WorldWideScience

Sample records for alter aggregate characteristics

  1. Petrography study on altered flint aggregate by alkali-silica reaction

    International Nuclear Information System (INIS)

    Bulteel, D.; Rafai, N.; Degrugilliers, P.; Garcia-Diaz, E.

    2004-01-01

    The aim of our study is to improve our understanding of an alkali-silica reaction (ASR) via petrography. We used a chemical concrete subsystem: flint aggregate, portlandite and KOH. The altered flint aggregate is followed by optical microscopy and scanning electron microscopy (SEM) before and after acid treatment at different intervals. After acid treatment, the observations showed an increase in aggregate porosity and revealed internal degradation of the aggregate. This degradation created amorphous zones. Before acid treatment, the analyses on polished sections by scanning electron microscopy coupled with energy dispersive spectroscopy (EDS) enabled visualization of K + and Ca 2+ penetration into the aggregate. The appearance of amorphous zones and penetration of positive ions into the aggregate are correlated with the increase in the molar fraction of silanol sites. This degradation is specific to the alkali-silica reaction

  2. Consequential secondary structure alterations and aggregation during prolonged casein glycation.

    Science.gov (United States)

    Jindal, Supriya; Naeem, Aabgeena

    2013-05-01

    Non-enzymatic glycosylation (glycation) of casein is a process used not just to ameliorate the quality of dairy products but also to increase the shelf life of canned foods, including baby milk supplements. Incubation of κ-casein with reducing sugars for 15 days at physiological temperature showed the formation of a molten globule state at day 9 and 12 during fructation and glucation respectively. This state exhibits substantial secondary structure and maximum ANS binding. Later on, glycation resulted in the formation of aggregates at day 12 in presence of fructose and day 15 in presence of glucose. Aggregates possess extensive β-sheet structure as revealed by far-UV CD and FTIR. These aggregates showed altered tryptophan environment, decrease ANS binding relative to molten globule state and increase in Thioflavin T fluorescence. Aggregates were also accompanied by the accumulation of AGEs, indicative of structural damage to the protein and formation of potentially harmful species at the physiological level. Fructose was more reactive than glucose and thus caused early and significant changes in the protein. From our studies, we conclude that controlling the extent of the Maillard reaction in the food industry is essential to counter its negative effects and expand its safety spectrum.

  3. Study on Characteristics of Lightweight Aggregate Concrete Made From Foam and Ordinary Portland Cement

    Directory of Open Access Journals (Sweden)

    Ibrahim N.M.

    2016-01-01

    Full Text Available The production and characteristic of lightweight bubble aggregates (LBA are presented in this paper. The LBA are produced by mixing between the foam and ordinary Portland cement according to the composition which has been set. Then, the characteristics of LBA such as density, water absorption, specific gravity, compressive strength, aggregate impact value and microscopic analysis of the LBA are analyzed. Those characteristics are identified in order to ensure that the LBA are successfully categorized into lightweight aggregate. The loose bulk density is obtained at 812.5 kg/m3 which can be categorized under lightweight aggregate group. For water absorption the value obtained is 9.7 % which is slightly higher compared to normal aggregate. Meanwhile the average specific gravity obtained for the samples of LBAis 1.75. Compressive strength for the aggregates was 17.76 MPa. The highest compressive strength for LBA foamed concrete was obtained at 25% replacement with 7.83MPa. Thus, the LBA have a significant features and characteristics that can be used as coarse aggregates in concrete.

  4. Optical characteristics of the nanoparticle coupled to a quantum molecular aggregate

    Science.gov (United States)

    Ropakova, I. Yu.; Zvyagin, A. A.

    2017-11-01

    Optical characteristics of a single nanoparticle, coupled to the one-dimensional quantum molecular aggregate is studied. Depending on the values of the coupling of the particle and its own frequency, with respect to the own frequency of the aggregated molecules, and the strength of the aggregation, the dynamical relative permittivity of the nanoparticle manifests the contribution from the exciton band, or/and the ones from the local level(s) caused by the particle. The refractive index and the extinction coefficient of the nanoparticle is also calculated.

  5. Aggregate packing characteristics of good and poor performing asphalt mixes

    CSIR Research Space (South Africa)

    Denneman, E

    2007-07-01

    Full Text Available The aggregate structure of the compacted mix is a determining factor for the performance of Hot-Mix Asphalt (HMA). In this paper, the grading characteristics of good and poor performing HMA mixes are explored using the concepts of the Bailey method...

  6. Effect of Fly-Ash on Corrosion Resistance Characteristics of Rebar Embedded in Recycled Aggregate Concrete

    Science.gov (United States)

    Revathi, Purushothaman; Nikesh, P.

    2018-04-01

    In the frame of an extended research programme dealing with the utilization of recycled aggregate in concrete, the corrosion resistance characteristics of rebars embedded in recycled aggregate concrete is studied. Totally five series of concrete mixtures were prepared with fly-ash as replacement for cement in the levels of 10-30% by weight of cement. Corrosion studies by 90 days ponding test, linear polarization test and impressed voltage tests were carried out, in order to investigate whether corrosion behaviour of the rebars has improved due to the replacement of cement with fly-ash. Results showed that the replacement of cement with fly-ash in the range of 20-30% improves the corrosion resistance characteristics of recycled aggregate concrete.

  7. Aggregate effects on γ-ray shielding characteristics and compressive strength on concrete

    International Nuclear Information System (INIS)

    Oh, Jeong Hwan; Choi, Soo Seok; Mun, Young Bun; Lee, Jae Hyung; Choi, Hyun Kook

    2016-01-01

    We observed the γ-ray shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of 0.371 cm-1 from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a γ-ray of "1"3"7Cs, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of 3,175 kg·m"-"3. Although the unit weight of the concrete with OSS and OSG was 3,052 kg·m"-"3, which was lower than the maximum unit weight condition by 123 kg·m"-"3, its attenuation coefficient was improved by 0.012 cm-1. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced γ-ray shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing

  8. Aggregate effects on γ-ray shielding characteristics and compressive strength on concrete

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jeong Hwan; Choi, Soo Seok [Jeju National University, Jeju (Korea, Republic of); Mun, Young Bun; Lee, Jae Hyung; Choi, Hyun Kook [Sungshin Cement Co., Ltd, Sejong (Korea, Republic of)

    2016-12-15

    We observed the γ-ray shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of 0.371 cm-1 from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a γ-ray of {sup 137}Cs, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of 3,175 kg·m{sup -3}. Although the unit weight of the concrete with OSS and OSG was 3,052 kg·m{sup -3}, which was lower than the maximum unit weight condition by 123 kg·m{sup -3}, its attenuation coefficient was improved by 0.012 cm-1. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced γ-ray shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing.

  9. Quantification of aggregate grain shape characteristics using 3-D laser scanning technology

    CSIR Research Space (South Africa)

    Mgangira, Martin B

    2013-07-01

    Full Text Available to identify the differences between individual aggregates. It was possible to quantify differences in particle shape characteristics at the small particle scale. The study has demonstrated the advantages of the innovative 3-D laser scanning technology...

  10. Temperature dependence of erythrocyte aggregation in vitro by backscattering nephelometry

    Science.gov (United States)

    Sirko, Igor V.; Firsov, Nikolai N.; Ryaboshapka, Olga M.; Priezzhev, Alexander V.

    1997-05-01

    We apply backscattering nephelometry technique to register the alterations of the scattering signal from a whole blood sample due to appearance or disappearance of different types of erythrocyte aggregates in stasis and under controlled shear stress. The measured parameters are: the characteristic times of linear and 3D aggregates formation, and the strength of aggregates of different types. These parameters depend on the sample temperature in the range of 2 divided by 50 degrees C. Temporal parameters of the aggregation process strongly increase at temperature 45 degrees C. For samples of normal blood the aggregates strength parameters do not significantly depend on the sample temperature, whereas for blood samples from patients suffering Sjogren syndrome we observe high increase of the strength of 3D and linear aggregates and decrease of time of linear aggregates formation at low temperature of the sample. This combination of parameters is opposite to that observed in the samples of pathological blood at room temperature. Possible reasons of this behavior of aggregation state of blood and explanation of the observed effects will be discussed.

  11. Color stability, radiopacity, and chemical characteristics of white mineral trioxide aggregate associated with 2 different vehicles in contact with blood.

    Science.gov (United States)

    Guimarães, Bruno Martini; Tartari, Talita; Marciano, Marina Angélica; Vivan, Rodrigo Ricci; Mondeli, Rafael Francisco Lia; Camilleri, Josette; Duarte, Marco Antonio Hungaro

    2015-06-01

    Discoloration of mineral trioxide aggregate (MTA) can be exacerbated by the interaction of the cement with body fluids such as blood. This study aimed to analyze the color alteration, chemical characteristics, and radiopacity of MTA manipulated with 2 different vehicles after immersion in blood or distilled water (DW). MTA mixed with 100% DW or 80% DW/20% propylene glycol (PG) as vehicles were placed into rubber rings and incubated at 37°C and 100% relative humidity until set. Color assessment and scanning electron microscopy/energy-dispersive spectroscopy analysis were performed after setting and repeated after 7, 15, and 30 days after immersion in blood and DW. Statistical analysis for color alteration and radiopacity was performed using nonparametric Kruskal-Wallis and Dunn tests (P vehicle, significantly lower color alterations were observed for all time periods compared with 100% DW when immersed in blood (P media because of loss of bismuth. A decrease in radiopacity was observed over time in all groups, with a statistically significant difference after 30 days for groups DW immersed in blood and 80% DW/20% immersed in both media (P vehicle for MTA results in a lower color alteration when in contact with blood. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Altering protein surface charge with chemical modification modulates protein–gold nanoparticle aggregation

    International Nuclear Information System (INIS)

    Jamison, Jennifer A.; Bryant, Erika L.; Kadali, Shyam B.; Wong, Michael S.; Colvin, Vicki L.; Matthews, Kathleen S.; Calabretta, Michelle K.

    2011-01-01

    Gold nanoparticles (AuNP) can interact with a wide range of molecules including proteins. Whereas significant attention has focused on modifying the nanoparticle surface to regulate protein–AuNP assembly or influence the formation of the protein “corona,” modification of the protein surface as a mechanism to modulate protein–AuNP interaction has been less explored. Here, we examine this possibility utilizing three small globular proteins—lysozyme with high isoelectric point (pI) and established interactions with AuNP; α-lactalbumin with similar tertiary fold to lysozyme but low pI; and myoglobin with a different globular fold and an intermediate pI. We first chemically modified these proteins to alter their charged surface functionalities, and thereby shift protein pI, and then applied multiple methods to assess protein–AuNP assembly. At pH values lower than the anticipated pI of the modified protein, AuNP exposure elicits changes in the optical absorbance of the protein–NP solutions and other properties due to aggregate formation. Above the expected pI, however, protein–AuNP interaction is minimal, and both components remain isolated, presumably because both species are negatively charged. These data demonstrate that protein modification provides a powerful tool for modulating whether nanoparticle–protein interactions result in material aggregation. The results also underscore that naturally occurring protein modifications found in vivo may be critical in defining nanoparticle–protein corona compositions.

  13. Aggregated filter-feeding consumers alter nutrient limitation: consequences for ecosystem and community dynamics.

    Science.gov (United States)

    Atkinson, Carla L; Vaughn, Caryn C; Forshay, Kenneth J; Cooper, Joshua T

    2013-06-01

    Nutrient cycling is a key process linking organisms in ecosystems. This is especially apparent in stream environments in which nutrients are taken up readily and cycled through the system in a downstream trajectory. Ecological stoichiometry predicts that biogeochemical cycles of different elements are interdependent because the organisms that drive these cycles require fixed ratios of nutrients. There is growing recognition that animals play an important role in biogeochemical cycling across ecosystems. In particular, dense aggregations of consumers can create biogeochemical hotspots in aquatic ecosystems via nutrient translocation. We predicted that filter-feeding freshwater mussels, which occur as speciose, high-biomass aggregates, would create biogeochemical hotspots in streams by altering nutrient limitation and algal dynamics. In a field study, we manipulated nitrogen and phosphorus using nutrient-diffusing substrates in areas with high and low mussel abundance, recorded algal growth and community composition, and determined in situ mussel excretion stoichiometry at 18 sites in three rivers (Kiamichi, Little, and Mountain Fork Rivers, south-central United States). Our results indicate that mussels greatly influence ecosystem processes by modifying the nutrients that limit primary productivity. Sites without mussels were N-limited with -26% higher relative abundances of N-fixing blue-green algae, while sites with high mussel densities were co-limited (N and P) and dominated by diatoms. These results corroborated the results of our excretion experiments; our path analysis indicated that mussel excretion has a strong influence on stream water column N:P. Due to the high N:P of mussel excretion, strict N-limitation was alleviated, and the system switched to being co-limited by both N and P. This shows that translocation of nutrients by mussel aggregations is important to nutrient dynamics and algal species composition in these rivers. Our study highlights the

  14. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    International Nuclear Information System (INIS)

    Feng Mingyue

    1997-01-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits

  15. Host rock characteristics of uranium deposits of cataclastic-altered granite type

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Feng [Beijing Research Inst. of Uranium Geology (China)

    1997-03-01

    The author expounds the host rock characteristics of uranium deposits of cataclastic-altered granite type, i.e., the high initial content of uranium, the high cataclasis of host rocks, the strong alteration of host rocks, the simple composition of host rocks favourable for the leaching of uranium, as well as the low content of harmful associated elements. These characteristics may be regarded as petrological criteria for recognition and prospecting for such type of uranium deposits.

  16. Early-stage aggregation in three-dimensional charged granular gas

    Science.gov (United States)

    Singh, Chamkor; Mazza, Marco G.

    2018-02-01

    Neutral grains made of the same dielectric material can attain considerable charges due to collisions and generate long-range interactions. We perform molecular dynamic simulations in three dimensions for a dilute, freely cooling granular gas of viscoelastic particles that exchange charges during collisions. As compared to the case of clustering of viscoelastic particles solely due to dissipation, we find that the electrostatic interactions due to collisional charging alter the characteristic size, morphology, and growth rate of the clusters. The average cluster size grows with time as a power law, whose exponent is relatively larger in the charged gas than the neutral case. The growth of the average cluster size is found to be independent of the ratio of characteristic Coulomb to kinetic energy, or equivalently, of the typical Bjerrum length. However, this ratio alters the crossover time of the growth. Both simulations and mean-field calculations based on Smoluchowski's equation suggest that a suppression of particle diffusion due to the electrostatic interactions helps in the aggregation process.

  17. Effect of the Aggregate Size on Strength Properties of Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Ma Kang

    2018-01-01

    Full Text Available The study on preparation technology of recycled concrete with economical and technical feasibility has gained more serious attention in each country due to its involvement and effect on the environment protection and the sustainable development of human society. In this study, we conducted a control variable test to investigate and assess the influence of the aggregate size on the strength characteristics of concrete with different diameters of recycled aggregates. Concrete with recycled aggregates of 5∼15 mm (A, 15∼20 mm (B, 20∼30 mm (C, and their combinations were subjected to a series of unconfined pressure tests after curing for 28 days. Based on the results obtained from the tests, an effort was made to study the relationship between the mechanical characteristics of recycled aggregate concrete and aggregate particle size. Also, a regression model of recycled concrete was proposed to predict the elasticity modulus and to adjust the design of mixture proportion. It is believed that these experiment results would contribute to adjust the remediation mixture for recycling plants by considering the influence of recycled aggregate size.

  18. Descriptive parameters of the erythrocyte aggregation phenomenon using a laser transmission optical chip

    Science.gov (United States)

    Toderi, Martín A.; Castellini, Horacio V.; Riquelme, Bibiana D.

    2017-01-01

    The study of red blood cell (RBC) aggregation is of great interest because of its implications for human health. Altered RBC aggregation can lead to microcirculatory problems as in vascular pathologies, such as hypertension and diabetes, due to a decrease in the erythrocyte surface electric charge and an increase in the ligands present in plasma. The process of erythrocyte aggregation was studied in stasis situation (free shear stresses), using an optical chip based on the laser transmission technique. Kinetic curves of erythrocyte aggregation under different conditions were obtained, allowing evaluation and characterization of this process. Two main characteristics of blood that influence erythrocyte aggregation were analyzed: the erythrocyte surface anionic charge (EAC) after digestion with the enzyme trypsin and plasmatic protein concentration in suspension medium using plasma dissolutions in physiological saline with human albumin. A theoretical approach was evaluated to obtain aggregation and disaggregation ratios by syllectograms data fitting. Sensible parameters (Amp100, t) regarding a reduced erythrocyte EAC were determined, and other parameters (AI, M-Index) resulted that are representative of a variation in the plasmatic protein content of the suspension medium. These results are very useful for further applications in biomedicine.

  19. p53 Aggregates penetrate cells and induce the co-aggregation of intracellular p53.

    Directory of Open Access Journals (Sweden)

    Karolyn J Forget

    Full Text Available Prion diseases are unique pathologies in which the infectious particles are prions, a protein aggregate. The prion protein has many particular features, such as spontaneous aggregation, conformation transmission to other native PrP proteins and transmission from an individual to another. Protein aggregation is now frequently associated to many human diseases, for example Alzheimer's disease, Parkinson's disease or type 2 diabetes. A few proteins associated to these conformational diseases are part of a new category of proteins, called prionoids: proteins that share some, but not all, of the characteristics associated with prions. The p53 protein, a transcription factor that plays a major role in cancer, has recently been suggested to be a possible prionoid. The protein has been shown to accumulate in multiple cancer cell types, and its aggregation has also been reproduced in vitro by many independent groups. These observations suggest a role for p53 aggregates in cancer development. This study aims to test the «prion-like» features of p53. Our results show in vitro aggregation of the full length and N-terminally truncated protein (p53C, and penetration of these aggregates into cells. According to our findings, the aggregates enter cells using macropinocytosis, a non-specific pathway of entry. Lastly, we also show that once internalized by the cell, p53C aggregates can co-aggregate with endogenous p53 protein. Together, these findings suggest prion-like characteristics for p53 protein, based on the fact that p53 can spontaneously aggregate, these aggregates can penetrate cells and co-aggregate with cellular p53.

  20. The common inhaled anesthetic isoflurane increases aggregation of huntingtin and alters calcium homeostasis in a cell model of Huntington's disease

    International Nuclear Information System (INIS)

    Wang Qiujun; Liang Ge; Yang Hui; Wang Shouping; Eckenhoff, Maryellen F.; Wei Huafeng

    2011-01-01

    Isoflurane is known to increase β-amyloid aggregation and neuronal damage. We hypothesized that isoflurane will have similar effects on the polyglutamine huntingtin protein and will cause alterations in intracellular calcium homeostasis. We tested this hypothesis in striatal cells from the expanded glutamine huntingtin knock-in mouse (STHdh Q111/Q111 ) and wild type (STHdh Q7/Q7 ) striatal neurons. The primary cultured neurons were exposed for 24 h to equipotent concentrations of isoflurane, sevoflurane, and desflurane in the presence or absence of extracellular calcium and with or without xestospongin C, a potent endoplasmic reticulum inositol 1,4,5-trisphosphate (InsP 3 ) receptor antagonist. Aggregation of huntingtin protein, cell viability, and calcium concentrations were measured. Isoflurane, sevoflurane, and desflurane all increased the aggregation of huntingtin in STHdh Q111/Q111 cells, with isoflurane having the largest effect. Isoflurane induced greater calcium release from the ER and relatively more cell damage in the STHdh Q111/Q111 huntingtin cells than in the wild type STHdh Q7/Q7 striatal cells. However, sevoflurane and desflurane caused less calcium release from the ER and less cell damage. Xestospongin C inhibited the isoflurane-induced calcium release from the ER, aggregation of huntingtin, and cell damage in the STHdh Q111/Q111 cells. In summary, the Q111 form of huntingtin increases the vulnerability of striatal neurons to isoflurane neurotoxicity through combined actions on the ER IP 3 receptors. Calcium release from the ER contributes to the anesthetic induced huntingtin aggregation in STHdh Q111/Q111 striatal cells.

  1. The effect of bond characteristics between steel slag fine aggregate and cement paste on mechanical properties of concrete and mortar

    International Nuclear Information System (INIS)

    Yuji, W.

    1988-01-01

    The ordinary fine aggregate in concrete has been replaced by ground and sieved steel slag fine aggregate, treated and exposed to air for three months. Compared with concrete made from natural sand, properties such as compressive strength, flexural strength, elastic modules, permeability and abrasion resistance are considerably improved. The improvement increases with a decrease in w/c ratio, an increase in curing time and an increase in the replacement weight of sand. These results are due to the fact that the steel slag contains some active minerals such as C/sub 3/S, C/sub 2/S, C/sub 4/AF, etc., and shows favorable surface physical characteristics that improve the bond between steel slag particles and cement paste. The results of XRD, SEM and EPM microhardness showed that there are heavier concentration of ions, with finer crystals and a lower degree of CH orientation at the interfacial zone between steel slag particles and cement paste. The study also found small cementitious and fibrous C-S-H crystals growing from the fine aggregate, which are linked with hydrated products form cement paste making the bond and structural characteristic more favorable with cement. The steel slag fine aggregate is an active mineral similar to cement. The bond between the aggregate and cement paste is strengthened both physically and chemically

  2. Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability.

    Science.gov (United States)

    Allaman, Igor; Gavillet, Mathilde; Bélanger, Mireille; Laroche, Thierry; Viertl, David; Lashuel, Hilal A; Magistretti, Pierre J

    2010-03-03

    Amyloid-beta (Abeta) peptides play a key role in the pathogenesis of Alzheimer's disease and exert various toxic effects on neurons; however, relatively little is known about their influence on glial cells. Astrocytes play a pivotal role in brain homeostasis, contributing to the regulation of local energy metabolism and oxidative stress defense, two aspects of importance for neuronal viability and function. In the present study, we explored the effects of Abeta peptides on glucose metabolism in cultured astrocytes. Following Abeta(25-35) exposure, we observed an increase in glucose uptake and its various metabolic fates, i.e., glycolysis (coupled to lactate release), tricarboxylic acid cycle, pentose phosphate pathway, and incorporation into glycogen. Abeta increased hydrogen peroxide production as well as glutathione release into the extracellular space without affecting intracellular glutathione content. A causal link between the effects of Abeta on glucose metabolism and its aggregation and internalization into astrocytes through binding to members of the class A scavenger receptor family could be demonstrated. Using astrocyte-neuron cocultures, we observed that the overall modifications of astrocyte metabolism induced by Abeta impair neuronal viability. The effects of the Abeta(25-35) fragment were reproduced by Abeta(1-42) but not by Abeta(1-40). Finally, the phosphoinositide 3-kinase (PI3-kinase) pathway appears to be crucial in these events since both the changes in glucose utilization and the decrease in neuronal viability are prevented by LY294002, a PI3-kinase inhibitor. This set of observations indicates that Abeta aggregation and internalization into astrocytes profoundly alter their metabolic phenotype with deleterious consequences for neuronal viability.

  3. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.) –Wheat (Triticum aestivum L.) Cropping System in Central China

    Science.gov (United States)

    Liu, Tian-Qi; Cao, Cou-Gui; Li, Cheng-Fang

    2016-01-01

    Investigating microbial metabolic characteristics and soil organic carbon (SOC) within aggregates and their relationships under conservation tillage may be useful in revealing the mechanism of SOC sequestration in conservation tillage systems. However, limited studies have been conducted to investigate the relationship between SOC and microbial metabolic characteristics within aggregate fractions under conservation tillage. We hypothesized that close relationships can exist between SOC and microbial metabolic characteristics within aggregates under conservation tillage. In this study, a field experiment was conducted from June 2011 to June 2013 following a split-plot design of a randomized complete block with tillage practices [conventional intensive tillage (CT) and no tillage (NT)] as main plots and straw returning methods [preceding crop residue returning (S, 2100−2500 kg C ha−1) and removal (NS, 0 kg C ha-1)] as subplots with three replications. The objective of this study was to reveal the effects of tillage practices and residue-returning methods on topsoil microbial metabolic characteristics and organic carbon (SOC) fractions within aggregates and their relationships under a rice–wheat cropping system in central China. Microbial metabolic characteristics investigated using the Biolog system was examined within two aggregate fractions (>0.25 and 0.25 aggregate, and 0.25 mm aggregate (11.3%), and 0.25 mm aggregate, and 0.25 mm aggregate, and tillage (NT and S) increased microbial metabolic activities and Shannon index in >0.25 and directly improved SOC by promoting DOC in >0.25 mm aggregate in the upper (0−5 cm) soil layer under conservation tillage systems, as well as directly and indirectly by promoting DOC and MBC in tillage increased SOC in aggregates in the topsoil by improving microbial metabolic activities. PMID:26731654

  4. An Aß concatemer with altered aggregation propensities

    DEFF Research Database (Denmark)

    Giehm, L; Dal Degan, F; Fraser, P

    2010-01-01

    We present an analysis of the conformational and aggregative properties of an A beta concatemer (Con-Alz) of interest for vaccine development against Alzheimer's disease. Con-Alz consists of 3 copies of the 43 residues of the A beta peptide separated by the P2 and P30 T-cell epitopes from...... stage in the fibrillation process. Physically linking multiple copies of the A beta-peptide may thus sterically restrict Con-Alz against forming cytotoxic oligomers, forcing it instead to adopt a less well-organized assembly of intermeshed polypeptide chains. (C) 2010 Elsevier B.V. All rights reserved....

  5. Understanding curcumin-induced modulation of protein aggregation.

    Science.gov (United States)

    Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P

    2017-07-01

    Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Joe Tien

    Full Text Available This paper reports the effect of elevated pressure on the invasive phenotype of patterned three-dimensional (3D aggregates of MDA-MB-231 human breast cancer cells. We found that the directionality of the interstitial pressure profile altered the frequency of invasion by cells located at the surface of an aggregate. In particular, application of pressure at one end of an aggregate suppressed invasion at the opposite end. Experimental alteration of the configuration of cell aggregates and computational modeling of the resulting flow and solute concentration profiles revealed that elevated pressure inhibited invasion by altering the chemical composition of the interstitial fluid near the surface of the aggregate. Our data reveal a link between hydrostatic pressure, interstitial convection, and invasion.

  7. Transportation and utilization of aggregates for road construction

    Science.gov (United States)

    Fladvad, Marit; Wigum, Børge Johannes; Aurstad, Joralf

    2017-04-01

    , and aggregate sizes for unbound materials varies from 19 mm to 600 mm. These results imply great differences in the amount of aggregate transport to road construction sites. Another important factor is the distances between the construction sites and the aggregate sources. For many projects, especially in countries in need of importing aggregates, aggregate transport will have considerable impact on sustainability assessment of the construction projects. If pavement design can be altered with the goal of achieving better utilization of local aggregates through adaption to the quality of local aggregates, aggregate transportation can be reduced. Reduced transport will alter the economical balance of a project, allowing reallocation of costs from transport to e.g. improved aggregate production. The overall result can be more profitable construction projects and a more sustainable development of road structures.

  8. Aggregates from mineral wastes

    Directory of Open Access Journals (Sweden)

    Baic Ireneusz

    2016-01-01

    Full Text Available The problem concerning the growing demand for natural aggregates and the need to limit costs, including transportation from remote deposits, cause the increase in growth of interest in aggregates from mineral wastes as well as in technologies of their production and recovery. The paper presents the issue related to the group of aggregates other than natural. A common name is proposed for such material: “alternative aggregates”. The name seems to be fully justified due to adequacy of this term because of this raw materials origin and role, in comparison to the meaning of natural aggregates based on gravel and sand as well as crushed stones. The paper presents characteristics of the market and basic application of aggregates produced from mineral wastes, generated in the mining, power and metallurgical industries as well as material from demolished objects.

  9. Sleep Bruxism-Tooth Grinding Prevalence, Characteristics and Familial Aggregation: A Large Cross-Sectional Survey and Polysomnographic Validation

    Science.gov (United States)

    Khoury, Samar; Carra, Maria Clotilde; Huynh, Nelly; Montplaisir, Jacques; Lavigne, Gilles J.

    2016-01-01

    Study Objectives: Sleep bruxism (SB) is characterized by tooth grinding and jaw clenching during sleep. Familial factors may contribute to the occurrence of SB. This study aims are: (1) revisit the prevalence and characteristics of SB in a large cross-sectional survey and assess familial aggregation of SB, (2) assess comorbidity such as insomnia and pain, (3) compare survey data in a subset of subjects diagnosed using polysomnography research criteria. Methods: A sample of 6,357 individuals from the general population in Quebec, Canada, undertook an online survey to assess the prevalence of SB, comorbidities, and familial aggregation. Data on familial aggregation were compared to 111 SB subjects diagnosed using polysomnography. Results: Regularly occurring SB was reported by 8.6% of the general population, decreases with age, without any gender difference. SB awareness is concomitant with complaints of difficulties maintaining sleep in 47.6% of the cases. A third of SB positive probands reported pain. A 2.5 risk ratio of having a first-degree family member with SB was found in SB positive probands. The risk of reporting SB in first-degree family ranges from 1.4 to 2.9 with increasing severity of reported SB. Polysomnographic data shows that 37% of SB subjects had at least one first-degree relative with reported SB with a relative risk ratio of 4.625. Conclusions: Our results support the heritability of SB-tooth grinding and that sleep quality and pain are concomitant in a significant number of SB subjects. Citation: Khoury S, Carra MC, Huynh N, Montplaisir J, Lavigne GJ. Sleep bruxism-tooth grinding prevalence, characteristics and familial aggregation: a large cross-sectional survey and polysomnographic validation. SLEEP 2016;39(11):2049–2056. PMID:27568807

  10. ORGANIC MATTER AND AGGREGATION OF A PLANOSOL UNDER DIFFERENT FOREST COVERINGS

    Directory of Open Access Journals (Sweden)

    Julia Kishida Bochner

    2008-03-01

    Full Text Available The litter quality can alter soil aggregation, modifying the transformation dynamics and allocation of soil carbon (Cin different compartments. This study evaluated the aggregate stability and its relation with litter chemical characteristics, organiccarbon and free light fraction (FLL from the organic matter under three different types of vegetation covering: secondary forest (FSand plantings of Mimosa Caesalpiniaefolia (PM and Carapa guianenses (PA with subsequently natural regeneration. Litter sampleswere characterized using polyfenols, lignin, suberine, tannin and holocelulose content and C/N relationship. Soil samples werecollected in two depths (0-10 and 10-20 cm and soil aggregation were estimate using mean weight diameter (DMP, mean geometricdiameter (DMG and index of aggregate stability (IEA analysis . Soil samples in the same depths were also characterized using C andFLL content. The highest suberine and polyfenols content of the litter found in the areas FS and PM reduced the speed of residuesdecomposition in the soil causing larger FLL content in both coverings. Those compositions contributed to the stabilization of C in themineral phase, because the highest C content was found in those areas. This fact is confirmed by the values of DMP, DMG and IEAamong the areas. They are higher in the coverings, PM and FS. It can be concluded that the polyfenols and suberine content weredecisive in the subdivision of C and in the aggregation of the soil in the areas of FS and PM.

  11. Patterns of [PSI+] aggregation allow insights into cellular organization of yeast prion aggregates

    Science.gov (United States)

    Tyedmers, Jens

    2012-01-01

    The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI+] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates. PMID:22449721

  12. SHAPE ANALYSIS OF FINE AGGREGATES USED FOR CONCRETE

    Directory of Open Access Journals (Sweden)

    Huan He

    2016-12-01

    Full Text Available Fine aggregate is one of the essential components in concrete and significantly influences the material properties. As parts of natures, physical characteristics of fine aggregate are highly relevant to its behaviors in concrete. The most of previous studies are mainly focused on the physical properties of coarse aggregate due to the equipment limitations. In this paper, two typical fine aggregates, i.e. river sand and crushed rock, are selected for shape characterization. The new developed digital image analysis systems are employed as the main approaches for the purpose. Some other technical methods, e.g. sieve test, laser diffraction method are also used for the comparable references. Shape characteristics of fine aggregates with different origins but in similar size ranges are revealed by this study. Compared with coarse aggregate, fine grains of different origins generally have similar shape differences. These differences are more significant in surface texture properties, which can be easily identified by an advanced shape parameter: bluntness. The new image analysis method is then approved to be efficient for the shape characterization of fine aggregate in concrete.

  13. Chemical and morphological characteristics of mineral trioxide aggregate and Portland cements.

    Science.gov (United States)

    Khan, Shahbaz; Kaleem, Muhammad; Fareed, Muhammad Amber; Habib, Amir; Iqbal, Kefi; Aslam, Ayesha; Ud Din, Shahab

    2016-01-01

    The purpose of this study was to investigate the chemical composition and particle morphology of white mineral trioxide aggregate (WMTA) and two white Portland cements (CEM 1 and CEM 2). Compositional analysis was performed by energy dispersive X-ray spectroscopy, X-ray fluorescence spectrometry and X-ray diffraction whereas, morphological characteristics were analyzed by scanning electron microscope and Laser scattering particle size distribution analyzer. The elemental composition of WMTA, CEM 1 and CEM 2 were similar except for the presence of higher amounts of bismuth in WMTA. Calcium oxide and silicon oxide constitute the major portion of the three materials whereas, tricalcium silicate was detected as the major mineral phase. The particle size distribution and morphology of WMTA was finer compared to CEM 1 and CEM 2. The three tested materials had relatively similar chemical composition and irregular particle morphologies.

  14. Nickel aggregates produced by radiolysis

    International Nuclear Information System (INIS)

    Marignier, J.L.; Belloni, J.

    1988-01-01

    Nickel aggregates with subcolloidal size and stable in water have been synthesized by inhibiting the corrosion by the medium. The protective effect of the surfactant is discussed in relation with the characteristics of various types of polyvinyl alcohol studied. The reactivity of aggregates towards oxidizing compounds, nitro blue tetrazolium, methylene blue, silver ions, oxygen, methylviologen, enables an estimation of the redox potential of nickel aggregates (E = - 04 ± 0.05 V). It has been applied to quantitative analysis of the particles in presence of nickel ions. 55 refs [fr

  15. Glycation precedes lens crystallin aggregation

    International Nuclear Information System (INIS)

    Swamy, M.S.; Perry, R.E.; Abraham, E.C.

    1987-01-01

    Non-enzymatic glycosylation (glycation) seems to have the potential to alter the structure of crystallins and make them susceptible to thiol oxidation leading to disulfide-linked high molecular weight (HMW) aggregate formation. They used streptozotocin diabetic rats during precataract and cataract stages and long-term cell-free glycation of bovine lens crystallins to study the relationship between glycation and lens crystallin aggregation. HMW aggregates and other protein components of the water-soluble (WS) and urea-soluble (US) fractions were separated by molecular sieve high performance liquid chromatography. Glycation was estimated by both [ 3 H]NaBH 4 reduction and phenylboronate agarose affinity chromatography. Levels of total glycated protein (GP) in the US fractions were about 2-fold higher than in the WS fractions and there was a linear increase in GP in both WS and US fractions. This increase was parallelled by a corresponding increase in HMW aggregates. Total GP extracted by the affinity method from the US fraction showed a predominance of HMW aggregates and vice versa. Cell-free glycation studies with bovine crystallins confirmed the results of the animals studies. Increasing glycation caused a corresponding increase in protein insolubilization and the insoluble fraction thus formed also contained more glycated protein. It appears that lens protein glycation, HMW aggregate formation, and protein insolubilization are interrelated

  16. Temperature dependent rapid annealing effect induces amorphous aggregation of human serum albumin.

    Science.gov (United States)

    Ishtikhar, Mohd; Ali, Mohd Sajid; Atta, Ayman M; Al-Lohedan, Hammad; Badr, Gamal; Khan, Rizwan Hasan

    2016-01-01

    This study represents an analysis of the thermal aggregation of human serum albumin (HSA) induced by novel rosin modified compounds. The aggregation process causes conformational alterations in the secondary and tertiary structures of the proteins. The conversion of globular protein to amorphous aggregates was carried out by spectroscopic, calorimetric and microscopic techniques to investigate the factors that are responsible for the structural, conformational and morphological alteration in the protein. Our outcome results show that the aggregation of HSA was dependent on the hydrophobicity, charge and temperature, because the formation of amorphous aggregates occurs in the presence of a novel cationic rosin compound, quaternary amine of rosin diethylaminoethyl ester (QRMAE), at 40°C and pH 7.4 (but at 25°C on similar pH value, there was no evidence of aggregate formation). In addition, the parent compound of QRMAE, i.e., abietic acid, and other derivatives such as nonionic rosin compounds [(RMPEG-750) and (RMA-MPEG-750)] do not shows the aggregating property. This work provides precise and necessary information that aid in the understanding the effects of rosin derivative compounds on HSA. This study also restrains important information for athletes, health providers, pharmaceutical companies, industries, and soft drink-processing companies. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. In Situ Monitoring of RAFT Polymerization by Tetraphenylethylene-Containing Agents with Aggregation-Induced Emission Characteristics.

    Science.gov (United States)

    Liu, Shunjie; Cheng, Yanhua; Zhang, Haoke; Qiu, Zijie; Kwok, Ryan T K; Lam, Jacky W Y; Tang, Ben Zhong

    2018-05-22

    A facile and efficient approach is demonstrated to visualize the polymerization in situ. A group of tetraphenylethylene (TPE)-containing dithiocarbamates were synthesized and screened as agents for reversible addition fragmentation chain transfer (RAFT) polymerizations. The spatial-temporal control characteristics of photochemistry enabled the RAFT polymerizations to be ON and OFF on demand under alternating visible light irradiation. The emission of TPE is sensitive to the local viscosity change owing to its aggregation-induced emission characteristic. Quantitative information could be easily acquired by the naked eye without destroying the reaction system. Furthermore, the versatility of such a technique was well demonstrated by 12 different polymerization systems. The present approach thus demonstrated a powerful platform for understanding the controlled living radical polymerization process. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Incorporation of Biochar Carbon into Stable Soil Aggregates: The Role of Clay Mineralogy and Other Soil Characteristics

    Institute of Scientific and Technical Information of China (English)

    Charlene N.KELLY; Joseph BENJAMIN; Francisco C.CALDER(O)N; Maysoon M.MIKHA; David W.RUTHERFORD; Colleen E.ROSTAD

    2017-01-01

    Aggregation and structure plav key roles in water-holding capacity and stability of soils.In this study,the incorporation of carbon (C) from switchgrass biochar into stable aggregate size fractions was assessed in an Aridisol (from Colorado,USA) dominated by 2:1 clays and an Alfisol (from Virginia,USA) containing weathered mixed 1∶1 and 2∶1 mineralogy,to evaluate the effect of biochar addition on soil characteristics.The biochar was applied at 4 levels,0,25,50,and 100 g kg-1,to the soils grown with wheat in a growth chamber experiment.The changes in soil strength and water-holding capacity using water release curves were measured.In the Colorado soil,the proportion of soil occurring in large aggregates decreased,with concomitant increases in small size fractions.No changes in aggregate size fractions occurred in the Virginia soil.In the Colorado soil,C content increased from 3.3 to 16.8 g kg-1,whereas in the < 53 μm fraction C content increased from 5.7 to 22.6 g kg-1 with 100 g kg-1 biochar addition.In the Virginia soil,C content within aggregate size fractions increased for each size fraction,except the > 2 000 μm fraction.The greatest increase (from 6.2 to 22.0 g kg-1) occurred in the 53-250 μm fraction.The results indicated that C was incorporated into larger aggregates in the Virginia soil,but remained largely unassociated to soil particles in the Colorado soil.Biochar addition had no significant effect on water-holding capacity or strength measurements.Adding biochar to more weathered soils with high native soil organic content may result in greater stabilization of incorporated C and result in less loss because of erosion and transport,compared with the soils dominated by 2∶1 clays and low native soil organic content.

  19. SHAPE ANALYSIS OF FINE AGGREGATES USED FOR CONCRETE

    OpenAIRE

    HE, Huan; Courard, Luc; Pirard, Eric; Michel, Frédéric

    2016-01-01

    Fine aggregate is one of the essential components in concrete and significantly influences the material properties. As parts of natures, physical characteristics of fine aggregate are highly relevant to its behaviors in concrete. The most of previous studies are mainly focused on the physical properties of coarse aggregate due to the equipment limitations. In this paper, two typical fine aggregates, i.e. river sand and crushed rock, are selected for shape characterization. The new developed d...

  20. Characterization of fine aggregates in concrete by different experimental approaches

    OpenAIRE

    He, Huan; Courard, Luc; Pirard, Eric; Michel, Frédéric

    2011-01-01

    Being its major component, aggregate can occupy up to three-quarter of the volume of concrete. The structure of aggregate formed in hardened state impacts largely on mechanical and durability properties of concrete. On another hand, physical characteristics of aggregate are primarily assumed to be relevant to granular behavior of aggregate. Therefore, characterization of aggregate is of high relevance to concrete studies. In this study, different types of fine aggregate used in concrete, name...

  1. Strengths and Failure Characteristics of Self-Compacting Concrete Containing Recycled Waste Glass Aggregate

    Directory of Open Access Journals (Sweden)

    Rahman Khaleel AL-Bawi

    2017-01-01

    Full Text Available The effects of different proportions of green-colored waste glass (WG cullet on the mechanical and fracture properties of self-compacting concrete (SCC were experimentally investigated. Waste bottles were collected, washed, crushed, and sieved to prepare the cullet used in this study. Cullet was incorporated at different percentages (0%, 20%, 40%, 60%, 80%, and 100% by weight instead of natural fine aggregate (NFA and/or natural coarse aggregate (NCA. Three SCC series were designed with a constant slump flow of 700±30 mm, total binder content of 570 kg/m3 and at water-to-binder (w/b ratio of 0.35. Moreover, fly ash (FA was used in concrete mixtures at 20% of total binder content. Mechanical aspects such as compressive, splitting tensile, and net flexural strengths and modulus of elasticity of SCC were investigated and experimentally computed at 28 days of age. Moreover, failure characteristics of the concretes were also monitored via three-point bending test on the notched beams. The findings revealed that the mechanical properties as well as fracture parameters were adversely influenced by incorporating of WG cullet. However, highest reduction of compressive strength did not exceed 43% recorded at 100% WG replacement level. Concretes containing WG showed less brittle behavior than reference concrete at any content.

  2. Influence of caffeine on blood pressure and platelet aggregation

    Directory of Open Access Journals (Sweden)

    José Wilson S. Cavalcante

    2000-08-01

    Full Text Available OBJECTIVE: Studies have demonstrated that methylxanthines, such as caffeine, are A1 and A2 adenosine receptor antagonists found in the brain, heart, lungs, peripheral vessels, and platelets. Considering the high consumption of products with caffeine in their composition, in Brazil and throughout the rest of the world, the authors proposed to observe the effects of this substance on blood pressure and platelet aggregation. METHODS: Thirteen young adults, ranging from 21 to 27 years of age, participated in this study. Each individual took 750mg/day of caffeine (250mg tid, over a period of seven days. The effects on blood pressure were analyzed through the pressor test with handgrip, and platelet aggregation was analyzed using adenosine diphosphate, collagen, and adrenaline. RESULTS: Diastolic pressure showed a significant increase 24 hours after the first intake (p<0.05. This effect, however, disappeared in the subsequent days. The platelet aggregation tests did not reveal statistically significant alterations, at any time during the study. CONCLUSION: The data suggest that caffeine increases diastolic blood pressure at the beginning of caffeine intake. This hypertensive effect disappears with chronic use. The absence of alterations in platelet aggregation indicates the need for larger randomized studies.

  3. Platelet-collagen adhesion enhances platelet aggregation induced by binding of VWF to platelets

    International Nuclear Information System (INIS)

    Laduca, F.M.; Bell, W.R.; Bettigole, R.E.

    1987-01-01

    Ristocetin-induced platelet aggregation (RIPA) was evaluated in the presence of platelet-collagen adhesion. RIPA of normal donor platelet-rich plasma (PRP) demonstrated a primary wave of aggregation mediated by the binding of von Willebrand factor (VWF) to platelets and a secondary aggregation wave, due to a platelet-release reaction, initiated by VWF-platelet binding and inhibitable by acetylsalicylic acid (ASA). An enhanced RIPA was observed in PRP samples to which collagen had been previously added. These subthreshold concentrations of collagen, which by themselves were insufficient to induce aggregation, caused measurable platelet-collagen adhesion. Subthreshold collagen did not cause microplatelet aggregation, platelet release of [ 3 H]serotonin, or alter the dose-responsive binding of 125 I-labeled VWF to platelets, which occurred with increasing ristocetin concentrations. However, ASA inhibition of the platelet release reaction prevented collagen-enhanced RIPA. These results demonstrate that platelet-collagen adhesion altered the platelet-release reaction induced by the binding of VWF to platelets causing a platelet-release reaction at a level of VWF-platelet binding not normally initiating a secondary aggregation. These findings suggest that platelet-collagen adhesion enhances platelet function mediated by VWF

  4. Automation of aggregate characterization using laser profiling and digital image analysis

    Science.gov (United States)

    Kim, Hyoungkwan

    2002-08-01

    Particle morphological properties such as size, shape, angularity, and texture are key properties that are frequently used to characterize aggregates. The characteristics of aggregates are crucial to the strength, durability, and serviceability of the structure in which they are used. Thus, it is important to select aggregates that have proper characteristics for each specific application. Use of improper aggregate can cause rapid deterioration or even failure of the structure. The current standard aggregate test methods are generally labor-intensive, time-consuming, and subject to human errors. Moreover, important properties of aggregates may not be captured by the standard methods due to a lack of an objective way of quantifying critical aggregate properties. Increased quality expectations of products along with recent technological advances in information technology are motivating new developments to provide fast and accurate aggregate characterization. The resulting information can enable a real time quality control of aggregate production as well as lead to better design and construction methods of portland cement concrete and hot mix asphalt. This dissertation presents a system to measure various morphological characteristics of construction aggregates effectively. Automatic measurement of various particle properties is of great interest because it has the potential to solve such problems in manual measurements as subjectivity, labor intensity, and slow speed. The main efforts of this research are placed on three-dimensional (3D) laser profiling, particle segmentation algorithms, particle measurement algorithms, and generalized particle descriptors. First, true 3D data of aggregate particles obtained by laser profiling are transformed into digital images. Second, a segmentation algorithm and a particle measurement algorithm are developed to separate particles and process each particle data individually with the aid of various kinds of digital image

  5. Automatic analysis of microscopic images of red blood cell aggregates

    Science.gov (United States)

    Menichini, Pablo A.; Larese, Mónica G.; Riquelme, Bibiana D.

    2015-06-01

    Red blood cell aggregation is one of the most important factors in blood viscosity at stasis or at very low rates of flow. The basic structure of aggregates is a linear array of cell commonly termed as rouleaux. Enhanced or abnormal aggregation is seen in clinical conditions, such as diabetes and hypertension, producing alterations in the microcirculation, some of which can be analyzed through the characterization of aggregated cells. Frequently, image processing and analysis for the characterization of RBC aggregation were done manually or semi-automatically using interactive tools. We propose a system that processes images of RBC aggregation and automatically obtains the characterization and quantification of the different types of RBC aggregates. Present technique could be interesting to perform the adaptation as a routine used in hemorheological and Clinical Biochemistry Laboratories because this automatic method is rapid, efficient and economical, and at the same time independent of the user performing the analysis (repeatability of the analysis).

  6. Soil aggregation under different management systems

    Directory of Open Access Journals (Sweden)

    Cibele Mascioli Rebello Portella

    2012-12-01

    Full Text Available Considering that the soil aggregation reflects the interaction of chemical, physical and biological soil factors, the aim of this study was evaluate alterations in aggregation, in an Oxisol under no-tillage (NT and conventional tillage (CT, since over 20 years, using as reference a native forest soil in natural state. After analysis of the soil profile (cultural profile in areas under forest management, samples were collected from the layers 0-5, 5-10, 10-20 and 20-40 cm, with six repetitions. These samples were analyzed for the aggregate stability index (ASI, mean weighted diameter (MWD, mean geometric diameter (MGD in the classes > 8, 8-4, 4-2, 2-1, 1-0.5, 0.5-0.25, and < 0.25 mm, and for physical properties (soil texture, water dispersible clay (WDC, flocculation index (FI and bulk density (Bd and chemical properties (total organic carbon - COT, total nitrogen - N, exchangeable calcium - Ca2+, and pH. The results indicated that more intense soil preparation (M < NT < PC resulted in a decrease in soil stability, confirmed by all stability indicators analyzed: MWD, MGD, ASI, aggregate class distribution, WDC and FI, indicating the validity of these indicators in aggregation analyses of the studied soil.

  7. Regime of aggregate structures and magneto-rheological characteristics of a magnetic rod-like particle suspension: Monte Carlo and Brownian dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Kazuya [School of Akita Prefectural University, Yurihonjo (Japan); Satoh, Akira, E-mail: asatoh@akita-pu.ac.jp [Department of Machine Intelligence and System Engineering, Akita Prefectural University, Yurihonjo (Japan)

    2017-09-01

    Highlights: • Monte Carlo simulations have been employed for the aggregate structures. • Brownian dynamics simulations have been employed for the magneto-rheology. • Even a weak shear flow induces a significant regime change in the aggregates. • A strong external magnetic field drastically changes the aggregates. • The dependence of the viscosity on these factors is governed in a complex manner. - Abstract: In the present study, we address a suspension composed ferromagnetic rod-like particles to elucidate a regime change in the aggregate structures and the magneto-rheological characteristics. Monte Carlo simulations have been employed for investigating the aggregate structures in thermodynamic equilibrium, and Brownian dynamics simulations for magneto-rheological features in a simple shear flow. The main results obtained here are summarized as follows. For the case of thermodynamic equilibrium, the rod-like particles aggregate to form thick chain-like clusters and the neighboring clusters incline in opposite directions. If the external magnetic field is increased, the thick chain-like clusters in the magnetic field direction grow thicker by adsorbing the neighboring clusters that incline in the opposite direction. Hence, a significant phase change in the particle aggregates is not induced by an increase in the magnetic field strength. For the case of a simple shear flow, even a weak shear flow induces a significant regime change from the thick chain-like clusters of thermodynamic equilibrium into wall-like aggregates composed of short raft-like clusters. A strong external magnetic field drastically changes these aggregates into wall-like aggregates composed of thick chain-like clusters rather than the short raft-like clusters. The internal structure of these aggregates is not strongly influenced by a shear flow, and the formation of the short raft-like clusters is maintained inside the aggregates. The main contribution to the net viscosity is the

  8. Molten globule of hemoglobin proceeds into aggregates and advanced glycated end products.

    Directory of Open Access Journals (Sweden)

    Afshin Iram

    Full Text Available Conformational alterations of bovine hemoglobin (Hb upon sequential addition of glyoxal over a range of 0-90% v/v were investigated. At 20% v/v glyoxal, molten globule (MG state of Hb was observed by altered tryptophan fluorescence, high ANS binding, existence of intact heme, native-like secondary structure as depicted by far-UV circular dichroism (CD and ATR-FTIR spectra as well as loss in tertiary structure as confirmed by near-UV CD spectra. In addition, size exclusion chromatography analysis depicted that MG state at 20% v/v glyoxal corresponded to expanded pre-dissociated dimers. Aggregates of Hb were detected at 70% v/v glyoxal. These aggregates of Hb had altered tryptophan environment, low ANS binding, exposed heme, increased β-sheet secondary structure, loss in tertiary structure, enhanced thioflavin T (ThT fluorescence and red shifted Congo Red (CR absorbance. On incubating Hb with 30% v/v glyoxal for 0-20 days, advanced glycation end products (AGEs were detected on day 20. These AGEs were characterised by enhanced tryptophan fluorescence at 450 nm, exposure of heme, increase in intermolecular β-sheets, enhanced ThT fluorescence and red shift in CR absorbance. Comet assay revealed aggregates and AGEs to be genotoxic in nature. Scanning electron microscopy confirmed the amorphous structure of aggregates and branched fibrils of AGEs. The transformation of α-helix to β-sheet usually alters the normal protein to amyloidogenic resulting in a variety of protein conformational disorders such as diabetes, prion and Huntington's.

  9. Energy Efficient Payload Aggregation in WSNs

    Directory of Open Access Journals (Sweden)

    Ákos MILÁNKOVICH

    2015-06-01

    Full Text Available Creating wireless sensor networks requires a different approach than traditional communication networks because energy efficiency plays a key role in sensor networks, which consist of devices without external power. The amount of energy used determines the lifetime of these devices. In most cases data packets are less sensitive to delay, thus can be aggregated, making it possible to gather more useful information reducing the energy required to transmit information. This article discusses the energy efficiency of different Forward Error Correction algorithms and presents a method to calculate the optimal amount of aggregation of the data packets in terms of power consumption, while taking into account the Bit Error Rate characteristics of the wireless channel. The contribution of this paper is a general method to improve the energy efficiency of wireless sensor networks by using the optimal amount of aggregation in case of different Forward Error Correction codes and channel characteristics. The presented results can be applied to any packet-based wireless protocol.

  10. Model of fractal aggregates induced by shear

    Directory of Open Access Journals (Sweden)

    Wan Zhanhong

    2013-01-01

    Full Text Available It is an undoubted fact that particle aggregates from marine, aerosol, and engineering systems have fractal structures. In this study, fractal geometry is used to describe the morphology of irregular aggregates. The mean-field theory is employed to solve coagulation kinetic equation of aggregates. The Taylor-expansion method of moments in conjunction with the self-similar fractal characteristics is used to represent the particulate field. The effect of the target fractal dimensions on zeroth-order moment, second-order moment, and geometric standard deviation of the aggregates is explored. Results show that the developed moment method is an efficient and powerful approach to solving such evolution equations.

  11. Traffic-induced changes and processes in forest road aggregate particle-size distributions

    Science.gov (United States)

    Hakjun Rhee; James Fridley; Deborah Page-Dumroese

    2018-01-01

    Traffic can alter forest road aggregate material in various ways, such as by crushing, mixing it with subgrade material, and sweeping large-size, loose particles (gravel) toward the outside of the road. Understanding the changes and physical processes of the aggregate is essential to mitigate sediment production from forest roads and reduce road maintenance efforts. We...

  12. Auto-aggregation properties of a novel aerobic denitrifier Enterobacter sp. strain FL.

    Science.gov (United States)

    Wang, Xia; An, Qiang; Zhao, Bin; Guo, Jin Song; Huang, Yuan Sheng; Tian, Meng

    2018-02-01

    Enterobacter sp. strain FL was newly isolated from activated sludge and exhibited significant capability of auto-aggregation as well as aerobic denitrification. The removal efficiencies of NO 3 - -N, total nitrogen (TN), and TOC by strain FL in batch culture reached 94.6, 63.9, and 72.5% in 24 h, respectively. The production of N 2 O and N 2 in the presence of oxygen demonstrated the occurrence of aerobic denitrification. The auto-aggregation index of strain FL reached 54.3%, suggesting a high tendency that the cells would agglomerate into aggregates. The production of extracellular polymeric substances (EPSs), which were mainly composed of proteins followed by polysaccharides, was considered to be related to the cell aggregation according to Fourier transform infrared (FT-IR) and confocal laser scanning microscopy (CLSM). The proteins in EPS were evenly and tightly combined to cells and altered the protein secondary structures of cell surface from random coils to β-sheets and three-turn helices. The alteration of protein secondary structures of cell surface caused by the proteins in EPS might play a dominant role in the auto-aggregation of strain FL. To further assess the feasibility of strain FL for synthetic wastewater treatment, a sequencing batch reactor (SBR), solely inoculated with strain FL, was conducted. During the 16 running cycles, the removal efficiency of NO 3 - -N was 90.2-99.7% and the auto-aggregation index was stabilized at 35.0-41.5%. The EPS promoted the biomass of strain FL to aggregate in the SBR.

  13. NADIM-Travel: A Multiagent Platform for Travel Services Aggregation

    OpenAIRE

    Ben Ameur, Houssein; Bédard, François; Vaucher, Stéphane; Kropf, Peter; Chaib-draaa, Brahim; Gérin-Lajoie, Robert

    2010-01-01

    With the Internet as a growing channel for travel services distribution, sophisticated travel services aggregators are increasingly in demand. A travel services aggregation platform should be able to manage the heterogeneous characteristics of the many existing travel services. It should also be as scalable, robust, and flexible as possible. Using multiagent technology, we designed and implemented a multiagent platform for travel services aggregation called NADIM-Travel. In this platform, a p...

  14. Influence of aggregate characteristics on the compressive strength of normal weight concrete

    International Nuclear Information System (INIS)

    Qureshi, M.A.; Aslam, M.

    2015-01-01

    Experimental investigations on the properties of concrete have been performed around the globe and their correlation is interpreted in relevant design codes. The structural behavior of cement concrete significantly relies on the material resources, properties of the aggregates constituting the concrete and the local construction practice. These factors vary from place to place. Therefore, the compressive strength of concrete prepared from the aggregates available in one locality may not be directly applicable to the other areas. The purpose of this study is to evaluate the Influence of locally available coarse aggregates on the compressive strength of normal weight concrete (NWC) prepared under local environmental conditions of district Khairpur Mir's, Sindh, Pakistan. The coarse aggregates were collected from five different quarries in the vicinity of Khairpur Mir's, Pakistan. In total; 180 cubes were tested. 10 different batches were formed in order to arrange individual characterization of concrete. Each batch was contained of 18 cubes and each quarry contains 2 batches making a total of 36 cube with four different ratios for each quarry. Dry density and compressive strength of concrete was calculated and a comparison is provided as a guideline for the future construction work in the local community. (author)

  15. Durability and Shrinkage Characteristics of Self-Compacting Concretes Containing Recycled Coarse and/or Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Mehmet Gesoglu

    2015-01-01

    Full Text Available This paper addresses durability and shrinkage performance of the self-compacting concretes (SCCs in which natural coarse aggregate (NCA and/or natural fine aggregate (NFA were replaced by recycled coarse aggregate (RCA and/or recycled fine aggregate (RFA, respectively. A total of 16 SCCs were produced and classified into four series, each of which included four mixes designed with two water to binder (w/b ratios of 0.3 and 0.43 and two silica fume replacement levels of 0 and 10%. Durability properties of SCCs were tested for rapid chloride penetration, water sorptivity, gas permeability, and water permeability at 56 days. Also, drying shrinkage accompanied by the water loss and restrained shrinkage of SCCs were monitored over 56 days of drying period. Test results revealed that incorporating recycled coarse and/or fine aggregates aggravated the durability properties of SCCs tested in this study. The drying shrinkage and restrained shrinkage cracking of recycled aggregate (RA concretes had significantly poorer performance than natural aggregate (NA concretes. The time of cracking greatly prolonged as the RAs were used along with the increase in water/binder ratio.

  16. Fatigue and deformation characteristics of large-aggregate mixes for bases.

    CSIR Research Space (South Africa)

    Verhaeghe, Benoit MJA

    1994-10-01

    Full Text Available for linking mix design parameters with the structural design process is discussed, based on dynamic tests conducted in the laboratory, complemented by Heavy Vehicle Simulator (HVS) tests on pavements containing Large-Aggregate Mixes for Bases (LAMBS). Initial...

  17. EXPERIMENTAL STUDIES AND NUMERICAL ANALYSIS FOR THE DEFORMATIONSTRENGTH CHARACTERISTICS OF RAMMED MICRO-PILES WITH A BROADENED AGGREGATE BASE

    Directory of Open Access Journals (Sweden)

    V. S. Alekhin

    2016-01-01

    Full Text Available Objectives. Experimental and theoretical determination of dependencies of strength characteristics of bored micropiles with a pedestal formed by rammed rubble on: casing diameter, fraction, and volume of crushed stone for collapsing macroporous clays. Method. Laboratory and field experiments were carried out; numerical calculations in two-dimensional and threedimensional arrangement for the determination of strain-stress analysis of the foundation using a MIDAS GTS_NX software system, implementing the finite element method and developed for complex geotechnical problems; some recommendations for implementation are provided. Results The dependence of the load-bearing capacity of bored micropiles on a broadened base of rammed aggregate with vertical loading is determined. At the maximum broadening diameter of 3.5 of the micropiles shaft the load-bearing capacity of the subsoil is increased by between 1.8 and 6 times compared with micropiles without broadening depending on the diameter of the pile shaft. During the experimental and numerical studies of the dependencies of deformation-strength parameters of the deep foundation works consisting of a bored micropile with a broadened base, namely the pile diameter, aggregate particle size and volume, seal diameter of the subsoil soil half-space, as well as the development of the theory of formation of the end broadening geometry of rammed aggregate in the form of an ellipsoid of revolution were established. Conclusion The full-scale measurements of the broadening of bored micropiles showed that their shape is close to an ellipsoid of revolution, and the ratio of semi-axes is directly dependent on the characteristics of soil and gravel volume, which was taken into account in the construction of the finite element model in the numerical simulation experiment.The results of numerical studies of the bored micropile loading with broadened base on the MIDAS GTS show good agreement with the results of the

  18. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits

    OpenAIRE

    Neal, LC; Wilkinson, JJ; Mason, PJ; Chang, Z

    2018-01-01

    publisher: Elsevier articletitle: Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits journaltitle: Journal of Geochemical Exploration articlelink: http://dx.doi.org/10.1016/j.gexplo.2017.10.019 content_type: article copyright: © 2017 Elsevier B.V. All rights reserved.

  19. Assessment of the Alteration of Granitic Rocks and its Influence on Alkalis Release

    Science.gov (United States)

    Ferraz, Ana Rita; Fernandes, Isabel; Soares, Dora; Santos Silva, António; Quinta-Ferreira, Mário

    2017-12-01

    Several concrete structures had shown signs of degradation some years after construction due to internal expansive reactions. Among these reactions there are the alkali-aggregate reactions (AAR) that occur between the aggregates and the concrete interstitial fluids which can be divided in two types: the alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR). The more common is the ASR which occurs when certain types of reactive silica are present in the aggregates. In consequence, an expansive alkali-silica gel is formed leading to the concrete cracking and degradation. Granites are rocks composed essentially of quartz, micas and feldspars, the latter being the minerals which contain more alkalis in their structure and thus, able to release them in conditions of high alkalinity. Although these aggregates are of slow reaction, some structures where they were applied show evidence of deterioration due to ASR some years or decades after the construction. In the present work, the possible contribution of granitic aggregates to the interstitial fluids of concrete by alkalis release was studied by performing chemical attack with NaOH and KOH solutions. Due to the heterogeneity of the quarries in what concerns the degree of alteration and/or fracturing, rock samples with different alteration were analysed. The alteration degree was characterized both under optical microscope and image analysis and compared with the results obtained from the chemical tests. It was concluded that natural alteration reduces dramatically the releasable alkalis available in the rocks.

  20. Prediction of reef fish spawning aggregations using remote sensing: A review

    International Nuclear Information System (INIS)

    Rosli, M R; Ibrahim, A L; Masron, T

    2014-01-01

    Spawning aggregation is a very important occurrence to particular reef fish species as they use this opportunity to reproduce. However, due to their predictable nature, these aggregations have always been vulnerable to overexploitation. This problem leads to the importance of identifying the exact time and location for reef fish spawning aggregation. Thus, this paper review a little bit about spawning aggregation of reef fish as well as their characteristics, and problems regarding this phenomena. The use of remote sensing in marine applications is also described here in order to discuss how remote sensing can be utilize to predict reef fish spawning aggregation. Based on the unique geomorphological characteristics of the spawning aggregation, remote sensing seems to be a powerful tool to determine their exact times and locations. It has been proved that satellite imagery was able to delineate specific reef geomorphologies such as shelf edges and reef promontories. Despite of the widely use of remote sensing in marine applications, in fact there are still lack of studies had been carried out regarding spawning aggregations of reef fish due to the skeptical point-of-view by certain researchers over the capability of this technique. However, there is actually no doubt that the use of remote sensing will provide a better hand to the authorities in order to establish a more effective monitoring and conservation plan for these spawning aggregations

  1. Effect of protein-surfactant interactions on aggregation of β-lactoglobulin.

    Science.gov (United States)

    Hansted, Jon G; Wejse, Peter L; Bertelsen, Hans; Otzen, Daniel E

    2011-05-01

    The milk protein β-lactoglobulin (βLG) dominates the properties of whey aggregates in food products. Here we use spectroscopic and calorimetric techniques to elucidate how anionic, cationic and non-ionic surfactants interact with bovine βLG and modulate its heat-induced aggregation. Alkyl trimethyl ammonium chlorides (xTAC) strongly promote aggregation, while sodium alkyl sulfates (SxS) and alkyl maltopyranosides (xM) reduce aggregation. Sodium dodecyl sulfate (SDS) binds to non-aggregated βLG in several steps, but reduction of aggregation was associated with the first binding step, which occurs far below the critical micelle concentration. In contrast, micellar concentrations of xMs are required to reduce aggregation. The ranking order for reduction of aggregation (normalized to their tendency to self-associate) was C10-C12>C8>C14 for SxS and C8>C10>C12>C14>C16 for xM. xTAC promote aggregation in the same ranking order as xM reduce it. We conclude that SxS reduce aggregation by stabilizing the protein's ligand-bound state (the melting temperature t(m) increases by up to 10°C) and altering its charge potential. xM monomers also stabilize the protein's ligand-bound state (increasing t(m) up to 6°C) but in the absence of charged head groups this is not sufficient by itself to prevent aggregation. Although micelles of both anionic and non-ionic surfactants destabilize βLG, they also solubilize unfolded protein monomers, leaving them unavailable for protein-protein association and thus inhibiting aggregation. Cationic surfactants promote aggregation by a combination of destabilization and charge neutralization. The food compatible surfactant sodium dodecanoate also inhibited aggregation well below the cmc, suggesting that surfactants may be a practical way to modulate whey protein properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Microbial Ecology of Soil Aggregation in Agroecosystems

    Science.gov (United States)

    Hofmockel, K. S.; Bell, S.; Tfailly, M.; Thompson, A.; Callister, S.

