WorldWideScience

Sample records for altay orogenic belt

  1. New chronological evidence for Yanshanian diagenetic mineralization in China's Altay orogenic belt

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Granitoids and related pegmatitic rare-metal deposits are widespread in China's Altay region, they used to be considered as Hercynian rocks and mineral deposits. Reported here are the 40Ar-39Ar ages of potassium-rich minerals (muscovite and microcline) in the Koktokay pegmatitic rare-metal orefield and whole-rock as well as quartz fluid-inclusion Rb-Sr isochron ages of granite and ores in the Shangkelan pegmatite rare-metal orefield. The ages indicate that there are Yanshanian Diagenetic Mineralization events happening in China's Altay orogenic belt and that formation of the famous Koktokay No.3 pegmatitic rare-metal deposit endured about 30 Ma of magmatic crystallization differentiation.

  2. Discovery and Genetic Mechanism of Basic Granulite in the Altay Orogenic Belt, Xinjiang, NW China

    Institute of Scientific and Technical Information of China (English)

    LI Zilong; CHEN Hanlin; YANG Shufeng; DONG Chuanwan; XIAO Wenjiao; LI Jiliang; YE Ying; WANG Jian

    2004-01-01

    Altay granulite (AG), which represents the product of high-grade metamorphism in the lower crust, was newly found in thc Wuqiagou area, Fuyun County in the Altay orogenic belt, Northwest China. It is composed mainly of hypersthene, augite, basic plagioclase, amphibole and brown biotite. Its mineral compositions of amphibole and biotite are rich in Mg/(Mg+Fe2+) and Ti. Geochemically, the AG is enriched in Mg/(Mg+Fe2+) and A12O3, and poor in CaO, with depletion of U, Th, K and Rb contents. Furthermore, geochemical data reflect that the protolith of the AG is igneousgenetic calc-alkalinc basalt formed under an island arc environment. The AG has ∑REE of 92.38-96.58 ppm and enriched LREE model with weak positive Eu anomaly of 1.09-1.15. In the MORB normalized spider diagram, the AG shows tridoming pattern with a strong negative Nb anomaly and medium negative P and Ti anomalies, reflecting that the AG has tectonic relation with subduction or subduction-related materials. The P-Tconditions of peak metamorphism of the AG arc 750-780°C and >0.6-0.7 GPa. Retrograde metamorphism implies that the protolith of the Altay granulite might undergo a metamorphic process along a clockwise P-T trajectory. Thereforc, thc formation and evolution of thc AG may have a genetic association with continental collision/orogeny and the AG was taken into the Late Paleozoic meta-strata by way of tectonic emplacement.

  3. Middle Devonian Picrites of the Southern Margin of Altay Orogenic Belt and Implications for the Tectonic Setting and Petrogenesis

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhaochong; Yan Shenghao; Chen Bailin; Zhou Gang; He Yongkang; Chai Fengmei; He Lixin

    2005-01-01

    The Altay orogenic belt of Xinjiang in NW China represents one of the important sites of juvenile crustal growth during the Phanerozoic. However, some important issues, e.g., tectonic evolution and petrogenesis, still remain controversial. The picrites in the south margin of the Altay orogenic belt were discovered in the lower part of marine volcanic-sedimentary sequences of the northwest-striking Middle Devonian Beitashan Formation (Fm.), which consists chiefly of intermediate-basic volcanic rocks intercalated minor carbonate, siltstone and siliceous rocks. The picrites are usually highly porphyritic, and contain abundant forsteritic olivine phenocrysts with minor clinopyroxene distributed in the groundmass, which consist of olivine, clinopyroxene and plagioclase with minor Fe-Ti oxides. The MgO contents of the picrites range from 14 wt% to 22 wt% with Mg# (atomic Mg/(Mg+Fe) ratio) of 0.75-0.80. They are characterized by slightly negative Ti anomalies, remarkably negative Nb and Ta anomalies and slightly positive P and Sm anomalies with the similar abundances of HFSE as MORB on the MORB-normalized trace element patterns, all of which characterize typical island arc magmas. In combing with the southwestward migration of the magmas of the Beitashan Fm., we propose that the magmas may result from the southwestward subduction of Junggar ocean plate. The Zr/Nb ratios (23-66) of both picrites and basalts resemble the MORB (10-66), suggesting that they were derived from the MORB-like sources. However, the basalts and picrites display some distinguishable element ratios and REE patterns, e.g., Ti/V (23-35) and Zr/Sm (18-23) ratios of basalts are higher than those of picrites (14-17 and 14-15 respectively), and the basalts display flat-type REE-chondrite patterns whereas the picrites are characterized by lower total REE concentrations ((26-34)×10-6) and slight enrichment of light REE. These distinguished geochemical characteristics could be interpreted by different

