition. As the waste water mass flow rate varied from 0.83 m"3/h to 1.87 m"3/h, the effectiveness and exergy efficiency varied from 0.19 to 0.09 and from 34% to 41%, respectively. In the present work, the optimal flow rates of waste water and fresh water were 1.20 m"3/h and 3.00 m"3/h, respectively. The on-line cleaning device had an obvious effect on the heat transfer, by performing

  9. Exomoon Habitability Constrained by Illumination and Tidal Heating

    Science.gov (United States)

    2013-01-01

    Abstract The detection of moons orbiting extrasolar planets (“exomoons”) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary “habitable edge.” We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. If either planet hosted a satellite at a distance greater than 10 planetary radii, then this could indicate the presence of a habitable moon. Key Words: Astrobiology—Extrasolar planets—Habitability—Habitable zone—Tides. Astrobiology 13, 18–46. PMID:23305357

  10. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    Science.gov (United States)

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data

  11. Geothermal heat-pump systems of heat supply

    International Nuclear Information System (INIS)

    Vasil'ev, G.P.

    2004-01-01

    The data on the multilayer operation of the objects, located in the climatic conditions of the central area of Russia and equipped with the geothermal heat-pumping systems of the heat supply are presented. The results of the analytical studies on evaluating the geothermal heat-pumping systems of the heat supply integration efficiency into the structure of the energy supply system, prevailing in the country, are presented [ru

  12. Fossil fuel and biomass burning effect on climate - heating or cooling

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, Y.J.; Fraser, R.S.; Mahoney, R.L. (NASA/Goddard Space Flight Center, Greenbelt, MD (USA))

    1991-06-01

    Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate change. Emitted trace gases heat the atmosphere through their greenhouse effect, while particulates formed from emitted SO{sub 2} cause cooling by increasing cloud albedos through alteration of droplet size distributions. This paper reviews the characteristics of the cooling effect and applies Twomey's theory to check whether the radiative balance favours heating or cooling for the cases of fossil fuel and biomass burning. It is also shown that although coal and oil emit 120 times as many CO{sub 2} molecules as SO{sub 2} molecules, each SO{sub 2} molecule is 50-1100 times more effective in cooling the atmosphere (through the effect of aerosol particles on cloud albedo) than a CO{sub 2} molecule is in heating it. Note that this ratio accounts for the large difference in the aerosol (3-10 days) and CO{sub 2} (7-100 years) lifetimes. It is concluded, that the cooling effect from coal and oil burning may presently range from 0.4 to 8 times the heating effect. Within this large uncertainty, it is presently more likely that fossil fuel burning causes cooling of the atmosphere rather than heating. Biomass burning associated with deforestation, on the other hand, is more likely to cause heating of the atmosphere than cooling since its aerosol cooling effect is only half that from fossil fuel burning and its heating effect is twice as large. Future increases in coal and oil burning, and the resultant increase in concentration of cloud condensation nuclei, may saturate the cooling effect, allowing the heating effect to dominate. For a doubling in the CO{sub 2} concentration due to fossil fuel burning, the cooling effect is expected to be 0.1 to 0.3 of the heating effect. 75 refs., 8 tabs.

  13. 222Rn and CO2 soil-gas geochemical characterization of thermally altered clays at Orciatico (Tuscany, Central Italy)

    International Nuclear Information System (INIS)

    Voltattorni, N.; Lombardi, S.; Rizzo, S.

    2010-01-01

    Research highlights: → Soil-gas technique is applied to study gas permeability of Orciatico clay units. → Clay permeability depends on thermal and mechanical alteration degree. → Soil-gas distributions are due to shallow fracturing of clays. → Rn and CO 2 soil-gas anomalies highlight secondary permeability in clay sequence. → Soil-gas results are supported by detailed geoelectrical surveys. - Abstract: The physical properties of clay allow argillaceous formations to be considered geological barriers to radionuclide migration in high-level radioactive-waste isolation systems. As laboratory simulations are short term and numerical models always involve assumptions and simplifications of the natural system, natural analogues are extremely attractive surrogates for the study of long-term isolation. The clays of the Orciatico area (Tuscany, Central Italy), which were thermally altered via the intrusion of an alkali-trachyte laccolith, represent an interesting natural model of a heat source which acted on argillaceous materials. The study of this natural analogue was performed through detailed geoelectrical and soil-gas surveys to define both the geometry of the intrusive body and the gas permeability of a clay unit characterized by different degrees of thermal alteration. The results of this study show that gas permeability is increased in the clay sequences subjected to greater heat input from the emplacement of the Orciatico intrusion, despite the lack of apparent mineral and geotechnical variations. These results, which take into consideration long time periods in a natural, large-scale geological system, may have important implications for the long-term safety of underground storage of nuclear waste in clay formations.

  14. Loop heat pipes - highly efficient heat-transfer devices for systems of sun heat supply

    Energy Technology Data Exchange (ETDEWEB)

    Maydanik, Yu. [Ural Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation). Inst. of Thermophysics

    2004-07-01

    Loop heat pipes (LHPs) are hermetic heat-transfer devices operating on a closed evaporation-condensation cycle with the use of capillary pressure for pumping the working fluid [1]. In accordance with this, they possess all the main advantages of conventional heat pipes, but, as distinct from the latter, have a considerably higher heat-transfer capacity, especially when operating in the ''antigravity'' regime, when heat is transferred from above downwards. Besides, LHPs possess a higher functional versatility, are adaptable to different operating conditions and provide great scope for various design embodiments. This is achieved at the expense of both the original design of the device and the properties of the wick - a special capillary structure used for the creation of capillary pressure. The LHP schematic diagram is given in Fig. 1. The device contains an evaporator and a condenser - heat exchanger connected by means of smooth-walled pipe-lines with a relatively small diameter intended for separate motion of vapor and liquid. At present loop heat pipes are most extensively employed in thermoregulation systems of spacecrafts. Miniature LHPs are used for cooling electronics and computers. At the same time there exists a considerable potential of using these devices for the recovery of low-grade (waste) heat from different sources, and also in systems of sun heat supply. In the latter case LHPs may serve as an efficient heat-transfer link between a sun collector and a heat accumulator, which has a low thermal resistance and does not consume any additional energy for pumping the working fluid between them. (orig.)

  15. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  16. Study of dissolution precipitation phenomena related to heat generated by underground disposal

    International Nuclear Information System (INIS)

    Fabriol, R.

    1987-01-01

    This study is composed of two parts developed in two separated volumes. The first part is a bibliographical research concerning the behaviour of waste analog elements during hydrothermal alteration in active geothermal fields. The second part is an experimental and theoretical simulation of dissolution-precipitation phenomena related to heat generated in the vicinity of a nuclear waste repository located in granitic formations. This work is part of the CEC project MIRAGE on natural geological migration systems [fr

  17. Component Cooling Heat Exchanger Heat Transfer Capability Operability Monitoring

    International Nuclear Information System (INIS)

    Mihalina, M.; Djetelic, N.

    2010-01-01

    The ultimate heat sink (UHS) is of highest importance for nuclear power plant safe and reliable operation. The most important component in line from safety-related heat sources to the ultimate heat sink water body is a component cooling heat exchanger (CC Heat Exchanger). The Component Cooling Heat Exchanger has a safety-related function to transfer the heat from the Component Cooling (CC) water system to the Service Water (SW) system. SW systems throughout the world have been the root of many plant problems because the water source, usually river, lake, sea or cooling pond, are conductive to corrosion, erosion, biofouling, debris intrusion, silt, sediment deposits, etc. At Krsko NPP, these problems usually cumulate in the summer period from July to August, with higher Sava River (service water system) temperatures. Therefore it was necessary to continuously evaluate the CC Heat Exchanger operation and confirm that the system would perform its intended function in accordance with the plant's design basis, given as a minimum heat transfer rate in the heat exchanger design specification sheet. The Essential Service Water system at Krsko NPP is an open cycle cooling system which transfers heat from safety and non-safety-related systems and components to the ultimate heat sink the Sava River. The system is continuously in operation in all modes of plant operation, including plant shutdown and refueling. However, due to the Sava River impurities and our limited abilities of the water treatment, the system is subject to fouling, sedimentation buildup, corrosion and scale formation, which could negatively impact its performance being unable to satisfy its safety related post accident heat removal function. Low temperature difference and high fluid flows make it difficult to evaluate the CC Heat Exchanger due to its specific design. The important effects noted are measurement uncertainties, nonspecific construction, high heat transfer capacity, and operational specifics (e

  18. Heat transfer capability analysis of heat pipe for space reactor

    International Nuclear Information System (INIS)

    Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang

    2015-01-01

    To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)

  19. Primary energy savings using heat storage for biomass heating systems

    Directory of Open Access Journals (Sweden)

    Mitrović Dejan M.

    2012-01-01

    Full Text Available District heating is an efficient way to provide heat to residential, tertiary and industrial users. The heat storage unit is an insulated water tank that absorbs surplus heat from the boiler. The stored heat in the heat storage unit makes it possible to heat even when the boiler is not working, thus increasing the heating efficiency. In order to save primary energy (fuel, the boiler operates on nominal load every time it is in operation (for the purpose of this research. The aim of this paper is to analyze the water temperature variation in the heat storage, depending on the heat load and the heat storage volume. Heat load is calculated for three reference days, with average daily temperatures from -5 to 5°C. The primary energy savings are also calculated for those days in the case of using heat storage in district heating.[Projekat Ministarstva nauke Republike Srbije, br. TR 33051: The concept of sustainable energy supply of settlements with energy efficient buildings

  20. Overview report of RAMONA-NEPTUN program on passive decay heat removal

    International Nuclear Information System (INIS)

    Weinberg, D.; Rust, K.; Hoffmann, H.

    1996-03-01

    The design of the advanced sodium-cooled European Fast Reactor provides a safety graded decay heat removal concept which ensures the coolability of the primary system by natural convection when forced cooling is lost. The findings of the RAMONA and NEPTUN experiments indicate that the decay heat can be safely removed by natural convection. The operation of the decay heat exchangers being installed in the upper plenum causes the formation of a thermal stratification associated with a pronounced temperature gradient. The vertical extent of the stratification and the qualitity of the gradient are depending on the fact whether a permeable or an impermeable shell covers the above core structure. A delayed startup time of the decay heat exchangers leads only to a slight increase of the temperatures in the upper plenum. A complete failure of half of the decay heat exchangers causes a higher temperature level in the primary system, but does not alter the global temperature distribution. The transient development of the temperatures is faster going on in a three-loop model than in a four-loop model due to the lower amount of heat stored in the compacter primary vessel. If no coolant reaches the core inlet side via the intermediate heat exchangers, the core remains coolable. In this case, cold water of the upper plenum penetrates into the subassemblies (thermosyphon effects) and the interwrapper spaces existing in the NEPTUN core. The core coolability from above is feasible without any difficulty though the temperatures increase to a minor degree at the top end of the core. The thermal hydraulic computer code FLUTAN was applied for the 3D numerical simulation of the majority of the steady state RAMONA and NEPTUN tests as well as for selected transient RAMONA tests. (orig./HP) [de

  1. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  2. Effects of different CMV-heat-inactivation-methods on growth factors in human breast milk.

    Science.gov (United States)

    Goelz, Rangmar; Hihn, Eva; Hamprecht, Klaus; Dietz, Klaus; Jahn, Gerhard; Poets, Christian; Elmlinger, Martin

    2009-04-01

    Preterm infants can inoculate virulent cytomegalovirus (CMV) through their mothers' raw breast milk. Complete virus inactivation is achieved only by heat treatment, but the effect on growth factors has never been assessed systematically. Insulin-like-growth-factor-1-, IGF-2-, insulin-like-growth-factor-binding-protein-2-, and IGFBP-3-concentrations were measured, before and after heating, in 51 breast-milk-samples from 28 mothers, and epidermal-growth-factor-concentrations in a subgroup of 35 samples from 22 mothers. Two heating methods were applied: Short-term (5 s) pasteurisation at 62, 65, and 72 degrees C, and long-term Holder-Pasteurisation (30 min) at 63 degrees C. IGF-1, IGF-2, IGFBP-2, and IGFBP-3 were measured by RIA, and EGF by ELISA. Heating for 30 min decreased significantly IGF-1 by 39.4%, IGF-2 by 9.9%, IGFBP-2 by 19.1%, and IGFBP-3 by 7.0%. In contrast, IGF-1, IGF-2, IGFBP-2, and IGFBP-3 were not altered significantly when using a short heating duration of 5 s, irrespective of the level of temperature, except for IGF-2 at 62 degrees C for 5 s (p = 0.041) and IGFBP-2 at 72 degrees C for 5 s (p = 0.025). Neither long- nor short-time heating methods changed the concentration of EGF. Only short heating methods (5 s, 62-72 degrees C) can preserve, almost completely, the concentrations of IGFs in human milk, whereas Holder-Pasteurization does not.

  3. Alternative welding reconditioning solutions without post welding heat treatment of pressure vessel

    Science.gov (United States)

    Cicic, D. T.; Rontescu, C.; Bogatu, A. M.; Dijmărescu, M. C.

    2017-08-01

    In pressure vessels, working on high temperature and high pressure may appear some defects, cracks for example, which may lead to failure in operation. When these nonconformities are identified, after certain examination, testing and result interpretation, the decision taken is to repair or to replace the deteriorate component. In the current legislation it’s stipulated that any repair, alteration or modification to an item of pressurised equipment that was originally post-weld heat treated after welding (PWHT) should be post-weld heat treated again after repair, requirement that cannot always be respected. For that reason, worldwide, there were developed various welding repair techniques without PWHT, among we find the Half Bead Technique (HBT) and Controlled Deposition Technique (CDT). The paper presents the experimental results obtained by applying the welding reconditioning techniques HBT and CDT in order to restore as quickly as possible the pressure vessels made of 13CrMo4-5. The effects of these techniques upon the heat affected zone are analysed, the graphics of the hardness variation are drawn and the resulted structures are compared in the two cases.

  4. Ocean heat content variability in an ensemble of twentieth century ocean reanalyses

    Science.gov (United States)

    de Boisséson, Eric; Balmaseda, Magdalena Alonso; Mayer, Michael

    2017-08-01

    This paper presents a ten-member ensemble of twentieth century Ocean ReAnalyses called ORA-20C. ORA-20C assimilates temperature and salinity profiles and is forced by the ECMWF twentieth century atmospheric reanalysis (ERA-20C) over the 1900-2010 period. This study attempts to identify robust signals of ocean heat content change in ORA-20C and detect contamination by model errors, initial condition uncertainty, surface fluxes and observing system changes. It is shown that ORA-20C trends and variability in the first part of the century result from the surface fluxes and model drift towards a warmer mean state and weak meridional overturning circulation. The impact of the observing system in correcting the mean state causes the deceleration of the warming trend and alters the long-term climate signal. The ensemble spread reflects the long-lasting memory of the initial conditions and the convergence of the system to a solution compatible with surface fluxes, the ocean model and observational constraints. Observations constrain the ocean heat uptake trend in the last decades of the twentieth century, which is similar to trend estimations from the post-satellite era. An ocean heat budget analysis attributes ORA-20C heat content changes to surface fluxes in the first part of the century. The heat flux variability reflects spurious signals stemming from ERA-20C surface fields, which in return result from changes in the atmospheric observing system. The influence of the temperature assimilation increments on the heat budget is growing with time. Increments control the most recent ocean heat uptake signals, highlighting imbalances in forced reanalysis systems in the ocean as well as in the atmosphere.

  5. Myocardial functional responses do not contribute to maximal exercise performance in the heat.

    Science.gov (United States)

    Smith, Denise L; DeBlois, Jacob P; Wharton, Margaret; Rowland, Thomas

    2015-01-01

    Both the extent and means by which maximal oxygen uptake ([Formula: see text]) is depressed by elevated ambient temperature are uncertain. Particularly, information is currently unavailable regarding the possible influence of alterations in myocardial function on [Formula: see text] and performance during exercise in the heat. This study investigated the effects of environmental heat on [Formula: see text], peak work capacity, and myocardial function during a standard, progressive cycle test to exhaustion. Twelve euhydrated men (aged 20.7 ± 1.7 years) performed a maximal cycle test in an environmental chamber in both heat stress [35°C, 30% relative humidity (RH)] and temperate (20°C, 30% RH) conditions with measurement of standard gas exchange variables, core temperature, and echocardiographic measures of cardiac function. A small but statistically significant reduction of peak work capacity was observed in the heat stress versus temperate conditions (253 ± 30 and 259 ± 30 W, respectively, p = 0.02). Mean [Formula: see text] was not statistically different in the two conditions (p = 0.16) but values were 3.4% lower in the heat, and 9 of 12 participants demonstrated lower values in the heat stress trial. No differences in responses of heart rate, cardiac output, stroke volume, core temperature, hydration status, or myocardial systolic or diastolic function were observed between the two conditions, but perceived body temperature was higher in the heat. The small, negative impact of heat on exercise performance and [Formula: see text] could not be explained by disturbances in myocardial functional responses to exercise in young adult males.

  6. Invited review: heat stress effects during late gestation on dry cows and their calves.

    Science.gov (United States)

    Tao, S; Dahl, G E

    2013-07-01

    In dairy cattle, late gestation is a critical period for fetal growth and physiological transition into the next lactation. Environmental factors, such as temperature and light, exert dramatic effects on the production, health, and well-being of animals during this period and after parturition. The aim of this review was to introduce effects of heat stress during late gestation on dairy cattle, and discuss the biological mechanisms that underlie the observed production and health responses in the dam and her fetus. Relative to cooled cows, cows that are heat stressed during late gestation have impaired mammary growth before parturition and decreased milk production in the subsequent lactation. In response to higher milk yield, cows cooled prepartum undergo a series of homeorhetic adaptations in early lactation to meet higher demand for milk synthesis compared with heat-stressed cows, but no direct effect of environmental heat stress on metabolism exists during the dry period. Prepartum cooling improves immune status of transition cows and evidence suggests that altered prolactin signaling in immune cells mediates the effects of heat stress on immune function. Late-gestation heat stress compromises placental development, which results in fetal hypoxia, malnutrition, and eventually fetal growth retardation. Maternal heat stress may also have carryover effects on the postnatal growth of offspring, but direct evidence is still lacking. Emerging evidence suggests that offspring from prepartum heat-stressed cows have compromised passive immunity and impaired cell-mediated immune function compared with those from cooled cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Member for conducting excess heat away from heat sources

    International Nuclear Information System (INIS)

    Cooke-Yarborough, E.H.

    1975-01-01

    Should a radioisotope-powered engine (e.g., a Stirling cycle engine for generating electricity) stop working for any reason, the radioisotope heat source will continue to generate heat. This will result in a rise in temperature which may cause overheating of and possible damage to the engine as well as to the heat source itself. The invention provides a support/location member for conducting excess heat from the heat source and which, in normal operation of the engine, will impede the conduction of heat away from the heat source and so reduce thermal losses. The member is of elongated form and comprises a stack of heat-conductive slugs disposed in a tube and in interspaced relationship along the axis of the tube. The tube supports the slugs in axial alignment. Means are provided for attaching an end one of the slugs to the heat source and means operable on overheating of said end one of the slugs are also provided whereby the slugs are able to move into heat-conducting contact with each other so as to conduct the excess heat away from said heat source. The slugs may be brazed to the tube whereby progressive overheating of the slugs along the stack results in an overheated slug being freed from attachment to the tube so as to allow the overheated slug to move along the stack and engage the next slug in line in heat-conducting contact. (U.S.)

  8. Heating great residential units with combustion-motor heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Vossen, W

    1982-10-01

    Economic usage of combustion-motor heat pumps requires: reliable technology and delivery of the heat pump; design and operation. The heat pump must be integrated perfectly into the heating system. This contributions is based on a three-year operational experience with over 150 heat pumps used mainly in residential and administrative buildings (plus commercial buildings, swimming pools, sport centres etc.). These are heat pumps operating on the compression principle with natural gas, liquid gas, or fuel oil.

  9. Evaluation of Excess Heat Utilization in District Heating Systems by Implementing Levelized Cost of Excess Heat

    Directory of Open Access Journals (Sweden)

    Borna Doračić

    2018-03-01

    Full Text Available District heating plays a key role in achieving high primary energy savings and the reduction of the overall environmental impact of the energy sector. This was recently recognized by the European Commission, which emphasizes the importance of these systems, especially when integrated with renewable energy sources, like solar, biomass, geothermal, etc. On the other hand, high amounts of heat are currently being wasted in the industry sector, which causes low energy efficiency of these processes. This excess heat can be utilized and transported to the final customer by a distribution network. The main goal of this research was to calculate the potential for excess heat utilization in district heating systems by implementing the levelized cost of excess heat method. Additionally, this paper proves the economic and environmental benefits of switching from individual heating solutions to a district heating system. This was done by using the QGIS software. The variation of different relevant parameters was taken into account in the sensitivity analysis. Therefore, the final result was the determination of the maximum potential distance of the excess heat source from the demand, for different available heat supplies, costs of pipes, and excess heat prices.

  10. Phase change heat transfer device for process heat applications

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred

    2010-01-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  11. Performance of heat engines with non-zero heat capacity

    International Nuclear Information System (INIS)

    Odes, Ron; Kribus, Abraham

    2013-01-01

    Highlights: ► Finite heat capacity is a second irreversibility mechanism in addition to thermal resistance. ► Heat capacity introduces thermal transients and reverse heat flow. ► Engine maximum power and efficiency are lower for finite heat capacity. ► Implementing the optimal engine cycle requires active control. - Abstract: The performance of a heat engine is analyzed subject to two types of irreversibility: a non-zero heat capacity, together with the more common finite heat transfer rate between the engine and the external heat reservoirs. The heat capacity represents an engine body that undergoes significant temperature variations during the engine cycle. An option to cut off the heat exchange between the engine and the external surrounding for part of the engine cycle is also explored. A variational approach was taken to find the engine’s internal temperature profile (which defines the internal thermodynamic cycle) that would produce maximum power. The maximum power is shown to be lower than the case of zero heat capacity, due to a loss of heat that is stored in the engine body and then lost, bypassing the thermodynamic cycle. The maximum efficiency and the efficiency at maximum power are also lower than the zero heat capacity case. Similar to the Curzon–Ahlborn analysis, power can be traded for increased efficiency, but for high heat capacity, the range of efficiency that is available for such a trade is diminished. Isolating the engine during part of the cycle reduces maximum power, but the efficiency at maximum power and the maximum efficiency are improved, due to better exploitation of heat stored in the engine body. This might be useful for real engines that are limited by the internal energy change during a single engine cycle or by the operating frequency, leading to a broader power–efficiency curve.