    2017-12-01

    Crop selection and soil texture influence the physicochemical attributes of the soil, which structures microbial communities and influences soil C cycling storage. At the molecular scale, microbial metabolites and necromass alter the soil environment, which creates feedbacks that influence ecosystem functions, including soil C accumulation. By integrating lab to field studies we aim to identify the molecules, organisms and metabolic pathways that control carbon cycling and stabilization in bioenergy soils. We investigated the relative influence of plants, microbes, and minerals on soil aggregate ecology at the Great Lakes Bioenergy Research experiment. Sites in WI and MI, USA have been in corn and switchgrass cropping systems for a decade. By comparing soil aggregate ecology across sites and cropping systems we are able to test the relative importance of plant, microbe, mineral influences on soil aggregate dynamics. Soil microbial communities (16S) differ in diversity and phylogeny among sites and cropping systems. FT-ICR MS revealed differences in the molecular composition of water-soluble fraction of soil organic matter for cropping systems and soil origin for both relative abundance of assigned formulas and biogeochemical classes of compounds. We found the degree of aggregation, measured by mean weighted diameter of aggregate fractions, is influenced by plant-soil interactions. Similarly, the proportion of soil aggregate fractions varied by both soil and plant factors. Differences in aggregation were reflected in differences in bacterial, but not fungal community composition across aggregate fractions, within each soil. Scanning electron microscopy revealed stark differences in mineral-organic interactions that influence the microbial niche and the accessibility of substrates within the soil. The clay soils show greater surface heterogeneity, enabling interactions with organic fraction of the soil. This is consistent with molecular data that reveal differences

  3. Monte Carlo simulation of aggregate morphology for simultaneous coagulation and sintering

    International Nuclear Information System (INIS)

    Schmid, Hans-Joachim; Tejwani, Saurabh; Artelt, Christian; Peukert, Wolfgang

    2004-01-01

    A model for simulation of the three-dimensional morphology of nano-structured aggregates formed by concurrent coagulation and sintering is presented. Diffusion controlled cluster-cluster aggregation is assumed to be the prevailing coagulation mechanism which is implemented using a Monte-Carlo algorithm. Sintering is modeled as a successive overlapping of spherical primary particles, which are allowed to grow as to preserve overall mass. Simulations are characterized by individual ratios τ of characteristic collision to fusion time. A number of resulting aggregate-structures is displayed and reveals structure formation by coagulation and sintering for different values of τ. These aggregates are described qualitatively and quantitatively by their mass fractal dimension D f and radius of gyration. The fractal dimension increases from 1.86 for pure aggregation to ∼ 2.75 for equal characteristic time scales. As sintering turns out to be more and more relevant, increasingly compact aggregates start to form and the radius of gyration decreases significantly. The simulation results clearly reveal a strong dependence of the fractal dimension on the kinetics of the concurrent coagulation and sintering processes. Considering appropriate values of D f in aerosol process simulations may therefore be important in many cases

  4. RECIPROCAL RELATIONSHIPS BETWEEN AGGREGATE STABILITY AND ORGANIC CARBON CHARACTERISTICS IN A FORESTED ECOSYSTEM OF NORTHERN NIGERIA

    Directory of Open Access Journals (Sweden)

    Halima Mohammed Lawal

    2012-10-01

    Full Text Available Soil organic matter associated with different size aggregates differ in structure and function; therefore, play different roles in soil organic carbon (SOC turnover. This study assessed the relationship between aggregate stability and soil organic carbon fractions in a forested soil. Aggregate stability characterized by mean weight diameter (MWD was correlated with the various pools of SOC in a regression model. Mean weight diameter presented a 46% influence on total organic carbon (TOC while, TOC accounts for 21.8% 0f aggregate stability. The unprotected and physically protected soil organic carbon did not significantly dictate stability of these soils. However, chemically protected and biochemically protected SOC influenced significantly aggregate stability of these forested soils.

  5. Development of advanced, non-toxic, synthetic radiation shielding aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Mudgal, Manish; Chouhan, Ramesh Kumar; Verma, Sarika; Amritphale, Sudhir Sitaram; Das, Satyabrata [CSIR-Advanced Materials and Processes Research Institute, Bhopal (India); Shrivastva, Arvind [Nuclear Power Corporation of India Ltd. (NPCIL), Mumbai (India)

    2018-04-01

    For the first time in the world, the capability of red mud waste has been explored for the development of advanced synthetic radiation shielding aggregate. Red mud, an aluminium industry waste consists of multi component, multi elemental characteristics. In this study, red mud from two different sources have been utilized. Chemical formulation and mineralogical designing of the red mud has been done by ceramic processing using appropriate reducing agent and additives. The chemical analysis, SEM microphotographs and XRD analysis confirms the presence of multi-component, multi shielding and multi-layered phases in both the different developed advance synthetic radiation shielding aggregate. The mechanical properties, namely aggregate impact value, aggregate crushing value and aggregate abrasion value have also been evaluated and was compared with hematite ore aggregate and found to be an excellent material useful for making advanced radiation shielding concrete for the construction of nuclear power plants and other radiation installations.

  6. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete (II) expansion and microstructure of concrete microbar

    International Nuclear Information System (INIS)

    Lu Duyou; Mei Laibao; Xu Zhongzi; Tang Mingshu; Mo Xiangyin; Fournier, Benoit

    2006-01-01

    The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer

  7. Spontaneous and Induced Platelet Aggregation during Pregnancy and Labor

    Directory of Open Access Journals (Sweden)

    T. P. Bondar

    2016-01-01

    Full Text Available Objective: to evaluate changes in characteristics of spontaneous platelet (Pt aggregation in patients with obstetric complications associated with hereditary thrombophilia.Materials and methods. Blood samples were taken from 52 recently confined women on the first day after labor; at that, ethic regulations for the preanalytical phase were followed. Determination of PlA1/ PlA2 polymorphism enotype was performed by means of amplificationrestriction analysis. Geometrical characteristics of patients' peripheral blood Pt aggregation were studied by means of AFM Integra Prima. The degree of confidence of the parameters under test was determined using the ttest, and the significance level was considered valid at P<0.05.Results. A statistical analysis of the findings demonstrated that the length of Pt aggregates in healthy pregnant women was significantly higher than that in healthy nonpregnant women at all study phases. Patients with the P1A1/P1A2 polymorphism in the GP IIb/IIIa Pt receptor gene demonstrated increased widthm height, and density of Pt aggregates. The changes were most significant during the incubation phase lasting for 15 and 30 minutes. The study of geometric parameters of different exposures demonstrated the following: the longer the incubation period, the greater the difference between geometric parameters of the aggregates (e.g. height, length, and width. Conclusion. The analysis of obtained data demonstrated that the presence of P1A1/P1A2 polymorphism in GP IIb/IIIa Pt gene receptor contributes to the decrease in the platelet response threshold and enhances the spontaneous Pt aggregation. The imaging of aggregates provides strong evidence for the accelerated growth of the aggregates in thrombotic complications of pregnancy.

  8. Light scattering method to measure red blood cell aggregation during incubation

    Science.gov (United States)

    Grzegorzewski, B.; Szołna-Chodór, A.; Baryła, J.; DreŻek, D.

    2018-01-01

    Red blood cell (RBC) aggregation can be observed both in vivo as well as in vitro. This process is a cause of alterations of blood flow in microvascular network. Enhanced RBC aggregation makes oxygen and nutrients delivery difficult. Measurements of RBC aggregation usually give a description of the process for a sample where the state of a solution and cells is well-defined and the system reached an equilibrium. Incubation of RBCs in various solutions is frequently used to study the effects of the solutions on the RBC aggregation. The aggregation parameters are compared before and after incubation while the detailed changes of the parameters during incubation remain unknown. In this paper we have proposed a method to measure red blood cell aggregation during incubation based on the well-known technique where backscattered light is used to assess the parameters of the RBC aggregation. Couette system consisting of two cylinders is adopted in the method. The incubation is observed in the Couette system. In the proposed method following sequence of rotations is adapted. Two minutes rotation is followed by two minutes stop. In this way we have obtained a time series of back scattered intensity consisting of signals respective for disaggregation and aggregation. It is shown that the temporal changes of the intensity manifest changes of RBC aggregation during incubation. To show the ability of the method to assess the effect of incubation time on RBC aggregation the results are shown for solutions that cause an increase of RBC aggregation as well as for the case where the aggregation is decreased.

  9. Reusing recycled aggregates in structural concrete

    Science.gov (United States)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  10. Assessing relationships among properties of demolished concrete, recycled aggregate and recycled aggregate concrete using regression analysis.

    Science.gov (United States)

    Tam, Vivian W Y; Wang, K; Tam, C M

    2008-04-01

    Recycled demolished concrete (DC) as recycled aggregate (RA) and recycled aggregate concrete (RAC) is generally suitable for most construction applications. Low-grade applications, including sub-base and roadwork, have been implemented in many countries; however, higher-grade activities are rarely considered. This paper examines relationships among DC characteristics, properties of their RA and strength of their RAC using regression analysis. Ten samples collected from demolition sites are examined. The results show strong correlation among the DC samples, properties of RA and RAC. It should be highlighted that inferior quality of DC will lower the quality of RA and thus their RAC. Prediction of RAC strength is also formulated from the DC characteristics and the RA properties. From that, the RAC performance from DC and RA can be estimated. In addition, RAC design requirements can also be developed at the initial stage of concrete demolition. Recommendations are also given to improve the future concreting practice.

  11. Mechanical Properties of Steel Fiber Reinforced all Lightweight Aggregate Concrete

    Science.gov (United States)

    Yang, Y. M.; Li, J. Y.; Zhen, Y.; Nie, Y. N.; Dong, W. L.

    2018-05-01

    In order to study the basic mechanical properties and failure characteristics of all lightweight aggregate concrete with different volume of steel fiber (0%, 1%, 2%), shale ceramsite is used as light coarse aggregate. The shale sand is made of light fine aggregate and mixed with different volume of steel fiber, and the mix proportion design of all lightweight aggregate concrete is carried out. The cubic compressive strength, axial compressive strength, flexural strength, splitting strength and modulus of elasticity of steel fiber all lightweight aggregate concrete were studied. Test results show that the incorporation of steel fiber can restrict the cracking of concrete, improve crack resistance; at the same time, it shows good plastic deformation ability and failure morphology. It lays a theoretical foundation for further research on the application of all lightweight aggregate concrete in structural systems.

  12. Biodiversity and Habitat Characteristics of the Bycatch Assemblages in Fish Aggregating Devices (FADs and School Sets in the Eastern Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Nerea Lezama-Ochoa

    2017-08-01

    Full Text Available This study examined diversity and habitat characteristics for bycatch assemblages in two different types of fishing (drifting fish aggregating devices sets and sets made on school of tunas in the eastern Pacific Ocean (20°S–30°N and 70°–150°W between 2005 and 2011 using biodiversity metrics and Generalized Additive Models. Bycatch information was based on data collected by onboard observers covering more than 80% of the purse seine fishing trips. Our results suggest that diversity and habitat characteristics of the bycatch assemblages differ depending of the fishing mode. Thus, diversity was mostly explained by area and set type; being higher in fish aggregating devices (FAD sets than School sets. Concretely, diversity seems to be directly related with the equatorial upwelling and the front system in FAD sets and with the Costa Rica Dome and the coastal upwelling of Panama induced by wind jets in School sets. Among environmental variables, temperature and chlorophyll were the most important predictors to describe the diversity of the bycatch assemblages. This work has investigated multiple indicators related to the bycatch assemblages and their habitat, which could be helpful for the development of an Ecosystem Approach to Fishery Management (EAFM.

  13. Feasibility Study on Manufacturing Lightweight Aggregates from Water Purification Sludge

    Science.gov (United States)

    Peng, Ching-Fang; Chen, How-Ji

    2018-02-01

    This study mainly discussed the feasibility of manufacturing lightweight aggregates from water purification sludge in Taiwan. They were analysed for the physical and chemical composition before the sintering test for lightweight aggregates in a laboratory. Then the physical and mechanical properties of the synthesized aggregates were assessed. The result showed that the chemical composition of sludge in the water purification plants was within the appropriate range for manufacturing lightweight aggregate as proposed in the literature. The sintering test demonstrated that the particle density of aggregates from the ten types of water purification sludge were mostly less than 1.8 g/cm3. In addition, the dry unit weight, the organic impurity, the ignition loss, and other characteristics of synthesized aggregates met the requirement of CNS standards, while its water absorption and crushing strength also fulfilled the general commercial specifications. Therefore, reclamation of water purification sludge for production of lightweight aggregate is indeed feasible.

  14. Plant litter chemistry alters the content and composition of organic carbon associated with soil mineral and aggregate fractions in invaded ecosystems.

    Science.gov (United States)

    Tamura, Mioko; Suseela, Vidya; Simpson, Myrna; Powell, Brian; Tharayil, Nishanth

    2017-10-01

    the higher surface area of soil minerals at this site. The plant biomarkers were lower in the aggregate fractions of the P. lobata-invaded soils, compared with noninvaded pine stands, potentially suggesting a microbial co-metabolism of pine-derived compounds. These results highlight the complex interactions among litter chemistry, soil biota, and minerals in mediating soil C storage in unmanaged ecosystems; these interactions are particularly important under global changes that may alter plant species composition and hence the quantity and chemistry of litter inputs in terrestrial ecosystems. © 2017 John Wiley & Sons Ltd.

  15. Aggregation of trypsin and trypsin inhibitor by Al cation.

    Science.gov (United States)

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-04-01

    Al cation may trigger protein structural changes such as aggregation and fibrillation, causing neurodegenerative diseases. We report the effect of Al cation on the solution structures of trypsin (try) and trypsin inhibitor (tryi), using thermodynamic analysis, UV-Visible, Fourier transform infrared (FTIR) spectroscopic methods and atomic force microscopy (AFM). Thermodynamic parameters showed Al-protein bindings occur via H-bonding and van der Waals contacts for trypsin and trypsin inhibitor. AFM showed that Al cations are able to force trypsin into larger or more robust aggregates than trypsin inhibitor, with trypsin 5±1 SE (n=52) proteins per aggregate and for trypsin inhibitor 8.3±0.7 SE (n=118). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced more alterations of trypsin inhibitor conformation than trypsin. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Weak glycolipid binding of a microdomain-tracer peptide correlates with aggregation and slow diffusion on cell membranes.

    Directory of Open Access Journals (Sweden)

    Tim Lauterbach

    Full Text Available Organized assembly or aggregation of sphingolipid-binding ligands, such as certain toxins and pathogens, has been suggested to increase binding affinity of the ligand to the cell membrane and cause membrane reorganization or distortion. Here we show that the diffusion behavior of the fluorescently tagged sphingolipid-interacting peptide probe SBD (Sphingolipid Binding Domain is altered by modifications in the construction of the peptide sequence that both result in a reduction in binding to ganglioside-containing supported lipid membranes, and at the same time increase aggregation on the cell plasma membrane, but that do not change relative amounts of secondary structural features. We tested the effects of modifying the overall charge and construction of the SBD probe on its binding and diffusion behavior, by Surface Plasmon Resonance (SPR; Biacore analysis on lipid surfaces, and by Fluorescence Correlation Spectroscopy (FCS on live cells, respectively. SBD binds preferentially to membranes containing the highly sialylated gangliosides GT1b and GD1a. However, simple charge interactions of the peptide with the negative ganglioside do not appear to be a critical determinant of binding. Rather, an aggregation-suppressing amino acid composition and linker between the fluorophore and the peptide are required for optimum binding of the SBD to ganglioside-containing supported lipid bilayer surfaces, as well as for interaction with the membrane. Interestingly, the strength of interactions with ganglioside-containing artificial membranes is mirrored in the diffusion behavior by FCS on cell membranes, with stronger binders displaying similar characteristic diffusion profiles. Our findings indicate that for aggregation-prone peptides, aggregation occurs upon contact with the cell membrane, and rather than giving a stronger interaction with the membrane, aggregation is accompanied by weaker binding and complex diffusion profiles indicative of heterogeneous

  17. Environmentalism and natural aggregate mining

    Science.gov (United States)

    Drew, L.J.; Langer, W.H.; Sachs, J.S.

    2002-01-01

    Sustaining a developed economy and expanding a developing one require the use of large volumes of natural aggregate. Almost all human activity (commercial, recreational, or leisure) is transacted in or on facilities constructed from natural aggregate. In our urban and suburban worlds, we are almost totally dependent on supplies of water collected behind dams and transported through aqueducts made from concrete. Natural aggregate is essential to the facilities that produce energy-hydroelectric dams and coal-fired powerplants. Ironically, the utility created for mankind by the use of natural aggregate is rarely compared favorably with the environmental impacts of mining it. Instead, the empty quarries and pits are seen as large negative environmental consequences. At the root of this disassociation is the philosophy of environmentalism, which flavors our perceptions of the excavation, processing, and distribution of natural aggregate. The two end-member ideas in this philosophy are ecocentrism and anthropocentrism. Ecocentrism takes the position that the natural world is a organism whose arteries are the rivers-their flow must not be altered. The soil is another vital organ and must not be covered with concrete and asphalt. The motto of the ecocentrist is "man must live more lightly on the land." The anthropocentrist wants clean water and air and an uncluttered landscape for human use. Mining is allowed and even encouraged, but dust and noise from quarry and pit operations must be minimized. The large volume of truck traffic is viewed as a real menace to human life and should be regulated and isolated. The environmental problems that the producers of natural aggregate (crushed stone and sand and gravel) face today are mostly difficult social and political concerns associated with the large holes dug in the ground and the large volume of heavy truck traffic associated with quarry and pit operations. These concerns have increased in recent years as society's demand for

  18. Steel Slag as an Aggregate Replacement in Malaysian Hot Mix Asphalt

    OpenAIRE

    Hainin, Mohd Rosli; Yusoff, Nur Izzi Md.; Mohammad Sabri, Mohd Fahmi; Abdul Aziz, Mohd Azizi; Sahul Hameed, Mohd Anwar; Farooq Reshi, Wasid

    2012-01-01

    As natural aggregate sources are becoming depleted due to high demand in road construction and the amount of disposed waste material keeps increasing, researchers are exploring the use of alternative materials which could preserve natural sources and save the environment. In this study, steel slag was used as an aggregate replacement in conventional dense graded asphalt mixes (ACW14 and ACB28). Steel slag was selected due to its characteristics, which are almost similar to conventional aggreg...

  19. Aggregate hierarchy and chemical exchange reactions

    International Nuclear Information System (INIS)

    Gerzabek, M.H.

    1994-01-01

    Recent publications show that macroaggregates (> 250 μm) may consist of microaggregates (20-250 μm) in soils, which contain organic colloids. Roots and hyphae have a potential role in the formation of macroaggregates. Fragments of roots and hyphae may serve as nuclei for smaller aggregates. This implicates that aggregate factions contain organic material of different characteristics. Especially humus in microaggregates may play a keyrole for the mobility of elements in the soil. E.g. radiocaesium extractability in the silt fraction of a Calcic Chemozem and soil-to-plant transfer was distinctly enhanced due to seven times higher C org -contents as compared to an Eutric Cambisol

  20. Thermoregulation and aggregation in neonatal bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Khan, Jameel J; Richardson, Jean M L; Tattersall, Glenn J

    2010-05-11

    Ectothermic vertebrates, such as reptiles, thermoregulate behaviorally by choosing from available temperatures in their environment. As neonates, bearded dragons (Pogona vitticeps) are often observed to aggregate in vertical strata. A proximate mechanism for this behavior is the thermal advantage of heat storage (i.e., grouped lizards benefit through a decreased surface area to volume ratio), although competition for limited thermal resources, or aggregation for social reasons are alternative explanations. This study was designed to gain an understanding of how aggregation and thermoregulation interact. We observed that both isolated and grouped individuals achieved a similar level of thermoregulation (mean T(b) over trial) within a thermal gradient, but that individuals within a group had lower thermoregulatory precision. An experimental design in which light and ambient temperature (T(a)) (20 versus 30 degrees C) were altered established that a light bulb (source of heat) was a limited and valuable resource to both isolated and grouped neonatal lizards. Lizards aggregated more when the light was on at both temperatures, suggesting that individuals were equally attracted to or repelled from the heat source, depending on the ambient temperature. These data suggest aggregation occurs in neonatal bearded dragons through mutual attraction to a common resource. Further, increased variability in thermal preference occurs in groups, demonstrating the potential for agonistic behaviors to compromise optimal thermoregulation in competitive situations, potentially leading to segregation, rather than aggregation. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.

  1. SHAPE CHARACTERIZATION OF CONCRETE AGGREGATE

    Directory of Open Access Journals (Sweden)

    Jing Hu

    2011-05-01

    Full Text Available As a composite material, the performance of concrete materials can be expected to depend on the properties of the interfaces between its two major components, aggregate and cement paste. The microstructure at the interfacial transition zone (ITZ is assumed to be different from the bulk material. In general, properties of conventional concrete have been found favoured by optimum packing density of the aggregate. Particle size is a common denominator in such studies. Size segregation in the ITZ among the binder particles in the fresh state, observed in simulation studies by concurrent algorithm-based SPACE system, additionally governs density as well as physical bonding capacity inside these shell-like zones around aggregate particles. These characteristics have been demonstrated qualitatively pertaining also after maturation of the concrete. Such properties of the ITZs have direct impact on composite properties. Despite experimental approaches revealed effects of aggregate grain shape on different features of material structure (among which density, and as a consequence on mechanical properties, it is still an underrated factor in laboratory studies, probably due to the general feeling that a suitable methodology for shape characterization is not available. A scientific argument hindering progress is the interconnected nature of size and shape. Presently, a practical problem preventing shape effects to be emphasized is the limitation of most computer simulation systems in concrete technology to spherical particles. New developments at Delft University of Technology will make it possible in the near future to generate jammed states, or other high-density fresh particle mixtures of non-spherical particles, which thereupon can be subjected to hydration algorithms. This paper will sketch the outlines of a methodological approach for shape assessment of loose (non-embedded aggregate grains, and demonstrate its use for two types of aggregate, allowing

  2. Recycling of PET bottles as fine aggregate in concrete

    International Nuclear Information System (INIS)

    Frigione, Mariaenrica

    2010-01-01

    An attempt to substitute in concrete the 5% by weight of fine aggregate (natural sand) with an equal weight of PET aggregates manufactured from the waste un-washed PET bottles (WPET), is presented. The WPET particles possessed a granulometry similar to that of the substituted sand. Specimens with different cement content and water/cement ratio were manufactured. Rheological characterization on fresh concrete and mechanical tests at the ages of 28 and 365 days were performed on the WPET/concretes as well as on reference concretes containing only natural fine aggregate in order to investigate the influence of the substitution of WPET to the fine aggregate in concrete. It was found that the WPET concretes display similar workability characteristics, compressive strength and splitting tensile strength slightly lower that the reference concrete and a moderately higher ductility.

  3. Geotechnical characteristics and stability analysis of rock-soil aggregate slope at the Gushui Hydropower Station, southwest China.

    Science.gov (United States)

    Zhou, Jia-wen; Shi, Chong; Xu, Fu-gang

    2013-01-01

    Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope.

  4. [Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau].

    Science.gov (United States)

    Li, Xin; Ma, Rui-ping; An, Shao-shan; Zeng, Quan-chao; Li, Ya-yun

    2015-08-01

    In order to explore the distribution characteristics of organic carbon of different forms and the active enzymes in soil aggregates with different particle sizes, soil samples were chosen from forest zone, forest-grass zone and grass zone in the Yanhe watershed of Loess Plateau to study the content of organic carbon, easily oxidized carbon, and humus carbon, and the activities of cellulase, β-D-glucosidase, sucrose, urease and peroxidase, as well as the relations between the soil aggregates carbon and its components with the active soil enzymes were also analyzed. It was showed that the content of organic carbon and its components were in order of forest zone > grass zone > forest-grass zone, and the contents of three forms of organic carbon were the highest in the diameter group of 0.25-2 mm. The content of organic carbon and its components, as well as the activities of soil enzymes were higher in the soil layer of 0-10 cm than those in the 10-20 cm soil layer of different vegetation zones. The activities of cellulase, β-D-glucosidase, sucrose and urease were in order of forest zone > grass zone > forest-grass zone. The peroxidase activity was in order of forest zone > forest-grass zone > grass zone. The activities of various soil enzymes increased with the decreasing soil particle diameter in the three vegetation zones. The activities of cellulose, peroxidase, sucrose and urease had significant positive correlations with the contents of various forms of organic carbon in the soil aggregates.

  5. 17-AAG induces cytoplasmic alpha-synuclein aggregate clearance by induction of autophagy.

    Science.gov (United States)

    Riedel, Michael; Goldbaum, Olaf; Schwarz, Lisa; Schmitt, Sebastian; Richter-Landsberg, Christiane

    2010-01-18

    The accumulation and aggregation of alpha-synuclein in nerve cells and glia are characteristic features of a number of neurodegenerative diseases termed synucleinopathies. alpha-Synuclein is a highly soluble protein which in a nucleation dependent process is capable of self-aggregation. The causes underlying aggregate formation are not yet understood, impairment of the proteolytic degradation systems might be involved. In the present study the possible aggregate clearing effects of the geldanamycin analogue 17-AAG (17-(Allylamino)-17-demethoxygeldanamycin) was investigated. Towards this, an oligodendroglial cell line (OLN-93 cells), stably expressing human alpha-synuclein (A53T mutation) was used. In these cells small punctate aggregates, not staining with thioflavine S, representing prefibrillary aggregates, occur characteristically. Our data demonstrate that 17-AAG attenuated the formation of alpha-synuclein aggregates by stimulating macroautophagy. By blocking the lysosomal compartment with NH(4)Cl the aggregate clearing effects of 17-AAG were abolished and alpha-synuclein deposits were enlarged. Analysis of LC3-II immunoreactivity, which is an indicator of autophagosome formation, further revealed that 17-AAG led to the recruitment of LC3-II and to the formation of LC3 positive puncta. This effect was also observed in cultured oligodendrocytes derived from the brains of newborn rats. Inhibition of macroautophagy by 3-methyladenine prevented 17-AAG induced occurrence of LC3 positive puncta as well as the removal of alpha-synuclein aggregates in OLN-A53T cells. Our data demonstrate for the first time that 17-AAG not only causes the upregulation of heat shock proteins, but also is an effective inducer of the autophagic pathway by which alpha-synuclein can be removed. Hence geldanamycin derivatives may provide a means to modulate autophagy in neural cells, thereby ameliorating pathogenic aggregate formation and protecting the cells during disease and aging.

  6. The Effects of Different Fine Recycled Concrete Aggregates on the Properties of Mortar

    Science.gov (United States)

    Fan, Cheng-Chih; Huang, Ran; Hwang, Howard; Chao, Sao-Jeng

    2015-01-01

    The practical use of recycled concrete aggregate produced by crushing concrete waste reduces the consumption of natural aggregate and the amount of concrete waste that ends up in landfills. This study investigated two methods used in the production of fine recycled concrete aggregate: (1) a method that produces fine as well as coarse aggregate, and (2) a method that produces only fine aggregate. Mortar specimens were tested using a variety of mix proportions to determine how the characteristics of fine recycled concrete aggregate affect the physical and mechanical properties of the resulting mortars. Our results demonstrate the superiority of mortar produced using aggregate produced using the second of the two methods. Nonetheless, far more energy is required to render concrete into fine aggregate than is required to produce coarse as well as fine aggregate simultaneously. Thus, the performance benefits of using only fine recycled concrete aggregate must be balanced against the increased impact on the environment.

  7. Recycling of PET bottles as fine aggregate in concrete.

    Science.gov (United States)

    Frigione, Mariaenrica

    2010-06-01

    An attempt to substitute in concrete the 5% by weight of fine aggregate (natural sand) with an equal weight of PET aggregates manufactured from the waste un-washed PET bottles (WPET), is presented. The WPET particles possessed a granulometry similar to that of the substituted sand. Specimens with different cement content and water/cement ratio were manufactured. Rheological characterization on fresh concrete and mechanical tests at the ages of 28 and 365days were performed on the WPET/concretes as well as on reference concretes containing only natural fine aggregate in order to investigate the influence of the substitution of WPET to the fine aggregate in concrete. It was found that the WPET concretes display similar workability characteristics, compressive strength and splitting tensile strength slightly lower that the reference concrete and a moderately higher ductility. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate.

    Science.gov (United States)

    Sim, Jongsung; Park, Cheolwoo

    2011-11-01

    Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Comparison of different methods for the determination of fractal characteristics of soot aggregates

    International Nuclear Information System (INIS)

    Ouf, F.X.; Coursil, C.; Vendel, J.; Coursil, C.; Gehin, E.

    2007-01-01

    Morphology of particles generated during hydrocarbons or biomass combustion is fundamental as data for characterizing the optical and aerodynamic behaviour of these particles. The fractal nature of soot particles is well known since the works of Jullien and Botet (1987). Nevertheless, the determination of the fractal morphology of these aggregates is based on direct analysis of transmission electronic microscopy (TEM) micrography (Koylo et al., 1995; Sorensen and Feke, 1996; Brasil et al., 2000) which represents a long and tiresome work. We propose in this work to use the method introduced by Kelly and McMurry (1992) and based on serial analysis of electrical mobility and aerodynamic diameters of soot aggregates. This method has been recently used by VanGulijk et al. (2004) and Park et al. (2004), and seems to bring morphological information systematically higher than the TEM analysis. In this study we will detail the TEM analysis method and the theoretical approach associated to the serial method of Kelly and McMurry (1992). We will also present the experimental setup used and the results obtained for aggregates generated during the combustion of acetylene (C 2 H 2 ), toluene (C 7 H 8 ) and Polymethyl Methacrylate (PMMA, C 5 H 8 O 2 ). These results will be compared to TEM analysis results, and discrepancies will be analysed and explained in detail. We will finally conclude on advantages and disadvantages of each method and also on potential of these approaches. The link will be thus established out with the determination of the effective density of the soot aggregates, which is presented in work of Ouf et al. (2005a). (authors)

  10. Synthetic food additive dye "Tartrazine" triggers amorphous aggregation in cationic myoglobin.

    Science.gov (United States)

    Al-Shabib, Nasser Abdulatif; Khan, Javed Masood; Khan, Mohd Shahnawaz; Ali, Mohd Sajid; Al-Senaidy, Abdulrahman M; Alsenaidy, Mohammad A; Husain, Fohad Mabood; Al-Lohedan, Hamad A

    2017-05-01

    Protein aggregation, a characteristic of several neurodegenerative diseases, displays vast conformational diversity from amorphous to amyloid-like aggregates. In this study, we have explored the interaction of tartrazine with myoglobin protein at two different pHs (7.4 and 2.0). We have utilized various spectroscopic techniques (turbidity, Rayleigh light scattering (RLS), intrinsic fluorescence, Congo Red and far-UV CD) along with microscopy techniques i.e. atomic force microscopy (AFM) and transmission electron microscopy (TEM) to characterize the tartrazine-induced aggregation in myoglobin. The results showed that higher concentrations of tartrazine (2.0-10.0mM) induced amorphous aggregation in myoglobin at pH 2.0 via electrostatic interactions. However, tartrazine was not able to induce aggregation in myoglobin at pH 7.4; because of strong electrostatic repulsion between myoglobin and tartrazine at this pH. The tartrazine-induced amorphous aggregation process is kinetically very fast, and aggregation occurred without the formation of a nucleus. These results proposed that the electrostatic interaction is responsible for tartrazine-induced amorphous aggregation. This study may help in the understanding of mechanistic insight of aggregation by tartrazine. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Aggregate complexes of HIV-1 induced by multimeric antibodies.

    Science.gov (United States)

    Stieh, Daniel J; King, Deborah F; Klein, Katja; Liu, Pinghuang; Shen, Xiaoying; Hwang, Kwan Ki; Ferrari, Guido; Montefiori, David C; Haynes, Barton; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Rerks-Ngarm, Supachai; Michael, Nelson L; Robb, Merlin L; Kim, Jerome H; Denny, Thomas N; Tomaras, Georgia D; Shattock, Robin J

    2014-10-02

    Antibody mediated viral aggregation may impede viral transfer across mucosal surfaces by hindering viral movement in mucus, preventing transcytosis, or reducing inter-cellular penetration of epithelia thereby limiting access to susceptible mucosal CD4 T cells and dendritic cells. These functions may work together to provide effective immune exclusion of virus from mucosal tissue; however little is known about the antibody characteristics required to induce HIV aggregation. Such knowledge may be critical to the design of successful immunization strategies to facilitate viral immune exclusion at the mucosal portals of entry. The potential of neutralizing and non-neutralizing IgG and IgA monoclonals (mAbs) to induce HIV-1 aggregation was assessed by Dynamic light scattering (DLS). Although neutralizing and non-neutralizing IgG mAbs and polyclonal HIV-Ig efficiently aggregated soluble Env trimers, they were not capable of forming viral aggregates. In contrast, dimeric (but not monomeric) IgA mAbs induced stable viral aggregate populations that could be separated from uncomplexed virions. Epitope specificity influenced both the degree of aggregation and formation of higher order complexes by dIgA. IgA purified from serum of uninfected RV144 vaccine trial responders were able to efficiently opsonize viral particles in the absence of significant aggregation, reflective of monomeric IgA. These results collectively demonstrate that dIgA is capable of forming stable viral aggregates providing a plausible basis for testing the effectiveness of aggregation as a potential protection mechanism at the mucosal portals of viral entry.

  12. Tunneling electron induced molecular electroluminescence from individual porphyrin J-aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qiushi; Zhang, Chao; Zhang, Yang, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn; Zhang, Yao; Liao, Yuan; Dong, Zhenchao, E-mail: zhyangnano@ustc.edu.cn, E-mail: zcdong@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2015-07-27

    We investigate molecular electroluminescence from individual tubular porphyrin J-aggregates on Au(111) by tunneling electron excitations in an ultrahigh-vacuum scanning tunneling microscope (STM). High-resolution STM images suggest a spiral tubular structure for the porphyrin J-aggregate with highly ordered “brickwork”-like arrangements. Such aggregated nanotube is found to behave like a self-decoupled molecular architecture and shows red-shifted electroluminescence characteristics of J-aggregates originated from the delocalized excitons. The positions of the emission peaks are found to shift slightly depending on the excitation sites, which, together with the changes in the observed spectral profiles with vibronic progressions, suggest a limited exciton coherence number within several molecules. The J-aggregate electroluminescence is also found unipolar, occurring only at negative sample voltages, which is presumably related to the junction asymmetry in the context of molecular excitations via the carrier injection mechanism.

  13. Optical properties of Pb-based aggregated phases in CsBr crystal

    Energy Technology Data Exchange (ETDEWEB)

    Voloshinovskii, A. [Ivan Franko National University of Lviv, 8 Kyryla i Mefodiya Str., 79005 Lviv (Ukraine); Myagkota, S. [Ivan Franko National University of Lviv, 8 Kyryla i Mefodiya Str., 79005 Lviv (Ukraine); Garapyn, I. [Ivan Franko National University of Lviv, 8 Kyryla i Mefodiya Str., 79005 Lviv (Ukraine); Stryganyuk, G. [Ivan Franko National University of Lviv, 8 Kyryla i Mefodiya Str., 79005 Lviv (Ukraine); Rodnyi, P. [St. Petersburg State Polytechnical University, 29 Polyteknicheskaya Str., 195251 St. Petersburg (Russian Federation); Eijk, C.W.E. van [Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)]. E-mail: vaneijk@iri.tudelft.nl

    2005-01-01

    The emission and excitation spectra as well as luminescence decay kinetics of a CsBr:Pb (1.0mol%) crystal have been measured under pulsed synchrotron radiation excitation. The heat-treated ({approx}200 deg. C) crystal shows evidence of single lead centres and aggregated phases such as CsPbBr3 nanocrystals. The latter have been identified from comparison of the spectral-kinetic characteristics of the CsPbBr3 aggregated phases and single crystals. The process of energy transfer from the host to the aggregates is considered.

  14. Optical properties of Pb-based aggregated phases in CsBr crystal

    International Nuclear Information System (INIS)

    Voloshinovskii, A.; Myagkota, S.; Garapyn, I.; Stryganyuk, G.; Rodnyi, P.; Eijk, C.W.E. van

    2005-01-01

    The emission and excitation spectra as well as luminescence decay kinetics of a CsBr:Pb (1.0mol%) crystal have been measured under pulsed synchrotron radiation excitation. The heat-treated (∼200 deg. C) crystal shows evidence of single lead centres and aggregated phases such as CsPbBr3 nanocrystals. The latter have been identified from comparison of the spectral-kinetic characteristics of the CsPbBr3 aggregated phases and single crystals. The process of energy transfer from the host to the aggregates is considered

  15. Electrostatic interactions drive native-like aggregation of human alanine:glyoxylate aminostransferase.

    Science.gov (United States)

    Dindo, Mirco; Conter, Carolina; Cellini, Barbara

    2017-11-01

    Protein aggregate formation is the basis of several misfolding diseases, including those displaying loss-of-function pathogenesis. Although aggregation is often attributed to the population of intermediates exposing hydrophobic surfaces, the contribution of electrostatic forces has recently gained attention. Here, we combined computational and in vitro studies to investigate the aggregation process of human peroxisomal alanine:glyoxylate aminotransferase (AGT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme involved in glyoxylate detoxification. We demonstrated that AGT is susceptible to electrostatic aggregation due to its peculiar surface charge anisotropy and that PLP binding counteracts the self-association process. The two polymorphic mutations P11L and I340M exert opposite effects. The P11L substitution enhances the aggregation tendency, probably by increasing surface charge anisotropy, while I340M plays a stabilizing role. In light of these results, we examined the effects of the most common missense mutations leading to primary hyperoxaluria type I (PH1), a rare genetic disorder associated with abnormal calcium oxalate precipitation in the urinary tract. All of them endow AGT with a strong electrostatic aggregation propensity. Moreover, we predicted that pathogenic mutations of surface residues could alter charge distribution, thus inducing aggregation under physiological conditions. A global model describing the AGT aggregation process is provided. Overall, the results indicate that the contribution of electrostatic interactions in determining the fate of proteins and the effect of amino acid substitutions should not be underestimated and provide the basis for the development of new therapeutic strategies for PH1 aimed at increasing AGT stability. © 2017 Federation of European Biochemical Societies.

  16. Development of electro fused aggregates for use in refractories for the burning zone of cement kilns

    International Nuclear Information System (INIS)

    Ferreira, Luis Leonardo Horne Curimbaba

    2006-01-01

    Electro fused aggregates are largely used in refractory production due to the better performance reached when they are employed. In this work electro fused aggregates were designed for application in refractories for the burning zone of cement kilns. Initially reaction evaluation was conducted aiming the identification of the most prone refractory systems when single refractory phases react with Portland cement phases at high temperatures. In the next step, raw materials of the best refractory systems were electro fused to generate different aggregate compositions. The electro fused aggregates properties were evaluated and the classified ones were used to produce refractory bricks for the burning zone of cement kilns. General characteristics of these bricks were measured and compared with a standard magnesia-spinel refractory. Aggregates of the system Mg O - TiO 2 - Ca O, more specifically aggregates belonged to the compatibility triangle Mg O - Mg 2 TiO 4 - CaTiO 3 , showed suitable characteristics for development of refractories for the burning zone cement kilns. (author)

  17. NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation

    NARCIS (Netherlands)

    Fernández, Claudio O.; Hoyer, Wolfgang; Zweckstetter, Markus; Jares-Erijman, Elizabeth A.; Subramaniam, Vinod; Griesinger, Christian; Jovin, Thomas M.

    2004-01-01

    The aggregation of α-synuclein is characteristic of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. The 140-aa protein is natively unstructured; thus, ligands binding to the monomeric form are of therapeutic interest. Biogenic polyamines promote the aggregation of α-synuclein

  18. Adhesion Evaluation of Asphalt-Aggregate Interface Using Surface Free Energy Method

    Directory of Open Access Journals (Sweden)

    Jie Ji

    2017-02-01

    Full Text Available The influence of organic additives (Sasobit and RH and water on the adhesion of the asphalt-aggregate interface was studied according to the surface free energy theory. Two asphalt binders (SK-70 and SK-90, and two aggregate types (limestone and basalt were used in this study. The sessile drop method was employed to test surface free energy components of asphalt, organic additives and aggregates. The adhesion models of the asphalt-aggregate interface in dry and wet conditions were established, and the adhesion work was calculated subsequently. The energy ratios were built to evaluate the effect of organic additives and water on the adhesiveness of the asphalt-aggregate interface. The results indicate that the addition of organic additives can enhance the adhesion of the asphalt-aggregate interface in dry conditions, because organic additives reduced the surface free energy of asphalt. However, the organic additives have hydrophobic characteristics and are sensitive to water. As a result, the adhesiveness of the asphalt-aggregate interface of the asphalt containing organic additives in wet conditions sharply decreased due to water damage to asphalt and organic additives. Furthermore, the compatibility of asphalt, aggregate with organic additive was noted and discussed.

  19. Rydberg aggregates

    Science.gov (United States)

    Wüster, S.; Rost, J.-M.

    2018-02-01

    We review Rydberg aggregates, assemblies of a few Rydberg atoms exhibiting energy transport through collective eigenstates, considering isolated atoms or assemblies embedded within clouds of cold ground-state atoms. We classify Rydberg aggregates, and provide an overview of their possible applications as quantum simulators for phenomena from chemical or biological physics. Our main focus is on flexible Rydberg aggregates, in which atomic motion is an essential feature. In these, simultaneous control over Rydberg-Rydberg interactions, external trapping and electronic energies, allows Born-Oppenheimer surfaces for the motion of the entire aggregate to be tailored as desired. This is illustrated with theory proposals towards the demonstration of joint motion and excitation transport, conical intersections and non-adiabatic effects. Additional flexibility for quantum simulations is enabled by the use of dressed dipole-dipole interactions or the embedding of the aggregate in a cold gas or Bose-Einstein condensate environment. Finally we provide some guidance regarding the parameter regimes that are most suitable for the realization of either static or flexible Rydberg aggregates based on Li or Rb atoms. The current status of experimental progress towards enabling Rydberg aggregates is also reviewed.

  20. Production of lightweight aggregates from washing aggregate sludge and fly ash

    Science.gov (United States)

    González-Corrochano, Beatriz; Alonso-Azcárate, Jacinto; Rodas, Magdalena

    2010-05-01

    Increasing generation of wastes is one of the main environmental problems in industrialised countries. Heat treatment at high temperatures can convert some types of wastes into ceramic products with a wide range of microstructural features and properties (Bethanis et al., 2004). A lightweight aggregate (LWA) is a granular material with a bulk density (bd) not exceeding 1.20 g/cm3 or with a particle density not exceeding 2.00 g/cm3 (UNE-EN-13055-1, 2003). They have become a focus of interest because the low particle density and the low bulk density entail a decrease in the load transmitted to the ground, and less work and effort are required to transport them (De' Gennaro et al., 2004). The benefits associated with these low densities, which are due to the formation of voids and pores, are very good thermal and acoustic insulation and materials with a good resistance to fire (Benbow, 1987; Fakhfakh et al., 2007). The objective was to recycle fly ash, used motor oil from cars and mineral wastes from washing aggregate sludge, in order to obtain a usable material such as lightweight aggregates, and also to ensure that they are of good quality for different applications. Raw materials have been physically, chemically and mineralogically characterized. On the basis of the results obtained, they were mixed, milled to a grain size of less than 200 μm (Yasuda, 1991), formed into pellets, pre-heated for 5 min and sintered in a rotary kiln at 1150°C, 1175°C, 1200°C and 1225°C for 10 and 15 min at each temperature (Theating). Effects of raw material characteristics, heating temperature and dwell time on the following LWAs properties were determined: loss on ignition (LOI), bloating index (BI), loose bulk density (bd), apparent and dry particle density (ad, dd), voids (H), water absorption (WA24h) and compressive strength (S). The products obtained were lightweight aggregates in accordance with norm UNE-EN-13055-1 (bd ≤1.20 g/cm3 or particle density ≤2.00 g/cm3). LWAs

  1. The Effect of Morphological Characteristic of Coarse Aggregates Measured with Fractal Dimension on Asphalt Mixture’s High-Temperature Performance

    Directory of Open Access Journals (Sweden)

    Hainian Wang

    2016-01-01

    Full Text Available The morphological properties of coarse aggregates, such as shape, angularity, and surface texture, have a great influence on the mechanical performance of asphalt mixtures. This study aims to investigate the effect of coarse aggregate morphological properties on the high-temperature performance of asphalt mixtures. A modified Los Angeles (LA abrasion test was employed to produce aggregates with various morphological properties by applying abrasion cycles of 0, 200, 400, 600, 800, 1000, and 1200 on crushed angular aggregates. Based on a laboratory-developed Morphology Analysis System for Coarse Aggregates (MASCA, the morphological properties of the coarse aggregate particles were quantified using the index of fractal dimension. The high-temperature performances of the dense-graded asphalt mixture (AC-16, gap-graded stone asphalt mixture (SAC-16, and stone mastic asphalt (SMA-16 mixtures containing aggregates with different fractal dimensions were evaluated through the dynamic stability (DS test and the penetration shear test in laboratory. Good linear correlations between the fractal dimension and high-temperature indexes were obtained for all three types of mixtures. Moreover, the results also indicated that higher coarse aggregate angularity leads to stronger high-temperature shear resistance of asphalt mixtures.

  2. Recycling of quarry waste as part of sustainable aggregate production: Norwegian and Italian point of view

    Science.gov (United States)

    Antonella Dino, Giovanna; Willy Danielsen, Svein; Chiappino, Claudia; Primavori, Piero; Engelsen, Christian John

    2016-04-01

    Resource preservation is one of the main challenges in Europe, together with waste management and recycling; recently several researchers are interested in the recovering of critical raw materials and secondary raw materials from landfill. Aggregate supply, even if it is not "critical" sensus stricto (s.s.), is one of the European priorities (low value but high volume needs). On the other side, the management of quarry waste , mainly from dimension stones, but also as fines from aggregate crushing, is still a matter of concern. Such materials are managed in different ways both locally and nationwide, and often they are landfilled, because of an unclear legislation and a general lack of data. Most of time the local authorities adopt the maximum precaution principle or the enterprises find it little profitable to recover them, so that the sustainable recycling of such material is not valued. Several studies have shown, depending on the material specific characteristics, the viability of recycling quarry waste into new raw materials used in glass and ceramic industries, precast concrete production, infrastructures etc. (Loudes et al. 2012, Dino&Marian 2015, Bozzola et al 2012, Dino et al. 2012, etc.). Thus, aggregate production may be one of the profitable ways to use quarry waste and is falling under the priority of EU (aggregate supply). Positive economic and environmental effects are likely to be achieved by systematic recycling of quarry waste planned by industries (industrial planning) and public authorities (national and local planning of aggregate exploitation). Today, the recycling level varies to a great extent and systematic recovery is not common among European Countries. In Italy and Norway no significant incentives on recycling or systematic approaches for local aggregate exploitation exist. The environmental consequences can be overexploitation of the natural resources, land take for the landfills, environmental contamination and landscape alteration by

  3. Enhanced fuzzy-connective-based hierarchical aggregation network using particle swarm optimization

    Science.gov (United States)

    Wang, Fang-Fang; Su, Chao-Ton

    2014-11-01

    The fuzzy-connective-based aggregation network is similar to the human decision-making process. It is capable of aggregating and propagating degrees of satisfaction of a set of criteria in a hierarchical manner. Its interpreting ability and transparency make it especially desirable. To enhance its effectiveness and further applicability, a learning approach is successfully developed based on particle swarm optimization to determine the weights and parameters of the connectives in the network. By experimenting on eight datasets with different characteristics and conducting further statistical tests, it has been found to outperform the gradient- and genetic algorithm-based learning approaches proposed in the literature; furthermore, it is capable of generating more accurate estimates. The present approach retains the original benefits of fuzzy-connective-based aggregation networks and is widely applicable. The characteristics of the learning approaches are also discussed and summarized, providing better understanding of the similarities and differences among these three approaches.

  4. Natural aggregate totally replacement by mechanically treated concrete waste

    Directory of Open Access Journals (Sweden)

    Junak Jozef

    2015-06-01

    Full Text Available This paper presents the results obtained from the research focused on the utilization of crushed concrete waste aggregates as a partial or full replacement of 4/8 and 8/16 mm natural aggregates fraction in concrete strength class C 16/20. Main concrete characteristics such as workability, density and compressive strength were studied. Compressive strength testing intervals for samples with recycled concrete aggregates were 2, 7, 14 and 28 days. The amount of water in the mixtures was indicative. For mixture resulting consistency required slump grade S3 was followed. Average density of all samples is in the range of 2250 kg/m3 to 2350 kg/m3. The highest compressive strength after 28 days of curing, 34.68 MPa, reached sample, which contained 100% of recycled material in 4/8 mm fraction and 60% of recycled aggregates in 8/16 mm fraction. This achieved value was only slightly different from the compressive strength 34.41 MPa of the reference sample.

  5. Optical properties of Pb2 -based aggregated phases in CsBr Thin film and single crystal matrices

    Science.gov (United States)

    Nikl, M.; Nitsch, K.; Mihokova, E.; Polak, K.; Fabeni, P.; Pazzi, G. P.; Gurioli, M.; Phani, R.; Santucci, S.; Scacco, A.; Somma, F.

    Emission characteristics of CsPbBr3 and Cs4PbBr6 aggregates in CsBr bulk and thin film matrices are reported. The emission of the former aggregated phase is peaking about 520-560 nm. It shows small Stokes shift (50 meV) related to narrow free exciton emission line of sub-nanosecond decay times. Quantum size effect was evidenced for the aggregates of 6-7 nm in diameter. The Cs4PbBr6 aggregates show emission peak at 375 nm and overall emission characteristics are similar to those of KBr: Pb, which is explained by very close local arrangement of emission centres-(PbBr6)4- octahedra-in both structures.

  6. Analysis of Geological, Mechanical and Characteristics of Aggregates Used in Tailings Ponds

    Directory of Open Access Journals (Sweden)

    G. Ertugrul

    2017-01-01

    Full Text Available Increasing social demand, economic developments, consumption fluctuations, urbanization, industrialization, modernization, population growth and technical needs have resulted due toincrease in the production of natural resources throughout the world. However, there is a less importance focused on the environmental regulations. Waste water is one of the environmental problemsthatmining activities may cause. It contains a lot of solid and liquid contaminants.Aggregatesare found among the most abundant ones in natural resources. They are obtained from river basins, sea and lake edges, quarries and industries as by products and waste. During mining activities or terminated mining activities, these materials are used in the creation of stability, impermeability and settlement of tailings dam. In this paper, construction of tailings pond by using aggregates are given in detail together with their classification, particle stability, particle shape, particle size, particle texture, covered in minerals of particle, particle porosity and trending to chemical reactivity of aggregates.

  7. A sound worth saving: acoustic characteristics of a massive fish spawning aggregation.

    Science.gov (United States)

    Erisman, Brad E; Rowell, Timothy J

    2017-12-01

    Group choruses of marine animals can produce extraordinarily loud sounds that markedly elevate levels of the ambient soundscape. We investigated sound production in the Gulf corvina ( Cynoscion othonopterus ), a soniferous marine fish with a unique reproductive behaviour threatened by overfishing, to compare with sounds produced by other marine animals. We coupled echosounder and hydrophone surveys to estimate the magnitude of the aggregation and sounds produced during spawning. We characterized individual calls and documented changes in the soundscape generated by the presence of as many as 1.5 million corvina within a spawning aggregation spanning distances up to 27 km. We show that calls by male corvina represent the loudest sounds recorded in a marine fish, and the spatio-temporal magnitude of their collective choruses are among the loudest animal sounds recorded in aquatic environments. While this wildlife spectacle is at great risk of disappearing due to overfishing, regional conservation efforts are focused on other endangered marine animals. © 2017 The Author(s).

  8. A study of concrete properties using phyllite as coarse aggregates

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Afrifa, Russell Owusu

    2010-01-01

    Nowadays, industrial activities generate a huge amount of waste. One such activity is underground mining which generates phyllite wastes that are recycled as coarse aggregates for use in concrete production. Aggregate use in concrete is dependent on availability. This paper reports of an experimental study on some of the physical and mechanical properties of phyllite aggregate concrete as compared to granite (conventional) aggregate concrete. The obtained physical and mechanical properties of both aggregates for specific gravity, water absorption (%), dry density, aggregate impact value (%), aggregate crushing value (%), 10% fines, elongation index (%), flakiness index (%) and Los Angeles abrasion values satisfied minimum requirements for aggregates suitable for concrete production. Five mixes of concrete mix proportions designated M1, M2, M3, M4 and M5 were cast using phyllite and granite aggregates. A total of 400 concrete cubes and 210 modulus of rupture beams were cast and cured by total submerging in water for ages 3, 7, 14, 28, 56, 90, 180 and 360 days before compression and bending tests were performed. The results show that the trends in the development of compressive and bending strengths of plain phyllite concrete were similar to those in granite (conventional) aggregate concrete. However the compressive and bending strengths of phyllite concrete mixes were on the average 15-20% lower than those of the corresponding granite concrete mixes at all ages. The same concrete mix proportions gave lower concrete classes for phyllite compared to granite with the exception of the lowest grade. This was probably because the flakiness and elongation properties coupled with reactive materials in phyllite aggregates affect the absorption and bond characteristics of its concrete.

  9. Regular exercise training reverses ectonucleotidase alterations and reduces hyperaggregation of platelets in metabolic syndrome patients.

    Science.gov (United States)

    Martins, Caroline Curry; Bagatini, Margarete Dulce; Cardoso, Andréia Machado; Zanini, Daniela; Abdalla, Fátima Husein; Baldissarelli, Jucimara; Dalenogare, Diéssica Padilha; Farinha, Juliano Boufleur; Schetinger, Maria Rosa Chitolina; Morsch, Vera Maria

    2016-02-15

    Alterations in the activity of ectonucleotidase enzymes have been implicated in cardiovascular diseases, whereas regular exercise training has been shown to prevent these alterations. However, nothing is known about it relating to metabolic syndrome (MetS). We investigated the effect of exercise training on platelet ectonucleotidase enzymes and on the aggregation profile of MetS patients. We studied 38 MetS patients who performed regular concurrent exercise training for 30 weeks. Anthropometric measurements, biochemical profiles, hydrolysis of adenine nucleotides in platelets and platelet aggregation were collected from patients before and after the exercise intervention as well as from individuals of the control group. An increase in the hydrolysis of adenine nucleotides (ATP, ADP and AMP) and a decrease in adenosine deamination in the platelets of MetS patients before the exercise intervention were observed (Pexercise training (Pexercise training prevented platelet hyperaggregation in addition to decrease the classic cardiovascular risks. An alteration of ectonucleotidase enzymes occurs during MetS, whereas regular exercise training had a protective effect on these enzymes and on platelet aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Biogenic silica dissolution in diatom aggregates: insights from reactive transport modelling

    KAUST Repository

    Moriceau, B

    2014-12-15

    © Inter-Research 2014. Diatom aggregates contribute significantly to the vertical sinking flux of particulate matter in the ocean. These fragile structures form a specific microhabitat for the aggregated cells, but their internal chemical and physical characteristics remain largely unknown. Studies on the impact of aggregation on the Si cycle led to apparent inconsistency. Despite a lower biogenic silica (bSiO2) dissolution rate and diffusion of the silicic acid (dSi) being similar in aggregates and in sea-water, dSi surprisingly accumulates in aggregates. A reaction-diffusion model helps to clarify this incoherence by reconstructing dSi accumulation measured during batch experiments with aggregated and non-aggregated Skeletonema marinoi and Chaetoceros decipiens. The model calculates the effective bSiO2 dissolution rate as opposed to the experimental apparent bSiO2 dissolution rate, which is the results of the effective dissolution of bSiO2 and transport of dSi out of the aggregate. In the model, dSi transport out of the aggregate is modulated by alternatively considering retention (decrease of the dSi diffusion constant) and adsorption (reversible chemical bonds between dSi and the aggregate matrix) processes. Modelled bSiO2 dissolution is modulated by the impact of dSi concentration inside aggregates and diatom viability, as enhanced persistence of metabolically active diatoms has been observed in aggregates. Adsorption better explains dSi accumulation within and outside aggregates, raising the possible importance of dSi travelling within aggregates to the deep sea (potentially representing 20% of the total silica flux). The model indicates that bSiO2 dissolution is effectively decreased in aggregates mainly due to higher diatom viability but also to other parameters discussed herein.

  11. Effects of acute and chronic psychological stress on platelet aggregation in mice.

    Science.gov (United States)

    Matsuhisa, Fumikazu; Kitamura, Nobuo; Satoh, Eiki

    2014-03-01

    Although psychological stress has long been known to alter cardiovascular function, there have been few studies on the effect of psychological stress on platelets, which play a pivotal role in cardiovascular disease. In the present study, we investigated the effects of acute and chronic psychological stress on the aggregation of platelets and platelet cytosolic free calcium concentration ([Ca(2+)]i). Mice were subjected to both transportation stress (exposure to novel environment, psychological stress) and restraint stress (psychological stress) for 2 h (acute stress) or 3 weeks (2 h/day) (chronic stress). In addition, adrenalectomized mice were subjected to similar chronic stress (both transportation and restraint stress for 3 weeks). The aggregation of platelets from mice and [Ca(2+)]i was determined by light transmission assay and fura-2 fluorescence assay, respectively. Although acute stress had no effect on agonist-induced platelet aggregation, chronic stress enhanced the ability of the platelet agonists thrombin and ADP to stimulate platelet aggregation. However, chronic stress failed to enhance agonist-induced increase in [Ca(2+)]i. Adrenalectomy blocked chronic stress-induced enhancement of platelet aggregation. These results suggest that chronic, but not acute, psychological stress enhances agonist-stimulated platelet aggregation independently of [Ca(2+)]i increase, and the enhancement may be mediated by stress hormones secreted from the adrenal glands.

  12. Towards control of aggregational behaviour of alpha-lactalbumin at acidic pH.

    Science.gov (United States)

    Pedersen, Jane B; Fojan, Peter; Sorensen, John; Petersen, Steffen B

    2006-07-01

    alpha-Lactalbumin (alpha-La) undergoes considerable structural changes upon loss of bound Ca2+ at acidic pH, leaving alpha-La in a molten globule structure. Using fluorescence the present work provides more insight into the structural transition of alpha-La at acidic pH leading to protein aggregation, most likely caused by a combination of hydrophobic and electrostatic interactions. The rate of aggregation is determined by the protein concentration and temperature applied. Availability of Ca2+ stabilises the protein, and thus prevent aggregation at pH values as low as pH 2.9. In contrast, presence of Cu2+ induces a destabilisation of the protein, which can be explained by a binding to the Zn2+ binding site in alpha-La, possibly resulting in structural alterations of the protein. In general, presence of anions destabilize alpha-La at pH values below pI, with SO4(2-) exhibiting the strongest effect on the protein stability, thus correlating well with the Hofmeister series. At more acidic pH values far from pI, alpha-La becomes more stable towards ion induced aggregation, since higher ion activity is required to efficiently screen the charges on the protein surface. The results presented in this paper provide detailed knowledge on the external parameters leading to aggregation of alpha-La at acidic pH, thus permitting rational design of the aggregation process.

  13. Protein aggregates and novel presenilin gene variants in idiopathic dilated cardiomyopathy.

    Science.gov (United States)

    Gianni, Davide; Li, Airong; Tesco, Giuseppina; McKay, Kenneth M; Moore, John; Raygor, Kunal; Rota, Marcello; Gwathmey, Judith K; Dec, G William; Aretz, Thomas; Leri, Annarosa; Semigran, Marc J; Anversa, Piero; Macgillivray, Thomas E; Tanzi, Rudolph E; del Monte, Federica

    2010-03-16

    Heart failure is a debilitating condition resulting in severe disability and death. In a subset of cases, clustered as idiopathic dilated cardiomyopathy (iDCM), the origin of heart failure is unknown. In the brain of patients with dementia, proteinaceous aggregates and abnormal oligomeric assemblies of beta-amyloid impair cell function and lead to cell death. We have similarly characterized fibrillar and oligomeric assemblies in the hearts of iDCM patients, pointing to abnormal protein aggregation as a determinant of iDCM. We also showed that oligomers alter myocyte Ca(2+) homeostasis. Additionally, we have identified 2 new sequence variants in the presenilin-1 (PSEN1) gene promoter leading to reduced gene and protein expression. We also show that presenilin-1 coimmunoprecipitates with SERCA2a. On the basis of these findings, we propose that 2 mechanisms may link protein aggregation and cardiac function: oligomer-induced changes on Ca(2+) handling and a direct effect of PSEN1 sequence variants on excitation-contraction coupling protein function.

  14. Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.

    Science.gov (United States)

    Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao

    2017-12-07

    In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.

  15. Structure of fullerene aggregates in pyridine/water solutions by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Belushkin, A.V.; Avdeev, M.V.; Rosta, L.; Mihailovic, D.; Mrzel, A.; Serdyuk, I.N.; Timchenko, A.A.

    2001-01-01

    Results of small-angle neutron scattering experiments on fullerenes (C 60 ) in pyridine/water solutions are reported. They confirm conclusions of the previous studies, in particular, dynamic light scattering experiments. Aggregates with characteristic radius of about 20 nm are formed in the solutions. The contrast variation using different combinations of protonated/deuterated components (water and pyridine) of the solutions points to the small pyridine content inside the aggregates. This fact testifies that the aggregates consist of a massive fullerene core covered by a thin pyridine shell

  16. Long-term manure amendments reduced soil aggregate stability via redistribution of the glomalin-related soil protein in macroaggregates

    Science.gov (United States)

    Xie, Hongtu; Li, Jianwei; Zhang, Bin; Wang, Lianfeng; Wang, Jingkuan; He, Hongbo; Zhang, Xudong

    2015-01-01

    Glomalin-related soil protein (GRSP) contributes to the formation and maintenance of soil aggregates, it is however remains unclear whether long-term intensive manure amendments alter soil aggregates stability and whether GRSP regulates these changes. Based on a three-decade long fertilization experiment in northeast China, this study examined the impact of long-term manure input on soil organic carbon (SOC), total and easily extractable GRSP (GRSPt and GRSPe) and their respective allocations in four soil aggregates (>2000 μm; 2000–250 μm; 250–53 μm; and soil and SOC in each aggregate generally increased with increasing manure input, GRSPt and GRSPe in each aggregate showed varying changes with manure input. Both GRSP in macroaggregates (2000–250 μm) were significantly higher under low manure input, a pattern consistent with changes in soil aggregate stability. Constituting 38~49% of soil mass, macroaggregates likely contributed to the nonlinear changes of aggregate stability under manure amendments. The regulatory process of GRSP allocations in soil aggregates has important implications for manure management under intensive agriculture. PMID:26423355

  17. Modelling strategies to break transmission of lymphatic filariasis--aggregation, adherence and vector competence greatly alter elimination.

    Science.gov (United States)

    Irvine, M A; Reimer, L J; Njenga, S M; Gunawardena, S; Kelly-Hope, L; Bockarie, M; Hollingsworth, T D

    2015-10-22

    With ambitious targets to eliminate lymphatic filariasis over the coming years, there is a need to identify optimal strategies to achieve them in areas with different baseline prevalence and stages of control. Modelling can assist in identifying what data should be collected and what strategies are best for which scenarios. We develop a new individual-based, stochastic mathematical model of the transmission of lymphatic filariasis. We validate the model by fitting to a first time point and predicting future timepoints from surveillance data in Kenya and Sri Lanka, which have different vectors and different stages of the control programme. We then simulate different treatment scenarios in low, medium and high transmission settings, comparing once yearly mass drug administration (MDA) with more frequent MDA and higher coverage. We investigate the potential impact that vector control, systematic non-compliance and different levels of aggregation have on the dynamics of transmission and control. In all settings, increasing coverage from 65 to 80 % has a similar impact on control to treating twice a year at 65 % coverage, for fewer drug treatments being distributed. Vector control has a large impact, even at moderate levels. The extent of aggregation of parasite loads amongst a small portion of the population, which has been estimated to be highly variable in different settings, can undermine the success of a programme, particularly if high risk sub-communities are not accessing interventions. Even moderate levels of vector control have a large impact both on the reduction in prevalence and the maintenance of gains made during MDA, even when parasite loads are highly aggregated, and use of vector control is at moderate levels. For the same prevalence, differences in aggregation and adherence can result in very different dynamics. The novel analysis of a small amount of surveillance data and resulting simulations highlight the need for more individual level data to be

  18. Aggregation and network formation in self-assembly of protein (H3.1) by a coarse-grained Monte Carlo simulation

    Science.gov (United States)

    Pandey, R. B.; Farmer, B. L.