  4. Discovery of ultrahigh-T spinel-garnet granulite with pure CO2 fluid inclusions from the Altay orogenic belt, NW China

    Institute of Scientific and Technical Information of China (English)

    LI Zi-long (厉子龙); CHEN Han-lin (陈汉林); SANTOSH M.; YANG Shu-feng (杨树锋)

    2004-01-01

    We first report discovery of the spinel-garnet-orthopyroxene granulite with pure CO2 fluid inclusions from the Fuyun region of the late Paleozoic Altay orogenic belt in Central Asia, NW China. The rock is characterized by an assemblage of garnet, orthopyroxene, spinel, cordierite, biotite, plagioclase and quartz. Symplectites of orthopyroxene and spinel,and orthopyroxene and cordierite indicate decompression under UHT conditions. Mineral chemistry shows that the orthopyroxenes have high XMg and Al2O3 contents (up to 9.23 wt%). Biotites are enriched in TiO2 and XMg and are stable under granulite facies conditions. The garnet and quartz from the rock carry monophase fluid inclusions which show peak melting temperatures of around -56.7 ℃, indicating a pure CO2 species being presented during the ultrahigh-T metamorphism in the Altay orogenic belt. The inclusions homogenize into a liquid phase at temperatures around 15.3-23.8℃ translating into CO2densities of the order of 0.86-0.88 g/cm3. Based on preliminary mineral paragenesis, reaction textures and petrogenetic grid considerations, we infer that the rock was subjected to UHT conditions. The CO2-rich fluids were trapped during exhumation along a clockwise P-T path following isothermal decompression under UHT conditions.

  5. Discovery of ultrahigh-T spinel-garnet granulite with pure CO2 fluid inclusions from the Altay orogenic belt, NW China.

    Science.gov (United States)

    Li, Zi-long; Chen, Han-lin; Santosh, M; Yang, Shu-feng

    2004-10-01

    We first report discovery of the spinel-garnet-orthopyroxene granulite with pure CO2 fluid inclusions from the Fuyun region of the late Paleozoic Altay orogenic belt in Central Asia, NW China. The rock is characterized by an assemblage of garnet, orthopyroxene, spinel, cordierite, biotite, plagioclase and quartz. Symplectites of orthopyroxene and spinel, and orthopyroxene and cordierite indicate decompression under UHT conditions. Mineral chemistry shows that the orthopyroxenes have high XMg and Al2O3 contents (up to 9.23 wt%). Biotites are enriched in TiO2 and XMg and are stable under granulite facies conditions. The garnet and quartz from the rock carry monophase fluid inclusions which show peak melting temperatures of around -56.7 degrees C, indicating a pure CO2 species being presented during the ultrahigh-T metamorphism in the Altay orogenic belt. The inclusions homogenize into a liquid phase at temperatures around 15.3-23.8 degrees C translating into CO2 densities of the order of 0.86-0.88 g/cm3. Based on preliminary mineral paragenesis, reaction textures and petrogenetic grid considerations, we infer that the rock was subjected to UHT conditions. The CO2-rich fluids were trapped during exhumation along a clockwise P-T path following isothermal decompression under UHT conditions.

  6. Discovery of ultrahigh-T spinel-garnet granulite with pure CO2fluid inclusions from the Altay orogenic belt, NW China*

    Science.gov (United States)

    Li, Zi-long; Chen, Han-lin; Santosh, M; Yang, Shu-feng

    2004-01-01

    We first report discovery of the spinel-garnet-orthopyroxene granulite with pure CO2 fluid inclusions from the Fuyun region of the late Paleozoic Altay orogenic belt in Central Asia, NW China. The rock is characterized by an assemblage of garnet, orthopyroxene, spinel, cordierite, biotite, plagioclase and quartz. Symplectites of orthopyroxene and spinel, and orthopyroxene and cordierite indicate decompression under UHT conditions. Mineral chemistry shows that the orthopyroxenes have high XMg and Al2O3 contents (up to 9.23 wt%). Biotites are enriched in TiO2 and XMg and are stable under granulite facies conditions. The garnet and quartz from the rock carry monophase fluid inclusions which show peak melting temperatures of around −56.7 °C, indicating a pure CO2 species being presented during the ultrahigh-T metamorphism in the Altay orogenic belt. The inclusions homogenize into a liquid phase at temperatures around 15.3–23.8 °C translating into CO2 densities of the order of 0.86–0.88 g/cm3. Based on preliminary mineral paragenesis, reaction textures and petrogenetic grid considerations, we infer that the rock was subjected to UHT conditions. The CO2-rich fluids were trapped during exhumation along a clockwise P-T path following isothermal decompression under UHT conditions. PMID:15362187