  12. Segmented heat exchanger

    Science.gov (United States)

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  13. Isoprenoid hydrocarbons produced by thermal alteration of Nostoc muscorum and Rhodopseudomonas spheroides

    Science.gov (United States)

    Philp, R. P.; Brown, S.; Calvin, M.

    1978-01-01

    The potential of algae and photosynthetic bacteria to serve as precursors of kerogen was studied to determine what factors affect the relative rates of formation of precursor hydrocarbons. Cells of Nostoc muscorum and Rhodopseudomonas spheroides were subjected to thermal alteration (by heating samples in glass tubes sealed under nitrogen) for two, four, and twelve weeks. Both unextracted and extracted cells in the absence and presence of montmorillonite were investigated, and the isoprenoid hydrocarbons produced in these experiments were determined. Phytane and five isomeric phytenes were the main hydrocarbons observed; their relative rates of formation in the different experimental conditions are described. No phytadienes, pristane, or pristenes were detected.

  14. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  15. Experimental investigation of a manifold heat-pipe heat exchanger

    International Nuclear Information System (INIS)

    Konev, S.V.; Wang Tszin' Lyan'; D'yakov, I.I.

    1995-01-01

    Results of experimental investigations of a heat exchanger on a manifold water heat pipe are given. An analysis is made of the temperature distribution along the heat-transfer agent path as a function of the transferred heat power. The influence of the degree of filling with the heat transfer agent on the operating characteristics of the construction is considered

  16. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  17. Hydrothermal alteration of Hercynian granites, its significance to the evolution of geothermal systems in granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Jose M.; Matias, Maria J.; Basto, Maria J.; Aires-Barros, Luis A. [Instituto Superior Tecnico, Centro de Petrologia e Geoquimica, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Carreira, Paula M. [Instituto Tecnologico e Nuclear, Estrada Nacional n 10, 2686 - 953 Sacavem (Portugal); Goff, Fraser E. [Earth and Planetary Sciences Department, Univ. of New Mexico, Albuquerque, NM 87131 (United States)

    2010-06-15

    We discuss geochemical and isotopic ({sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H and {sup 87}Sr/{sup 86}Sr) data recording the hydrothermal alteration of northern Portuguese Hercynian granites by Na-HCO{sub 3}-CO{sub 2}-rich mineral waters. Whole-rock samples from drill cores of Vilarelho da Raia granite have {delta}{sup 18}O values in the +11.47 to +10.10 permille range. The lower values correspond to highly fractured granite samples displaying vein and pervasive alteration. In the pervasive alteration stage, which probably results from a convective hydrothermal system set up by the intrusion of the granites, the metamorphic waters are in equilibrium with hydrous minerals. In contrast, the vein alteration of these granitic rocks was caused by water of meteoric origin. The oxygen ratios between water (W) and rock (R), the so-called W/R ratios, obtained for the open system (where the heated water is lost from the system by escape to the surface) range between 0.05 and 0.11, suggesting that the recrystallization of the veins was influenced by a small flux of meteoric water. Stable isotope analyses performed on the cores show that the vein alteration stage relates to post-emplacement tectonic stresses acting on the granite, probably of late Hercynian age. Our results are consistent with the existence of two separate alteration events (pervasive and vein) caused by hydrothermal waters of different isotopic characteristics. The studies presented in this paper should be viewed as a natural analogue that uses the alteration features observed in a fossil geothermal system at Vilarelho da Raia to assess possible water-rock reactions presently occurring at depth in granitic rocks of the nearby Chaves area. (author)

  18. Heat pumps in combined heat and power systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance...... of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  19. Study of an innovative ejector heat pump-boosted district heating system

    International Nuclear Information System (INIS)

    Zhang, Bo; Wang, Yuanchao; Kang, Lisha; Lv, Jinsheng

    2013-01-01

    An Ejector heat pump-boosted District Heating (EDH) system is proposed to improve the heating capacity of existing district heating systems with Combined Heat and Power (CHP). In the EDH, two ejector heat pumps are installed: a primary heat pump (HP 1 ) at the heating station and a secondary heat pump (HP 2 ) at the heating substation. With the EDH, the low-grade waste heat from circulating cooling water in the CHP is recycled and the temperature difference between the water supply and the return of the primary heating network is increased. A thermodynamic model was provided. An experimental study was carried out for both HP 1 and HP 2 to verify the predicting performance. The results show that the COP of HP 1 can reach 1.5–1.9, and the return water temperature of the primary heating network could be decreased to 35 °C with HP 2 . A typical case study for the EDH was analyzed. -- Highlights: • An ejector heat pump-boosted district heating (EDH) is proposed. • The 1st ejector heat pump in EDH recycles heat from cooling water of the CHP. • The 2nd ejector heat pump in EDH boosts the thermal energy utilization of the primary heating network. • Modeling and experimental studies are presented

  20. Heat exchanger network retrofit optimization involving heat transfer enhancement

    International Nuclear Information System (INIS)

    Wang Yufei; Smith, Robin; Kim, Jin-Kuk

    2012-01-01

    Heat exchanger network retrofit plays an important role in energy saving in process industry. Many design methods for the retrofit of heat exchanger networks have been proposed during the last three decades. Conventional retrofit methods rely heavily on topology modifications which often result in a long retrofit duration and high initial costs. Moreover, the addition of extra surface area to the heat exchanger can prove difficult due to topology, safety and downtime constraints. Both of these problems can be avoided through the use of heat transfer enhancement in heat exchanger network retrofit. This paper presents a novel design approach to solve heat exchanger network retrofit problems based on heat transfer enhancement. An optimisation method based on simulated annealing has been developed to find the appropriate heat exchangers to be enhanced and to calculate the level of enhancement required. The physical insight of enhanced exchangers is also analysed. The new methodology allows several possible retrofit strategies using different retrofit methods be determined. Comparison of these retrofit strategies demonstrates that retrofit modification duration and payback time are reduced when heat transfer enhancement is utilised. Heat transfer enhancement can be also used as a substitute for increased heat exchanger network surface area to reduce retrofit investment costs.

  1. Specific heat, polarization and heat conduction in microwave heating systems: A nonequilibrium thermodynamic point of view

    International Nuclear Information System (INIS)

    Bergese, Paolo

    2006-01-01

    A microwave (MW) field can induce in a dielectric material an oscillatory polarization. By this mechanism part of the energy carried by the waves is converted into chaotic agitation, and the material heats up. MW heating is a nonequilibrium phenomenon, while conventional heating can generally be considered as quasi-static. Excess (or nonthermal) effects of MWs with respect to conventional heating lie in this difference. Macroscopically, MW heating can be described in the framework of linear nonequilibrium thermodynamics (NET). This approach indicates that in a dielectric material under MW heating the specific heat has a dynamic component linked to the variation of polarization with temperature, and that polarization and heat conduction are intertwined. In particular, linear NET provides a new phenomenological equation for heat conduction that is composed of the classic Fourier's law and an additional term due to polarization relaxation. This term quantitatively describes the excess effect of MWs on thermal conduction

  2. HEATING-7, Multidimensional Finite-Difference Heat Conduction Analysis

    International Nuclear Information System (INIS)

    2000-01-01

    1 - Description of program or function: HEATING 7.2i and 7.3 are the most recent developments in a series of heat-transfer codes and obsolete all previous versions distributed by RSICC as SCA-1/HEATING5 and PSR-199/HEATING 6. Note that Unix and PC versions of HEATING7 are available in the CCC-545/SCALE 4.4 package. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat- generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a run-time memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. In June 1997 HEATING 7.3 was added to the HEATING 7.2i packages, and the Unix and PC versions of both 7.2i and 7.3 were merged into one package. HEATING 7.3 is being released as a beta-test version; therefore, it does not entirely replace HEATING 7.2i. There is no published documentation for HEATING 7.3; but a listing of input specifications, which reflects changes for 7.3, is included in the PSR-199 documentation. For 3-D

  3. FTIR study of aquamarines after gamma irradiation, heat treatment and electrodiffusion

    Energy Technology Data Exchange (ETDEWEB)

    Alkmim, Danielle Gomides; Almeida, Frederico Ozanan Tomaz de; Lameiras, Fernando Soares, E-mail: alkmia@yahoo.com.br, E-mail: fredufmg@gmail.com, E-mail: fsl@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-15

    Beryl, Be{sub 3}Al{sub 2}(SiO{sub 3}){sub 6}, is a natural gemstone with many colors. Some of these colors can be induced or modified by exposure to ionizing radiation, by heating, and maybe by electrodiffusion. Small contents of chromophore chemical elements are related to the colors of beryl, like iron, chromium, vanadium, manganese, and others. There is great interest in relation to methods of improving or inducing colors in beryl. There is evidence that infrared spectroscopy (FTIR) can contribute to foresee beryl behavior submitted to procedures for color change. It was observed that electrodiffusion with or without contaminant ions did not alter the FTIR spectrum of aquamarines, unlike heat treatment. Green samples have a higher content of type I water molecules, whereas blue samples have a higher content of type II water molecules. Significant changes in FTIR spectra of aquamarines were observed only in green samples after exposure to gamma rays or to heat. The vanishing of the band at 3633 cm{sup -1} may be related to the position of Na{sup +} ion in the crystal lattice of beryl. (author)

  4. District heating grid of the Daqing Nuclear Heating Plant

    Energy Technology Data Exchange (ETDEWEB)

    Changwen, Ma [Institute of Nuclear Energy and Technology, Tsingua Univ., Beijing (China)

    1997-09-01

    The Daqing Nuclear Heating Plant is the first commercial heating plant to be built in China. The plant is planned to be used as the main heat resource of one residential quarter of Daqing city. The main parameters of the heating plant are summarized in the paper. The load curve shows that the capacity of the NHP is about 69% of total capacity of the grid. The 12 existing boilers can be used as reserve and peak load heat resources. Two patterns of load following have have been considered and tested on the 5MW Test Heating Reactor. Experiment shows load of heat grid is changed slowly, so automatic load following is not necessary. (author). 9 figs, 1 tab.

  5. Alteration of consciousness in focal epilepsy: the global workspace alteration theory.

    Science.gov (United States)

    Bartolomei, Fabrice; McGonigal, Aileen; Naccache, Lionel

    2014-01-01

    Alteration of consciousness (AOC) is an important clinical manifestation of partial seizures that greatly impacts the quality of life of patients with epilepsy. Several theories have been proposed in the last fifty years. An emerging concept in neurology is the global workspace (GW) theory that postulates that access to consciousness (from several sensorial modalities) requires transient coordinated activity from associative cortices, in particular the prefrontal cortex and the posterior parietal associative cortex. Several lines of evidence support the view that partial seizures alter consciousness through disturbance of the GW. In particular, a nonlinear relation has been shown between excess of synchronization in the GW regions and the degree of AOC. Changes in thalamocortical synchrony occurring during the spreading of the ictal activity seem particularly involved in the mechanism of altered consciousness. This link between abnormal synchrony and AOC offers new perspectives in the treatment of the AOC since means of decreasing consciousness alteration in seizures could improve patients' quality of life. © 2013.

  6. Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings

    DEFF Research Database (Denmark)

    Harrestrup, Maria; Svendsen, S.

    2014-01-01

    is a theoretical investigation of the district heating system in the Copenhagen area, in which heat conservation is related to the heat supply in buildings from an economic perspective. Supplying the existing building stock from low-temperature energy resources, e.g. geothermal heat, might lead to oversized......The Danish government plans to make the Danish energy system to be completely free of fossil fuels by 2050 and that by 2035 the energy supply for buildings and electricity should be entirely based on renewable energy sources. To become independent from fossil fuels, it is necessary to reduce...... the energy consumption of the existing building stock, increase energy efficiency, and convert the present heat supply from fossil fuels to renewable energy sources. District heating is a sustainable way of providing space heating and domestic hot water to buildings in densely populated areas. This paper...

  7. Network analysis of genomic alteration profiles reveals co-altered functional modules and driver genes for glioblastoma.

    Science.gov (United States)

    Gu, Yunyan; Wang, Hongwei; Qin, Yao; Zhang, Yujing; Zhao, Wenyuan; Qi, Lishuang; Zhang, Yuannv; Wang, Chenguang; Guo, Zheng

    2013-03-01

    The heterogeneity of genetic alterations in human cancer genomes presents a major challenge to advancing our understanding of cancer mechanisms and identifying cancer driver genes. To tackle this heterogeneity problem, many approaches have been proposed to investigate genetic alterations and predict driver genes at the individual pathway level. However, most of these approaches ignore the correlation of alteration events between pathways and miss many genes with rare alterations collectively contributing to carcinogenesis. Here, we devise a network-based approach to capture the cooperative functional modules hidden in genome-wide somatic mutation and copy number alteration profiles of glioblastoma (GBM) from The Cancer Genome Atlas (TCGA), where a module is a set of altered genes with dense interactions in the protein interaction network. We identify 7 pairs of significantly co-altered modules that involve the main pathways known to be altered in GBM (TP53, RB and RTK signaling pathways) and highlight the striking co-occurring alterations among these GBM pathways. By taking into account the non-random correlation of gene alterations, the property of co-alteration could distinguish oncogenic modules that contain driver genes involved in the progression of GBM. The collaboration among cancer pathways suggests that the redundant models and aggravating models could shed new light on the potential mechanisms during carcinogenesis and provide new indications for the design of cancer therapeutic strategies.

  8. On the pathologically altered pulmonary pattern

    International Nuclear Information System (INIS)

    Ginzburg, M.A.; Kinoshenko, Yu.T.

    1982-01-01

    The notions ''normal'' and ''pathologically altered pulmonary pattern'' are specified. A grouping of lung pattern alterations based on morphopathogenetic features is provided: blood and lymphatic vascular alterations, changes in the bronchi, lung stroma, and combined alterations. Radiologic appearance of the altered pulmonary pattern is classified in keeping with the basic principles of an X-ray shade examination. The terms, such as ''enriching'', ''strengthening'', ''deformation'', etc., used for describing the pathologically altered pulmonary pattern are defined

  9. RELAP5 analysis of reflux condensation behavior in heat transfer tube bundle of a steam generator

    International Nuclear Information System (INIS)

    Minami, Noritoshi; Chikusa, Toshiaki; Nagae, Takashi; Murase, Michio

    2007-01-01

    In case of loss of the residual heat removal system and other alternative cooling methods under mid-loop operation during shutdown of the pressurized water reactor plant, reflux condensation in the steam generator (SG) may be an effective heat removal mechanism. In reflux condensation experiments 7.2c with injection of nitrogen gas using the BETHSY facility in France, which is a scale model of a pressurized water reactor plant, 34 heat transfer tubes were divided into two kinds of flow patterns, which were steam forward flow and nitrogen reverse flow. In this study, we simulated the BETHSY experiments using the transient analysis code RELAP5. Modifying calculation equations for interfacial friction force and wall friction force between the inlet plenum and heat transfer tubes, nitrogen reverse flow was successfully simulated. In calculations with alteration of the flow area ratio to two flow channels for the heat transfer tube bundle, the number of active tubes with the maximum nitrogen recirculation flow rate agreed rather well with the observed number of active tubes. In calculations with three flow channels for the heat transfer tube bundle, the average number of active tubes in several calculations with different flow area ratios of the three flow channels predicted the number of active tubes well. (author)

  10. Industrial waste heat utilization for low temperature district heating

    International Nuclear Information System (INIS)

    Fang, Hao; Xia, Jianjun; Zhu, Kan; Su, Yingbo; Jiang, Yi

    2013-01-01

    Large quantities of low grade waste heat are discharged into the environment, mostly via water evaporation, during industrial processes. Putting this industrial waste heat to productive use can reduce fossil fuel usage as well as CO 2 emissions and water dissipation. The purpose of this paper is to propose a holistic approach to the integrated and efficient utilization of low-grade industrial waste heat. Recovering industrial waste heat for use in district heating (DH) can increase the efficiency of the industrial sector and the DH system, in a cost-efficient way defined by the index of investment vs. carbon reduction (ICR). Furthermore, low temperature DH network greatly benefits the recovery rate of industrial waste heat. Based on data analysis and in-situ investigations, this paper discusses the potential for the implementation of such an approach in northern China, where conventional heat sources for DH are insufficient. The universal design approach to industrial-waste-heat based DH is proposed. Through a demonstration project, this approach is introduced in detail. This study finds three advantages to this approach: (1) improvement of the thermal energy efficiency of industrial factories; (2) more cost-efficient than the traditional heating mode; and (3) CO 2 and pollutant emission reduction as well as water conservation. -- Highlights: •We review situation of industrial waste heat recovery with a global perspective. •We present a way to analyze the potential to utilize industrial waste heat for DH. •Northern China has huge potential for using low-grade industrial waste heat for DH. •A demonstration project is introduced using the universal approach we propose. •It proves huge benefits for factories, heat-supply companies and the society

  11. Direct Heat

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P J

    1990-01-01

    Potential resources and applications of earth heat in the form of geothermal energy are large. United States direct uses amount to 2,100 MWt thermal and worldwide 8,850 MWt above a reference temperature of 35 degrees Celsius. Space and district heating are the major direct uses of geothermal energy. Equipment employed in direct use projects is of standard manufacture and includes downhole and circulation pumps, transmission and distribution pipelines, heat exchangers and convectors, heat pumps and chillers. Direct uses of earth heat discussed are space and district heating, greenhouse heating and fish farming, process and industrial applications. The economic feasibility of direct use projects is governed by site specific factors such as location of user and resource, resource quality, system load factor and load density, as well as financing. Examples are presented of district heating in Klamath Falls, and Elko. Further developments of direct uses of geothermal energy will depend on matching user needs to the resource, and improving load factors and load density.

  12. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  13. High-performance heat pipes for heat recovery applications

    Science.gov (United States)

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Methods to improve the performance of reflux heat pipes for heat recovery applications were examined both analytically and experimentally. Various models for the estimation of reflux heat pipe transport capacity were surveyed in the literature and compared with experimental data. A high transport capacity reflux heat pipe was developed that provides up to a factor of 10 capacity improvement over conventional open tube designs; analytical models were developed for this device and incorporated into a computer program HPIPE. Good agreement of the model predictions with data for R-11 and benzene reflux heat pipes was obtained.

  14. Heat transfer enhancement for fin-tube heat exchanger using vortex generators

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Park, Dong Seong; Chung, Min Ho; Lee, Sang Yun

    2002-01-01

    Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared

  15. Influence of Animal Heating on PET Imaging Quantification and Kinetics: Biodistribution of 18F-Tetrafluoroborate and 18F-FDG in Mice.

    Science.gov (United States)

    Goetz, Christian; Podein, Matthias; Braun, Friederike; Weber, Wolfgang A; Choquet, Philippe; Constantinesco, André; Mix, Michael

    2017-07-01

    Different environmental conditions under anesthesia may lead to unstable homeostatic conditions in rodents and therefore may alter kinetics. In this study, the impact of different heating conditions on PET imaging quantification was evaluated. Methods: Two groups of 6 adult female BALB/c nude mice with subcutaneously implanted tumors underwent microPET imaging after injection of 18 F-labeled tetrafluoroborate or 18 F-FDG. Dynamic scans were acquired under optimal and suboptimal heating conditions. Time-activity curves were analyzed to calculate uptake and washout time constants. Results: With 18 F-labeled tetrafluoroborate, optimal animal heating led to a stable heart rate during acquisition (515 ± 35 [mean ± SD] beats/min), whereas suboptimal heating led to a lower heart rate and a higher SD (470 ± 84 beats/min). Both uptake and washout time constants were faster ( P heating. Conclusion: Although the difference in heart rates was slight, optimal heating yielded significantly faster uptake and washout kinetics than suboptimal heating in all organs for both tracers. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  16. Simultaneousness of room heating and ventilation air heating

    International Nuclear Information System (INIS)

    Mathisen, Hans Martin

    2006-01-01

    The report is part of NTNU-SINTEF's Smart Buildings program, Smart Energy Efficient Buildings (2002-2006), subprogram 3.1 Heating, ventilation and cooling systems. An important part of this subprogram is the development and implementation of heating distribution systems with low return temperature. A comparison has been made of the simultaneousness of room heating and ventilation air heating in six buildings. Existing measuring data with hourly measurements of effect requirements for the different purposes have been employed. Based on the measuring data the relation between the requirements for room heating and ventilation is estimated. A 'fictitious' return temperature has also been estimated. The result shows a significant variation between the buildings. For all there are short periods where the efficiency need for room heating and ventilation is equal (ml)

  17. Selection of Rational Heat Transfer Intensifiers in the Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev

    2016-01-01

    Full Text Available The paper considers the applicability of different types of heat transfer intensifiers in the heat exchange equipment. A review of the experimental and numerical works devoted to the intensification of the dimpled surface, surfaces with pins and internally ribbed surface were presented and data on the thermal-hydraulic characteristics of these surfaces were given. We obtained variation of thermal-hydraulic efficiency criteria for 4 different objective functions and 15 options for the intensification of heat transfer. This makes it possible to evaluate the advantages of the various heat transfer intensifiers. These equations show influence of thermal and hydraulic characteristics of the heat transfer intensifiers (the values of the relative heat transfer and drag coefficients on the basic parameters of the shell-and-tube heat exchanger: the number and length of the tubes, the volume of the heat exchanger matrix, the coolant velocity in the heat exchanger matrix, coolant flow rate, power to pump coolant (or pressure drop, the amount of heat transferred, as well as the average logarithmic temperature difference. The paper gives an example to compare two promising heat transfer intensifiers in the tubes and shows that choosing the required efficiency criterion to search for optimal heat exchanger geometry is of importance. Analysis is performed to show that a dimpled surface will improve the effectiveness of the heat exchanger despite the relatively small value of the heat transfer intensification, while a significant increase in drag of other heat transfer enhancers negatively affects their thermalhydraulic efficiency. For example, when comparing the target functions of reducing the heat exchanger volume, the data suggest that application of dimpled surfaces in various fields of technology is possible. But there are also certain surfaces that can reduce the parameters of a heat exchanger. It is shown that further work development should be aimed at

  18. Influence of acute erythrocythemia on temperature regulation during exercise-heat stress

    International Nuclear Information System (INIS)

    Sawka, M.N.; Gonzalez, R.R.; Dennis, R.C.; Young, A.J.; Muza, S.R.; Martin, J.W.; Francesconi, R.P.; Pandolf, K.B.; Valeri, C.R.