    2014-11-01

    Multi-scale aggregation to network formation of interacting proteins (H3.1) are examined by a knowledge-based coarse-grained Monte Carlo simulation as a function of temperature and the number of protein chains, i.e., the concentration of the protein. Self-assembly of corresponding homo-polymers of constitutive residues (Cys, Thr, and Glu) with extreme residue-residue interactions, i.e., attractive (Cys-Cys), neutral (Thr-Thr), and repulsive (Glu-Glu), are also studied for comparison with the native protein. Visual inspections show contrast and similarity in morphological evolutions of protein assembly, aggregation of small aggregates to a ramified network from low to high temperature with the aggregation of a Cys-polymer, and an entangled network of Glu and Thr polymers. Variations in mobility profiles of residues with the concentration of the protein suggest that the segmental characteristic of proteins is altered considerably by the self-assembly from that in its isolated state. The global motion of proteins and Cys polymer chains is enhanced by their interacting network at the low temperature where isolated chains remain quasi-static. Transition from globular to random coil transition, evidenced by the sharp variation in the radius of gyration, of an isolated protein is smeared due to self-assembly of interacting networks of many proteins. Scaling of the structure factor S(q) with the wave vector q provides estimates of effective dimension D of the mass distribution at multiple length scales in self-assembly. Crossover from solid aggregates (D ˜ 3) at low temperature to a ramified fibrous network (D ˜ 2) at high temperature is observed for the protein H3.1 and Cys polymers in contrast to little changes in mass distribution (D ˜ 1.6) of fibrous Glu- and Thr-chain configurations.

  19. Aggregation-primed molten globule conformers of the p53 core domain provide potential tools for studying p53C aggregation in cancer.

    Science.gov (United States)

    Pedrote, Murilo M; de Oliveira, Guilherme A P; Felix, Adriani L; Mota, Michelle F; Marques, Mayra de A; Soares, Iaci N; Iqbal, Anwar; Norberto, Douglas R; Gomes, Andre M O; Gratton, Enrico; Cino, Elio A; Silva, Jerson L

    2018-05-31

    The functionality of the tumor suppressor p53 is altered in more than 50% of human cancers, and many individuals with cancer exhibit amyloid-like buildups of aggregated p53. An understanding of what triggers the pathogenic amyloid conversion of p53 is required for the further development of cancer therapies. Here, perturbation of the p53 core domain (p53C) with sub-denaturing concentrations of guanidine hydrochloride and high hydrostatic pressure revealed native-like molten globule (MG) states, a subset of which were highly prone to amyloidogenic aggregation. We found that MG conformers of p53C, likely representing population-weighted averages of multiple states, have different volumetric properties, as determined by pressure perturbation and size-exclusion chromatography. We also found that they bind the fluorescent dye 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and have a native-like tertiary structure that occludes the single Trp residue in p53. Fluorescence experiments revealed conformational changes of the single Trp and Tyr residues before p53 unfolding and the presence of MG conformers, some of which were highly prone to aggregation. P53C exhibited marginal unfolding cooperativity, which could be modulated from unfolding to aggregation pathways with chemical or physical forces. We conclude that trapping amyloid precursor states in solution is a promising approach for understanding p53 aggregation in cancer. Our findings support the use of single-Trp fluorescence as a probe for evaluating p53 stability, effects of mutations, and the efficacy of therapeutics designed to stabilize p53. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The evaluation of the factors that cause aggregation during recombinant expression in E. coli is simplified by the employment of an aggregation-sensitive reporter

    Directory of Open Access Journals (Sweden)

    Martinez Lucia

    2006-09-01

    Full Text Available Abstract Background The yields of soluble recombinant proteins expressed in bacteria are often low due to the tendency of the heterologous proteins to form aggregates. Therefore, aggregation reporters have been envisaged to simplify the comparison among different expression conditions and to speed up the identification of suitable protocols that improve the solubility. The probe we used is composed by an IbpAB promoter specifically activated by protein aggregates fused to a sequence coding the β-galactosidase, the activity of which becomes, therefore, indicative of the aggregation degree. Results The collected data show that the probe is reliable in terms of reproducibility inside a range of experimental conditions and faster and more sensitive than the analysis methods based on SDS-PAGE and successive western blot. The β-galactosidase probe was useful to identify which parameters could influence the aggregation of the model proteins and to set up an optimized expression protocol. The effect of growth temperature, induction modality, co-expression with molecular chaperones and addition of osmolytes on the accumulation of aggregates were evaluated following the β-galactosidase activity. Interestingly, a significant correlation was observed between estimated decreased aggregation and higher yields of soluble protein. We also compared a set of expression vectors with various regulative features and found that the single characteristics, like promoter, copy number or polymerase, were not relevant for controlling the recombinant protein aggregation whilst the crucial factor resulted being the total expression rate of the system. Conclusion The aggregation reporter used in our experiments represents a useful tool to evaluate the different factors that can be modulated to optimize a recombinant expression protocol. Furthermore, the rapid estimation of the aggregation degree enables to discriminate this from other causes responsible for scarce

  1. Characterization of Diesel Soot Aggregates by Scattering and Extinction Methods

    Science.gov (United States)

    Kamimoto, Takeyuki

    2006-07-01

    Characteristics of diesel soot particles sampled from diesel exhaust of a common-rail turbo-charged diesel engine are quantified by scattering and extinction diagnostics using newly build two laser-based instruments. The radius of gyration representing the aggregates size is measured by the angular distribution of scattering intensity, while the soot mass concentration is measured by a two-wavelength extinction method. An approach to estimate the refractive index of diesel soot by an analysis of the extinction and scattering data using an aggregates scattering theory is proposed.

  2. Characterization of Diesel Soot Aggregates by Scattering and Extinction Methods

    International Nuclear Information System (INIS)

    Kamimoto, Takeyuki

    2006-01-01

    Characteristics of diesel soot particles sampled from diesel exhaust of a common-rail turbo-charged diesel engine are quantified by scattering and extinction diagnostics using newly build two laser-based instruments. The radius of gyration representing the aggregates size is measured by the angular distribution of scattering intensity, while the soot mass concentration is measured by a two-wavelength extinction method. An approach to estimate the refractive index of diesel soot by an analysis of the extinction and scattering data using an aggregates scattering theory is proposed

  3. Investigations on Fresh and Hardened Properties of Recycled Aggregate Self Compacting Concrete

    Science.gov (United States)

    Revathi, P.; Selvi, R. S.; Velin, S. S.

    2013-09-01

    In the recent years, construction and demolition waste management issues have attracted the attention from researchers around the world. In the present study, the potential usage of recycled aggregate obtained from crushed demolition waste for making self compacting concrete (SCC) was researched. The barriers in promoting the use of recycled material in new construction are also discussed. In addition, the results of an experimental study involving the use of recycled concrete aggregate as coarse aggregates for producing self-compacting concrete to study their flow and strength characteristics are also presented. Five series of mixture were prepared with 0, 25, 50, 75, and 100 % coarse recycled aggregate adopting Nan Su's mix proportioning method. The fresh concrete properties were evaluated through the slump flow, J-ring and V-funnel tests. Compressive and tensile strengths were also determined. The results obtained showed that SCC could be successfully developed by incorporating recycled aggregates.

  4. Modeling coupled nanoparticle aggregation and transport in porous media: a Lagrangian approach.

    Science.gov (United States)

    Taghavy, Amir; Pennell, Kurt D; Abriola, Linda M

    2015-01-01

    Changes in nanoparticle size and shape due to particle-particle interactions (i.e., aggregation or agglomeration) may significantly alter particle mobility and retention in porous media. To date, however, few modeling studies have considered the coupling of transport and particle aggregation processes. The majority of particle transport models employ an Eulerian modeling framework and are, consequently, limited in the types of collisions and aggregate sizes that can be considered. In this work, a more general Lagrangian modeling framework is developed and implemented to explore coupled nanoparticle aggregation and transport processes. The model was verified through comparison of model simulations to published results of an experimental and Eulerian modeling study (Raychoudhury et al., 2012) of carboxymethyl cellulose (CMC)-modified nano-sized zero-valent iron particle (nZVI) transport and retention in water-saturated sand columns. A model sensitivity analysis reveals the influence of influent particle concentration (ca. 70 to 700 mg/L), primary particle size (10-100 nm) and pore water velocity (ca. 1-6 m/day) on particle-particle, and, consequently, particle-collector interactions. Model simulations demonstrate that, when environmental conditions promote particle-particle interactions, neglecting aggregation effects can lead to under- or over-estimation of nanoparticle mobility. Results also suggest that the extent to which higher order particle-particle collisions influence aggregation kinetics will increase with the fraction of primary particles. This work demonstrates the potential importance of time-dependent aggregation processes on nanoparticle mobility and provides a numerical model capable of capturing/describing these interactions in water-saturated porous media. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Marine Synechococcus Aggregation

    Science.gov (United States)

    Neuer, S.; Deng, W.; Cruz, B. N.; Monks, L.

    2016-02-01

    Cyanobacteria are considered to play an important role in the oceanic biological carbon pump, especially in oligotrophic regions. But as single cells are too small to sink, their carbon export has to be mediated by aggregate formation and possible consumption by zooplankton producing sinking fecal pellets. Here we report results on the aggregation of the ubiquitous marine pico-cyanobacterium Synechococcus as a model organism. We first investigated the mechanism behind such aggregation by studying the potential role of transparent exopolymeric particles (TEP) and the effects of nutrient (nitrogen or phosphorus) limitation on the TEP production and aggregate formation of these pico-cyanobacteria. We further studied the aggregation and subsequent settling in roller tanks and investigated the effects of the clays kaolinite and bentonite in a series of concentrations. Our results show that despite of the lowered growth rates, Synechococcus in nutrient limited cultures had larger cell-normalized TEP production, formed a greater volume of aggregates, and resulted in higher settling velocities compared to results from replete cultures. In addition, we found that despite their small size and lack of natural ballasting minerals, Synechococcus cells could still form aggregates and sink at measureable velocities in seawater. Clay minerals increased the number and reduced the size of aggregates, and their ballasting effects increased the sinking velocity and carbon export potential of aggregates. In comparison with the Synechococcus, we will also present results of the aggregation of the pico-cyanobacterium Prochlorococcus in roller tanks. These results contribute to our understanding in the physiology of marine Synechococcus as well as their role in the ecology and biogeochemistry in oligotrophic oceans.

  6. Characteristics of Recycled Concrete Aggregates from Precast Slab Block Buildings

    Science.gov (United States)

    Venkrbec, Václav; Nováková, Iveta; Henková, Svatava

    2017-10-01

    Precast slab block buildings (PSBB) typically and frequently occur in Central and Eastern Europe, as well as elsewhere in the world. Some of these buildings are currently used beyond their service life capacity. The utilization of recycled materials from these buildings with regard to applying the principles of sustainable construction and using recycled materials will probably be significant in the following years. Documentation from the manufacturing processes of prefabricated blocks for precast slab block buildings is not available, and also it is difficult to declare technological discipline during the construction of these buildings. Therefore, properties of recycled concrete aggregates (RCA) produced from construction and demolition waste (C&DW) of precast slab block buildings build between 1950s to 1990s are not sufficiently known. The demolition of these buildings is very rare today, but it can be assumed an increase in demolitions of these buildings in the future. The use of RCA in new concrete requires verification/testing of the geometrical and physical properties of RCA according to the EN 12 620+A1 standard. The aim of the contribution is to present a case study of the demolition of slab block building with emphasis on RCA usage. The paper presents the results of the tests according to European standards for determining selected geometrical and physical properties of the RCA. The paper describes and evaluates tests such as determination of particle size distribution - Sieve Analysis, content of fine particles, determination of density and water absorption. The results of the properties testing of RCA are compared with the properties of natural aggregate. The general boundary conditions of RCA particular tests are presented.

  7. Fractal analysis of the effect of particle aggregation distribution on thermal conductivity of nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Wei, E-mail: weiw2015@gmail.com [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Cai, Jianchao, E-mail: caijc@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Hu, Xiangyun, E-mail: xyhu@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Han, Qi, E-mail: hanqi426@gmail.com [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Liu, Shuang, E-mail: lius@cug.edu.cn [Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074 (China); Zhou, Yingfang, E-mail: yingfang.zhou@abdn.ac.uk [School of Engineering, University of Aberdeen, FN 264, King' s College, Aberdeen, AB24 3UE (United Kingdom)

    2016-08-26

    A theoretical effective thermal conductivity model for nanofluids is derived based on fractal distribution characteristics of nanoparticle aggregation. Considering two different mechanisms of heat conduction including particle aggregation and convention, the model is expressed as a function of the fractal dimension and concentration. In the model, the change of fractal dimension is related to the variation of aggregation shape. The theoretical computations of the developed model provide a good agreement with the experimental results, which may serve as an effective approach for quantitatively estimating the effective thermal conductivity of nanofluids. - Highlights: • A thermal conductivity model is derived based on fractal aggregation distribution. • The relationship between aggregation shape and fractal dimension is analyzed. • Predictions of the proposed model show good agreement with experimental data.

  8. The aggregation efficiency of very fine volcanic ash

    Science.gov (United States)

    Del Bello, E.; Taddeucci, J.; Scarlato, P.

    2013-12-01

    Explosive volcanic eruptions can discharge large amounts of very small sized pyroclasts (under 0.090 mm) into the atmosphere that may cause problems to people, infrastructures and environment. The transport and deposition of fine ash are ruled by aggregation that causes premature settling of fine ash and, as consequence, significantly reduces the concentration of airborne material over long distances. Parameterizing the aggregation potential of fine ash is then needed to provide accurate modelling of ash transport and deposition from volcanic plumes. Here we present the first results of laboratory experiments investigating the aggregation efficiency of very fine volcanic particles. Previous laboratory experiments have shown that collision kinetic and relative humidity provide the strongest effect on aggregation behaviour but were only limited to particles with size > 0.125 mm. In our work, we focus on natural volcanic ash at ambient humidity with particles size aggregation potential. Two types of ash were used in our experiments: fresh ash, collected during fall-out from a recent plume-forming eruption at Sakurajima (Japan -July 2013) and old ash, collected from fall-out tephra deposits at Campi Flegrei (Italy, ca. 10 ka), to account for the different chemical composition and morphoscopic effects of altered ash on aggregation efficiency. Total samples were hand sieved to obtain three classes with unimodal grain size distributions (sieved from the top of a transparent tank where a fan, placed at the bottom, allows turbulent dispersion of particles. Collision and sticking of particles on a vertical glass slide were filmed with a high speed cameras at 6000 fps. Our lenses arrangement provide high image resolution allowing to capture particles down to 0.005 mm in diameter. Video sequences of particles motion and collision were then processed with image analysis and particle tracking tools to determine i) the particle number density and ii) the grain size distribution

  9. Mineral trioxide aggregate: part 2 - a review of the material aspects.

    Science.gov (United States)

    Malhotra, Neeraj; Agarwal, Antara; Mala, Kundabala

    2013-03-01

    The purpose of this two-part series is to review the composition, properties, and products of mineral trioxide aggregate (MTA) materials. PubMed and MedLine electronic databases were used to identify scientific papers from January 1991 to May 2010. Based on the selected inclusion criteria, citations were referenced from the scientific peer-reviewed dental literature. Mineral trioxide aggregate is a refined form of the parent compound, Portland cement (PC), and demonstrates a strong biocompatibility due to the high pH level and the material's ability to form hydroxyapatite. Mineral trioxide aggregate materials provide better microleakage protection than traditional endodontic materials as observed in findings from dye-leakage, fluid-filtration, protein-leakage, and bacterial penetration-leakage studies and has been recognized as a bioactive material. Various MTA commercial products are available, including gray mineral trioxide aggregate (GMTA), white mineral trioxide aggregate (WMTA), and mineral trioxide aggregate-Angelus (AMTA). Although these materials are indicated for various dental uses and applications, long-term in-vivo clinical studies are needed. Part 1 of this article highlighted and discussed the composition and characteristics of the material. Part 2 provides an overview of commercially available MTA materials.

  10. Resolving the paradox for protein aggregation diseases: a common mechanism for aggregated proteins to initially attack membranes without needing aggregates [v1; ref status: indexed, http://f1000r.es/221

    Directory of Open Access Journals (Sweden)

    Haina Qin

    2013-10-01

    Full Text Available Paradoxically, aggregation of specific proteins is characteristic of many human diseases and aging, yet aggregates have been found to be unnecessary for initiating pathogenesis. Here we determined the NMR topology and dynamics of a helical mutant in a membrane environment transformed from the 125-residue cytosolic all-β MSP by the ALS-causing P56S mutation. Unexpectedly, despite its low hydrophobicity, the P56S major sperm protein (MSP domain becomes largely embedded in the membrane environment with high backbone rigidity. Furthermore it is composed of five helices with amphiphilicity comparable to those of the partly-soluble membrane toxin mellitin and α-synuclein causing Parkinson's disease. Consequently, the mechanism underlying this chameleon transformation becomes clear: by disrupting the specific tertiary interaction network stabilizing the native all-β MSP fold to release previously-locked amphiphilic segments, the P56S mutation acts to convert the classic MSP fold into a membrane-active protein that is fundamentally indistinguishable from mellitin and α-synuclein which are disordered in aqueous solution but spontaneously partition into membrane interfaces driven by hydrogen-bond energetics gained from forming α-helix in the membrane environments. As segments with high amphiphilicity exist in all proteins, our study successfully resolves the paradox by deciphering that the proteins with a higher tendency to aggregate have a stronger potential to partition into membranes through the same mechanism as α-synuclein to initially attack membranes to trigger pathogenesis without needing aggregates. This might represent the common first step for various kinds of aggregated proteins to trigger familiar, sporadic and aging diseases. Therefore the homeostasis of aggregated proteins in vivo is the central factor responsible for a variety of human diseases including aging. The number and degree of the membrane attacks by aggregated proteins may

  11. Defining and systematic analyses of aggregation indices to evaluate degree of calcium oxalate crystal aggregation

    Science.gov (United States)

    Chaiyarit, Sakdithep; Thongboonkerd, Visith

    2017-12-01

    Crystal aggregation is one of the most crucial steps in kidney stone pathogenesis. However, previous studies of crystal aggregation were rarely done and quantitative analysis of aggregation degree was handicapped by a lack of the standard measurement. We thus performed an in vitro assay to generate aggregation of calcium oxalate monohydrate (COM) crystals with various concentrations (25-800 µg/ml) in saturated aggregation buffer. The crystal aggregates were analyzed by microscopic examination, UV-visible spectrophotometry, and GraphPad Prism6 software to define a total of 12 aggregation indices (including number of aggregates, aggregated mass index, optical density, aggregation coefficient, span, number of aggregates at plateau time-point, aggregated area index, aggregated diameter index, aggregated symmetry index, time constant, half-life, and rate constant). The data showed linear correlation between crystal concentration and almost all of these indices, except only for rate constant. Among these, number of aggregates provided the greatest regression coefficient (r=0.997; pr=0.993; pr=‑0.993; pr=0.991; p<0.001 for both). These five indices are thus recommended as the most appropriate indices for quantitative analysis of COM crystal aggregation in vitro.

  12. Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Qiyun Qiao

    2017-12-01

    Full Text Available In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.

  13. Sustainable aggregates production : green applications for aggregate by-products.

    Science.gov (United States)

    2015-06-01

    Increased emphasis in the construction industry on sustainability and recycling requires production of : aggregate gradations with lower dust (cleaner aggregates) and smaller maximum sizeshence, increased : amount of quarry by-products (QBs). QBs ...

  14. Dual hesitant pythagorean fuzzy Hamacher aggregation operators in multiple attribute decision making

    Directory of Open Access Journals (Sweden)

    Wei Guiwu

    2017-09-01

    Full Text Available In this paper, we investigate the multiple attribute decision making (MADM problem based on the Hamacher aggregation operators with dual Pythagorean hesitant fuzzy information. Then, motivated by the ideal of Hamacher operation, we have developed some Hamacher aggregation operators for aggregating dual hesitant Pythagorean fuzzy information. The prominent characteristic of these proposed operators are studied. Then, we have utilized these operators to develop some approaches to solve the dual hesitant Pythagorean fuzzy multiple attribute decision making problems. Finally, a practical example for supplier selection in supply chain management is given to verify the developed approach and to demonstrate its practicality and effectiveness.

  15. Information retrieval for children based on the aggregated search paradigm

    NARCIS (Netherlands)

    Duarte Torres, Sergio

    This report presents research to develop information services for children by expanding and adapting current Information retrieval technologies according to the search characteristics and needs of children. Concretely, we will employ the aggregated search paradigm as theoretical framework. The

  16. Texture-contrast profile development across the prairie-forest ecotone in northern Minnesota, USA, and its relation to soil aggregation and clay dispersion.

    Science.gov (United States)

    Kasmerchak, C. S.; Mason, J. A.

    2016-12-01

    Along the prairie-forest ecotone, Alfisols with distinct clay-enriched B horizons are found under forest, established only within the past 4 ka, including outlying patches of prairie groves surrounded by prairie. Grassland soils only 5-10 km away from the vegetation boundary show much weaker texture-contrast. In order for clay to be dispersed it must first be released from aggregates upper horizons, which occurs when exposed top soil undergoes wetting and mechanical stress. The relationship between physiochemical soil characteristics and soil aggregation/clay dispersion is of particular interest in explaining texture-contrast development under forest. Soil samples were collected along a transect in northern Minnesota on gentle slopes in similar glacial sediment. Aggregate stability experiments show Mollisol A and B horizons have the most stable aggregates, while Alfisol E horizons have the weakest aggregates and disintegrate rapidly. This demonstrates the strong influence of OM and exchange chemistry on aggregation. Analysis of other physiochemical soil characteristics such as base saturation and pH follow a gradual decreasing eastward trend across the study sites, and do not abruptly change at the prairie-forest boundary like soil morphology does. Linear models show the strongest relationship between rapid aggregate disintegration and ECEC, although they only explain 47-50% of the variance. Higher surface charge enhances aggregation by allowing for greater potential of cation bridging between OM and clay particles. ECEC also represents multiple soil characteristics such as OC, clay, mineralogy, and carbonate presence, suggesting the relationship between aggregation stability and soil characteristics is not simple. Given the parent material consists of calcareous glacial sediment, abundant Ca2+ and Mg2+ from carbonates weathering also contributes to enhanced aggregation in upper horizons. Differences in the rates of bioturbation, most likely also contribute

  17. Effect of Solvent Additives on the Solution Aggregation of Phenyl-C61-Butyl Acid Methyl Ester (PCBM)

    KAUST Repository

    Tummala, Naga Rajesh

    2015-11-24

    High-boiling-point solvent additives, employed during the solution processing of active-layer formulations, impact the efficiency of bulk hetero-junction (BHJ) organic solar cells by influencing the morphological / topological features of the multicomponent thin film. Here, we aim at a better understanding of how these additives change the aggregation landscape in the casting solution prior to film deposition via a multi-scale computational study of the aggregation phenomena of phenyl-C61-butyric-acid methyl ester (PCBM) in various solutions. The energetic landscape of PCBM-solvent / solvent-additive intermolecular interactions is evaluated at the electronic-structure level through symmetry-adapted perturbation theory to determine the nature and strength of non-covalent forces important to aggregation. Molecular dynamics simulations highlight how the choice of solvent and solvent additives control the formation of molecular aggregates. Our results indicate that high-boiling-point solvent additives change the effective interactions among the PCBM and casting-solvent molecules and alter the equilibrium PCBM aggregate sizes in solution.

  18. Aggregates morphometry in a Latosol (Oxisol under different soil management systems

    Directory of Open Access Journals (Sweden)

    Carla Eloize Carducci

    2016-02-01

    Full Text Available Changes in soil physical properties are inherent in land use, mainly in superficial layers. Structural alterations can directly influence distribution, stability and especially morphometry of soil aggregates, which hence will affect pore system and the dynamic process of water and air in soil. Among the methods used to measure these changes, morphometry is a complementary tool to the classic methods. The aim of this study was to evaluate structural quality of a Latosol (Oxisol, under different management systems, using morphometric techniques. Treatments consisted of soil under no-tillage (NT; pasture (P, in which both had been cultivated for ten years, and an area under native vegetation (NV – Savannah like vegetation. Aggregates were sampled at depths of 0-0.10 and 0.10-0.20 m, retained on sieves with 9.52 – 4.76 mm, 4.76 – 1.0mm, 1.0 – 0.5mm diameter ranges. Aggregate morphometry was assessed by 2D images from scanner via QUANTPORO software. The analyzed variables were: area, perimeter, aspect, roughness, Ferret diameter and compactness. Moreover, disturbed samples were collected at the same depths to determine particle size, aggregate stability in water, water-dispersible clay, clay flocculation index and organic matter content. It was observed that different soil management systems have modified soil aggregate morphology as well as physical attributes; and management effects’ magnitude increased from NT to P.

  19. Properties of Recycled Aggregate Concrete Reinforced with Polypropylene Fibre

    Directory of Open Access Journals (Sweden)

    Wan Mohammad Wan Nur Syazwani

    2016-01-01

    Full Text Available This research work is aimed to investigate how the addition of various proportion of polypropylene fibre affects the mechanical strength and permeability characteristics of recycled aggregate concrete (RAC which has been produced with treated coarse recycled concrete aggregate (RCA. Further research on RAC properties and their applications is of great importance as the scarcity of virgin aggregate sources in close proximity to major urban centers is becoming a worldwide problem. In this study, the hardened RAC properties at the curing age of 7 and 28 days such as compressive strength, flexural strength, ultrasonic pulse velocity (UPV, water absorption and total porosity were evaluated and compare with control specimens. Experimental result indicates that although the inclusion of the treated coarse RCA can enhance the mechanical strength and permeability properties of RAC, Further modification by addition of polypropylene fibre can optimize the results.

  20. Characteristics of aggregation of daily rainfall in a middle-latitudes region during a climate variability in annual rainfall amount

    Science.gov (United States)

    Lucero, Omar A.; Rozas, Daniel

    Climate variability in annual rainfall occurs because the aggregation of daily rainfall changes. A topic open to debate is whether that change takes place because rainfall becomes more intense, or because it rains more often, or a combination of both. The answer to this question is of interest for water resources planning, hydrometeorological design, and agricultural management. Change in the number of rainy days can cause major disruptions in hydrological and ecological systems, with important economic and social effects. Furthermore, the characteristics of daily rainfall aggregation in ongoing climate variability provide a reference to evaluate the capability of GCM to simulate changes in the hydrologic cycle. In this research, we analyze changes in the aggregation of daily rainfall producing a climate positive trend in annual rainfall in central Argentina, in the southern middle-latitudes. This state-of-the-art agricultural region has a semiarid climate with dry and wet seasons. Weather effects in the region influence world-market prices of several crops. Results indicate that the strong positive trend in seasonal and annual rainfall amount is produced by an increase in number of rainy days. This increase takes place in the 3-month periods January-March (summer) and April-June (autumn). These are also the 3-month periods showing a positive trend in the mean of annual rainfall. The mean of the distribution of annual number of rainy day (ANRD) increased in 50% in a 36-year span (starting at 44 days/year). No statistically significant indications on time changes in the probability distribution of daily rainfall amount were found. Non-periodic fluctuations in the time series of annual rainfall were analyzed using an integral wavelet transform. Fluctuations with a time scale of about 10 and 20 years construct the trend in annual rainfall amount. These types of non-periodic fluctuations have been observed in other regions of the world. This suggests that results of

  1. Protein Aggregates and Novel Presenilin Gene Variants in Idiopathic Dilated Cardiomyopathy

    Science.gov (United States)

    Gianni, Davide; Li, Airong; Tesco, Giuseppina; McKay, Kenneth M.; Moore, John; Raygor, Kunal; Rota, Marcello; Gwathmey, Judith K; Dec, G William; Aretz, Thomas; Leri, Annarosa; Semigran, Marc J; Anversa, Piero; Macgillivray, Thomas E; Tanzi, Rudolph E.; Monte, Federica del

    2010-01-01

    Background Heart failure (HF) is a debilitating condition resulting in severe disability and death. In a subset of cases, clustered as Idiopathic Dilated Cardiomyopathy (iDCM), the origin of HF is unknown. In the brain of patients with dementia, proteinaceous aggregates and abnormal oligomeric assemblies of β-amyloid impair cell function and lead to cell death. Methods and Results We have similarly characterized fibrillar and oligomeric assemblies in the hearts of iDCM patients pointing to abnormal protein aggregation as a determinant of iDCM. We also showed that oligomers alter myocyte Ca2+ homeostasis. Additionally, we have identified two new sequence variants in the presenilin-1 (PSEN1) gene promoter leading to reduced gene and protein expression. We also show that presenilin-1 co-immunoprecipitates with SERCA2a. Conclusions Based on these findings we propose that two mechanisms may link protein aggregation and cardiac function: oligomer-induced changes on Ca2+ handling and a direct effect of PSEN1 sequence variants on EC-coupling protein function. PMID:20194882

  2. Influence of Aggregate Wettability with Different Lithology Aggregates on Concrete Drying Shrinkage

    Directory of Open Access Journals (Sweden)

    Yuanchen Guo

    2015-01-01

    Full Text Available The correlation of the wettability of different lithology aggregates and the drying shrinkage of concrete materials is studied, and some influential factors such as wettability and wetting angle are analyzed. A mercury porosimeter is used to measure the porosities of different lithology aggregates accurately, and the pore size ranges that significantly affect the drying shrinkage of different lithology aggregate concretes are confirmed. The pore distribution curve of the different coarse aggregates is also measured through a statistical method, and the contact angle of different coarse aggregates and concrete is calculated according to the linear fitting relationship. Research shows that concrete strength is determined by aggregate strength. Aggregate wettability is not directly correlated with concrete strength, but wettability significantly affects concrete drying shrinkage. In all types’ pores, the greatest impacts on wettability are capillary pores and gel pores, especially for the pores of the size locating 2.5–50 nm and 50–100 nm two ranges.

  3. Assessment of Methylobacterium oryzae CBMB20 aggregates for salt tolerance and plant growth promoting characteristics for bio-inoculant development.

    Science.gov (United States)

    Chanratana, Mak; Han, Gwang Hyun; Roy Choudhury, Aritra; Sundaram, Seshadri; Halim, Md Abdul; Krishnamoorthy, Ramasamy; Kang, Yeongyeong; Sa, Tongmin

    2017-11-21

    Salinity is one of the major factors contributing to the loss of crop productivity and thereby impacting livelihood of people in more than 100 countries of the world and the area of land affected by salinity is increasing day by day. This will worsen due to various factors such as drought that might result in high soil salinity. Use of plant growth promoting rhizobacteria is one of the promising eco-friendly strategies for salinity stress management as part of sustainable agricultural practices. However, it requires selecting rhizobacteria with good survivability and adaptation to salt stress. In this study we report aggregation of Methylobacterium oryzae CBMB20 cells grown in media containing high C/N ratio (30:1) than in media containing low C/N ratio (7:1). Aggregated Methylobacterium oryzae CBMB20 cells exhibited enhanced tolerance to UV irradiation, heat, desiccation, different temperature regimes, oxidative stress, starvation and supported higher population in media. Poly-β-hydroxybutyrate accumulation, exopolysaccharide production, proline accumulation and biofilm formation were good at 100 mM salt concentration with good microbial cell hydrophobicity at both 50 and 100 mM than other concentrations. Both the aggregated and non-aggregated cells grown under 0-200 mM salt concentrations produced IAA even at 200 mM salt concentration with a peak at 100 mM concentration with aggregated cells producing significantly higher quantities. ACC deaminase activity was observed in all NaCl concentrations studied with gradual and drastic reduction in aggregated and non-aggregated cells over increased salt concentrations.

  4. Acid-Induced Cold Gelation of Globular Proteins: Effects of Protein Aggregate Characteristics and Disulfide Bonding on Rheological Properties

    NARCIS (Netherlands)

    Alting, A.C.; Weijers, M.; Hoog, E.H.A. de; Pijpekamp, A.M. van de; Cohen Stuart, M.A.; Hamer, R.J.; Kruif, C.G. de; Visschers, R.W.

    2004-01-01

    The process of cold gelation of ovalbumin and the properties of the resulting cold-set gels were compared to those of whey protein isolate. Under the chosen heating conditions, most protein was organized in aggregates. For both protein preparations, the aggregates consisted of covalently linked

  5. Influence of mesostasis in volcanic rocks on the alkali-aggregate reaction

    KAUST Repository

    Tiecher, Francieli

    2012-11-01

    Mesostasis material present in the interstices of volcanic rocks is the main cause of the alkali-aggregate reaction (AAR) in concretes made with these rock aggregates. Mesostasis often is referred to as volcanic glass, because it has amorphous features when analyzed by optical microscopy. However, this study demonstrates that mesostasis in the interstitials of volcanic rocks most often consists of micro to cryptocrystalline mineral phases of quartz, feldspars, and clays. Mesostasis has been identified as having different characteristics, and, thus, this new characterization calls for a re-evaluation of their influence on the reactivity of the volcanic rocks. The main purpose of this study is to correlate the characteristics of mesostasis with the AAR in mortar bars containing basalts and rhyolites. © 2012 Elsevier Ltd. All rights reserved.

  6. Influence of mesostasis in volcanic rocks on the alkali-aggregate reaction

    KAUST Repository

    Tiecher, Francieli; Dal Molin, Denise Carpena Coitinho; Gomes, Má rcia Elisa Boscato; Hasparyk, Nicole Pagan; Monteiro, Paulo José Meleragno

    2012-01-01

    Mesostasis material present in the interstices of volcanic rocks is the main cause of the alkali-aggregate reaction (AAR) in concretes made with these rock aggregates. Mesostasis often is referred to as volcanic glass, because it has amorphous features when analyzed by optical microscopy. However, this study demonstrates that mesostasis in the interstitials of volcanic rocks most often consists of micro to cryptocrystalline mineral phases of quartz, feldspars, and clays. Mesostasis has been identified as having different characteristics, and, thus, this new characterization calls for a re-evaluation of their influence on the reactivity of the volcanic rocks. The main purpose of this study is to correlate the characteristics of mesostasis with the AAR in mortar bars containing basalts and rhyolites. © 2012 Elsevier Ltd. All rights reserved.

  7. RELATIONSHIPS BETWEEN SOIL MICROBIAL BIOMASS, AGGREGATE STABILITY AND AGGREGATE ASSOCIATED-C: A MECHANISTIC APPROACH

    Directory of Open Access Journals (Sweden)

    Patrizia Guidi

    2014-01-01

    Full Text Available For the identification of C pools involved in soil aggregation, a physically-based aggregate fractionation was proposed, and  additional pretreatments were used in the measurement of the 1-2 mm aggregate stability in order to elucidate the relevance of the role of soil microorganisms with respect to the different aggregate breakdown mechanisms. The study was carried out on three clay loam Regosols, developed on calcareous shales, known history of organic cultivation.Our results showed that the soil C pool controlling the process of stabilisation of aggregates was related to the microbial community. We identified the resistance to fast wetting as the major mechanism of aggregate stability driven by microorganims. The plausible hypothesis is that organic farming promotes fungi growth, improving water repellency of soil aggregates by fungal hydrophobic substances. By contrast, we failed in the identification of C pools controlling the formation of aggregates, probably because of the disturbance of mechanical tillage which contributes to the breakdown of soil aggregates.The physically-based aggregate fractionation proposed in this study resulted useful in the  mechanistically understanding of the role of microorganisms in soil aggregation and it might be suggested for studying the impact of management on C pools, aggregates properties and their relationships in agricultural soils.

  8. Uptake of raft components into amyloid β-peptide aggregates and membrane damage.

    Science.gov (United States)

    Sasahara, Kenji; Morigaki, Kenichi; Mori, Yasuko

    2015-07-15

    Amyloid aggregation and deposition of amyloid β-peptide (Aβ) are pathologic characteristics of Alzheimer's disease (AD). Recent reports have shown that the association of Aβ with membranes containing ganglioside GM1 (GM1) plays a pivotal role in amyloid deposition and the pathogenesis of AD. However, the molecular interactions responsible for membrane damage associated with Aβ deposition are not fully understood. In this study, we microscopically observed amyloid aggregation of Aβ in the presence of lipid vesicles and on a substrate-supported planar membrane containing raft components and GM1. The experimental system enabled us to observe lipid-associated aggregation of Aβ, uptake of the raft components into Aβ aggregates, and relevant membrane damage. The results indicate that uptake of raft components from the membrane into Aβ deposits induces macroscopic heterogeneity of the membrane structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Kinetics of inclusion body formation and its correlation with the characteristics of protein aggregates in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Arun K Upadhyay

    Full Text Available The objective of the research was to understand the structural determinants governing protein aggregation into inclusion bodies during expression of recombinant proteins in Escherichia coli. Recombinant human growth hormone (hGH and asparaginase were expressed as inclusion bodies in E.coli and the kinetics of aggregate formation was analyzed in details. Asparaginase inclusion bodies were of smaller size (200 nm and the size of the aggregates did not increase with induction time. In contrast, the seeding and growth behavior of hGH inclusion bodies were found to be sequential, kinetically stable and the aggregate size increased from 200 to 800 nm with induction time. Human growth hormone inclusion bodies showed higher resistance to denaturants and proteinase K degradation in comparison to those of asparaginase inclusion bodies. Asparaginase inclusion bodies were completely solubilized at 2-3 M urea concentration and could be refolded into active protein, whereas 7 M urea was required for complete solubilization of hGH inclusion bodies. Both hGH and asparaginase inclusion bodies showed binding with amyloid specific dyes. In spite of its low β-sheet content, binding with dyes was more prominent in case of hGH inclusion bodies than that of asparaginase. Arrangements of protein molecules present in the surface as well as in the core of inclusion bodies were similar. Hydrophobic interactions between partially folded amphiphillic and hydrophobic alpha-helices were found to be one of the main determinants of hGH inclusion body formation. Aggregation behavior of the protein molecules decides the nature and properties of inclusion bodies.

  10. Kinetics of Inclusion Body Formation and Its Correlation with the Characteristics of Protein Aggregates in Escherichia coli

    Science.gov (United States)

    Upadhyay, Arun K.; Murmu, Aruna; Singh, Anupam; Panda, Amulya K.

    2012-01-01

    The objective of the research was to understand the structural determinants governing protein aggregation into inclusion bodies during expression of recombinant proteins in Escherichia coli. Recombinant human growth hormone (hGH) and asparaginase were expressed as inclusion bodies in E.coli and the kinetics of aggregate formation was analyzed in details. Asparaginase inclusion bodies were of smaller size (200 nm) and the size of the aggregates did not increase with induction time. In contrast, the seeding and growth behavior of hGH inclusion bodies were found to be sequential, kinetically stable and the aggregate size increased from 200 to 800 nm with induction time. Human growth hormone inclusion bodies showed higher resistance to denaturants and proteinase K degradation in comparison to those of asparaginase inclusion bodies. Asparaginase inclusion bodies were completely solubilized at 2–3 M urea concentration and could be refolded into active protein, whereas 7 M urea was required for complete solubilization of hGH inclusion bodies. Both hGH and asparaginase inclusion bodies showed binding with amyloid specific dyes. In spite of its low β-sheet content, binding with dyes was more prominent in case of hGH inclusion bodies than that of asparaginase. Arrangements of protein molecules present in the surface as well as in the core of inclusion bodies were similar. Hydrophobic interactions between partially folded amphiphillic and hydrophobic alpha-helices were found to be one of the main determinants of hGH inclusion body formation. Aggregation behavior of the protein molecules decides the nature and properties of inclusion bodies. PMID:22479486

  11. Generation of Aggregates of Mouse Embryonic Stem Cells that Show Symmetry Breaking, Polarization and Emergent Collective Behaviour In Vitro.

    Science.gov (United States)

    Baillie-Johnson, Peter; van den Brink, Susanne Carina; Balayo, Tina; Turner, David Andrew; Martinez Arias, Alfonso

    2015-11-24

    We have developed a protocol improving current Embryoid Body (EB) culture which allows the study of self-organization, symmetry breaking, axial elongation and cell fate specification using aggregates of mouse embryonic stem cells (mESCs) in suspension culture. Small numbers of mESCs are aggregated in basal medium for 48 hr in non-tissue-culture-treated, U-bottomed 96-well plates, after which they are competent to respond to experimental signals. Following treatment, these aggregates begin to show signs of polarized gene expression and gradually alter their morphology from a spherical mass of cells to an elongated, well organized structure in the absence of external asymmetry cues. These structures are not only able to display markers of the three germ layers, but actively display gastrulation-like movements, evidenced by a directional dislodgement of individual cells from the aggregate, which crucially occurs at one region of the elongated structure. This protocol provides a detailed method for the reproducible formation of these aggregates, their stimulation with signals such as Wnt/β-Catenin activation and BMP inhibition and their analysis by single time-point or time-lapse fluorescent microscopy. In addition, we describe modifications to current whole-mount mouse embryo staining procedures for immunocytochemical analysis of specific markers within fixed aggregates. The changes in morphology, gene expression and length of the aggregates can be quantitatively measured, providing information on how signals can alter axial fates. It is envisaged that this system can be applied both to the study of early developmental events such as axial development and organization, and more broadly, the processes of self-organization and cellular decision-making. It may also provide a suitable niche for the generation of cell types present in the embryo that are unobtainable from conventional adherent culture such as spinal cord and motor neurones.

  12. Disaggregases, molecular chaperones that resolubilize protein aggregates

    Directory of Open Access Journals (Sweden)

    David Z. Mokry

    2015-08-01

    Full Text Available The process of folding is a seminal event in the life of a protein, as it is essential for proper protein function and therefore cell physiology. Inappropriate folding, or misfolding, can not only lead to loss of function, but also to the formation of protein aggregates, an insoluble association of polypeptides that harm cell physiology, either by themselves or in the process of formation. Several biological processes have evolved to prevent and eliminate the existence of non-functional and amyloidogenic aggregates, as they are associated with several human pathologies. Molecular chaperones and heat shock proteins are specialized in controlling the quality of the proteins in the cell, specifically by aiding proper folding, and dissolution and clearance of already formed protein aggregates. The latter is a function of disaggregases, mainly represented by the ClpB/Hsp104 subfamily of molecular chaperones, that are ubiquitous in all organisms but, surprisingly, have no orthologs in the cytosol of metazoan cells. This review aims to describe the characteristics of disaggregases and to discuss the function of yeast Hsp104, a disaggregase that is also involved in prion propagation and inheritance.

  13. Epicrystal modification of construction composites of different purpose with application of granulated nanostructured aggregate

    Directory of Open Access Journals (Sweden)

    STROKOVA Valeria Valerievna

    2016-10-01

    Full Text Available The paper shows that the volume impregnation of the concrete matrix in case of using granular nanostructured aggregate is an example of several anthropogenic metasomatosis such as phase replacement with the change of the chemical composition, as well as formation of new paragenesises, transformation of characteristics of final material. It is shown the impregnation of concrete with modifying solution results in microstructure impaction and homogenization; grain surface is covered with micro- and nano-sized new formations with different morphology. Considering the relevance of researches related to the development of new lightweight concrete aggregates and modification of traditionally used aggregates application of nanostructured granular aggregate for the implementation epicrystal modification of lightweight concrete based on inorganic binders is proposed. It allows creating composite macroporous structure with joint modification of the matrix on nano- and microlevel. Also, in view of increase in number of researches devoted to alkali-activated silicate and aluminosilicate systems for application as individually and as modifiers for increasing of hydrophobic properties of building materials, the possibility of creating a fine-grained concrete with low water absorption by the introduction of hydrophobic additives into the composition of granular nanostructured aggregate is demonstrated. During the steam treatment the fluids from solutions of sodium polysilicates and hydrophobic additives are form at the core of the granular aggregate with its later migration through the shell of the granules and spreading in the volume of the concrete matrix. Improving of performance characteristics presented construction composites for various purposes is defined by the infiltrational metasomatic transformation of crystalline matrix with the activated functional systems, obtained during the thermal activation of granulated nanostructured aggregate.

  14. Aggregation patterns from nonlocal interactions: Discrete stochastic and continuum modeling

    KAUST Repository

    Hackett-Jones, Emily J.

    2012-04-17

    Conservation equations governed by a nonlocal interaction potential generate aggregates from an initial uniform distribution of particles. We address the evolution and formation of these aggregating steady states when the interaction potential has both attractive and repulsive singularities. Currently, no existence theory for such potentials is available. We develop and compare two complementary solution methods, a continuous pseudoinverse method and a discrete stochastic lattice approach, and formally show a connection between the two. Interesting aggregation patterns involving multiple peaks for a simple doubly singular attractive-repulsive potential are determined. For a swarming Morse potential, characteristic slow-fast dynamics in the scaled inverse energy is observed in the evolution to steady state in both the continuous and discrete approaches. The discrete approach is found to be remarkably robust to modifications in movement rules, related to the potential function. The comparable evolution dynamics and steady states of the discrete model with the continuum model suggest that the discrete stochastic approach is a promising way of probing aggregation patterns arising from two- and three-dimensional nonlocal interaction conservation equations. © 2012 American Physical Society.

  15. Heat shock gene expression and cytoskeletal alterations in mouse neuroblastoma cells

    NARCIS (Netherlands)

    Bergen en Henegouwen, P.M.P. van; Linnemans, W.A.M.

    The cytoskeleton of neuroblastoma cells, clone Neuro 2A, is altered by two stress conditions: heat shock and arsenite treatment. Microtubules are reorganized, intermediate filaments are aggregated around the nucleus, and the number of stress fibers is reduced. Since both stress modalities induce

  16. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches.

    Science.gov (United States)

    Chung, Sang-Yeop; Abd Elrahman, Mohamed; Sikora, Pawel; Rucinska, Teresa; Horszczaruk, Elzbieta; Stephan, Dietmar

    2017-11-25

    Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM), X-ray computed tomography (CT), and automated image analysis (RapidAir). The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates.

  17. Evaluation of the Effects of Crushed and Expanded Waste Glass Aggregates on the Material Properties of Lightweight Concrete Using Image-Based Approaches

    Directory of Open Access Journals (Sweden)

    Sang-Yeop Chung

    2017-11-01

    Full Text Available Recently, the recycling of waste glass has become a worldwide issue in the reduction of waste and energy consumption. Waste glass can be utilized in construction materials, and understanding its effects on material properties is crucial in developing advanced materials. In this study, recycled crushed and expanded glasses are used as lightweight aggregates for concrete, and their relation to the material characteristics and properties is investigated using several approaches. Lightweight concrete specimens containing only crushed and expanded waste glass as fine aggregates are produced, and their pore and structural characteristics are examined using image-based methods, such as scanning electron microscopy (SEM, X-ray computed tomography (CT, and automated image analysis (RapidAir. The thermal properties of the materials are measured using both Hot Disk and ISOMET devices to enhance measurement accuracy. Mechanical properties are also evaluated, and the correlation between material characteristics and properties is evaluated. As a control group, a concrete specimen with natural fine sand is prepared, and its characteristics are compared with those of the specimens containing crushed and expanded waste glass aggregates. The obtained results support the usability of crushed and expanded waste glass aggregates as alternative lightweight aggregates.

  18. Properties of concrete blocks prepared with low grade recycled aggregates.

    Science.gov (United States)

    Poon, Chi-Sun; Kou, Shi-cong; Wan, Hui-wen; Etxeberria, Miren

    2009-08-01

    Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste. In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 degrees C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.

  19. The Effect of Zeolite on Aggregate Stability Indices

    Directory of Open Access Journals (Sweden)

    F. Sohrab

    2016-02-01

    Full Text Available Introduction: Soil structural stability affects the profitability and sustainability of agricultural systems. Particle size distribution (PSD and aggregate stability are the important characteristics of soil. Aggregate stability has a significant impact on the development of the root system, water and carbon cycle and soil resistance against soil erosion. Soil aggregate stability, defined as the ability of the aggregates to remain intact when subject to a given stress, is an important soil property that affects the movement and storage of water, aeration, erosion, biological activity and growth of crops. Dry soil aggregate stability (Mean Weight Diameter (MWD, Geometric Mean Diameter (GMD and Wet Aggregate Stability (WAS are important indices for evaluating soil aggregate stability.To improve soil physical properties, including modifying aggregate, using various additives (organic, inorganic and chemicals, zeolites are among what has been studied.According to traditional definition, zeolites are hydratealuminosilicates of alkaline and alkaline-earth minerals. Their structure is made up of a framework of[SiO4]−4 and [AlO4]−5 tetrahedron linked to each other's cornersby sharing oxygen atoms. The substitution of Si+4 by Al+3 intetrahedral sites results inmore negative charges and a high cation exchange capacity.Zeolites, as natural cation exchangers, are suitable substitutes to remove toxic cations. Among the natural zeolites,Clinoptilolite seems to be the most efficient ion exchanger and ion-selective material forremoving and stabilizing heavy metals.Due to theexisting insufficient technical information on the effects of using different levels of zeolite on physical properties of different types of soils in Iran, the aim of this research was to assess the effects of two different types of zeolite (Clinoptilolite natural zeolite, Z4, and Synthetic zeolite, A4 on aggregate stability indicesof soil. Materials and Methods: In this study at first

  20. Laser-based assessment of road aggregate particle shape and texture properties with the aim of deriving comparative models

    CSIR Research Space (South Africa)

    Breytenbach, IJ

    2013-10-01

    Full Text Available Research was undertaken using an innovative three-dimensional (3D) laser scanning tool to study the shape and texture characteristics of road aggregate particles. Aggregate materials used for road construction, including G1 crushed rocks...

  1. COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING

    International Nuclear Information System (INIS)

    Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak

    2013-01-01

    The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface of an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly

  2. Effect of aggregate graining compositions on skid resistance of Exposed Aggregate Concrete pavement

    Science.gov (United States)

    Wasilewska, Marta; Gardziejczyk, Wladysław; Gierasimiuk, Pawel

    2018-05-01

    The paper presents the evaluation of skid resistance of EAC (Exposed Aggregate Concrete) pavements which differ in aggregate graining compositions. The tests were carried out on concrete mixes with a maximum aggregate size of 8 mm. Three types of coarse aggregates were selected depending on their resistance to polishing which was determined on the basis of the PSV (Polished Stone Value). Basalt (PSV 48), gabbro (PSV 50) and trachybasalt (PSV 52) aggregates were chosen. For each type of aggregate three graining compositions were designed, which differed in the content of coarse aggregate > 4mm. Their content for each series was as follows: A - 38%, B - 50% and C - 68%. Evaluation of the skid resistance has been performed using the FAP (Friction After Polishing) test equipment also known as the Wehner/Schulze machine. Laboratory method enables to compare the skid resistance of different types of wearing course under specified conditions simulating polishing processes. In addition, macrotexture measurements were made on the surface of each specimen using the Elatexure laser profile. Analysis of variance showed that at significance level α = 0.05, aggregate graining compositions as well as the PSV have a significant influence on the obtained values of the friction coefficient μm of the tested EAC pavements. The highest values of the μm have been obtained for EAC with the lowest amount of coarse aggregates (compositions A). In these cases the resistance to polishing of the aggregate does not significantly affect the friction coefficients. This is related to the large areas of cement mortar between the exposed coarse grains. Based on the analysis of microscope images, it was observed that the coarse aggregates were not sufficiently exposed. It has been proved that PSV significantly affected the coefficient of friction in the case of compositions B and C. This is caused by large areas of exposed coarse aggregate. The best parameters were achieved for the EAC pavements

  3. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  4. Curcumin Modulates α-Synuclein Aggregation and Toxicity

    Science.gov (United States)

    2012-01-01

    In human beings, Parkinson’s disease (PD) is associated with the oligomerization and amyloid formation of α-synuclein (α-Syn). The polyphenolic Asian food ingredient curcumin has proven to be effective against a wide range of human diseases including cancers and neurological disorders. While curcumin has been shown to significantly reduce cell toxicity of α-Syn aggregates, its mechanism of action remains unexplored. Here, using a series of biophysical techniques, we demonstrate that curcumin reduces toxicity by binding to preformed oligomers and fibrils and altering their hydrophobic surface exposure. Further, our fluorescence and two-dimensional nuclear magnetic resonance (2D-NMR) data indicate that curcumin does not bind to monomeric α-Syn but binds specifically to oligomeric intermediates. The degree of curcumin binding correlates with the extent of α-Syn oligomerization, suggesting that the ordered structure of protein is required for effective curcumin binding. The acceleration of aggregation by curcumin may decrease the population of toxic oligomeric intermediates of α-Syn. Collectively; our results suggest that curcumin and related polyphenolic compounds can be pursued as candidate drug targets for treatment of PD and other neurological diseases. PMID:23509976

  5. Al cation induces aggregation of serum proteins.

    Science.gov (United States)

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-07-15

    Al cation is known to induce protein fibrillation and causes several neurodegenerative disorders. We report the spectroscopic, thermodynamic analysis and AFM imaging for the Al cation binding process with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in Al-protein interactions with more hydrophobic b-LG forming stronger Al-protein complexes. Thermodynamic parameters ΔS, ΔH and ΔG showed Al-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der Waals and H-bonding interactions prevail in HSA and BSA adducts. AFM clearly indicated that aluminum cations are able to force BSA and b-LG into larger or more robust aggregates than HSA, with HSA 4±0.2 (SE, n=801) proteins per aggregate, for BSA 17±2 (SE, n=148), and for b-LG 12±3 (SE, n=151). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced major alterations of protein conformations with the order of perturbations b-LG>BSA>HSA. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Graph Aggregation

    NARCIS (Netherlands)

    Endriss, U.; Grandi, U.

    Graph aggregation is the process of computing a single output graph that constitutes a good compromise between several input graphs, each provided by a different source. One needs to perform graph aggregation in a wide variety of situations, e.g., when applying a voting rule (graphs as preference

  7. Measurement of net electric charge and dipole moment of dust aggregates in a complex plasma.

    Science.gov (United States)

    Yousefi, Razieh; Davis, Allen B; Carmona-Reyes, Jorge; Matthews, Lorin S; Hyde, Truell W

    2014-09-01

    Understanding the agglomeration of dust particles in complex plasmas requires knowledge of basic properties such as the net electrostatic charge and dipole moment of the dust. In this study, dust aggregates are formed from gold-coated mono-disperse spherical melamine-formaldehyde monomers in a radiofrequency (rf) argon discharge plasma. The behavior of observed dust aggregates is analyzed both by studying the particle trajectories and by employing computer models examining three-dimensional structures of aggregates and their interactions and rotations as induced by torques arising from their dipole moments. These allow the basic characteristics of the dust aggregates, such as the electrostatic charge and dipole moment, as well as the external electric field, to be determined. It is shown that the experimental results support the predicted values from computer models for aggregates in these environments.

  8. Performance Analysis of Downlink Inter-band Carrier Aggregation in LTE-Advanced

    DEFF Research Database (Denmark)

    Wang, Hua; Rosa, Claudio; Pedersen, Klaus

    2011-01-01

    CC can be different. In this paper, we investigate the downlink resource allocation for inter-band CA, i.e., how to assign carrier(s) to different UEs. A simple yet effective G-factor based carrier selection algorithm, which takes both traffic load and radio channel characteristics......Carrier aggregation (CA) is one of the most distinct features for LTE-Advanced systems, which can support a much wider transmission bandwidth up to 100 MHz by aggregating two or more individual component carriers (CCs) belonging to the same (intra-band) or different (inter-band) frequency bands....... With CA, it is possible to schedule a user equipment (UE) on multiple CCs simultaneously. From radio resource management (RRM) perspective, CC selection plays an important role in optimizing the system performance, especially in the case of inter-band CA where the radio propagation characteristics of each...

  9. Aggregated wind power generation probabilistic forecasting based on particle filter

    International Nuclear Information System (INIS)

    Li, Pai; Guan, Xiaohong; Wu, Jiang

    2015-01-01

    Highlights: • A new method for probabilistic forecasting of aggregated wind power generation. • A dynamic system is established based on a numerical weather prediction model. • The new method handles the non-Gaussian and time-varying wind power uncertainties. • Particle filter is applied to forecast predictive densities of wind generation. - Abstract: Probability distribution of aggregated wind power generation in a region is one of important issues for power system daily operation. This paper presents a novel method to forecast the predictive densities of the aggregated wind power generation from several geographically distributed wind farms, considering the non-Gaussian and non-stationary characteristics in wind power uncertainties. Based on a mesoscale numerical weather prediction model, a dynamic system is established to formulate the relationship between the atmospheric and near-surface wind fields of geographically distributed wind farms. A recursively backtracking framework based on the particle filter is applied to estimate the atmospheric state with the near-surface wind power generation measurements, and to forecast the possible samples of the aggregated wind power generation. The predictive densities of the aggregated wind power generation are then estimated based on these predicted samples by a kernel density estimator. In case studies, the new method presented is tested on a 9 wind farms system in Midwestern United States. The testing results that the new method can provide competitive interval forecasts for the aggregated wind power generation with conventional statistical based models, which validates the effectiveness of the new method

  10. Effect of dextran-induced changes in refractive index and aggregation on optical properties of whole blood

    International Nuclear Information System (INIS)

    Xu Xiangqun; Wang, Ruikang K; Elder, James B; Tuchin, Valery V

    2003-01-01

    The purpose of the present study is to investigate systematically the mechanisms of alterations in the optical properties of whole blood immersed in the biocompatible agent dextran, and to define the optimal concentration of dextrans required for blood optical clearing in order to enhance the capability of light penetration depth for optical imaging applications. In the experiments, dextrans with different molecular weights and various concentrations were employed and investigated by the use of the optical coherence tomography technique. Changes in light attenuation, refractive index and aggregation properties of blood immersed in dextrans were studied. It was concluded from the results that the mechanisms for blood optical clearing are characteristic of the types of dextrans employed, their concentrations and the application stages. Among the substances applied, Dx500 at a concentration at 0.5 g dl -1 gives the best result in improving light penetration depth through the blood. The increase of light transmission at the beginning of the addition of dextrans is mainly attributed to refractive index matching between the scattering centres and the ground matter. Thereafter, the transmission change is probably due to a dextran-induced aggregation-disaggregation effect. Overall, light scattering in the blood could be effectively reduced by the application of dextrans. It represents a promising approach to increasing the imaging depth for in vivo optical imaging of biological tissue, for example optical coherence tomography

  11. Information Aggregation in Organizations

    OpenAIRE

    Schulte, Elisabeth

    2006-01-01

    This dissertation contributes to the analysis of information aggregation procedures within organizations. Facing uncertainty about the consequences of a collective decision, information has to be aggregated before making a choice. Two main questions are addressed. Firstly, how well is an organization suited for the aggregation of decision-relevant information? Secondly, how should an organization be designed in order to aggregate information efficiently? The main part deals with information a...

  12. Phosphorus content as a function of soil aggregate size and paddy cultivation in highly weathered soils.

    Science.gov (United States)

    Li, Baozhen; Ge, Tida; Xiao, Heai; Zhu, Zhenke; Li, Yong; Shibistova, Olga; Liu, Shoulong; Wu, Jinshui; Inubushi, Kazuyuki; Guggenberger, Georg

    2016-04-01

    Red soils are the major land resource in subtropical and tropical areas and are characterized by low phosphorus (P) availability. To assess the availability of P for plants and the potential stability of P in soil, two pairs of subtropical red soil samples from a paddy field and an adjacent uncultivated upland were collected from Hunan Province, China. Analysis of total P and Olsen P and sequential extraction was used to determine the inorganic and organic P fractions in different aggregate size classes. Our results showed that the soil under paddy cultivation had lower proportions of small aggregates and higher proportions of large aggregates than those from the uncultivated upland soil. The portion of >2-mm-sized aggregates increased by 31 and 20 % at Taoyuan and Guiyang, respectively. The total P and Olsen P contents were 50-150 and 50-300 % higher, respectively, in the paddy soil than those in the upland soil. Higher inorganic and organic P fractions tended to be enriched in both the smallest and largest aggregate size classes compared to the middle size class (0.02-0.2 mm). Furthermore, the proportion of P fractions was higher in smaller aggregate sizes (2 mm). In conclusion, soils under paddy cultivation displayed improved soil aggregate structure, altered distribution patterns of P fractions in different aggregate size classes, and to some extent had enhanced labile P pools.

  13. A Novel Method to Quantify Soil Aggregate Stability by Measuring Aggregate Bond Energies

    Science.gov (United States)

    Efrat, Rachel; Rawlins, Barry G.; Quinton, John N.; Watts, Chris W.; Whitmore, Andy P.

    2016-04-01

    Soil aggregate stability is a key indicator of soil quality because it controls physical, biological and chemical functions important in cultivated soils. Micro-aggregates are responsible for the long term sequestration of carbon in soil, therefore determine soils role in the carbon cycle. It is thus vital that techniques to measure aggregate stability are accurate, consistent and reliable, in order to appropriately manage and monitor soil quality, and to develop our understanding and estimates of soil as a carbon store to appropriately incorporate in carbon cycle models. Practices used to assess the stability of aggregates vary in sample preparation, operational technique and unit of results. They use proxies and lack quantification. Conflicting results are therefore drawn between projects that do not provide methodological or resultant comparability. Typical modern stability tests suspend aggregates in water and monitor fragmentation upon exposure to an un-quantified amount of ultrasonic energy, utilising a laser granulometer to measure the change in mean weight diameter. In this project a novel approach has been developed based on that of Zhu et al., (2009), to accurately quantify the stability of aggregates by specifically measuring their bond energies. The bond energies are measured operating a combination of calorimetry and a high powered ultrasonic probe, with computable output function. Temperature change during sonication is monitored by an array of probes which enables calculation of the energy spent heating the system (Ph). Our novel technique suspends aggregates in heavy liquid lithium heteropolytungstate, as opposed to water, to avoid exposing aggregates to an immeasurable disruptive energy source, due to cavitation, collisions and clay swelling. Mean weight diameter is measured by a laser granulometer to monitor aggregate breakdown after successive periods of calculated ultrasonic energy input (Pi), until complete dispersion is achieved and bond

  14. Sea Level Forecasts Aggregated from Established Operational Systems

    Directory of Open Access Journals (Sweden)

    Andy Taylor

    2017-08-01

    Full Text Available A system for providing routine seven-day forecasts of sea level observable at tide gauge locations is described and evaluated. Forecast time series are aggregated from well-established operational systems of the Australian Bureau of Meteorology; although following some adjustments these systems are only quasi-complimentary. Target applications are routine coastal decision processes under non-extreme conditions. The configuration aims to be relatively robust to operational realities such as version upgrades, data gaps and metadata ambiguities. Forecast skill is evaluated against hourly tide gauge observations. Characteristics of the bias correction term are demonstrated to be primarily static in time, with time varying signals showing regional coherence. This simple approach to exploiting existing complex systems can offer valuable levels of skill at a range of Australian locations. The prospect of interpolation between observation sites and exploitation of lagged-ensemble uncertainty estimates could be meaningfully pursued. Skill characteristics define a benchmark against which new operational sea level forecasting systems can be measured. More generally, an aggregation approach may prove to be optimal for routine sea level forecast services given the physically inhomogeneous processes involved and ability to incorporate ongoing improvements and extensions of source systems.

  15. Curcumin Attenuates Amyloid-β Aggregate Toxicity and Modulates Amyloid-β Aggregation Pathway.

    Science.gov (United States)

    Thapa, Arjun; Jett, Stephen D; Chi, Eva Y

    2016-01-20

    The abnormal misfolding and aggregation of amyloid-β (Aβ) peptides into β-sheet enriched insoluble deposits initiates a cascade of events leading to pathological processes and culminating in cognitive decline in Alzheimer's disease (AD). In particular, soluble oligomeric/prefibrillar Aβ have been shown to be potent neurotoxins. The naturally occurring polyphenol curcumin has been shown to exert a neuroprotective effect against age-related neurodegenerative diseases such as AD. However, its protective mechanism remains unclear. In this study, we investigated the effects of curcumin on the aggregation of Aβ40 as well as Aβ40 aggregate induced neurotoxicity. Our results show that the curcumin does not inhibit Aβ fibril formation, but rather enriches the population of "off-pathway" soluble oligomers and prefibrillar aggregates that were nontoxic. Curcumin also exerted a nonspecific neuroprotective effect, reducing toxicities induced by a range of Aβ conformers, including monomeric, oligomeric, prefibrillar, and fibrillar Aβ. The neuroprotective effect is possibly membrane-mediated, as curcumin reduced the extent of cell membrane permeabilization induced by Aβ aggregates. Taken together, our study shows that curcumin exerts its neuroprotective effect against Aβ induced toxicity through at least two concerted pathways, modifying the Aβ aggregation pathway toward the formation of nontoxic aggregates and ameliorating Aβ-induced toxicity possibly through a nonspecific pathway.