  7. Science Letters: Discovery of ultrahigh-T spinel-garnet granulite with pure CO2 fluid inclusions from the Altay orogenic belt, NW China

    Institute of Scientific and Technical Information of China (English)

    厉子龙; 陈汉林; SANTOSHM.; 杨树锋

    2004-01-01

    We first report discovery of the spinel-garnet-orthopyroxene granulite with pure CO2 fluid inclusions from the Fuyun region of the late Paleozoic Altay orogenic belt in Central Asia, NW China. The rock is characterized by an assemblage of garnet, orthopyroxene, spinel, cordierite, biotite, plagioclase and quartz. Symplectites of orthopyroxene and spinel, and orthopyroxene and cordierite indicate decompression under UHT conditions. Mineral chemistry shows that the orthopyroxenes have high XMg and Al2O3 contents (up to 9.23 wt%). Biotites are enriched in TiO2 and XMg and are stable under granulite facies conditions. The garnet and quartz from the rock carry monophase fluid inclusions which show peak melting temperatures of around -56.7℃, indicating a pure CO2 species being presented during the ultrahigh-T metamorphism in the Altay orogenic belt. The inclusions homogenize into a liquid phase at temperatures around 15.3-23.8℃ translating into CO2 densities of the order of 0.86-0.88g/cm3. Based on preliminary mineral paragenesis, reaction textures and petrogenetic grid considerations, we infer that the rock was subjected to UHT conditions. The CO2-rich fluids were trapped during exhumation along a clockwise P-T path following isothermal decompression under UHT conditions.

  8. Ambient tremors in a collisional orogenic belt

    Science.gov (United States)

    Chuang, Lindsay Yuling; Chen, Kate Huihsuan; Wech, Aaron G.; Byrne, Timothy; Peng, Wei

    2014-01-01

    Deep-seated tectonic tremors have been regarded as an observation tied to interconnected fluids at depth, which have been well documented in worldwide subduction zones and transform faults but not in a collisional mountain belt. In this study we explore the general features of collisional tremors in Taiwan and discuss the possible generation mechanism. In the 4 year data, we find 231 ambient tremor episodes with durations ranging from 5 to 30 min. In addition to a coseismic slip-induced stress change from nearby major earthquake, increased tremor rate is also highly correlated with the active, normal faulting earthquake swarms at the shallower depth. Both the tremor and earthquake swarm activities are confined in a small, area where the high attenuation, high thermal anomaly, the boundary between high and low resistivity, and localized veins on the surfaces distributed, suggesting the involvement of fluids from metamorphic dehydration within the orogen.

  9. Petrogenesis of permian sulfide-bearing mafic-ultramafic intrusions insoutheast Chinese Altay and east Tianshan, NW China

    OpenAIRE

    Gao, Jianfeng; 高剑峰

    2012-01-01

    The Central Asia Orogenic Belt is one of the largest accretionary orogenic belts in the world. In this belt, many sulfide‐bearing mafic‐ultramafic intrusions occur along faults, including the Kalatongke complex in southeast Chinese Altay and the Huangshandong intrusion in east Tianshan. The Kalatongke complex is a composite body including ~308Ma dioritic intrusion and 287Ma sulfide‐bearing mafic intrusion. The dioritic intrusion consists of biotite‐hornblende gabbro, diorite and quartz d...