    1986-01-01

    We studied the effects of acute erythrocythemia on temperature regulation responses during exercise in the heat. In a double blind study, 6 subjects (Ss) received a 700-ml solution of autologous red blood cells at a 60% Hct, and 3 Ss (control) received a 700-ml saline solution. All Ss attempted a Heat Stress Test (HST) two weeks prior to and 48-h post-transfusion during summer months. After 30 min of rest in a 20 0 C antechamber, the HST consisted of a 120-min exposure (two repeats of 15-min rest and 45-min treadmill walk) in a 35 0 C, 45% rh environment while euhydrated. Maximal oxygen uptake (VO 2 max) and red cell volume (RCV, 51 Cr) were measured approximately 24 h before each HST. For experimental Ss, an increase in RCV (11%, P 2 max (11%, P < 0.05) was found following transfusion, whereas, differences were not observed in the control Ss. During the HSTs for experimental Ss, metabolic rate as well as steady state rectal and esophageal temperatures were similar, but heat storage tended (P = 0.13) to be lower post-transfusion. Steady state local arm (R + C) was reduced (P < 0.05) with no change in total body sweating rate or local arm evaporative heat loss post-transfusion. For control Ss, thermoregulatory responses were generally not altered post-transfusion. Erythrocythemia may improve steady state sensible heat exchange by allowing a greater volume of blood to be directed to the cutaneous vasculature

  19. Heat Generation in Axial and Centrifugal Flow Left Ventricular Assist Devices.

    Science.gov (United States)

    Yost, Gardner; Joseph, Christine Rachel; Royston, Thomas; Tatooles, Antone; Bhat, Geetha

    Despite increasing use of left ventricular assist devices (LVADs) as a surgical treatment for advanced heart failure in an era of improved outcomes with LVAD support, the mechanical interactions between these pumps and the cardiovascular system are not completely understood. We utilized an in vitro mock circulatory loop to analyze the heat production incurred by operation of an axial flow and centrifugal flow LVAD. A HeartMate II and a HeartWare HVAD were connected to an abbreviated flow loop and were implanted in a viscoelastic gel. Temperature was measured at the surface of each LVAD. Device speed and fluid viscosity were altered and, in the HeartMate II, as artificial thrombi were attached to the inflow stator, impeller, and outflow stator. The surface temperatures of both LVADs increased in all trials and reached a plateau within 80 minutes of flow initiation. Rate of heat generation and maximum system temperature were greater when speed was increased, when viscosity was increased, and when artificial thrombi were attached to the HeartMate II impeller. Normal operation of these two widely utilized LVADs results in appreciable heat generation in vitro. Increased pump loading resulted in more rapid heat generation, which was particularly severe when a large thrombus was attached to the impeller of the HeartMate II. While heat accumulation in vivo is likely minimized by greater dissipation in the blood and soft tissues, focal temperature gains with the pump housing of these two devices during long-term operation may have negative hematological consequences.

  20. Low grade waste heat recovery using heat pumps and power cycles

    International Nuclear Information System (INIS)

    Bor, D.M. van de; Infante Ferreira, C.A.; Kiss, Anton A.

    2015-01-01

    Thermal energy represents a large part of the global energy usage and about 43% of this energy is used for industrial applications. Large amounts are lost via exhaust gases, liquid streams and cooling water while the share of low temperature waste heat is the largest. Heat pumps upgrading waste heat to process heat and cooling and power cycles converting waste heat to electricity can make a strong impact in the related industries. The potential of several alternative technologies, either for the upgrading of low temperature waste heat such as compression-resorption, vapor compression and trans-critical heat pumps, or for the conversion of this waste heat by using organic Rankine, Kalina and trilateral cycle engines, are investigated with regards to energetic and economic performance by making use of thermodynamic models. This study focuses on temperature levels of 45–60 °C as at this temperature range large amounts of heat are rejected to the environment but also investigates the temperature levels for which power cycles become competitive. The heat pumps deliver 2.5–11 times more energy value than the power cycles in this low temperature range at equal waste heat input. Heat engines become competitive with heat pumps at waste heat temperatures at 100 °C and above. - Highlights: • Application of heat pump technology for heating and cooling. • Compression resorption heat pumps operating with large glides approaching 100 K. • Compression-resorption heat pumps with wet compression. • Potential to convert Industrial waste heat to power or high grade heat. • Comparison between low temperature power cycles and heat pumps

  1. Countercurrent flow limitation model for RELAP5/MOD3

    International Nuclear Information System (INIS)

    Riemke, R.A.

    1991-01-01

    This paper reports on a countercurrent flow limitation model incorporated into the RELAP5/MOD3 system transient analysis code. The model is implemented in a manner similar to the RELAP5 chocking model. Simulations using air/water flooding test problem demonstrate the ability of the code to significantly improve its comparison to data when a flooding correlation is used

  2. Ion and electron heating in ICRF heating experiments on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K. [Nagoya Univ. (Japan). Faculty of Engineering; Kumazawa, R.; Mutoh, T. [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2001-02-01

    This paper reports on the Ion Cyclotron Range of Frequency (ICRF) heating conducted in 1999 in the 3rd experimental campaign on the Large Helical Device (LHD) with an emphasis on the optimization of the heating regime. Specifically, an exhaustive study of seven different heating regimes was carried out by changing the RF frequency relative to the magnetic field intensity, and the dependence of the heating efficiency on H-minority concentration was investigated. It was found in the experiment that both ion and electron heating are attainable with the same experimental setup by properly choosing the frequency relative to the magnetic field intensity. In the cases of both electron heating and ion heating, the power absorption efficiency depends on the minority ion concentration. An optimum minority concentration exists in the ion heating case while, in the electron heating case, the efficiency increases with concentration monotonically. A simple model calculation is introduced to provide a heuristic understanding of these experimental results. Among the heating regimes examined in this experiment, one of the ion heating regimes was finally chosen as the optimized heating regime and various high performance discharges were realized with it. (author)

  3. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  4. Heat transfer analysis of short helical borehole heat exchangers

    International Nuclear Information System (INIS)

    Zarrella, Angelo; De Carli, Michele

    2013-01-01

    Highlights: ► Vertical ground heat exchanger with a helical shaped pipe is analyzed. ► The model considers the interaction between the ground and the environment. ► The results of the model are in good agreement with the experimental values. ► The weather conditions considerably affect the fluid heat carrier temperature. ► The pitch between the turns does not affect the behaviour of the heat exchanger. -- Abstract: In this paper a numerical model to analyze the thermal behaviour of vertical ground heat exchangers with a helical shaped pipe is presented. This type of configuration can be a suitable alternative to conventional ground heat exchangers, especially when the heating and cooling loads of the building are very low. The model describes the heat transfer problem by means of a network of interconnected thermal resistances and capacitances. Moreover, as the investigated ground heat exchanger is usually installed in shallow depth, the model takes into account the interaction between the ground and the ambient environment which affects the fluid heat carrier temperature into the heat exchanger and, as a consequence, the energy efficiency of the heat pump. After a sensitivity analysis on the mesh parameters, the presented model is compared with experimental data and the simulation results show good agreement with the measurements. Finally, analyses to investigate the influence of the weather conditions, of the axial heat transfer and of the pitch between the turns of the helical pipe for two types of ground are carried out.

  5. Mechanics of fresh, frozen-thawed and heated porcine liver tissue.

    Science.gov (United States)

    Wex, Cora; Stoll, Anke; Fröhlich, Marlen; Arndt, Susann; Lippert, Hans

    2014-06-01

    For a better understanding of the effects of thermally altered soft tissue, the biothermomechanics of these tissues need to be studied. Without the knowledge of the underlying physical processes and the parameters that can be controlled clinically, thermal treatment of cancerous hepatic tissue or the preservation of liver grafts are based primarily on trial and error. Thus, this study is concerned with the investigation of the influence of temperature on the rheological properties and the histological properties of porcine liver. Heating previously cooled porcine liver tissue above 40 °C leads to significant, irreversible stiffness changes observed in the amplitude sweep. The increase of the complex shear module of healthy porcine liver from room temperature to 70 °C is approximately 9-fold. Comparing the temperatures -20 °C and 20 °C, no significant difference of the mechanical properties was observed. Furthermore, there is a strong relation between the mechanical and histological properties of the porcine liver. Temperatures above 40 °C destroy the collagen matrix within the liver tissue. This results in the alteration of the biomechanical properties. The time-temperature superposition principle is applied to generate temperature-dependent shift factors that can be described by a two-part exponential function model with an inflection temperature of 45 °C. Tumor ablation techniques such as heating or freezing have a significant influence on the histology of liver tissue. However, only for temperatures above body temperature an influence on the mechanical properties of hepatic tissues was noticeable. Freezing up to -20 °C did not affect the liver mechanics.

  6. Generalized irreversible heat-engine experiencing a complex heat-transfer law

    International Nuclear Information System (INIS)

    Chen Lingen; Li Jun; Sun Fengrui

    2008-01-01

    The fundamental optimal relation between optimal power-output and efficiency of a generalized irreversible Carnot heat-engine is derived based on a generalized heat-transfer law, including a generalized convective heat-transfer law and a generalized radiative heat-transfer law, q ∝ (ΔT n ) m . The generalized irreversible Carnot-engine model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat-leak, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities, besides heat resistance, are characterized by a constant parameter and a constant coefficient. The effects of heat-transfer laws and various loss terms are analyzed. The results obtained corroborate those in the literature

  7. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik

    2007-01-01

    In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems

  8. Influence of insulin on heat (450) protection by hexose sugars

    International Nuclear Information System (INIS)

    Sandifer, L.; Nagle, W.A.; Henle, K.J.; Moss, A.J. Jr.

    1987-01-01

    Treatment of cultured cells with 100mM D-glucose and D-galactose confers protection against hyperthermia-induced cell death, but the mechanism is not known. The authors measured changes in cell survival and altered levels of intracellular sugar metabolites in Chinese hamster fibroblast (V79) cells. Cells were incubated at 37 0 for 1 or 5 hours prior to a 45 0 heating in balanced salts solution (BSS) with 2mM glutamine and varying concentrations of sugars in the presence and absence of insulin (10 gm/ml). Cells incubated at all sugar concentrations (5-125mM) with insulin showed a more rapid increase in survival: after 17 min. at 45 0 the survival with 125mM sugar plus insulin yielded a 4 fold increase after a 1 or 5 hour incubation. Longer incubation times were required for increased survival in the absence of insulin. The authors also observed increased survival, relative to cells heated in complete medium, for cells incubated in BSS with 2mM glutamine and no sugar. This suggests that glutamine metabolism may lead to an increase in cell heat resistance. These survival results will be related to intracellular changes in sugar metabolites, principally sugar phosphates

  9. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  10. Heat pump heating with heat pumps driven by combustion engines or turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hein, K

    1977-01-27

    The heat pump described is driven by a gas Otto cycle engine, or a gas- or light- or heavy-oil fired Diesel engine. The claim refers to the use of waste heat of the engines by feeding into the input circuit of the heat pump. In addition, a drive by an electrical motor-generator or power production can be selected at times of peak load in the electrical supply network.

  11. A mathematical model to predict the effect of heat recovery on the wastewater temperature in sewers.

    Science.gov (United States)

    Dürrenmatt, David J; Wanner, Oskar

    2014-01-01

    Raw wastewater contains considerable amounts of energy that can be recovered by means of a heat pump and a heat exchanger installed in the sewer. The technique is well established, and there are approximately 50 facilities in Switzerland, many of which have been successfully using this technique for years. The planning of new facilities requires predictions of the effect of heat recovery on the wastewater temperature in the sewer because altered wastewater temperatures may cause problems for the biological processes used in wastewater treatment plants and receiving waters. A mathematical model is presented that calculates the discharge in a sewer conduit and the spatial profiles and dynamics of the temperature in the wastewater, sewer headspace, pipe, and surrounding soil. The model was implemented in the simulation program TEMPEST and was used to evaluate measured time series of discharge and temperatures. It was found that the model adequately reproduces the measured data and that the temperature and thermal conductivity of the soil and the distance between the sewer pipe and undisturbed soil are the most sensitive model parameters. The temporary storage of heat in the pipe wall and the exchange of heat between wastewater and the pipe wall are the most important processes for heat transfer. The model can be used as a tool to determine the optimal site for heat recovery and the maximal amount of extractable heat. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  13. Heat transfer entropy resistance for the analyses of two-stream heat exchangers and two-stream heat exchanger networks

    International Nuclear Information System (INIS)

    Cheng, XueTao; Liang, XinGang

    2013-01-01

    The entropy generation minimization method is often used to analyze heat transfer processes from the thermodynamic viewpoint. In this paper, we analyze common heat transfer processes with the concept of entropy generation, and propose the concept of heat transfer entropy resistance. It is found that smaller heat transfer entropy resistance leads to smaller equivalent thermodynamic force difference with prescribed heat transfer rate and larger heat transfer rate with prescribed equivalent thermodynamic force difference. With the concept of heat transfer entropy resistance, the performance of two-stream heat exchangers (THEs) and two-stream heat exchanger networks (THENs) is analyzed. For the cases discussed in this paper, it is found that smaller heat transfer entropy resistance always leads to better heat transfer performance for THEs and THENs, while smaller values of the entropy generation, entropy generation numbers and revised entropy generation number do not always. -- Highlights: • The concept of entropy resistance is defined. • The minimum entropy resistance principle is developed. • Smaller entropy resistance leads to better heat transfer

  14. The effect of nitrates on the alteration of the cementitious material

    International Nuclear Information System (INIS)

    Takei, Akihiko; Owada, Hitoshi; Fujita, Hideki; Negishi, Kumi

    2002-02-01

    TRU waste includes various chemical compounds such as nitrates. The influence of the chemical compounds on the performance of the barrier system should be estimated. Since the temperature of the deep-underground is higher than that of the near surface and a part of the TRU waste generates the heat accompanied with the decay of the radioactive nuclides, the influences of the heat to the barrier material also should be taken into account. In this study, we estimated the influence of sodium nitrate and also that of the leachate from the ROBE-waste (borate-solidified body of concentrated low-level waste) to the degradation of the cementitious material. We also obtained the mineralogical data of cementitious mineral after alteration in elevated temperature conditions. Results in this year are described below. 1) Alteration of characteristics of cementitious material in nitrate solution were evaluated by the water permeation test using sodium nitrate solution. The enhancement of the alteration of cementitious material due to sodium nitrate was observed. The dissolution quantity of the calcium of sodium nitrate solution permeated sample was larger than that of deionized water permeated sample (denoted as 'blank' in following). Hydraulic conductivity of sodium nitrate solution permeated sample was lower than blank, but after changing permeation liquid from sodium nitrate solution to deionized water, hydraulic conductivity rose quickly. The increase of porosity and the decrease of compressive strength were observed in the case of sodium nitrate solution compared with blank. In the nitrate solution, sulfate type and carbonate type of AFm changed into the nitrate type AFm. The nitrate type AFm altered to the carbonate type AFm when the nitrate concentration was lowered. 2) The influence of the leachate from the two types of ROBE-waste on the dissolution of the cementitious material was evaluated by the leaching experiments. Dissolution of the calcium from the cementitious

  15. Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours.

    Science.gov (United States)

    Bucsella, Blanka; Takács, Ágnes; Vizer, Viktoria; Schwendener, Urs; Tömösközi, Sándor

    2016-01-01

    Dry and hydrothermal heat treatments are efficient for modifying the technological-functional and shelf-life properties of wheat milling products. Dry heat treatment process is commonly used to enhance the volume of cakes. Hydrothermal heat treatment makes wheat flours suitable as thickener agents. In this study, cake and bread wheat flours that differed in baking properties were exposed to dry (100 °C, 12 min) and hydrothermal (95 °C, 5 min, 5-20 l/h water) heat treatments. Rheological differences caused by the treatments were investigated in a diluted slurry and in a dough matrix. Dry heat treatment resulted in enhanced dough stability. This effect was significantly higher in the cake flour than the bread flour. Altered viscosity properties of the bread flour in the slurry matrix were also observed. The characteristics of hydrothermally treated samples showed matrix dependency: their viscosity increases in the slurry and decreases in the dough matrix. These results can support us to produce flour products with specific techno-functional properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Effectiveness of a heat exchanger in a heat pump clothes dryer

    Science.gov (United States)

    Nasution, A. H.; Sembiring, P. G.; Ambarita, H.

    2018-02-01

    This paper deals with study on a heat pump clothes dryer coupled with a heat exchanger. The objective is to explore the effects of the heat exchanger on the performance of the heat pump dryer. The heat pump dryer consists of a vapor compression cycle and integrated with a drying room with volume 1 m3. The power of compressor is 800 Watt and the refrigerant of the cycle is R22. The heat exchanger is a flat plate type with dimensions of 400 mm × 400 mm × 400 mm. The results show the present of the heat exchanger increase the performance of the heat pump dryer. In the present experiment the COP, TP and SMER increase 15.11%, 4.81% and 58.62%, respectively. This is because the heat exchanger provides a better drying condition in the drying room with higher temperature and lower relative humidity in comparison with heat pump dryer without heat exchanger. The effectiveness of the heat exchanger is also high, it is above 50%. It is suggested to install a heat exchanger in a heat pump dryer.

  17. Heat transfer enhancement

    International Nuclear Information System (INIS)

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  18. Thermal grill-evoked sensations of heat correlate with cold pain threshold and are enhanced by menthol and cinnamaldehyde.

    Science.gov (United States)

    Averbeck, B; Rucker, F; Laubender, R P; Carr, R W

    2013-05-01

    Thunberg's thermal grill produces a sensation of strong heat upon skin contact with spatially interlaced innocuous warm and cool stimuli. To examine the classes of peripheral axons that might contribute to this illusion, the effects of topical l-menthol, an activator of TRPM8, and cinnamaldehyde, a TRPA1 agonist, on the magnitude of thermal sensations were examined during grill stimulation in healthy volunteers. Under control conditions, cutaneous grill stimulation (interlaced 20/40 °C) evoked a sensation of heat, and for individual subjects, the magnitude of this heat sensation was positively correlated with cold pain threshold (CPT). Menthol increased the CPT and enhanced the magnitude of grill-evoked heat. Cinnamaldehyde intensified warm sensations, reduced heat pain threshold and also enhanced grill-evoked heat. Both TRPM8-expressing and TRPA1-expressing afferent axons can affect grill-evoked thermal sensations. The enhancement of grill-evoked sensations of temperature with menthol and cinnamaldehyde may provide an additional clinically relevant means of testing altered thermal sensitivity, which is often affected in neuropathic patient groups. © 2012 European Federation of International Association for the Study of Pain Chapters.

  19. Heat transfer from internally heated hemispherical pools

    International Nuclear Information System (INIS)

    Gabor, J.D.; Ellsion, P.G.; Cassulo, J.C.

    1980-01-01

    Experiments were conducted on heat transfer from internally heated ZnSO 4 -H 2 O pools to the walls of hemispherical containers. This experimental technique provides data for a heat transfer system that has to date been only theoretically treated. Three different sizes of copper hemispherical containers were used: 240, 280, 320 mm in diameter. The pool container served both as a heat transfer surface and as an electrode. The opposing electrode was a copper disk, 50 mm in diameter located at the top of the pool in the center. The top surface of the pool was open to the atmosphere

  20. Thermal Capacitive Electrochemical Cycle on Carbon-Based Supercapacitor for Converting Low-grade Heat to Electricity

    Directory of Open Access Journals (Sweden)

    Xun Wang

    2017-11-01

    Full Text Available It is a great challenge to efficiently convert low-grade heat (<100°C to electricity. Currently available heat-to-current converters, such as thermoelectric generators, operating in a low-grade heat regime reach efficiencies no higher than a few percent (<3%. Herein, we illustrated a thermal capacitive electrochemical cycle (TCEC using electrochemical cell, where the connection to the hot or cold reservoirs alternates in a cyclic charging–heating–discharging–cooling mode to convert heat into electricity, which performs as an electrochemical heat engine. TCEC technology is a cost-effective method for exploiting the temperature-dependent electrostatic potential in an electric double layer (EDL at carbon electrode/electrolyte interfaces; it produces net electricity by altering the EDL thickness via heating and cooling. In this paper, TCEC on supercapacitor was confirmed on commercial supercapacitor, which showed a poor conversion efficiency. To improve the performance, we redesigned the cell by employing the pouch cell setup with activated carbon as electrode materials and homemade temperature controlling system, which boosted the efficiency from 0.5% of commercial supercapacitor to 3.05% when cycling between 10 and 65°C. A higher efficiency of 3.95% could be reached by using microwaved exfoliated graphene nanosheets (MEG and nitric acid-treated MEG, which could help in decreasing the energy loss caused by charge leakage.

  1. Heat transfer characteristics of a helical heat exchanger

    International Nuclear Information System (INIS)

    San, Jung-Yang; Hsu, Chih-Hsiang; Chen, Shih-Hao

    2012-01-01

    Heat transfer performance of a helical heat exchanger was investigated. The heat exchanger is composed of a helical tube with rectangular cross section and two cover plates. The ε–Ntu relation of the heat exchanger was obtained using a numerical method. In the analysis, the flow in the tube (helical flow) was considered to be mixed and the flow outside the tube (radial flow) was unmixed. In the experiment, the Darcy friction factor (f) and convective heat transfer coefficient (h) of the radial flow were measured. The radial flow was air and the helical flow was water. Four different channel spacing (0.5, 0.8, 1.2 and 1.6 mm) were individually considered. The Reynolds numbers were in the range 307–2547. Two correlations, one for the Darcy friction factor and the other for the Nusselt number, were proposed. - Highlights: ► We analyze the heat transfer characteristics of a helical heat exchanger and examine the effectiveness–Ntu relation. ► Increasing number of turns of the heat exchanger would slightly increase the effectiveness. ► There is an optimum Ntu value corresponding to a maximum effectiveness. ► We measure the Darcy friction factor and Nusselt number of the radial flow and examine the correlations.