  16. Influence of pore structure on carbon retention/loss in soil macro-aggregates

    Science.gov (United States)

    Quigley, Michelle; Kravchenko, Alexandra; Rivers, Mark

    2017-04-01

    Carbon protection within soil macro-aggregates is an important component of soil carbon sequestration. Pores, as the transportation network for microorganisms, water, air and nutrients within macro-aggregates, are among the factors controlling carbon protection through restricting physical accessibility of carbon to microorganisms. The understanding of how the intra-aggregate pore structure relates to the degree of carbon physical protection, however, is currently lacking. This knowledge gap can lead to potentially inaccurate models and predictions of soil carbon's fate and storage in future changing climates. This study utilized the natural isotopic difference between C3 and C4 plants to trace the location of newly added carbon within macro-aggregates before and after decomposition and explored how location of this carbon relates to characteristics of intra-aggregate pores. To mimic the effect of decomposition, aggregates were incubated at 23˚ C for 28 days. Computed micro-tomographic images were used to determine pore characteristics at 6 μm resolution before and after incubation. Soil (0-10 cm depth) from a 20 year continuous corn (C4 plant) experiment was used. Two soil treatments were considered: 1) "destroyed-structure", where 1 mm sieved soil was used and 2) "intact-structure", where intact blocks of soil were used. Cereal rye (Secale cereale L.) (C3 plant) was grown in the planting boxes (2 intact, 3 destroyed, and one control) for three months in a greenhouse. From each box, ˜5 macro-aggregates of ˜5 mm size were collected for a total of 27 macro-aggregates. Half of the aggregates were cut into 5-11 sections, with relative positions of the sections within the aggregate recorded, and analyzed for δ13C. The remaining aggregates were incubated and then subjected to cutting and δ13C analysis. While there were no significant differences between the aggregate pore size distributions of the two treatments, the roles that specific pores sizes played in

  17. Characterizing harmful advanced glycation end-products (AGEs) and ribosylated aggregates of yellow mustard seed phytocystatin: Effects of different monosaccharides

    Science.gov (United States)

    Ahmed, Azaj; Shamsi, Anas; Bano, Bilqees

    2017-01-01

    Advanced glycation end products (AGEs) are at the core of variety of diseases ranging from diabetes to renal failure and hence gaining wide consideration. This study was aimed at characterizing the AGEs of phytocystatin isolated from mustard seeds (YMP) when incubated with different monosaccharides (glucose, ribose and mannose) using fluorescence, ultraviolet, circular dichroism (CD) spectroscopy and microscopy. Ribose was found to be the most potent glycating agent as evident by AGEs specific fluorescence and absorbance. YMP exists as a molten globule like structure on day 24 as depicted by high ANS fluorescence and altered intrinsic fluorescence. Glycated YMP as AGEs and ribose induced aggregates were observed at day 28 and 32 respectively. In our study we have also examined the anti-aggregative potential of polyphenol, resveratrol. Our results suggested the anti-aggregative behavior of resveratrol as it prevented the in vitro aggregation of YMP, although further studies are required to decode the mechanism by which resveratrol prevents the aggregation.

  18. Recycled aggregates concrete: aggregate and mix properties

    Directory of Open Access Journals (Sweden)

    González-Fonteboa, B.

    2005-09-01

    Full Text Available This study of structural concrete made with recycled concrete aggregate focuses on two issues: 1. The characterization of such aggregate on the Spanish market. This involved conducting standard tests to determine density, water absorption, grading, shape, flakiness and hardness. The results obtained show that, despite the considerable differences with respect to density and water absorption between these and natural aggregates, on the whole recycled aggregate is apt for use in concrete production. 2. Testing to determine the values of basic concrete properties: mix design parameters were established for structural concrete in non-aggressive environments. These parameters were used to produce conventional concrete, and then adjusted to manufacture recycled concrete aggregate (RCA concrete, in which 50% of the coarse aggregate was replaced by the recycled material. Tests were conducted to determine the physical (density of the fresh and hardened material, water absorption and mechanical (compressive strength, splitting tensile strength and modulus of elasticity properties. The results showed that, from the standpoint of its physical and mechanical properties, concrete in which RCA accounted for 50% of the coarse aggregate compared favourably to conventional concrete.

    Se aborda el estudio de hormigones estructurales fabricados con áridos reciclados procedentes de hormigón, incidiéndose en dos aspectos: 1. Caracterización de tales áridos, procedentes del mercado español. Para ello se llevan a cabo ensayos de densidad, absorción, granulometría, coeficiente de forma, índice de lajas y dureza. Los resultados obtenidos han puesto de manifiesto que, a pesar de que existen diferencias notables (sobre todo en cuanto a densidad y absorción con los áridos naturales, las características de los áridos hacen posible la fabricación de hormigones. 2. Ensayos sobre propiedades básicas de los hormigones: se establecen parámetros de dosificaci

  19. Towards General Temporal Aggregation

    DEFF Research Database (Denmark)

    Boehlen, Michael H.; Gamper, Johann; Jensen, Christian Søndergaard

    2008-01-01

    associated with the management of temporal data. Indeed, temporal aggregation is complex and among the most difficult, and thus interesting, temporal functionality to support. This paper presents a general framework for temporal aggregation that accommodates existing kinds of aggregation, and it identifies...

  20. Effect of aggregates on the magnetization property of ferrofluids: A model of gaslike compression

    Directory of Open Access Journals (Sweden)

    Jian Li, Yan Huang, Xiaodong Liu, Yueqing Lin, Lang Bai and Qiang Li

    2007-01-01

    Full Text Available The effect of field-induced aggregation of particles on the magnetization property of ferrofluids is investigated. From the viewpoint of energy, magnetizability of ferrofluids is more complicated than predicted by Langevin theory because the aggregation, i.e., the transition of ferrofluid microstructure, would consume the energy of the applied magnetic field. For calculating the effect of aggregates on the magnetization of ferrofluids, a model of gaslike compression (MGC is proposed to simulate the evolution of the aggregate structure. In this model, the field-induced colloidal particles aggregating in ferrofluids is equivalent to the "gas of the particles" being compressed by the applied magnetic field. The entropy change of the ferrofluid microstructure is proportional to the particle volume fraction in field-induced aggregates phivH. On the basis of the known behavior of ferrofluid magnetization and the aggregate structure determined from the present experiments, phivH is obtained and found to depend on the aggregating characteristic parameter of ferrofluid particles γ in addition to the particle volume fraction in ferrofluids phiv and the strength of applied magnetic field H. The effect of the nonmagnetic surface layer of ferrofluid particles is also studied. The theory of MGC conforms to our experimental results better than Langevin theory.

  1. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry

    Directory of Open Access Journals (Sweden)

    Jegathish Kanadasan

    2015-09-01

    Full Text Available The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC.

  2. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry

    Science.gov (United States)

    Kanadasan, Jegathish; Ahmad Fauzi, Auni Filzah; Abdul Razak, Hashim; Selliah, Paramananthan; Subramaniam, Vijaya; Yusoff, Sumiani

    2015-01-01

    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC. PMID:28793579

  3. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry.

    Science.gov (United States)

    Kanadasan, Jegathish; Fauzi, Auni Filzah Ahmad; Razak, Hashim Abdul; Selliah, Paramananthan; Subramaniam, Vijaya; Yusoff, Sumiani

    2015-09-22

    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory factors were assessed. POC were incorporated as a replacement material for aggregates and their engineering characteristics were ascertained. Almost 7% of density was reduced with the introduction of POC as aggregates. A sustainability assessment was made through greenhouse gas emission (GHG) and cost factor analyses to determine the contribution of the addition of POC to the construction industry. Addition of POC helps to lower the GHG emission by 9.6% compared to control specimens. By channeling this waste into the construction industry, an efficient waste-management system can be promoted; thus, creating a cleaner environment. This study is also expected to offer some guides and directions for upcoming research works on the incorporation of POC.

  4. Compressive Strength of Concrete made from Natural Fine Aggregate Sources in Minna, Nigeria

    Directory of Open Access Journals (Sweden)

    M. Abdullahi

    2017-12-01

    Full Text Available This work presented an investigation of concrete developed from five fine aggregate sources in Minna, Niger state, Nigeria. Tests conducted on the fine aggregate samples included specific gravity, sieve analysis, bulk density and moisture content. The concrete mix design was done using absolute volume method at various mix proportion of 1:2:4, 1:2:3 and 1:1:2 and water-cement ratios of 0.4, 0.45, 0.5, 0.55 and 0.6. The compressive strengths of concrete were determined at 28-day curing age. Test results revealed that the specific gravities of the aggregate were between 2.60 to 2.70, compacted bulk densities also ranged from 1505.18 to 1701.15kg/m3, loose bulk densities ranged from 1379.32 to 1478.17kg/m3, and moisture content ranged from 0.93 to 2.47%. All the fine aggregate samples satisfied the overall and medium grading limits for natural fine aggregates. The coarse aggregate used fairly followed the grading limit for aggregate size of 20 to 5 mm. The compressive strength of the concrete obtained using the aggregate samples A, B, C, D, and Eall within the ranges of 18.97 to 34.98 N/mm2. Statistical models were developed for the compressive strength of concrete as a function of water-cement ratio for various fine aggregate sources and mix proportions. The models were found to have good predictive the capabilities of the compressive strength of concrete for given water-cement ratio. The properties of fine aggregates and the resulting concrete characteristics showed that all the fine aggregate samples are suitable to be used for concrete production.

  5. Sponge cell reaggregation: Cellular structure and morphogenetic potencies of multicellular aggregates.

    Science.gov (United States)

    Lavrov, Andrey I; Kosevich, Igor A

    2016-02-01

    Sponges (phylum Porifera) are one of the most ancient extant multicellular animals and can provide valuable insights into origin and early evolution of Metazoa. High plasticity of cell differentiations and anatomical structure is characteristic feature of sponges. Present study deals with sponge cell reaggregation after dissociation as the most outstanding case of sponge plasticity. Dynamic of cell reaggregation and structure of multicellular aggregates of three demosponge species (Halichondria panicea (Pallas, 1766), Haliclona aquaeductus (Sсhmidt, 1862), and Halisarca dujardinii Johnston, 1842) were studied. Sponge tissue dissociation was performed mechanically. Resulting cell suspensions were cultured at 8-10°C for at least 5 days. Structure of multicellular aggregates was studied by light, transmission and scanning electron microscopy. Studied species share common stages of cell reaggregation-primary multicellular aggregates, early-stage primmorphs and primmorphs, but the rate of reaggregation varies considerably among species. Only cells of H. dujardinii are able to reconstruct functional and viable sponge after primmorphs formation. Sponge reconstruction in this species occurs due to active cell locomotion. Development of H. aquaeductus and H. panicea cells ceases at the stages of early primmorphs and primmorphs, respectively. Development of aggregates of these species is most likely arrested due to immobility of the majority of cells inside them. However, the inability of certain sponge species to reconstruct functional and viable individuals during cell reaggregation may be not a permanent species-specific characteristic, but depends on various factors, including the stage of the life cycle and experimental conditions. © 2016 Wiley Periodicals, Inc.

  6. Development of building blocks using vegetable oil and recycled aggregate

    Directory of Open Access Journals (Sweden)

    Attia Mohamed I.

    2017-01-01

    Full Text Available The primary objective of this research was to contribute towards greater sustainability of the construction industry in the Qatar by proposing methods to reduce its dependency on primary imported materials. In this investigation, recycled and secondary aggregates (RSA were combined with non-traditional binders to develop a unique method of manufacturing construction and building blocks. Following an extensive phase of laboratory trials and experimentation, it was realised that many types of graded mineral aggregates, when mixed with vegetable oils (virgin or waste at optimal proportions, then compacted and thermally cured at elevated temperatures can readily generate hardened composites that have the mechanical characteristics of conventional building blocks. The resultant blocks have been named “Vegeblocks” and are viewed as viable alternatives to conventional concrete blocks. Furthermore, the research has demonstrated the feasibility of producing Vegeblocks composed of 100% recycled aggregate and discarded waste cooking oil. Based on physical and mineralogical properties, each type of aggregate has an optimum oil content for maximum compressive strength, beyond which, any additional oil will result in reduction in mechanical properties. Acceptable compressive strength values were achieved by thermally curing Vegeblocks at of 170 °C for 24 hours.

  7. Guidance to Achieve Accurate Aggregate Quantitation in Biopharmaceuticals by SV-AUC.

    Science.gov (United States)

    Arthur, Kelly K; Kendrick, Brent S; Gabrielson, John P

    2015-01-01

    The levels and types of aggregates present in protein biopharmaceuticals must be assessed during all stages of product development, manufacturing, and storage of the finished product. Routine monitoring of aggregate levels in biopharmaceuticals is typically achieved by size exclusion chromatography (SEC) due to its high precision, speed, robustness, and simplicity to operate. However, SEC is error prone and requires careful method development to ensure accuracy of reported aggregate levels. Sedimentation velocity analytical ultracentrifugation (SV-AUC) is an orthogonal technique that can be used to measure protein aggregation without many of the potential inaccuracies of SEC. In this chapter, we discuss applications of SV-AUC during biopharmaceutical development and how characteristics of the technique make it better suited for some applications than others. We then discuss the elements of a comprehensive analytical control strategy for SV-AUC. Successful implementation of these analytical control elements ensures that SV-AUC provides continued value over the long time frames necessary to bring biopharmaceuticals to market. © 2015 Elsevier Inc. All rights reserved.

  8. Chemical-mineralogical characterisation of coarse recycled concrete aggregate

    International Nuclear Information System (INIS)

    Limbachiya, M.C.; Marrocchino, E.; Koulouris, A.

    2007-01-01

    The construction industry is now putting greater emphasis than ever before on increasing recycling and promoting more sustainable waste management practices. In keeping with this approach, many sectors of the industry have actively sought to encourage the use of recycled concrete aggregate (RCA) as an alternative to primary aggregates in concrete production. The results of a laboratory experimental programme aimed at establishing chemical and mineralogical characteristics of coarse RCA and its likely influence on concrete performance are reported in this paper. Commercially produced coarse RCA and natural aggregates (16-4 mm size fraction) were tested. Results of X-ray fluorescence (XRF) analyses showed that original source of RCA had a negligible effect on the major elements and a comparable chemical composition between recycled and natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, portlandite and minor peaks of muscovite/illite in recycled aggregates, although they were directly proportioned to their original composition. The influence of 30%, 50%, and 100% coarse RCA on the chemical composition of equal design strength concrete has been established, and its suitability for use in a concrete application has been assessed. In this work, coarse RCA was used as a direct replacement for natural gravel in concrete production. Test results indicated that up to 30% coarse RCA had no effect on the main three oxides (SiO 2 , Al 2 O 3 and CaO) of concrete, but thereafter there was a marginal decrease in SiO 2 and increase in Al 2 O 3 and CaO contents with increase in RCA content in the mix, reflecting the original constituent's composition

  9. Chemical-mineralogical characterisation of coarse recycled concrete aggregate.

    Science.gov (United States)

    Limbachiya, M C; Marrocchino, E; Koulouris, A

    2007-01-01

    The construction industry is now putting greater emphasis than ever before on increasing recycling and promoting more sustainable waste management practices. In keeping with this approach, many sectors of the industry have actively sought to encourage the use of recycled concrete aggregate (RCA) as an alternative to primary aggregates in concrete production. The results of a laboratory experimental programme aimed at establishing chemical and mineralogical characteristics of coarse RCA and its likely influence on concrete performance are reported in this paper. Commercially produced coarse RCA and natural aggregates (16-4 mm size fraction) were tested. Results of X-ray fluorescence (XRF) analyses showed that original source of RCA had a negligible effect on the major elements and a comparable chemical composition between recycled and natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, portlandite and minor peaks of muscovite/illite in recycled aggregates, although they were directly proportioned to their original composition. The influence of 30%, 50%, and 100% coarse RCA on the chemical composition of equal design strength concrete has been established, and its suitability for use in a concrete application has been assessed. In this work, coarse RCA was used as a direct replacement for natural gravel in concrete production. Test results indicated that up to 30% coarse RCA had no effect on the main three oxides (SiO2, Al2O3 and CaO) of concrete, but thereafter there was a marginal decrease in SiO2 and increase in Al2O3 and CaO contents with increase in RCA content in the mix, reflecting the original constituent's composition.

  10. Proteins aggregation and human diseases

    International Nuclear Information System (INIS)

    Hu, Chin-Kun

    2015-01-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease. (paper)

  11. Proteins aggregation and human diseases

    Science.gov (United States)

    Hu, Chin-Kun

    2015-04-01

    Many human diseases and the death of most supercentenarians are related to protein aggregation. Neurodegenerative diseases include Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), frontotemporallobar degeneration, etc. Such diseases are due to progressive loss of structure or function of neurons caused by protein aggregation. For example, AD is considered to be related to aggregation of Aβ40 (peptide with 40 amino acids) and Aβ42 (peptide with 42 amino acids) and HD is considered to be related to aggregation of polyQ (polyglutamine) peptides. In this paper, we briefly review our recent discovery of key factors for protein aggregation. We used a lattice model to study the aggregation rates of proteins and found that the probability for a protein sequence to appear in the conformation of the aggregated state can be used to determine the temperature at which proteins can aggregate most quickly. We used molecular dynamics and simple models of polymer chains to study relaxation and aggregation of proteins under various conditions and found that when the bending-angle dependent and torsion-angle dependent interactions are zero or very small, then protein chains tend to aggregate at lower temperatures. All atom models were used to identify a key peptide chain for the aggregation of insulin chains and to find that two polyQ chains prefer anti-parallel conformation. It is pointed out that in many cases, protein aggregation does not result from protein mis-folding. A potential drug from Chinese medicine was found for Alzheimer's disease.

  12. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution

    Science.gov (United States)

    Afrooz, A. R. M. Nabiul; Hussain, Saber M.; Saleh, Navid B.

    2014-12-01

    Most in vitro nanotoxicological assays are performed after 24 h exposure. However, in determining size and shape effect of nanoparticles in toxicity assays, initial characterization data are generally used to describe experimental outcome. The dynamic size and structure of aggregates are typically ignored in these studies. This brief communication reports dynamic evolution of aggregation characteristics of gold nanoparticles. The study finds that gradual increase in aggregate size of gold nanospheres (AuNS) occurs up to 6 h duration; beyond this time period, the aggregation process deviates from gradual to a more abrupt behavior as large networks are formed. Results of the study also show that aggregated clusters possess unique structural conformation depending on nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples likely occurred due to geometric differences, causing larger packing propensities for smaller sized particles. Both such observations can have profound influence on dosimetry for in vitro nanotoxicity analyses.

  13. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution

    International Nuclear Information System (INIS)

    Afrooz, A. R. M. Nabiul; Hussain, Saber M.; Saleh, Navid B.

    2014-01-01

    Most in vitro nanotoxicological assays are performed after 24 h exposure. However, in determining size and shape effect of nanoparticles in toxicity assays, initial characterization data are generally used to describe experimental outcome. The dynamic size and structure of aggregates are typically ignored in these studies. This brief communication reports dynamic evolution of aggregation characteristics of gold nanoparticles. The study finds that gradual increase in aggregate size of gold nanospheres (AuNS) occurs up to 6 h duration; beyond this time period, the aggregation process deviates from gradual to a more abrupt behavior as large networks are formed. Results of the study also show that aggregated clusters possess unique structural conformation depending on nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples likely occurred due to geometric differences, causing larger packing propensities for smaller sized particles. Both such observations can have profound influence on dosimetry for in vitro nanotoxicity analyses.Graphical Abstract

  14. On Hesitant Fuzzy Reducible Weighted Bonferroni Mean and Its Generalized Form for Multicriteria Aggregation

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2014-01-01

    Full Text Available Due to convenience and powerfulness in dealing with vagueness and uncertainty of real situation, hesitant fuzzy set has received more and more attention and has been a hot research topic recently. To differently process and effectively aggregate hesitant fuzzy information and capture their interrelationship, in this paper, we propose the hesitant fuzzy reducible weighted Bonferroni mean (HFRWBM and present its four prominent characteristics, namely, reductibility, monotonicity, boundedness, and idempotency. Then, we further investigate its generalized form, that is, the generalized hesitant fuzzy reducible weighted Bonferroni mean (GHFRWBM. Based on the discussion of model parameters, some special cases of the HFRWBM and GHFRWBM are studied in detail. In addition, to deal with the situation that multicriteria have connections in hesitant fuzzy information aggregation, a three-step aggregation approach has been proposed on the basis of the HFRWBM and GHFRWBM. In the end, we apply the proposed aggregation operators to multicriteria aggregation and give an example to illustrate our results.

  15. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution

    Energy Technology Data Exchange (ETDEWEB)

    Afrooz, A. R. M. Nabiul [The University of Texas, Civil, Architectural and Environmental Engineering (United States); Hussain, Saber M. [Wright-Patterson AFB, Human Effectiveness Directorate, 711th Human Performance Wing, Air Force Research Laboratory (United States); Saleh, Navid B., E-mail: navid.saleh@utexas.edu [The University of Texas, Civil, Architectural and Environmental Engineering (United States)

    2014-12-15

    Most in vitro nanotoxicological assays are performed after 24 h exposure. However, in determining size and shape effect of nanoparticles in toxicity assays, initial characterization data are generally used to describe experimental outcome. The dynamic size and structure of aggregates are typically ignored in these studies. This brief communication reports dynamic evolution of aggregation characteristics of gold nanoparticles. The study finds that gradual increase in aggregate size of gold nanospheres (AuNS) occurs up to 6 h duration; beyond this time period, the aggregation process deviates from gradual to a more abrupt behavior as large networks are formed. Results of the study also show that aggregated clusters possess unique structural conformation depending on nominal diameter of the nanoparticles. The differences in fractal dimensions of the AuNS samples likely occurred due to geometric differences, causing larger packing propensities for smaller sized particles. Both such observations can have profound influence on dosimetry for in vitro nanotoxicity analyses.Graphical Abstract.

  16. Core Cross-Linked Multiarm Star Polymers with Aggregation-Induced Emission and Temperature Responsive Fluorescence Characteristics

    KAUST Repository

    Zhang, Zhen; Bilalis, Panagiotis; Zhang, Hefeng; Gnanou, Yves; Hadjichristidis, Nikolaos

    2017-01-01

    Aggregation-induced emission (AIE) active core cross-linked multiarm star polymers, carrying polystyrene (PS), polyethylene (PE), or polyethylene-b-polycaprolactone (PE-b-PCL) arms, have been synthesized through an “arm-first” strategy, by atom

  17. Halogenated salicylaldehyde azines: The heavy atom effect on aggregation-induced emission enhancement properties

    International Nuclear Information System (INIS)

    Chen, Xiao-tong; Tong, Ai-jun

    2014-01-01

    This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. For this purpose, a series of halogenated salicylaldehyde azine derivatives, namely, chloro-salicylaldehyde azine (1), bromo-salicylaldehyde azine (2) and iodo-salicylaldehyde azine (3) are synthesized. 1 and 2 display typical AIEE characteristics of salicylaldehyde azine compounds; whereas for the iodo-substituent in 3, is found to be effective “external” heavy atom quenchers to salicylaldehyde azine fluorescence in aggregated state. Based on its weak fluorescence in aggregated state and relative strong fluorescence in dispersed state, 3 can also be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction. -- Highlights: • This study investigates the heavy-atom effect (HAE) on aggregation-induced emission enhancement (AIEE) properties of salicylaldehyde azines. • Chloro- and bromo-salicylaldehyde display typical AIEE properties of salicylaldehyde azine, whereas the iodo-substitute quenches AIEE in aggregated state. • Iodo-salicylaldehyde can be applied as a turn-on fluorescence probe for egg albumin detection attributed to hydrophobic interaction

  18. Peripheral Immune Alterations in Major Depression: The Role of Subtypes and Pathogenetic Characteristics

    Directory of Open Access Journals (Sweden)

    Frank Euteneuer

    2017-11-01

    Full Text Available Depression has been associated with peripheral inflammatory processes and alterations in cellular immunity. Growing evidence suggests that immunological alterations may neither be necessary nor sufficient to induce depression in general, but seem to be associated with specific features. Using baseline data from the Outcome of Psychological Interventions in Depression trial, this exploratory study examines associations between depression subtypes and pathogenetic characteristics (i.e., melancholic vs non-melancholic depression, chronic vs non-chronic depression, age of onset, cognitive-affective and somatic symptom dimensions with plasma levels of C-reactive protein (CRP, interleukin (IL-6, IL-10, and numbers of leukocyte subpopulations in 98 patients with major depression (MD and 30 age and sex-matched controls. Patients with MD exhibited higher CRP levels, higher neutrophil and monocyte counts, lower IL-10 levels, and an increased neutrophil to lymphocyte ratio (NLR than controls. Patient with later age of onset had higher levels of two inflammatory markers (CRP, NLR and lower cytotoxic T cell counts after adjusting for sociodemographics, lifestyle factors, and antidepressants. Furthermore, lower anti-inflammatory IL-10 levels were related to more severe somatic depressive symptoms. These results confirm and extend previous findings suggesting that increased levels of CRP are associated with a later onset of depression and demonstrate that also NLR as a subclinical inflammatory marker is related to a later onset of depression.

  19. Chlorite alteration in aqueous solutions and uranium removal by altered chlorite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eungyeong; Ahn, Hyangsig [Department of Earth and Environmental Sciences, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841 (Korea, Republic of); Jo, Ho Young, E-mail: hyjo@korea.ac.kr [Department of Earth and Environmental Sciences, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841 (Korea, Republic of); Ryu, Ji-Hun; Koh, Yong-Kwon [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-04-05

    Highlights: • Chlorite alteration and the U removal capacity of altered chlorite were investigated. • Initial pH affected more chlorite dissolution than ionic strength. • Chlorite dissolution at pH{sub o} = 3–8 was inversely proportional to the U removal capacity. • Chlorite dissolution at pH{sub o} = 10 was proportional to the U removal capacity. • The formation of Fe-containing secondary minerals affected the U removal capacity. - Abstract: Chlorite alteration and the U removal capacity of altered chlorite were investigated. Batch kinetic dissolution tests using clinochlore CCa-2 were conducted for 60 days in aqueous solutions of various pHs and ionic strengths. Batch sorption tests using these altered chlorite samples were conducted for 48 h with natural groundwater containing 3.06 × 10{sup −6} M U. Chlorite dissolution was influenced more by pH{sub o} than by the ionic strength of the solution. TEM analysis revealed Fe(oxy)hydroxide aggregates in the solid residue from the batch dissolution test with 0.1 M NaClO{sub 4} solution at pH{sub o} = 10. The U removal capacity of the reacted chlorite samples at pH{sub o} = 6–10 was higher than that of the reacted chlorite samples at pH{sub o} = 3. The degree of dissolution of chlorite samples reacted at pH{sub o} = 3–8 was inversely proportional to the U removal capacity, but that of chlorite samples reacted at pH{sub o} = 10 was proportional to the U removal capacity. The positive correlation between the U removal capacity and degree of chlorite dissolution at pH{sub o} = 10 might be due to the formation of Fe-containing secondary minerals and changes in the reactive sites.

  20. Very early age concrete hydration characterization monitoring using piezoceramic based smart aggregates

    International Nuclear Information System (INIS)

    Kong, Qingzhao; Song, Gangbing; Hou, Shuang; Ji, Qing; Mo, Y L

    2013-01-01

    Very early age (0–20 h) concrete hydration is a complicated chemical reaction. During the very early age period, the concrete condition dramatically changes from liquid state to solid state. This paper presents the authors’ recent research on monitoring very early age concrete hydration characterization by using piezoceramic based smart aggregates. The smart aggregate (SA) transducer is designed as a sandwich structure using two marble blocks and a pre-soldered lead zirconate titanate (PZT) patch. Based on the electromechanical property of piezo materials, the PZT patches function as both actuators and sensors. In addition, the marble blocks provide reliable protection to the fragile PZT patch and develop the SA into a robust embedded actuator or sensor in the structure. The active-sensing approach, which involved a pair of smart aggregates with one as an actuator and the other one as a sensor, was applied in this paper’s experimental investigation of concrete hydration characterization monitoring. In order to completely understand the hydration condition of the inhomogeneous, over-cluttering, high-scattering characteristics of concrete (specifically of very early concrete), a swept sine wave and several constant frequency sine waves were chosen and produced by a function generator to excite the embedded actuating smart aggregate. The PZT vibration induced ultrasonic wave propagated through the concrete and was sent to the other smart aggregate sensor. The electrical signal transferred from the smart aggregate sensor was recorded during the test. As the concrete hydration reaction was occurring, the characteristic of the electrical signal continuously changed. This paper describes the successful investigation of the three states (the fluid state, the transition state, and the hardened state) of very early age concrete hydration based on classification of the received electrical signal. Specifically, the amplitude and frequency response of the electrical

  1. Structural modifications of vesicular aggregates following gamma-irradiation

    International Nuclear Information System (INIS)

    Mantaka-Marketou, A.E.; Domasou, A.S.

    1991-01-01

    The structural changes of the didodecyldimethylammonium bromide (DDAB) vesicular bilayers after γ-irradiation and under conditions where mainly OH radicals are present are reported. Alterations of the vesicular structure, such as polarity and fluidity, were detected after a dose of 0.65 kGy. A higher dose of ∼14kGy cause important damage to the well organized molecular structure and this is manifested by an important augmentation of the fluidity and polarity of the Stern region of the aggregates. Increased water penetration into the bilayer of the vesicle is probably the reason for these changes and electron micrographs support this hypothesis. (author)

  2. Denitrification in Soil Aggregate Analogues-Effect of Aggregate Size and Oxygen Diffusion

    Directory of Open Access Journals (Sweden)

    Steffen Schlüter

    2018-04-01

    Full Text Available Soil-borne nitrous oxide (N2O emissions have a high spatial and temporal variability which is commonly attributed to the occurrence of hotspots and hot moments for microbial activity in aggregated soil. Yet there is only limited information about the biophysical processes that regulate the production and consumption of N2O on microscopic scales in undisturbed soil. In this study, we introduce an experimental framework relying on simplified porous media that circumvents some of the complexities occuring in natural soils while fully accounting for physical constraints believed to control microbial activity in general and denitrification in particular. We used this framework to explore the impact of aggregate size and external oxygen concentration on the kinetics of O2 consumption, as well as CO2 and N2O production. Model aggregates of different sizes (3.5 vs. 7 mm diameter composed of porous, sintered glass were saturated with a defined growth medium containing roughly 109 cells ml−1 of the facultative anaerobic, nosZ-deficient denitrifier Agrobacterium tumefaciens with N2O as final denitrification product and incubated at five different oxygen levels (0–13 vol-%. We demonstrate that the onset of denitrification depends on the amount of external oxygen and the size of aggregates. Smaller aggregates were better supplied with oxygen due to a larger surface-to-volume ratio, which resulted in faster growth and an earlier onset of denitrification. In larger aggregates, the onset of denitrification was more gradual, but with comparably higher N2O production rates once the anoxic aggregate centers were fully developed. The normalized electron flow from the reduced carbon substrate to N-oxyanions (edenit-/etotal- ratio could be solely described as a function of initial oxygen concentration in the headspace with a simple, hyperbolic model, for which the two empirical parameters changed with aggregate size in a consistent way. These findings confirm the

  3. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions

    Science.gov (United States)

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-01

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute

  4. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions.

    Science.gov (United States)

    Choi, Jun-Ho; Lee, Hochan; Choi, Hyung Ran; Cho, Minhaeng

    2018-04-20

    In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute

  5. Oil-Price Shocks: Beyond Standard Aggregate Demand/Aggregate Supply Analysis.

    Science.gov (United States)

    Elwood, S. Kirk

    2001-01-01

    Explores the problems of portraying oil-price shocks using the aggregate demand/aggregate supply model. Presents a simple modification of the model that differentiates between production and absorption of goods, which enables it to better reflect the effects of oil-price shocks on open economies. (RLH)

  6. Assessing the strength of soil aggregates produced by two types of organic matter amendments using the ultrasonic energy

    Science.gov (United States)

    Zhu, Zhaolong; minasny, Budiman; Field, Damien; Angers, Denis

    2017-04-01

    The presence of organic matter (OM) is known to stimulate the formation of soil aggregates, but the aggregation strength may vary with different amount and type/quality of OM. Conventionally wet sieving method was used to assess the aggregates' strength. In this study, we wish to get insight of the effects of different types of C inputs on aggregate dynamics using quantifiable energy via ultrasonic agitation. A clay soil with an inherently low soil organic carbon (SOC) content, was amended with two different sources of organic matter (alfalfa, C:N = 16.7 and barley straw, C:N = 95.6) at different input levels (0, 10, 20, & 30 g C kg-1 soil). The soil's inherent macro aggregates were first destroyed via puddling. The soils were incubated in pots at moisture content 70% of field capacity for a period of 3 months. The pots were housed in a 1.2L sealed opaque plastic container. The CO2 generated during the incubation was captured by a vial of NaOH which was placed in each of the sealed containers and sampled per week. At 14, 28, 56, and 84 days, soil samples were collected and the change in aggregation was assessed using a combination of wet sieving and ultrasonic agitation. The relative strength of aggregates exposed to ultrasonic agitation was modelled using the aggregate disruption characteristic curve (ADCC) and soil dispersion characteristic curve (SDCC). Both residue quality and quantity of organic matter input influenced the amount of aggregates formed and their relative strength. The MWD of soils amended with alfalfa residues was greater than that of barley straw at lower input rates and early in the incubation. In the longer term, the use of ultrasonic energy revealed that barley straw resulted in stronger aggregates, especially at higher input rates despite showing similar MWD as alfalfa. The use of ultrasonic agitation, where we quantify the energy required to liberate and disperse aggregates allowed us to differentiate the effects of C inputs on the size of

  7. Morphology variation, composition alteration and microstructure changes in ion-irradiated 1060 aluminum alloy

    Science.gov (United States)

    Wan, Hao; Si, Naichao; Wang, Quan; Zhao, Zhenjiang

    2018-02-01

    Morphology variation, composition alteration and microstructure changes in 1060 aluminum irradiated with 50 keV helium ions were characterized by field emission scanning electron microscopy (FESEM) equipped with x-ray elemental scanning, 3D measuring laser microscope and transmission electron microscope (TEM). The results show that, helium ions irradiation induced surface damage and Si-rich aggregates in the surfaces of irradiated samples. Increasing the dose of irradiation, more damages and Si-rich aggregates would be produced. Besides, defects such as dislocations, dislocation loops and dislocation walls were the primary defects in the ion implanted layer. The forming of surface damages were related with preferentially sputtering of Al component. While irradiation-enhanced diffusion and irradiation-induced segregation resulted in the aggregation of impurity atoms. And the aggregation ability of impurity atoms were discussed based on the atomic radius, displacement energy, lattice binding energy and surface binding energy.

  8. Photo-induced reorganization of molecular packing of amphi-PIC J-aggregates (single J-aggregate spectroscopy)

    International Nuclear Information System (INIS)

    Malyukin, Yu.V.; Sorokin, A.V.; Yefimova, S.L.; Lebedenko, A.N.

    2005-01-01

    Confocal luminescence microscopy has been used to excite and collect luminescence from single amphi-PIC J-aggregate. Two types of J-aggregates have been revealed in the luminescence image: bead-like J-aggregates, which diameter is less than 1 μm and rod-like ones, which length is about 3 μm and diameter is less than 1 μm. It has been found that single rod-like and bead-like J-aggregates exhibit different luminescence bands with different decay parameters. At the off-resonance blue tail excitation, the J-aggregate exciton luminescence disappeared within a certain time period and a new band appeared, which cannot be attributed to the monomer emission. The luminescence image shows that the J-aggregate is not destroyed. However, J-aggregate storage in darkness does not recover its exciton luminescence

  9. Sex differences in the clinical characteristics and brain gray matter volume alterations in unmedicated patients with major depressive disorder.

    Science.gov (United States)

    Yang, Xiao; Peng, Zugui; Ma, Xiaojuan; Meng, Yajing; Li, Mingli; Zhang, Jian; Song, Xiuliu; Liu, Ye; Fan, Huanhuan; Zhao, Liansheng; Deng, Wei; Li, Tao; Ma, Xiaohong

    2017-05-30

    This study was to explore the sex differences in clinical characteristics and brain gray matter volume (GMV) alterations in 29 male patients with major depressive disorder (MDDm), 53 female patients with MDD (MDDf), and in 29 male and 53 female matched healthy controls. Maps of GMV were constructed using magnetic resonance imaging data and compared between groups. We evaluated clinical symptoms using the Hamilton Rating Scale for Depression and obtained a total score and five syndrome scores. A two-factor ANCOVA model was specified using SPM8, with sex and diagnosis as the between-subject factors. We found that: (1) significant GMV increase in the left cerebellum and GMV reduction in the bilateral middle temporal gyrus and left ventral medial prefrontal gyrus occurred selectively in male patients, while the GMV reduction in the left lingual gyrus and dorsal medial prefrontal gyrus occurred selectively in female patients; (2) MDDf may have experienced more severe sleep disturbance than MDDm; and (3) the severity of sleep symptom could be predicted by the sex specific brain structural alterations in depressions. These findings suggest that sex specific anatomical alterations existed in MDD, and these alterations were associated with the clinical symptoms.

  10. Studies on recycled aggregates-based concrete.

    Science.gov (United States)

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  11. Dielectric spectroscopy platform to measure MCF10A epithelial cell aggregation as a model for spheroidal cell cluster analysis.

    Science.gov (United States)

    Heileman, K L; Tabrizian, M

    2017-05-02

    3-Dimensional cell cultures are more representative of the native environment than traditional cell cultures on flat substrates. As a result, 3-dimensional cell cultures have emerged as a very valuable model environment to study tumorigenesis, organogenesis and tissue regeneration. Many of these models encompass the formation of cell aggregates, which mimic the architecture of tumor and organ tissue. Dielectric impedance spectroscopy is a non-invasive, label free and real time technique, overcoming the drawbacks of established techniques to monitor cell aggregates. Here we introduce a platform to monitor cell aggregation in a 3-dimensional extracellular matrix using dielectric spectroscopy. The MCF10A breast epithelial cell line serves as a model for cell aggregation. The platform maintains sterile conditions during the multi-day assay while allowing continuous dielectric spectroscopy measurements. The platform geometry optimizes dielectric measurements by concentrating cells within the electrode sensing region. The cells show a characteristic dielectric response to aggregation which corroborates with finite element analysis computer simulations. By fitting the experimental dielectric spectra to the Cole-Cole equation, we demonstrated that the dispersion intensity Δε and the characteristic frequency f c are related to cell aggregate growth. In addition, microscopy can be performed directly on the platform providing information about cell position, density and morphology. This platform could yield many applications for studying the electrophysiological activity of cell aggregates.

  12. Aggregate assesment and durability evaluation of optimized graded concrete in the state of Oklahoma

    Science.gov (United States)

    Ghaeezadeh, Ashkan

    This research is a part of a larger project that emphasizes on creating a more scientific approach to designing concrete mixtures for concrete pavements that use less cement and more aggregate which is called optimized graded concrete. The most challenging obstacle in optimized mixtures is reaching enough workability so that one doesn't have to add more cement or super-plasticizer to reach the desired level of flowability. Aggregate gradation and characteristics have found to be very important when it comes to the workabaility of optimized graded concrete. In this research a new automated method of aggregate assessment was used to compare the shape and the surface of different aggregates as well as their influence on the concrete flowability. At the end, the performance of optimized graded concrete against drying shrinkage and freezing and thawing condition were investigated.

  13. Effects of long-term grassland management on the carbon and nitrogen pools of different soil aggregate fractions.

    Science.gov (United States)

    Egan, Gary; Crawley, Michael J; Fornara, Dario A

    2018-02-01

    Common grassland management practices include animal grazing and the repeated addition of lime and nutrient fertilizers to soils. These practices can greatly influence the size and distribution of different soil aggregate fractions, thus altering the cycling and storage of carbon (C) and nitrogen (N) in grassland soils. So far, very few studies have simultaneously addressed the potential long-term effect that multiple management practices might have on soil physical aggregation. Here we specifically ask whether and how grazing, liming and nutrient fertilization might influence C and N content (%) as well as C and N pools of different soil aggregate fractions in a long-term grassland experiment established in 1991 at Silwood Park, Berkshire, UK. We found that repeated liming applications over 23years significantly decreased the C pool (i.e. gCKg -1 soil) of Large Macro Aggregate (LMA>2mm) fractions and increased C pools within three smaller soil aggregate fractions: Small Macro Aggregate (SMA, 250μm-2mm), Micro Aggregate (MiA, 53-250μm), and Silt Clay Aggregate (SCAfractions was mainly caused by positive liming effects on aggregate fraction mass rather than on changes in soil C (and N) content (%). Liming effects could be explained by increases in soil pH, as this factor was significantly positively related to greater soil C and N pools of smaller aggregate fractions. Long-term grazing and inorganic nutrient fertilization had much weaker effects on both soil aggregate-fraction mass and on soil C and N concentrations, however, our evidence is that these practices could also contribute to greater C and N pools of smaller soil fractions. Overall our study demonstrates how agricultural liming can contribute to increase C pools of small (more stable) soil fractions with potential significant benefits for the long-term C balance of human-managed grassland soils. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Upscaling the pollutant emission from mixed recycled aggregates under compaction for civil applications.

    Science.gov (United States)

    Galvín, Adela P; Ayuso, Jesús; Barbudo, Auxi; Cabrera, Manuel; López-Uceda, Antonio; Rosales, Julia

    2017-12-27

    In general terms, plant managers of sites producing construction wastes assess materials according to concise, legally recommended leaching tests that do not consider the compaction stage of the materials when they are applied on-site. Thus, the tests do not account for the real on-site physical conditions of the recycled aggregates used in civil works (e.g., roads or embankments). This leads to errors in estimating the pollutant potential of these materials. For that reason, in the present research, an experimental procedure is designed as a leaching test for construction materials under compaction. The aim of this laboratory test (designed specifically for the granular materials used in civil engineering infrastructures) is to evaluate the release of pollutant elements when the recycled aggregate is tested at its commercial grain-size distribution and when the material is compacted under on-site conditions. Two recycled aggregates with different gypsum contents (0.95 and 2.57%) were used in this study. In addition to the designed leaching laboratory test, the conventional compliance leaching test and the Dutch percolation test were performed. The results of the new leaching method were compared with the conventional leaching test results. After analysis, the chromium and sulphate levels obtained from the newly designed test were lower than those obtained from the conventional leaching test, and these were considered more seriously pollutant elements. This result confirms that when the leaching behaviour is evaluated for construction aggregates without density alteration, crushing the aggregate and using only the finest fraction, as is done in the conventional test (which is an unrealistic situation for aggregates that are applied under on-site conditions), the leaching behaviour is not accurately assessed.

  15. An exact approach for aggregated formulations

    DEFF Research Database (Denmark)

    Gamst, Mette; Spoorendonk, Simon; Røpke, Stefan

    Aggregating formulations is a powerful approach for problems to take on tractable forms. Aggregation may lead to loss of information, i.e. the aggregated formulation may be an approximation of the original problem. In branch-and-bound context, aggregation can also complicate branching, e.g. when...... optimality cannot be guaranteed by branching on aggregated variables. We present a generic exact solution method to remedy the drawbacks of aggregation. It combines the original and aggregated formulations and applies Benders' decomposition. We apply the method to the Split Delivery Vehicle Routing Problem....

  16. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates.

    Science.gov (United States)

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  17. Protein aggregate turbidity: Simulation of turbidity profiles for mixed-aggregation reactions.

    Science.gov (United States)

    Hall, Damien; Zhao, Ran; Dehlsen, Ian; Bloomfield, Nathaniel; Williams, Steven R; Arisaka, Fumio; Goto, Yuji; Carver, John A

    2016-04-01

    Due to their colloidal nature, all protein aggregates scatter light in the visible wavelength region when formed in aqueous solution. This phenomenon makes solution turbidity, a quantity proportional to the relative loss in forward intensity of scattered light, a convenient method for monitoring protein aggregation in biochemical assays. Although turbidity is often taken to be a linear descriptor of the progress of aggregation reactions, this assumption is usually made without performing the necessary checks to provide it with a firm underlying basis. In this article, we outline utilitarian methods for simulating the turbidity generated by homogeneous and mixed-protein aggregation reactions containing fibrous, amorphous, and crystalline structures. The approach is based on a combination of Rayleigh-Gans-Debye theory and approximate forms of the Mie scattering equations. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  18. Aggregated Computational Toxicology Online Resource

    Data.gov (United States)

    U.S. Environmental Protection Agency — Aggregated Computational Toxicology Online Resource (AcTOR) is EPA's online aggregator of all the public sources of chemical toxicity data. ACToR aggregates data...

  19. Payment Instrument Characteristics

    DEFF Research Database (Denmark)

    Holst, Jacques; Kjeldsen, Martin; Hedman, Jonas

    2015-01-01

    Over the last decade, we have witnessed payment innovations that fundamentally have changed the ways we pay. Payment innovations, such as mobile payments and on-line banking, include characteristics or features that are essential to understand if we want to know how and why payers choose among...... payment innovations. Using the Repertory Grid technique to explore 15 payers’ perception of six payment instruments, including coins, banknotes, debit cards, credit cards, mobile payments, and on-line banking, we identify 16 payment characteristics. The characteristics aggregate seventy-six unique...

  20. Aggregation and pH-temperature phase behavior for aggregates of an IgG2 antibody.

    Science.gov (United States)

    Sahin, Erinc; Weiss, William F; Kroetsch, Andrew M; King, Kevin R; Kessler, R Kendall; Das, Tapan K; Roberts, Christopher J

    2012-05-01

    Monomer unfolding and thermally accelerated aggregation kinetics to produce soluble oligomers or insoluble macroscopic aggregates were characterized as a function of pH for an IgG2 antibody using differential scanning calorimetry (DSC) and size-exclusion chromatography (SEC). Aggregate size was quantified via laser light scattering, and aggregate solubility via turbidity and visual inspection. Interestingly, nonnative oligomers were soluble at pH 5.5 above approximately 15°C, but converted reversibly to visible/insoluble particles at lower temperatures. Lower pH values yielded only soluble aggregates, whereas higher pH resulted in insoluble aggregates, regardless of the solution temperature. Unlike the growing body of literature that supports the three-endotherm model of IgG1 unfolding in DSC, the results here also illustrate limitations of that model for other monoclonal antibodies. Comparison of DSC with monomer loss (via SEC) from samples during thermal scanning indicates that the least conformationally stable domain is not the most aggregation prone, and that a number of the domains remain intact within the constituent monomers of the resulting aggregates. This highlights continued challenges with predicting a priori which domain(s) or thermal transition(s) is(are) most relevant for product stability with respect to aggregation. Copyright © 2012 Wiley Periodicals, Inc.

  1. Revocable Key-Aggregate Cryptosystem for Data Sharing in Cloud

    Directory of Open Access Journals (Sweden)

    Qingqing Gan

    2017-01-01

    Full Text Available With the rapid development of network and storage technology, cloud storage has become a new service mode, while data sharing and user revocation are important functions in the cloud storage. Therefore, according to the characteristics of cloud storage, a revocable key-aggregate encryption scheme is put forward based on subset-cover framework. The proposed scheme not only has the key-aggregate characteristics, which greatly simplifies the user’s key management, but also can revoke user access permissions, realizing the flexible and effective access control. When user revocation occurs, it allows cloud server to update the ciphertext so that revoked users can not have access to the new ciphertext, while nonrevoked users do not need to update their private keys. In addition, a verification mechanism is provided in the proposed scheme, which can verify the updated ciphertext and ensure that the user revocation is performed correctly. Compared with the existing schemes, this scheme can not only reduce the cost of key management and storage, but also realize user revocation and achieve user’s access control efficiently. Finally, the proposed scheme can be proved to be selective chosen-plaintext security in the standard model.

  2. Mechanical Performance Evaluation of Self-Compacting Concrete with Fine and Coarse Recycled Aggregates from the Precast Industry.

    Science.gov (United States)

    Santos, Sara A; da Silva, Pedro R; de Brito, Jorge

    2017-08-04

    This paper intends to evaluate the feasibility of reintroducing recycled concrete aggregates in the precast industry. The mechanical properties of self-compacting concrete (SCC) with incorporation of recycled aggregates (RA) (coarse recycled aggregates (CRA) and fine recycled aggregates (FRA)) from crushed precast elements were evaluated. The goal was to evaluate the ability of producing SCC with a minimum pre-established performance in terms of mechanical strength, incorporating variable ratios of RA (FRA/CRA%: 0/0%, 25/25%, 50/50%, 0/100% and 100/0%) produced from precast source concretes with similar target performances. This replication in SCC was made for two strength classes (45 MPa and 65 MPa), with the intention of obtaining as final result concrete with recycled aggregates whose characteristics are compatible with those of a SCC with natural aggregates in terms of workability and mechanical strength. The results enabled conclusions to be established regarding the SCC's produced with fine and coarse recycled aggregates from the precast industry, based on its mechanical properties. The properties studied are strongly affected by the type and content of recycled aggregates. The potential demonstrated, mainly in the hardened state, by the joint use of fine and coarse recycled aggregate is emphasized.

  3. Recovery of MSWI and soil washing residues as concrete aggregates.

    Science.gov (United States)

    Sorlini, Sabrina; Abbà, Alessandro; Collivignarelli, Carlo

    2011-02-01

    The aim of the present work was to study if municipal solid waste incinerator (MSWI) residues and aggregates derived from contaminated soil washing could be used as alternative aggregates for concrete production. Initially, chemical, physical and geometric characteristics (according to UNI EN 12620) of municipal solid waste incineration bottom ashes and some contaminated soils were evaluated; moreover, the pollutants release was evaluated by means of leaching tests. The results showed that the reuse of pre-treated MSWI bottom ash and washed soil is possible, either from technical or environmental point of view, while it is not possible for the raw wastes. Then, the natural aggregate was partially and totally replaced with these recycled aggregates for the production of concrete mixtures that were characterized by conventional mechanical and leaching tests. Good results were obtained using the same dosage of a high resistance cement (42.5R calcareous Portland cement instead of 32.5R); the concrete mixture containing 400 kg/m(3) of washed bottom ash and high resistance cement was classified as structural concrete (C25/30 class). Regarding the pollutants leaching, all concrete mixtures respected the limit values according to the Italian regulation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Design of characteristic parameters for controlling tungsten tip profile during electrochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Le Duy Cuong; Duong, Thanh Hung; Kim, Huyn Chul [Inje University, Gimhae (Korea, Republic of)

    2014-05-15

    Micro/nano-scale tungsten tips fabricated by electrochemical etching have many diverse industrial applications. The characteristic parameters of the tungsten tip profile include apex radius, taper angle, and aspect ratio. These parameters are governed by many factors including applied voltage, concentration of the electrolyte (potassium hydroxide) solution, and diameter of the inner gold ring. However, a systematic investigation with the aim of determining the best conditions for fabricating micro/nano-scale tips with desired profiles has not been carried out yet. This study is aimed at obtaining controllable tungsten tip -particularly with respect to the radius of curvature and aspect ratio of tips (taper angle)-by altering the experimental conditions. A series of experiments were executed and the results were aggregated and analyzed using response surface methodology in order to identify the relationships between the tungsten tip characteristics and input parameters. The method proposed herein would prove to be suitable for a variety of applications in industries that require tungsten tips with a specific profile.

  5. Design of characteristic parameters for controlling tungsten tip profile during electrochemical etching

    International Nuclear Information System (INIS)

    Le Duy Cuong; Duong, Thanh Hung; Kim, Huyn Chul

    2014-01-01

    Micro/nano-scale tungsten tips fabricated by electrochemical etching have many diverse industrial applications. The characteristic parameters of the tungsten tip profile include apex radius, taper angle, and aspect ratio. These parameters are governed by many factors including applied voltage, concentration of the electrolyte (potassium hydroxide) solution, and diameter of the inner gold ring. However, a systematic investigation with the aim of determining the best conditions for fabricating micro/nano-scale tips with desired profiles has not been carried out yet. This study is aimed at obtaining controllable tungsten tip -particularly with respect to the radius of curvature and aspect ratio of tips (taper angle)-by altering the experimental conditions. A series of experiments were executed and the results were aggregated and analyzed using response surface methodology in order to identify the relationships between the tungsten tip characteristics and input parameters. The method proposed herein would prove to be suitable for a variety of applications in industries that require tungsten tips with a specific profile

  6. Pseudomonas aeruginosa aggregate formation in an alginate bead model system exhibits In Vivo-like characteristics

    DEFF Research Database (Denmark)

    Sønderholm, Majken; Kragh, Kasper Nørskov; Koren, Klaus

    2017-01-01

    similar in size to in vivo aggregates observed ex vivo in cystic fibrosis lungs and chronic wounds. Bacterial aggregates primarily grew in the bead periphery and decreased in size and abundance toward the center of the bead. Microsensor measurements showed that the O2 concentration decreased rapidly...... and flexible in vivo-like biofilm model system, wherein bacterial growth exhibits central features of in vivo biofilms. This was observed by the formation of small cell aggregates in a secondary matrix with O2-limited growth, which was alleviated by the addition of NO3− as an alternative electron acceptor...

  7. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

    Science.gov (United States)

    Siringi, Gideon; Abolmaali, Ali; Aswath, Pranesh B.

    2015-01-01

    Tire derived aggregate (TDA) has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA) and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength) based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA. PMID:26161440

  8. Properties of Concrete with Tire Derived Aggregate Partially Replacing Coarse Aggregates

    Directory of Open Access Journals (Sweden)

    Gideon Siringi

    2015-01-01

    Full Text Available Tire derived aggregate (TDA has been proposed as a possible lightweight replacement for mineral aggregate in concrete. The role played by the amount of TDA replacing coarse aggregate as well as different treatment and additives in concrete on its properties is examined. Conventional concrete (without TDA and concrete containing TDA are compared by examining their compressive strength based on ASTM C39, workability based on ASTM C143, splitting tensile strength based on ASTM C496, modulus of rupture (flexural strength based on ASTM C78, and bond stress based on ASTM C234. Results indicate that while replacement of coarse aggregates with TDA results in reduction in strength, it may be mitigated with addition of silica fume to obtain the desired strength. The greatest benefit of using TDA is in the development of a higher ductile product while utilizing recycled TDA.

  9. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    Science.gov (United States)

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain.

    Science.gov (United States)

    Lu, Yayin; Luo, Dinggui; Lai, An; Liu, Guowei; Liu, Lirong; Long, Jianyou; Zhang, Hongguo; Chen, Yongheng

    2017-01-01

    Chelator-assisted phytoextraction is an alternative and effective technique for the remediation of heavy metal-contaminated soils, but the potential for heavy metal leaching needs to be assessed. In the present study, a soil column cultivation-leaching experiment was conducted to investigate the Cd and Pb leaching characteristics during assisted phytoextraction of metal-contaminated soils containing different particle-size soil aggregates. The columns were planted with Zea mays "Zhengdan 958" seedlings and treated with combined applications of EDTA and simulated rainfall (pH 4.5 or 6.5). The results were as follows: (1) The greatest uptake of Cd and Pb by Z. mays was observed after treatment with EDTA (2.5 mmol kg -1 soil) and soil aggregates of  EDTA 2.5-1 (pH 6.5) > EDTA 2.5-2 (pH 4.5) > EDTA 2.5-4 (pH 4.5) > EDTA 2.5-2 (pH 6.5) > EDTA 2.5-4 (pH 6.5).

  11. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition.

    Science.gov (United States)

    Moll, Lorna; Ben-Gedalya, Tziona; Reuveni, Hadas; Cohen, Ehud

    2016-04-01

    The discovery that the alteration of aging by reducing the activity of the insulin/IGF-1 signaling (IIS) cascade protects nematodes and mice from neurodegeneration-linked, toxic protein aggregation (proteotoxicity) raises the prospect that IIS inhibitors bear therapeutic potential to counter neurodegenerative diseases. Recently, we reported that NT219, a highly efficient IGF-1 signaling inhibitor, protects model worms from the aggregation of amyloid β peptide and polyglutamine peptides that are linked to the manifestation of Alzheimer's and Huntington's diseases, respectively. Here, we employed cultured cell systems to investigate whether NT219 promotes protein homeostasis (proteostasis) in mammalian cells and to explore its underlying mechanisms. We found that NT219 enhances the aggregation of misfolded prion protein and promotes its deposition in quality control compartments known as "aggresomes." NT219 also elevates the levels of certain molecular chaperones but, surprisingly, reduces proteasome activity and impairs autophagy. Our findings show that IGF-1 signaling inhibitors in general and NT219 in particular can promote proteostasis in mammalian cells by hyperaggregating hazardous proteins, thereby bearing the potential to postpone the onset and slow the progression of neurodegenerative illnesses in the elderly.-Moll, L., Ben-Gedalya, T., Reuveni, H., Cohen, E. The inhibition of IGF-1 signaling promotes proteostasis by enhancing protein aggregation and deposition. © FASEB.

  12. The Effect of Ginger (Zingiber officinale on Platelet Aggregation: A Systematic Literature Review.

    Directory of Open Access Journals (Sweden)

    Wolfgang Marx

    Full Text Available The potential effect of ginger on platelet aggregation is a widely-cited concern both within the published literature and to clinicians; however, there has been no systematic appraisal of the evidence to date.Using the PRISMA guidelines, we systematically reviewed the results of clinical and observational trials regarding the effect of ginger on platelet aggregation in adults compared to either placebo or baseline data. Studies included in this review stipulated the independent variable was a ginger preparation or isolated ginger compound, and used measures of platelet aggregation as the primary outcome.Ten studies were included, comprising eight clinical trials and two observational studies. Of the eight clinical trials, four reported that ginger reduced platelet aggregation, while the remaining four reported no effect. The two observational studies also reported mixed findings.Many of the studies appraised for this review had moderate risks of bias. Methodology varied considerably between studies, notably the timeframe studied, dose of ginger used, and the characteristics of subjects recruited (e.g. healthy vs. patients with chronic diseases.The evidence that ginger affects platelet aggregation and coagulation is equivocal and further study is needed to definitively address this question.

  13. The Effect of Ginger (Zingiber officinale) on Platelet Aggregation: A Systematic Literature Review.

    Science.gov (United States)

    Marx, Wolfgang; McKavanagh, Daniel; McCarthy, Alexandra L; Bird, Robert; Ried, Karin; Chan, Alexandre; Isenring, Liz

    2015-01-01

    The potential effect of ginger on platelet aggregation is a widely-cited concern both within the published literature and to clinicians; however, there has been no systematic appraisal of the evidence to date. Using the PRISMA guidelines, we systematically reviewed the results of clinical and observational trials regarding the effect of ginger on platelet aggregation in adults compared to either placebo or baseline data. Studies included in this review stipulated the independent variable was a ginger preparation or isolated ginger compound, and used measures of platelet aggregation as the primary outcome. Ten studies were included, comprising eight clinical trials and two observational studies. Of the eight clinical trials, four reported that ginger reduced platelet aggregation, while the remaining four reported no effect. The two observational studies also reported mixed findings. Many of the studies appraised for this review had moderate risks of bias. Methodology varied considerably between studies, notably the timeframe studied, dose of ginger used, and the characteristics of subjects recruited (e.g. healthy vs. patients with chronic diseases). The evidence that ginger affects platelet aggregation and coagulation is equivocal and further study is needed to definitively address this question.

  14. Kinetics of aggregation with choice.

    Science.gov (United States)

    Ben-Naim, E; Krapivsky, P L

    2016-12-01

    We generalize the ordinary aggregation process to allow for choice. In ordinary aggregation, two random clusters merge and form a larger aggregate. In our implementation of choice, a target cluster and two candidate clusters are randomly selected and the target cluster merges with the larger of the two candidate clusters. We study the long-time asymptotic behavior and find that as in ordinary aggregation, the size density adheres to the standard scaling form. However, aggregation with choice exhibits a number of different features. First, the density of the smallest clusters exhibits anomalous scaling. Second, both the small-size and the large-size tails of the density are overpopulated, at the expense of the density of moderate-size clusters. We also study the complementary case where the smaller candidate cluster participates in the aggregation process and find an abundance of moderate clusters at the expense of small and large clusters. Additionally, we investigate aggregation processes with choice among multiple candidate clusters and a symmetric implementation where the choice is between two pairs of clusters.

  15. Platelet activation, adhesion, inflammation, and aggregation potential are altered in the presence of electronic cigarette extracts of variable nicotine concentrations.

    Science.gov (United States)

    Hom, Sarah; Chen, Li; Wang, Tony; Ghebrehiwet, Berhane; Yin, Wei; Rubenstein, David A

    2016-11-01

    Tobacco smoke extracts prepared from both mainstream and sidestream smoking have been associated with heightened platelet activation, aggregation, adhesion, and inflammation. Conversely, it has been shown that pure nicotine inhibits similar platelet functions. In this work, we 1) evaluated the effects of e-cigarette extracts on platelet activities and 2) elucidated the differences between the nicotine-dependent and non-nicotine dependent (e.g. fine particulate matter or toxic compounds) effects of tobacco and e-cigarette products on platelet activities. To accomplish these goals, platelets from healthy volunteers (n = 50) were exposed to tobacco smoke extracts, e-cigarette vapor extracts, and pure nicotine and changes in platelet activation, adhesion, aggregation, and inflammation were evaluated, using optical aggregation, flow cytometry, and ELISA methods. Interestingly, the exposure of platelets to e-vapor extracts induced a significant up-regulation in the expression of the pro-inflammatory gC1qR and cC1qR and induced a marked increase in the deposition of C3b as compared with traditional tobacco smoke extracts. Similarly, platelet activation, as measured by a prothrombinase based assay, and platelet aggregation were also significantly enhanced after exposure to e-vapor extracts. Finally, platelet adhesion potential toward fibrinogen, von Willebrand factor, and other platelets was also enhanced after exposure to e-cigarette vapor extracts. In the presence of pure nicotine, platelet functions were observed to be inhibited, which further suggests that other constituents of tobacco smoke and electronic vapor can antagonize platelet functions, however, the presence of nicotine in extracts somewhat perpetuated the platelet functional changes in a dose-dependent manner.

  16. Kinetic Behaviors of Catalysis-Driven Growth of Three-Species Aggregates on Base of Exchange-Driven Aggregations

    International Nuclear Information System (INIS)

    Sun Yunfei; Chen Dan; Lin Zhenquan; Ke Jianhong

    2009-01-01

    We propose a solvable aggregation model to mimic the evolution of population A, asset B, and the quantifiable resource C in a society. In this system, the population and asset aggregates themselves grow through self-exchanges with the rate kernels K 1 (k, j) = K 1 kj and K 2 (k, j) = K 2 kj, respectively. The actions of the population and asset aggregations on the aggregation evolution of resource aggregates are described by the population-catalyzed monomer death of resource aggregates and asset-catalyzed monomer birth of resource aggregates with the rate kernels J 1 (k, j) = J 1 k and J 2 (k, j) = J 2 k, respectively. Meanwhile, the asset and resource aggregates conjunctly catalyze the monomer birth of population aggregates with the rate kernel I 1 (k, i, j) = I 1 ki μ j η , and population and resource aggregates conjunctly catalyze the monomer birth of asset aggregates with the rate kernel I 2 (k, i, j) = I 2 ki v j η . The kinetic behaviors of species A, B, and C are investigated by means of the mean-field rate equation approach. The effects of the population-catalyzed death and asset-catalyzed birth on the evolution of resource aggregates based on the self-exchanges of population and asset appear in effective forms. The coefficients of the effective population-catalyzed death and the asset-catalyzed birth are expressed as J 1e = J 1 /K 1 and J 2e = J 2 /K 2 , respectively. The aggregate size distribution of C species is found to be crucially dominated by the competition between the effective death and the effective birth. It satisfies the conventional scaling form, generalized scaling form, and modified scaling form in the cases of J 1e 2e , J 1e = J 2e , and J 1e > J 2e , respectively. Meanwhile, we also find the aggregate size distributions of populations and assets both fall into two distinct categories for different parameters μ, ν, and η: (i) When μ = ν = η = 0 and μ = ν = 0, η = 1, the population and asset aggregates obey the generalized

  17. H-aggregate analysis of P3HT thin films-Capability and limitation of photoluminescence and UV/Vis spectroscopy.

    Science.gov (United States)

    Ehrenreich, Philipp; Birkhold, Susanne T; Zimmermann, Eugen; Hu, Hao; Kim, Kwang-Dae; Weickert, Jonas; Pfadler, Thomas; Schmidt-Mende, Lukas

    2016-09-01

    Polymer morphology and aggregation play an essential role for efficient charge carrier transport and charge separation in polymer-based electronic devices. It is a common method to apply the H-aggregate model to UV/Vis or photoluminescence spectra in order to analyze polymer aggregation. In this work we present strategies to obtain reliable and conclusive information on polymer aggregation and morphology based on the application of an H-aggregate analysis on UV/Vis and photoluminescence spectra. We demonstrate, with P3HT as model system, that thickness dependent reflection behavior can lead to misinterpretation of UV/Vis spectra within the H-aggregate model. Values for the exciton bandwidth can deviate by a factor of two for polymer thicknesses below 150 nm. In contrast, photoluminescence spectra are found to be a reliable basis for characterization of polymer aggregation due to their weaker dependence on the wavelength dependent refractive index of the polymer. We demonstrate this by studying the influence of surface characteristics on polymer aggregation for spin-coated thin-films that are commonly used in organic and hybrid solar cells.