  2. Design heating test section HeaTiNG-02

    International Nuclear Information System (INIS)

    Riswan Djambiar; Sagino; Dedy Haryanto; Joko Prasetio Witoko

    2013-01-01

    HeaTiNG-02 is a component test loop BETA which serves as a heater in conducting experimental heat transfer processes in two-phase flow in narrow slit-shaped plate, considering this phenomenon is one of the conditions postulated accident scenarios a NPP type PWR. To produce heat for the heating component takes the AC power the source voltage can be set from 0 Volts to 220 Volts with no more than a maximum power of 25 KVA. To obtain the thermal conditions on HeaTiNG-02 heating wire dimensions need to be determined and the corresponding voltage so that it will an expected power. Determination of the dimensions of the heater wire through calculations using electricity formulations. Retrieved draft heater test BETA (UUB) HeaTiNG-02 use material super kanthal (FeCuAl) in diameter (Ø) = 2 mm and wire length 3770 mm. Voltage regulators with a maximum power of 25 kVA with a minimum voltage of 0 volts and a maximum of 220 volts. Heater is used as the base to form refractory stone trench. (author)

  3. Fiscal 1993 investigational report on heat pump heat storage technology; 1993 nendo heat pump chikunetsu gijutsu ni kansuru chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    This project is for an investigation into the heat pump (HP) use heat storage technology, with the aim of clarifying the present status of HP heat storage technology, the utilization status, and the developmental trend of technology and of contributing to the spread of heat energy effective use using HP heat storage technology and to the promotion of the technical development. Accordingly, the evaluation of the following was made: sensible heat (SH), latent heat (LH), chemical heat storage technology (CH), and heat storage technology (HS). Investigations were made on the sensible heat use heat storage technology of water, brine, stone, soil, etc. in terms of SH; the phase change sensible heat use heat storage technology of ice, hydrate salt, paraffins, etc. in terms of LH; hydration, hydroxide, 2-propanol pyrolysis, adsorption of silica gel, zeolite and water, and heat storage technology using metal hydride, etc. in terms of CH. In terms of HS, the following were studied and evaluated from the study results of the heat storage system in which HP is applied to the sensible heat and latent heat type heat storage technology: contribution to the power load levelling and the reduction of heat source capacity, heat recovery and the use of unused energy, improvement of the system efficiency by combining HP and heat storage technology. 24 refs., 242 figs., 56 tabs.

  4. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David; Mathiesen, Brian Vad; Lund, Henrik

    2015-01-01

    This document is a summary of the key technical inputs for the modelling of the heat strategy for Europe outlined in the latest Heat Roadmap Europe studies [1, 2]. These studies quantify the impact of alternative heating strategies for Europe in 2030 and 2050. The study is based on geographical...... information systems (GIS) and energy system analyses. In this report, the inputs for other modelling tools such as PRIMES are presented, in order to enable other researches to generate similar heating scenarios for Europe. Although Heat Roadmap Europe presents a complete heat strategy for Europe, which...... includes energy efficiency, individual heating units (such as boilers and heat pumps), and heat networks, the recommendations here are primarily relating to the potential and modelling of district heating. Although other solutions will play a significant role in decarbonising the heating and cooling sector...

  5. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Hansen, Kenneth; Connolly, David; Lund, Henrik

    2015-01-01

    The cost of heat savings in buildings increase as more heat savings are achieved due to the state of the building stock and hence, alternatives other than savings typically become more economically feasible at a certain level of heat reductions. It is important to identify when the cost of heat...... savings become more expensive than the cost of sustainable heat supply, so society does not overinvest in heat saving measures. This study first investigates the heat saving potentials for different countries in Europe, along with their associated costs, followed by a comparison with alternative ways...... of supplying sustainable heating. Different heat production options are included in terms of individual and community heating systems. Furthermore, the levelised cost of supplying sustainable heat is estimated for both a single technology and from an energy system perspective. The results are analysed...

  6. Impact of Seasonal Heat Accumulation on Operation of Geothermal Heat Pump System with Vertical Ground Heat Exchanger

    Science.gov (United States)

    Timofeev, D. V.; Malyavina, E. G.

    2017-11-01

    The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.

  7. Effects of late-gestation heat stress on immunity and performance of calves.

    Science.gov (United States)

    Dahl, G E; Tao, S; Monteiro, A P A

    2016-04-01

    Lactating cows that experience heat stress will have reduced dry matter intake and milk yield and shift metabolism, which ultimately reduces the efficiency of milk production. Dry cows that are heat stressed similarly experience lower intake, reduced mammary growth, and compromised immune function that ultimately results in a poorer transition into lactation and lower milk yield in the next lactation. A recent focus in our laboratory is on the effects of late gestation, in utero heat stress on calf survival and performance. We have completed a series of studies to examine preweaning growth and health, and later reproductive and productive responses, in an attempt to quantify acute and persistent effects of in utero heat strain. Late gestation heat stress results in calves with lower body weight at birth, shorter stature at weaning, and failure to achieve the same weight or height at 12 mo of age observed in calves from dams that are cooled when dry. A portion of the reduced growth may result from the lower immune status observed in calves heat stressed in utero, which begins with poorer apparent efficiency of immunoglobulin absorption and extends to lower survival rates through puberty. Heat-stressed calves, however, have permanent shifts in metabolism that are consistent with greater peripheral accumulation of energy and less lean growth relative to those from cooled dams. Comparing reproductive performance in calves heat stressed versus those cooled in utero, we observe that the cooled heifers require fewer services to attain pregnancy and become pregnant at an earlier age. Tracking the milk production in calves that were heat stressed in utero versus those cooled in late gestation revealed a significant reduction of yield in the first lactation, approximately 5 kg/d through 35 wk of lactation, despite similar body weight and condition score at calving. These observations indicate that a relatively brief period of heat stress in late gestation dramatically alters

  8. Heat response of mouse tumor cells treated with 5-thio-D-glucose and Rhodamine-123

    International Nuclear Information System (INIS)

    Rhee, J.G.; Lyons, J.C.; Song, C.W.

    1987-01-01

    Cellular heat-sensitivity has been known to depend on intracellular energy. The authors studied the thermal response of cultured SCK mammary carcinoma cells in vitro, following glycolytic inhibition with 5-thio-D-glucose (TG) and mitochondrial inactivation with Rhodamine-123 (Rh). The cells in exponential growth phase in RPMI 1640 medium supplemented with serum and antibiotics were exposed to medium containing Rh and/or TG, heated in a prewarmed water bath, and the clonogenic survivals of the heated cells were determined. Thermal cell killing by the 30 min. heating was increased, when 10 and 20 μg/ml Rh were present in the medium at temperatures above 42 0 and 40 0 C, respectively. The slope of the heat survival curve for 43 0 C heating became steeper in the presence of 10 and 20 μg/ml Rh, and the initial shoulder of the survival curve was unaltered at the dose of 10 μg/ml Rh, but disappeared at 20 μg/ml. A TG dose of 3 mg/ml, which is about 10 times that necessary to kill 90% of cells in 5 hrs. under hypoxic condition, was ineffective in altering any parameters of the heat survival curve of aerobic cells. The combined effect of TG and Rh on the thermal cell killing in aerobic condition did not exceed the effect of Rh alone. The above results indicate that the energy supply derived by mitochondria is an important determinant for the shape of heat survival curve of the proliferating and aerobic SCK tumor cells

  9. Profitability of heating entrepreneurship from the viewpoint of heating energy buyer, heating energy seller and energy wood seller

    Energy Technology Data Exchange (ETDEWEB)

    Sauvula-Seppaelae, T.; Ulander, E. (Seinaejoki Univ. of Applied Sciences, Ahtari (Finland), School of Agriculture and Forestry), e-mail: tiina.sauvula-seppala@seamk.fi, e-mail: essi.ulander@seamk.fi

    2010-07-01

    The focus of this research was to study the profitability of heating entrepreneurships from the viewpoint of heating energy buyer, seller as well as energy wood seller. The average costs of heat production were Eur 44,8 / MWh and incomes Eur 43,4 /MWh. Energy wood purchase, comminution and long distance transportation formed slightly over a half of the heat production costs. Average net income in the group of the largest heating plants (>1000 kW) was Eur 29000 per year and in the group of the smallest (<200 kW) average net income was slightly over Eur 4000 per year. The net income from selling heat represents only a part of the income a heating entrepreneur receives from heat production. Other, significant parts are formed by income from selling energy wood to the plant as well as compensation for supervision and maintenance of the plant. The average net income of a forest owner from selling energy wood to heating entrepreneurs was Eur 18 / m3. Without state subsidies the net income would have been Eur 4 / m3. The price of the heating energy sold by heating entrepreneurs was very competitive. In 2006 it was Eur 30 / MWh cheaper than oil heat, Eur 34 / MWh cheaper than electric heat and Eur 3 / MWh cheaper than district heating. (orig.)

  10. Cryogenic heat transfer

    CERN Document Server

    Barron, Randall F

    2016-01-01

    Cryogenic Heat Transfer, Second Edition continues to address specific heat transfer problems that occur in the cryogenic temperature range where there are distinct differences from conventional heat transfer problems. This updated version examines the use of computer-aided design in cryogenic engineering and emphasizes commonly used computer programs to address modern cryogenic heat transfer problems. It introduces additional topics in cryogenic heat transfer that include latent heat expressions; lumped-capacity transient heat transfer; thermal stresses; Laplace transform solutions; oscillating flow heat transfer, and computer-aided heat exchanger design. It also includes new examples and homework problems throughout the book, and provides ample references for further study.

  11. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  12. Transfection of Chinese hamster ovary DHFR/sup -/ cells with the gene coding for heat shock protein 70 from drosophila melanogaster

    International Nuclear Information System (INIS)

    Duffy, J.J.; Carper, S.W.; Gerner, E.W.

    1987-01-01

    Chinese hamster ovary DHFR/sup -/ cells (CHO-DHFR/sup -/) were transfected with the plasmid pSV2-dhfr expressing the mouse gene coding for dhfr or with the same plasmid containing the gene coding for the Drosophila melanogaster heat shock protein 70 (hsp70), pSVd-hsp70. Three subcloned cell lines selected for expression of the dhfr gene were shown to contain either the vector sequence (G cells) or varying copies of pSVd-hsp70 (H cells). One line of H cells was shown to contain > 30 copies of the D. melanogaster hsp70 gene and to express the hsp70 RNA at significant levels. No difference between G and H cells was observed in the rate of growth, in the development of thermotolerance, or in the sensitivity of actin microfilament bundles to heat shock. However, H cells containing the transfected hsp70 gene had an altered morphology when compared to the G cells and the parental CHO-DHFR/sup -/ cells being more fibroblastic. The adhesion properties of the H cells was also decreased when compared to the G cells. These results show that insertion of the D. melanogaster gene into CHO cells does not effect growth rates or heat shock responses but may alter cell morphology and adhesion

  13. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  14. Integrated multiscale simulation of combined heat and power based district heating system

    International Nuclear Information System (INIS)

    Li, Peifeng; Nord, Natasa; Ertesvåg, Ivar Ståle; Ge, Zhihua; Yang, Zhiping; Yang, Yongping

    2015-01-01

    Highlights: • Simulation of power plant, district heating network and heat users in detail and integrated. • Coupled calculation and analysis of the heat and pressure losses of the district heating network. • District heating is not preferable for very low heat load due to relatively high heat loss. • Lower design supply temperatures of the district heating network give higher system efficiency. - Abstract: Many studies have been carried out separately on combined heat and power and district heating. However, little work has been done considering the heat source, the district heating network and the heat users simultaneously, especially when it comes to the heating system with large-scale combined heat and power plant. For the purpose of energy conservation, it is very important to know well the system performance of the integrated heating system from the very primary fuel input to the terminal heat users. This paper set up a model of 300 MW electric power rated air-cooled combined heat and power plant using Ebsilon software, which was validated according to the design data from the turbine manufacturer. Then, the model of heating network and heat users were developed based on the fundamental theories of fluid mechanics and heat transfer. Finally the combined heat and power based district heating system was obtained and the system performances within multiscale scope of the system were analyzed using the developed Ebsilon model. Topics with regard to the heat loss, the pressure drop, the pump power consumption and the supply temperatures of the district heating network were discussed. Besides, the operational issues of the integrated system were also researched. Several useful conclusions were drawn. It was found that a lower design primary supply temperature of the district heating network would give a higher seasonal energy efficiency of the integrated system throughout the whole heating season. Moreover, it was not always right to relate low design

  15. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2014-01-01

    compared to 1990 levels. None of these scenarios involve the large-scale implementation of district heating, but instead they focus on the electrification of the heating sector (primarily using heat pumps) and/or the large-scale implementation of electricity and heat savings. In this paper, the potential...... for district heating in the EU between now and 2050 is identified, based on extensive and detailed mapping of the EU heat demand and various supply options. Subsequently, a new ‘district heating plus heat savings’ scenario is technically and economically assessed from an energy systems perspective. The results...... indicate that with district heating, the EU energy system will be able to achieve the same reductions in primary energy supply and carbon dioxide emissions as the existing alternatives proposed. However, with district heating these goals can be achieved at a lower cost, with heating and cooling costs...

  16. The study of the heat-engineering characteristics of a solar heat collector based on aluminum heat pipes

    International Nuclear Information System (INIS)

    Khairnasov, S.M.; Zaripov, V.K.; Passamakin, B.M. et al.

    2013-01-01

    This paper presents the results of studies into the heat-engineering characteristics of a flat heat solar collector based on aluminum heat pipes that is designed to be used in building facades. The principle of work and the structure of the solar collector are considered; the results of its comparison with a traditional flat solar collector are presented. The studies were performed at a heat carrier temperature range of +10 - +30 degree C and at a solar heat flow density of 400 - 1000 W/m 2 . The obtained experimental heat-engineering characteristics of the collector based on heat pipes show that they are at a level of traditional flow solar collectors; for example, its efficiency is 0.65 - 0.73. Meanwhile, the hydraulic resistance of the structure with heat pipes is by a factor of 2 - 2.4 smaller and ensures a high level of scalability, reliability, and maintainability, which is important when using it as an element of facade constructions of solar heat systems. (author)

  17. Impact of forced convective radiative heat and mass transfer mechanisms on 3D Carreau nanofluid: A numerical study

    Science.gov (United States)

    Khan, M.; Irfan, M.; Khan, W. A.

    2017-12-01

    Nanoliquids retain remarkable features that have fascinated various researchers owing to their utilization in nanoscience and nanotechnology. We will present a mathematical relation for 3D forced convective heat and mass transfer mechanism of a Carreau nanoliquid over a bidirectional stretched surface. Additionally, the features of heat source/sink and nonlinear thermal radiation are considered for the 3D Carreau nanoliquid. The governing nonlinear PDEs are established and altered into a set of nonlinear ODEs by utilizing a suitable conversion. A numerical approach, namely the bvp4c is adopted to resolve the resultant equations. The achieved outcomes are schemed and conferred in detail for somatic parameters. It is realized that amassed values of Brownian motion parameter Nb lead to enhance the temperature of the Carreau nanoliquid while quite conflicting behavior is being noticed for the concentration of the Carreau nanoliquid. Moreover, it is also noted that the influence of heat source δ > 0 is relatively antithetic to heat sink δ communication with these results.

  18. Heat transfer characteristics of a direct contact heat exchanger

    International Nuclear Information System (INIS)

    Kinoshita, I.; Nishi, Y.

    1993-01-01

    As a first step for development of a direct contact steam generator for FBRs, fundamental heat transfer characteristics of a liquid-liquid contact heat exchanger were evaluated by heat transfer experiment with low melting point alloy and water. Distinctive characteristics of direct contact heat transfer with liquid metal and water was obtained. (author)

  19. Performance analysis of diesel engine heat pump incorporated with heat recovery

    International Nuclear Information System (INIS)

    Shah, N.N.; Huang, M.J.; Hewitt, N.J.

    2016-01-01

    Highlights: • Diesel engine heat pump with heat recovery. • Water-to-water source heat pump based on R134a. • Possibility for different flow temperature for heat distribution system. • Possible retrofit application in off-gas or weak electricity network area. • Potential to diversify use of fossil fuel, primary energy and CO_2 emission savings. - Abstract: This paper presents experimental study of diesel engine heat pump (DEHP) system to find potential as retrofit technology in off-gas or weak electricity network area to replace existing gas/oil/electric heating system in domestic sector. Test set-up of diesel engine driven water-to-water heat pump system was built which included heat recovery arrangement from the engine coolant & exhaust gas. The system was designed to meet typical house heating demand in Northern Ireland. Performance of DEHP was evaluated to meet house-heating demand at different flow temperature (35, 45, 55 & 65 °C), a typical requirement of underfloor space heating, medium/high temperature radiators and domestic hot water. The performance was evaluated against four-evaporator water inlet temperature (0, 5, 10 & 15 °C) and at three different engine speed 1600, 2000 & 2400 rpm. Experiment results were analysed in terms of heating/cooling capacity, heat recovery, total heat output, primary energy ratio (PER), isentropic efficiency, etc. Test results showed that DEHP is able to meet house-heating demand with help of heat recovery with reduced system size. Heat recovery contributed in a range of 22–39% in total heat output. It is possible to achieve high flow temperature in a range of 74 °C with help of heat recovery. Overall system PER varied in a range of 0.93–1.33. Speed increment and flow temperature has significant impact on heat recovery, total heat output and PER. A case scenario with different flow temperature to match house-heating demand has been presented to show working potential with different heat distribution system

  20. Controlling the excess heat from oxy-combustion of coal by blending with biomass

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Turan, A.Z.; Yaman, S.; Kucukbayrak, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469, Maslak, Istanbul (Turkey)

    2010-11-15

    Two different biomass species such as sunflower seed shell and hazelnut shell were blended with Soma-Denis lignite to determine the effects of co-combustion on the thermal reactivity and the burnout of the lignite sample. For this purpose, Thermogravimetric Analysis and Differential Scanning Calorimetry techniques were applied from ambient to 900 C with a heating rate of 40 C/min under dry air and pure oxygen conditions. It was found that the thermal reactivities of the biomass materials and the lignite are highly different from each other under each oxidizing medium. On the other hand, the presence of biomass in the burning medium led to important influences not only on the burnout levels but also on the heat flows. The heat flow from the burning of lignite increased fivefold when the oxidizing medium was altered from dry air to pure oxygen. But, in case of co-combustion under oxygen, the excess heat arising from combustion of lignite could be reduced and this may be helpful to control the temperature of the combustion chamber. Based on this, co-combustion of coal/biomass blends under oxygen may be suggested as an alternative method to the ''Carbon Dioxide Recycle Method'' encountered in the oxyfuel combustion systems. (author)

  1. Application of heat pipes in nuclear reactors for passive heat removal

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Z.; Yetisir, M., E-mail: haquez@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper introduces a number of potential heat pipe applications in passive (i.e., not requiring external power) nuclear reactor heat removal. Heat pipes are particularly suitable for small reactors as the demand for heat removal is significantly less than commercial nuclear power plants, and passive and reliable heat removal is required. The use of heat pipes has been proposed in many small reactor designs for passive heat removal from the reactor core. This paper presents the application of heat pipes in AECL's Nuclear Battery design, a small reactor concept developed by AECL. Other potential applications of heat pipes include transferring excess heat from containment to the atmosphere by integrating low-temperature heat pipes into the containment building (to ensure long-term cooling following a station blackout), and passively cooling spent fuel bays. (author)

  2. The effect of heat and radiation on the initiation and elongation processes of DNA synthesis

    International Nuclear Information System (INIS)

    Davies, R.C.; Bowden, G.T.; Cress, A.E.

    1983-01-01

    The pH step alkaline elution and alkaline sucrose gradient techniques were utilized to evaluate alterations in DNA replication (initiation and elongation) induced by heat and low dose X-irradiation in synchronized Chinese hamster ovary cells. The initiation and elongation processes of DNA synthesis were radioresistant at the G 1 /S boundary (4 hours after mitosis) while in mid S phase (9 hours after mitosis) DNA initiation and elongation were sensitive to X-irradiation. The initiation and elongation processes of DNA synthesis which were radiation resistant at the G 1 /S boundary could be inhibited by a hyperthermia treatment (43 0 C for 1 hour beginning at 4 hours after mitosis). The impairment of initiation in the heated cells was maintained through late S phase while that of elongation was reversible as judged by full recovery at 15 hours after mitosis. These data suggest that the known synergistic lethality of heat and radiation may be mediated by an impairment of initiation of DNA synthesis. (author)

  3. A two-stage heating scheme for heat assisted magnetic recording

    Science.gov (United States)

    Xiong, Shaomin; Kim, Jeongmin; Wang, Yuan; Zhang, Xiang; Bogy, David

    2014-05-01

    Heat Assisted Magnetic Recording (HAMR) has been proposed to extend the storage areal density beyond 1 Tb/in.2 for the next generation magnetic storage. A near field transducer (NFT) is widely used in HAMR systems to locally heat the magnetic disk during the writing process. However, much of the laser power is absorbed around the NFT, which causes overheating of the NFT and reduces its reliability. In this work, a two-stage heating scheme is proposed to reduce the thermal load by separating the NFT heating process into two individual heating stages from an optical waveguide and a NFT, respectively. As the first stage, the optical waveguide is placed in front of the NFT and delivers part of laser energy directly onto the disk surface to heat it up to a peak temperature somewhat lower than the Curie temperature of the magnetic material. Then, the NFT works as the second heating stage to heat a smaller area inside the waveguide heated area further to reach the Curie point. The energy applied to the NFT in the second heating stage is reduced compared with a typical single stage NFT heating system. With this reduced thermal load to the NFT by the two-stage heating scheme, the lifetime of the NFT can be extended orders longer under the cyclic load condition.

  4. German central solar heating plants with seasonal heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, D.; Marx, R.; Nussbicker-Lux, J.; Ochs, F.; Heidemann, W. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Mueller-Steinhagen, H. [Institute of Thermodynamics and Thermal Engineering (ITW), University of Stuttgart, Pfaffenwaldring 6, D-70550 Stuttgart (Germany); Institute of Technical Thermodynamics (ITT), German Aerospace Centre (DLR), Stuttgart (Germany)

    2010-04-15

    Central solar heating plants contribute to the reduction of CO{sub 2}-emissions and global warming. The combination of central solar heating plants with seasonal heat storage enables high solar fractions of 50% and more. Several pilot central solar heating plants with seasonal heat storage (CSHPSS) built in Germany since 1996 have proven the appropriate operation of these systems and confirmed the high solar fractions. Four different types of seasonal thermal energy stores have been developed, tested and monitored under realistic operation conditions: Hot-water thermal energy store (e.g. in Friedrichshafen), gravel-water thermal energy store (e.g. in Steinfurt-Borghorst), borehole thermal energy store (in Neckarsulm) and aquifer thermal energy store (in Rostock). In this paper, measured heat balances of several German CSHPSS are presented. The different types of thermal energy stores and the affiliated central solar heating plants and district heating systems are described. Their operational characteristics are compared using measured data gained from an extensive monitoring program. Thus long-term operational experiences such as the influence of net return temperatures are shown. (author)

  5. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  6. Estimating heat-to-heat variation from a statistician's point of view

    International Nuclear Information System (INIS)

    Hebble, T.L.

    1976-01-01

    Heat-to-heat variability is the change in results that occurs when the same tests under the same conditions are applied to samples from different heats of the same material. Heat-to-heat variability reflects, among other things, difference in chemistry and in processing history. Published Japanese tensile and creep tests on types 304 and 316 stainless steel tube are used to illustrate the analysis of variance technique as a tool for isolating heat-to-heat variation. The importance of the underlying model and the role of replication are indicated. Finally, confidence intervals and tolerance limits are computed from numerical estimates of heat-to-heat variation. 17 tables

  7. Heat Roadmap Europe

    DEFF Research Database (Denmark)

    David, Andrei; Mathiesen, Brian Vad; Averfalk, Helge

    2017-01-01

    The Heat Roadmap Europe (HRE) studies estimated a potential increase of the district heating (DH) share to 50% of the entire heat demand by 2050, with approximately 25–30% of it being supplied using large-scale electric heat pumps. This study builds on this potential and aims to document that suc......The Heat Roadmap Europe (HRE) studies estimated a potential increase of the district heating (DH) share to 50% of the entire heat demand by 2050, with approximately 25–30% of it being supplied using large-scale electric heat pumps. This study builds on this potential and aims to document...

  8. The contact heat transfer between the heating plate and granular materials in rotary heat exchanger under overloaded condition

    Directory of Open Access Journals (Sweden)

    Luanfang Duan

    2018-03-01

    Full Text Available In the present work, the contact heat transfer between the granular materials and heating plates inside plate rotary heat exchanger (PRHE was investigated. The heat transfer coefficient is dominated by the contact heat transfer coefficient at hot wall surface of the heating plates and the heat penetration inside the solid bed. A plot scale PRHE with a diameter of Do = 273 mm and a length of L = 1000 mm has been established. Quartz sand with dp = 2 mm was employed as the experimental material. The operational parameters were in the range of ω = 1 – 8 rpm, and F = 15, 20, 25, 30%, and the effect of these parameters on the time-average contact heat transfer coefficient was analyzed. The time-average contact heat transfer coefficient increases with the increase of rotary speed, but decreases with the increase of the filling degree. The measured data of time-average heat transfer coefficients were compared with theoretical calculations from Schlünder’s model, a good agreement between the measurements and the model could be achieved, especially at a lower rotary speed and filling degree level. The maximum deviation between the calculated data and the experimental data is approximate 10%. Keywords: Rotary heat exchanger, Contact heat transfer, Granular material, Heating plate, Overloaded

  9. Heat-Related Illnesses

    Science.gov (United States)

    ... Share this! EmergencyCareForYou » Emergency 101 » Heat-Related Illnesses Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at ... about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the ...

  10. Heat savings in buildings in a 100% renewable heat and power system in Denmark with different shares of district heating

    DEFF Research Database (Denmark)

    Zvingilaite, Erika; Balyk, Olexandr

    2014-01-01

    levels of heat savings, which can be implemented by reducing heat transmission losses through building elements and by installing ventilation systems with heat recovery, in different future Danish heat and power system scenarios. Today almost 50% of heat demand in Denmark is covered by district heating......The paper examines implementation of heat saving measures in buildings in 2050, under the assumption that heat and power supply comes solely from renewable resources in Denmark.Balmorel – a linear optimisation model of heat and power sectors in Denmark is used for investigating economically viable....... A further expansion of district heating network in Denmark is assessed and penetration of heat savings is analysed in this context.If all heat saving measures, included in the model, are implemented, heat demand in Danish buildings in 2050 could be reduced by around 40%. Results show that it is cost...

  11. Plasma heating

    International Nuclear Information System (INIS)

    Wilhelm, R.

    1989-01-01

    Successful plasma heating is essential in present fusion experiments, for the demonstration of DpT burn in future devices and finally for the fusion reactor itself. This paper discusses the common heating systems with respect to their present performance and their applicability to future fusion devices. The comparative discussion is oriented to the various function of heating, which are: - plasma heating to fusion-relevant parameters and to ignition in future machines, -non-inductive, steady-pstate current drive, - plasma profile control, -neutral gas breakdown and plasma build-up. In view of these different functions, the potential of neutral beam injection (NBI) and the various schemes of wave heating (ECRH, LH, ICRH and Alven wave heating) is analyzed in more detail. The analysis includes assessments of the present physical and technical state of these heating methods, and makes suggestions for future developments and about outstanding problems. Specific attention is given to the still critical problem of efficient current drive, especially with respect to further extrapolation towards an economically operating tokamak reactor. Remarks on issues such as reliability, maintenance and economy conclude this comparative overview on plasma heating systems. (author). 43 refs.; 13 figs.; 3 tabs

  12. Compact seasonal PCM heat storage for solar heating systems

    DEFF Research Database (Denmark)

    Dannemand, Mark

    Space heating of buildings and preparation of domestic hot water accounts for a large part of the society’s energy consumption. Solar radiation is an abundant and renewable energy source which can be harvested by solar collectors and used to cover heating demands in the built environment....... The seasonal availability of solar energy does however not match with the heating demands in buildings which typically are large in winter periods when limited solar energy is available. Heat can be stored over a few days in water stores but continuous heat losses limits the storage periods. The possibility...... of storing heat from summer where solar energy is widely available to winter periods where the heating demands are large, allows for implementing more renewable energy in our energy system. The phase change material (PCM) sodium acetate trihydrate (SAT) melts at 58 °C. The melting process requires...

  13. Heat transfer from internally-heated molten UO2 pools

    International Nuclear Information System (INIS)

    Stein, R.P.; Baker, L. Jr.; Gunther, W.H.; Cook, C.

    1978-01-01

    Experimental measurements of heat transfer from internally heated pools of molten UO 2 have been obtained for two cell sizes: 10 cm x 10 cm and 20 cm x 20 cm. The experiments with the large cell have supported a previous conclusion from early small data that the measured downward heat fluxes are higher than would be expected on the basis of considerations of thermal convection. A convective model underpredicts the downward heat fluxes by a factor of 2.5 to 4.5 for all but one early experiment. Arbitrary assumptions of increased thermal conductivity do not account for the discrepancy. A single model based on internal thermal radiation heat transfer is able to account for the high values. The model uses the optically thick Rosseland approximation. Because of this, it is tentatively concluded that thermal radiation plays a dominant role in controlling the heat transfer from internally heated molted fuel

  14. Environmental and energy efficiency evaluation of residential gas and heat pump heating

    International Nuclear Information System (INIS)

    Ganji, A.R.

    1993-01-01

    Energy efficiency and source air pollutant emission factors of gas heaters, gas engine heat pumps, and electric heat pumps for domestic heating have been evaluated and compared. The analysis shows that with the present state of technology, gas engine heat pumps have the highest energy efficiency followed by electric heat pumps and then gas heaters. Electric heat pumps produce more than twice as much NO x , and comparable CO 2 and CO per unit of useful heating energy compared to natural gas heaters. CO production per unit of useful heating energy from gas engine heat pumps without any emission control is substantially higher than electric heat pumps and natural gas heaters. NO x production per unit of useful heating energy from natural gas engine heat pumps (using lean burn technology) without any emission control is about the same as effective NO x production from electric heat pumps. Gas engine heat pumps produce about one-half CO 2 compared to electric heat pumps

  15. {sup 222}Rn and CO{sub 2} soil-gas geochemical characterization of thermally altered clays at Orciatico (Tuscany, Central Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Voltattorni, N., E-mail: nunzia.voltattorni@ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome (Italy); Lombardi, S. [Earth Science Department, University ' La Sapienza' , Piazzale A. Moro 5, 00185 Rome (Italy); Rizzo, S. [Via Tito, 1/A, 00061 Anguillara Sabazia, Rome (Italy)

    2010-08-15

    Research highlights: {yields} Soil-gas technique is applied to study gas permeability of Orciatico clay units. {yields} Clay permeability depends on thermal and mechanical alteration degree. {yields} Soil-gas distributions are due to shallow fracturing of clays. {yields} Rn and CO{sub 2} soil-gas anomalies highlight secondary permeability in clay sequence. {yields} Soil-gas results are supported by detailed geoelectrical surveys. - Abstract: The physical properties of clay allow argillaceous formations to be considered geological barriers to radionuclide migration in high-level radioactive-waste isolation systems. As laboratory simulations are short term and numerical models always involve assumptions and simplifications of the natural system, natural analogues are extremely attractive surrogates for the study of long-term isolation. The clays of the Orciatico area (Tuscany, Central Italy), which were thermally altered via the intrusion of an alkali-trachyte laccolith, represent an interesting natural model of a heat source which acted on argillaceous materials. The study of this natural analogue was performed through detailed geoelectrical and soil-gas surveys to define both the geometry of the intrusive body and the gas permeability of a clay unit characterized by different degrees of thermal alteration. The results of this study show that gas permeability is increased in the clay sequences subjected to greater heat input from the emplacement of the Orciatico intrusion, despite the lack of apparent mineral and geotechnical variations. These results, which take into consideration long time periods in a natural, large-scale geological system, may have important implications for the long-term safety of underground storage of nuclear waste in clay formations.

  16. Research of the heat exchanging processes running in the heating and hot water supply loops of the coil heat exchangers

    Directory of Open Access Journals (Sweden)

    Ірина Геннадіївна Шитікова

    2016-11-01

    Full Text Available The fuel-energy complex research has made it possible to disclose a huge power-saving potential in the municipal heat-and-power engineering. Power-and-resource-saving units and systems are becoming extremely urgent because of the power engineering crisis expansion. The self-adjusting heat supply system from the individual heating points with the heat-accumulating units and coil heat exchangers for independent heating and water supply systems has been examined. Coil heat exchangers are used in municipal heating for heat transfer (e.g. geothermal waters for the independent mains of the heating and hot water supply systems. The heat engineering calculation of the heating and accumulating unit with the coil heat exchanger for independent heat supply systems from individual heater was performed and experimental data were received at the experimental industrial unit under the laboratory conditions. The peculiarities of the flows in the intertubular space, their influence on the heat exchange and temperatures of the first and intermediate mains have been shown. It is important to know the processes running inside the apparatus to be able to improve the technical characteristics of the three-loop coil heat exchanger. The task solution will make it possible to save the materials consumption for the three-loop coil heat exchangers in the future

  17. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... Share this! EmergencyCareForYou » Emergency 101 » Heat-Related Illnesses Heat-Related Illnesses Dr. Glenn Mitchell , Emergency physician at ... about heat cramps and heat stroke and exhaustion. Heat Cramps Symptoms include muscle spasms, usually in the ...

  18. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  19. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants

    Directory of Open Access Journals (Sweden)

    Jong-Myong eKim

    2015-03-01

    Full Text Available Chromatin regulation is essential to regulate genes and genome activities. In plants, the alteration of histone modification and DNA methylation are coordinated with changes in the expression of stress-responsive genes to adapt to environmental changes. Several chromatin regulators have been shown to be involved in the regulation of stress-responsive gene networks under abiotic stress conditions. Specific histone modification sites and the histone modifiers that regulate key stress-responsive genes have been identified by genetic and biochemical approaches, revealing the importance of chromatin regulation in plant stress responses. Recent studies have also suggested that histone modification plays an important role in plant stress memory. In this review, we summarize recent progress on the regulation and alteration of histone modification (acetylation, methylation, phosphorylation, and SUMOylation in response to the abiotic stresses, drought, high-salinity, heat, and cold in plants.

  20. Local heat transfer where heated rods touch in axially flowing water

    International Nuclear Information System (INIS)

    Kast, S.J.

    1983-05-01

    An anlaytic model is developed to predict the azimuthal width of a stablesteam blanket region near the line of contact between two heated rods cooled by axially flowing water at high pressure. The model is intended to aid analysis of reduced surface heat transfer capability for the abnormal configuration of nuclear fuel rods bowed into contact in the core of a pressurized water nuclear reactor. The analytic model predicts the azimuthal width of the steam blanket zone having reduced surface heat transfer as a function of rod average heat flux, subchannel coolant conditions and rod dimensions. The analytic model is developed from a heat balance between the heat generated in the wall of a heated empty tube and the heat transported away by transverse mixing and axial convection in the coolant subchannel. The model is developed for seveal geometries including heated rods in line contact, a heated rod touching a short insulating plane and a heated rod touching the inside of a metal guide tube

  1. Dimensional Changes of Nb$_{3}$Sn Rutherford Cables During Heat Treatment

    CERN Document Server

    Rochepault, E; Ambrosio, G; Anerella, M; Ballarino, A; Bonasia, A; Bordini, B; Cheng, D; Dietderich, D R; Felice, H; Garcia Fajardo, L; Ghosh, A; Holik, E F; Izquierdo Bermudez, S; Perez, J C; Pong, I; Schmalzle, J; Yu, M

    2016-01-01

    In high field magnet applications, Nb$_{3}$Sn coils undergo a heat treatment step after winding. During this stage, coils radially expand and longitudinally contract due to the Nb$_{3}$Sn phase change. In order to prevent residual strain from altering superconducting performances, the tooling must provide the adequate space for these dimensional changes. The aim of this paper is to understand the behavior of cable dimensions during heat treatment and to provide estimates of the space to be accommodated in the tooling for coil expansion and contraction. This paper summarizes measurements of dimensional changes on strands, single Rutherford cables, cable stacks, and coils performed between 2013 and 2015. These samples and coils have been performed within a collaboration between CERN and the U.S. LHC Accelerator Research Program to develop Nb$_{3}$Sn quadrupole magnets for the HiLumi LHC. The results are also compared with other high field magnet projects.

  2. Microstructures and microtextures of natural cokes: A case study of heat-affected coking coals from the Jharia coalfield, India

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashok K. [Central Fuel Research Institute, CSIR, Dhanbad-828108 (India); Singh, Mahendra P. [Department of Geology, Banaras Hindu University, Varanasi-221005 (India); Sharma, Mamta; Srivastava, Sunil K.

    2007-07-02

    In Jharia coalfield, nearly 1250 Mt of coking coal has been devolatilized due to igneous intrusives and {proportional_to} 1900 Mt due to mine fires. This paper is an effort to investigate the effect of carbonization in two intrusive affected coal seams of Ena (seam XIII) and Alkusa (seam XIV) collieries of this coalfield. Through petrographic studies by microscopy, characterization of normal and heat-affected coals was carried out. The microstructures and microtextures produced due to extraneous heat have been related to nature and extent of heat, location of heating source, and quality and quantity of natural coke produced. Based on the results of this study and earlier studies, an effort has been made to study the classification scheme for microtextures of natural cokes generated through in-situ carbonization of the coal seams. It has been observed that in case of such heat effects under overburden pressure, the anisotropy is much more pronounced as compared to laboratory-carbonized cokes. In the mildly carbonized coals (pre-plastic phase, < 300 C) the vitrinite attained higher reflectance than normal vitrinite, liptinite started disappearing, and inertinite remained unaffected. In the moderately affected coals (plastic phase, 300-500 C), mesophase spheres and fused natural cokes were generated from the reactives (vitrinite and liptinite maceral groups), the liptinites disappeared, and structurally, the inertinites remained almost unchanged with slight increase in the reflectance value. In the severely heat-affected coals (post plastic phase, > 500 C) the identified microtextures were mesophase spheres, different shapes and sizes of natural cokes, graphitic sphaeroliths, pyrolytic carbons, inerts with morpho-structural changes and slightly higher reflectance values, and altered and unaltered mineral matters. A gradual change in the heat-affected coals with increasing temperature was observed with respect to location of intrusive body. It has been concluded that

  3. Analysis of heat transfer regulation and modification employing intermittently emplaced porous cavities

    International Nuclear Information System (INIS)

    Vafai, K.; Huang, P.C.

    1994-01-01

    The present work forms a fundamental investigation on the effects of using intermittently porous cavities for regulating and modifying the flow and temperature fields and therefore changing the skin friction and heat transfer characteristics of an external surface. A general flow model that accounts for the effects of the impermeable boundary and inertial effects is used to describe the flow inside the porous region. Solutions of the problem have been carried out using a finite-difference method through the use of a stream function-vorticity transformation. Various interesting characteristics of the flow and temperature fields in the composite layer are analyzed and discussed in detail. The effects of various governing dimensionless parameters, such as the Darcy number, Reynolds number, Prandtl number, the inertia parameter as well as the effects of pertinent geometric parameters are thoroughly explored. Furthermore, the interactive effects of the embedded porous substrates on skin friction and heat transfer characteristics of an external surface are analyzed. The configuration analyzed in this work provides an innovative approach in altering the frictional and heat transfer characteristics of an external surface. 27 refs., 12 figs., 1 tab

  4. Experimental investigation on Heat Transfer Performance of Annular Flow Path Heat Pipe

    International Nuclear Information System (INIS)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol

    2015-01-01

    Mochizuki et al. was suggested the passive cooling system to spent nuclear fuel pool. Detail analysis of various heat pipe design cases was studied to determine the heat pipes cooling performance. Wang et al. suggested the concept PRHRS of MSR using sodium heat pipes, and the transient performance of high temperature sodium heat pipe was numerically simulated in the case of MSR accident. The meltdown at the Fukushima Daiichi nuclear power plants alarmed to the dangers of station blackout (SBO) accident. After the SBO accident, passive decay heat removal systems have been investigated to prevent the severe accidents. Mochizuki et al. suggested the heat pipes cooling system using loop heat pipes for decay heat removal cooling and analysis of heat pipe thermal resistance for boiling water reactor (BWR). The decay heat removal systems for pressurized water reactor (PWR) were suggested using natural convection mechanisms and modification of PWR design. Our group suggested the concept of a hybrid heat pipe with control rod as Passive IN-core Cooling System (PINCs) for decay heat removal for advanced nuclear power plant. Hybrid heat pipe is the combination of the heat pipe and control rod. In the present research, the main objective is to investigate the effect of the inner structure to the heat transfer performance of heat pipe containing neutron absorber material, B 4 C. The main objective is to investigate the effect of the inner structure in heat pipe to the heat transfer performance with annular flow path. ABS pellet was used instead of B 4 C pellet as cylindrical structures. The thermal performances of each heat pipes were measured experimentally. Among them, concentric heat pipe showed the best performance compared with others. 1. Annular evaporation section heat pipe and annular flow path heat pipe showed heat transfer degradation. 2. AHP also had annular vapor space and contact cooling surface per unit volume of vapor was increased. Heat transfer coefficient of

  5. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Directory of Open Access Journals (Sweden)

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  6. Chemistry, mineralogy and alteration intensity of hydrothermal altered Mt Unzen conduit rocks (Shimabara/Japan)

    Science.gov (United States)

    Hess, Kai-Uwe; Yilmaz, Tim; Gilg, H. Albert; Janots, Emilie; Mayer, Klaus; Nakada, Setsuya; Dingwell, Donald

    2017-04-01

    Investigations were carried out on hydrothermally altered coherent dacitic dykes samples from (USDP-4) drill core at Mt Unzen stratovolcano (Shimabara/Japan). XRF, XRD, EMPA, C-O-isotope, hot-cathode CL and SEM analysis led to insights concerning chemistry, mineralogy, and intensity and type of alteration as well as the origin of carbonate-precipitating fluids. Additionally a textural characterization of the occurring replacement features in the volcanic conduit rocks was performed. The occurrence of the main secondary phases such as chlorite, pyrite, carbonates, and R1 (Reichweite parameter) illite-smectite and kaolinite group minerals indicate a weak to moderate propylitic to phyllic hydrothermal alteration. The dacitic samples of the dykes show different hydrothermal alteration features: (i) carbonate and chlorite pseudomorphs after hornblende as well as core and zonal textures due to replacement of plagioclase by R1 illite-smectite as well as kaolinite group minerals, (ii) colloform banded fracture fillings and fillings in dissolution vugs, and (iii) chlorite, R1 illite-smectite as well as kaolinite group minerals in the groundmass. Late chlorite veins crosscut precipitates of R1 illite-smectite as well as kaolinite group minerals. Carbonates in fractures and in pseudomorphs after hornblende comprise iron-rich dolomite solid solutions ("ankerite") and calcite. Isotopic values indicate a hydrothermal-magmatic origin for the carbonate formation. The chlorite-carbonate-pyrite index (CCPI) and the Ishikawa alteration index (AI), applied to the investigated samples show significant differences (CCPI=52.7-57.8; AI=36.1-40.6) indicating their different degree of alteration. According to Nakada et al., 2005, the C13 to C16 dykes represent the feeder dyke from the latest eruption (1991-1995) whereas C8 represents an earlier dyke feeder dyke from an older eruption. Weakest alteration, which was obtained in samples C16-1-5 and C13-2-5, correlates with the alteration

  7. Conjugate heat and mass transfer in heat mass exchanger ducts

    CERN Document Server

    Zhang, Li-Zhi

    2013-01-01

    Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi

  8. Condensation heat transfer in plate heat exchangers

    International Nuclear Information System (INIS)

    Panchal, C.B.

    1985-01-01

    An Alfa-Laval plate heat exchanger, previously tested as an evaporator, was retested as a condenser. Two series of tests with different chevron-angle plates were carried out using ammonia as a working fluid. The overall heat-transfer coefficient and pressure drop were measured, and the effects of operating parameters were determined. The experimental data were compared with theoretical predictions. In the analysis, a gravity-controlled condensation process was modeled theoretically, and the overall performance was calculated. The analysis shows that the overall heat-transfer coefficient can be predicted with an average uncertainty of about 10%. It is, however, important to consider the interfacial shear stress, because the effective friction factor is high for flow in plate heat exchangers

  9. Altered Brain Activation in Early Drug-Naive Parkinson’s Disease during Heat Pain Stimuli: An fMRI Study

    Directory of Open Access Journals (Sweden)

    Ying Tan

    2015-01-01

    Full Text Available Parkinson’s disease (PD is a progressive neurodegenerative disease characterized by motor and nonmotor signs and symptoms. To date, many studies of PD have focused on its cardinal motor symptoms. To study the nonmotor signs of early PD, we investigated the reactions solicited by heat pain stimuli in early untreated PD patients without pain using fMRI. The activation patterns of contact heat stimuli (51°C were assessed in 14 patients and 17 age- and sex-matched healthy controls. Patients with PD showed significant decreases in activation of the superior temporal gyrus (STG and insula compared with controls. In addition, a significant relationship between activation of the insula and STG and the pain scores was observed in healthy controls but not in PD. This study provided further support that the insula and STG are important parts of the somatosensory circuitry recruited during the period of pain. The hypoactivity of the STG and insula in PD implied that functions including affective, cognitive, and sensory-discriminative processes, which are associated with the insula and STG, were disturbed. This finding supports the view that leaving early PD untreated could be tied directly to central nervous system dysfunction.