  18. Research on Judgment Aggregation Based on Logic

    Directory of Open Access Journals (Sweden)

    Li Dai

    2014-05-01

    Full Text Available Preference aggregation and judgment aggregation are two basic research models of group decision making. And preference aggregation has been deeply studied in social choice theory. However, researches of social choice theory gradually focus on judgment aggregation which appears recently. Judgment aggregation focuses on how to aggregate many consistent logical formulas into one, from the perspective of logic. We try to start with judgment aggregation model based on logic and then explore different solutions to problem of judgment aggregation.

  19. Effect of Aggregate Mineralogy and Concrete Microstructure on Thermal Expansion and Strength Properties of Concrete

    Directory of Open Access Journals (Sweden)

    Jinwoo An

    2017-12-01

    Full Text Available Aggregate type and mineralogy are critical factors that influence the engineering properties of concrete. Temperature variations result in internal volume changes could potentially cause a network of micro-cracks leading to a reduction in the concrete’s compressive strength. The study specifically studied the effect of the type and mineralogy of fine and coarse aggregates in the normal strength concrete properties. As performance measures, the coefficient of thermal expansion (CTE and compressive strength were tested with concrete specimens containing different types of fine aggregates (manufactured and natural sands and coarse aggregates (dolomite and granite. Petrographic examinations were then performed to determine the mineralogical characteristics of the aggregate and to examine the aggregate and concrete microstructure. The test results indicate the concrete CTE increases with the silicon (Si volume content in the aggregate. For the concrete specimens with higher CTE, the micro-crack density in the interfacial transition zone (ITZ tended to be higher. The width of ITZ in one of the concrete specimens with a high CTE displayed the widest core ITZ (approx. 11 µm while the concrete specimens with a low CTE showed the narrowest core ITZ (approx. 3.5 µm. This was attributed to early-age thermal cracking. Specimens with higher CTE are more susceptible to thermal stress.

  20. Heating of Porous Icy Dust Aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Sirono, Sin-iti [Earth and Environmental Sciences, Nagoya University, Tikusa-ku, Furo-cho, Nagoya 464-8601 (Japan)

    2017-06-10

    At the beginning of planetary formation, highly porous dust aggregates are formed through coagulation of dust grains. Outside the snowline, the main component of an aggregate is H{sub 2}O ice. Because H{sub 2}O ice is formed in amorphous form, its thermal conductivity is extremely small. Therefore, the thermal conductivity of an icy dust aggregate is low. There is a possibility of heating inside an aggregate owing to the decay of radionuclides. It is shown that the temperature increases substantially inside an aggregate, leading to crystallization of amorphous ice. During the crystallization, the temperature further increases sufficiently to continue sintering. The mechanical properties of icy dust aggregates change, and the collisional evolution of dust aggregates is affected by the sintering.

  1. Topsoil and Deep Soil Organic Carbon Concentration and Stability Vary with Aggregate Size and Vegetation Type in Subtropical China

    Science.gov (United States)

    Fang, Xiang-Min; Chen, Fu-Sheng; Wan, Song-Ze; Yang, Qing-Pei; Shi, Jian-Min

    2015-01-01

    The impact of reforestation on soil organic carbon (OC), especially in deep layer, is poorly understood and deep soil OC stabilization in relation with aggregation and vegetation type in afforested area is unknown. Here, we collected topsoil (0–15 cm) and deep soil (30–45 cm) from six paired coniferous forests (CF) and broad-leaved forests (BF) reforested in the early 1990s in subtropical China. Soil aggregates were separated by size by dry sieving and OC stability was measured by closed-jar alkali-absorption in 71 incubation days. Soil OC concentration and mean weight diameter were higher in BF than CF. The cumulative carbon mineralization (Cmin, mg CO2-C kg-1 soil) varied with aggregate size in BF and CF topsoils, and in deep soil, it was higher in larger aggregates than in smaller aggregates in BF, but not CF. The percentage of soil OC mineralized (SOCmin, % SOC) was in general higher in larger aggregates than in smaller aggregates. Meanwhile, SOCmin was greater in CF than in BF at topsoil and deep soil aggregates. In comparison to topsoil, deep soil aggregates generally exhibited a lower Cmin, and higher SOCmin. Total nitrogen (N) and the ratio of carbon to phosphorus (C/P) were generally higher in BF than in CF in topsoil and deep soil aggregates, while the same trend of N/P was only found in deep soil aggregates. Moreover, the SOCmin negatively correlated with OC, total N, C/P and N/P. This work suggests that reforested vegetation type might play an important role in soil OC storage through internal nutrient cycling. Soil depth and aggregate size influenced OC stability, and deep soil OC stability could be altered by vegetation reforested about 20 years. PMID:26418563

  2. Impact of absorptivity and wavelength on the optical properties of aggregates with sintering necks

    Science.gov (United States)

    Bao, Yujia; Huang, Yong; He, Beichen

    2018-04-01

    In this paper, we constructed sintered aggregates based on the particle superposition model and apply the ball-necking factor η to characterize the sintering degree. The impact of the absorptivity characterized by the complex refractive index m and the wavelength of the incident light λ on the optical properties of aggregates with different η were compared and investigated. The results indicate that for different m and λ, the light scattering characteristics exhibit regular changes in the values, the peak locations and the size trends. Further, the deviation of 1 - S22/S11 caused by various η is noteworthy and considerable so that it can be used as a probe sensor parameter in the detection of the sintered aggregates configuration.

  3. Engineering Perspectives and Environmental Life Cycle Optimization to Enhance Aggregate Mining in Vietnam

    Directory of Open Access Journals (Sweden)

    Petra Schneider

    2018-02-01

    Full Text Available Cleaner Production (CP addresses precautionary, site-specific environmental measures to reduce emissions and assess resource efficiency potentials at the point of origin by analyzing operational material and energy flows. The approach is generally based on the criteria quality as well as environmental/occupational health and safety, and promotes their integration. The paper presents options for applying CP to aggregate mining, based on a Life Cycle Assessment (LCA and illustrated by results from a study of small-scale industrial aggregate mining in Hoa Binh Province (Vietnam. The regulatory framework to limit the impact of mining on the environment is largely comparable to international standards and is suitably enforced. Despite gaining experience through the practical handling of enforcement procedures over the long term, there is still a considerable potential to optimize CP strategies in Vietnam’s aggregate mining industry. This is shown by the results of a survey of aggregates mining companies in Hoa Binh Province as well as on-site data collection to determine the technological characteristics of production facilities alongside economic and environmental factors. The assessment of the survey is supported by LCA results for: (a the existing situation; and (b the scenario of a merging of companies, undertaken to improve the resource efficiency of the aggregate mining in Hoa Binh. Findings can help implement an integrated approach to foster the sustainable mining of building aggregates.

  4. GENERAL: Kinetic Behaviors of Catalysis-Driven Growth of Three-Species Aggregates on Base of Exchange-Driven Aggregations

    Science.gov (United States)

    Sun, Yun-Fei; Chen, Dan; Lin, Zhen-Quan; Ke, Jian-Hong

    2009-06-01

    We propose a solvable aggregation model to mimic the evolution of population A, asset B, and the quantifiable resource C in a society. In this system, the population and asset aggregates themselves grow through self-exchanges with the rate kernels K1(k, j) = K1kj and K2(k, j) = K2kj, respectively. The actions of the population and asset aggregations on the aggregation evolution of resource aggregates are described by the population-catalyzed monomer death of resource aggregates and asset-catalyzed monomer birth of resource aggregates with the rate kernels J1(k, j) = J1k and J2(k, j) = J2k, respectively. Meanwhile, the asset and resource aggregates conjunctly catalyze the monomer birth of population aggregates with the rate kernel I1(k, i, j) = I1kiμjη, and population and resource aggregates conjunctly catalyze the monomer birth of asset aggregates with the rate kernel I2(k, i, j) = I2kivjη. The kinetic behaviors of species A, B, and C are investigated by means of the mean-field rate equation approach. The effects of the population-catalyzed death and asset-catalyzed birth on the evolution of resource aggregates based on the self-exchanges of population and asset appear in effective forms. The coefficients of the effective population-catalyzed death and the asset-catalyzed birth are expressed as J1e = J1/K1 and J2e = J2/K2, respectively. The aggregate size distribution of C species is found to be crucially dominated by the competition between the effective death and the effective birth. It satisfies the conventional scaling form, generalized scaling form, and modified scaling form in the cases of J1e J2e, respectively. Meanwhile, we also find the aggregate size distributions of populations and assets both fall into two distinct categories for different parameters μ, ν, and η: (i) When μ = ν = η = 0 and μ = ν = 0, η = 1, the population and asset aggregates obey the generalized scaling forms; and (ii) When μ = ν = 1, η = 0, and μ = ν = η = 1, the

  5. Multiple and Periodic Measurement of RBC Aggregation and ESR in Parallel Microfluidic Channels under On-Off Blood Flow Control

    Directory of Open Access Journals (Sweden)

    Yang Jun Kang

    2018-06-01

    Full Text Available Red blood cell (RBC aggregation causes to alter hemodynamic behaviors at low flow-rate regions of post-capillary venules. Additionally, it is significantly elevated in inflammatory or pathophysiological conditions. In this study, multiple and periodic measurements of RBC aggregation and erythrocyte sedimentation rate (ESR are suggested by sucking blood from a pipette tip into parallel microfluidic channels, and quantifying image intensity, especially through single experiment. Here, a microfluidic device was prepared from a master mold using the xurography technique rather than micro-electro-mechanical-system fabrication techniques. In order to consider variations of RBC aggregation in microfluidic channels due to continuous ESR in the conical pipette tip, two indices (aggregation index (AI and erythrocyte-sedimentation-rate aggregation index (EAI are evaluated by using temporal variations of microscopic, image-based intensity. The proposed method is employed to evaluate the effect of hematocrit and dextran solution on RBC aggregation under continuous ESR in the conical pipette tip. As a result, EAI displays a significantly linear relationship with modified conventional ESR measurement obtained by quantifying time constants. In addition, EAI varies linearly within a specific concentration of dextran solution. In conclusion, the proposed method is able to measure RBC aggregation under continuous ESR in the conical pipette tip. Furthermore, the method provides multiple data of RBC aggregation and ESR through a single experiment. A future study will involve employing the proposed method to evaluate biophysical properties of blood samples collected from cardiovascular diseases.

  6. A study of the influence of coarse aggregate shape characteristics on permanent deformation of asphalt mixes

    CSIR Research Space (South Africa)

    Mabuse, MM

    2013-07-01

    Full Text Available The effect of aggregate shape properties such as angularity, texture, sphericity, roundness, flat and elongation on the performance of asphalt mixes have not been thoroughly investigated using direct measurement techniques. This is partly because...

  7. Spall Strength Measurements of Concrete for Varying Aggregate Sizes

    International Nuclear Information System (INIS)

    Chhabildas, Lalit C.; Kipp, Marlin E.; Reinhart, William D.; Wilson, Leonard T.

    1999-01-01

    Controlled impact experiments have been performed to determine the spall strength of four different concrete compositions. The four concrete compositions are identified as, 'SAC-5, CSPC', (''3/4'') large, and (''3/8'') small, Aggregate. They differ primarily in aggregate size but with average densities varying by less than five percent. Wave profiles from sixteen experiments, with shock amplitudes of 0.07 to 0.55 GPa, concentrate primarily within the elastic regime. Free-surface particle velocity measurements indicate consistent pullback signals in the release profiles, denoting average span strength of approximately 40 MPa. It is the purpose of this paper to present spall measurements under uniaxial strain loading. Notwithstanding considerable wave structure that is a unique characteristic to the heterogeneous nature of the scaled concrete, the spall amplitudes appear reproducible and consistent over the pressure range reported in this study

  8. NMR of α-synuclein–polyamine complexes elucidates the mechanism and kinetics of induced aggregation

    Science.gov (United States)

    Fernández, Claudio O; Hoyer, Wolfgang; Zweckstetter, Markus; Jares-Erijman, Elizabeth A; Subramaniam, Vinod; Griesinger, Christian; Jovin, Thomas M

    2004-01-01

    The aggregation of α-synuclein is characteristic of Parkinson's disease (PD) and other neurodegenerative synucleinopathies. The 140-aa protein is natively unstructured; thus, ligands binding to the monomeric form are of therapeutic interest. Biogenic polyamines promote the aggregation of α-synuclein and may constitute endogenous agents modulating the pathogenesis of PD. We characterized the complexes of natural and synthetic polyamines with α-synuclein by NMR and assigned the binding site to C-terminal residues 109–140. Dissociation constants were derived from chemical shift perturbations. Greater polyamine charge (+2 → +5) correlated with increased affinity and enhancement of fibrillation, for which we propose a simple kinetic mechanism involving a dimeric nucleation center. According to the analysis, polyamines increase the extent of nucleation by ∼104 and the rate of monomer addition ∼40-fold. Significant secondary structure is not induced in monomeric α-synuclein by polyamines at 15°C. Instead, NMR reveals changes in a region (aa 22–93) far removed from the polyamine binding site and presumed to adopt the β-sheet conformation characteristic of fibrillar α-synuclein. We conclude that the C-terminal domain acts as a regulator of α-synuclein aggregation. PMID:15103328

  9. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    Science.gov (United States)

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  10. Model for amorphous aggregation processes

    Science.gov (United States)

    Stranks, Samuel D.; Ecroyd, Heath; van Sluyter, Steven; Waters, Elizabeth J.; Carver, John A.; von Smekal, Lorenz

    2009-11-01

    The amorphous aggregation of proteins is associated with many phenomena, ranging from the formation of protein wine haze to the development of cataract in the eye lens and the precipitation of recombinant proteins during their expression and purification. While much literature exists describing models for linear protein aggregation, such as amyloid fibril formation, there are few reports of models which address amorphous aggregation. Here, we propose a model to describe the amorphous aggregation of proteins which is also more widely applicable to other situations where a similar process occurs, such as in the formation of colloids and nanoclusters. As first applications of the model, we have tested it against experimental turbidimetry data of three proteins relevant to the wine industry and biochemistry, namely, thaumatin, a thaumatinlike protein, and α -lactalbumin. The model is very robust and describes amorphous experimental data to a high degree of accuracy. Details about the aggregation process, such as shape parameters of the aggregates and rate constants, can also be extracted.

  11. A comparative study on the aggregating effects of guanidine thiocyanate, guanidine hydrochloride and urea on lysozyme aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Emadi, Saeed, E-mail: emadi@iasbs.ac.ir; Behzadi, Maliheh

    2014-08-08

    Highlights: • Lysozyme aggregated in guanidine thiocyanate (1.0 and 2.0 M). • Lysozyme aggregated in guanidine hydrochloride (4 and 5 M). • Lysozyme did not aggregated at any concentration (0.5–5 M) of urea. • Unfolding pathway is more important than unfolding per se in aggregation. - Abstract: Protein aggregation and its subsequent deposition in different tissues culminate in a diverse range of diseases collectively known as amyloidoses. Aggregation of hen or human lysozyme depends on certain conditions, namely acidic pH or the presence of additives. In the present study, the effects on the aggregation of hen egg-white lysozyme via incubation in concentrated solutions of three different chaotropic agents namely guanidine thiocyanate, guanidine hydrochloride and urea were investigated. Here we used three different methods for the detection of the aggregates, thioflavin T fluorescence, circular dichroism spectroscopy and atomic force microscopy. Our results showed that upon incubation with different concentrations (0.5, 1.0, 2.0, 3.0, 4.0, 5.0 M) of the chemical denaturants, lysozyme was aggregated at low concentrations of guanidine thiocyanate (1.0 and 2.0 M) and at high concentrations of guanidine hydrochloride (4 and 5 M), although no fibril formation was detected. In the case of urea, no aggregation was observed at any concentration.

  12. Characterising risk - aggregated metrics: radiation and noise

    International Nuclear Information System (INIS)

    Passchier, W.

    1998-01-01

    The characterisation of risk is an important phase in the risk assessment - risk management process. From the multitude of risk attributes a few have to be selected to obtain a risk characteristic or profile that is useful for risk management decisions and implementation of protective measures. One way to reduce the number of attributes is aggregation. In the field of radiation protection such an aggregated metric is firmly established: effective dose. For protection against environmental noise the Health Council of the Netherlands recently proposed a set of aggregated metrics for noise annoyance and sleep disturbance. The presentation will discuss similarities and differences between these two metrics and practical limitations. The effective dose has proven its usefulness in designing radiation protection measures, which are related to the level of risk associated with the radiation practice in question, given that implicit judgements on radiation induced health effects are accepted. However, as the metric does not take into account the nature of radiation practice, it is less useful in policy discussions on the benefits and harm of radiation practices. With respect to the noise exposure metric, only one effect is targeted (annoyance), and the differences between sources are explicitly taken into account. This should make the metric useful in policy discussions with respect to physical planning and siting problems. The metric proposed has only significance on a population level, and can not be used as a predictor for individual risk. (author)

  13. Chernozem aggregate waterstability loss investigation in a long-term bare fallow experiment

    Science.gov (United States)

    Vasilyeva, N. A.; Milanovskiy, E. Y.

    2009-04-01

    The research is focused on mechanisms of aggregate waterstability controlled by soil organic matter (SOM). The objects of the research are two contrast variants of typical chernozem - under native grassland and under a 60-year bare fallow experimental plot (100 m2) on the territory of Central Chernozem Biosphere Reserve, Russia. Seasonal plowing and deficiency of fresh plant residues (due to weeding out) resulted in a rapid mineralization of SOM. The Corg content in the 0-20 cm topsoil under native grassland is 6-4.5 %. For the last two decades Corg content under bare fallow has stabilized on the 2.6% level and is therefore assumed to represent stable SOM pool. However excellent aggregate waterstability of chernozem is completely lost under bare fallow. Therefore the aim of our study is to reveal the role of different SOM pools spatial and functional organization in aggregate waterstability formation. Bulk soil samples were collected from 2 m grassland profile and 1.5 m bare fallow profile with 10 cm interval and simultaneous measurements of soil field density and moisture. Following samples were analysed: bulk samples, dry and wet-sieving aggregates, undisturbed and pulverized aggregates, granule-densimetric fractions obtained by sedimentation of bulk samples (clay 5 mkm) with following densimetric fractionation in bromoform (light ? 2.4 g/cm3), and above mentioned samples after removal of SOM by hydrogen peroxide. Isolation of aggregates and granule-densimetric fractionation were carried out for bulk soils at 0-20, 40-50 and 80-90 cm depth. We use elemental analysis (C, H, N), size exclusion and hydrophobic interaction chromatography of humic substances (HS), laser diffraction particle size analysis, specific surface area (SSA) measurements by nitrogen adsorption and micromorphological examination of thin sections. Detailed characteristics obtained for aggregates and granule-densimetric fractions from a typical chernozem soil under native grassland and under 60

  14. On the nature of the Cu-rich aggregates in brain astrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Brendan; Robison, Gregory; Osborn, Jenna; Kay, Martin; Thompson, Peter; Davis, Katherine; Zakharova, Taisiya; Antipova, Olga; Pushkar, Yulia

    2017-04-01

    Fulfilling a bevy of biological roles, copper is an essential metal for healthy brain function. Cu dyshomeostasis has been demonstrated to be involved in some neurological conditions including Menkes and Alzheimer’s diseases. We have previously reported localized Cu-rich aggregates in astrocytes of the subventricular zone (SVZ) in rodent brains with Cu concentrations in the hundreds of millimolar. Metallothionein, a cysteine-rich protein critical to metal homeostasis and known to participate in a variety of neuroprotective and neuroregenerative processes, was proposed as a binding protein. Here, we present an analysis of metallothionein(1,2) knockout (MTKO) mice and age-matched controls using X-ray fluorescence microscopy. In large structures such as the corpus callosum, cortex, and striatum, there is no significant difference in Cu, Fe, or Zn concentrations in MTKO mice compared to age-matched controls. In the astrocyte-rich subventricular zone where Cu-rich aggregates reside, approximately 1/3 as many Cu-rich aggregates persist in MTKO mice resulting in a decrease in periventricular Cu concentration. Aggregates in both wild-type and MTKO mice show XANES spectra characteristic of CuxSy multimetallic clusters and have similar [S]/[Cu] ratios. Consistent with assignment as a CuxSy multimetallic cluster, the astrocyte-rich SVZ of both MTKO and wild-type mice exhibit autofluorescent bodies, though MTKO mice exhibit fewer. Furthermore, XRF imaging of Au-labeled lysosomes and ubiquitin demonstrates a lack of co-localization with Cu-rich aggregates suggesting they are not involved in a degradation pathway. Overall, these data suggest that Cu in aggregates is bound by either metallothionein-3 or a yet unknown protein similar to metallothionein.

  15. Principles, techniques and recent advances in fine particle aggregation for solid-liquid separation

    International Nuclear Information System (INIS)

    Somasundaran, P.; Vasudevan, T.V.

    1993-01-01

    Waste water discharged from various chemical and nuclear processing operations contains dissolved metal species that are highly toxic and, in some cases, radioactive. When the waste is acidic in nature, neutralization using reagents such as lime is commonly practiced to reduce both the acidity and the amount of waste (Kuyucak et al.). The sludge that results from the neutralization process contains metal oxide or hydroxide precipitates that are colloidal in nature and is highly stable. Destabilization of colloidal suspensions can be achieved by aggregation of fines into larger sized agglomerates. Aggregation of fines is a complex phenomenon involving a multitude of forces that control the interparticle interaction. In order to understand the colloidal behavior of suspensions a fundamental knowledge of physicochemical properties that determine the various forces is essential. In this review, a discussion of basic principles governing the aggregation of colloidal fines, various ways in which interparticle forces can be manipulated to achieve the desired aggregation response and recent advances in experimental techniques to probe the interfacial characteristics that control the flocculation behavior are discussed

  16. Influence of granitic aggregates from Northeast Brazil on the alkali-aggregate reaction

    Energy Technology Data Exchange (ETDEWEB)

    Gomes Neto, David de Paiva; Santana, Rodrigo Soares de; Barreto, Ledjane Silva, E-mail: pvgomes@uol.com.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Ciencias dos Materiais e Engenharia; Conceicao, Herbert; Lisboa, Vinicios Anselmo Carvalho [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Geologia

    2014-08-15

    The alkali-aggregate reaction (AAR) in concrete structures is a problem that has concerned engineers and researchers for decades. This reaction occurs when silicates in the aggregates react with the alkalis, forming an expanded gel that can cause cracks in the concrete and reduce its lifespan. The aim of this study was to characterize three coarse granitic aggregates employed in concrete production in northeastern Brazil, correlating petrographic analysis with the kinetics of silica dissolution and the evolution of expansions in mortar bars, assisted by SEM/EDS, XRD, and EDX. The presence of grains showing recrystallization into individual microcrystalline quartz subgrains was associated with faster dissolution of silica and greater expansion in mortar bars. Aggregates showing substantial deformation, such as stretched grains of quartz with strong undulatory extinction, experienced slower dissolution, with reaction and expansion occurring over longer periods that could not be detected using accelerated tests with mortar bars. (author)

  17. Aggregate stability and soil degradation in the tropics

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    2004-01-01

    Aggregate stability is a measure of the structural stability of soils. Factors that influence aggregate stability are important in evaluating the ease with which soils erode by water and/or wind, the potential of soils to crust and/or seal, soil permeability, quasi-steady state infiltration rates and seedling emergence and in predicting the capacity of soils to sustain long-term crop production. Aggregate stability of soils can be measured by the wet-sieving or raindrop techniques. A reduction in soil aggregate stability implies an increase in soil degradation. Hence aggregate stability and soil degradation are interwoven. The measures used can either be preventive or remedial. Preventive practices minimize the chances of soil degradation occurring or the magnitude or severity of the damage when the degradation manifests. These include in Nigeria, (i) manuring and mulching, (ii) planted fallows and cover crops, (iii) sustainable farming systems, (iv) adequate rotations, (v) home gardens or compound farms, (vi) alley cropping and related agro forestry systems, and (vii) chemical fertilizers which are mainly remedial measures. Because of alterations in soil properties that affect particular land uses, soils may degrade for one crop (maize rather sorghum). As long as some land use is possible soil degradation is not always an absolute concept. Decline in agricultural productivity should be evaluated in terms of inputs such as fertilizer use, water management and tillage methods. We can alleviate some types of soil degradation by use of micronutrients, inorganic fertilizers and organic residues. Soil that responds to management practices cannot be said to be degraded. Since crop growth depends on weather, degraded soils may be more sensitive to harsh weather (e.g. drought, temperature) than undegraded soils. A soil is degraded if its productivity falls below the economic threshold even under favourable weather conditions or with judicious inputs. All human

  18. State-of-the-Art Report on Fiber-Reinforced Lightweight Aggregate Concrete Masonry

    Directory of Open Access Journals (Sweden)

    Saul Rico

    2017-01-01

    Full Text Available Masonry construction is the most widely used building method in the world. Concrete masonry is relatively low in cost due to the vast availability of aggregates used within the production process. These aggregate materials are not always reliable for structural use. One of the principal issues associated with masonry is the brittleness of the unit. When subject to seismic loads, the brittleness of the masonry magnifies. In regions with high seismic activity and unspecified building codes or standards, masonry housing has developed into a death trap for countless individuals. A common approach concerning the issue associated with the brittle characteristic of masonry is addition of steel reinforcement. However, this can be expensive, highly dependent on skillfulness of labor, and particularly dependent on the quality of available steel. A proposed solution presented in this investigation consists of introducing steel fibers to the lightweight aggregate concrete masonry mix. Previous investigations in the field of lightweight aggregate fiber-reinforced concrete have shown an increase in flexural strength, toughness, and ductility. The outcome of this research project provides invaluable data for the production of a ductile masonry unit capable of withstanding seismic loads for prolonged periods.

  19. Ecological and morphological profile of floating spherical Cladophora socialis aggregations in central Thailand.

    Directory of Open Access Journals (Sweden)

    Isao Tsutsui

    Full Text Available The unique beauty of spherical aggregation forming algae has attracted much attention from both the scientific and lay communities. Several aegagropilous seaweeds have been identified to date, including the plants of genus Cladophora and Chaetomorpha. However, this phenomenon remains poorly understood. In July 2013, a mass occurrence of spherical Cladophora aggregations was observed in a salt field reservoir in Central Thailand. The aims of the present study were to describe the habitat of the spherical aggregations and confirm the species. We performed a field survey, internal and external morphological observations, pyrenoid ultrastructure observations, and molecular sequence analysis. Floating spherical Cladophora aggregations (1-8 cm in diameter were observed in an area ~560 m2, on the downwind side of the reservoir where there was water movement. Individual filaments in the aggregations were entangled in each other; consequently, branches growing in different directions were observed within a clump. We suggest that water movement and morphological characteristics promote the formation of spherical aggregations in this species. The molecular sequencing results revealed that the study species was highly homologous to both C. socialis and C. coelothrix. However, the diameter of the apical cells in the study species was less than that of C. coelothrix. The pyrenoid ultrastructure was more consistent with that of C. socialis. We conclude that the study species is C. socialis. This first record of spherical aggregations in this species advances our understanding of these formations. However, further detailed physical measurements are required to fully elucidate the mechanism behind these spherical formations.

  20. Ecological and morphological profile of floating spherical Cladophora socialis aggregations in central Thailand.

    Science.gov (United States)

    Tsutsui, Isao; Miyoshi, Tatsuo; Sukchai, Halethichanok; Pinphoo, Piyarat; Aue-Umneoy, Dusit; Meeanan, Chonlada; Songphatkaew, Jaruwan; Klomkling, Sirimas; Yamaguchi, Iori; Ganmanee, Monthon; Sudo, Hiroyuki; Hamano, Kaoru

    2015-01-01

    The unique beauty of spherical aggregation forming algae has attracted much attention from both the scientific and lay communities. Several aegagropilous seaweeds have been identified to date, including the plants of genus Cladophora and Chaetomorpha. However, this phenomenon remains poorly understood. In July 2013, a mass occurrence of spherical Cladophora aggregations was observed in a salt field reservoir in Central Thailand. The aims of the present study were to describe the habitat of the spherical aggregations and confirm the species. We performed a field survey, internal and external morphological observations, pyrenoid ultrastructure observations, and molecular sequence analysis. Floating spherical Cladophora aggregations (1-8 cm in diameter) were observed in an area ~560 m2, on the downwind side of the reservoir where there was water movement. Individual filaments in the aggregations were entangled in each other; consequently, branches growing in different directions were observed within a clump. We suggest that water movement and morphological characteristics promote the formation of spherical aggregations in this species. The molecular sequencing results revealed that the study species was highly homologous to both C. socialis and C. coelothrix. However, the diameter of the apical cells in the study species was less than that of C. coelothrix. The pyrenoid ultrastructure was more consistent with that of C. socialis. We conclude that the study species is C. socialis. This first record of spherical aggregations in this species advances our understanding of these formations. However, further detailed physical measurements are required to fully elucidate the mechanism behind these spherical formations.

  1. Improved viscosity modeling in patients with type 2 diabetes mellitus by accounting for enhanced red blood cell aggregation tendency

    NARCIS (Netherlands)

    Mutsaerts, Henri J. M. M.; Out, Mattijs; Goedhart, Peter T.; Ince, Can; Hardeman, Max R.; Romijn, Johannes A.; Rabelink, Ton J.; Reiber, Johan H. C.; Box, Frieke M. A.

    2010-01-01

    Aims: Distorted wall shear stress (WSS) in patients with type 2 diabetes mellitus (T2DM) may be partly explained by an altered red blood cell aggregation tendency (RAT) on viscosity at low shear rate (SR). The present study evaluates viscosity modeling by implementation of hematocrit and RAT in

  2. Fractal Aggregates in Tennis Ball Systems

    Science.gov (United States)

    Sabin, J.; Bandin, M.; Prieto, G.; Sarmiento, F.

    2009-01-01

    We present a new practical exercise to explain the mechanisms of aggregation of some colloids which are otherwise not easy to understand. We have used tennis balls to simulate, in a visual way, the aggregation of colloids under reaction-limited colloid aggregation (RLCA) and diffusion-limited colloid aggregation (DLCA) regimes. We have used the…

  3. A Functional Reference Architecture for Aggregators

    DEFF Research Database (Denmark)

    Bondy, Daniel Esteban Morales; Heussen, Kai; Gehrke, Oliver

    2015-01-01

    Aggregators are considered to be a key enabling technology for harvesting power system services from distributed energy resources (DER). As a precondition for more widespread use of aggregators in power systems, methods for comparing and validating aggregator designs must be established. This paper...... proposes a functional reference architecture for aggregators to address this requirement....

  4. Aggregation server for grid-integrated vehicles

    Science.gov (United States)

    Kempton, Willett

    2015-05-26

    Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregated EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.

  5. Sand Cement Brick Containing Recycled Concrete Aggregate as Fine-Aggregate Replacement

    Directory of Open Access Journals (Sweden)

    Sheikh Khalid Faisal

    2017-01-01

    Full Text Available Nowadays, the usage amount of the concrete is increasing drastically. The construction industry is a huge consumer of natural consumer. It is also producing the huge wastage products. The usage of concrete has been charged to be not environmentally friendly due to depletion of reserve natural resources, high energy consumption and disposal issues. The conservation of natural resources and reduction of disposal site by reuse and recycling waste material was interest possibilites. The aim of this study is to determine the physical and mechanical properties of sand cement brick containing recycled concrete aggregate and to determine the optimum mix ratio containing recycled concrete aggregate. An experiment done by comparing the result of control specimen using 100% natural sand with recycled concrete aggregate replacement specimen by weight for 55%, 65%, and 75%. The sample was tested under density, compressive strength, flexural strength and water absorption to study the effect of using recycled concrete aggregate on the physical and mechanical properties of bricks. The result shows that the replacement of natural sand by recycled concrete aggregate at the level of 55% provide the highest compressive and flexural strength compared to other percentage and control specimen. However, if the replacement higher than 55%, the strength of brick was decreased for compressive and flexural strength, respectively. The relationship of compressive-flexural strength is determined from statistical analysis and the predicted result can be obtained by using equation ff,RCA = 0.5375 (fc0.3272.

  6. A SEP tag enhances the expression, solubility and yield of recombinant TEV protease without altering its activity.

    Science.gov (United States)

    Nautiyal, Kalpana; Kuroda, Yutaka

    2018-05-25

    Tobacco Etch Virus (TEV) protease is used in the purification of recombinant proteins, but its usage is often hampered by solubility issues. Here, we report a short, 12-residue solubility enhancing peptide (SEP) tag attached at the C-terminus of TEV (TEV-C9R). We assessed the effects of the C9R tag on the biophysical and biochemical characteristics of TEV. The yield of HPLC purified TEV-C9R expressed in E. coli grown in 200 mL LB or TB media was between 10 and 13 mg, which was up to 6.5 times higher than the yield of the untagged TEV (untagged-TEV). TEV-C9R was active over a pH range of 5-8, which was wider than that of the commonly used thrombin, and it remained active upon incubation at 60 °C much longer than the untagged-TEV, which aggregated at this temperature. Static and dynamic light scattering demonstrated the higher solubility of purified TEV-C9R. Furthermore, the thermal unfolding of TEV-C9R, as assessed by circular dichroism at pH 4.7, was almost perfectly reversible, in contrast to that of untagged-TEV, which aggregated at high temperature. These results demonstrate the improved biophysical and biochemical characteristics of TEV-C9R originating from higher solubility and provide another example of how SEP tags can enhance enzyme solubility without altering its activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Observing Convective Aggregation

    Science.gov (United States)

    Holloway, Christopher E.; Wing, Allison A.; Bony, Sandrine; Muller, Caroline; Masunaga, Hirohiko; L'Ecuyer, Tristan S.; Turner, David D.; Zuidema, Paquita

    2017-11-01

    Convective self-aggregation, the spontaneous organization of initially scattered convection into isolated convective clusters despite spatially homogeneous boundary conditions and forcing, was first recognized and studied in idealized numerical simulations. While there is a rich history of observational work on convective clustering and organization, there have been only a few studies that have analyzed observations to look specifically for processes related to self-aggregation in models. Here we review observational work in both of these categories and motivate the need for more of this work. We acknowledge that self-aggregation may appear to be far-removed from observed convective organization in terms of time scales, initial conditions, initiation processes, and mean state extremes, but we argue that these differences vary greatly across the diverse range of model simulations in the literature and that these comparisons are already offering important insights into real tropical phenomena. Some preliminary new findings are presented, including results showing that a self-aggregation simulation with square geometry has too broad distribution of humidity and is too dry in the driest regions when compared with radiosonde records from Nauru, while an elongated channel simulation has realistic representations of atmospheric humidity and its variability. We discuss recent work increasing our understanding of how organized convection and climate change may interact, and how model discrepancies related to this question are prompting interest in observational comparisons. We also propose possible future directions for observational work related to convective aggregation, including novel satellite approaches and a ground-based observational network.

  8. Ocular surface alterations and in vivo confocal microscopic characteristics of corneas in patients with myasthenia gravis.

    Science.gov (United States)

    Erkan Turan, Kadriye; Kocabeyoglu, Sibel; Bekircan-Kurt, Can Ebru; Bezci, Figen; Erdem-Ozdamar, Sevim; Irkec, Murat

    2018-03-01

    To evaluate ocular surface alterations and characteristics of corneal basal epithelium and subbasal nerves in patients with myasthenia gravis. Myasthenia gravis patients (n = 21) and healthy controls (n = 20) were enrolled. All participants underwent ocular surface testing in the following order: tear break-up time, lissamine green staining, Schirmer I test with anesthesia, and Ocular Surface Disease Index questionnaire. The Cochet-Bonnet esthesiometer was used to measure corneal sensitivity. Basal epithelial cells and subbasal nerves were evaluated using in vivo confocal microscopy. Myasthenia gravis patients had higher Ocular Surface Disease Index score (13.9 ± 15.0 vs 1.4 ± 2.2, p myasthenia gravis had lower basal epithelial cell density (3775.7 ± 938.1 vs 4983.1 ± 608.5, p myasthenia gravis and the number of corneal nerves (rho = -0.497, p = 0.022). Significant alterations of basal epithelial cells and subbasal nerves were demonstrated in myasthenia gravis patients although there was no difference of corneal sensitivity between myasthenia gravis patients and healthy controls. Thus, it should be borne in mind that myasthenia gravis patients deserve further evaluation with regard to ocular surface disease.

  9. What favors convective aggregation and why?

    Science.gov (United States)

    Muller, Caroline; Bony, Sandrine

    2015-07-01

    The organization of convection is ubiquitous, but its physical understanding remains limited. One particular type of organization is the spatial self-aggregation of convection, taking the form of cloud clusters, or tropical cyclones in the presence of rotation. We show that several physical processes can give rise to self-aggregation and highlight the key features responsible for it, using idealized simulations. Longwave radiative feedbacks yield a "radiative aggregation." In that case, sufficient spatial variability of radiative cooling rates yields a low-level circulation, which induces the upgradient energy transport and radiative-convective instability. Not only do vertically integrated radiative budgets matter but the vertical profile of cooling is also crucial. Convective aggregation is facilitated when downdrafts below clouds are weak ("moisture-memory aggregation"), and this is sufficient to trigger aggregation in the absence of longwave radiative feedbacks. These results shed some light on the sensitivity of self-aggregation to various parameters, including resolution or domain size.

  10. Heat-shock protein dysregulation is associated with functional and pathological TDP-43 aggregation

    Science.gov (United States)

    Chang, Hsiang-Yu; Hou, Shin-Chen; Way, Tzong-Der; Wong, Chi-Huey; Wang, I.-Fan

    2013-11-01

    Conformational disorders are involved in various neurodegenerative diseases. Reactive oxygen species (ROS) are the major contributors to neurodegenerative disease; however, ROS that affect the structural changes in misfolded disease proteins have yet to be well characterized. Here we demonstrate that the intrinsic propensity of TDP-43 to aggregate drives the assembly of TDP-43-positive stress granules and soluble toxic TDP-43 oligomers in response to a ROS insult via a disulfide crosslinking-independent mechanism. Notably, ROS-induced TDP-43 protein assembly correlates with the dynamics of certain TDP-43-associated chaperones. The heat-shock protein (HSP)-90 inhibitor 17-AAG prevents ROS-induced TDP-43 aggregation, alters the type of TDP-43 multimers and reduces the severity of pathological TDP-43 inclusions. In summary, our study suggests that a common mechanism could be involved in the pathogenesis of conformational diseases that result from HSP dysregulation.

  11. Curcumin inhibits aggregation of alpha-synuclein.

    Science.gov (United States)

    Pandey, Neeraj; Strider, Jeffrey; Nolan, William C; Yan, Sherry X; Galvin, James E

    2008-04-01

    Aggregation of amyloid-beta protein (Abeta) is a key pathogenic event in Alzheimer's disease (AD). Curcumin, a constituent of the Indian spice Turmeric is structurally similar to Congo Red and has been demonstrated to bind Abeta amyloid and prevent further oligomerization of Abeta monomers onto growing amyloid beta-sheets. Reasoning that oligomerization kinetics and mechanism of amyloid formation are similar in Parkinson's disease (PD) and AD, we investigated the effect of curcumin on alpha-synuclein (AS) protein aggregation. In vitro model of AS aggregation was developed by treatment of purified AS protein (wild-type) with 1 mM Fe3+ (Fenton reaction). It was observed that the addition of curcumin inhibited aggregation in a dose-dependent manner and increased AS solubility. The aggregation-inhibiting effect of curcumin was next investigated in cell culture utilizing catecholaminergic SH-SY5Y cell line. A model system was developed in which the red fluorescent protein (DsRed2) was fused with A53T mutant of AS and its aggregation examined under different concentrations of curcumin. To estimate aggregation in an unbiased manner, a protocol was developed in which the images were captured automatically through a high-throughput cell-based screening microscope. The obtained images were processed automatically for aggregates within a defined dimension of 1-6 microm. Greater than 32% decrease in mutant alpha-synuclein aggregation was observed within 48 h subsequent to curcumin addition. Our data suggest that curcumin inhibits AS oligomerization into higher molecular weight aggregates and therefore should be further explored as a potential therapeutic compound for PD and related disorders.

  12. Quantification of the aggregation of magnetic nanoparticles with different polymeric coatings in cell culture medium

    International Nuclear Information System (INIS)

    Eberbeck, D; Zirpel, P; Trahms, L; Kettering, M; Hilger, I; Bergemann, C

    2010-01-01

    The knowledge of the physico-chemical characteristics of magnetic nanoparticles (MNPs) is essential to enhance the efficacy of MNP-based therapeutic treatments (e.g. magnetic heating, magnetic drug targeting). According to the literature, the MNP uptake by cells may depend on the coating of MNPs, the surrounding medium as well as on the aggregation behaviour of the MNPs. Therefore, in this study, the aggregation behaviour of MNPs in various media was investigated. MNPs with different coatings were suspended in cell culture medium (CCM) containing fetal calf serum (FCS) and the distribution of the hydrodynamic sizes was measured by magnetorelaxometry (MRX). FCS as well as bovine serum albumin (BSA) buffer (phosphate buffered saline with 0.1% bovine serum albumin) may induce MNP aggregation. Its strength depends crucially on the type of coating. The degree of aggregation in CCM depends on its FCS content showing a clear, local maximum at FCS concentrations, where the IgG concentration (part of FCS) is of the order of the MNP number concentration. Thus, we attribute the observed aggregation behaviour to the mechanism of agglutination of MNPs by serum compartments as for example IgG. No aggregation was induced for MNPs coated with dextran, polyarabic acid or sodium phosphate, respectively, which were colloidally stable in CCM.

  13. Platelet activation and aggregation

    DEFF Research Database (Denmark)

    Jensen, Maria Sander; Larsen, O H; Christiansen, Kirsten

    2013-01-01

    This study introduces a new laboratory model of whole blood platelet aggregation stimulated by endogenously generated thrombin, and explores this aspect in haemophilia A in which impaired thrombin generation is a major hallmark. The method was established to measure platelet aggregation initiated...

  14. Role of Multicellular Aggregates in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Kasper N. Kragh

    2016-03-01

    Full Text Available In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation.

  15. Deformation Behavior of Recycled Concrete Aggregate during Cyclic and Dynamic Loading Laboratory Tests

    Directory of Open Access Journals (Sweden)

    Wojciech Sas

    2016-09-01

    Full Text Available Recycled concrete aggregate (RCA is a relatively new construction material, whose applications can replace natural aggregates. To do so, extensive studies on its mechanical behavior and deformation characteristics are still necessary. RCA is currently used as a subbase material in the construction of roads, which are subject to high settlements due to traffic loading. The deformation characteristics of RCA must, therefore, be established to find the possible fatigue and damage behavior for this new material. In this article, a series of triaxial cyclic loading and resonant column tests is used to characterize fatigue in RCA as a function of applied deviator stress after long-term cyclic loading. A description of the shakedown phenomenon occurring in the RCA and calculations of its resilient modulus (Mr as a function of fatigue are also presented. Test result analysis with the stress-life method on the Wohler S-N diagram shows the RCA behavior in accordance with the Basquin law.

  16. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete

    International Nuclear Information System (INIS)

    Beygi, Morteza H.A.; Kazemi, Mohammad Taghi; Nikbin, Iman M.; Vaseghi Amiri, Javad; Rabbanifar, Saeed; Rahmani, Ebrahim

    2014-01-01

    This paper presents the results of an experimental investigation on fracture characteristics and brittleness of self-compacting concrete (SCC), involving the tests of 185 three point bending beams with different coarse aggregate size and content. Generally, the parameters were analyzed by the work of fracture method (WFM) and the size effect method (SEM). The results showed that with increase of size and content of coarse aggregate, (a) the fracture energy increases which is due to the change in fractal dimensions, (b) behavior of SCC beams approaches strength criterion, (c) characteristic length, which is deemed as an index of brittleness, increases linearly. It was found with decrease of w/c ratio that fracture energy increases which may be explained by the improvement in structure of aggregate-paste transition zone. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G F ) and the value measured through SEM (G f ) (G F = 3.11G f )

  17. The influence of coarse aggregate size and volume on the fracture behavior and brittleness of self-compacting concrete

    Energy Technology Data Exchange (ETDEWEB)

    Beygi, Morteza H.A., E-mail: M.beygi@nit.ac.ir [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Kazemi, Mohammad Taghi, E-mail: Kazemi@sharif.edu [Department of Civil Engineering, Sharif University of Technology, P.O. Box 11155-9313 (Iran, Islamic Republic of); Nikbin, Iman M., E-mail: nikbin@iaurasht.ac.ir [Faculty of Civil Engineering, Islamic Azad University, Rasht Branch, Rasht (Iran, Islamic Republic of); Vaseghi Amiri, Javad, E-mail: Vaseghi@nit.ac.ir [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Rabbanifar, Saeed, E-mail: Saeed.rabbanifar@yahoo.com [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of); Rahmani, Ebrahim, E-mail: Ebrahim.rahmani84@gmail.com [Department of Civil Engineering, Babol University of Technology (Iran, Islamic Republic of)

    2014-12-15

    This paper presents the results of an experimental investigation on fracture characteristics and brittleness of self-compacting concrete (SCC), involving the tests of 185 three point bending beams with different coarse aggregate size and content. Generally, the parameters were analyzed by the work of fracture method (WFM) and the size effect method (SEM). The results showed that with increase of size and content of coarse aggregate, (a) the fracture energy increases which is due to the change in fractal dimensions, (b) behavior of SCC beams approaches strength criterion, (c) characteristic length, which is deemed as an index of brittleness, increases linearly. It was found with decrease of w/c ratio that fracture energy increases which may be explained by the improvement in structure of aggregate-paste transition zone. Also, the results showed that there is a correlation between the fracture energy measured by WFM (G{sub F}) and the value measured through SEM (G{sub f}) (G{sub F} = 3.11G{sub f})

  18. Analysis of coarse aggregate performance based on the modified Micro Deval abrasion test

    Directory of Open Access Journals (Sweden)

    Jiangfeng Wu

    2018-03-01

    Full Text Available The anti-abrasion property of aggregate significantly affects the performance of the pavement. In this research, the quartzite and gneiss which were produced in Lincheng County, Xingtai City, Hebei Province were selected as test samples. According to the American Society for Testing and Materials standard, the Micro-Deval abrasion test was taken every 1000 rotation times until 20,000 times, and the change trend of the Micro-Deval abrasion value was obtained. Results showed that the abrasion values were in the exponential growth rate rather than linear rate. Their R-Square coefficient was 0.99142 and 0.99916 respectively. The gravel information such as area, roundness, diameter, perimeter and so on were calculated and analyzed by Image-Pro Plus software, which provided a rapid way for the 2D morphology characteristics analysis of the coarse aggregate. Keywords: Micro-Deval abrasion test, Coarse aggregate, Anti-abrasion property, Abrasion values

  19. Pre-aggregation for Probability Distributions

    DEFF Research Database (Denmark)

    Timko, Igor; Dyreson, Curtis E.; Pedersen, Torben Bach

    Motivated by the increasing need to analyze complex uncertain multidimensional data (e.g., in order to optimize and personalize location-based services), this paper proposes novel types of {\\em probabilistic} OLAP queries that operate on aggregate values that are probability distributions...... and the techniques to process these queries. The paper also presents the methods for computing the probability distributions, which enables pre-aggregation, and for using the pre-aggregated distributions for further aggregation. In order to achieve good time and space efficiency, the methods perform approximate...... multidimensional data analysis that is considered in this paper (i.e., approximate processing of probabilistic OLAP queries over probability distributions)....

  20. Characterization and testing of rock aggregates of the Santa Marta Batholith, (Colombia

    Directory of Open Access Journals (Sweden)

    Nancy Paola Figueroa Madero

    2014-12-01

    Full Text Available Aggregates of intrusive rocks are the major source of crushed fine and coarse aggregates for use in concrete in several countries and they have to meet a number of specifications relating to strength and durability. This research reports the evaluation of aggregates of granitoids and associated rocks of Santa Marta Batholith, Sierra Nevada de Santa Marta Massif, Colombia, based on petrographic analysis and mechanical and chemical acceptance tests. The strength and durability of a particular rock type depends on its intrinsic characteristic, thus petrographic analysis is very important to understand its mechanical and chemical properties. Numerous standard tests used to ensure aggregates meet the appropriate specifications; however, petrographic analysis represents the most valuable test for predicting the overall performance of concrete aggregates in any control test. Aggregates were analyzed to determine their petrographic, physical, mechanical and chemical properties. Samples were categorized as hornblendite, gabbro, quartzmonzodiorite, monzodiorite and monzonite groups. Among these, of the quartzmonzodiorite was the dominant group. Specific gravity indicates values in the range 2673-2956kg/m3. Water absorption values are in the range 0.908-1.194%. Aggregate impact values of samples (37.82 to 61.36% showed good soundness only for one of the aggregates, which are considered acceptable for use in the preparation of a good quality concrete. Values of Methylene Blue Adsorption reveal the organic matter content is below the threshold. Magnesium sulphate values ranged between 0.11 and 4.75% suggesting good resistance against chemical atmospheric agents. The compressive strength test shows values in the range 35.22-59.45MPa indicating that the geomechanical behavior of rock cylinders is satisfactory. The geomechanical behavior of rock tablets under flexion is also satisfactory for SMA-2 sample (16.53MPa, although not for SMA-6 and SMA-8 samples

  1. The aggregation of climate change damages. A welfare theoretic approach

    International Nuclear Information System (INIS)

    Fankhauser, S.; Pearce, D.W.; Tol, R.S.J.

    1997-01-01

    The economic value of environmental goods is commonly determined using the concepts of willingness to pay (WTP) or willingness to accept (WTA). However, the WTP/WTA observed in different countries (or between individuals) will differ according to socio-economic characteristics, in particular income. This notion of differentiated values for otherwise identical goods (say, a given reduction in mortality risk) has been criticized as unethical, most recently in the context of the 'social cost' chapter of the IPCC Second Assessment Report. These critics argue that, being a function of income, WTP/WTA estimates reflect the unfairness in the current income distribution, and for equity reasons uniform per-unit values should therefore be applied across individuals and countries. This paper analyses the role of equity in the aggregation of climate change damage estimates, using basic tools of welfare economics. It shows one way of how WTP/WTA estimates can be corrected in aggregation if the underlying income distribution is considered unfair. It proposes that in the aggregation process individual estimates be weighted with an equity factor derived from the social welfare and utility functions. Equity weighting can significantly increase aggregate (global) damage figures, although some specifications of weighting functions also imply reduced estimates. The paper also shows that while the postulate of uniform per-unit values is compatible with a wide range of 'reasonable' utility and welfare specifications, there are also cases where the common-value notion is not compatible with defensible welfare concepts. 3 tabs., 32 refs

  2. Optimization on Fc for Improvement of Stability and Aggregation Resistance.

    Science.gov (United States)

    Chen, Xiaobo; Zeng, Fang; Huang, Tao; Cheng, Liang; Liu, Huan; Gong, Rui

    2016-01-01

    Fc-based therapeutics including therapeutic full-size monoclonal antibodies (mAbs) and Fcfusion proteins represent fastest-growing market in biopharmaceutical industrial. However, one major challenge during development of Fc-based therapeutics is how to maintain their efficacy in clinic use. Many factors may lead to failure in final marketing. For example, the stability and aggregation resistance might not be high enough for bearing the disadvantages during fermentation, purification, formulation, storage, shipment and other steps in manufacture and sale. Low stability and high aggregation tendency lead to decreased bioactivity and increased risk of immunogenicity resulting in serious side effect. Because Fc is one of the major parts in monoclonal antibodies and Fc-fusion proteins, engineering of Fc to increase its stability and reduce or eliminate aggregation due to incorrect association are of great importance and could further extend the potential of Fc-based therapeutics. Lots of studies focus on Fc optimization for better physical and chemical characteristics and function by structured-based computer-aid rational design, high-throughput screening expression system selection and other methods. The identification of optimized Fc mutants increases the clinic potential of currently existed therapeutics mAbs and Fc-fusion proteins, and accelerates the development of new Fc-based therapeutics. Here we provide an overview of the related field, and discuss recent advances and future directions in optimization of Fc-based therapeutics with modified stability and aggregation resistance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Discrete stochastic charging of aggregate grains

    Science.gov (United States)

    Matthews, Lorin S.; Shotorban, Babak; Hyde, Truell W.

    2018-05-01

    Dust particles immersed in a plasma environment become charged through the collection of electrons and ions at random times, causing the dust charge to fluctuate about an equilibrium value. Small grains (with radii less than 1 μm) or grains in a tenuous plasma environment are sensitive to single additions of electrons or ions. Here we present a numerical model that allows examination of discrete stochastic charge fluctuations on the surface of aggregate grains and determines the effect of these fluctuations on the dynamics of grain aggregation. We show that the mean and standard deviation of charge on aggregate grains follow the same trends as those predicted for spheres having an equivalent radius, though aggregates exhibit larger variations from the predicted values. In some plasma environments, these charge fluctuations occur on timescales which are relevant for dynamics of aggregate growth. Coupled dynamics and charging models show that charge fluctuations tend to produce aggregates which are much more linear or filamentary than aggregates formed in an environment where the charge is stationary.

  4. Prediction of the aggregation propensity of proteins from the primary sequence: aggregation properties of proteomes.

    Science.gov (United States)

    Castillo, Virginia; Graña-Montes, Ricardo; Sabate, Raimon; Ventura, Salvador

    2011-06-01

    In the cell, protein folding into stable globular conformations is in competition with aggregation into non-functional and usually toxic structures, since the biophysical properties that promote folding also tend to favor intermolecular contacts, leading to the formation of β-sheet-enriched insoluble assemblies. The formation of protein deposits is linked to at least 20 different human disorders, ranging from dementia to diabetes. Furthermore, protein deposition inside cells represents a major obstacle for the biotechnological production of polypeptides. Importantly, the aggregation behavior of polypeptides appears to be strongly influenced by the intrinsic properties encoded in their sequences and specifically by the presence of selective short regions with high aggregation propensity. This allows computational methods to be used to analyze the aggregation properties of proteins without the previous requirement for structural information. Applications range from the identification of individual amyloidogenic regions in disease-linked polypeptides to the analysis of the aggregation properties of complete proteomes. Herein, we review these theoretical approaches and illustrate how they have become important and useful tools in understanding the molecular mechanisms underlying protein aggregation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Methylglyoxal-induced modification causes aggregation of myoglobin

    Science.gov (United States)

    Banerjee, Sauradipta; Maity, Subhajit; Chakraborti, Abhay Sankar

    2016-02-01

    Post-translational modification of proteins by Maillard reaction, known as glycation, is thought to be the root cause of different complications, particularly in diabetes mellitus and age-related disorders. Methylglyoxal (MG), a reactive α-oxoaldehyde, increases in diabetic condition and reacts with proteins to form advanced glycation end products (AGEs) following Maillard-like reaction. We have investigated the in vitro effect of MG (200 μM) on the monomeric heme protein myoglobin (Mb) (100 μM) in a time-dependent manner (7 to 18 days incubation at 25 °C). MG induces significant structural alterations of the heme protein, including heme loss, changes in tryptophan fluorescence, decrease of α-helicity with increased β-sheet content etc. These changes occur gradually with increased period of incubation. Incubation of Mb with MG for 7 days results in formation of the AGE adducts: carboxyethyllysine at Lys-16, carboxymethyllysine at Lys-87 and carboxyethyllysine or pyrraline-carboxymethyllysine at Lys-133. On increasing the period of incubation up to 14 days, additional AGEs namely, carboxyethyllysine at Lys-42 and hydroimidazolone or argpyrimidine at Arg-31 and Arg-139 have been detected. MG also induces aggregation of Mb, which is clearly evident with longer period of incubation (18 days), and appears to have amyloid nature. MG-derived AGEs may thus have an important role as the precursors of protein aggregation, which, in turn, may be associated with physiological complications.

  6. Does the Level of Occupational Aggregation Affect Estimates of the Gender Wage Gap?

    Science.gov (United States)

    Kidd, Michael P.; Shannon, Michael

    1996-01-01

    Using data from the 1989 Canadian Labour-Market Activity Survey, when occupation is treated as a productivity-related characteristic, gender wage gap estimates are distorted. Using a larger number of occupations, the occupational aggregation by gender reflects barriers women face in attempting to enter male-dominated occupations. (SK)

  7. Fabrication of fluorescent silica nanoparticles with aggregation-induced emission luminogens for cell imaging.

    Science.gov (United States)

    Chen, Sijie; Lam, Jacky W Y; Tang, Ben Zhong

    2013-01-01

    Fluorescence-based techniques have found wide applications in life science. Among various luminogenic materials, fluorescent nanoparticles have attracted much attention due to their fabulous emission properties and potential applications as sensors. Here, we describe the fabrication of fluorescent silica nanoparticles (FSNPs) containing aggregation-induced emission (AIE) luminogens. By employing surfactant-free sol-gel reaction, FSNPs with uniform size and high surface charge and colloidal stability are generated. The FSNPs emit strong light upon photoexcitation, due to the AIE characteristic of the silole -aggregates in the hybrid nanoparticles. The FSNPs are cytocompatible and can be utilized as fluorescent visualizer for intracellular imaging for HeLa cells.

  8. Incorporation of Biomaterials in Multicellular Aggregates Modulates Pluripotent Stem Cell Differentiation

    Science.gov (United States)

    Bratt-Leal, Andrés M.; Carpenedo, Richard L.; Ungrin, Mark; Zandstra, Peter W.; McDevitt, Todd C.

    2010-01-01

    Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date, stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments, such as 2D cell culture on biomaterial surfaces, encapsulation of cell suspensions within hydrogel materials, or cell seeding on 3D polymeric scaffolds. In this study, microparticles fabricated from different materials, such as agarose, PLGA and gelatin, were stably integrated, in a dose-dependent manner, within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly, the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors, extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition, these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation, but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes. PMID:20864164

  9. Evaluation of recycled concrete aggregates for their suitability in construction activities: An experimental study.

    Science.gov (United States)

    Puthussery, Joseph V; Kumar, Rakesh; Garg, Anurag

    2017-02-01

    Construction and demolition waste disposal is a major challenge in developing nations due to its ever increasing quantities. In this study, the recycling potential of waste concrete as aggregates in construction activities was studied. The metal leaching from the recycled concrete aggregates (RCA) collected from the demolition site of a 50year old building, was evaluated by performing three different leaching tests (compliance, availability and Toxic Characteristic Leaching Procedure). The metal leaching was found mostly within the permissible limit except for Hg. Several tests were performed to determine the physical and mechanical properties of the fine and coarse aggregates produced from recycled concrete. The properties of recycled aggregates were found to be satisfactory for their utilization in road construction activities. The suitability of using recycled fine and coarse aggregates with Portland pozzolanic cement to make a sustainable and environmental friendly concrete mix design was also analyzed. No significant difference was observed in the compressive strength of various concrete mixes prepared by natural and recycled aggregates. However, only the tensile strength of the mix prepared with 25% recycled fine aggregates was comparable to that of the control concrete. For other mixes, the tensile strength of the concrete was found to drop significantly. In summary, RCA should be considered seriously as a building material for road construction, mass concrete works, lightly reinforced sections, etc. The present work will be useful for the waste managers and policy makers particularly in developing nations where proper guidelines are still lacking. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effect of solvent-controlled aggregation on the intrinsic emission properties of PAMAM dendrimers

    International Nuclear Information System (INIS)

    Jasmine, Maria J.; Kavitha, Manniledam; Prasad, Edamana

    2009-01-01

    Solvent-induced aggregation and its effect on the intrinsic emission properties of amine, hydroxy and carboxylate terminated, poly(amidoamine) (PAMAM) dendrimers have been investigated in glycerol, ethylene glycol, methanol, ethylene diamine and water. Altering the solvent medium induces remarkable changes in the intrinsic emission properties of the PAMAM dendrimers at identical concentration. Upon excitation at 370 nm, amine terminated PAMAM dendrimer exhibits an intense emission at 470 nm in glycerol, ethylene glycol as well as glycerol-water mixtures. Conversely, weak luminescence is observed for hydroxy and carboxylate terminated PAMAM dendrimers in the same solvent systems. When the solvent is changed to ethylene diamine, hydroxy terminated PAMAM exhibits intense blue emission at 425 nm. While the emission intensity is varied when the solvent milieu is changed, excited state lifetime values of PAMAM dendrimers remain independent of the solvent used. UV-visible absorption and dynamic light scattering (DLS) experiments confirm the formation of solvent-controlled dendrimer aggregates in the systems. Comparison of the fluorescence and DLS data reveals that the size distribution of the dendrimer aggregates in each solvent system is distinct, which control the intrinsic emission intensity from PAMAM dendrimers. The experimental results suggest that intrinsic emission intensity from PAMAM dendrimers can be regulated by proper selection of solvents at neutral conditions and room temperature

  11. Customer Aggregation: An Opportunity for Green Power?

    Energy Technology Data Exchange (ETDEWEB)

    Holt, E.; Bird, L.

    2001-02-26

    We undertook research into the experience of aggregation groups to determine whether customer aggregation offers an opportunity to bring green power choices to more customers. The objectives of this report, therefore, are to (1) identify the different types of aggregation that are occurring today, (2) learn whether aggregation offers an opportunity to advance sales of green power, and (3) share these concepts and approaches with potential aggregators and green power advocates.

  12. FEATURES OF ASH OF THERMAL POWER PLANTS AS AGGREGATE FOR CONCRETES

    Directory of Open Access Journals (Sweden)

    M. A. Storozhuk

    2017-10-01

    Full Text Available Purpose. The scientific work is dedicated to development of scientific-technical bases of production and application of concrete on the basis of ashes of thermal power plants (TPP. Methodology. The properties of TPP ash, as well as the peculiarities of its behavior in a concrete mix as a fine aggregate, have been studied. It is shown that the hydrolysis and hydration of cement occur in the active environment of ash, which has a huge specific surface area. This significantly affects the course of these processes and the quality of the concrete produced. A new technology of application of ash of TPP for preparation of concrete mixes is offered. Vibrated and vibrovacuumized concretes of optimum composition from slag and ash, as well as from granite crushed stone and ash, are tested. The chara-cteristics of ordinary concrete (from granite crushed stone and quartz sand are given to compare. Findings. The results of the tests showed the possibility of obtaining concretes of class C20/25…C25/30 on the basis of slag and ash of TPP at a limited consumption of cement. It is shown that the concrete with traditional aggregates has a lower strength than the concrete, which has ash as fine aggregate. This research results contribute to the increased use of ash in construction that solves the problem of aggregates as well as thermal power plants waste recycling. Originality. New method and technology of application of TPP ashes in concrete are developed. Ash concrete mix has rational flowability, which produces the greatest strength of ash vacuum concrete. This strength is twice or more as large as the strength of vibrated ash concrete mix with flowability S1. Practical value. The physico-chemical properties of TPP ash as aggregate for concrete are presented. Significant difference of ash from ordinary aggregates is shown. Chemical activity of the ash is justified. The special conditions of cement hardening in the case of using ash as aggregate for concrete

  13. EAF Slag Aggregate in Roller-Compacted Concrete Pavement: Effects of Delay in Compaction

    Directory of Open Access Journals (Sweden)

    My Ngoc-Tra Lam

    2018-04-01

    Full Text Available This study investigates the effect of delay in compaction on the optimum moisture content and the mechanical propertie s (i.e., compressive strength, ultrasonic pulse velocity, splitting tensile strength, and modulus of elasticity of roller-compacted concrete pavement (RCCP made of electric arc furnace (EAF slag aggregate. EAF slag with size in the range of 4.75–19 mm was used to replace natural coarse aggregate in RCCP mixtures. A new mixing method was proposed for RCCP using EAF slag aggregate. The optimum moisture content of RCCP mixtures in this study was determined by a soil compaction method. The Proctor test assessed the optimum moisture content of mixtures at various time after mixing completion (i.e., 0, 15, 30, 60, and 90 min. Then, the effect of delay in compaction on the mechanical properties of RCCP mixtures at 28 days of age containing EAF slag aggregate was studied. The results presented that the negative effect on water content in the mixture caused by the higher water absorption characteristic of EAF slag was mitigated by the new mixing method. The optimum water content and maximum dry density of RCCP experience almost no effect from the delay in compaction. The compressive strength and splitting tensile strength of RCCP using EAF slag aggregate fulfilled the strength requirements for pavement with 90 min of delay in compaction.