  10. Heat Transfer in Metal Foam Heat Exchangers at High Temperature

    Science.gov (United States)

    Hafeez, Pakeeza

    Heat transfer though open-cell metal foam is experimentally studied for heat exchanger and heat shield applications at high temperatures (˜750°C). Nickel foam sheets with pore densities of 10 and 40 pores per linear inch (PPI), have been used to make the heat exchangers and heat shields by using thermal spray coating to deposit an Inconel skin on a foam core. Heat transfer measurements were performed on a test rig capable of generating hot gas up to 1000°C. The heat exchangers were tested by exposing their outer surface to combustion gases at a temperature of 550°C and 750°C while being cooled by air flowing through them at room temperature at velocities up to 5 m/s. The temperature rise of the air, the surface temperature of the heat exchangers and the air temperature inside the heat exchanger were measured. The volumetric heat transfer coefficient and Nusselt number were calculated for different velocities. The heat transfer performance of the 40PPI sample brazed with the foil is found to be the most efficient. Pressure drop measurements were also performed for 10 and 40PPI metal foam. Thermographic measurements were done on 40PPI foam heat exchangers using a high temperature infrared camera. A high power electric heater was used to produce hot air at 300°C that passed over the foam heat exchanger while the cooling air was blown through it. Heat shields were made by depositing porous skins on metal foam and it was observed that a small amount of coolant leaking through the pores notably reduces the heat transfer from the hot gases. An analytical model was developed based assuming local thermal non-equilibrium that accounts for the temperature difference between solid and fluid phase. The experimental results are found to be in good agreement with the predicted values of the model.

  11. Renewable-based heat supply of multi-apartment buildings with varied heat demands

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Dodoo, Ambrose; Gustavsson, Leif

    2015-01-01

    This study investigates the cost and primary energy use to heat an existing multi-apartment building in Sweden, before and after deep energy efficiency renovation, with different types of renewable-based systems. District heating systems of different scales as well as local heat production based on bioelectric boilers, ground-source bioelectric heat pumps and wood pellet boilers with or without solar heating are considered. The annual energy demand of the building, calculated hour by hour, with and without energy efficiency improvements, are matched against the renewable-based heat supply options by techno-economic modeling to minimize cost for each considered heat supply option. The results show that the availability of heating technologies at the building site and the scale of the building's heat demand influence the cost and the primary energy efficiency of the heating options. District heat from large-scale systems is cost efficient for the building without energy-efficiency improvement, whereas electric heat pumps and wood pellet boilers are more cost efficient when implementing energy-efficiency improvement. However, the cost difference is small between these alternatives and sensitive to the size of building. Large-scale district heating with cogeneration of power is most primary energy efficient while heat pumps and medium-scale district heating are nearly as efficient. - Highlights: • Heating technologies influence costs and primary energy use of a building. • Large-scale district heating with cogeneration of power is primary energy efficient. • Large-scale district heating is cost efficient for buildings with large heat demand. • Heat pumps and pellet boilers are cost competitive in energy-efficient buildings.

  12. Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system.

    Science.gov (United States)

    Pei, Guihong; Zhang, Liyin

    2016-01-01

    Ground source heat pumps is a building energy conservation technique. The underground buried pipe heat exchanging system of a ground source heat pump (GSHP) is the basis for the normal operation of an entire heat pump system. Computational-fluid-dynamics (CFD) numerical simulation software, ANSYS-FLUENT17.0 have been performed the calculations under the working conditions of a continuous and intermittent operation over 7 days on a GSHP with a single-well, single-U and double-U heat exchanger and the impact of single-U and double-U buried heat pipes on the surrounding rock-soil temperature field and the impact of intermittent operation and continuous operation on the outlet water temperature. The influence on the rock-soil temperature is approximately 13 % higher for the double-U heat exchanger than that of the single-U heat exchanger. The extracted energy of the intermittent operation is 36.44 kw·h higher than that of the continuous mode, although the running time is lower than that of continuous mode, over the course of 7 days. The thermal interference loss and quantity of heat exchanged for unit well depths at steady-state condition of 2.5 De, 3 De, 4 De, 4.5 De, 5 De, 5.5 De and 6 De of sidetube spacing are detailed in this work. The simulation results of seven working conditions are compared. It is recommended that the side-tube spacing of double-U underground pipes shall be greater than or equal to five times of outer diameter (borehole diameter: 180 mm).

  13. Distributed heat generation in a district heating system

    OpenAIRE

    Lennermo, Gunnar; Lauenberg, Patrick

    2016-01-01

    District heating (OH) systems need to be improved  regarding integration  of decentralised  heat generation. Micro production, prosumers and smart grids are terms becoming more and more common  in  connection  to  the  power  grid.  Concerning district  heating,  the  development  is slower, although improving. Today there are a number of such decentralised units for heat generation,  mainly  solar,  that have been partly evaluated.  Previous  studies  have shown  that there is a need to deve...

  14. Method and means for heating buildings in a district heating system with waste heat from a thermal power plant

    International Nuclear Information System (INIS)

    Margen, P.H.E.

    1975-01-01

    The waste heat from a thermal power plant is transported through a municipal heating network to a plurality of buildings to be heated. The quantity of heat thus supplied to the buildings is higher than that required for the heating of the buildings. The excess heat is released from the buildings to the atmosphere in the form of hot air

  15. News from heat-pump research - Large-scale heat pumps, components, heat pumps and solar heating; News aus der Waermepumpen-Forschung - Gross-Waermepumpen, Komponenten, Waermepumpe und Solar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    These proceedings summarise the presentations made at the 16{sup th} annual meeting held by the Swiss Federal Office of Energy's Heat Pump Research Program in Burgdorf, Switzerland. The proceedings include contributions on large-scale heat pumps, components and the activities of the heat pump promotion society. A summary of targets and trends in energy research in general is presented and an overview of the heat pump market in 2009 and future perspectives is given. International work within the framework of the International Energy Agency's heat pump group is reviewed, including solar - heat pump combinations. Field-monitoring and the analysis of large-scale heat pumps are discussed and the importance of the use of correct concepts in such installations is stressed. Large-scale heat pumps with carbon dioxide as working fluid are looked at, as are output-regulated air/water heat pumps. Efficient system solutions with heat pumps used both to heat and to cool are discussed. Deep geothermal probes and the potential offered by geothermal probes using carbon dioxide as a working fluid are discussed. The proceedings are rounded off with a list of useful addresses.

  16. Thermal behavior of a heat exchanger module for seasonal heat storage

    DEFF Research Database (Denmark)

    Fan, Jianhua; Furbo, Simon; Andersen, Elsa

    2012-01-01

    Experimental and theoretic investigations are carried out to study the heat transfer capacity rate of a heat exchanger module for seasonal heat storage with sodium acetate trihydrate (SAT) supercooling in a stable way. A sandwich heat storage test module has been built with the phase change...... material (PCM) storage box in between two plate heat exchangers. Charge of the PCM storage is investigated experimentally with solid phase SAT as initial condition. Discharge of the PCM storage with the presence of crystallization is studied experimentally. Fluid flow and heat transfer in the PCM module......, recommendations on how best to transfer heat to and from the seasonal heat storage module are given....

  17. Heat recovery from a cement plant with a Marnoch Heat Engine

    International Nuclear Information System (INIS)

    Saneipoor, P.; Naterer, G.F.; Dincer, I.

    2011-01-01

    This paper examines the performance of a new Marnoch Heat Engine (MHE) that recovers waste heat from within a typical cement plant. Two MHE units with compressed air as the working fluid are installed to recover the waste heat. The first unit on the main stack has four pairs of shell and tube heat exchangers. The second heat recovery unit is installed on a clinker quenching system. This unit operates with three pairs of shell and tube heat exchangers. The recovered heat is converted to electricity through the MHE system and used internally within the cement plant. A predictive model and results are presented and discussed. The results show the promising performance of the MHE's capabilities for efficient generation of electricity from waste heat sources in a cement plant. The new heat recovery system increases the efficiency of the cement plant and lowers the CO 2 emissions from the clinker production process. Moreover, it reduces the amount of waste heat to the environment and lowers the temperature of the exhaust gases. - Highlights: → This paper examines the thermodynamic performance of a new Marnoch Heat Engine (MHE) that recovers waste heat to produce electricity and improve the operating efficiency of a typical cement plant. → The first unit of the MHE on the main stack has four pairs of shell and tube heat exchangers and the second heat recovery unit is installed on a clinker quenching system. → Both predicted and experimental results demonstrate the promising performance of the MHE's capabilities for efficient generation of electricity from waste heat sources in a cement plant.

  18. An experimental study on the heat transfer characteristics of a heat pipe heat exchanger with latent heat storage. Part II: Simultaneous charging/discharging modes

    International Nuclear Information System (INIS)

    Liu Zhongliang; Wang Zengyi; Ma Chongfang

    2006-01-01

    In this part of the paper, the performance of the simultaneous charging/discharging operation modes of the heat pipe heat exchanger with latent heat storage is experimentally studied. The experimental results show that the device may operate under either the fluid to fluid heat transfer with charging heat to the phase change material (PCM) or the fluid to fluid heat transfer with discharging heat from the PCM modes according to the initial temperature of the PCM. The melting/solidification curves, the performances of the heat pipes and the device, the influences of the inlet temperature and the mass flow rate of the cold water on the operation performance are investigated by extensive experiments. The experimental results also disclose that under the simultaneous charging/discharging operation mode, although the heat transfer from the hot water directly to the cold water may vary, it always takes up a major part of the total heat recovered by the cold water due to the very small thermal resistance compared with the thermal resistance of the PCM side. The melting/solidification processes taking place in the simultaneous charging/discharging operation are compared with those in the charging only and discharging only processes. By applying a simplified thermal resistance analysis, a criterion for predicting the exact operation modes was derived and used to explain the observed experimental phenomena

  19. Heat pipe

    International Nuclear Information System (INIS)

    Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.

    1986-01-01

    A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)

  20. District heating versus local heating - Social supportability

    International Nuclear Information System (INIS)

    Matei, Magdalena; Enescu, Diana; Varjoghie, Elena; Radu, Florin; Matei, Lucian

    2004-01-01

    District heating, DH, is an energy source which can provide a cost-effective, environmentally friendly source of heat and power for cities, but only in the case of well running systems, with reasonable technological losses. The benefits of DH system are well known: environmental friendly, energy security, economic and social advantages. DH already covers 60% of heating and hot water needs in transition economies. Today, 70 % of Russian, Latvian and Belarus homes use DH, and heating accounts for one-third of total Russian energy consumption. Yet a large number of DH systems in the region face serious financial, marketing or technical problems because of the policy framework. How can DH issues be best addressed in national and local policy? What can governments do to create the right conditions for the sustainable development of DH while improving service quality? What policies can help capture the economic, environmental and energy security benefits of co-generation and DH? To address these questions, the International Energy Agency (IEA) hosted in 2002 and 2004 conference focusing on the crucial importance of well-designed DH policies, for exchanging information on policy approaches. The conclusions of the conference have shown that 'DH systems can do much to save energy and boost energy security, but stronger policy measures are needed to encourage wise management and investment. With a stronger policy framework, DH systems in formerly socialist countries could save the equivalent of 80 billion cubic meters of natural gas a year through supply side efficiency improvements. This is greater than total annual natural gas consumption in Italy'. More efficient systems will also decrease costs, reducing household bills and making DH competitive on long-term. This paper presents the issues: -Theoretical benefits of the district heating and cooling systems; - Municipal heating in Romania; - Technical and economic problems of DH systems and social supportability; - How

  1. An analysis of pavement heat flux to optimize the water efficiency of a pavement-watering method

    International Nuclear Information System (INIS)

    Hendel, Martin; Colombert, Morgane; Diab, Youssef; Royon, Laurent

    2015-01-01

    Pavement-watering as a technique of cooling dense urban areas and reducing the urban heat island effect has been studied since the 1990's. The method is currently considered as a potential tool for and climate change adaptation against increasing heat wave intensity and frequency. However, although water consumption necessary to implement this technique is an important aspect for decision makers, optimization of possible watering methods has only rarely been conducted. An analysis of pavement heat flux at a depth of 5 cm and solar irradiance measurements is proposed to attempt to optimize the watering period, cycle frequency and water consumption rate of a pavement-watering method applied in Paris over the summer of 2013. While fine-tuning of the frequency can be conducted on the basis of pavement heat flux observations, the watering rate requires a heat transfer analysis based on a relation established between pavement heat flux and solar irradiance during pavement insolation. From this, it was found that watering conducted during pavement insolation could be optimized to 30-min cycles and water consumption could be reduced by more than 80% while reducing the cooling effect by less than 13%. - Highlights: • The thermal effects of pavement-watering were investigated in Paris, France. • Pavement-watering was found to significantly affect pavement heat flux 5 cm deep. • When insolated, a linear relation was found between heat flux and solar radiation. • Pavement-watering did not alter its slope, but introduced a negative intercept. • Subsequent improvements of the watering period, frequency and rate are proposed

  2. Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular and Molecular Responses of the Oocyte.

    Science.gov (United States)

    Roth, Zvi

    2017-02-08

    Among the components of the female reproductive tract, the ovarian pool of follicles and their enclosed oocytes are highly sensitive to hyperthermia. Heat-induced alterations in small antral follicles can be expressed later as compromised maturation and developmental capacity of the ovulating oocyte. This review summarizes the most up-to-date information on the effects of heat stress on the oocyte with an emphasis on unclear points and open questions, some of which might involve new research directions, for instance, whether preantral follicles are heat resistant. The review focuses on the follicle-enclosed oocytes, provides new insights into the cellular and molecular responses of the oocyte to elevated temperature, points out the role of the follicle microenvironment, and discusses some mechanisms that might underlie oocyte impairment. Mechanisms include nuclear and cytoplasmic maturation, mitochondrial function, apoptotic pathways, and oxidative stress. Understanding the mechanism by which heat stress compromises fertility might enable development of new strategies to mitigate its effects.

  3. TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation

    Directory of Open Access Journals (Sweden)

    Wang Juan

    2011-05-01

    Full Text Available Abstract Background The discovery of heat-sensitive Transient Receptor Potential Vanilloid (TRPV ion channels provided a potential molecular explanation for the perception of innocuous and noxious heat stimuli. TRPV1 has a significant role in acute heat nociception and inflammatory heat hyperalgesia. Yet, substantial innocuous and noxious heat sensitivity remains in TRPV1 knockout animals. Here we investigated the role of two related channels, TRPV3 and TRPV4, in these capacities. We studied TRPV3 knockout animals on both C57BL6 and 129S6 backgrounds, as well as animals deficient in both TRPV3 and TRPV4 on a C57BL6 background. Additionally, we assessed the contributions of TRPV3 and TRPV4 to acute heat nociception and inflammatory heat hyperalgesia during inhibition of TRPV1. Results TRPV3 knockout mice on the C57BL6 background exhibited no obvious alterations in thermal preference behavior. On the 129S6 background, absence of TRPV3 resulted in a more restrictive range of occupancy centered around cooler floor temperatures. TRPV3 knockout mice showed no deficits in acute heat nociception on either background. Mice deficient in both TRPV3 and TRPV4 on a C57BL6 background showed thermal preference behavior similar to wild-type controls on the thermal gradient, and little or no change in acute heat nociception or inflammatory heat hyperalgesia. Masking of TRPV1 by the TRPV1 antagonist JNJ-17203212 did not reveal differences between C57BL6 animals deficient in TRPV3 and TRPV4, compared to their wild-type counterparts. Conclusions Our results support the notion that TRPV3 and TRPV4 likely make limited and strain-dependent contributions to innocuous warm temperature perception or noxious heat sensation, even when TRPV1 is masked. These findings imply the existence of other significant mechanisms for heat perception.

  4. Analysis of the heat transfer in double and triple concentric tube heat exchangers

    Science.gov (United States)

    Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.

    2016-08-01

    The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.

  5. Ground Source Heat Pump in Heating System with Electronics Monitoring

    Directory of Open Access Journals (Sweden)

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  6. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves

    Directory of Open Access Journals (Sweden)

    Cheng Jian-Shan

    2010-02-01

    Full Text Available Abstract Background Although the effect of salicylic acid (SA on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side. In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25°C, during heat stress (43°C for 5 h, and through the following recovery period (25°C. Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs in the chloroplast were also investigated. Results SA did not significantly (P Pn of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activition state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P Conclusion SA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activition state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.

  7. Natural convection heat transfer of fluid with temperature-dependent specific heat

    International Nuclear Information System (INIS)

    Tanaka, Amane; Kubo, Shinji; Akino, Norio

    1998-01-01

    The present study investigates natural convection from a heated vertical plate of fluid with temperature-dependent specific heat, which is introduced as a model of microencapsulated phase change material slurries (MCPCM slurries). The temperature dependence of specific heat is represented by Gauss function with three physical parameters (peak temperature, width of phase change temperature and latent heat). Boundary layer equations are solved numerically, and the velocity and temperature fields of the flow are obtained. The relation between the heat transfer coefficients and the physical parameters of specific heat is discussed. The results show that the velocities and temperatures are smaller, and the heat transfer coefficients are larger comparing with those of the fluid with constant specific heat. (author)

  8. Roles of Urban Tree Canopy and Buildings in Urban Heat Island Effects: Parameterization and Preliminary Results

    Science.gov (United States)

    Loughner, Christopher P.; Allen, Dale J.; Zhang, Da-Lin; Pickering, Kenneth E.; Dickerson, Russell R.; Landry, Laura

    2012-01-01

    Urban heat island (UHI) effects can strengthen heat waves and air pollution episodes. In this study, the dampening impact of urban trees on the UHI during an extreme heat wave in the Washington, D.C., and Baltimore, Maryland, metropolitan area is examined by incorporating trees, soil, and grass into the coupled Weather Research and Forecasting model and an urban canopy model (WRF-UCM). By parameterizing the effects of these natural surfaces alongside roadways and buildings, the modified WRF-UCM is used to investigate how urban trees, soil, and grass dampen the UHI. The modified model was run with 50% tree cover over urban roads and a 10% decrease in the width of urban streets to make space for soil and grass alongside the roads and buildings. Results show that, averaged over all urban areas, the added vegetation decreases surface air temperature in urban street canyons by 4.1 K and road-surface and building-wall temperatures by 15.4 and 8.9 K, respectively, as a result of tree shading and evapotranspiration. These temperature changes propagate downwind and alter the temperature gradient associated with the Chesapeake Bay breeze and, therefore, alter the strength of the bay breeze. The impact of building height on the UHI shows that decreasing commercial building heights by 8 m and residential building heights by 2.5 m results in up to 0.4-K higher daytime surface and near-surface air temperatures because of less building shading and up to 1.2-K lower nighttime temperatures because of less longwave radiative trapping in urban street canyons.

  9. High performance passive solar heating system with heat pipe energy transfer and latent heat storage

    NARCIS (Netherlands)

    Dijk, van H.A.L.; Galen, van E; Hensen, J.L.M.; Wit, de M.H.

    1983-01-01

    Preliminar results are reported from a current project on the development of a high performance passive solar heating system. Two special components are introduced: a. A heat pipe as a thermal diode tube for the efficient transfer of collected solar heat from the absorber plate to behind an

  10. Heat generation and heating limits for the IRUS LLRW disposal facility

    International Nuclear Information System (INIS)

    Donders, R.E.; Caron, F.

    1995-10-01

    Heat generation from radioactive decay and chemical degradation must be considered when implementing low-level radioactive waste (LLRW) disposal. This is particularly important when considering the management of spent radioisotope sources. Heating considerations and temperature calculations for the proposed IRUS (Intrusion Resistant Underground Structure) near-surface disposal facility are presented. Heat transfer calculations were performed using a finite element code with realistic but somewhat conservative heat transfer parameters and environmental boundary conditions. The softening-temperature of the bitumen waste-form (38 deg C) was found to be the factor that limits the heat generation rate in the facility. This limits the IRUS heat rate, assuming a uniform source term, to 0.34 W/m 3 . If a reduced general heat-limit is considered, then some higher-heat packages can be accepted with restrictions placed on their location within the facility. For most LLRW, heat generation from radioactive decay and degradation are a small fraction of the IRUS heating limits. However, heating restrictions will impact on the disposal of higher-activity radioactive sources. High activity 60 Co sources will require decay-storage periods of about 70 years, and some 137 Cs will need to bed disposed of in facilities designed for higher-heat waste. (author). 21 refs., 8 tabs., 2 figs

  11. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  12. Intermittent heating of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kohonen, K

    1983-02-01

    Conditions for intermittent heating of buildings are considered both theoretically and experimentally. Thermal behaviour of buildings adn rooms in intermittent heating is simulated by a program based on the convective heat balance equation and by simplified RC-models. The preheat times and the heating energy savings compared with continuous heating are presented for typical lightweight, mediumweight and heavyweight classroom and office modules. Formulaes for estimating the oversizing of the radiator network, the maximum heat output of heat exchangers in district heating and the efficiency of heating boilers in intermittent heating are presented. The preheat times and heating energy savings with different heating control systems are determined also experimentally in eight existing buildings. In addition some principles for the planning and application of intermittent heating systems are suggested.

  13. LONG DURATION FLARE EMISSION: IMPULSIVE HEATING OR GRADUAL HEATING?

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jiong; Longcope, Dana W. [Department of Physics, Montana State University, Bozeman MT 59717-3840 (United States)

    2016-03-20

    Flare emissions in X-ray and EUV wavelengths have previously been modeled as the plasma response to impulsive heating from magnetic reconnection. Some flares exhibit gradually evolving X-ray and EUV light curves, which are believed to result from superposition of an extended sequence of impulsive heating events occurring in different adjacent loops or even unresolved threads within each loop. In this paper, we apply this approach to a long duration two-ribbon flare SOL2011-09-13T22 observed by the Atmosphere Imaging Assembly (AIA). We find that to reconcile with observed signatures of flare emission in multiple EUV wavelengths, each thread should be heated in two phases, an intense impulsive heating followed by a gradual, low-rate heating tail that is attenuated over 20–30 minutes. Each AIA resolved single loop may be composed of several such threads. The two-phase heating scenario is supported by modeling with both a zero-dimensional and a 1D hydrodynamic code. We discuss viable physical mechanisms for the two-phase heating in a post-reconnection thread.

  14. Self-assembled structures of 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol in hydrophobic polymer matrices prepared using different heat treatments

    Science.gov (United States)

    Lai, Wei-Chi; Tseng, Shen-Jhen; Huang, Po-Hsun

    2015-11-01

    We report a method for tuning the nanoarchitectures of 1,3:2,4-di(3,4-dimethylbenzylidene) sorbitol (DMDBS) with poly(vinylidene fluoride) (PVDF) polymer matrices. Hydrophobic PVDF facilitated the formation of nanofibrils during heating. The self-assembly behaviors of DMDBS were further tuned by altering the different heat treatments. When the samples were prepared with a rapid heating rate (shorter annealing time), smaller amounts of melted PVDF were excluded due to the shorter time for aggregation of DMDBS, leading to larger complex structures of DMDBS and PVDF. Therefore, longer and thicker nanofibrils (around 100 nm) were observed using scanning electron microscopy. As the samples were prepared with a slow heating rate (longer annealing time), DMDBS had more time to aggregate, and therefore, larger amounts of melted PVDF were excluded. Smaller complex structures of DMDBS and PVDF caused the formation of shorter and thinner nanofibrils (around 40 nm). In addition, small-angle X-ray scattering results indicated that the longer and thicker nanofibrils were mostly excluded outside the PVDF crystalline bundles after cooling because they were too large to be easily incorporated between the PVDF crystalline lamellae. However, a large portion of the smaller and thinner nanofibrils was trapped between the crystalline lamellae after cooling due to their smaller sizes. As expected, the PVDF spherulitic morphologies were affected, but the PVDF crystalline microstructures were not significantly altered by the addition of DMDBS, as shown by the results from polarized optical microscopy and Fourier transform infrared spectroscopy.

  15. Stokes flow heat transfer in an annular, rotating heat exchanger

    International Nuclear Information System (INIS)

    Saatdjian, E.; Rodrigo, A.J.S.; Mota, J.P.B.

    2011-01-01

    The heat transfer rate into highly viscous, low thermal-conductivity fluids can be enhanced significantly by chaotic advection in three-dimensional flows dominated by viscous forces. The physical effect of chaotic advection is to render the cross-sectional temperature field uniform, thus increasing both the wall temperature gradient and the heat flux into the fluid. A method of analysis for one such flow-the flow in the eccentric, annular, rotating heat exchanger-and a procedure to determine the best heat transfer conditions, namely the optimal values of the eccentricity ratio and time-periodic rotating protocol, are discussed. It is shown that in continuous flows, such as the one under consideration, there exists an optimum frequency of the rotation protocol for which the heat transfer rate is a maximum. - Highlights: → The eccentric, annular, rotating heat exchanger is studied for periodic Stokes flow. → Counter-rotating the inner tube with a periodic velocity enhances the heat transfer. → The heat-transfer enhancement under such conditions is due to chaotic advection. → For a given axial flow rate there is a frequency that maximizes the heat transfer. → There is also an optimum value of the eccentricity ratio.

  16. Heat Rejection from a Variable Conductance Heat Pipe Radiator Panel

    Science.gov (United States)

    Jaworske, D. A.; Gibson, M. A.; Hervol, D. S.

    2012-01-01

    A titanium-water heat pipe radiator having an innovative proprietary evaporator configuration was evaluated in a large vacuum chamber equipped with liquid nitrogen cooled cold walls. The radiator was manufactured by Advanced Cooling Technologies, Inc. (ACT), Lancaster, PA, and delivered as part of a Small Business Innovative Research effort. The radiator panel consisted of five titanium-water heat pipes operating as thermosyphons, sandwiched between two polymer matrix composite face sheets. The five variable conductance heat pipes were purposely charged with a small amount of non-condensable gas to control heat flow through the condenser. Heat rejection was evaluated over a wide range of inlet water temperature and flow conditions, and heat rejection was calculated in real-time utilizing a data acquisition system programmed with the Stefan-Boltzmann equation. Thermography through an infra-red transparent window identified heat flow across the panel. Under nominal operation, a maximum heat rejection value of over 2200 Watts was identified. The thermal vacuum evaluation of heat rejection provided critical information on understanding the radiator s performance, and in steady state and transient scenarios provided useful information for validating current thermal models in support of the Fission Power Systems Project.

  17. Cappuccino and Specific Heat Versus Heat of Vaporization

    Science.gov (United States)

    Hidden, Frits; Boomsma, Jorn; Schins, Anton; van den Berg, Ed

    2012-02-01

    A cappuccino is prepared by adding about 50 mL frothing, foaming milk to a cup of espresso. Whole milk is best for foaming and the ideal milk temperature when adding it to the espresso is 65 °C. The espresso itself may be warmer than that. During the heating the milk should not burn, as that would spoil the taste. The best way is to heat the milk slowly while stirring to froth the milk and create foam. But modern cappuccino machines in restaurants do not have time for slow heating. Could we heat the milk by just adding hot water?

  18. Dual source heat pump

    Science.gov (United States)

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  19. Analytical models of Ohmic heating and conventional heating in food processing

    Science.gov (United States)

    Serventi, A.; Bozzoli, F.; Rainieri, S.

    2017-11-01

    Ohmic heating is a food processing operation in which an electric current is passed through a food and the electrical resistance of the food causes the electric power to be transformed directly into heat. The heat is not delivered through a surface as in conventional heat exchangers but it is internally generated by Joule effect. Therefore, no temperature gradient is required and it origins quicker and more uniform heating within the food. On the other hand, it is associated with high energy costs and its use is limited to a particular range of food products with an appropriate electrical conductivity. Sterilization of foods by Ohmic heating has gained growing interest in the last few years. The aim of this study is to evaluate the benefits of Ohmic heating with respect to conventional heat exchangers under uniform wall temperature, a condition that is often present in industrial plants. This comparison is carried out by means of analytical models. The two different heating conditions are simulated under typical circumstances for the food industry. Particular attention is paid to the uniformity of the heat treatment and to the heating section length required in the two different conditions.

  20. Heat exchanger

    International Nuclear Information System (INIS)

    Leigh, D.G.

    1976-01-01

    The arrangement described relates particularly to heat exchangers for use in fast reactor power plants, in which heat is extracted from the reactor core by primary liquid metal coolant and is then transferred to secondary liquid metal coolant by means of intermediate heat exchangers. One of the main requirements of such a system, if used in a pool type fast reactor, is that the pressure drop on the primary coolant side must be kept to a minimum consistent with the maintenance of a limited dynamic head in the pool vessel. The intermediate heat exchanger must also be compact enough to be accommodated in the reactor vessel, and the heat exchanger tubes must be available for inspection and the detection and plugging of leaks. If, however, the heat exchanger is located outside the reactor vessel, as in the case of a loop system reactor, a higher pressure drop on the primary coolant side is acceptable, and space restriction is less severe. An object of the arrangement described is to provide a method of heat exchange and a heat exchanger to meet these problems. A further object is to provide a method that ensures that excessive temperature variations are not imposed on welded tube joints by sudden changes in the primary coolant flow path. Full constructional details are given. (U.K.)

  1. After-heat removing device

    International Nuclear Information System (INIS)

    Iwashige, Kengo; Otsuka, Masaya; Yokoyama, Iwao; Yamakawa, Masanori.

    1990-01-01

    The present invention concerns an after-heat removing device for first reactors. A heat accumulation portion provided in a cooling channel of an after-heat removing device is disposed before a coil-like heat conduction pipe for cooling of the after-heat removing device. During normal reactor operation, the temperature in the heat accumulation portion is near the temperature of the high temperature plenum due to heat conduction and heat transfer from the high temperature plenum. When the reactor is shutdown and the after-heat removing device is started, coolants cooled in the air cooler start circulation. The coolants arriving at the heat accumulation portion deprive heat from the heat accumulation portion and, ion turn, increase their temperature and then reach the cooling coil. Subsequently, the heat calorie possessed in the heat accumulation portion is reduced and the after-heat removing device is started for the operation at a full power. This can reduce the thermal shocks applied to the cooling coil or structures in a reactor vessel upon starting the after-heat removing device. (I.N.)

  2. Heat exchanger device and method for heat removal or transfer

    Science.gov (United States)

    Koplow, Jeffrey P

    2013-12-10

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  3. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps

    Science.gov (United States)

    Zhurmilova, I.; Shtym, A.

    2017-11-01

    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  4. Flexible use of electricity in heat-only district heating plants

    Directory of Open Access Journals (Sweden)

    Erik Trømborg

    2017-01-01

    Full Text Available European energy systems are in a period of significant transition, with the increasing shares of variable renewable energy (VRE and less flexible fossil-based generation units as predominant factors. The supply-side changes are expected to cause large short-term electricity price volatility. More frequent periods of low electricity prices may mean that electric use in flexible heating systems will become more profitable, and such flexible heating systems may, in turn, improve the integration of increasing shares of VRE. The objective of this study is to analyze the likely future of Nordic electricity price levels and variations and how the expected prices might affect the use of electricity and thermal storage in heat-only district heating plants. We apply the North European energy market model Balmorel to provide scenarios for future hourly electricity prices in years with normal, high, and low inflow levels to the hydro power system. The simulation tool energyPRO is subsequently applied to quantify how these electricity price scenarios affect the hourly use of thermal storage and individual boilers in heat-only district heating plants located in Norway. The two studied example plants use wood chips or heat pump as base load representing common technologies for district heating in Norway. The Balmorel results show that annual differences in inflow is still a decisive factor for Norwegian and Nordic electricity prices in year 2030 and that short-term (daily price variability is expected to increase. In the plant-level simulations, we find that tank storage, which is currently installed in only a few district heating plants in Norway, is a profitable flexibility option that will significantly reduce the use of fossil peak load in both biomass and heat-pump-based systems. Installation of an electric boiler in addition to tank storage is profitable in the heat pump system due to the limited capacity of the heat pump. Electricity will hence, to a

  5. Heat Exchangers for Utilization of the Heat of High-Temperature Geothermal Brines

    Science.gov (United States)

    Alkhasov, A. B.; Alkhasova, D. A.

    2018-03-01

    The basic component of two-circuit geothermal systems is the heat exchanger. When used in geothermal power systems, conventional shell-and-tube and plate heat exchangers cause problems related to the cleaning of the latter from salt-deposition and corrosion products. Their lifetime does not exceed, as a rule, 1 year. To utilize the heat of high-temperature geothermal brines, a heat exchanger of the "tube-in-tube" type is proposed. A heat exchanger of this design has been operated for several years in Ternair geothermal steam field; in this heat exchanger, the thermal potential of the saline thermal water is transferred to the fresh water of the secondary circuit of the heating system for apartment houses. The reduction in the weight and size characteristics of the heat exchangers is a topical problem that can be solved with the help of heat transfer enhancers. To enhance the heat transfer process in the heat exchanger, longitudinal ribbing of the heat exchange surface is proposed. The increase in the heat exchange surface from the heat carrier side by ribbing results in an increase in the amount of the heat transferred from the heating agent. The heat exchanger is easy to manufacture and is assembled out of components comprised of two concentrically positioned tubes of a definite length, 3-6 m, serially connected with each other. The method for calculation of the impact of the number and the size of the longitudinal ribs on the heat transfer in the well heat exchanger is presented and a criterion for the selection of the optimal number and design parameters of the ribs is formulated. To prevent the corrosion and salt deposition in the heat exchanger, the use of an effective OEDFK (oxyethylidenediphosphonic acid) agent is proposed. This agent has a long-lasting corrosion-inhibiting and antiscaling effect, which is explained by the formation of a strongly adhesive chelate layer difficult to wash off the surface. The passivating OEDFK layer is restored by periodical

  6. In Situ Polymorphic Alteration of Filler Structures for Biomimetic Mechanically Adaptive Elastomer Nanocomposites.

    Science.gov (United States)

    Natarajan, Tamil Selvan; Okamoto, Shigeru; Stöckelhuber, Klaus Werner; Wießner, Sven; Reuter, Uta; Fischer, Dieter; Ghosh, Anik Kumar; Heinrich, Gert; Das, Amit

    2018-04-30

    A mechanically adaptable elastomer composite is prepared with reversible soft-stiff properties that can be easily controlled. By the exploitation of different morphological structures of calcium sulfate, which acts as the active filler in a soft elastomer matrix, the magnitude of filler reinforcement can be reversibly altered, which will be reflected in changes of the final stiffness of the material. The higher stiffness, in other words, the higher modulus of the composites, is realized by the in situ development of fine nanostructured calcium sulfate dihydrate crystals, which are formed during exposure to water and, further, these highly reinforcing crystals can be transformed to a nonreinforcing hemihydrate mesocrystalline structure by simply heating the system in a controlled way. The Young's modulus of the developed material can be reversibly altered from ∼6 to ∼17 MPa, and the dynamic stiffness (storage modulus at room temperature and 10 Hz frequency) alters its value in the order of 1000%. As the transformation is related to the presence of water molecules in the crystallites, a hydrophilic elastomer matrix was selected, which is a blend of two hydrophilic polymers, namely, epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer and a terpolymer of ethylene oxide-propylene oxide-allyl glycidyl ether. For the first time, this method also provides a route to regulate the morphology and structure of calcium sulfate nanocrystals in a confined ambient of cross-linked polymer chains.

  7. Heat sources for heat pumps in the energetic and economic comparison

    International Nuclear Information System (INIS)

    Bockelmann, Franziska; Fisch, M. Norbert; Schlosser, Mathias; Peter, Markus

    2016-01-01

    Because of the growing application of heat pumps also the number of potentially usable low-temperature heat sources and corresponding heat exchangers for heat-pump systems present in the market increases. Thereby products like energy fences, high-power piles, ore ice reservoir come into applications without any knowledge ab out their power or the cost-profit ratio. The optimized lay-out of the coupling to the building are however essential conditions in order to reach an energy-efficient and durable operation of the facilities. The research project ''future heat pump'' sponsored by the BMWi is dedicated to the energetic and economic evaluation of heat sources for heat pumps. In this connection a pre-check-tool for the preliminary selection of low-temperature heat sources and connected, suitable heat-exchange systems is developed and their actual status of development presented. The holistic, comparing consideration of the different heat sources and heat-exchanger systems is related among others to the power numbers of the heat pumps, the entry and withdrawal services of the heat-exchangers, and the general performance of the systems. Additionally an estimation of economic and ecologic aspects (investment and operation costs, CO_2 emissions) is made. Aim is the determination of the plausibility of applications and essential boundary conditions of single source systems. For the qualitative comparison in a project-accompanying monitoring different facilities and source systems are measurement-technically comprehended.

  8. A Feasibility Study on District Heating and Cooling Business Using Urban Waste Heat

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Joon; Choi, Byoung Youn; Lee, Kyoung Ho; Lee, Jae Bong [Korea Electric Power Research Institute, Taejon (Korea, Republic of); Yoo, Jae In; Yoon, Jae Ho; Oh, Myung Do; Park, Moon Su; Kang, Han Kee; Yoo, Kyeoung Hoon; Bak, Jong Heon; Kim, Sun Chang; Park, Heong Kee; Bae, Tae Sik [Korea Academy of Industrial Technology, Seoul (Korea, Republic of)

    1996-12-31

    Investigation of papers related to waste heat utilization using heat pump. Estimate of various kinds of urban waste heat in korea. Investigation and study on optimal control of district heating and cooling system. Prediction of energy saving and environmental benefits when the urban waste heat will be used as heat source and sink of heat pump for district heating and cooling. Estimation of economic feasibility on district heating and cooling project utilizing urban waste heat. (author). 51 refs., figs

  9. Hydrothermal alterations as natural analogues of radionuclide migration in granitic rocks

    International Nuclear Information System (INIS)

    Piantone, P.

    1989-01-01

    The document is the final report of the project Hydrothermal alteration systems as analogues of nuclear waste repositories in granitic rocks which was the subject of contract n 0 F1 1 W/0072-F (CD) performed at shared cost between the Bureau de Recherches Geologiques et Minieres (BRGM), the Commissariat a l'Energie Atomique and the Commission of the European Communities as part of the MIRAGE programme. This study is the continuation of a preliminary study made by BRGM in 1986 and which concerned the same programme. The data given in this report were obtained from the study of the infilling and hydrothermalized walls of a mineralized vein located at Fombillou, Lot Department, in the French Massif Central. A satisfactory model of the processes generated by hydrothermal alteration then by climatic weathering such as formation of new minerals, flow of elements and variations in volume, was thus built. The mobility of elements displaying physical and chemical properties similar to those of radionuclides present in high-level radioactive waste was studied. A preliminary thermodynamic simulation of mineral transformations and transfers of matter during hydrothermal alteration was performed using the calculation code CEQCSY (Chemical EQuilibrium in Complex SYstem). This simulation is based on the values of the main physical and chemical parameters deduced from the analysis of the natural system. On the basis of the results obtained from Fombillou, an appraisal was made of the response of the granitic environment which has been disturbed by a hydrothermal system produced by heat emitted by the storage of high-level radio-active waste as well as its potential capacities of retention in case of possible leakage

  10. High temperature heat exchange: nuclear process heat applications

    International Nuclear Information System (INIS)

    Vrable, D.L.

    1980-09-01

    The unique element of the HTGR system is the high-temperature operation and the need for heat exchanger equipment to transfer nuclear heat from the reactor to the process application. This paper discusses the potential applications of the HTGR in both synthetic fuel production and nuclear steel making and presents the design considerations for the high-temperature heat exchanger equipment

  11. Maximising the recovery of low grade heat: An integrated heat integration framework incorporating heat pump intervention for simple and complex factories

    International Nuclear Information System (INIS)

    Miah, J.H.; Griffiths, A.; McNeill, R.; Poonaji, I.; Martin, R.; Leiser, A.; Morse, S.; Yang, A.; Sadhukhan, J.

    2015-01-01

    Highlights: • A new practical heat integration framework incorporating heat pump technology for simple and complex food factories. • A decision making procedure was proposed to select process or utility heat integration in complex and diverse factories. • New stream classifications proposed to identify and compare streams linked between process and utility, especially waste heat. • A range of ‘Heat Pump Thresholds’ to identify and compare heat pump configurations with steam generation combustion boiler. - Abstract: The recovery of heat has long been a key measure to improving energy efficiency and maximising the heat recovery of factories by Pinch analysis. However, a substantial amount of research has been dedicated to conventional heat integration where low grade heat is often ignored. Despite this, the sustainability challenges facing the process manufacturing community are turning interest on low grade energy recovery systems to further advance energy efficiency by technological interventions such as heat pumps. This paper presents a novel heat integration framework incorporating technological interventions for both simple and complex factories to evaluate all possible heat integration opportunities including low grade and waste heat. The key features of the framework include the role of heat pumps to upgrade heat which can significantly enhance energy efficiency; the selection process of heat pump designs which was aided by the development of ‘Heat Pump Thresholds’ to decide if heat pump designs are cost-competitive with steam generation combustion boiler; a decision making procedure to select process or utility heat integration in complex and diverse factories; and additional stream classifications to identify and separate streams that can be practically integrated. The application of the framework at a modified confectionery factory has yielded four options capable of delivering a total energy reduction of about 32% with an economic payback

  12. Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?

    Science.gov (United States)

    Cramer, Matthew N; Gagnon, Daniel; Crandall, Craig G; Jay, Ollie

    2017-02-01

    , 186 ± 22 PU; P = 0.034). However, LSR mean and whole-body sweat losses were unaffected by treatment throughout (P > 0.482). The P crit for T c was similar between treatments (CON, 5.05 ± 0.30 kPa; DEH, 4.93 ± 0.16 kPa; and SAL, 5.12 ± 0.10 kPa; P = 0.166). Furthermore, no differences were observed in the skin-air temperature gradient, metabolic rate or changes in T c (P > 0.197). In conclusion, a ∼20% reduction in SkBF alters neither sweat rate nor the upper limit for heat loss from the skin during non-encapsulated passive heat stress. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  13. Comparison of LCA results of low temperature heat plant using electric heat pump, absorption heat pump and gas-fired boiler

    International Nuclear Information System (INIS)

    Nitkiewicz, Anna; Sekret, Robert

    2014-01-01

    Highlights: • Usage of geothermal heat pump can bring environmental benefits. • The lowest environmental impact for whole life cycle is obtained for absorption heat pump. • The value of heat pump COP has a significant influence on environmental impact. • In case of coal based power generation the damage to human health is significant. - Abstract: This study compares the life cycle impacts of three heating plant systems which differ in their source of energy and the type of system. The following heating systems are considered: electric water-water heat pump, absorption water-water heat pump and natural gas fired boiler. The heat source for heat pump systems is low temperature geothermal source with temperature below 20 °C and spontaneous outflow 24 m 3 /h. It is assumed that the heat pumps and boiler are working in monovalent system. The analysis was carried out for heat networks temperature characteristic at 50/40 °C which is changing with outdoor temperature during heating season. The environmental life cycle impact is evaluated within life cycle assessment methodological framework. The method used for life cycle assessment is eco-indicator ‘99. The functional unit is defined as heating plant system with given amount of heat to be delivered to meet local heat demand in assumed average season. The data describing heating plant system is derived from literature and energy analysis of these systems. The data describing the preceding life cycle phases: extraction of raw materials and fuels, production of heating devices and their transportation is taken from Ecoinvent 2.0 life cycle inventory database. The results were analyzed on three levels of indicators: single score indicator, damage category indicators and impact category indicator. The indicators were calculated for characterization, normalization and weighting phases as well. SimaPro 7.3.2 is the software used to model the systems’ life cycle. The study shows that heating plants using a low

  14. Dynamic changes in parameters of redox balance after mild heat stress in aged laying hens (Gallus gallus domesticus).

    Science.gov (United States)

    Lin, H; De Vos, D; Decuypere, E; Buyse, J

    2008-01-01

    In order to evaluate the metabolic responses of laying hens induced by high temperature at later laying stage, nine 60-wk-old laying hens (Gallus gallus domesticus) were employed in the present study. The hens were exposed to 32 degrees C for 21 d and blood samples were obtained before and at 1, 7, 14 and 21 d of heat exposure. The reactive oxygen species (ROS) formed in blood during heat exposure were estimated by the ex vivo spin-trapping method. Body temperature and plasma concentrations of glucose, urate, creatine kinase (CK), triiodothyronine (T(3)), thyroxine (T(4)), corticosterone (CORT), thiobarbituric acid reacting substances (TBARS), ferric/reducing antioxidant power (FRAP) and superoxide dismutase (SOD) activity were measured. Plasma levels of glucose, CK and CORT were not significantly influenced by heat exposure at any time point. The circulating concentrations of T(3) were decreased while plasma T(4) levels changed in the opposite way. The formation of ROS was significantly augmented by heat exposure in laying hens though the body temperature was not significantly altered. The enhanced enzymatic and non-enzymatic antioxidant systems acted in concert to alleviate the heat stress evoked oxidative damage.