  14. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture.

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia Mª; Guerra-Romero, M Ignacio

    2014-09-01

    The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed technique.

  15. Do invasive plant species alter soil health?

    Science.gov (United States)

    Invasive species may alter soil characteristics or interact with the soil microbial community to yield a competitive advantage. Our objectives were to determine: if invasive plant species alter soil properties important to soil health; and the long-term effects of invasive plant species on soil pro...

  16. Aggregated particles caused by instrument artifact

    Science.gov (United States)

    Pierce, Ashley M.; Loría-Salazar, S. Marcela; Arnott, W. Patrick; Edwards, Grant C.; Miller, Matthieu B.; Gustin, Mae S.

    2018-04-01

    Previous studies have indicated that superaggregates, clusters of aggregates of soot primary particles, can be formed in large-scale turbulent fires. Due to lower effective densities, higher porosity, and lower aerodynamic diameters, superaggregates may pass through inlets designed to remove particles 2.5 µm in aerodynamic diameter were collected on 36 out of 158 sample days. On preliminary analysis, it was thought that these aggregated particles were superaggregates, depositing past PM10 (particles wind speeds, as well as the use of generators on site. Samples with aggregated particles, referred to as aggregates, were analyzed using a scanning electron microscope for size and shape and energy dispersive X-ray spectroscopy was used for elemental analysis. It was determined, based on the high amounts of aluminum present in the aggregate samples, that a sampling artifact associated with the sample inlet and prolonged, high wind events was the probable reason for the observed aggregates.

  17. Optimization of Packing Density of M30 Concrete With Steel Slag As Coarse Aggregate Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Arivoli M.

    2017-09-01

    Full Text Available Concrete plays a vital role in the design and construction of the infrastructure. To meet the global demand of concrete in future, it is becoming a challenging task to find suitable alternatives to natural aggregates. Steel slag is a by-product of steel making process. The steel slag aggregates are characterized by studying particle size and shape, physical and chemical properties, and mechanical properties as per IS: 2386-1963. The characterization study reveals the better performance of steel slag aggregate over natural coarse aggregate. M30 grade of concrete is designed and natural coarse aggregate is completely replaced by steel slag aggregate. Packing density of aggregates affects the characteristics of concrete. The present paper proposes a fuzzy system for concrete mix proportioning which increases the packing density. The proposed fuzzy system have four sub fuzzy system to arrive compressive strength, water cement ratio, ideal grading curve and free water content for concrete mix proportioning. The results show, the concrete mix proportion of the given fuzzy model agrees with IS method. The comparison of results shows that both proposed fuzzy system and IS method, there is a remarkable increase in compressive strength and bulk density, with increment in the percentage replacement of steel slag.

  18. The alkali–aggregate reaction for various aggregates used in concrete

    Directory of Open Access Journals (Sweden)

    Calderón, V.

    2010-09-01

    Full Text Available The aim of this work is to contribute to the knowledge of the interactions between aggregates and the components of the interstitial phase of concrete and to determine whether those aggregates that are subsequently used in the manufacture of concrete are reagents and are therefore likely to undergo a progressive deterioration of their initial properties. An initial petrographic study of each aggregate is performed in order to be able to determine its subsequent behaviour and reactivity under the influence of various factors. The potential reactivity of different silicaceous aggregates (slates, gneiss, hornfels, granites, quartzite and serpentine is then determined by a chemical method for evaluating the potential reactivity of aggregates and an accelerated method in mortar specimens, and finally the surface reactivity is investigated. The results of these studies suggest that some aggregates are able to react with the components of the interstitial phase of concrete. The existence of this kind of interaction is confirmed by the results of the surface investigations before and after the basic reaction.

    Este trabajo pretende contribuir al conocimiento de las reacciones de interacción entre los áridos y los componentes de la fase intersticial del hormigón y determinar si estos áridos, empleados posteriormente en la fabricación del hormigón, son reactivos y por tanto susceptibles de provocar una disminución progresiva de sus propiedades iniciales. Para la caracterización de cada árido se ha realizado un estudio petrográfico, fundamental a la hora de determinar su posterior comportamiento en términos de reactividad frente a diversos factores. Seguidamente, se ha analizado la reactividad potencial de diferentes áridos silicatados (pizarras, gneis, corneanas, granitos, cuarcita y serpentina mediante los dos métodos normalizados existentes: el método químico para la determinación de la reactividad potencial de áridos y

  19. Germinated Brown Rice Alters Aβ(1-42 Aggregation and Modulates Alzheimer’s Disease-Related Genes in Differentiated Human SH-SY5Y Cells

    Directory of Open Access Journals (Sweden)

    Nur Hanisah Azmi

    2015-01-01

    Full Text Available The pathogenesis of Alzheimer’s disease involves complex etiological factors, of which the deposition of beta-amyloid (Aβ protein and oxidative stress have been strongly implicated. We explored the effects of H2O2, which is a precursor for highly reactive hydroxyl radicals, on neurotoxicity and genes related to AD on neuronal cells. Candidate bioactive compounds responsible for the effects were quantified using HPLC-DAD. Additionally, the effects of germinated brown rice (GBR on the morphology of Aβ(1-42 were assessed by Transmission Electron Microscopy and its regulatory effects on gene expressions were explored. The results showed that GBR extract had several phenolic compounds and γ-oryzanol and altered the structure of Aβ(1-42 suggesting an antiamyloidogenic effect. GBR was also able to attenuate the oxidative effects of H2O2 as implied by reduced LDH release and intracellular ROS generation. Furthermore, gene expression analyses showed that the neuroprotective effects of GBR were partly mediated through transcriptional regulation of multiple genes including Presenilins, APP, BACE1, BACE2, ADAM10, Neprilysin, and LRP1. Our findings showed that GBR exhibited neuroprotective properties via transcriptional regulation of APP metabolism with potential impact on Aβ aggregation. These findings can have important implications for the management of neurodegenerative diseases like AD and are worth exploring further.

  20. Information Aggregation and Investment Decisions

    OpenAIRE

    Christian Hellwig; Aleh Tsyvinski; Elias Albagli

    2010-01-01

    This paper studies an environment in which information aggregation interacts with investment decisions. The first contribution of the paper is to develop a tractable model of such interactions. The second contribution is to solve the model in closed form and derive a series of implications that result from the interplay between information aggregation and the value of market information for the firms' decision problem. We show that the model generates an information aggregation wedge between ...

  1. Epigenetic alteration of sedimentary rocks at hydrogenic uranium deposit

    International Nuclear Information System (INIS)

    Ding Wanlie; Shen Kefeng

    2001-01-01

    The author introduces the concept, the recognition criteria, the genesis and classification of the epigenetic alteration of sedimentary rocks in brief, and expounds the mineral-geochemical indications and characteristics of oxidation and reduction alterations in different geochemical zones in detail, and proposes the two models of ore-controlling zonation of epigenetic alteration. The authors finally introduce research methods of epigenetic alteration

  2. Internal water curing with Liapor aggregates

    DEFF Research Database (Denmark)

    Lura, Pietro

    2005-01-01

    Internal water curing is a very efficient way to counteract self-desiccation and autogenous shrinkage in high performance concrete, thereby reducing the likelihood of early-age cracking. This paper deals with early-age volume changes and moisture transport in lightweight aggregate concrete realized...... with wet lightweight aggregates. Lightweight aggregate concrete mixtures with different degree of saturation and different particle size of the lightweight aggregates were studied and compared to normal weight concrete. Autogenous deformations, selfinduced stresses in fully restrained conditions, elastic...

  3. Fly ash aggregates. Vliegaskunstgrind

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    A study has been carried out into artificial aggregates made from fly ash, 'fly ash aggregates'. Attention has been drawn to the production of fly ash aggregates in the Netherlands as a way to obviate the need of disposal of fly ash. Typical process steps for the manufacturing of fly ash aggregates are the agglomeration and the bonding of fly ash particles. Agglomeration techniques are subdivided into agitation and compaction, bonding methods into sintering, hydrothermal and 'cold' bonding. In sintering no bonding agent is used. The fly ash particles are more or less welded together. Sintering in general is performed at a temperature higher than 900 deg C. In hydrothermal processes lime reacts with fly ash to a crystalline hydrate at temperatures between 100 and 250 deg C at saturated steam pressure. As a lime source not only lime as such, but also portland cement can be used. Cold bonding processes rely on reaction of fly ash with lime or cement at temperatures between 0 and 100 deg C. The pozzolanic properties of fly ash are used. Where cement is applied, this bonding agent itself contributes also to the strength development of the artificial aggregate. Besides the use of lime and cement, several processes are known which make use of lime containing wastes such as spray dry absorption desulfurization residues or fluid bed coal combustion residues. (In Dutch)

  4. Sustainable Performance of Iraqi Asphalt Base Course Using Recycled Glass as Aggregate Replacement

    Directory of Open Access Journals (Sweden)

    Hamid Athab Eedan Al-Jameel

    2018-03-01

    Full Text Available Nowadays, a lot of waste glass produced through different sides of life. Applying sustainability has been widely used in different construction materials and flexible pavement was contained different recycled materials through different studies. Recycled glass, where it is nonmetallic and inorganic, it can neither be incinerated nor decomposed, so it may be difficult to reclaim, has been used as filler, fine and coarse aggregates in the asphalt base course. In this study, various standard asphalt tests, such as stability, flow, density and air voids, have been conducted on reference mix asphalt and mix asphalt with different percentages of recycled glass when it has been used as filler, fine and coarse aggregates in the base course. Generally, the results show good indication, especially when using 10% of the recycled glass instead of coarse aggregate with 40-50 asphalt grades. This percentage improves most characteristics such as strength retained index which indicates better performance than reference mix.  

  5. Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.

    Science.gov (United States)

    Lee, H K; Kim, H K; Hwang, E A

    2010-02-01

    Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.

  6. Macrophage triggering by aggregated immunoglobulins. II. Comparison of IgE and IgG aggregates or immune complexes.

    Science.gov (United States)

    Pestel, J; Dessaint, J P; Joseph, M; Bazin, H; Capron, A

    1984-01-01

    Macrophages incubated with complexed or aggregated IgE released beta-glucuronidase (beta-G) within 30 min. In contrast in the presence of aggregated or complexed IgG, macrophages liberated equivalent amount of beta-G only after 6 h incubation. In addition the rapid macrophage stimulation induced by aggregated IgE was also followed by a faster 3H-glucosamine incorporation when compared to the delayed activation caused by aggregated IgG. However, macrophages stimulated either by IgG or by IgE oligomers produced the same percentage of plasminogen activator at 24 h. In contrast, while the interaction between macrophages and aggregated IgE was only followed by a peak of cyclic GMP and a beta-G release during the first 30 min of incubation, the interaction between macrophages and IgG oligomers was accompanied by a simultaneous increase of cyclic GMP and AMP nucleotides and by an absence of beta-G exocytosis. Moreover, the beta-G release induced by aggregated IgE was increased when macrophages were preincubated with aggregated IgG. This additive effect was not observed in the reverse situation. Finally macrophages activated by IgG oligomers were demonstrated to exert a cytotoxic effect on tumour cells and to kill schistosomula in the presence of a low level of complement. Taken together these results underline the peculiar ability of aggregated or complexed IgE to trigger rapidly the macrophage activation compared to aggregated IgG and can explain the important role of complexed IgE in some macrophage dependent cytotoxicity mechanisms (i.e. in parasitic diseases). PMID:6088135

  7. Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure.

    Science.gov (United States)

    Caplan, Joshua S; Giménez, Daniel; Subroy, Vandana; Heck, Richard J; Prior, Stephen A; Runion, G Brett; Torbert, H Allen

    2017-04-01

    Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO 2 concentrations (eCO 2 ) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long-term experiment (7 yr at the time of sampling) in which a C 4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO 2 . Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra-aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO 2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO 2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N-dependent changes as atmospheric CO 2 concentrations rise, having global-scale implications for water balance, carbon storage, and related rhizosphere functions. © 2016 John Wiley & Sons Ltd.

  8. Microfluidic magnetic switching valves based on aggregates of magnetic nanoparticles: Effects of aggregate length and nanoparticle sizes

    Energy Technology Data Exchange (ETDEWEB)

    Jiemsakul, Thanakorn [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120 (Thailand); Manakasettharn, Supone, E-mail: supone@nanotec.or.th [National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120 (Thailand); Kanharattanachai, Sivakorn; Wanna, Yongyuth [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand); Wangsuya, Sujint [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand); Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400 (Thailand); Pratontep, Sirapat [College of Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok 10520 (Thailand)

    2017-01-15

    We demonstrate microfluidic switching valves using magnetic nanoparticles blended within the working fluid as an alternative microfluidic flow control in microchannels. Y-shaped microchannels have been fabricated by using a CO{sub 2} laser cutter to pattern microchannels on transparent poly(methyl methacrylate) (PMMA) sheets covered with thermally bonded transparent polyvinyl chloride (PVC) sheets. To examine the performance of the microfluidic magnetic switching valves, an aqueous magnetic nanoparticle suspension was injected into the microchannels by a syringe pump. Neodymium magnets were then employed to attract magnetic nanoparticles and form an aggregate that blocked the microchannels at a required position. We have found that the maximum volumetric flow rate of the syringe pump that the magnetic nanoparticle aggregate can withstand scales with the square of the external magnetic flux density. The viscosity of the fluid exhibits dependent on the aggregate length and the size of the magnetic nanoparticles. This microfluidic switching valve based on aggregates of magnetic nanoparticles has strong potentials as an on-demand flow control, which may help simplifying microfluidic channel designs. - Highlights: • We demonstrate microfluidic switching valves based on aggregates of magnetic particles. • Maximum flow rate that the aggregate can withstand scales with the square of the external magnetic flux density. • Aggregates with smaller magnetic nanoparticle size can withstand higher flow rate. • Aggregate length exhibits a linear dependence with flow resistance of a viscous fluid.

  9. Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles

    International Nuclear Information System (INIS)

    Chen Min; Mikecz, Anna von

    2005-01-01

    Despite of their exponentially growing use, little is known about cell biological effects of nanoparticles. Here, we report uptake of silica (SiO 2 ) nanoparticles to the cell nucleus where they induce aberrant clusters of topoisomerase I (topo I) in the nucleoplasm that additionally contain signature proteins of nuclear domains, and protein aggregation such as ubiquitin, proteasomes, cellular glutamine repeat (polyQ) proteins, and huntingtin. Formation of intranuclear protein aggregates (1) inhibits replication, transcription, and cell proliferation; (2) does not significantly alter proteasomal activity or cell viability; and (3) is reversible by Congo red and trehalose. Since SiO 2 nanoparticles trigger a subnuclear pathology resembling the one occurring in expanded polyglutamine neurodegenerative disorders, we suggest that integrity of the functional architecture of the cell nucleus should be used as a read out for cytotoxicity and considered in the development of safe nanotechnology

  10. Macroeconomic susceptibility, inflation, and aggregate supply

    Science.gov (United States)

    Hawkins, Raymond J.

    2017-03-01

    We unify aggregate-supply dynamics as a time-dependent susceptibility-mediated relationship between inflation and aggregate economic output. In addition to representing well various observations of inflation-output dynamics this parsimonious formalism provides a straightforward derivation of popular representations of aggregate-supply dynamics and a natural basis for economic-agent expectations as an element of inflation formation. Our formalism also illuminates questions of causality and time-correlation that challenge central banks for whom aggregate-supply dynamics is a key constraint in their goal of achieving macroeconomic stability.

  11. Evaluation of the environmental, material, and structural performance of recycled aggregate concrete

    Science.gov (United States)

    Michaud, Katherine Sarah

    provide evidence that up to 30% coarse recycled concrete aggregate and 10% granular recycled aggregate may be incorporated into structural concrete mixtures without altering the behaviour of the structure. Concrete containing 20% volumetric replacement of the natural aggregate with granular RCA should be designed with special consideration of the shear performance.

  12. The Physics of Protoplanetesimal Dust Agglomerates. VIII. Microgravity Collisions between Porous SiO2 Aggregates and Loosely Bound Agglomerates

    International Nuclear Information System (INIS)

    Whizin, Akbar D.; Colwell, Joshua E.; Blum, Jürgen

    2017-01-01

    We performed laboratory experiments colliding 0.8–1.0 mm and 1.0–1.6 mm SiO 2 dust aggregates with loosely bound centimeter-sized agglomerates of those aggregates in microgravity. This work builds on previous microgravity laboratory experiments examining the collisional properties of porous loosely bound dust aggregates. In centimeter-sized aggregates, surface forces dominate self-gravity and may play a large role in aggregate growth beyond this size range. We characterize the properties of protoplanetary aggregate analogs to help place constraints on initial formation mechanisms and environments. We determined several important physical characteristics of these aggregates in a large number of low-velocity collisions. We observed low coefficients of restitution and fragmentation thresholds near 1 m s −1 for 1–2 cm agglomerates, which are in good agreement with previous findings in the literature. We find the accretion efficiency for agglomerates of loosely bound aggregates to be higher than that for just aggregates themselves. We find sticking thresholds of 6.6 ± 2 cm s −1 , somewhat higher than those in similar studies, which have observed few aggregates stick at speeds of under 3 cm s −1 . Even with highly dissipative collisions, loosely bound agglomerates have difficulty accreting beyond centimeter-sized bodies at typical collision speeds in the disk. Our results indicate agglomerates of porous aggregates have slightly higher sticking thresholds than previously thought, allowing possible growth to decimeter-sized bodies if velocities are low enough.

  13. Influence of hirudin and cobra venom factor on the release of 14C-serotonin and 51chromium from human platelets induced by thrombin, collagen, aggregate gammaglobulin and HLA antibody

    International Nuclear Information System (INIS)

    Hagemeyer, G.M.

    1982-01-01

    The present work investigates the influence of hirudin and cobra venom factor on thrombin, collagen, aggregate gammaglobulin and HLA-antibody-induced release of 14 C-serotonin and 51 chromium from human platelets. Besides the platelet-specific release reaction ( 14 C-serotonin) the extent of platelet lysis was determined by measurement of the loss of 51 chromium from the platelets. The results showed the thrombin, collagen and aggregate-gammaglobulin-induced platelet alteration to be a non-complement-dependent reaction of the platelets with release of 14 C-serotonin. Following long-term incubation small quantities of 51 chromium are also released. As this release of 51 chromium cannot be inhibited using cobra venom factor and does not occur in washed platelets either, it is most probably a non-complement-dependent reaction. The HLA-antibody-induced, specific platelet alteration is both complement-dependent and complement-independent. Differentiation is possible by inhibition of the complement-dependent lysis. On the other hand thrombin is of no relevance to the collagen, aggregate gammaglobulin, and HLA-antibody-induced platelet alteration as the interactions of these substances with platelets are not inhibited by hirudin. The above results are confirmed by investigation of the 51 chromium uptake capacity of washed platelets treated previously with thrombin, collagen and HLA antibody. (orig./MG) [de

  14. Aggregated recommendation through random forests.

    Science.gov (United States)

    Zhang, Heng-Ru; Min, Fan; He, Xu

    2014-01-01

    Aggregated recommendation refers to the process of suggesting one kind of items to a group of users. Compared to user-oriented or item-oriented approaches, it is more general and, therefore, more appropriate for cold-start recommendation. In this paper, we propose a random forest approach to create aggregated recommender systems. The approach is used to predict the rating of a group of users to a kind of items. In the preprocessing stage, we merge user, item, and rating information to construct an aggregated decision table, where rating information serves as the decision attribute. We also model the data conversion process corresponding to the new user, new item, and both new problems. In the training stage, a forest is built for the aggregated training set, where each leaf is assigned a distribution of discrete rating. In the testing stage, we present four predicting approaches to compute evaluation values based on the distribution of each tree. Experiments results on the well-known MovieLens dataset show that the aggregated approach maintains an acceptable level of accuracy.

  15. Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone

    International Nuclear Information System (INIS)

    Elsharief, Amir; Cohen, Menashi D.; Olek, Jan

    2003-01-01

    This paper presents the results of an investigation on the effect of water-cement ratio (w/c), aggregate size, and age on the microstructure of the interfacial transition zone (ITZ) between normal weight aggregate and the bulk cement paste. Backscattered electron images (BSE) obtained by scanning electron microscope were used to characterize the ITZ microstructure. The results suggest that the w/c plays an important role in controlling the microstructure of the ITZ and its thickness. Reducing w/c from 0.55 to 0.40 resulted in an ITZ with characteristics that are not distinguishable from those of the bulk paste as demonstrated by BSE images. Aggregate size appears to have an important influence on the ITZ characteristics. Reducing the aggregate size tends to reduce the ITZ porosity. The evolution of the ITZ microstructure relative to that of the bulk paste appears to depend on the initial content of the unhydrated cement grains (UH). The results suggest that the presence of a relatively low amount of UH in the ITZ at early age may cause the porosity of the ITZ, relative to that of the bulk paste, to increase with time. The presence of relatively large amount of UH in the ITZ at early ages may cause its porosity, relative to that of the bulk paste, to decrease with time

  16. Alterations in ambipolar characteristic of graphene due to adsorption of Escherichia coli bacteria

    Science.gov (United States)

    Mulyana, Yana; Uenuma, Mutsunori; Okamoto, Naofumi; Ishikawa, Yasuaki; Yamashita, Ichiro; Uraoka, Yukiharu

    2018-03-01

    In order to evaluate the interaction between biomaterials and graphene from the perspective of its ambipolar characteristic, we have investigated the alteration in ambipolarity of graphene-based field effect transistors (G-FET) after the adsorption of Escherichia coli (E. coli) bacteria onto its graphene layer. We confirmed a positive shift in the ambipolar curve of the G-FETs after the adsorption of E. coli, presumably due to the negative charge of the adsorbed E. coli. However, we did not observe any decrease in the electron mobility or conductivity of the G-FETs, which implied that E. coli did not chemically react with the carbon atoms of graphene, nor introduce any damage on the graphene lattice, but were only physically adsorbed onto the graphene surface. These findings may extend the prominence of graphene as a stable yet sensitive material to be fully utilized in future biosensing applications. These results were then compared to those of ferritin adsorption, which is a protein shell and biomaterial like E. coli, and radical oxygen doping onto the graphene surface.

  17. Microbial properties of soil aggregates created by earthworms and other factors: spherical and prismatic soil aggregates from unreclaimed post-mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Frouz, J.; Kristufek, V.; Liveckova, M.; van Loo, D.; Jacobs, P.; Van Hoorebeke, L. [Charles University of Prague, Prague (Czech Republic). Inst. of Environmental Studies

    2011-01-15

    Soil aggregates between 2 and 5 mm from 35- and 45-year-old unreclaimed post-mining sites near Sokolov (Czech Republic) were divided into two groups: spherical and prismatic. X-ray tomography indicated that prismatic aggregates consisted of fragments of claystone bonded together by amorphous clay and roots while spherical aggregates consisted of a clay matrix and organic fragments of various sizes. Prismatic aggregates were presumed to be formed by plant roots and physical processes during weathering of Tertiary mudstone, while earthworms were presumed to contribute to the formation of spherical aggregates. The effects of drying and rewetting and glucose addition on microbial respiration, microbial biomass, and counts of bacteria in these aggregates were determined. Spherical aggregates contained a greater percentage of C and N and a higher C-to-N ratio than prismatic ones. The C content of the particulate organic matter was also higher in the spherical than in the prismatic aggregates. Although spherical aggregates had a higher microbial respiration and biomass, the growth of microbial biomass in spherical aggregates was negatively correlated with initial microbial biomass, indicating competition between bacteria. Specific respiration was negatively correlated with microbial biomass. Direct counts of bacteria were higher in spherical than in prismatic aggregates. Bacterial numbers were more stable in the center than in the surface layers of the aggregates. Transmission electron microscopy indicated that bacteria often occurred as individual cells in prismatic aggregates but as small clusters of cells in spherical aggregates. Ratios of colony forming units (cultivatable bacteria) to direct counts were higher in spherical than in prismatic aggregates. Spherical aggregates also contained faster growing bacteria.

  18. Implementation of aggregation in the North American power industry

    International Nuclear Information System (INIS)

    Feldman, R.; Williams, G.

    1998-01-01

    One key to the impact of deregulation being transmitted to residential customers is the successful formation of aggregation groups and their expansion to include different classes of customers with convergent usage interests. This activity currently is being sponsored not only by for-profit brokerage entities, but also by associations of not-for-profit corporations such as hospitals and universities and by countries. The issues presented fall into several categories. (1) Technical rate taking--feasibility of making appropriate arrangements for alternative supply to consumers on a basis which appropriately reflects customer characteristics and also confers benefit on them all; (2) Legal--Compatibility of proposed arrangements with FERC wholesale regulation under Order No. 888 and emerging state regulation under the different restructuring regimes which their state utility commissions are implementing; (3) Marketing/Sociopolitical--Utilization of modern marketing techniques to effect the political consensus which is a precursor of alternative aggregation arrangements; (4) Financing--identification of capital costs; techniques for financing such costs, including monetization of the savings to be realized. The presentation will extrapolate the potential future significance of aggregation as a force in both restructuring and the development of merchant power projects. It will also assess the extent to which institutional, legal, technical or financial factors may modify the ultimate significance of aggression in the North American Power Industry

  19. Reuse of industrial sludge as construction aggregates.

    Science.gov (United States)

    Tay, J H; Show, K Y; Hong, S Y

    2001-01-01

    Industrial wastewater sludge and dredged marine clay are high volume wastes that needed enormous space at landfill disposal sites. Due to the limitation of land space, there is an urgent need for alternative disposal methods for these two wastes. This study investigates the possibility of using the industrial sludge in combination with marine clay as construction aggregates. Different proportions of sludge and clay were made into round and angular aggregates. It was found that certain mix proportions could provide aggregates of adequate strength, comparable to that of conventional aggregates. Concrete samples cast from the sludge-clay aggregates yield compressive strengths in the range of 31.0 to 39.0 N/mm2. The results showed that the round aggregates of 100% sludge and the crush aggregates of sludge with up to 20% clay produced concrete of compressive strengths which are superior to that of 38.0 N/mm2 for conventional aggregate. The study indicates that the conversion of high volume wastes into construction materials is a potential option for waste management.

  20. Studying Dynamic Myofiber Aggregate Reorientation in Dilated Cardiomyopathy Using In Vivo Magnetic Resonance Diffusion Tensor Imaging.

    Science.gov (United States)

    von Deuster, Constantin; Sammut, Eva; Asner, Liya; Nordsletten, David; Lamata, Pablo; Stoeck, Christian T; Kozerke, Sebastian; Razavi, Reza

    2016-10-01

    The objective of this study is to assess the dynamic alterations of myocardial microstructure and strain between diastole and systole in patients with dilated cardiomyopathy relative to healthy controls using the magnetic resonance diffusion tensor imaging, myocardial tagging, and biomechanical modeling. Dual heart-phase diffusion tensor imaging was successfully performed in 9 patients and 9 controls. Tagging data were acquired for the diffusion tensor strain correction and cardiac motion analysis. Mean diffusivity, fractional anisotropy, and myocyte aggregate orientations were compared between both cohorts. Cardiac function was assessed by left ventricular ejection fraction, torsion, and strain. Computational modeling was used to study the impact of cardiac shape on fiber reorientation and how fiber orientations affect strain. In patients with dilated cardiomyopathy, a more longitudinal orientation of diastolic myofiber aggregates was measured compared with controls. Although a significant steepening of helix angles (HAs) during contraction was found in the controls, consistent change in HAs during contraction was absent in patients. Left ventricular ejection fraction, cardiac torsion, and strain were significantly lower in the patients compared with controls. Computational modeling revealed that the dilated heart results in reduced HA changes compared with a normal heart. Reduced torsion was found to be exacerbated by steeper HAs. Diffusion tensor imaging revealed reduced reorientation of myofiber aggregates during cardiac contraction in patients with dilated cardiomyopathy relative to controls. Left ventricular remodeling seems to be an important factor in the changes to myocyte orientation. Steeper HAs are coupled with a worsening in strain and torsion. Overall, the findings provide new insights into the structural alterations in patients with dilated cardiomyopathy. © 2016 The Authors.

  1. Effect of Admixed Micelles on the Microstructure Alterations of Reinforced Mortar Subjected to Chloride Induced Corrosion

    NARCIS (Netherlands)

    Hu, J.; Koleva, D.A.; Van Breugel, K.

    2011-01-01

    This paper reports the main results from the influence of the initially admixed nano-aggregates (0.5 g/l PEO113-b-PS70 micelles previously dissolved in demi-water) on microstructural alterations of the reinforced mortar subjected to chloride induced corrosion. The morphology of hydration/corrosion

  2. Silt-clay aggregates on Mars

    International Nuclear Information System (INIS)

    Greeley, R.

    1979-01-01

    Viking observations suggest abundant silt and clay particles on Mars. It is proposed that some of these particles agglomerate to form sand size aggregates that are redeposited as sandlike features such as drifts and dunes. Although the binding for the aggregates could include salt cementation or other mechanisms, electrostatic bonding is considered to be a primary force holding the aggregates together. Various laboratory experiments conducted since the 19th century, and as reported here for simulated Martian conditions, show that both the magnitude and sign of electrical charges on windblown particles are functions of particle velocity, shape and composition, atmospheric pressure, atmospheric composition, and other factors. Electrical charges have been measured for saltating particles in the wind tunnel and in the field, on the surfaces of sand dunes, and within dust clouds on earth. Similar, and perhaps even greater, charges are proposed to occur on Mars, which could form aggregates of silt and clay size particles. Electrification is proposed to occur within Martian dust clouds, generating silt-clay aggregates which would settle to the surface where they may be deposited in the form of sandlike structures. By analog, silt-clay dunes are known in many parts of the earth where silt-clay aggregated were transported by saltation and deposited as 'sand.' In these structures the binding forces were later destroyed, and the particles reassumed the physical properties of silt and clay, but the sandlike bedding structure within the 'dunes' was preserved. The bedding observed in drifts at the Viking landing site is suggested to result from a similar process involving silt-clay aggregates on Mars

  3. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    Science.gov (United States)

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  4. Aggregating and Disaggregating Flexibility Objects

    DEFF Research Database (Denmark)

    Siksnys, Laurynas; Valsomatzis, Emmanouil; Hose, Katja

    2015-01-01

    In many scientific and commercial domains we encounter flexibility objects, i.e., objects with explicit flexibilities in a time and an amount dimension (e.g., energy or product amount). Applications of flexibility objects require novel and efficient techniques capable of handling large amounts...... and aiming at energy balancing during aggregation. In more detail, this paper considers the complete life cycle of flex-objects: aggregation, disaggregation, associated requirements, efficient incremental computation, and balance aggregation techniques. Extensive experiments based on real-world data from...

  5. CPAD, Curated Protein Aggregation Database: A Repository of Manually Curated Experimental Data on Protein and Peptide Aggregation.

    Science.gov (United States)

    Thangakani, A Mary; Nagarajan, R; Kumar, Sandeep; Sakthivel, R; Velmurugan, D; Gromiha, M Michael

    2016-01-01

    Accurate distinction between peptide sequences that can form amyloid-fibrils or amorphous β-aggregates, identification of potential aggregation prone regions in proteins, and prediction of change in aggregation rate of a protein upon mutation(s) are critical to research on protein misfolding diseases, such as Alzheimer's and Parkinson's, as well as biotechnological production of protein based therapeutics. We have developed a Curated Protein Aggregation Database (CPAD), which has collected results from experimental studies performed by scientific community aimed at understanding protein/peptide aggregation. CPAD contains more than 2300 experimentally observed aggregation rates upon mutations in known amyloidogenic proteins. Each entry includes numerical values for the following parameters: change in rate of aggregation as measured by fluorescence intensity or turbidity, name and source of the protein, Uniprot and Protein Data Bank codes, single point as well as multiple mutations, and literature citation. The data in CPAD has been supplemented with five different types of additional information: (i) Amyloid fibril forming hexa-peptides, (ii) Amorphous β-aggregating hexa-peptides, (iii) Amyloid fibril forming peptides of different lengths, (iv) Amyloid fibril forming hexa-peptides whose crystal structures are available in the Protein Data Bank (PDB) and (v) Experimentally validated aggregation prone regions found in amyloidogenic proteins. Furthermore, CPAD is linked to other related databases and resources, such as Uniprot, Protein Data Bank, PUBMED, GAP, TANGO, WALTZ etc. We have set up a web interface with different search and display options so that users have the ability to get the data in multiple ways. CPAD is freely available at http://www.iitm.ac.in/bioinfo/CPAD/. The potential applications of CPAD have also been discussed.

  6. Contrasting self-aggregation over land and ocean surfaces

    Science.gov (United States)

    Inda Diaz, H. A.; O'Brien, T. A.

    2017-12-01

    The spontaneous organization of convection into clusters, or self-aggregation, demonstrably changes the nature and statistics of precipitation. While there has been much recent progress in this area, the processes that control self-aggregation are still poorly understood. Most of the work to date has focused on self-aggregation over ocean-like surfaces, but it is particularly pressing to understand what controls convective aggregation over land, since the associated change in precipitation statistics—between non-aggregated and aggregated convection—could have huge impacts on society and infrastructure. Radiative-convective equilibrium (RCE), has been extensively used as an idealized framework to study the tropical atmosphere. Self-aggregation manifests in numerous numerical models of RCE, nevertheless, there is still a lack of understanding in how it relates to convective organization in the observed world. Numerous studies have examined self-aggregation using idealized Cloud Resolving Models (CRMs) and General Circulation Models over the ocean, however very little work has been done on RCE and self-aggregation over land. Idealized models of RCE over ocean have shown that aggregation is sensitive to sea surface temperature (SST), more intense precipitation occurs in aggregated systems, and a variety of feedbacks—such as surface flux, cloud radiative, and upgradient moisture transport— contribute to the maintenance of aggregation, however it is not clear if these results apply over land. Progress in this area could help relate understanding of self-aggregation in idealized simulations to observations. In order to explore the behavior of self-aggregation over land, we use a CRM to simulate idealized RCE over land. In particular, we examine the aggregation of convection and how it compares with aggregation over ocean. Based on previous studies, where a variety of different CRMs exhibit a SST threshold below which self-aggregation does not occur, we hypothesize

  7. Resistance of multicellular aggregates to pharmorubicin observed in human hepatocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Z. Jianmin

    2002-02-01

    Full Text Available The objective of the present study was to investigate the multicellular resistance of human hepatocarcinoma cells BEL-7402 to pharmorubicin. Cells (1 x 10(4 and 200 microcarrier Cytodex-3 beads were seeded onto a 24-well plate and cultured in RPMI 1640 medium. After the formation of multicellular aggregates, morphology and cell viability were analyzed by scanning electron microscopy, transmission electron microscopy and flow cytometry, respectively. The IC50 was determined by flow cytometry and MTT assay after the cells cultured in aggregates and monolayers were treated with pharmorubicin. The culture products exhibited structural characteristics somewhat similar to those of trabecular hepatocarcinoma in vivo. Among the microcarriers, cells were organized into several layers. Intercellular spaces were 0.5-2.0 µm wide and filled with many microvilli. The percent of viable cells was 87%. The cells cultured as multicellular aggregates were resistant to pharmorubicin with IC50 4.5-fold and 7.7-fold that of monolayer culture as determined by flow cytometry and MTT assay, respectively. This three-dimensional culture model may be used to investigate the mechanisms of multicellular drug resistance of hepatocarcinoma and to screen new anticancer drugs.

  8. Pre-Saturation Technique of the Recycled Aggregates: Solution to the Water Absorption Drawback in the Recycled Concrete Manufacture †

    Science.gov (United States)

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-del Pozo, Julia Mª; Guerra-Romero, M. Ignacio

    2014-01-01

    The replacement of natural aggregates by recycled aggregates in the concrete manufacturing has been spreading worldwide as a recycling method to counteract the large amount of construction and demolition waste. Although legislation in this field is still not well developed, many investigations demonstrate the possibilities of success of this trend given that concrete with satisfactory mechanical and durability properties could be achieved. However, recycled aggregates present a low quality compared to natural aggregates, the water absorption being their main drawback. When used untreated in concrete mix, the recycled aggregate absorb part of the water initially calculated for the cement hydration, which will adversely affect some characteristics of the recycled concrete. This article seeks to demonstrate that the technique of pre-saturation is able to solve the aforementioned problem. In order to do so, the water absorption of the aggregates was tested to determine the necessary period of soaking to bring the recycled aggregates into a state of suitable humidity for their incorporation into the mixture. Moreover, several concrete mixes were made with different replacement percentages of natural aggregate and various periods of pre-saturation. The consistency and compressive strength of the concrete mixes were tested to verify the feasibility of the proposed technique. PMID:28788188

  9. Light-induced aggregation of microbial exopolymeric substances.

    Science.gov (United States)

    Sun, Luni; Xu, Chen; Zhang, Saijin; Lin, Peng; Schwehr, Kathleen A; Quigg, Antonietta; Chiu, Meng-Hsuen; Chin, Wei-Chun; Santschi, Peter H

    2017-08-01

    Sunlight can inhibit or disrupt the aggregation process of marine colloids via cleavage of high molecular weight compounds into smaller, less stable fragments. In contrast, some biomolecules, such as proteins excreted from bacteria can form aggregates via cross-linking due to photo-oxidation. To examine whether light-induced aggregation can occur in the marine environment, we conducted irradiation experiments on a well-characterized protein-containing exopolymeric substance (EPS) from the marine bacterium Sagitulla stellata. Our results show that after 1 h sunlight irradiation, the turbidity level of soluble EPS was 60% higher than in the dark control. Flow cytometry also confirmed that more particles of larger sized were formed by sunlight. In addition, we determined a higher mass of aggregates collected on filter in the irradiated samples. This suggests light can induce aggregation of this bacterial EPS. Reactive oxygen species hydroxyl radical and peroxide played critical roles in the photo-oxidation process, and salts assisted the aggregation process. The observation that Sagitulla stellata EPS with relatively high protein content promoted aggregation, was in contrast to the case where no significant differences were found in the aggregation of a non-protein containing phytoplankton EPS between the dark and light conditions. This, together with the evidence that protein-to-carbohydrate ratio of aggregates formed under light condition is significantly higher than that formed under dark condition suggest that proteins are likely the important component for aggregate formation. Light-induced aggregation provides new insights into polymer assembly, marine snow formation, and the fate/transport of organic carbon and nitrogen in the ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The effect of electrolytes on the aggregation kinetics of titanium dioxide nanoparticle aggregates

    International Nuclear Information System (INIS)

    Shih Yanghsin; Zhuang Chengming; Tso Chihping; Lin Chenghan

    2012-01-01

    Metal oxide nanoparticles (NPs) are receiving increasing attention due to their increased industrial production and potential hazardous effect. The process of aggregation plays a key role in the fate of NPs in the environment and the resultant health risk. The aggregation of commercial titanium dioxide NP powder (25 nm) was investigated with various environmentally relevant solution chemistries containing different concentrations of monovalent (Na + , K + ) and divalent (Ca 2+ ) electrolytes. Titanium dioxide particle size increased with the increase in ion concentration. The stability of titanium dioxide also depended on the ionic composition. Titanium dioxide aggregated to a higher degree in the presence of divalent cations than monovalent ones. The attachment efficiency of NPs was constructed through aggregation kinetics data, from which the critical coagulation concentrations for the various electrolytes are determined (80, 19, and 1 meq/L for Na + , K + , and Ca 2+ , respectively). Our results suggest that titanium dioxide NP powders are relatively unstable in water and could easily be removed by adding multivalent cations so hazardous potentials decrease in aquatic environment.

  11. Aggregated particles caused by instrument artifact

    Directory of Open Access Journals (Sweden)

    A. M. Pierce

    2018-04-01

    Full Text Available Previous studies have indicated that superaggregates, clusters of aggregates of soot primary particles, can be formed in large-scale turbulent fires. Due to lower effective densities, higher porosity, and lower aerodynamic diameters, superaggregates may pass through inlets designed to remove particles  <  2.5 µm in aerodynamic diameter (PM2.5. Ambient particulate matter samples were collected at Peavine Peak, NV, USA (2515 m northwest of Reno, NV, USA from June to November 2014. The Teledyne Advanced Pollution Instrumentation (TAPI 602 BetaPlus particulate monitor was used to collect PM2.5 on two filter types. During this time, aggregated particles  >  2.5 µm in aerodynamic diameter were collected on 36 out of 158 sample days. On preliminary analysis, it was thought that these aggregated particles were superaggregates, depositing past PM10 (particles  <  10 µm in aerodynamic diameter pre-impactors and PM2.5 cyclones. However, further analysis revealed that these aggregated particles were dissimilar to superaggregates observed in previous studies, both in morphology and in elemental composition. To determine if the aggregated particles were superaggregates or an instrument artifact, samples were investigated for the presence of certain elements, the occurrence of fires, high relative humidity and wind speeds, as well as the use of generators on site. Samples with aggregated particles, referred to as aggregates, were analyzed using a scanning electron microscope for size and shape and energy dispersive X-ray spectroscopy was used for elemental analysis. It was determined, based on the high amounts of aluminum present in the aggregate samples, that a sampling artifact associated with the sample inlet and prolonged, high wind events was the probable reason for the observed aggregates.

  12. Concrete Waste Recycling Process for High Quality Aggregate

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Fujii, Shin-ichi

    2008-01-01

    Large amount of concrete waste generates during nuclear power plant (NPP) dismantling. Non-contaminated concrete waste is assumed to be disposed in a landfill site, but that will not be the solution especially in the future, because of decreasing tendency of the site availability and natural resources. Concerning concrete recycling, demand for roadbeds and backfill tends to be less than the amount of dismantled concrete generated in a single rural site, and conventional recycled aggregate is limited of its use to non-structural concrete, because of its inferior quality to ordinary natural aggregate. Therefore, it is vital to develop high quality recycled aggregate for general uses of dismantled concrete. If recycled aggregate is available for high structural concrete, the dismantling concrete is recyclable as aggregate for industry including nuclear field. Authors developed techniques on high quality aggregate reclamation for large amount of concrete generated during NPP decommissioning. Concrete of NPP buildings has good features for recycling aggregate; large quantity of high quality aggregate from same origin, record keeping of the aggregate origin, and little impurities in dismantled concrete such as wood and plastics. The target of recycled aggregate in this development is to meet the quality criteria for NPP concrete as prescribed in JASS 5N 'Specification for Nuclear Power Facility Reinforced Concrete' and JASS 5 'Specification for Reinforced Concrete Work'. The target of recycled aggregate concrete is to be comparable performance with ordinary aggregate concrete. The high quality recycled aggregate production techniques are assumed to apply for recycling for large amount of non-contaminated concrete. These techniques can also be applied for slightly contaminated concrete dismantled from radiological control area (RCA), together with free release survey. In conclusion: a technology on dismantled concrete recycling for high quality aggregate was developed

  13. Lightweight concrete with Algerian limestone dust: Part I: Study on 30% replacement to normal aggregate at early age

    Directory of Open Access Journals (Sweden)

    S. Kitouni

    2013-12-01

    Full Text Available The mechanical characteristics of the lightweight aggregate concretes (LWAC strongly depend on the proportions of aggregates in the formulation. In particular, because of their strong porosity, the lightweight aggregates are much more deformable than the cementations matrix and their influence on concrete strength is complex. This paper focuses on studying the physical performance of concrete formulated with substitution of 30% of coarse aggregates by limestone dust. In this article an attempt is made to provide information on the elastic properties of lightweight concrete (LWC from tests carried out under uniaxial compression conditions. The results of Young modulus, Poisson's ratio, and compressive and flexural tensile strength tests on concrete are presented. The concretes obtained present good mechanical performances reaching 34.99 MPa compressive strength, 6.39 MPa flexural tensile strength and in front of 36 MPa Young modulus.

  14. Cholesterol impairment contributes to neuroserpin aggregation

    Science.gov (United States)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.

    2017-03-01

    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation.

  15. Changes of red blood cell aggregation parameters in a long-term follow-up of splenectomy, spleen-autotransplantation and partial or subtotal spleen resections in a canine model.

    Science.gov (United States)

    Miko, Iren; Nemeth, Norbert; Peto, Katalin; Furka, Andrea; Toth, Laszlo; Furka, Istvan

    2017-01-01

    Decrease or loss in splenic filtration function may influence the hemorheological state. To follow-up the long-term effects of splenectomy, spleen autotransplantation and spleen resections on red blood cell aggregation in a canine model. Beagle dogs were subjected to control (n = 6), splenectomy (SE, n = 4), spleen autotransplantation (AU, Furka's spleen-chip method, n = 8) or partial and subtotal spleen resection (n = 4/each) groups, and followed-up for 18 postoperative (p.o.) months. Erythrocyte aggregation was determined in parallel by light-transmittance aggregometry (Myrenne MA-1 aggregometer) and syllectometry (LoRRca). Erythrocyte aggregation decreased three months after splenectomy, with lower aggregation index and elongated aggregation time. It was more or less associated with relatively lower hematocrit and fibrinogen concentration. However, in autotransplantated animals a relatively higher fibrinogen did not increase the aggregation markedly. Spleen resection resulted in the most controversial red blood cell aggregation findings, and it seems, that the degree of the resection is an influencing factor. Splenectomy alters erythrocyte aggregation, spleen autotransplantation can be useful to preserve filtration function. However, the degree of restoration shows individual differences with a kind of 'functional periodicity'. Spleen resection controversially influences erythrocyte aggregation parameters. The subtotal resection is supposed to be worse than spleen autotransplantation.

  16. Mechanical properties of recycled concrete with demolished waste concrete aggregate and clay brick aggregate

    Science.gov (United States)

    Zheng, Chaocan; Lou, Cong; Du, Geng; Li, Xiaozhen; Liu, Zhiwu; Li, Liqin

    2018-06-01

    This paper presents an experimental investigation on the effect of the replacement of natural coarse aggregate (NCA) with either recycled concrete aggregate (RCA) or recycled clay brick aggregate (RBA) on the compressive strengths of the hardened concrete. Two grades (C25 and C50) of concrete were investigated, which were achieved by using different water-to-cement ratios. In each grade concrete five different replacement rates, 0%, 25%, 50%, 75% and 100% were considered. In order to improve the performance of the recycled aggregates in the concrete mixes, the RCA and RBA were carefully sieved by using the optimal degradation. In this way the largest reduction in the 28-day compressive strength was found to be only 7.2% and 9.6% for C25 and C50 recycled concrete when the NCA was replaced 100% by RCA, and 11% and 13% for C25 and C50 recycled concrete when the NCA was replaced 100% by RBA. In general, the concrete with RCA has better performance than the concrete with RBA. The comparison of the present experimental results with those reported in literature for hardened concrete with either RCA or RBA demonstrates the effectiveness in improving the compressive strength by using the optimal gradation of recycled aggregates.

  17. Compressive strength improvement for recycled concrete aggregate

    Directory of Open Access Journals (Sweden)

    Mohammed Dhiyaa

    2018-01-01

    Full Text Available Increasing amount of construction waste and, concrete remnants, in particular pose a serious problem. Concrete waste exist in large amounts, do not decay and need long time for disintegration. Therefore, in this work old demolished concrete is crashed and recycled to produce recycled concrete aggregate which can be reused in new concrete production. The effect of using recycled aggregate on concrete compressive strength has been experimentally investigated; silica fume admixture also is used to improve recycled concrete aggregate compressive strength. The main parameters in this study are recycled aggregate and silica fume admixture. The percent of recycled aggregate ranged from (0-100 %. While the silica fume ranged from (0-10 %. The experimental results show that the average concrete compressive strength decreases from 30.85 MPa to 17.58 MPa when the recycled aggregate percentage increased from 0% to 100%. While, when silica fume is used the concrete compressive strength increase again to 29.2 MPa for samples with 100% of recycled aggregate.

  18. The Influence of Aggregate Size and Binder Material on the Properties of Pervious Concrete

    Directory of Open Access Journals (Sweden)

    Tun Chi Fu

    2014-01-01

    Full Text Available Specimens were prepared by altering parameters such as aggregate sizes, binder materials, and the amounts of binder used and were subsequently tested by using permeability, porosity, mechanical strength, and soundness tests. The results indicated that the water permeability coefficient and connected porosity decreased as the amount of binder used increased and increased with increasing aggregate size. In the mechanical strength test, the compressive, splitting tensile, and flexural strengths increased as the amount of binder used increased and decreased with the increase of aggregate size. Highly viscous binder enhanced compressive strength, water permeability, and the resistance to sulfate attacks. In the mechanics and sulfate soundness tests, the mix proportion of alkali-activated slag paste used in this study exhibited a superior performance than the Portland cement pervious concrete (the control did, but the difference in water permeability between the two types of concrete was insignificant. The mix proportions of cement paste containing 20% and 30% silica fume exhibited less mechanical strength than the control did. Moreover, compared with the control, the cement paste containing silica fume demonstrated poor resistance to sulfate attacks, and the difference in the water permeability between such specimen and the control was not noticeable.

  19. An empirical method for estimating surface area of aggregates in hot mix asphalt

    Directory of Open Access Journals (Sweden)

    R.P. Panda

    2016-04-01

    Full Text Available Bitumen requirement in hot mix asphalt (HMA is directly dependent on the surface area of the aggregates in the mix, which in turn has effect on the asphalt film thickness and the flow characteristics. The surface area of aggregate blend in HMA is calculated using the specific surface area factors assigned to percentage passing through some specific standard sieve sizes and the imaging techniques. The first process is less capital intensive, but purely manual and labour intensive and prone to human errors. Imaging techniques though eliminating the human errors, still have limited use due to capital intensiveness and requirement of well-established laboratories with qualified technicians. Most of the developing countries like India are shortage of well-equipped laboratories and qualified technicians. To overcome these difficulties, the present mathematical model has been developed to estimate the surface area of aggregate blend of HMA from physical properties of aggregates evaluated using simple laboratory equipment. This model has been validated compared with the existing established methods of calculations and can be used as one of the tools in different developing and under developed countries for proper design of HMA.

  20. Strategy of ring-shaped aggregates in excitation energy transfer for removing disorder-induced shielding

    International Nuclear Information System (INIS)

    Tei, Go; Nakatani, Masatoshi; Ishihara, Hajime

    2013-01-01

    Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy. (paper)

  1. Strategy of ring-shaped aggregates in excitation energy transfer for removing disorder-induced shielding

    Science.gov (United States)

    Tei, Go; Nakatani, Masatoshi; Ishihara, Hajime

    2013-06-01

    Peripheral light harvesting complex (LH2), which is found in photosynthetic antenna systems of purple photosynthetic bacteria, has important functions in the photosynthetic process, such as harvesting sunlight and transferring its energy to the photosynthetic reaction center. The key component in excitation energy transfer (EET) between LH2s is B850, which is a characteristic ring-shaped aggregate of pigments usually formed by 18 or 16 bacteriochlorophylls in LH2. We theoretically study the strategy of the ring-shaped aggregate structure, which maximizes EET efficiency, by using the standard Frenkel exciton model and the self-consistent calculation method for the Markovian quantum master equation and Maxwell equation. As a result, we have revealed a simple but ingenious strategy of the ring-shaped aggregate structure. The combination of three key properties of the ring unit system maximizes the EET efficiency, namely the large dipole moment of aggregates causes the basic improvement of EET efficiency, and the isotropic nature and the large occupying area are critically effective to remove the disorder-induced shielding that inhibits EET in the presence of the randomness of orientation and alignment of carriers of excitation energy.

  2. Pore structure of natural and regenerated soil aggregates

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2014-01-01

    Quantitative characterization of aggregate pore structure can reveal the evolution of aggregates under different land use and management practices and their effects on soil processes and functions. Advances in X-ray Computed Tomography (CT) provide powerful means to conduct such characterization....... This study examined aggregate pore structure of three differently managed same textured Danish soils (mixed forage cropping, MFC; mixed cash cropping, MCC; cereal cash cropping, CCC) for (i) natural aggregates, and (ii) aggregates regenerated after 20 months of incubation. In total, 27 aggregates (8-16 mm...... pore diameter of 200 and 170 Hm, respectively. Pore shape analysis indicated that CCC and MFC aggregates had an abundance of rounded and elongated pores, respectively, and those of MCC were in-between CCC and MFC. Aggregate pore structure development in the lysimeters was nearly similar irrespective...

  3. Relationship between chemical structure of soil organic matter and intra-aggregate pore structure: evidence from X-ray computed micro-tomography

    Science.gov (United States)

    Kravchenko, Alexandra; Grandy, Stuart A.

    2014-05-01

    Understanding chemical structure of soil organic matter (SOM) and factors that affect it are vital for gaining understanding of mechanisms of C sequestration by soil. Physical protection of C by adsorption to mineral particles and physical disconnection between C sources and microbial decomposers is now regarded as the key component of soil C sequestration. Both of the processes are greatly influenced by micro-scale structure and distribution of soil pores. However, because SOM chemical structure is typically studied in disturbed (ground and sieved) soil samples the experimental evidence of the relationships between soil pore structure and chemical structure of SOM are still scarce. Our study takes advantage of the X-ray computed micro-tomography (µ-CT) tools that enable non-destructive analysis of pore structure in intact soil samples. The objective of this study is to examine the relationship between SOM chemical structure and pore-characteristics in intact soil macro-aggregates from two contrasting long-term land uses. The two studied land use treatments are a conventionally tilled corn-soybean-wheat rotation treatment and a native succession vegetation treatment removed from agricultural use >20 years ago. The study is located in southwest Michigan, USA, on sandy-loam Typic Hapludalfs. For this study we used soil macro-aggregates 4-6 mm in size collected at 0-15 cm depth. The aggregate size was selected so as both to enable high resolution of µ-CT and to provide sufficient amount of soil for C measurements. X-ray µ-CT scanning was conducted at APS Argonne at a scanning resolution of 14 µm. Two scanned aggregates (1 per treatment) were used in this preliminary study. Each aggregate was cut into 7 "geo-referenced" sections. Analyses of pore characteristics in each section were conducted using 3DMA and ImageJ image analysis tools. SOM chemistry was analyzed using pyrolysis/gas chromatography-mass spectroscopy. Results demonstrated that the relationships

  4. Ratio-Based Gradual Aggregation of Data

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem

    2012-01-01

    cause data management and data storage issues. However, non-flexible and ineffective means of data aggregation not only reduce performance of database queries but also lead to erroneous reporting. This paper presents flexible and effective ratio-based methods for gradual data aggregation in databases....... Gradual data aggregation is a process that reduces data volume by converting the detailed data into multiple levels of summarized data as the data gets older. This paper also describes implementation strategies of the proposed methods based on standard database technology.......Majority of databases contain large amounts of data, gathered over long intervals of time. In most cases, the data is aggregated so that it can be used for analysis and reporting purposes. The other reason of data aggregation is to reduce data volume in order to avoid over-sized databases that may...

  5. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.

    Science.gov (United States)

    Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani

    2017-10-14

    Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.

  6. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles

    Science.gov (United States)

    Deonarine, Amrika; Lau, Boris L.T.; Aiken, George R.; Ryan, Joseph N.; Hsu-Kim, Heileen

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn−S−NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn−S−NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.

  7. Symbiotic Cell Differentiation and Cooperative Growth in Multicellular Aggregates.

    Directory of Open Access Journals (Sweden)

    Jumpei F Yamagishi

    2016-10-01

    Full Text Available As cells grow and divide under a given environment, they become crowded and resources are limited, as seen in bacterial biofilms and multicellular aggregates. These cells often show strong interactions through exchanging chemicals, as evident in quorum sensing, to achieve mutualism and division of labor. Here, to achieve stable division of labor, three characteristics are required. First, isogenous cells differentiate into several types. Second, this aggregate of distinct cell types shows better growth than that of isolated cells without interaction and differentiation, by achieving division of labor. Third, this cell aggregate is robust with respect to the number distribution of differentiated cell types. Indeed, theoretical studies have thus far considered how such cooperation is achieved when the ability of cell differentiation is presumed. Here, we address how cells acquire the ability of cell differentiation and division of labor simultaneously, which is also connected with the robustness of a cell society. For this purpose, we developed a dynamical-systems model of cells consisting of chemical components with intracellular catalytic reaction dynamics. The reactions convert external nutrients into internal components for cellular growth, and the divided cells interact through chemical diffusion. We found that cells sharing an identical catalytic network spontaneously differentiate via induction from cell-cell interactions, and then achieve division of labor, enabling a higher growth rate than that in the unicellular case. This symbiotic differentiation emerged for a class of reaction networks under the condition of nutrient limitation and strong cell-cell interactions. Then, robustness in the cell type distribution was achieved, while instability of collective growth could emerge even among the cooperative cells when the internal reserves of products were dominant. The present mechanism is simple and general as a natural consequence of

  8. Aggregation Algorithms in Heterogeneous Tables

    Directory of Open Access Journals (Sweden)

    Titus Felix FURTUNA

    2006-01-01

    Full Text Available The heterogeneous tables are most used in the problem of aggregation. A solution for this problem is to standardize these tables of figures. In this paper, we proposed some methods of aggregation based on the hierarchical algorithms.

  9. Small file aggregation in a parallel computing system

    Science.gov (United States)

    Faibish, Sorin; Bent, John M.; Tzelnic, Percy; Grider, Gary; Zhang, Jingwang

    2014-09-02

    Techniques are provided for small file aggregation in a parallel computing system. An exemplary method for storing a plurality of files generated by a plurality of processes in a parallel computing system comprises aggregating the plurality of files into a single aggregated file; and generating metadata for the single aggregated file. The metadata comprises an offset and a length of each of the plurality of files in the single aggregated file. The metadata can be used to unpack one or more of the files from the single aggregated file.

  10. ALPHA-SYNUCLEIN STRUCTURE, AGGREGATION AND MODULATORS

    Directory of Open Access Journals (Sweden)

    Pinakin K. Makwana

    2016-06-01

    Full Text Available Alpha-synuclein is an intrinsically unstructured protein, involved in various neurodegenerative disorders. In vitro/in vivo experiments, as well as genetic mutation studies establish a direct link between alphasynuclein and synucleinopathies. Due to its natively unfolded state, alpha synuclein can adopt numerous conformations upon interaction with its partners and cellular factors, offering explanation for its diverse interactions. Aggregated form of alpha-synuclein has been observed in the brain of patients with synucleinopathies, a hallmark of neurodegeneration, and cell death has been attributed to aggregation induced toxicity. The process of aggregation involves nucleation, followed by intermediate oligomeric states, and finally the fibrillar amyloids. Of the various conformations/species that alpha-synuclein assumes before it transforms into mature amyloid fibrils, the oligomeric species is the most toxic. Thus, an effective way to limit disease progression is by modifying/slowing down protein aggregation/deposition in the brain. Various small natural products, synthetic chemicals, peptides and antibodies specific to alpha-synuclein have been designed/identified to reduce its rate of aggregation. Unfortunately, not even a handful of the molecules have cleared the clinical trials. Even today, medications available for Parkinson’s patients are mostly the drugs that adjust for loss of dopamine in the brain, and hence do not stop the progression of the disease or cure the symptoms. Thus, more molecular level studies are warranted to fully elucidate the process of alpha-synuclein aggregation, which in turn could help in identifying novel therapeutics and preventives. The present review summarizes the insights gained into the structure, in vitro aggregation and inhibitors/modulators of alpha-synuclein aggregation, that can be used to design better and effective inhibitors against the diseases.

  11. Mechanical Dissociation of Platelet Aggregates in Blood Stream

    Science.gov (United States)

    Hoore, Masoud; Fedosov, Dmitry A.; Gompper, Gerhard; Complex; Biological Fluids Group Team

    2017-11-01

    von Willebrand factor (VWF) and platelet aggregation is a key phenomenon in blood clotting. These aggregates form critically in high shear rates and dissolve reversibly in low shear rates. The emergence of a critical shear rate, beyond which aggregates form and below which they dissolve, has an interesting impact on aggregation in blood flow. As red blood cells (RBCs) migrate to the center of the vessel in blood flow, a RBC free layer (RBC-FL) is left close to the walls into which the platelets and VWFs are pushed back from the bulk flow. This margination process provides maximal VWF-platelet aggregation probability in the RBC-FL. Using mesoscale hydrodynamic simulations of aggregate dynamics in blood flow, it is shown that the aggregates form and grow in RBC-FL wherein shear rate is high for VWF stretching. By growing, the aggregates penetrate to the bulk flow and get under order of magnitude lower shear rates. Consequently, they dissolve and get back into the RBC-FL. This mechanical limitation for aggregates prohibits undesired thrombosis and vessel blockage by aggregates, while letting the VWFs and platelets to aggregate close to the walls where they are actually needed. The support by the DFG Research Unit FOR 1543 SHENC and CPU time Grant by the Julich Supercomputing Center are acknowledged.

  12. IPUMS: Detailed global data on population characteristics

    Science.gov (United States)

    Kugler, T.

    2017-12-01

    Many new and exciting sources of data on human population distributions based on remote sensing, mobile technology, and other mechanisms are becoming available. These new data sources often provide fine scale spatial and/or temporal resolution. However, they typically focus on the location of population, with little or no information on population characteristics. The large and growing collection of data available through the IPUMS family of products complements datasets that provide spatial and temporal detail but little attribute detail by providing the full depth of characteristics covered by population censuses, including demographic, household structure, economic, employment, education, and housing characteristics. IPUMS International provides census microdata for 85 countries. Microdata provide the responses to every census question for each individual in a sample of households. Microdata identify the sub-national geographic unit in which a household is located, but for confidentiality reasons, identified units must include a minimum population, typically 20,000 people. Small-area aggregate data often describe much smaller geographic units, enabling study of detailed spatial patterns of population characteristics. However the structure of aggregate data tables is highly heterogeneous across countries, census years, and even topics within a given census, making these data difficult to work with in any systematic way. A recently funded project will assemble small-area aggregate population and agricultural census data published by national statistical offices. Through preliminary work collecting and cataloging over 10,000 tables, we have identified a small number of structural families that can be used to organize the many different structures. These structural families will form the basis for software tools to document and standardize the tables for ingest into a common database. Both the microdata and aggregate data are made available through IPUMS Terra

  13. Effects of supplemental feeding and aggregation on fecal glucocorticoid metabolite concentrations in elk

    Science.gov (United States)

    Forristal, Victoria E.; Creel, Scott; Taper, Mark L.; Scurlock, Brandon M.; Cross, Paul C.

    2012-01-01

    Habitat modifications and supplemental feeding artificially aggregate some wildlife populations, with potential impacts upon contact and parasite transmission rates. Less well recognized, however, is how increased aggregation may affect wildlife physiology. Crowding has been shown to induce stress responses, and increased glucocorticoid (GC) concentrations can reduce immune function and increase disease susceptibility. We investigated the effects of supplemental feeding and the aggregation that it induces on behavior and fecal glucocorticoid metabolite concentrations (fGCM) in elk (Cervus elaphus) using observational and experimental approaches. We first compared fGCM levels of elk on supplemental feedgrounds to neighboring elk populations wintering in native habitats using data from 2003 to 2008. We then experimentally manipulated the distribution of supplemental food on feedgrounds to investigate whether more widely distributed food would result in lower rates of aggression and stress hormone levels. Contrary to some expectations that fed elk may be less stressed than unfed elk during the winter, we found that elk on feedgrounds had fecal GC levels at least 31% higher than non-feedground populations. Within feedgrounds, fGCM levels were strongly correlated with local measures of elk density (r2 = 0.81). Dispersing feed more broadly, however, did not have a detectable effect on fGCM levels or aggression rates. Our results suggest that increases in aggregation associated with winter feedgrounds affects elk physiology, and the resulting increases in fGCM levels are not likely to be mitigated by management efforts that distribute the feed more widely. Additional research is needed to assess whether these increases in fGCMs directly alter parasite transmission and disease dynamics.

  14. Learning about individuals' health from aggregate data.

    Science.gov (United States)

    Colbaugh, Rich; Glass, Kristin

    2017-07-01

    There is growing awareness that user-generated social media content contains valuable health-related information and is more convenient to collect than typical health data. For example, Twitter has been employed to predict aggregate-level outcomes, such as regional rates of diabetes and child poverty, and to identify individual cases of depression and food poisoning. Models which make aggregate-level inferences can be induced from aggregate data, and consequently are straightforward to build. In contrast, learning models that produce individual-level (IL) predictions, which are more informative, usually requires a large number of difficult-to-acquire labeled IL examples. This paper presents a new machine learning method which achieves the best of both worlds, enabling IL models to be learned from aggregate labels. The algorithm makes predictions by combining unsupervised feature extraction, aggregate-based modeling, and optimal integration of aggregate-level and IL information. Two case studies illustrate how to learn health-relevant IL prediction models using only aggregate labels, and show that these models perform as well as state-of-the-art models trained on hundreds or thousands of labeled individuals.