  15. Heat planning for fossil-fuel-free district heating areas with extensive end-use heat savings: A case study of the Copenhagen district heating area in Denmark

    International Nuclear Information System (INIS)

    Harrestrup, M.; Svendsen, S.

    2014-01-01

    The Danish government plans to make the Danish energy system to be completely free of fossil fuels by 2050 and that by 2035 the energy supply for buildings and electricity should be entirely based on renewable energy sources. To become independent from fossil fuels, it is necessary to reduce the energy consumption of the existing building stock, increase energy efficiency, and convert the present heat supply from fossil fuels to renewable energy sources. District heating is a sustainable way of providing space heating and domestic hot water to buildings in densely populated areas. This paper is a theoretical investigation of the district heating system in the Copenhagen area, in which heat conservation is related to the heat supply in buildings from an economic perspective. Supplying the existing building stock from low-temperature energy resources, e.g. geothermal heat, might lead to oversized heating plants that are too expensive to build in comparison with the potential energy savings in buildings. Long-term strategies for the existing building stock must ensure that costs are minimized and that investments in energy savings and new heating capacity are optimized and carried out at the right time. - Highlights: • We investigate how much heating consumption needs to be reduced in a district heating area. • We examine fossil-fuel-free supply vs. energy conservations in the building stock. • It is slightly cost-beneficial to invest in energy renovation from today for a societal point of view. • It is economically beneficial for district heating companies to invest in energy renovations from today. • The cost per delivered heat unit is lower when energy renovations are carried out from today

  16. Potentialities and type of integrating nuclear heating stations into district heating systems

    International Nuclear Information System (INIS)

    Munser, H.; Reetz, B.; Schmidt, G.

    1978-01-01

    Technical and economical potentialities of applying nuclear heating stations in district heating systems are discussed considering the conditions of the GDR. Special attention is paid to an optimum combination of nuclear heating stations with heat sources based on organic fuels. Optimum values of the contribution of nuclear heating stations to such combined systems and the economic power range of nuclear heating stations are estimated. Final considerations are concerned with the effect of siting and safety concepts of nuclear heating stations on the structure of the district heating system. (author)

  17. Basic heat transfer

    CERN Document Server

    Bacon, D H

    2013-01-01

    Basic Heat Transfer aims to help readers use a computer to solve heat transfer problems and to promote greater understanding by changing data values and observing the effects, which are necessary in design and optimization calculations.The book is concerned with applications including insulation and heating in buildings and pipes, temperature distributions in solids for steady state and transient conditions, the determination of surface heat transfer coefficients for convection in various situations, radiation heat transfer in grey body problems, the use of finned surfaces, and simple heat exc

  18. Experimental investigation of heat transfer performance for a novel microchannel heat sink

    International Nuclear Information System (INIS)

    Wang, Y; Ding, G-F

    2008-01-01

    We demonstrated a novel microchannel heat sink with a high local heat transfer efficiency contributed by a complicated microchannel system, which comprises parallel longitudinal microchannels etched in a silicon substrate and transverse microchannels electroplated on a copper heat spreader. The thermal boundary layer develops in transverse microchannels. Meanwhile, the heat transfer area is increased compared with the conventional microchannel heat sink only having parallel longitudinal microchannels. Both benefits yield high local heat transfer efficiency and enhance the overall heat transfer, which is attractive for the cooling of high heat flux electronic devices. Infrared tests show the temperature distribution in the test objects. The effects of flow rate and heat flux levels on heat transfer characteristics are presented. A uniform temperature distribution is obtained through the heating area. The reference temperatures decrease with the increasing flow rate from 0.64 ml min −1 to 6.79 ml min −1 for a constant heat flux of 10.4 W cm −2 . A heat flux of 18.9 W cm −2 is attained at a flow rate of 6.79 ml min −1 for assuring the maximum temperature of the microchannel heat sink less than the maximum working temperature of electronic devices

  19. Heat transfer between adsorbate and laser-heated hot electrons

    International Nuclear Information System (INIS)

    Ueba, H; Persson, B N J

    2008-01-01

    Strong short laser pulses can give rise to a strong increase in the electronic temperature at metal surfaces. Energy transfer from the hot electrons to adsorbed molecules may result in adsorbate reactions, e.g. desorption or diffusion. We point out the limitations of an often used equation to describe the heat transfer process in terms of a friction coupling. We propose a simple theory for the energy transfer between the adsorbate and hot electrons using a newly introduced heat transfer coefficient, which depends on the adsorbate temperature. We calculate the transient adsorbate temperature and the reaction yield for a Morse potential as a function of the laser fluency. The results are compared to those obtained using a conventional heat transfer equation with temperature-independent friction. It is found that our equation of energy (heat) transfer gives a significantly lower adsorbate peak temperature, which results in a large modification of the reaction yield. We also consider the heat transfer between different vibrational modes excited by hot electrons. This mode coupling provides indirect heating of the vibrational temperature in addition to the direct heating by hot electrons. The formula of heat transfer through linear mode-mode coupling of two harmonic oscillators is applied to the recent time-resolved study of carbon monoxide and atomic oxygen hopping on an ultrafast laser-heated Pt(111) surface. It is found that the maximum temperature of the frustrated translation mode can reach high temperatures for hopping, even when direct friction coupling to the hot electrons is not strong enough

  20. Heat transfer enhancement in cross-flow heat exchanger using vortex generator

    International Nuclear Information System (INIS)

    Yoo, S. Y.; Kwon, H. K.; Kim, B. C.; Park, D. S.; Lee, S. S.

    2003-01-01

    Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator

  1. Changes in the timing, length and heating degree days of the heating season in central heating zone of China

    Science.gov (United States)

    Shen, Xiangjin; Liu, Binhui

    2016-01-01

    Climate change affects the demand for energy consumption, especially for heating and cooling buildings. Using daily mean temperature (Tmean) data, this study analyzed the spatiotemporal changes of the starting date for heating (HS), ending date for heating (HE), length (HL) and heating degree day (HDD) of the heating season in central heating zone of China. Over China’s central heating zone, regional average HS has become later by 0.97 day per decade and HE has become earlier by 1.49 days per decade during 1960–2011, resulting in a decline of HL (−2.47 days/decade). Regional averaged HDD decreased significantly by 63.22 °C/decade, which implies a decreasing energy demand for heating over the central heating zone of China. Spatially, there are generally larger energy-saving rate in the south, due to low average HDD during the heating season. Over China’s central heating zone, Tmean had a greater effect on HL in warm localities and a greater effect on HDD in cold localities. We project that the sensitivity of HL (HDD) to temperature change will increase (decrease) in a warmer climate. These opposite sensitivities should be considered when we want to predict the effects of climate change on heating energy consumption in China in the future. PMID:27651063

  2. Heat flow and heat generation in greenstone belts

    Science.gov (United States)

    Drury, M. J.

    1986-01-01

    Heat flow has been measured in Precambrian shields in both greenstone belts and crystalline terrains. Values are generally low, reflecting the great age and tectonic stability of the shields; they range typically between 30 and 50 mW/sq m, although extreme values of 18 and 79 mW/sq m have been reported. For large areas of the Earth's surface that are assumed to have been subjected to a common thermotectonic event, plots of heat flow against heat generation appear to be linear, although there may be considerable scatter in the data. The relationship is expressed as: Q = Q sub o + D A sub o in which Q is the observed heat flow, A sub o is the measured heat generation at the surface, Q sub o is the reduced heat flow from the lower crust and mantle, and D, which has the dimension of length, represents a scale depth for the distribution of radiogenic elements. Most authors have not used data from greenstone belts in attempting to define the relationship within shields, considering them unrepresentative and preferring to use data from relatively homogeneous crystalline rocks. A discussion follows.

  3. District Heating Expansion Potential with Low-Temperature and End-Use Heat Savings

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Grundahl, Lars

    2018-01-01

    District heating has the potential to play a key role in the transition towards a renewable energy system. However, the development towards reduced heat demands threatens the feasibility of district heating. Despite this challenge, opportunity exists in the form of fourth generation district...... heating, which operates at lower temperatures and enables better renewable integration. This article investigates this challenge by examining the district heating potential within three scenarios: The first is a reference scenario with current heat demand and temperatures, the second includes heat demand...... costs. The models are applied using an example case of The Northern Region of Denmark. The article concludes that the district heating potential is highest in the reference scenario. When heat savings are introduced, district heating expansions, in most cases, will not be feasible. Introducing low...

  4. Transient Heat Conduction

    DEFF Research Database (Denmark)

    Rode, Carsten

    1998-01-01

    Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...

  5. Investigations on post-dryout heat transfer in bilaterally heated annular channels

    International Nuclear Information System (INIS)

    Tian, W.X.; Qiu, S.Z.; Jia, D.N.

    2006-01-01

    Post-dryout heat transfer in bilaterally heated vertical narrow annular channels with 1.0, 1.5 and 2.0 mm gap size has been experimentally investigated with deionized water under the condition of pressure ranging from 1.38 to 5.9 MPa and low mass flow rate from 42.9 to 150.2 kg/m 2 s. The experimental data was compared with well known empirical correlations including Groeneveld, Mattson, etc., and none of them gave an ideal prediction. Theoretical investigations were also carried out on post-dryout heat transfer in annular channels. Based on analysis of heat exchange processes arising among the droplets, the vapor and two tube walls of annular channel, a non-equilibrium mechanistic heat transfer model was developed. Comparison indicated that the present model prediction showed a good agreement with our experimental data. Theoretical calculation result showed that the forced convective heat transfer between the heated wall and vapor dominate the overall heat transfer. The heat transfer caused by the droplets direct contact to the wall and the interfacial convection/evaporation of droplets in superheated vapors also had an indispensable contribution. The radiation heat transfer would be neglected because of its small contribution (less than 0.11%) to the total heat transfer

  6. Short Range-Ordered Minerals: Insight into Aqueous Alteration Processes on Mars

    Science.gov (United States)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2011-01-01

    involved. The style of aqueous alteration (hydrolytic vs. acid sulfate) impacts which phases will form (e.g., oxides, oxysulfates, and oxyhydroxides). Knowledge on the formation processes of SRO phases in basaltic materials on Earth has allowed significant enhancement in our understanding of the aqueous processes at work on Mars. The 2011 Mars Science Laboratory (MSL) will provide an instrument suite that should improve our understanding of the mineralogical and chemical compositions of SRO phases. CheMin is an X-ray diffraction instrument that may provide broad X-ray diffraction peaks for SRO phases; e.g., broad peaks around 0.33 and 0.23 nm for allophane. Sample Analysis at Mars (SAM) heats samples and detects evolved gases of volatile-bearing phases including SRO phases (i.e., carbonates, sulfates, hydrated minerals). The Alpha Particle X-ray Spectrometer (APXS) and ChemCam element analyzers will provide chemical characterization of samples. The identification of SRO phases in surface materials on MSL will be challenging due to their nanocrystalline properties; their detection and identification will require utilizing the MSL instrument suite in concert. Ultimately, sample return missions will be required to definitively identify and fully characterize SRO minerals with state-of-the-art laboratory instrumentation back on Earth.

  7. Designing heat exchangers for process heat reactors

    International Nuclear Information System (INIS)

    Quade, R.N.

    1980-01-01

    A brief account is given of the IAEA specialist meeting on process heat applications technology held in Julich, November 1979. The main emphasis was on high temperature heat exchange. Papers were presented covering design requirements, design construction and prefabrication testing, and selected problems. Primary discussion centered around mechanical design, materials requirements, and structural analysis methods and limits. It appears that high temperature heat exchanges design to nuclear standards, is under extensive development but will require a lengthy concerted effort before becoming a commercial reality. (author)

  8. Oral supplementation of Bifidobacterium longum strain BR-108 alters cecal microbiota by stimulating gut immune system in mice irrespectively of viability.

    Science.gov (United States)

    Makioka, Yuko; Tsukahara, Takamitsu; Ijichi, Tetsuo; Inoue, Ryo

    2018-03-20

    Effect on cecal microbiota and gene expression of various cytokines in ileal Peyer's patches and cecal tissues were compared between viable and heat-killed Bifidobacterium longum strain BR-108 (BR-108) using a mouse model. Irrespectively of viability, oral supplementation of BR-108 altered the cecal microbiota and stimulated gene expression of cytokines such as IL-6 and IL-10 in ileal Peyer's patches and cecal tissue of mice. In addition, BR-108 supplementation significantly affected the relative abundance of bacterial genera and family, Oscillospira, Bacteroides and S24-7. The abundance of these bacterial genera and family strongly correlated with gene expression induced by BR-108. This study demonstrated that the effect of heat-killed BR-108 on the mouse cecal microbiota is similar to that of viable BR-108, most likely due to stimulation of the gut immune system by both heat-killed and viable BR-108 is also similar.

  9. Pulse mitigation and heat transfer enhancement techniques. Volume 3: Liquid sodium heat transfer facility and transient response of sodium heat pipe to pulse forward and reverse heat load

    Science.gov (United States)

    Chow, L. C.; Hahn, O. J.; Nguyen, H. X.

    1992-08-01

    This report presents the description of a liquid sodium heat transfer facility (sodium loop) constructed to support the study of transient response of heat pipes. The facility, consisting of the loop itself, a safety system, and a data acquisition system, can be safely operated over a wide range of temperature and sodium flow rate. The transient response of a heat pipe to pulse heat load at the condenser section was experimentally investigated. A 0.457 m screen wick, sodium heat pipe with an outer diameter of 0.127 m was tested under different heat loading conditions. A major finding was that the heat pipe reversed under a pulse heat load applied at the condenser. The time of reversal was approximately 15 to 25 seconds. The startup of the heat pipe from frozen state was also studied. It was found that during the startup process, at least part of the heat pipe was active. The active region extended gradually down to the end of the condenser until all of the working fluid in the heat pipe was molten.

  10. High temperature absorption compression heat pump for industrial waste heat

    DEFF Research Database (Denmark)

    Reinholdt, Lars; Horntvedt, B.; Nordtvedt, S. R.

    2016-01-01

    Heat pumps are currently receiving extensive interest because they may be able to support the integration of large shares of fluctuating electricity production based on renewable sources, and they have the potential for the utilization of low temperature waste heat from industry. In most industries......, the needed temperature levels often range from 100°C and up, but until now, it has been quite difficult to find heat pump technologies that reach this level, and thereby opening up the large-scale heat recovery in the industry. Absorption compression heat pumps can reach temperatures above 100°C......, and they have proved themselves a very efficient and reliable technology for applications that have large temperature changes on the heat sink and/or heat source. The concept of Carnot and Lorenz efficiency and its use in the analysis of system integration is shown. A 1.25 MW system having a Carnot efficiency...

  11. Excessive Heat Events and National Security: Building Resilience based on Early Warning Systems

    Science.gov (United States)

    Vintzileos, A.

    2017-12-01

    Excessive heat events (EHE) affect security of Nations in multiple direct and indirect ways. EHE are the top cause for morbidity/mortality associated to any atmospheric extremes. Higher energy consumption used for cooling can lead to black-outs and social disorder. EHE affect the food supply chain reducing crop yield and increasing the probability of food contamination during delivery and storage. Distribution of goods during EHE can be severely disrupted due to mechanical failure of transportation equipment. EHE during athletic events e.g., marathons, may result to a high number of casualties. Finally, EHE may also affect military planning by e.g. reducing hours of exercise and by altering combat gear. Early warning systems for EHE allow for building resilience. In this paper we first define EHE as at least two consecutive heat days; a heat day is defined as a day with a maximum heat index with probability of occurrence that exceeds a certain threshold. We then use retrospective forecasts performed with a multitude of operational models and show that it is feasible to forecast EHE at forecast lead of week-2 and week-3 over the contiguous United States. We finally introduce an improved definition of EHE based on an intensity index and investigate forecast skill of the predictive system in the tropics and subtropics.

  12. Convective heat transfer

    CERN Document Server

    Kakac, Sadik; Pramuanjaroenkij, Anchasa

    2014-01-01

    Intended for readers who have taken a basic heat transfer course and have a basic knowledge of thermodynamics, heat transfer, fluid mechanics, and differential equations, Convective Heat Transfer, Third Edition provides an overview of phenomenological convective heat transfer. This book combines applications of engineering with the basic concepts of convection. It offers a clear and balanced presentation of essential topics using both traditional and numerical methods. The text addresses emerging science and technology matters, and highlights biomedical applications and energy technologies. What’s New in the Third Edition: Includes updated chapters and two new chapters on heat transfer in microchannels and heat transfer with nanofluids Expands problem sets and introduces new correlations and solved examples Provides more coverage of numerical/computer methods The third edition details the new research areas of heat transfer in microchannels and the enhancement of convective heat transfer with nanofluids....

  13. Characterization of industrial process waste heat and input heat streams

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  14. Nuclear process heat

    International Nuclear Information System (INIS)

    Barnert, H.; Hohn, H.; Schad, M.; Schwarz, D.; Singh, J.

    1993-01-01

    In a system for the application of high temperature heat from the HTR one must distinguish between the current generation and the use of process heat. In this respect it is important that the current can be generated by dual purpose power plants. The process heat is used as sensible heat, vaporisation heat and as chemical energy at the chemical conversion for the conversion of raw materials, the refinement of fossil primary energy carriers and finally circuit processes for the fission of water. These processes supply the market for heat, fuels, motor fuels and basic materials. Fifteen examples of HTR heat processes from various projects and programmes are presented in form of energy balances, however in a rather short way. (orig./DG) [de

  15. Dissecting the Biochemical and Transcriptomic Effects of a Locally Applied Heat Treatment on Developing Cabernet Sauvignon Grape Berries.

    Science.gov (United States)

    Lecourieux, Fatma; Kappel, Christian; Pieri, Philippe; Charon, Justine; Pillet, Jérémy; Hilbert, Ghislaine; Renaud, Christel; Gomès, Eric; Delrot, Serge; Lecourieux, David

    2017-01-01

    Reproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+ 8°C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, γ-aminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," "protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison

  16. Development of a gas fired Vuilleumier heat pump for residential heating

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    1989-01-01

    A natural gas-driven heat pump based on the Vuilleumier principle has been developed for use in single-family houses. The pump has a heat output of 7.5 kW at a coefficient of performance of 1.62 based on the lower heat content of the gas fuel. The heat pump uses helium as working fluid at 20 MPa...... mean pressure, and it is designed as a semihermetic unit. A crank mechanism distinguished by very small loads on the piston rings was developed. The advantages and disadvantages of the Vuilleumier principle for heat-driven heat pumps are discussed. Results of the extensive experimental work...... are presented. A new 20 kW Vuilleumier heat pump is briefly described...

  17. Heat transfer system

    Science.gov (United States)

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  18. Supply of Prague with heat from a nuclear heat source

    International Nuclear Information System (INIS)

    Poul, F.

    1976-01-01

    The proposals are discussed of supplying Prague, the Czechoslovak Capital, with nuclear reactor-generated heat energy. The proposals meet the requirements of the general urban plan of development. The first nuclear heating plant is to be sited in the Kojetice locality, in the northern Prague suburb. It will be commissioned by 1984 and 1985. It is estimated that the maximum heat output in form of hot water will be 821 MW. By 1995 the construction of the second nuclear heating plant should be started southeast or east of Prague. The connection of these two nuclear plants to the hot water mains together with other conventional heating plants will secure the heat supply for Prague and its new housing estates and industrial works. (Oy)

  19. Supercritical heat transfer in an annular channel with external heating

    International Nuclear Information System (INIS)

    Remizov, O.V.; Gal'chenko, Eh.F.; Shurkin, N.G.; Sergeev, V.V.

    1980-01-01

    Results are presented of experimental studies of the burnout heat transfer in a 32x28x3000 mm annular channel with a uniform distribution of a heat flow at pressures of 6.9-19.6 MPa and mass rates of 350-1000 kg/m 2 xs. The heating is electrical, external, one-sided. It is shown that dependencies of the heat-transfer coefficient on rated parameters in the annular channel and tube are similar. An empirical equation has been obtained for the calculation of the burnout heat transfer in the annual channels with external heating in the following range: pressure, 6.9 -13.7 MPa; mass rate 350-700 kg/m 2 xs, and steam content ranging from Xsub(crit) to 1

  20. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  1. Low-Cost Gas Heat Pump for Building Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Garrabrant, Michael [Stone Mountain Technologies, Inc., Johnson City, TN (United States); Keinath, Christopher [Stone Mountain Technologies, Inc., Johnson City, TN (United States)

    2016-10-11

    Gas-fired residential space heating in the U.S is predominantly supplied by furnaces and boilers. These technologies have been approaching their thermodynamic limit over the past 30 years and improvements for high efficiency units have approached a point of diminishing return. Electric heat pumps are growing in popularity but their heating performance at low ambient temperatures is poor. The development of a low-cost gas absorption heat pump would offer a significant improvement to current furnaces and boilers, and in heating dominated climate zones when compared to electric heat pumps. Gas absorption heat pumps (GAHP) exceed the traditional limit of thermal efficiency encountered by typical furnaces and boilers, and maintain high levels of performance at low ambient temperatures. The project team designed and demonstrated two low-cost packaged prototype GAHP space heating systems during the course of this investigation. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, and the Gas Technology Institute (GTI), the cross-functional team completed research and development tasks including cycle modeling, 8× scaling of a compact solution pump, combustion system development, breadboard evaluation, fabrication of two packaged prototype units, third party testing of the first prototype, and the evaluation of cost and energy savings compared to high and minimum efficiency gas options. Over the course of the project and with the fabrication of two Alpha prototypes it was shown that this technology met or exceeded most of the stated project targets. At ambient temperatures of 47, 35, 17 and -13°F the prototypes achieved gas based coefficients of performance of 1.50, 1.44, 1.37, and 1.17, respectively. Both units operated with parasitic loads well below the 750 watt target with the second Alpha prototype operating 75-100 watts below the first Alpha prototype. Modulation of the units at 4:1 was achieved with the project goal of 2:1 modulation

  2. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing

    Directory of Open Access Journals (Sweden)

    Kehua Wang

    2017-06-01

    Full Text Available Perennial ryegrass (Lolium perenne is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.

  3. Axial flow heat exchanger devices and methods for heat transfer using axial flow devices

    Science.gov (United States)

    Koplow, Jeffrey P.

    2016-02-16

    Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferred across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.

  4. Crawl space assisted heat pump. [using stored grou