  15. Efficient clustering aggregation based on data fragments.

    Science.gov (United States)

    Wu, Ou; Hu, Weiming; Maybank, Stephen J; Zhu, Mingliang; Li, Bing

    2012-06-01

    Clustering aggregation, known as clustering ensembles, has emerged as a powerful technique for combining different clustering results to obtain a single better clustering. Existing clustering aggregation algorithms are applied directly to data points, in what is referred to as the point-based approach. The algorithms are inefficient if the number of data points is large. We define an efficient approach for clustering aggregation based on data fragments. In this fragment-based approach, a data fragment is any subset of the data that is not split by any of the clustering results. To establish the theoretical bases of the proposed approach, we prove that clustering aggregation can be performed directly on data fragments under two widely used goodness measures for clustering aggregation taken from the literature. Three new clustering aggregation algorithms are described. The experimental results obtained using several public data sets show that the new algorithms have lower computational complexity than three well-known existing point-based clustering aggregation algorithms (Agglomerative, Furthest, and LocalSearch); nevertheless, the new algorithms do not sacrifice the accuracy.

  16. Customer Aggregation: An Opportunity for Green Power?; TOPICAL

    International Nuclear Information System (INIS)

    Holt, E.; Bird, L.

    2001-01-01

    We undertook research into the experience of aggregation groups to determine whether customer aggregation offers an opportunity to bring green power choices to more customers. The objectives of this report, therefore, are to (1) identify the different types of aggregation that are occurring today, (2) learn whether aggregation offers an opportunity to advance sales of green power, and (3) share these concepts and approaches with potential aggregators and green power advocates

  17. Concrete manufacture with un-graded recycled aggregates

    OpenAIRE

    Richardson, Alan; Coventry, Kathryn; Graham, Sue

    2009-01-01

    Purpose – The purpose of this paper is to investigate whether concrete that includes un-graded recycled aggregates can be manufactured to a comparable strength to concrete manufactured from virgin aggregates. \\ud \\ud Design/methodology/approach – A paired comparison test was used to evaluate the difference between concrete made with virgin aggregates (plain control) and concrete including recycled waste. Un-graded construction demolition waste and un-graded ground glass were used as aggregate...

  18. Coupling of aggregation and immunogenicity in biotherapeutics: T- and B-cell immune epitopes may contain aggregation-prone regions.

    Science.gov (United States)

    Kumar, Sandeep; Singh, Satish K; Wang, Xiaoling; Rup, Bonita; Gill, Davinder

    2011-05-01

    Biotherapeutics, including recombinant or plasma-derived human proteins and antibody-based molecules, have emerged as an important class of pharmaceuticals. Aggregation and immunogenicity are among the major bottlenecks during discovery and development of biotherapeutics. Computational tools that can predict aggregation prone regions as well as T- and B-cell immune epitopes from protein sequence and structure have become available recently. Here, we describe a potential coupling between aggregation and immunogenicity: T-cell and B-cell immune epitopes in therapeutic proteins may contain aggregation-prone regions. The details of biological mechanisms behind this observation remain to be understood. However, our observation opens up an exciting potential for rational design of de-immunized novel, as well as follow on biotherapeutics with reduced aggregation propensity.

  19. Blood banking-induced alteration of red blood cell oxygen release ability.

    Science.gov (United States)

    Li, Yaojin; Xiong, Yanlian; Wang, Ruofeng; Tang, Fuzhou; Wang, Xiang

    2016-05-01

    Current blood banking procedures may not fully preserve red blood cell (RBC) function during storage, contributing to the decrease of RBC oxygen release ability. This study was undertaken to evaluate the impact of routine cold storage on RBC oxygen release ability. RBC units were collected from healthy donors and each unit was split into two parts (whole blood and suspended RBC) to exclude possible donor variability. Oxygen dissociation measurements were performed on blood units stored at 4 °C during a 5-week period. 2,3-diphosphoglycerate levels and fluorescent micrographs of erythrocyte band 3 were also analysed. P50 and oxygen release capacity decreased rapidly during the first 3 weeks, and then did not change significantly. In contrast, the kinetic properties (PO2-t curve and T*50) of oxygen release changed slowly during the first 3 weeks of storage, but then decreased significantly in the last 2 weeks. 2,3-diphosphoglycerate decreased quickly during the first 3 weeks of storage to almost undetectable levels. Band 3 aggregated significantly during the last 2 weeks of storage. RBC oxygen release ability appears to be sensitive to routine cold storage. The thermodynamic characteristics of RBC oxygen release ability changed mainly in the first 3 weeks of storage, due to the decrease of 2,3-diphosphoglycerate, whereas the kinetic characteristics of RBC oxygen release ability decreased significantly at the end of storage, probably affected by alterations of band 3.

  20. Detection of ubiquitinated huntingtin species in intracellular aggregates

    Directory of Open Access Journals (Sweden)

    Katrin eJuenemann

    2015-01-01

    Full Text Available Protein conformation diseases, including polyglutamine diseases, result from the accumulation and aggregation of misfolded proteins. Huntington’s disease is one of nine diseases caused by an expanded polyglutamine repeat within the affected protein and is hallmarked by intracellular inclusion bodies composed of aggregated N-terminal huntingtin fragments and other sequestered proteins. Fluorescence microscopy and filter trap assay are conventional methods to study protein aggregates, but cannot be used to analyze the presence and levels of post-translational modifications of aggregated huntingtin such as ubiquitination. Ubiquitination of proteins can be a signal for degradation and intracellular localization, but also affects protein activity and protein-protein interactions. The function of ubiquitination relies on its mono- and polymeric isoforms attached to protein substrates. Studying the ubiquitination pattern of aggregated huntingtin fragments offers an important possibility to understand huntingtin degradation and aggregation processes within the cell. For the identification of aggregated huntingtin and its ubiquitinated species, solubilization of the cellular aggregates is mandatory. Here we describe methods to identify post-translational modifications such as ubiquitination of aggregated mutant huntingtin. This approach is specifically described for use with mammalian cell culture and is suitable to study other disease-related proteins prone to aggregate.

  1. Microstructural characterization of concrete prepared with recycled aggregates.

    Science.gov (United States)

    Guedes, Mafalda; Evangelista, Luís; de Brito, Jorge; Ferro, Alberto C

    2013-10-01

    Several authors have reported the workability, mechanical properties, and durability of concrete produced with construction waste replacing the natural aggregate. However, a systematic microstructural characterization of recycled aggregate concrete has not been reported. This work studies the use of fine recycled aggregate to replace fine natural aggregate in the production of concrete and reports the resulting microstructures. The used raw materials were natural aggregate, recycled aggregate obtained from a standard concrete, and Portland cement. The substitution extent was 0, 10, 50, and 100 vol%; hydration was stopped at 9, 24, and 96 h and 28 days. Microscopy was focused on the cement/aggregate interfacial transition zone, enlightening the effect of incorporating recycled aggregate on the formation and morphology of the different concrete hydration products. The results show that concretes with recycled aggregates exhibit typical microstructural features of the transition zone in normal strength concrete. Although overall porosity increases with increasing replacement, the interfacial bond is apparently stronger when recycled aggregates are used. An addition of 10 vol% results in a decrease in porosity at the interface with a corresponding increase of the material hardness. This provides an opportunity for development of increased strength Portland cement concretes using controlled amounts of concrete waste.

  2. Estimating the Reliability of Aggregated and Within-Person Centered Scores in Ecological Momentary Assessment

    Science.gov (United States)

    Huang, Po-Hsien; Weng, Li-Jen

    2012-01-01

    A procedure for estimating the reliability of test scores in the context of ecological momentary assessment (EMA) was proposed to take into account the characteristics of EMA measures. Two commonly used test scores in EMA were considered: the aggregated score (AGGS) and the within-person centered score (WPCS). Conceptually, AGGS and WPCS represent…

  3. Optimal Traffic Allocation for Multi-Stream Aggregation in Heterogeneous Networks

    DEFF Research Database (Denmark)

    Popovska Avramova, Andrijana; Iversen, Villy Bæk

    2015-01-01

    nature of radio access networks are considered as important factors for performance improvement by multi-stream aggregation. Therefore, in our model, the networks are represented by different queueing systems in order to indicate networks with opposite quality of service provisioning, capacity and delay...... variations. Furthermore, services with different traffic characteristics in terms of quality of service requirements are considered. The simulation results show the advantages of our scheme with respect to efficient increase in data rate and delay performance compared to traditional schemes....

  4. Isostructurality and non-isostructurality in the series of halogenated organic crystal substances. The structure of Hal-aggregates

    International Nuclear Information System (INIS)

    Grineva, O.V.; Zorkij, P.M.

    2001-01-01

    Local characteristics and the type of intermolecular Hal-aggregates (ensembles of contacting halogen atoms of adjacent molecules) present in chemically similar halogenated crystal substances, differing only in the nature of Hal atoms, are compared. 23 series of halogenated hydrocarbons, including 57 crystal structures were considered. A clearly pronounced specificity of Hal-aggregates for compounds with a low and intermediate content of halogen was revealed. It was found that, as a rule, coordination number of Hal atom by Hal adjacent atoms increases in the series F-Cl-Br-I [ru

  5. Guided aggregation of three-dimensional nanostructures in stressed thin films

    International Nuclear Information System (INIS)

    Shi, Qiwei; Bassani, John L; Lou, Yucun

    2012-01-01

    Stress fields induced by external loads can alter the energy landscape in alloy systems and direct precipitation to form organized nanostructures. The aggregation of periodically patterned nanostructures via surface indentation on thin films is investigated using a phase-field model, which includes chemical, interfacial and elastic energies coupled with externally imposed stress fields. Both cylindrical and spherical indenters are considered, which lead to the formation of nanorods and nanodots, respectively, in the film, and the effects of loading geometry and material properties are systematically studied through 3D simulations. Nanostructures can be formed with varying precipitate morphologies. The results are shown to be consistent with estimates of elastic interaction energies associated with transformation strain, contrast in elastic properties and external loading. (paper)

  6. Ultrastructural Alterations of Von Economo Neurons in the Anterior Cingulate Cortex in Schizophrenia.

    Science.gov (United States)

    Krause, Martin; Theiss, Carsten; Brüne, Martin

    2017-11-01

    Von Economo neurons (VENs) are large bipolar projection neurons mainly located in layer Vb of anterior cingulate cortex (ACC) and anterior insula. Both regions are involved in cognitive and emotional procedures and are functionally and anatomically altered in schizophrenia. Although the detailed function of VEN remains unclear, it has been suggested that these neurons are involved in the pathomechanism of schizophrenia. Here, we were interested in the question whether or not the VEN of schizophrenia patients would show abnormalities at the ultrastructural level. Accordingly, we examined the amount of lysosomal aggregations of the VEN in post-mortem tissue of patients with schizophrenia, bipolar disorder and psychologically unaffected individuals, and compared the findings with aggregations in adjacent pyramidal cells in layer Vb of the ACC. VEN of patients with schizophrenia, and to a lesser degree individuals with bipolar disorder contained significantly more lysosomal aggregations compared with tissue from unaffected controls. Specifically, the larger amount of lysosomal aggregations in schizophrenia seemed to be selective for VEN, with no differences occurring in pyramidal cells. These findings may indicate that the VEN of schizophrenia patients are selectively vulnerable to neuronal damage. Anat Rec, 2017. © 2017 Wiley Periodicals, Inc. Anat Rec, 300:2017-2024, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Role of wetting and drying cycles in formation and growth of soil aggregates

    Science.gov (United States)

    Ghezzehei, T. A.; Lopez, J. P.

    2009-12-01

    Soil structure directly determines important soil physical properties including porosity, hydraulic conductivity, water retention, and mechanical strength and indirectly influences most biological and chemical processes that occur in and around soil. In response to the various processes that occur within it, soil structure evolves continuously at multiple spatial and temporal scales. We hypothesize that the rhythm of the evolution is controlled by wetting and drying cycles. Here, we will present a mathematical description of the role of wetting and drying cycles in the formation and stabilization of soil aggregates with emphasis on two important roles of wetting and drying cycles: (1) transport and deposition of organic and inorganic cementing agents at the most effective locations, (2) chemical and physical alteration of cementing agents during desiccation and the resultant semi-permanent bonding (or bond hardening). Our results demonstrate that size and strength of aggregates are determined by particle size, degree of dryness, number of wetting-drying cycles, as well as concentration and solubility of dissolved and/or colloidal cementing agents. These results are in general agreement with experimental observations obtained from the literature.

  8. The alkali-aggregate reaction - concrete microstructure evolution

    International Nuclear Information System (INIS)

    Regourd, M.; Hornain, H.; Poitevin, P.

    1981-01-01

    The alkali-aggregate reaction has been studied by scanning electron microscopy and energy dispersive X-ray analysis, electron probe microanalysis, and X-ray diffraction in concretes containing glass aggregates or hornfels and greywacke aggregates. The surface reaction of the natural aggregates in alkaline solutions has been analysed by X-ray photo-electron spectrometry. The study of concretes with glass aggregates stored at 20 degrees Celcius and 100 percent relative humidity has revealed, irrespective of alkali content and type of cement, the formation of a gel containing SiO 2 , Na 2 O, CaO, MgO and Al 2 O 3 . Under heat and pressure (210 degrees Celcius at MPa for 48 hours), the gel crystallizes and yields silicates not very different from tobermorite found in autoclaved normal concretes but cotaining Na and K in solid solutions. The alkali reaction in two natural aggregate concretes, is also shown by the formation of gels and silicate crystals. The progressive structuring of the gels in silicate crystals is promoted by an increase in temperature. Ettringite and Ca(OH) 2 reinforce the alkali-aggregate reaction which may be looked upon as a hydration reaction, partially of the pozzolanic type

  9. Sintering of MSW fly ash for reuse as a concrete aggregate.

    Science.gov (United States)

    Mangialardi, T

    2001-10-12

    The sintering process of municipal solid waste (MSW) fly ash was investigated in order to manufacture sintered products for reuse as concrete aggregates. Four types of fly ash resulting from different Italian MSW incineration plants were tested in this study. A modification of the chemical composition of MSW fly ash--through a preliminary four-stage washing treatment of this material with water--was attempted to improve the chemical and mechanical characteristics of sintered products.The sintering treatment of untreated or washed fly ash was performed on cylindrical compact specimens (15 mm in diameter and 20mm in height) at different compact pressures, sintering temperatures and times.The sintering process of untreated MSW fly ashes proved to be ineffective for manufacturing sintered products for reuse as a construction material, because of the adverse chemical characteristics of these fly ashes in terms of sulfate, chloride, and vitrifying oxide contents.A preliminary washing treatment of MSW fly ash with water greatly improved the chemical and mechanical characteristics of sintered products and, for all the types of fly ash tested, the sintered products satisfied the Italian requirements for normal weight aggregates for use in concretes having a specified strength not greater than 12 and 15N/mm(2), when measured on cylindrical and cubic specimens, respectively.A compact pressure of 28 N/mm(2), a sintering temperature of 1140 degrees C, and a sintering time of 60 min were the best operating conditions for manufacturing sintered products of washed MSW fly ash.

  10. The Physics of Protoplanetesimal Dust Agglomerates. VIII. Microgravity Collisions between Porous SiO{sub 2} Aggregates and Loosely Bound Agglomerates

    Energy Technology Data Exchange (ETDEWEB)

    Whizin, Akbar D.; Colwell, Joshua E. [Dept. of Physics, Center for Microgravity Research, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816 (United States); Blum, Jürgen, E-mail: Akbar.Whizin@ucf.edu [Institut für Geophysik und extraterrestrische Physik, University of Braunschweig, Mendelssohnstr. 3, D-38106 Braunschweig (Germany)

    2017-02-10

    We performed laboratory experiments colliding 0.8–1.0 mm and 1.0–1.6 mm SiO{sub 2} dust aggregates with loosely bound centimeter-sized agglomerates of those aggregates in microgravity. This work builds on previous microgravity laboratory experiments examining the collisional properties of porous loosely bound dust aggregates. In centimeter-sized aggregates, surface forces dominate self-gravity and may play a large role in aggregate growth beyond this size range. We characterize the properties of protoplanetary aggregate analogs to help place constraints on initial formation mechanisms and environments. We determined several important physical characteristics of these aggregates in a large number of low-velocity collisions. We observed low coefficients of restitution and fragmentation thresholds near 1 m s{sup −1} for 1–2 cm agglomerates, which are in good agreement with previous findings in the literature. We find the accretion efficiency for agglomerates of loosely bound aggregates to be higher than that for just aggregates themselves. We find sticking thresholds of 6.6 ± 2 cm s{sup −1}, somewhat higher than those in similar studies, which have observed few aggregates stick at speeds of under 3 cm s{sup −1}. Even with highly dissipative collisions, loosely bound agglomerates have difficulty accreting beyond centimeter-sized bodies at typical collision speeds in the disk. Our results indicate agglomerates of porous aggregates have slightly higher sticking thresholds than previously thought, allowing possible growth to decimeter-sized bodies if velocities are low enough.

  11. Collective Rationality in Graph Aggregation

    NARCIS (Netherlands)

    Endriss, U.; Grandi, U.; Schaub, T.; Friedrich, G.; O'Sullivan, B.

    2014-01-01

    Suppose a number of agents each provide us with a directed graph over a common set of vertices. Graph aggregation is the problem of computing a single “collective” graph that best represents the information inherent in this profile of individual graphs. We consider this aggregation problem from the

  12. Sequence dependent aggregation of peptides and fibril formation

    Science.gov (United States)

    Hung, Nguyen Ba; Le, Duy-Manh; Hoang, Trinh X.

    2017-09-01

    Deciphering the links between amino acid sequence and amyloid fibril formation is key for understanding protein misfolding diseases. Here we use Monte Carlo simulations to study the aggregation of short peptides in a coarse-grained model with hydrophobic-polar (HP) amino acid sequences and correlated side chain orientations for hydrophobic contacts. A significant heterogeneity is observed in the aggregate structures and in the thermodynamics of aggregation for systems of different HP sequences and different numbers of peptides. Fibril-like ordered aggregates are found for several sequences that contain the common HPH pattern, while other sequences may form helix bundles or disordered aggregates. A wide variation of the aggregation transition temperatures among sequences, even among those of the same hydrophobic fraction, indicates that not all sequences undergo aggregation at a presumable physiological temperature. The transition is found to be the most cooperative for sequences forming fibril-like structures. For a fibril-prone sequence, it is shown that fibril formation follows the nucleation and growth mechanism. Interestingly, a binary mixture of peptides of an aggregation-prone and a non-aggregation-prone sequence shows the association and conversion of the latter to the fibrillar structure. Our study highlights the role of a sequence in selecting fibril-like aggregates and also the impact of a structural template on fibril formation by peptides of unrelated sequences.

  13. 21 CFR 1303.11 - Aggregate production quotas.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Aggregate production quotas. 1303.11 Section 1303.11 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE QUOTAS Aggregate Production and Procurement Quotas § 1303.11 Aggregate production quotas. (a) The Administrator shall determine...

  14. Primary and Aggregate Size Distributions of PM in Tail Pipe Emissions form Diesel Engines

    Science.gov (United States)

    Arai, Masataka; Amagai, Kenji; Nakaji, Takayuki; Hayashi, Shinji

    Particulate matter (PM) emission exhausted from diesel engine should be reduced to keep the clean air environment. PM emission was considered that it consisted of coarse and aggregate particles, and nuclei-mode particles of which diameter was less than 50nm. However the detail characteristics about these particles of the PM were still unknown and they were needed for more physically accurate measurement and more effective reduction of exhaust PM emission. In this study, the size distributions of solid particles in PM emission were reported. PMs in the tail-pipe emission were sampled from three type diesel engines. Sampled PM was chemically treated to separate the solid carbon fraction from other fractions such as soluble organic fraction (SOF). The electron microscopic and optical-manual size measurement procedures were used to determine the size distribution of primary particles those were formed through coagulation process from nuclei-mode particles and consisted in aggregate particles. The centrifugal sedimentation method was applied to measure the Stokes diameter of dry-soot. Aerodynamic diameters of nano and aggregate particles were measured with scanning mobility particle sizer (SMPS). The peak aggregate diameters detected by SMPS were fallen in the same size regime as the Stokes diameter of dry-soot. Both of primary and Stokes diameters of dry-soot decreased with increases of engine speed and excess air ratio. Also, the effects of fuel properties and engine types on primary and aggregate particle diameters were discussed.

  15. Adlayers of palladium particles and their aggregates on porous polypropylene hollow fiber membranes as hydrogenization contractors/reactors

    NARCIS (Netherlands)

    Volkov, V.V.; Lebedeva, V.I.; Petrova, I.V.; Bobyl, A.V.; Konnikov, S.G.; Roldughin, V.I.; Erkel, J. van; Tereshchenko, G.F.

    2011-01-01

    Principal approaches for the preparation of catalytic membrane reactors based on polymer membranes containing palladium nanoparticles and for the description of their characteristics are presented. The method for the development of adlayers composed of palladium nanoparticles and their aggregates on

  16. Ring aggregation pattern of metro passenger trips: A study using smart card data

    Science.gov (United States)

    Wang, Ziyang; Hu, Yuxin; Zhu, Peng; Qin, Yong; Jia, Limin

    2018-02-01

    With the widespread implementation of smart cards and with more travel details being recorded, travel patterns can be studied more precisely and deeply. Although considerable attention has been paid to travel patterns, the relationship between travel patterns and the functional structure of a city is yet to be well understood. In this research, we study this relationship by analysing metro passenger trip data (in Beijing and Shenzhen in China and London in the United Kingdom), and we present two unprecedented findings. First, through averaging, a linear relationship is found to exist between individual travel distance and the distance between the origin and the city centre. The underlying mechanism is a travel pattern we call "ring aggregation", i.e., the daily movement of city passengers is aggregated into a ring (with approximately equal distances to the city centre). Then, for commuting trips, the daily travel pattern can be regarded as switching between the outer residential ring and the inner work ring. Second, this linear relationship and the ring aggregation pattern seem to be exclusive characteristics of metro systems (and may also fit other moderate- and long-distance transportation modes) but do not apply to short-distance transportation modes, such as bicycles and taxis. This finding implies that the ring aggregation pattern is a product of the relationship between travel patterns and the city functional structure at a large scope.

  17. Glycation alters ligand binding, enzymatic, and pharmacological properties of human albumin.

    Science.gov (United States)

    Baraka-Vidot, Jennifer; Planesse, Cynthia; Meilhac, Olivier; Militello, Valeria; van den Elsen, Jean; Bourdon, Emmanuel; Rondeau, Philippe

    2015-05-19

    Albumin, the major circulating protein in blood plasma, can be subjected to an increased level of glycation in a diabetic context. Albumin exerts crucial pharmacological activities through its drug binding capacity, i.e., ketoprofen, and via its esterase-like activity, allowing the conversion of prodrugs into active drugs. In this study, the impact of the glucose-mediated glycation on the pharmacological and biochemical properties of human albumin was investigated. Aggregation product levels and the redox state were quantified to assess the impact of glycation-mediated changes on the structural properties of albumin. Glucose-mediated changes in ketoprofen binding properties and esterase-like activity were evaluated using fluorescence spectroscopy and p-nitrophenyl acetate hydrolysis assays, respectively. With the exception of oxidative parameters, significant dose-dependent alterations in biochemical and functional properties of in vitro glycated albumin were observed. We also found that the dose-dependent increase in levels of glycation and protein aggregation and average molecular mass changes correlated with a gradual decrease in the affinity of albumin for ketoprofen and its esterase-like property. In parallel, significant alterations in both pharmacological properties were also evidenced in albumin purified from diabetic patients. Partial least-squares regression analyses established a significant correlation between glycation-mediated changes in biochemical and pharmacological properties of albumin, highlighting the important role for glycation in the variability of the drug response in a diabetic situation.

  18. Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement

    Science.gov (United States)

    Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Sumandi, Khairul Azwa Syafiq Mohd; Mazenan, Puteri Natasya

    2017-10-01

    Many construction and development activities today consume large amounts of concrete. The amount of construction waste is also increasing because of the demolition process. Much of this waste can be recycled to produce new products and increase the sustainability of construction projects. As recyclable construction wastes, concrete and ceramic can replace the natural aggregate in concrete because of their hard and strong physical properties. This research used 25%, 35%, and 45% recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate in producing concrete. Several tests, such as concrete cube compression and splitting tensile tests, were also performed to determine and compare the mechanical properties of the recycled concrete with those of the normal concrete that contains 100% natural aggregate. The concrete containing 35% RCA and 35% ceramic waste showed the best properties compared with the normal concrete.

  19. Logic-based aggregation methods for ranking student applicants

    Directory of Open Access Journals (Sweden)

    Milošević Pavle

    2017-01-01

    Full Text Available In this paper, we present logic-based aggregation models used for ranking student applicants and we compare them with a number of existing aggregation methods, each more complex than the previous one. The proposed models aim to include depen- dencies in the data using Logical aggregation (LA. LA is a aggregation method based on interpolative Boolean algebra (IBA, a consistent multi-valued realization of Boolean algebra. This technique is used for a Boolean consistent aggregation of attributes that are logically dependent. The comparison is performed in the case of student applicants for master programs at the University of Belgrade. We have shown that LA has some advantages over other presented aggregation methods. The software realization of all applied aggregation methods is also provided. This paper may be of interest not only for student ranking, but also for similar problems of ranking people e.g. employees, team members, etc.

  20. Topics in Probabilistic Judgment Aggregation

    Science.gov (United States)

    Wang, Guanchun

    2011-01-01

    This dissertation is a compilation of several studies that are united by their relevance to probabilistic judgment aggregation. In the face of complex and uncertain events, panels of judges are frequently consulted to provide probabilistic forecasts, and aggregation of such estimates in groups often yield better results than could have been made…

  1. Thermophoretic aggregation of particles in a protoplanetary disc

    Science.gov (United States)

    Smith, Francis J.

    2018-04-01

    Thermophoresis causes particles to move down a temperature gradient to a cooler region of a neutral gas. An example is the temperature gradient in the gas around a large cold object, such as an aggregate of particles, cooled by radiation in a protoplanetary disc. Particles near this aggregate move down the temperature gradient to the aggregate, equivalent to the particles being attracted to it by an inter-particle thermophoretic force. This force is proportional to the temperature difference between gas and aggregate, to the gas density and to the cross-section of the aggregate. The force can be large. For example, calculations based on the equations of motion of the interacting particles show that it can be large enough in an optically thin environment to increase the rate of aggregation by up to six orders of magnitude when an aggregate radius lies between 0.1 μm and 1 mm. From 1 mm to about 10 cm aggregates drift inwards through the gas too quickly for the thermophoretic attraction to increase aggregation significantly; so they grow slowly, causing an observed accumulation of particles at these sizes. Particles above 10 cm move more quickly, causing aggregation due to collisions, but also causing fragmentation. However, calculations show that fragmenting particles and bouncing particles in inelastic collisions often have low enough relative velocities that thermophoresis brings them together again. This allows particles to grow above 1 m, which is otherwise difficult to explain.

  2. Aggregates in monoclonal antibody manufacturing processes.

    Science.gov (United States)

    Vázquez-Rey, María; Lang, Dietmar A

    2011-07-01

    Monoclonal antibodies have proved to be a highly successful class of therapeutic products. Large-scale manufacturing of pharmaceutical antibodies is a complex activity that requires considerable effort in both process and analytical development. If a therapeutic protein cannot be stabilized adequately, it will lose partially or totally its therapeutic properties or even cause immunogenic reactions thus potentially further endangering the patients' health. The phenomenon of protein aggregation is a common issue that compromises the quality, safety, and efficacy of antibodies and can happen at different steps of the manufacturing process, including fermentation, purification, final formulation, and storage. Aggregate levels in drug substance and final drug product are a key factor when assessing quality attributes of the molecule, since aggregation might impact biological activity of the biopharmaceutical. In this review it is analyzed how aggregates are formed during monoclonal antibody industrial production, why they have to be removed and the manufacturing process steps that are designed to either minimize or remove aggregates in the final product. Copyright © 2011 Wiley Periodicals, Inc.

  3. Microstructure of Concrete with Aggregates from Construction and Demolition Waste Recycling Plants.

    Science.gov (United States)

    Bravo, Miguel; Santos Silva, António; de Brito, Jorge; Evangelista, Luís

    2016-02-01

    This paper intends to analyze the microstructure of concrete with recycled aggregates (RA) from construction and demolition waste from various Portuguese recycling plants. To that effect, several scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analyses were performed. Various concrete mixes were evaluated in order to analyze the influence of the RA's collection point and consequently of their composition on the mixes' characteristics. Afterward all the mixes were subjected to the capillary water absorption test in order to quantitatively evaluate their porosity. Results from the SEM/EDS analysis were compared with those from capillary water absorption test. The SEM/EDS analysis showed that the bond capacity of aggregates to the new cement paste is greatly influenced by the RA's nature. On the other hand, there was an increase in porosity with the incorporation of RA.

  4. Towards constraint-based aggregation of energy flexibilities

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Pedersen, Torben Bach; Abello, Alberto

    2016-01-01

    present the problem of aggregating energy flexibilities taking into account grid capacity limitations and introduce a heuristic aggregation technique. We show through an experimental setup that our proposed technique, compared to a baseline approach, not only leads to a valid unit commitment result......The aggregation of energy flexibilities enables individual producers and/or consumers with small loads to directly participate in the emerging energy markets. On the other hand, aggregation of such flexibilities might also create problems to the operation of the electrical grid. In this paper, we...

  5. Influencing Factors on the Interface Microhardness of Lightweight Aggregate Concrete Consisting of Glazed Hollow Bead

    Directory of Open Access Journals (Sweden)

    Gang Ma

    2015-01-01

    Full Text Available Lightweight aggregate concrete consisting of glazed hollow bead (GHB as lightweight aggregate is studied for the influence of nanosilica (NS content, prewetting time for GHB, water-cement ratio, and curing humidity, on the interface structure between GHB and cement paste. This research analyzed the influences of various factors on the interface zone structure by measuring microhardness (HV and hydration degree of cement paste (HD nearby the interface zone (1 mm between GHB and cement paste at different periods of aging. Due to the sampling limitation, the interface zone in this test is within 1 mm away from the surface of lightweight aggregate. The HD of cement paste was determined through chemically combined water (CCW test. The results were expected to reflect the influence of various factors on the interface zone structure. Results showed that the rational control of the four factors studied could fully mobilize the water absorption and desorption properties of GHB to improve the characteristics of the interfacial transition zone.

  6. Aspects Concerning the Use of Recycled Concrete Aggregates

    Science.gov (United States)

    Robu, I.; Mazilu, C.; Deju, R.

    2016-11-01

    Natural aggregates (gravel and crushed) are essential non-renewable resources which are used for infrastructure works and civil engineering. Using recycled concrete aggregates (RCA) is a matter of high priority in the construction industry worldwide. This paper presents a study on the use of recycled aggregates, from a concrete of specified class, to acquire new cement concrete with different percentages of recycled aggregates.

  7. Sustainable normal and high strength recycled aggregate concretes using crushed tested cylinders as coarse aggregates

    Directory of Open Access Journals (Sweden)

    Bilal S. Hamad

    2017-12-01

    Full Text Available The paper reports on a research program that was designed at the American University of Beirut (AUB to investigate the fresh and hardened mechanical properties of a high performance concrete mix produced with partial or full substitution of crushed natural lime-stone aggregates with recycled aggregates from crushed tested cylinders in batching plants. Choosing crushed cylinders as source of recycling would result in reusing portion of the waste products of the concrete production industry. An extensive concrete batching and testing program was conducted to achieve two optimum normal and high strength concrete mixes. The variables were the nominal concrete strength (28 or 60 MPa and the percentage replacement of natural coarse aggregates with recycled aggregates from crushed tested cylinders (0, 20, 40, 60, 80, or 100%. Normal strength tested cylinders were used as source of the recycled aggregates for the normal strength concrete (NSC mix and high strength tested cylinders were used for the high strength concrete (HSC mix. Tests on the trial batches included plastic state slump and hardened state mechanical properties including cylinder compressive strength, cylinder splitting tensile strength, modulus of elasticity, and standard beams flexural strength. The results indicated no significant effect on the slump and around 10% average reduction in the hardened mechanical properties for both investigated levels of concrete compressive strength.

  8. Quenching of acridine orange fluorescence by salts in aqueous solutions: Effects of aggregation and charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Amado, A.M. [Departamento de Física, FFCLRP, USP (Brazil); Ramos, A.P. [Departamento de Química, FFCLRP, USP (Brazil); Silva, E.R. [Departamento de Física, FFCLRP, USP (Brazil); Borissevitch, I.E., E-mail: iouribor@usp.br [Departamento de Física, FFCLRP, USP (Brazil)

    2016-10-15

    Acridine orange (AO) is widely applied in biology and medicine as a fluorescence probe, an intracellular pH indicator, and a photosensitizer in photodynamic therapy due to its adequate spectroscopic characteristics and high affinity to biological structures. Being introduced in an organism, AO is dispersed in blood plasma characterized by high ionic strength (ca. 0.36 M in humans). We have investigated the effect of ionic strength upon AO spectral characteristics and fluorescence quenching. The effect of pH on these characteristics was also tested. Salts quench AO fluorescence, the quenching constant (k{sub q}) increasing with the AO concentration. Salts stimulate AO aggregation, the process depending weakly on the salt origin. On the other hand, k{sub q} does depend on the salt anion origin, increasing as the anion oxidation potential decreases, and is virtually independent of the cation origin. This means that at least two different mechanisms of the AO fluorescence quenching by salts exist: fluorescence intensity decrease due to AO aggregation and quenching by partial electron transfer from salt anion to AO molecule in its singlet excited state (the exciplex formation).

  9. An exact approach for aggregated formulations

    DEFF Research Database (Denmark)

    Gamst, Mette; Spoorendonk, Simon

    Aggregating formulations is a powerful approach for transforming problems into taking more tractable forms. Aggregated formulations can, though, have drawbacks: some information may get lost in the aggregation and { put in a branch-and-bound context { branching may become very di_cult and even....... The paper includes general considerations on types of problems for which the method is of particular interest. Furthermore, we prove the correctness of the procedure and consider how to include extensions such as cutting planes and advanced branching strategies....

  10. Single particle detection and characterization of synuclein co-aggregation

    International Nuclear Information System (INIS)

    Giese, Armin; Bader, Benedikt; Bieschke, Jan; Schaffar, Gregor; Odoy, Sabine; Kahle, Philipp J.; Haass, Christian; Kretzschmar, Hans

    2005-01-01

    Protein aggregation is the key event in a number of human diseases such as Alzheimer's and Parkinson's disease. We present a general method to quantify and characterize protein aggregates by dual-colour scanning for intensely fluorescent targets (SIFT). In addition to high sensitivity, this approach offers a unique opportunity to study co-aggregation processes. As the ratio of two fluorescently labelled components can be analysed for each aggregate separately in a homogeneous assay, the molecular composition of aggregates can be studied even in samples containing a mixture of different types of aggregates. Using this method, we could show that wild-type α-synuclein forms co-aggregates with a mutant variant found in familial Parkinson's disease. Moreover, we found a striking increase in aggregate formation at non-equimolar mixing ratios, which may have important therapeutic implications, as lowering the relative amount of aberrant protein may cause an increase of protein aggregation leading to adverse effects

  11. Live Cell Characterization of DNA Aggregation Delivered through Lipofection.

    Science.gov (United States)

    Mieruszynski, Stephen; Briggs, Candida; Digman, Michelle A; Gratton, Enrico; Jones, Mark R

    2015-05-27

    DNA trafficking phenomena, such as information on where and to what extent DNA aggregation occurs, have yet to be fully characterised in the live cell. Here we characterise the aggregation of DNA when delivered through lipofection by applying the Number and Brightness (N&B) approach. The N&B analysis demonstrates extensive aggregation throughout the live cell with DNA clusters in the extremity of the cell and peri-nuclear areas. Once within the nucleus aggregation had decreased 3-fold. In addition, we show that increasing serum concentration of cell media results in greater cytoplasmic aggregation. Further, the effects of the DNA fragment size on aggregation was explored, where larger DNA constructs exhibited less aggregation. This study demonstrates the first quantification of DNA aggregation when delivered through lipofection in live cells. In addition, this study has presents a model for alternative uses of this imaging approach, which was originally developed to study protein oligomerization and aggregation.

  12. Studying the Physical Properties of Hma with Recycled Aggregate Subjected to Moisture

    Directory of Open Access Journals (Sweden)

    Ahlam K. Razzaq

    2018-01-01

    Full Text Available As being exposed to water that exists on asphalt road, HMA that is created by utilizing a certain resources may require to be made strong due to the capability of that water to stop the covering to be attached to the aggregate, consequently, asphalt road layers will not be held jointly, this will have a negative influence on the asphalt that will be damaged quickly. Such phenomenon is known as "the erosion", which requires to be dealt with by, for example, improving asphalt layers by means of specific resources that assist in existence of water. Different ways in this work are employed to calculate the strength of various mixes via using used aggregate that is exposed to  saturation times, similarly, the importance of exploiting the anti-stripping as chemical addition is determined. Three kinds of HMA were exposed in the current study, 60% of the first kind were made of used aggregate taking from crushed pavement, and 60% of the second kind were taking from using aggregate that is part of concrete mix, while the third mixture has 10% of wax used as an addition by pavement weight. These mixtures were soaked in water bath of 25o C for various intervals of time that are (3, 7, 15, 28 days. Many investigations examinations had been as well executed, and then the outcomes were contrasted against standard pavement blend subjected to similar circumstances. Number of examinations were adopted in this study, these are (Marshall Stability and flow, mass thickness, roundabout elasticity, compressive quality, affectability to temperature, flexible modulus. The study achieved a good success as it makes important outcomes, the enhanced pavement showed strength against moisture damage while taking advantage of used aggregate of preceding blends, on other hand, the wax has affective role in raising these strengths in addition to develop the characteristics of HMA. 

  13. Aerodynamic roughness length related to non-aggregated tillage ridges

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available Wind erosion in agricultural soils is dependent, in part, on the aerodynamic roughness length (z0 produced by tillage ridges. Although previous studies have related z0 to ridge characteristics (ridge height (RH and spacing (RS, these relationships have not been tested for tillage ridges observed in the North African agricultural fields. In these regions, due to climate and soil conditions, small plowing tools are largely used. Most of these tools produce non-aggregated and closely-spaced small ridges. Thus, experiments were conducted in a 7-m long wind tunnel to measure z0 for 11 ridge types covering the range of geometric characteristics frequently observed in south Tunisia. Experimental results suggest that RH2/RS is the first order parameter controlling z0. A strong relationship between z0 and RH2/RS is proposed for a wide range of ridge characteristics.

  14. Vertically migrating swimmers generate aggregation-scale eddies in a stratified column.

    Science.gov (United States)

    Houghton, Isabel A; Koseff, Jeffrey R; Monismith, Stephen G; Dabiri, John O

    2018-04-01

    Biologically generated turbulence has been proposed as an important contributor to nutrient transport and ocean mixing 1-3 . However, to produce non-negligible transport and mixing, such turbulence must produce eddies at scales comparable to the length scales of stratification in the ocean. It has previously been argued that biologically generated turbulence is limited to the scale of the individual animals involved 4 , which would make turbulence created by highly abundant centimetre-scale zooplankton such as krill irrelevant to ocean mixing. Their small size notwithstanding, zooplankton form dense aggregations tens of metres in vertical extent as they undergo diurnal vertical migration over hundreds of metres 3,5,6 . This behaviour potentially introduces additional length scales-such as the scale of the aggregation-that are of relevance to animal interactions with the surrounding water column. Here we show that the collective vertical migration of centimetre-scale swimmers-as represented by the brine shrimp Artemia salina-generates aggregation-scale eddies that mix a stable density stratification, resulting in an effective turbulent diffusivity up to three orders of magnitude larger than the molecular diffusivity of salt. These observed large-scale mixing eddies are the result of flow in the wakes of the individual organisms coalescing to form a large-scale downward jet during upward swimming, even in the presence of a strong density stratification relative to typical values observed in the ocean. The results illustrate the potential for marine zooplankton to considerably alter the physical and biogeochemical structure of the water column, with potentially widespread effects owing to their high abundance in climatically important regions of the ocean 7 .

  15. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae.

    Science.gov (United States)

    Brown, Lindsey R; Caulkins, Rachel C; Schartel, Tyler E; Rosch, Jason W; Honsa, Erin S; Schultz-Cherry, Stacey; Meliopoulos, Victoria A; Cherry, Sean; Thornton, Justin A

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H 2 O 2 . Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.

  16. Retiring the Short-Run Aggregate Supply Curve

    Science.gov (United States)

    Elwood, S. Kirk

    2010-01-01

    The author argues that the aggregate demand/aggregate supply (AD/AS) model is significantly improved--although certainly not perfected--by trimming it of the short-run aggregate supply (SRAS) curve. Problems with the SRAS curve are shown first for the AD/AS model that casts the AD curve as identifying the equilibrium level of output associated…

  17. A model study of aggregates composed of spherical soot monomers with an acentric carbon shell

    Science.gov (United States)

    Luo, Jie; Zhang, Yongming; Zhang, Qixing

    2018-01-01

    Influences of morphology on the optical properties of soot particles have gained increasing attentions. However, studies on the effect of the way primary particles are coated on the optical properties is few. Aimed to understand how the primary particles are coated affect the optical properties of soot particles, the coated soot particle was simulated using the acentric core-shell monomers model (ACM), which was generated by randomly moving the cores of concentric core-shell monomers (CCM) model. Single scattering properties of the CCM model with identical fractal parameters were calculated 50 times at first to evaluate the optical diversities of different realizations of fractal aggregates with identical parameters. The results show that optical diversities of different realizations for fractal aggregates with identical parameters cannot be eliminated by averaging over ten random realizations. To preserve the fractal characteristics, 10 realizations of each model were generated based on the identical 10 parent fractal aggregates, and then the results were averaged over each 10 realizations, respectively. The single scattering properties of all models were calculated using the numerically exact multiple-sphere T-matrix (MSTM) method. It is found that the single scattering properties of randomly coated soot particles calculated using the ACM model are extremely close to those using CCM model and homogeneous aggregate (HA) model using Maxwell-Garnett effective medium theory. Our results are different from previous studies. The reason may be that the differences in previous studies were caused by fractal characteristics but not models. Our findings indicate that how the individual primary particles are coated has little effect on the single scattering properties of soot particles with acentric core-shell monomers. This work provides a suggestion for scattering model simplification and model selection.

  18. Measurement of platelet aggregation, independently of patient platelet count

    DEFF Research Database (Denmark)

    Vinholt, P J; Frederiksen, H; Hvas, A-M

    2017-01-01

    with collagen-related peptide). Platelet aggregation had a negative predictive value of 100% for a bleeding tendency among patients. Conclusion The established platelet aggregation assay was applicable for thrombocytopenic patients, and improved the identification of bleeding risk.......Essentials •Platelet function may influence bleeding risk in thrombocytopenia, but useful tests are needed. •A flow cytometric platelet aggregation test independent of the patient platelet count was made. •Platelet aggregation was reduced in thrombocytopenic patients with hematological cancer....... •High platelet aggregation ruled out bleeding tendency in thrombocytopenic patients. Summary Background Methods for testing platelet aggregation in thrombocytopenia are lacking. Objective To establish a flow-cytometric test of in vitro platelet aggregation independently of the patient's platelet count...

  19. Aggregation of gold nanoparticles followed by methotrexate release enables Raman imaging of drug delivery into cancer cells

    International Nuclear Information System (INIS)

    Durgadas, C. V.; Sharma, C. P.; Paul, W.; Rekha, M. R.; Sreenivasan, K.

    2012-01-01

    This study refers an aqueous synthesis of methotrexate (MTX)-conjugated gold nanoparticles (GNPs), their interaction with HepG2 cells, and the use of Raman imaging to observe cellular internalization and drug delivery. GNPs of average size 3.5–5 nm were stabilized using the amine terminated bifunctional biocompatible copolymer and amended by conjugating MTX, an anticancer drug. The nanoparticles were released MTX at a faster rate in acidic pH and subsequently found to form aggregates. The Raman signals of cellular components were found to be enhanced by the aggregated particles enabling the mapping to visualize site-specific drug delivery. The methodology seems to have potential in optimizing the characteristics of nanodrug carriers for emptying the cargo precisely at specified sites.Graphical AbstractDrug release induced particle aggregation enhances Raman signals to aid in imaging.

  20. Differential proteomics study of platelets in asymptomatic constitutional macrothrombocytopenia: altered levels of cytoskeletal proteins.

    Science.gov (United States)

    Karmakar, Shilpita; Saha, Sutapa; Banerjee, Debasis; Chakrabarti, Abhijit

    2015-01-01

    Harris platelet syndrome (HPS), also known as asymptomatic constitutional macrothrombocytopenia (ACMT), is an autosomal dominant platelet disorder characterized by mild-to-severe thrombocytopenia and giant platelets with normal platelet aggregation and absence of bleeding symptoms. We have attempted a comparative proteomics study for profiling of platelet proteins in healthy vs. pathological states to discover characteristic protein expression changes in macrothrombocytes and decipher the factors responsible for the functionally active yet morphologically distinct platelets. We have used 2-D gel-based protein separation techniques coupled with MALDI-ToF/ToF-based mass spectrometric identification and characterization of the proteins to investigate the differential proteome profiling of platelet proteins isolated from the peripheral blood samples of patients and normal volunteers. Our study revealed altered levels of actin-binding proteins such as myosin light chain, coactosin-like protein, actin-related protein 2/3 complex, and transgelin2 that hint toward the cytoskeletal changes necessary to maintain the structural and functional integrity of macrothrombocytes. We have also observed over expressed levels of peroxiredoxin2 that signifies the prevailing oxidative stress in these cells. Additionally, altered levels of protein disulfide isomerase and transthyretin provide insights into the measures adapted by the macrothrombocytes to maintain their normal functional activity. This first proteomics study of platelets from ACMT may provide an understanding of the structural stability and normal functioning of these platelets in spite of their large size. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Evaluation of Colemanite Waste as Aggregate Hot Mix Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Nihat MOROVA

    2015-09-01

    Full Text Available In this study usability of waste colemanite which is obtained after cutting block colemanite for giving proper shape to blocks as an aggregate in hot mix asphalt. For this aim asphalt concrete samples were prepared with four different aggregate groups and optimum bitumen content was determined. First of all only limestone was used as an aggregate. After that, only colemanite aggregate was used with same aggregate gradation. Then, the next step of the study, Marshall samples were produced by changing coarse and fine aggregate gradation as limestone and colemanite and Marshall test were conducted. When evaluated the results samples which produced with only limestone aggregate gave the maximum Marshall Stability value. When handled other mixture groups (Only colemanite, colemanite as coarse aggregate-limestone as fine aggregate, colemanite as fine aggregate-limestone as coarse aggregate all groups were verified specification limits. As a result, especially in areas where there is widespread colemanite waste, if transportation costs did not exceed the cost of limestone, colemanite stone waste could be used instead of limestone in asphalt concrete mixtures as fine aggregate

  2. Effects of vegetation restoration on the aggregate stability and distribution of aggregate-associated organic carbon in a typical karst gorge region

    Science.gov (United States)

    Tang, F. K.; Cui, M.; Lu, Q.; Liu, Y. G.; Guo, H. Y.; Zhou, J. X.

    2015-08-01

    Changes in soil utilization significantly affect aggregate stability and aggregate-associated soil organic carbon (SOC). A field investigation and indoor analysis were conducted in order to study the soil aggregate stability and organic carbon distribution in the water-stable aggregates (WSA) of the bare land (BL), grassland (GL), shrubland (SL), and woodland (WL) in a typical karst gorge region. The results indicated that the BL, GL, SL, and WL were dominated by particles with sizes > 5 mm under dry sieving treatment, and that the soil aggregate contents of various sizes decreased as the particle size decreased. In addition, the BL, GL, SL, and WL were predominantly comprised of WSA sieving treatment, and that the WSA contents initially increased, then decreased, and then increased again as the particle size decreased. Furthermore, at a soil depth of 0-60 cm, the mean weight diameter (MWD), geometrical mean diameter (GMD), and fractal dimensions (D) of the dry aggregates and water-stable aggregates in the different types of land were ranked, in descending order, as WL > GL > SL > BL. The contents of WSA > 0.25 mm, MWD and GMD increased significantly, in that order, and the percentage of aggregate destruction (PAD) and fractal dimensions decreased significantly as the soil aggregate stability improved. The results of this study indicated that, as the SOC contents increased after vegetation restoration, the average SOC content of WL was 2.35, 1.37, and 1.26 times greater than that in the BL, GL, and SL, respectively. The total SOC and SOC associated in WSA of various sizes were the highest at a soil depth of 0-20 cm. In addition, the SOC contents of the WSA increased as the soil aggregate sizes decreased. The SOC contents of the WSA aggregates aggregate SOC contents. The woodland and grassland facilitated WSA stability and SOC protection, thus, promoting the natural restoration of vegetation by reducing artificial disturbances could effectively restore the ecology

  3. The Mechanisms of Aberrant Protein Aggregation

    Science.gov (United States)

    Cohen, Samuel; Vendruscolo, Michele; Dobson, Chris; Knowles, Tuomas

    2012-02-01

    We discuss the development of a kinetic theory for understanding the aberrant loss of solubility of proteins. The failure to maintain protein solubility results often in the assembly of organized linear structures, commonly known as amyloid fibrils, the formation of which is associated with over 50 clinical disorders including Alzheimer's and Parkinson's diseases. A true microscopic understanding of the mechanisms that drive these aggregation processes has proved difficult to achieve. To address this challenge, we apply the methodologies of chemical kinetics to the biomolecular self-assembly pathways related to protein aggregation. We discuss the relevant master equation and analytical approaches to studying it. In particular, we derive the underlying rate laws in closed-form using a self-consistent solution scheme; the solutions that we obtain reveal scaling behaviors that are very generally present in systems of growing linear aggregates, and, moreover, provide a general route through which to relate experimental measurements to mechanistic information. We conclude by outlining a study of the aggregation of the Alzheimer's amyloid-beta peptide. The study identifies the dominant microscopic mechanism of aggregation and reveals previously unidentified therapeutic strategies.

  4. Feasibility Studies of Palm Oil Mill Waste Aggregates for the Construction Industry

    OpenAIRE

    Kanadasan, Jegathish; Ahmad Fauzi, Auni Filzah; Abdul Razak, Hashim; Selliah, Paramananthan; Subramaniam, Vijaya; Yusoff, Sumiani

    2015-01-01

    The agricultural industry in Malaysia has grown rapidly over the years. Palm oil clinker (POC) is a byproduct obtained from the palm oil industry. Its lightweight properties allows for its utilization as an aggregate, while in powder form as a filler material in concrete. POC specimens obtained throughout each state in Malaysia were investigated to evaluate the physical, chemical, and microstructure characteristics. Variations between each state were determined and their possible contributory...

  5. Salt-induced aggregation of stiff polyelectrolytes

    International Nuclear Information System (INIS)

    Fazli, Hossein; Mohammadinejad, Sarah; Golestanian, Ramin

    2009-01-01

    Molecular dynamics simulation techniques are used to study the process of aggregation of highly charged stiff polyelectrolytes due to the presence of multivalent salt. The dominant kinetic mode of aggregation is found to be the case of one end of one polyelectrolyte meeting others at right angles, and the kinetic pathway to bundle formation is found to be similar to that of flocculation dynamics of colloids as described by Smoluchowski. The aggregation process is found to favor the formation of finite bundles of 10-11 filaments at long times. Comparing the distribution of the cluster sizes with the Smoluchowski formula suggests that the energy barrier for the aggregation process is negligible. Also, the formation of long-lived metastable structures with similarities to the raft-like structures of actin filaments is observed within a range of salt concentration.

  6. Suspensions of colloidal particles and aggregates

    CERN Document Server

    Babick, Frank

    2016-01-01

    This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles—highlighting the interfacial phenomena and the corresponding interactions between particles. The book’s central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between ...

  7. Protein carbonylation, protein aggregation and neuronal cell death in a murine model of multiple sclerosis

    Science.gov (United States)

    Dasgupta, Anushka

    Many studies have suggested that oxidative stress plays an important role in the pathophysiology of both multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Yet, the mechanism by which oxidative stress leads to tissue damage in these disorders is unclear. Recent work from our laboratory has revealed that protein carbonylation, a major oxidative modification caused by severe and/or chronic oxidative stress conditions, is elevated in MS and EAE. Furthermore, protein carbonylation has been shown to alter protein structure leading to misfolding/aggregation. These findings prompted me to hypothesize that carbonylated proteins, formed as a consequence of oxidative stress and/or decreased proteasomal activity, promote protein aggregation to mediate neuronal apoptosis in vitro and in EAE. To test this novel hypothesis, I first characterized protein carbonylation, protein aggregation and apoptosis along the spinal cord during the course of myelin-oligodendrocyte glycoprotein (MOG)35-55 peptide-induced EAE in C57BL/6 mice [Chapter 2]. The results show that carbonylated proteins accumulate throughout the course of the disease, albeit by different mechanisms: increased oxidative stress in acute EAE and decreased proteasomal activity in chronic EAE. I discovered not only that there is a temporal correlation between protein carbonylation and apoptosis but also that carbonyl levels are significantly higher in apoptotic cells. A high number of juxta-nuclear and cytoplasmic protein aggregates containing the majority of the oxidized proteins are also present during the course of EAE, which seems to be due to reduced autophagy. In chapter 3, I show that when gluthathione levels are reduced to those in EAE spinal cord, both neuron-like PC12 (nPC12) cells and primary neuronal cultures accumulate carbonylated proteins and undergo cell death (both by necrosis and apoptosis). Immunocytochemical and biochemical studies also revealed a temporal

  8. Comminution and sizing processes of concrete block waste as recycled aggregates.

    Science.gov (United States)

    Gomes, P C C; Ulsen, C; Pereira, F A; Quattrone, M; Angulo, S C

    2015-11-01

    Due to the environmental impact of construction and demolition waste (CDW), recycling is mandatory. It is also important that recycled concrete aggregates (RCA) are used in concrete to meet market demands. In the literature, the influence of RCAs on concrete has been investigated, but very limited studies have been conducted on how the origin of concrete waste and comminution processes influence RCA characteristics. This paper aims to investigate the influence of three different comminution and sizing processes (simple screening, crushing and grinding) on the composition, shape and porosity characteristics of RCA obtained from concrete block waste. Crushing and grinding implies a reduction of RCA porosity. However, due to the presence of coarse quartz rounded river pebbles in the original concrete block mixtures, the shape characteristics deteriorated. A large amount of powder (<0.15 mm) without detectable anhydrous cement was also generated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Path coupling and aggregate path coupling

    CERN Document Server

    Kovchegov, Yevgeniy

    2018-01-01

    This book describes and characterizes an extension to the classical path coupling method applied to statistical mechanical models, referred to as aggregate path coupling. In conjunction with large deviations estimates, the aggregate path coupling method is used to prove rapid mixing of Glauber dynamics for a large class of statistical mechanical models, including models that exhibit discontinuous phase transitions which have traditionally been more difficult to analyze rigorously. The book shows how the parameter regions for rapid mixing for several classes of statistical mechanical models are derived using the aggregate path coupling method.

  10. Entanglement dynamics of J-aggregate systems

    Energy Technology Data Exchange (ETDEWEB)

    Thilagam, A, E-mail: Thilagam.Lohe@unisa.edu.au [Information Technology, Engineering and the Environment, Mawson Institute, University of South Australia, South Australia 5095 (Australia)

    2011-04-01

    The entanglement dynamics of one-dimensional J-aggregate systems are examined using entanglement measures such as the von Neumann entropy and Wootters concurrence. The effect of dispersion and resonance terms associated with the exciton-phonon interaction are analyzed using Green's function formalism. A probability propagator term, derived using the Markovian approximation, presents J-aggregate systems as potential channels for large scale energy propagation for a select range of parameters. We highlight the role of a critical number of coherently coupled monomer sites and two-exciton states in determining superradiance in J-aggregate systems.

  11. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete

    Directory of Open Access Journals (Sweden)

    Manu S. Nadesan

    2017-12-01

    Full Text Available Concrete is one of the most widely used construction materials and has the ability to consume industrial wastes in high volume. As the demand for concrete is increasing, one of the effective ways to reduce the undesirable environmental impact of the concrete is by the use of waste and by-product materials as cement and aggregate substitutes in concrete. One such waste material is fly ash, which is produced in large quantities from thermal power plants as a by-product. A substantial amount of fly ash is left unused posing environmental and storage problems. The production of sintered lightweight aggregate with fly ash is an effective method to dispose of fly ash in large quantities. Due to lack of a proper mix design procedure, the production and application of lightweight aggregate in structural concrete are not much entertained. The absorption characteristic of lightweight aggregate is a major concern, while developing the mix proportioning of lightweight concretes. The present study is an attempt to establish a new mix design procedure for the development of sintered fly ash lightweight aggregate concretes, which is simple and more reliable than the existing procedures. Also, the proposed methodology has been validated by developing a spectrum of concretes having water cement ratios varying from 0.25 to 0.75. From the study, it is obvious that the development of 70 MPa concrete is possible by using cement alone without any additives. Also, it is ensured that all the concretes have densities less than 2000 kg/m3.

  12. Strain-dependent profile of misfolded prion protein aggregates.

    Science.gov (United States)

    Morales, Rodrigo; Hu, Ping Ping; Duran-Aniotz, Claudia; Moda, Fabio; Diaz-Espinoza, Rodrigo; Chen, Baian; Bravo-Alegria, Javiera; Makarava, Natallia; Baskakov, Ilia V; Soto, Claudio

    2016-02-15

    Prions are composed of the misfolded prion protein (PrP(Sc)) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrP(Sc) aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrP(Sc) aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrP(Sc) aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrP(Sc) aggregates and the incubation periods for the strains studied. The relative presence of PrP(Sc) in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrP(Sc) aggregates in prion-induced neurodegeneration.

  13. Balancing energy flexibilities through aggregation

    DEFF Research Database (Denmark)

    Valsomatzis, Emmanouil; Hose, Katja; Pedersen, Torben Bach

    2014-01-01

    One of the main goals of recent developments in the Smart Grid area is to increase the use of renewable energy sources. These sources are characterized by energy fluctuations that might lead to energy imbalances and congestions in the electricity grid. Exploiting inherent flexibilities, which exist...... in both energy production and consumption, is the key to solving these problems. Flexibilities can be expressed as flex-offers, which due to their high number need to be aggregated to reduce the complexity of energy scheduling. In this paper, we discuss balance aggregation techniques that already during...... aggregation aim at balancing flexibilities in production and consumption to reduce the probability of congestions and reduce the complexity of scheduling. We present results of our extensive experiments....

  14. Glass/Jamming Transition in Colloidal Aggregation

    Science.gov (United States)

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  15. Consequences of altering rubisco regulation

    Energy Technology Data Exchange (ETDEWEB)

    Salvucci, Michael [US Dept. of Agriculture (USDA)., Ames, IA (United States)

    2013-12-31

    Research examined the thermal stability and propensity for aggregation of wild type and the C- and N-terminally modified forms of activase to determine if loss of activity under heat stress is dependent on protein aggregation. The results showed that 1) loss of activity at high temperature is independent of aggregation; 2) activase with both C- and N-terminal S-Tags are more susceptible to aggregation than wild type activase, 3) aggregation is highly dependent on the concentration of Mg2+ and 4) the ATP analog, ATPgammaS, protects against both thermal inactivation and aggregation.

  16. Recycled Concrete as Aggregate for Structural Concrete Production

    Directory of Open Access Journals (Sweden)

    Mirjana Malešev

    2010-04-01

    Full Text Available A comparative analysis of the experimental results of the properties of fresh and hardened concrete with different replacement ratios of natural with recycled coarse aggregate is presented in the paper. Recycled aggregate was made by crushing the waste concrete of laboratory test cubes and precast concrete columns. Three types of concrete mixtures were tested: concrete made entirely with natural aggregate (NAC as a control concrete and two types of concrete made with natural fine and recycled coarse aggregate (50% and 100% replacement of coarse recycled aggregate. Ninety-nine specimens were made for the testing of the basic properties of hardened concrete. Load testing of reinforced concrete beams made of the investigated concrete types is also presented in the paper. Regardless of the replacement ratio, recycled aggregate concrete (RAC had a satisfactory performance, which did not differ significantly from the performance of control concrete in this experimental research. However, for this to be fulfilled, it is necessary to use quality recycled concrete coarse aggregate and to follow the specific rules for design and production of this new concrete type.

  17. Self-aggregation of magnetic semiconductor EuS nanocrystals

    International Nuclear Information System (INIS)

    Tanaka, Atsushi; Hasegawa, Yasuchika; Kamikubo, Hironari; Kataoka, Mikio; Kawai, Tsuyoshi

    2009-01-01

    Controlled formation of aggregates having organized structure of cube-shaped EuS nanocrystals is reported. The EuS aggregates in liquid media (methanol) were obtained by means of van der Waals interaction between EuS nanocrystals. The packing structure of the EuS aggregates is characterized with transmission electron microscopy (TEM) and small angle X-ray scattering measurements (SAXS). TEM image indicates the EuS nanocrystals form self-aggregated 2D orthogonal lattice structure. The diffraction peak of (111) of SAXS profile shows that the cube-shaped EuS form 3D cubic superlattice. We successfully demonstrated that the aggregates of cube-shaped EuS nanocrystals formed cubic stacking structure.

  18. Characteristics of tau oligomers

    Directory of Open Access Journals (Sweden)

    Yan eRen

    2013-07-01

    Full Text Available In Alzheimer disease (AD and other tauopathies, microtubule-associated protein tau becomes hyperphosphorylated, undergoes conformational changes, aggregates, eventually becoming neurofibrillary tangles (NFTs. As accumulating evidence suggests that NFTs themselves may not be toxic, attention is now turning toward the role of intermediate tau oligomers in AD pathophysiology. Sarkosyl extraction is a standard protocol for investigating insoluble tau aggregates in brains. There is a growing consensus that sarkosyl-insoluble tau correlates with the pathological features of tauopathy. While sarkosyl-insoluble tau from tauopathy brains has been well characterized as a pool of filamentous tau, other dimers, multimers, and granules of tau are much less well understood. There are protocols for identifying these tau oligomers. In this mini review, we discuss the characteristics of tau oligomers isolated via different methods and materials.

  19. Modelling The Effects of Aggregate Size on Alkali Aggregate Reaction Expansion

    Directory of Open Access Journals (Sweden)

    N. Z. Sekrane

    2014-06-01

    Full Text Available This work aims at developing models to predict the potential expansion of concrete containing alkali-reactive aggregates. The paper gives measurements in order to provide experimental data concerning the effect of particle size of an alkali-reactive siliceous limestone on mortar expansion. Results show that no expansion was measured on the mortars using small particles (0.5-1.0 mm while the particles (1.0–2.0 mm gave the largest expansions (0.217%. Two models are proposed, the first one studies the correlations between the measured expansions and the size of aggregates, the second one calculates the thickness of the porous zone necessary to take again all the volume of the gel created.

  20. Effect of the LHCII pigment-protein complex aggregation on photovoltaic properties of sensitized TiO2 solar cells.

    Science.gov (United States)

    Yang, Yiqun; Jankowiak, Ryszard; Lin, Chen; Pawlak, Krzysztof; Reus, Michael; Holzwarth, Alfred R; Li, Jun

    2014-10-14

    A modified dye-sensitized solar cell consisting of a thin TiO2 barrier layer sensitized with natural trimeric light-harvesting complex II (LHCII) from spinach was used as a biomimetic model to study the effects of LHCII aggregation on the photovoltaic properties. The aggregation of individual trimers induced molecular reorganization, which dramatically increased the photocurrent. The morphology of small- and large-size LHCII aggregates deposited on a surface was confirmed by atomic force microscopy. Enhanced LHCII immobilization was accomplished via electrostatic interaction with amine-functionalized photoanodes. The photocurrent responses of the assembled solar cells under illumination at three characteristic wavelength bands in the UV-Vis absorption spectra of LHCII solutions confirmed that a significant photocurrent was generated by LHCII photosensitizers. The enhanced photocurrent by large aggregated LHCII is shown to correlate with the quenching in the far-red fluorescence deriving from chlorophyll-chlorophyll charge transfer states that are effectively coupled with the TiO2 surface and thus inject electrons into the TiO2 conduction band. The large aggregated LHCII with more chlorophyll-chlorophyll charge transfer states is a much better sensitizer since it injects electrons more efficiently into the conduction band of TiO2 than the small aggregated LHCII mostly consisting of unquenched chlorophyll excited state. The assembled solar cells demonstrated remarkable stability in both aqueous buffer and acetonitrile electrolytes over 30 days.

  1. Size, density and composition of cell-mineral aggregates formed during anoxygenic phototrophic Fe(II) oxidation: Impact on modern and ancient environments

    DEFF Research Database (Denmark)

    Posth, Nicole R.; Huelin, Sonia; Konhauser, Kurt O.

    2010-01-01

    Cell-Fe(III) mineral aggregates produced by anoxygenic Fe(II)-oxidizing photoautotrophic microorganisms (photoferrotrophs) may be influential in the modern Fe cycle and were likely an integral part of ancient biogeochemical cycles on early Earth. While studies have focused on the environmental...... conditions under which modern photoferrotrophs grow and the kinetics, physiology and mechanism of Fe(II) oxidation, no systematic analyses of the physico-chemical characteristics of those aggregates, such as shape, size, density and chemical composition, have as yet been conducted. Herein, experimental...... results show most aggregates are bulbous or ragged in shape, with an average particle size of 10-40??m, and densities that typically range between 2.0 and 2.4g/cm 3; the cell fraction of the aggregates increased and their density decreased with initial Fe(II) concentration. The mineralogy of the ferric...

  2. Towards Better Understanding of Concrete Containing Recycled Concrete Aggregate

    Directory of Open Access Journals (Sweden)

    Hisham Qasrawi

    2013-01-01

    Full Text Available The effect of using recycled concrete aggregates (RCA on the basic properties of normal concrete is studied. First, recycled aggregate properties have been determined and compared to those of normal aggregates. Except for absorption, there was not a significant difference between the two. Later, recycled aggregates were introduced in concrete mixes. In these mixes, natural coarse aggregate was partly or totally replaced by recycled aggregates. Results show that the use of recycled aggregates has an adverse effect on the workability and air content of fresh concrete. Depending on the water/cement ratio and on the percent of the normal aggregate replaced by RCA, the concrete strength is reduced by 5% to 25%, while the tensile strength is reduced by 4% to 14%. All results are compared with previous research. As new in this research, the paper introduces a simple formula for the prediction of the modulus of elasticity of RCA concrete. Furthermore, the paper shows the variation of the air content of RAC.

  3. 9,10-Anthraquinone hinders β-aggregation: How does a small molecule interfere with Aβ-peptide amyloid fibrillation?

    Science.gov (United States)

    Convertino, Marino; Pellarin, Riccardo; Catto, Marco; Carotti, Angelo; Caflisch, Amedeo

    2009-01-01

    Amyloid aggregation is linked to a number of neurodegenerative syndromes, the most prevalent one being Alzheimer's disease. In this pathology, the β-amyloid peptides (Aβ) aggregate into oligomers, protofibrils, and fibrils and eventually into plaques, which constitute the characteristic hallmark of Alzheimer's disease. Several low-molecular-weight compounds able to impair the Aβ aggregation process have been recently discovered; yet, a detailed description of their interactions with oligomers and fibrils is hitherto missing. Here, molecular dynamics simulations are used to investigate the influence of two relatively similar tricyclic, planar compounds, that is, 9, 10-anthraquinone (AQ) and anthracene (AC), on the early phase of the aggregation of the Aβ heptapeptide segment H14QKLVFF20, the hydrophobic stretch that promotes the Aβ self-assembly. The simulations show that AQ interferes with β-sheet formation more than AC. In particular, AQ intercalates into the β-sheet because polar interactions between the compound and the peptide backbone destabilize the interstrand hydrogen bonds, thereby favoring disorder. The thioflavin T-binding assay indicates that AQ, but not AC, sensibly reduces the amount of aggregated Aβ1–40 peptide. Taken together, the in silico and in vitro results provide evidence that structural perturbations by AQ can remarkably affect ordered oligomerization. Moreover, the simulations shed light at the atomic level on the interactions between AQ and Aβ oligomers, providing useful insights for the design of small-molecule inhibitors of aggregation with therapeutic potential in Alzheimer's disease. PMID:19309732

  4. Aggregation behavior of nanodiamonds and their functionalized analogs in an aqueous environment.

    Science.gov (United States)

    Desai, Chintal; Chen, Kun; Mitra, Somenath

    2014-03-01

    The colloidal behavior of aqueous dispersions of detonation nanodiamonds (DNDs) and carboxylated nanodiamonds (DND-COOH) which were synthesized via a microwave process is presented. Both forms of DNDs were found to be relatively stable in aqueous solutions, but aggregated rapidly in the presence of mono and divalent salts. The critical coagulation concentration (CCC) values for DNDs and DND-COOH were estimated to be between 8 and 10 mM for NaCl and 7 and 8 mM for MgCl2. In general, the formation of carboxyl groups on the DND surface did not alter colloidal behavior as dramatically as it is known to do for other nanocarbons especially carbon nanotubes.

  5. Cooperative structural transitions in amyloid-like aggregation

    Science.gov (United States)

    Steckmann, Timothy; Bhandari, Yuba R.; Chapagain, Prem P.; Gerstman, Bernard S.

    2017-04-01

    Amyloid fibril aggregation is associated with several horrific diseases such as Alzheimer's, Creutzfeld-Jacob, diabetes, Parkinson's, and others. Although proteins that undergo aggregation vary widely in their primary structure, they all produce a cross-β motif with the proteins in β-strand conformations perpendicular to the fibril axis. The process of amyloid aggregation involves forming myriad different metastable intermediate aggregates. To better understand the molecular basis of the protein structural transitions and aggregation, we report on molecular dynamics (MD) computational studies on the formation of amyloid protofibrillar structures in the small model protein ccβ, which undergoes many of the structural transitions of the larger, naturally occurring amyloid forming proteins. Two different structural transition processes involving hydrogen bonds are observed for aggregation into fibrils: the breaking of intrachain hydrogen bonds to allow β-hairpin proteins to straighten, and the subsequent formation of interchain H-bonds during aggregation into amyloid fibrils. For our MD simulations, we found that the temperature dependence of these two different structural transition processes results in the existence of a temperature window that the ccβ protein experiences during the process of forming protofibrillar structures. This temperature dependence allows us to investigate the dynamics on a molecular level. We report on the thermodynamics and cooperativity of the transformations. The structural transitions that occurred in a specific temperature window for ccβ in our investigations may also occur in other amyloid forming proteins but with biochemical parameters controlling the dynamics rather than temperature.

  6. Aggregate formation in 3D turbulent-like flows

    NARCIS (Netherlands)

    Dominguez, A.; Aartrijk, van M.; Castello, Del L.; Clercx, H.J.H.; Geurts, B.; Clercx, H

    2006-01-01

    Aggregate formation is an important process in industrial and environ mental turbulent flows. Two examples in the environmental area, where turbulent aggregate formation takes place, are raindrop formation in clouds and Marine Snow (aggregate) formation in the upper layer in the oceans. The

  7. Direct monitoring of erythrocytes aggregation under the effect of the low-intensity magnetic field by measuring light transmission at wavelength 800 nm

    Science.gov (United States)

    Elblbesy, Mohamed A.

    2017-12-01

    Interacting electromagnetic field with the living organisms and cells became of the great interest in the last decade. Erythrocytes are the most common types of the blood cells and have unique rheological, electrical, and magnetic properties. Aggregation is one of the important characteristics of the erythrocytes which has a great impact in some clinical cases. The present study introduces a simple method to monitor the effect of static magnetic field on erythrocytes aggregation using light transmission. Features were extracted from the time course curve of the light transmission through the whole blood under different intensities of the magnetic field. The findings of this research showed that static magnetic field could influence the size and the rate of erythrocytes aggregation. The strong correlations confirmed these results between the static magnetic field intensity and both the time of aggregation and sedimentation of erythrocytes. From this study, it can be concluded that static magnetic field can be used to modify the mechanisms of erythrocytes aggregation.

  8. Engineering Performance of Polyurethane Bonded Aggregates

    Directory of Open Access Journals (Sweden)

    Haimin WU

    2017-08-01

    Full Text Available In this paper the engineering performance of polyurethane (PUR bonded aggregate were studied. The engineering performance, including compressive and flexural mechanical properties, void ratio, and coefficient of permeability were determined through laboratory tests. Moreover, the effects of two different curing conditions on the compressive strength properties of a PUR bonded aggregate were also evaluated. The compressive strengths of PUR bonded aggregates were found to be lower than that of conventional porous concrete, which is a commonly used cushion material. However, experimental results indicated a higher void ratio and coefficient of permeability, lower elasticity modulus, better toughness, and stronger adaptability to flexural deformation compared to porous concrete. Consequently, PUR bonded aggregate is a better solution than porous concrete when used as the cushion material of a geomembrane surface barrier for a high rock-fill dam.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.15798

  9. Caspase-1 Specific Light-Up Probe with Aggregation-Induced Emission Characteristics for Inhibitor Screening of Coumarin-Originated Natural Products.

    Science.gov (United States)

    Lin, Hao; Yang, Haitao; Huang, Shuai; Wang, Fujia; Wang, Dong-Mei; Liu, Bin; Tang, Yi-Da; Zhang, Chong-Jing

    2018-04-18

    Caspase-1 is a key player in pyroptosis and inflammation. Caspase-1 inhibition is found to be beneficial to various diseases. Coumarin-originated natural products have an anti-inflammation function, but their direct inhibition effect to caspase-1 remains unexplored. To evaluate their interactions, the widely used commercial coumarin-based probe (Ac-YVAD-AMC) is not suitable, as the background signal from coumarin-originated natural products could interfere with the screening results. Therefore, fluorescent probes using a large Stokes shift could help solve this problem. In this work, we chose the fluorophore of tetraphenylethylene-thiophene (TPETH) with aggregation-induced emission characteristics and a large Stokes shift of about 200 nm to develop a molecular probe. Bioconjugation between TPETH and hydrophilic peptides (DDYVADC) through a thiol-ene reaction generated a light-up probe, C1-P3. The probe has little background signal in aqueous media and exerts a fluorescent turn-on effect in the presence of caspase-1. Moreover, when evaluating the inhibition potency of coumarin-originated natural products, the new probe could generate a true and objective result but not for the commercial probe (Ac-YVAD-AMC), which is evidenced by HPLC analysis. The quick light-up response and accurate screening results make C1-P3 very useful in fundamental study and inhibitior screening toward caspase-1.

  10. Probabilistic Analysis of Structural Member from Recycled Aggregate Concrete

    Science.gov (United States)

    Broukalová, I.; Šeps, K.

    2017-09-01

    The paper aims at the topic of sustainable building concerning recycling of waste rubble concrete from demolition. Considering demands of maximising recycled aggregate use and minimising of cement consumption, composite from recycled concrete aggregate was proposed. The objective of the presented investigations was to verify feasibility of the recycled aggregate cement based fibre reinforced composite in a structural member. Reliability of wall from recycled aggregate fibre reinforced composite was assessed in a probabilistic analysis of a load-bearing capacity of the wall. The applicability of recycled aggregate fibre reinforced concrete in structural applications was demonstrated. The outcomes refer to issue of high scatter of material parameters of recycled aggregate concretes.

  11. Liver tissue engineering based on aggregate assembly: efficient formation of endothelialized rat hepatocyte aggregates and their immobilization with biodegradable fibres

    International Nuclear Information System (INIS)

    Pang, Y; Shinohara, M; Komori, K; Sakai, Y; Montagne, K

    2012-01-01

    To realize long-term in vitro culture of hepatocytes at a high density while maintaining a high hepatic function for aggregate-based liver tissue engineering, we report here a novel culture method whereby endothelialized rat hepatocyte aggregates were formed using a PDMS microwell device and cultured in a perfusion bioreactor by introducing spacers between aggregates to improve oxygen and nutrient supply. Primary rat hepatocyte aggregates around 100 µm in diameter coated with human umbilical vein endothelial cells were spontaneously and quickly formed after 12 h of incubation, thanks to the continuous supply of oxygen by diffusion through the PDMS honeycomb microwell device. Then, the recovered endothelialized rat hepatocyte aggregates were mixed with biodegradable poly-l-lactic acid fibres in suspension and packed into a PDMS-based bioreactor. Perfusion culture of 7 days was successfully achieved with more than 73.8% cells retained in the bioreactor. As expected, the fibres acted as spacers between aggregates, which was evidenced from the enhanced albumin production and more spherical morphology compared with fibre-free packing. In summary, this study shows the advantages of using PDMS-based microwells to form heterotypic aggregates and also demonstrates the feasibility of spacing tissue elements for improving oxygen and nutrient supply to tissue engineering based on modular assembly. (paper)

  12. Development of electro fused aggregates for use in refractories for the burning zone of cement kilns; Desenvolvimento de agregados eletrofundidos para utilizacao em refratarios para a zona de queima de fornos de cimento

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Luis Leonardo Horne Curimbaba

    2006-07-01

    Electro fused aggregates are largely used in refractory production due to the better performance reached when they are employed. In this work electro fused aggregates were designed for application in refractories for the burning zone of cement kilns. Initially reaction evaluation was conducted aiming the identification of the most prone refractory systems when single refractory phases react with Portland cement phases at high temperatures. In the next step, raw materials of the best refractory systems were electro fused to generate different aggregate compositions. The electro fused aggregates properties were evaluated and the classified ones were used to produce refractory bricks for the burning zone of cement kilns. General characteristics of these bricks were measured and compared with a standard magnesia-spinel refractory. Aggregates of the system Mg O - TiO{sub 2} - Ca O, more specifically aggregates belonged to the compatibility triangle Mg O - Mg{sub 2}TiO{sub 4} - CaTiO{sub 3}, showed suitable characteristics for development of refractories for the burning zone cement kilns. (author)

  13. Aggregate formation in 3D turbulent-like flows

    NARCIS (Netherlands)

    Dominguez, A.; Clercx, H.J.H.

    2006-01-01

    Aggregate formation is an important process in industrial and environmental turbulent flows. In oceans turbulence play an important role on Marine Snow (aggregate) formation. For a proper description, the study of aggregate formation in turbulent flows requires a particle based model i.e. following

  14. The proteome of neurofilament-containing protein aggregates in blood

    Directory of Open Access Journals (Sweden)

    Rocco Adiutori

    2018-07-01

    Full Text Available Protein aggregation in biofluids is a poorly understood phenomenon. Under normal physiological conditions, fluid-borne aggregates may contain plasma or cell proteins prone to aggregation. Recent observations suggest that neurofilaments (Nf, the building blocks of neurons and a biomarker of neurodegeneration, are included in high molecular weight complexes in circulation. The composition of these Nf-containing hetero-aggregates (NCH may change in systemic or organ-specific pathologies, providing the basis to develop novel disease biomarkers. We have tested ultracentrifugation (UC and a commercially available protein aggregate binder, Seprion PAD-Beads (SEP, for the enrichment of NCH from plasma of healthy individuals, and then characterised the Nf content of the aggregate fractions using gel electrophoresis and their proteome by mass spectrometry (MS. Western blot analysis of fractions obtained by UC showed that among Nf isoforms, neurofilament heavy chain (NfH was found within SDS-stable high molecular weight aggregates. Shotgun proteomics of aggregates obtained with both extraction techniques identified mostly cell structural and to a lesser extent extra-cellular matrix proteins, while functional analysis revealed pathways involved in inflammatory response, phagosome and prion-like protein behaviour. UC aggregates were specifically enriched with proteins involved in endocrine, metabolic and cell-signalling regulation. We describe the proteome of neurofilament-containing aggregates isolated from healthy individuals biofluids using different extraction methods.

  15. Influence of velocity gradient on optimisation of the aggregation process and properties of formed aggregates. Part 2. Quantification of the influence of agitation intensity and time on the properties of formed aggregates

    Czech Academy of Sciences Publication Activity Database

    Polášek, Pavel

    2011-01-01

    Roč. 59, č. 3 (2011), s. 196-205 ISSN 0042-790X R&D Projects: GA ČR GA103/07/1016 Institutional research plan: CEZ:AV0Z20600510 Keywords : inline high density suspension (IHDS) formation process * aggregation phases * aggregate properties * compactness * relative density of aggregates Subject RIV: BK - Fluid Dynamics Impact factor: 0.340, year: 2011

  16. Aggregation of natively folded proteins: a theoretical approach

    International Nuclear Information System (INIS)

    Trovato, Antonio; Maritan, Amos; Seno, Flavio

    2007-01-01

    The reliable identification of β-aggregating stretches in protein sequences is essential for the development of therapeutic agents for Alzheimer's and Parkinson's diseases, as well as other pathological conditions associated with protein deposition. While the list of aggregation related diseases is growing, it has also been shown that many proteins that are normally well behaved can be induced to aggregate in vitro. This fact suggests the existence of a unified framework that could explain both folding and aggregation. By assuming this universal behaviour, we have recently introduced an algorithm (PASTA: prediction of amyloid structure aggregation), which is based on a sequence-specific energy function derived from the propensity of two residue types to be found paired in neighbouring strands within β-sheets in globular proteins. The algorithm is able to predict the most aggregation-prone portions of several proteins initially unfolded, in excellent agreement with experimental results. Here, we apply the method to a set of proteins which are known to aggregate, but which are natively folded. The quality of the prediction is again very high, corroborating the hypothesis that the amyloid structure is stabilized by the same physico-chemical determinants as those operating in folded proteins

  17. Protein aggregation and misfolding: good or evil?

    Science.gov (United States)

    Pastore, Annalisa; Temussi, Pierandrea

    2012-06-01

    Protein aggregation and misfolding have important implications in an increasing number of fields ranging from medicine to biology to nanotechnology and material science. The interest in understanding this field has accordingly increased steadily over the last two decades. During this time the number of publications that have been dedicated to protein aggregation has increased exponentially, tackling the problem from several different and sometime contradictory perspectives. This review is meant to summarize some of the highlights that come from these studies and introduce this topical issue on the subject. The factors that make a protein aggregate and the cellular strategies that defend from aggregation are discussed together with the perspectives that the accumulated knowledge may open.

  18. Protein aggregation and misfolding: good or evil?

    International Nuclear Information System (INIS)

    Pastore, Annalisa; Temussi, Pierandrea

    2012-01-01

    Protein aggregation and misfolding have important implications in an increasing number of fields ranging from medicine to biology to nanotechnology and material science. The interest in understanding this field has accordingly increased steadily over the last two decades. During this time the number of publications that have been dedicated to protein aggregation has increased exponentially, tackling the problem from several different and sometime contradictory perspectives. This review is meant to summarize some of the highlights that come from these studies and introduce this topical issue on the subject. The factors that make a protein aggregate and the cellular strategies that defend from aggregation are discussed together with the perspectives that the accumulated knowledge may open. (topical review)

  19. Efficient external memory structures for range-aggregate queries

    DEFF Research Database (Denmark)

    Agarwal, P.K.; Yang, J.; Arge, L.

    2013-01-01

    We present external memory data structures for efficiently answering range-aggregate queries. The range-aggregate problem is defined as follows: Given a set of weighted points in Rd, compute the aggregate of the weights of the points that lie inside a d-dimensional orthogonal query rectangle. The...

  20. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy.

    Science.gov (United States)

    Vasconcelos, Luís; Lehto, Tõnis; Madani, Fatemeh; Radoi, Vlad; Hällbrink, Mattias; Vukojević, Vladana; Langel, Ülo

    2018-02-01

    Peptides able to translocate cell membranes while carrying macromolecular cargo, as cell-penetrating peptides (CPPs), can contribute to the field of drug delivery by enabling the transport of otherwise membrane impermeable molecules. Formation of non-covalent complexes between amphipathic peptides and oligonucleotides is driven by electrostatic and hydrophobic interactions. Here we investigate and quantify the coexistence of distinct molecular species in multiple equilibria, namely peptide monomer, peptide self-aggregates and peptide/oligonucleotide complexes. As a model for the complexes, we used a stearylated peptide from the PepFect family, PF14 and siRNA. PF14 has a cationic part and a lipid part, resembling some characteristics of cationic lipids. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) were used to detect distinct molecular entities in solution and at the plasma membrane of live cells. For that, we labeled the peptide with carboxyrhodamine 6G and the siRNA with Cyanine 5. We were able to detect fluorescent entities with diffusional properties characteristic of the peptide monomer as well as of peptide aggregates and peptide/oligonucleotide complexes. Strategies to avoid peptide adsorption to solid surfaces and self-aggregation were developed and allowed successful FCS measurements in solution and at the plasma membrane. The ratio between the detected molecular species was found to vary with pH, peptide concentration and the proximity to the plasma membrane. The present results suggest that the diverse cellular uptake mechanisms, often reported for amphipathic CPPs, might result from the synergistic effect of peptide monomers, self-aggregates and cargo complexes, distributed unevenly at the plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of fly ash on the strength of porous concrete using recycled coarse aggregate to replace low-quality natural coarse aggregate

    Science.gov (United States)

    Arifi, Eva; Cahya, Evi Nur; Christin Remayanti, N.

    2017-09-01

    The performance of porous concrete made of recycled coarse aggregate was investigated. Fly ash was used as cement partial replacement. In this study, the strength of recycled aggregate was coMPared to low quality natural coarse aggregate which has high water absorption. Compression strength and tensile splitting strength test were conducted to evaluate the performance of porous concrete using fly ash as cement replacement. Results have shown that the utilization of recycled coarse aggregate up to 75% to replace low quality natural coarse aggregate with high water absorption increases compressive strength and splitting tensile strength of porous concrete. Using fly ash up to 25% as cement replacement improves compressive strength and splitting tensile strength of porous concrete.

  2. Cellular Handling of Protein Aggregates by Disaggregation Machines.

    Science.gov (United States)

    Mogk, Axel; Bukau, Bernd; Kampinga, Harm H

    2018-01-18

    Both acute proteotoxic stresses that unfold proteins and expression of disease-causing mutant proteins that expose aggregation-prone regions can promote protein aggregation. Protein aggregates can interfere with cellular processes and deplete factors crucial for protein homeostasis. To cope with these challenges, cells are equipped with diverse folding and degradation activities to rescue or eliminate aggregated proteins. Here, we review the different chaperone disaggregation machines and their mechanisms of action. In all these machines, the coating of protein aggregates by Hsp70 chaperones represents the conserved, initializing step. In bacteria, fungi, and plants, Hsp70 recruits and activates Hsp100 disaggregases to extract aggregated proteins. In the cytosol of metazoa, Hsp70 is empowered by a specific cast of J-protein and Hsp110 co-chaperones allowing for standalone disaggregation activity. Both types of disaggregation machines are supported by small Hsps that sequester misfolded proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Signature of an aggregation-prone conformation of tau

    Science.gov (United States)

    Eschmann, Neil A.; Georgieva, Elka R.; Ganguly, Pritam; Borbat, Peter P.; Rappaport, Maxime D.; Akdogan, Yasar; Freed, Jack H.; Shea, Joan-Emma; Han, Songi

    2017-03-01

    The self-assembly of the microtubule associated tau protein into fibrillar cell inclusions is linked to a number of devastating neurodegenerative disorders collectively known as tauopathies. The mechanism by which tau self-assembles into pathological entities is a matter of much debate, largely due to the lack of direct experimental insights into the earliest stages of aggregation. We present pulsed double electron-electron resonance measurements of two key fibril-forming regions of tau, PHF6 and PHF6*, in transient as aggregation happens. By monitoring the end-to-end distance distribution of these segments as a function of aggregation time, we show that the PHF6(*) regions dramatically extend to distances commensurate with extended β-strand structures within the earliest stages of aggregation, well before fibril formation. Combined with simulations, our experiments show that the extended β-strand conformational state of PHF6(*) is readily populated under aggregating conditions, constituting a defining signature of aggregation-prone tau, and as such, a possible target for therapeutic interventions.

  4. Growth hormone aggregates in the rat adenohypophysis

    Science.gov (United States)

    Farrington, M.; Hymer, W. C.

    1990-01-01

    Although it has been known for some time that GH aggregates are contained within the rat anterior pituitary gland, the role that they might play in pituitary function is unknown. The present study examines this issue using the technique of Western blotting, which permitted visualization of 11 GH variants with apparent mol wt ranging from 14-88K. Electroelution of the higher mol wt variants from gels followed by their chemical reduction with beta-mercaptoethanol increased GH immunoassayability by about 5-fold. With the blot procedure we found 1) that GH aggregates greater than 44K were associated with a 40,000 x g sedimentable fraction; 2) that GH aggregates were not present in glands from thyroidectomized rats, but were in glands from the thyroidectomized rats injected with T4; 3) that GH aggregates were uniquely associated with a heavily granulated somatotroph subpopulation isolated by density gradient centrifugation; and 4) that high mol wt GH forms were released from the dense somatotrophs in culture, since treatment of the culture medium with beta-mercaptoethanol increased GH immunoassayability by about 5-fold. Taken together, the results show that high mol wt GH aggregates are contained in secretory granules of certain somatotrophs and are also released in aggregate form from these cells in vitro.

  5. Streamflow alteration at selected sites in Kansas

    Science.gov (United States)

    Juracek, Kyle E.; Eng, Ken

    2017-06-26

    An understanding of streamflow alteration in response to various disturbances is necessary for the effective management of stream habitat for a variety of species in Kansas. Streamflow alteration can have negative ecological effects. Using a modeling approach, streamflow alteration was assessed for 129 selected U.S. Geological Survey streamgages in the State for which requisite streamflow and basin-characteristic information was available. The assessment involved a comparison of the observed condition from 1980 to 2015 with the predicted expected (least-disturbed) condition for 29 streamflow metrics. The metrics represent various characteristics of streamflow including average flow (annual, monthly) and low and high flow (frequency, duration, magnitude).Streamflow alteration in Kansas was indicated locally, regionally, and statewide. Given the absence of a pronounced trend in annual precipitation in Kansas, a precipitation-related explanation for streamflow alteration was not supported. Thus, the likely explanation for streamflow alteration was human activity. Locally, a flashier flow regime (typified by shorter lag times and more frequent and higher peak discharges) was indicated for three streamgages with urbanized basins that had higher percentages of impervious surfaces than other basins in the State. The combination of localized reservoir effects and regional groundwater pumping from the High Plains aquifer likely was responsible, in part, for diminished conditions indicated for multiple streamflow metrics in western and central Kansas. Statewide, the implementation of agricultural land-management practices to reduce runoff may have been responsible, in part, for a diminished duration and magnitude of high flows. In central and eastern Kansas, implemented agricultural land-management practices may have been partly responsible for an inflated magnitude of low flows at several sites.

  6. Factors influencing soil aggregation and particulate organic matter responses to bioenergy crops across a topographic gradient

    Science.gov (United States)

    Todd A. Ontl; Cynthia A. Cambardella; Lisa A. Schulte; Randall K. Kolka

    2015-01-01

    Bioenergy crops have the potential to enhance soil carbon (C) pools from increased aggregation and the physical protection of organic matter; however, our understanding of the variation in these processes over heterogeneous landscapes is limited. In particular, little is known about the relative importance of soil properties and root characteristics for the physical...

  7. The Physics of Protoplanetesimal Dust Agglomerates. IX. Mechanical Properties of Dust Aggregates Probed by a Solid-projectile Impact

    Science.gov (United States)

    Katsuragi, Hiroaki; Blum, Jürgen

    2017-12-01

    Dynamic characterization of mechanical properties of dust aggregates has been one of the most important problems to quantitatively discuss the dust growth in protoplanetary disks. We experimentally investigate the dynamic properties of dust aggregates by low-speed (≤slant 3.2 m s-1) impacts of solid projectiles. Spherical impactors made of glass, steel, or lead are dropped onto a dust aggregate with a packing fraction of ϕ = 0.35 under vacuum conditions. The impact results in cratering or fragmentation of the dust aggregate, depending on the impact energy. The crater shape can be approximated by a spherical segment and no ejecta are observed. To understand the underlying physics of impacts into dust aggregates, the motion of the solid projectile is acquired by a high-speed camera. Using the obtained position data of the impactor, we analyze the drag-force law and dynamic pressure induced by the impact. We find that there are two characteristic strengths. One is defined by the ratio between impact energy and crater volume and is ≃120 kPa. The other strength indicates the fragmentation threshold of dynamic pressure and is ≃10 kPa. The former characterizes the apparent plastic deformation and is consistent with the drag force responsible for impactor deceleration. The latter corresponds to the dynamic tensile strength to create cracks. Using these results, a simple model for the compaction and fragmentation threshold of dust aggregates is proposed. In addition, the comparison of drag-force laws for dust aggregates and loose granular matter reveals the similarities and differences between the two materials.

  8. Aggregate Supply and Potential Output

    OpenAIRE

    Razin, Assaf

    2004-01-01

    The New-Keynesian aggregate supply derives from micro-foundations an inflation-dynamics model very much like the tradition in the monetary literature. Inflation is primarily affected by: (i) economic slack; (ii) expectations; (iii) supply shocks; and (iv) inflation persistence. This paper extends the New Keynesian aggregate supply relationship to include also fluctuations in potential output, as an additional determinant of the relationship. Implications for monetary rules and to the estimati...

  9. Targeting Protein Aggregation for the Treatment of Degenerative Diseases

    Science.gov (United States)

    Eisele, Yvonne S.; Monteiro, Cecilia; Fearns, Colleen; Encalada, Sandra E.; Wiseman, R. Luke; Powers, Evan T.; Kelly, Jeffery W.

    2015-01-01

    The aggregation of specific proteins is hypothesized to underlie several degenerative diseases, collectively called amyloid disorders. However, the mechanistic connection between the process of protein aggregation and tissue degeneration is not yet fully understood. Here, we review current and emerging strategies to ameliorate aggregation-associated degenerative disorders, with a focus on disease-modifying strategies that prevent the formation of and/or eliminate protein aggregates. Persuasive pharmacologic and genetic evidence now support protein aggregation as the cause of post-mitotic tissue dysfunction or loss. However, a more detailed understanding of the factors that trigger and sustain aggregate formation, as well as the structure-activity relationships underlying proteotoxicity are needed to develop future disease-modifying therapies. PMID:26338154

  10. Offering Strategy of a Flexibility Aggregator in a Balancing Market Using Asymmetric Block Offers

    DEFF Research Database (Denmark)

    Bobo, Lucien Ali; Delikaraoglou, Stefanos; Vespermann, Niklas

    2018-01-01

    scenarios are used to find optimal load-shifting offers under uncertainty. The problem is formulated as a stochastic mixed-integer linear program and can be solved with reasonable computational time. This work is taking place in the framework of the real-life demonstration project EcoGrid 2.0, which......In order to enable large-scale penetration of renewables with variable generation, new sources of flexibility have to be exploited in the power systems. Allowing asymmetric block offers (including response and rebound blocks) in balancing markets can facilitate the participation of flexibility...... aggregators and unlock load-shifting flexibility from, e.g., thermostatic loads. In this paper, we formulate an optimal offering strategy for a risk-averse flexibility aggregator participating in such a market. Using a price-taker approach, load flexibility characteristics and balancing market price forecast...

  11. Extending Practical Pre-Aggregation in On-Line Analytical Processing

    DEFF Research Database (Denmark)

    Pedersen, Torben Bach; Jensen, Christian Søndergaard; Dyreson, Curtis E.

    On-Line Analytical Processing (OLAP) based on a dimensional view of data is being used increasingly in traditional business applications as well as in applications such as health care for the purpose of analyzing very large amounts of data. Pre-aggregation, the prior materialization of aggregate...... select combinations of aggregates and then re-use these for efficiently computing other aggregates. However, this re-use of aggregates is contingent on the dimension hierarchies and the relationships between facts and dimensions satisfying stringent constraints. This severely limits the scope...

  12. Aggregate assessments support improved operational decision making

    International Nuclear Information System (INIS)

    Bauer, R.

    2003-01-01

    At Darlington Nuclear aggregate assessment of plant conditions is carried out in support of Operational Decision Making. This paper discusses how aggregate assessments have been applied to Operator Workarounds leading to improved prioritisation and alignment of work programs in different departments. As well, aggregate assessment of plant and human performance factors has been carried out to identify criteria which support conservative decision making in the main control room during unit transients. (author)

  13. Aggregated nanoplatelets: optical properties and optically induced deaggregation

    International Nuclear Information System (INIS)

    Jayabalan, J; Singh, Asha; Chari, Rama; Srivastava, Himanshu; Srivastava, A K; Mukhopadhyay, P K; Oak, S M

    2008-01-01

    A study of aggregation and laser-induced deaggregation of silver nanospheres and nanoplatelets in colloidal form is presented. Changes in the extinction spectrum caused by aggregation are explained using a two-particle approximation. In the case of platelets, controlled laser irradiation is shown to reverse the aggregation process.

  14. Aggregated nanoplatelets: optical properties and optically induced deaggregation

    Energy Technology Data Exchange (ETDEWEB)

    Jayabalan, J; Singh, Asha; Chari, Rama [Laser Physics Application Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Srivastava, Himanshu; Srivastava, A K [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Mukhopadhyay, P K; Oak, S M [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)], E-mail: jjaya@cat.ernet.in

    2008-11-05

    A study of aggregation and laser-induced deaggregation of silver nanospheres and nanoplatelets in colloidal form is presented. Changes in the extinction spectrum caused by aggregation are explained using a two-particle approximation. In the case of platelets, controlled laser irradiation is shown to reverse the aggregation process.

  15. Viral Aggregation: Impact on Virus Behavior in the Environment.

    Science.gov (United States)

    Gerba, Charles P; Betancourt, Walter Q

    2017-07-05

    Aggregates of viruses can have a significant impact on quantification and behavior of viruses in the environment. Viral aggregates may be formed in numerous ways. Viruses may form crystal like structures and aggregates in the host cell during replication or may form due to changes in environmental conditions after virus particles are released from the host cells. Aggregates tend to form near the isoelectric point of the virus, under the influence of certain salts and salt concentrations in solution, cationic polymers, and suspended organic matter. The given conditions under which aggregates form in the environment are highly dependent on the type of virus, type of salts in solution (cation, anion. monovalent, divalent) and pH. However, virus type greatly influences the conditions when aggregation/disaggregation will occur, making predictions difficult under any given set of water quality conditions. Most studies have shown that viral aggregates increase the survival of viruses in the environment and resistance to disinfectants, especially with more reactive disinfectants. The presence of viral aggregates may also result in overestimation of removal by filtration processes. Virus aggregation-disaggregation is a complex process and predicting the behavior of any individual virus is difficult under a given set of environmental circumstances without actual experimental data.

  16. A brief review of the construction aggregates market

    Science.gov (United States)

    Willett, Jason Christopher

    2012-01-01

    The U.S. Geological Survey defines the construction aggregates industry as those companies that mine and process crushed stone and/or construction sand and gravel. Aggregates have been used from the earliest times of our civilization for a variety of purposes - construction being the major use. As construction aggregates, crushed stone and construction sand and gravel are the basic raw materials used to build the foundation for modern society. The widespread use of construction aggregates is the result of their general availability throughout the country and around the world along with their relatively low cost. Although construction aggregates have a low unit value, their widespread use makes them major contributors to, and indicators of, the economic well-being of the nation.

  17. Co-morbid anxiety disorders in bipolar disorder and major depression: familial aggregation and clinical characteristics of co-morbid panic disorder, social phobia, specific phobia and obsessive-compulsive disorder.

    Science.gov (United States)

    Goes, F S; McCusker, M G; Bienvenu, O J; Mackinnon, D F; Mondimore, F M; Schweizer, B; Depaulo, J R; Potash, J B

    2012-07-01

    Co-morbidity of mood and anxiety disorders is common and often associated with greater illness severity. This study investigates clinical correlates and familiality of four anxiety disorders in a large sample of bipolar disorder (BP) and major depressive disorder (MDD) pedigrees. The sample comprised 566 BP families with 1416 affected subjects and 675 MDD families with 1726 affected subjects. Clinical characteristics and familiality of panic disorder, social phobia, specific phobia and obsessive-compulsive disorder (OCD) were examined in BP and MDD pedigrees with multivariate modeling using generalized estimating equations. Co-morbidity between mood and anxiety disorders was associated with several markers of clinical severity, including earlier age of onset, greater number of depressive episodes and higher prevalence of attempted suicide, when compared with mood disorder without co-morbid anxiety. Familial aggregation was found with co-morbid panic and OCD in both BP and MDD pedigrees. Specific phobia showed familial aggregation in both MDD and BP families, although the findings in BP were just short of statistical significance after adjusting for other anxiety co-morbidities. We found no evidence for familiality of social phobia. Our findings suggest that co-morbidity of MDD and BP with specific anxiety disorders (OCD, panic disorder and specific phobia) is at least partly due to familial factors, which may be of relevance to both phenotypic and genetic studies of co-morbidity.

  18. PE859, a novel tau aggregation inhibitor, reduces aggregated tau and prevents onset and progression of neural dysfunction in vivo.

    Directory of Open Access Journals (Sweden)

    Michiaki Okuda

    Full Text Available In tauopathies, a neural microtubule-associated protein tau (MAPT is abnormally aggregated and forms neurofibrillary tangle. Therefore, inhibition of the tau aggregation is one of the key approaches for the treatment of these diseases. Here, we have identified a novel tau aggregation inhibitor, PE859. An oral administration of PE859 resulted in the significant reduction of sarkosyl-insoluble aggregated tau along with the prevention of onset and progression of the motor dysfunction in JNPL3 P301L-mutated human tau transgenic mice. These results suggest that PE859 is useful for the treatment of tauopathies.

  19. Strength of masonry blocks made with recycled concrete aggregates

    Science.gov (United States)

    Matar, Pierre; Dalati, Rouba El

    The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.

  20. An alter-centric perspective on employee innovation: The importance of alters' creative self-efficacy and network structure.

    Science.gov (United States)

    Grosser, Travis J; Venkataramani, Vijaya; Labianca, Giuseppe Joe

    2017-09-01

    While most social network studies of employee innovation behavior examine the focal employees' ("egos'") network structure, we employ an alter-centric perspective to study the personal characteristics of employees' network contacts-their "alters"-to better understand employee innovation. Specifically, we examine how the creative self-efficacy (CSE) and innovation behavior of employees' social network contacts affects their ability to generate and implement novel ideas. Hypotheses were tested using a sample of 144 employees in a U.S.-based product development organization. We find that the average CSE of alters in an employee's problem solving network is positively related to that employee's innovation behavior, with this relationship being mediated by these alters' average innovation behavior. The relationship between the alters' average innovation behavior and the employee's own innovation behavior is strengthened when these alters have less dense social networks. Post hoc results suggest that having network contacts with high levels of CSE also leads to an increase in ego's personal CSE 1 year later in cases where the employee's initial level of CSE was relatively low. Implications for theory and practice are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. IN-VIVO EXPOSURE CHARACTERIZATION AND VISUALIZATION OF SWNH AGGREGATES

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Rachel M [ORNL; Voy, Brynn H [ORNL; Zhao, Bin [ORNL; Mahurin, Shannon Mark [ORNL; Thundat, Thomas George [ORNL; Cheng, Mengdawn [ORNL; Passian, Ali [ORNL; Venmar, Katherine T [ORNL; Tetard, Laurene [ORNL

    2007-01-01

    As the manufacturing and use of nanomaterials and nanoparticle clusters/aggregates become prevalent in the future, it will be necessary to understand the biological interactions with this new class of materials introduced through various routes, intentionally or unintentionally. However, there currently exist a host of technical/methodological issues related to nanotoxicological study. For example, the ability to generate reproducible precision nanomaterial and nanoparticles is critically needed for both toxicological evaluation and pharmaceutical applications. Technology for tracing and visualization of nanomaterials in biological systems are also lacking. Single-walled carbon nanohorn (SWNH) is a unique carbon nanostructure belonging to the same family as the famous carbon nanotubes. SWNH aggregates can be produced through laser vaporization of carbon at room temperature; the aggregates are of particular interest to energy application such as hydrogen storage and new-generation of fuel cells. Unlike carbon nanotubes that are made using metal catalysts, SWNHs can be made without the use of a metal catalyst providing an opportunity for nanotoxicological study of purest carbon nanoparticles with no complication of trace metal toxicity that the nanotubes might have. We summarize results from our ongoing biological research on SWNHs. Our results were from in vivo animal aspiration experiments, in contrast to the results of a recent publication that were based on phenotypic observation of cell-line exposure experiments. The characterization results of ORNL-produced SWNHs are presented in Figure 1, which include low- (Figure 1a) and high-resolution (Figure 1b) structural images of SWNHs, the thermal gravimetric analysis (Figure 1c) and characteristic Raman (Figure 1d) results. We coated the SWNH powder with Pluronic F-127, which is a biocompatible polymer, to facilitate the dispersion of SWNHs in suspension during pressure-driven nebulization in mice aspiration and nose

  2. Do chemical gradients within soil aggregates reflect plant/soil interactions?

    Science.gov (United States)

    Krüger, Jaane; Hallas, Till; Kinsch, Lena; Stahr, Simon; Prietzel, Jörg; Lang, Friederike

    2016-04-01

    As roots and hyphae often accumulate at the surface of soil aggregates, their formation and turnover might be related to the bioavailability especially of immobile nutrients like phosphorus. Several methods have been developed to obtain specific samples from aggregate surfaces and aggregate cores and thus to investigate differences between aggregate shell and core. However, these methods are often complex and time-consuming; therefore most common methods of soil analysis neglect the distribution of nutrients within aggregates and yield bulk soil concentrations. We developed a new sequential aggregate peeling method to analyze the distribution of different nutrients within soil aggregates (4-20 mm) from four forest sites (Germany) differing in concentrations of easily available mineral P. Aggregates from three soil depths (Ah, BwAh, Bw) were isolated, air-dried, and peeled with a sieving machine performing four sieving levels with increasing sieving intensity. This procedure was repeated in quadruplicate, and fractions of the same sample and sieving level were pooled. Carbon and N concentration, citric acid-extractable PO4 and P, as well as total element concentrations (P, K, Mg, Ca, Al, Fe) were analyzed. Additionally, synchrotron-based P K-edge XANES spectroscopy was applied on selected samples to detect P speciation changes within the aggregates. The results reveal for most samples a significantly higher C and N concentration at the surface compared to the interior of the aggregates. Carbon and N gradients get more pronounced with increasing soil depth and decreasing P status of study sites. This might be explained by lower aggregate turnover rates of subsoil horizons and intense bioturbation on P-rich sites. This assumption is also confirmed by concentrations of citric acid-extractable PO4 and P: gradients within aggregates are getting more pronounced with increasing soil depth and decreasing P status. However, the direction of these gradients is site

  3. Procedure for Validation of Aggregators Providing Demand Response

    DEFF Research Database (Denmark)

    Bondy, Daniel Esteban Morales; Gehrke, Oliver; Thavlov, Anders

    2016-01-01

    of small heterogeneous resources that are geographically distributed. Therefore, a new test procedure must be designed for the aggregator validation. This work proposes such a procedure and exemplifies is with a study case. The validation of aggregators is essential if aggregators are to be integrated...... succesfully into the power system....

  4. Iron deficiency alters megakaryopoiesis and platelet phenotype independent of thrombopoietin.

    Science.gov (United States)

    Evstatiev, Rayko; Bukaty, Adam; Jimenez, Kristine; Kulnigg-Dabsch, Stefanie; Surman, Lidia; Schmid, Werner; Eferl, Robert; Lippert, Kathrin; Scheiber-Mojdehkar, Barbara; Kvasnicka, Hans Michael; Khare, Vineeta; Gasche, Christoph

    2014-05-01

    Iron deficiency is a common cause of reactive thrombocytosis, however, the exact pathways have not been revealed. Here we aimed to study the mechanisms behind iron deficiency-induced thrombocytosis. Within few weeks, iron-depleted diet caused iron deficiency in young Sprague-Dawley rats, as reflected by a drop in hemoglobin, mean corpuscular volume, hepatic iron content and hepcidin mRNA in the liver. Thrombocytosis established in parallel. Moreover, platelets produced in iron deficient animals displayed a higher mean platelet volume and increased aggregation. Bone marrow studies revealed subtle alterations that are suggestive of expansion of megakaryocyte progenitors, an increase in megakaryocyte ploidy and accelerated megakaryocyte differentiation. Iron deficiency did not alter the production of hematopoietic growth factors such as thrombopoietin, interleukin 6 or interleukin 11. Megakaryocytic cell lines grown in iron-depleted conditions exhibited reduced proliferation but increased ploidy and cell size. Our data suggest that iron deficiency increases megakaryopoietic differentiation and alters platelet phenotype without changes in megakaryocyte growth factors, specifically TPO. Iron deficiency-induced thrombocytosis may have evolved to maintain or increase the coagulation capacity in conditions with chronic bleeding. Copyright © 2014 Wiley Periodicals, Inc.

  5. Compressive strength performance of OPS lightweight aggregate concrete containing coal bottom ash as partial fine aggregate replacement

    Science.gov (United States)

    Muthusamy, K.; Mohamad Hafizuddin, R.; Mat Yahaya, F.; Sulaiman, M. A.; Syed Mohsin, S. M.; Tukimat, N. N.; Omar, R.; Chin, S. C.

    2018-04-01

    Concerns regarding the negative impact towards environment due to the increasing use of natural sand in construction industry and dumping of industrial solid wastes namely coal bottom ash (CBA) and oil palm shell (OPS) has resulted in the development of environmental friendly lightweight concrete. The present study investigates the effect of coal bottom ash as partial fine aggregate replacement towards workability and compressive strength of oil palm shell lightweight aggregate concrete (OPS LWAC). The fresh and mechanical properties of this concrete containing various percentage of coal bottom ash as partial fine aggregate replacement were investigated. The result was compared to OPS LWAC with 100 % sand as a control specimen. The concrete workability investigated by conducting slump test. All specimens were cast in form of cubes and water cured until the testing age. The compressive strength test was carried out at 7 and 28 days. The finding shows that integration of coal bottom ash at suitable proportion enhances the strength of oil palm shell lightweight aggregate concrete.

  6. Turbulent breakage of ductile aggregates.

    Science.gov (United States)

    Marchioli, Cristian; Soldati, Alfredo

    2015-05-01

    In this paper we study breakage rate statistics of small colloidal aggregates in nonhomogeneous anisotropic turbulence. We use pseudospectral direct numerical simulation of turbulent channel flow and Lagrangian tracking to follow the motion of the aggregates, modeled as sub-Kolmogorov massless particles. We focus specifically on the effects produced by ductile rupture: This rupture is initially activated when fluctuating hydrodynamic stresses exceed a critical value, σ>σ(cr), and is brought to completion when the energy absorbed by the aggregate meets the critical breakage value. We show that ductile rupture breakage rates are significantly reduced with respect to the case of instantaneous brittle rupture (i.e., breakage occurs as soon as σ>σ(cr)). These discrepancies are due to the different energy values at play as well as to the statistical features of energy distribution in the anisotropic turbulence case examined.

  7. Temporal aggregation in first order cointegrated vector autoregressive

    DEFF Research Database (Denmark)

    la Cour, Lisbeth Funding; Milhøj, Anders

    2006-01-01

    We study aggregation - or sample frequencies - of time series, e.g. aggregation from weekly to monthly or quarterly time series. Aggregation usually gives shorter time series but spurious phenomena, in e.g. daily observations, can on the other hand be avoided. An important issue is the effect of ...... of aggregation on the adjustment coefficient in cointegrated systems. We study only first order vector autoregressive processes for n dimensional time series Xt, and we illustrate the theory by a two dimensional and a four dimensional model for prices of various grades of gasoline....

  8. Recycled aggregates in concrete production: engineering properties and environmental impact

    Directory of Open Access Journals (Sweden)

    Seddik Meddah Mohammed

    2017-01-01

    Full Text Available Recycled concrete aggregate is considered as the most abundant and used secondary aggregate in concrete production, other types of solid waste are also being used in concrete for specific purposes and to achieve some desired properties. Recycled aggregates and particularly, recycled concrete aggregate substantially affect the properties and mix design of concrete both at fresh and hardened states since it is known by high porosity due to the adhered layer of old mortar on the aggregate which results in a high water absorption of the recycled secondary aggregate. This leads to lower density and strength, and other durability related properties. The use of most recycled aggregate in concrete structures is still limited to low strength and non-structural applications due to important drop in strength and durability performances generated. Embedding recycled aggregates in concrete is now a current practice in many countries to enhance sustainability of concrete industry and reduce its environmental impacts. The present paper discusses the various possible recycled aggregates used in concrete production, their effect on both fresh and hardened properties as well as durability performances. The economic and environmental impacts of partially or fully substituting natural aggregates by secondary recycled aggregates are also discussed.

  9. Partitioning of red blood cell aggregates in bifurcating microscale flows

    Science.gov (United States)

    Kaliviotis, E.; Sherwood, J. M.; Balabani, S.

    2017-03-01

    Microvascular flows are often considered to be free of red blood cell aggregates, however, recent studies have demonstrated that aggregates are present throughout the microvasculature, affecting cell distribution and blood perfusion. This work reports on the spatial distribution of red blood cell aggregates in a T-shaped bifurcation on the scale of a large microvessel. Non-aggregating and aggregating human red blood cell suspensions were studied for a range of flow splits in the daughter branches of the bifurcation. Aggregate sizes were determined using image processing. The mean aggregate size was marginally increased in the daughter branches for a range of flow rates, mainly due to the lower shear conditions and the close cell and aggregate proximity therein. A counterintuitive decrease in the mean aggregate size was apparent in the lower flow rate branches. This was attributed to the existence of regions depleted by aggregates of certain sizes in the parent branch, and to the change in the exact flow split location in the T-junction with flow ratio. The findings of the present investigation may have significant implications for microvascular flows and may help explain why the effects of physiological RBC aggregation are not deleterious in terms of in vivo vascular resistance.

  10. Molecular origin of polyglutamine aggregation in neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Expansion of polyglutamine (polyQ tracts in proteins results in protein aggregation and is associated with cell death in at least nine neurodegenerative diseases. Disease age of onset is correlated with the polyQ insert length above a critical value of 35-40 glutamines. The aggregation kinetics of isolated polyQ peptides in vitro also shows a similar critical-length dependence. While recent experimental work has provided considerable insights into polyQ aggregation, the molecular mechanism of aggregation is not well understood. Here, using computer simulations of isolated polyQ peptides, we show that a mechanism of aggregation is the conformational transition in a single polyQ peptide chain from random coil to a parallel beta-helix. This transition occurs selectively in peptides longer than 37 glutamines. In the beta-helices observed in simulations, all residues adopt beta-strand backbone dihedral angles, and the polypeptide chain coils around a central helical axis with 18.5 +/- 2 residues per turn. We also find that mutant polyQ peptides with proline-glycine inserts show formation of antiparallel beta-hairpins in their ground state, in agreement with experiments. The lower stability of mutant beta-helices explains their lower aggregation rates compared to wild type. Our results provide a molecular mechanism for polyQ-mediated aggregation.

  11. Acid resistance of quaternary blended recycled aggregate concrete

    Directory of Open Access Journals (Sweden)

    K Jagannadha Rao

    2018-06-01

    Full Text Available The possibility of reusing the aggregate from demolished structures in fresh concrete, in order to reduce the CO2 impact on the environment [23] and to preserve natural resources, was explored worldwide and it is established that recycled aggregates can be used as a partial replacement of natural aggregates. Due to its potential to be used in eco-friendly structures and shortage of supply of natural aggregates in some parts of the world, there is an increasing interest in using the recycled aggregate. The durability aspects are also of equal concern along with the strength and economy of any material to be used in the construction. Studies reveal that the behaviour of ternary and quaternary blended concretes is superior from durability point of view compared to conventional concrete. Therefore a study is conducted to assess the acid resistance of recycled aggregate based Quaternary Blended Cement Concrete (QBCC of two grades M40 and M60. Fly ash and silica fume are fixed at 20% and 10% respectively from the previous studies while two percentages of Nano silica (2 and 3% were used along with the cement to obtain QBCC. Three percentages of recycled aggregates as partial replacement of conventional aggregate (0%, 50% and 75% were used in this study. Two different acids (HCL and H2SO4 with different concentrations (3 and 5% were used in this study. Acid resistance of QBCC with Recycled Concrete Aggregate (RCA is assessed in terms of visual appearance, weight loss, and compressive strength loss by destructive and non-destructive tests at regular intervals for a period of 56 days. The test results showed marginal weight loss and strength loss in both M40 and M60 grades of concretes. The Ultrasonic Pulse Velocity (UPV results show that the quality of QBCC is good even after being subjected to acid exposure. Keywords: Recycled concrete aggregate (RCA, Quaternary blended cement concrete (QBCC, Acid resistance, Ultrasonic pulse velocity (UPV, Mineral

  12. Product Aggregation Bias as a Specification Error in Demand Systems

    OpenAIRE

    George C. Davis

    1997-01-01

    Inherent in all demand studies is some form of product aggregation which can lead to product aggregation bias. This article develops a simple procedure for incorporating product aggregation bias in demand systems that permits testing of product aggregation bias with a standard likelihood ratio test. An empirical illustration of the procedure demonstrates the importance of proper product aggregation. Copyright 1997, Oxford University Press.

  13. Piecewise Polynomial Aggregation as Preprocessing for Data Numerical Modeling

    Science.gov (United States)

    Dobronets, B. S.; Popova, O. A.

    2018-05-01

    Data aggregation issues for numerical modeling are reviewed in the present study. The authors discuss data aggregation procedures as preprocessing for subsequent numerical modeling. To calculate the data aggregation, the authors propose using numerical probabilistic analysis (NPA). An important feature of this study is how the authors represent the aggregated data. The study shows that the offered approach to data aggregation can be interpreted as the frequency distribution of a variable. To study its properties, the density function is used. For this purpose, the authors propose using the piecewise polynomial models. A suitable example of such approach is the spline. The authors show that their approach to data aggregation allows reducing the level of data uncertainty and significantly increasing the efficiency of numerical calculations. To demonstrate the degree of the correspondence of the proposed methods to reality, the authors developed a theoretical framework and considered numerical examples devoted to time series aggregation.

  14. H- and J-aggregate behavior in polymeric semiconductors.

    Science.gov (United States)

    Spano, Frank C; Silva, Carlos

    2014-01-01

    Aggregates of conjugated polymers exhibit two classes of fundamental electronic interactions: those occurring within a given chain and those occurring between chains. The impact of such excitonic interactions on the photophysics of polymer films can be understood using concepts of J- and H-aggregation originally developed by Kasha and coworkers to treat aggregates of small molecules. In polymer assemblies, intrachain through-bond interactions lead to J-aggregate behavior, whereas interchain Coulombic interactions lead to H-aggregate behavior. The photophysics of common emissive conjugated polymer films are determined by a competition between intrachain, J-favoring interactions and interchain, H-favoring interactions. We review formalisms describing absorption and photoluminescence lineshapes, based on intra- and intermolecular excitonic coupling, electron-vibrational coupling, and correlated energetic disorder. Examples include regioregular polythiophenes, pheneylene-vinylenes, and polydiacetylene.

  15. Roles of N-glycans in the polymerization-dependent aggregation of mutant Ig-μ chains in the early secretory pathway.

    Science.gov (United States)

    Giannone, Chiara; Fagioli, Claudio; Valetti, Caterina; Sitia, Roberto; Anelli, Tiziana

    2017-02-03

    The polymeric structure of secretory IgM allows efficient antigen binding and complement fixation. The available structural models place the N-glycans bound to asparagines 402 and 563 of Ig-μ chains within a densely packed core of native IgM. These glycans are found in the high mannose state also in secreted IgM, suggesting that polymerization hinders them to Golgi processing enzymes. Their absence alters polymerization. Here we investigate their role following the fate of aggregation-prone mutant μ chains lacking the Cμ1 domain (μ∆). Our data reveal that μ∆ lacking 563 glycans (μ∆5) form larger intracellular aggregates than μ∆ and are not secreted. Like μ∆, they sequester ERGIC-53, a lectin previously shown to promote polymerization. In contrast, μ∆ lacking 402 glycans (μ∆4) remain detergent soluble and accumulate in the ER, as does a double mutant devoid of both (μ∆4-5). These results suggest that the two C-terminal Ig-μ glycans shape the polymerization-dependent aggregation by engaging lectins and acting as spacers in the alignment of individual IgM subunits in native polymers.

  16. Dispersion index of aggregates in a Rhodic Ferrasol cultivated with cane under stillage application

    Directory of Open Access Journals (Sweden)

    Eber Augusto Ferreira do Prado

    2014-09-01

    Full Text Available The sugar and alcohol plants generate waste stillage one that needs proper destination. One alternative is the application of this residue to improve soil properties. The objective of this study was to evaluate the effect of stillage in the aggregation and productivity of sugar cane grown in three seasons of the soil sampling. The study was conducted in an Red dystrophic Latosol, sandy clay frank, at the BUNGE Monte Verde plant in the municipality of Ponta Porã, MS, Brasil. Cultivated with sugarcane third year. We used the (4x4 factorial design, evaluated 4 applications of stillage (0, 450, 600 and 750 m3 ha-1 and their soil characteristics measured at four depths (0,0-0,5; 0,5-0,10; 0,10-0,20; 0,20-0,40 m with five repetitions. To determine the rate of dispersion of aggregates (ID sample were obtained undisturbed soil at 38, 75 and 111 days after application of stillage. With increasing doses of stillage were increased concentrations of potassium and organic matter and reduce the rate of dispersion and increased stability of soil aggregates.

  17. Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods.

    Science.gov (United States)

    Ye, Jun

    2016-01-01

    An interval neutrosophic set (INS) is a subclass of a neutrosophic set and a generalization of an interval-valued intuitionistic fuzzy set, and then the characteristics of INS are independently described by the interval numbers of its truth-membership, indeterminacy-membership, and falsity-membership degrees. However, the exponential parameters (weights) of all the existing exponential operational laws of INSs and the corresponding exponential aggregation operators are crisp values in interval neutrosophic decision making problems. As a supplement, this paper firstly introduces new exponential operational laws of INSs, where the bases are crisp values or interval numbers and the exponents are interval neutrosophic numbers (INNs), which are basic elements in INSs. Then, we propose an interval neutrosophic weighted exponential aggregation (INWEA) operator and a dual interval neutrosophic weighted exponential aggregation (DINWEA) operator based on these exponential operational laws and introduce comparative methods based on cosine measure functions for INNs and dual INNs. Further, we develop decision-making methods based on the INWEA and DINWEA operators. Finally, a practical example on the selecting problem of global suppliers is provided to illustrate the applicability and rationality of the proposed methods.

  18. Optimal policies for aggregate recycling from decommissioned forest roads.

    Science.gov (United States)

    Thompson, Matthew; Sessions, John

    2008-08-01

    To mitigate the adverse environmental impact of forest roads, especially degradation of endangered salmonid habitat, many public and private land managers in the western United States are actively decommissioning roads where practical and affordable. Road decommissioning is associated with reduced long-term environmental impact. When decommissioning a road, it may be possible to recover some aggregate (crushed rock) from the road surface. Aggregate is used on many low volume forest roads to reduce wheel stresses transferred to the subgrade, reduce erosion, reduce maintenance costs, and improve driver comfort. Previous studies have demonstrated the potential for aggregate to be recovered and used elsewhere on the road network, at a reduced cost compared to purchasing aggregate from a quarry. This article investigates the potential for aggregate recycling to provide an economic incentive to decommission additional roads by reducing transport distance and aggregate procurement costs for other actively used roads. Decommissioning additional roads may, in turn, result in improved aquatic habitat. We present real-world examples of aggregate recycling and discuss the advantages of doing so. Further, we present mixed integer formulations to determine optimal levels of aggregate recycling under economic and environmental objectives. Tested on an example road network, incorporation of aggregate recycling demonstrates substantial cost-savings relative to a baseline scenario without recycling, increasing the likelihood of road decommissioning and reduced habitat degradation. We find that aggregate recycling can result in up to 24% in cost savings (economic objective) and up to 890% in additional length of roads decommissioned (environmental objective).

  19. Teaching Aggregate Demand and Supply Models

    Science.gov (United States)

    Wells, Graeme

    2010-01-01

    The author analyzes the inflation-targeting model that underlies recent textbook expositions of the aggregate demand-aggregate supply approach used in introductory courses in macroeconomics. He shows how numerical simulations of a model with inflation inertia can be used as a tool to help students understand adjustments in response to demand and…

  20. Morfologia de agregados do solo avaliada por meio de análise de imagens Morphology of soil aggregates evaluated by images analysis

    Directory of Open Access Journals (Sweden)

    N. Olszevski

    2004-10-01

    deterioration of soil physical properties, mainly due to modifications in the soil structure pattern. Once the structural changes could affect the morphology aggregates in different ways, the search for new methods of studying soil macro-morphological characteristics must be prioritized to allow the observation of modified characteristics in cultivated soils. Therefore, this study was carried out to adapt and test a digital method for a qualitative macro-morphological analysis of soil aggregates of Rodhic Haplustox in samples taken in 1998, aiming to detect morphological modifications caused by human activities. From an original set of eleven, five replicated treatments were selected: no till, cinzel plow, heavy disk harrow, disk plow and chisel plow, carried out annually. The shape of the different soil aggregates was from images obtained using a scanner (HP 6100C with 1200 dpi optical resolution which were then processed by the computer program UTHSCSA Image Tool. This program furnishes values of different aggregate indexes: roundness, compactness and lengthiness. The roundness index depends on the perimeter measurement (external roughness and the compactness and lengthiness indexes depend on the measurement of the length of the longest axle (long edges. Generally, the management systems used during three consecutive years did not modify the aggregate morphology of the clayey Rodhic Haplustox for the analyzed variables. Image analysis sensitively detected alterations in soil aggregate morphology promising considerable usefulness as a novel tool for on soil structure studies.

  1. Aggregation in concentrated protein solutions: Insights from rheology, neutron scattering and molecular simulations

    Science.gov (United States)

    Castellanos, Maria Monica

    -angle neutron scattering experiments were used to characterize the antibody aggregates responsible for this non-Newtonian response. From the neutron scattering data, a weak barrier leading to reversible aggregation is identified. Therefore, proteins aggregate weakly after colliding hydrodynamically, unless they find a favorable contact with high binding energy. Two types of antibody aggregates were identified: oligomers with average radius of gyration of ˜10 nm, and fractal aggregates larger than ˜ 0.1 microm formed by a reaction-limited aggregation process. A characteristic upturn in the scattered intensity at low wavevector and a low shear viscosity increase are observed in aggregated protein solutions. These features are removed by filtering with a 0.2 microm filter, which also eliminates the submicron fractal aggregates. Biophysical characterization supports the conclusions from the rheology and neutron scattering experiments. Finally, molecular dynamics simulations were used to understand the effects of disulfide bonds on the conformational stability of serum albumin. Changes in disulfide bonds in the native structure could lead to partial unfolding, and the formation of aggregates through inter-molecular disulfide bonds. Therefore, it is important to understand the role of each disulfide bond on the structure and dynamics of the protein. After removing disulfide bonds, changes occur in the dynamic correlations between different residues, and the secondary and tertiary structure of albumin. However, not all disulfide bonds affect the conformation of the protein, suggesting that other interactions are more relevant to keep the stability in certain regions. Removal of all disulfide bonds using molecular dynamics is proposed as a practical prescreening tool to identify disulfide bonds that are important for the conformational stability. As a result, some disulfide bonds can be mutated without affecting the conformation of the protein.

  2. Fluid motion and solute distribution around sinking aggregates I : Small-scale fluxes and heterogeneity of nutrients in the pelagic environment

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Ploug, H.; Thygesen, Uffe Høgsbro

    2001-01-01

    in the ambient water. We described the fluid flow and solute distribution around a sinking aggregate by solving the Navier- Stokes' equations and the advection-diffusion equations numerically. The model is valid for Reynolds numbers characteristic of marine snow, up to Re = 20. The model demonstrates...... in its wake, where solute concentration is either elevated (leaking substances) or depressed (consumed substances) relative to ambient concentration. Such plumes may impact the nutrition of osmotrophs. For example, based on published solubilization rates of aggregates we describe the amino acid plume...

  3. Effect of homogenisation in formation of thermally induced aggregates in a non- and low- fat milk model system with microparticulated whey proteins.

    Science.gov (United States)

    Torres, Isabel Celigueta; Nieto, Gema; Nylander, Tommy; Simonsen, Adam Cohen; Tolkach, Alexander; Ipsen, Richard

    2017-05-01

    The objective of the research presented in this paper was to investigate how different characteristics of whey protein microparticles (MWP) added to milk as fat replacers influence intermolecular interactions occurring with other milk proteins during homogenisation and heating. These interactions are responsible for the formation of heat-induced aggregates that influence the texture and sensory characteristics of the final product. The formation of heat-induced complexes was studied in non- and low-fat milk model systems, where microparticulated whey protein (MWP) was used as fat replacer. Five MWP types with different particle characteristics were utilised and three heat treatments used: 85 °C for 15 min, 90 °C for 5 min and 95 °C for 2 min. Surface characteristics of the protein aggregates were expressed as the number of available thiol groups and the surface net charge. Intermolecular interactions involved in the formation of protein aggregates were studied by polyacrylamide gel electrophoresis and the final complexes visualised by darkfield microscopy. Homogenisation of non-fat milk systems led to partial adsorption of caseins onto microparticles, independently of the type of microparticle. On the contrary, homogenisation of low-fat milk resulted in preferential adsorption of caseins onto fat globules, rather than onto microparticles. Further heating of the milk, led to the formation of heat induced complexes with different sizes and characteristics depending on the type of MWP and the presence or not of fat. The results highlight the importance of controlling homogenisation and heat processing in yoghurt manufacture in order to induce desired changes in the surface reactivity of the microparticles and thereby promote effective protein interactions.