  10. Tectonics and structure of Qinling orogenic belt

    Institute of Scientific and Technical Information of China (English)

    张国伟; 孟庆任; 赖绍聪

    1995-01-01

    The Qinling orogen has 2 kinds of orogenic basements.The main orogenic phase wascharacterized by the oblique subduction and collision of 3 plates at 2 suture zones.There are a numberof vertical accretionary structures under the control of deep-seated thermo-tectonic processes.The present 3-Dmodel of the.Qinling is a "flyover-like" framework.Deep geophysical field is featured by nearlysouth-north-trending anomalies,while the upper crust is dominated by east-west-trending structures.Betweenthem are the middle and lower crusts which are in a rheologieal state of the horizontally flattening.Fundamental structures of the upper crust was built during the main orogenic phase,which contains residualstructures and is intensively superposed by the late intracontinental tectonism.This tectonic model for theQinling orogen is distinct from the existing ones in that it represents a complicated development of diversetectonic regimes.This model cannot be either interpreted by an individual existing model.

  11. Geometry, kinematics and evolution of the Tongbai orogenic belt

    Institute of Scientific and Technical Information of China (English)

    HUANG Shaoying; XU Bei; WANG Changqiu; ZHAN Sheng; DENG Rongjing

    2006-01-01

    The Tongbai orogenic belt (TOB) is composed of six tectonic units. From south to north these units are: Tongbai gneiss rise (TGR); Hongyihe-Luozhuang eclogite belt (HLE); Maopo-Hujiazhai igneous rock belt (MHI); Zhoujiawan flysch belt (ZFB); Yangzhuang greenschist belt (YGB); and Dongjiazhuang marble belt (DMB).The geometry and kinematic images of the TOB include: the antiformal structures caused by a later uplift process, the top-to-north ductile shear structure that related to a process that the ultrahigh pressure rocks are brought to surface, the top-to-south ductile shear thrust and the sinistrial shear structures related to a south-north direction compression, and the east-west direction fold structures in the upper crust. In the view of the multistage subduction-collision orogenic belt, according to the characters of petrology and its distribution, geometry, kinematics and structural chronology in these tectonic units, tectonic evolution of the TOB can be divided into four stages: oceanic crust subduction during 400-300 Ma, continental collision during 270-250 Ma, continental deep subduction and uplift during 250-205 Ma and doming deformation during 200-185 Ma.

  12. How many sutures in the southern Central Asian Orogenic Belt:Insights from East XinjiangeWest Gansu (NW China)?

    Institute of Scientific and Technical Information of China (English)

    Wenjiao Xiao; Jun Luo; Chunming Han; Wei Liu; Bo Wan; Ji’en Zhang; Songjian Ao; Zhiyong Zhang; Dongfang Song; Zhonghua Tian

    2014-01-01

    How ophiolitic mélanges can be defined as sutures is controversial with regard to accretionary orogenesis and continental growth. The Chinese Altay, East Junggar, Tianshan, and Beishan belts of the southern Central Asian Orogenic Belt (CAOB) in Northwest China, offer a special natural laboratory to resolve this puzzle. In the Chinese Altay, the Erqis unit consists of ophiolitic mélanges and coherent assemblages, forming a Paleozoic accretionary complex. At least two ophiolitic mélanges (Armantai, and Kelameili) in East Junggar, characterized by imbricated ophiolitic mélanges, Nb-enriched basalts, adakitic rocks and volcanic rocks, belong to a DevonianeCarboniferous intra-oceanic island arc with some Paleozoic ophiolites, superimposed by Permian arc volcanism. In the Tianshan, ophiolitic mélanges like Kanggurtag, North Tianshan, and South Tianshan occur as part of some Paleozoic accretionary complexes related to amalgamation of arc terranes. In the Beishan there are also several ophiolitic mélanges, including the Hongshishan, XingxingxiaeShibangjing, HongliuheeXichangjing, and Liuyuan ophiolitic units. Most ophiolitic mélanges in the study area are characterized by ultramafic, mafic and other components, which are juxtaposed, or even emplaced as lenses and knockers in a matrix of some coherent units. The tectonic settings of various components are different, and some adjacent units in the same mélange show contrasting different tectonic settings. The formation ages of these various com-ponents are in a wide spectrum, varying from Neoproterozoic to Permian. Therefore we cannot assume that these ophiolitic mélanges always form in linear sutures as a result of the closure of specific oceans. Often the ophiolitic components formed either as the substrate of intra-oceanic arcs, or were accreted as lenses or knockers in subduction-accretion complexes. Using published age and paleogeographic con-straints, we propose the presence of (1) a major early Paleozoic

  13. Regional Fault Systems of Qaidam Basin and Adjacent Orogenic Belts

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The purpose of this paper is to analyze the regional fault systems of Qaidam basin and adjacent orogenic belts. Field investigation and seismic interpretation indicate that five regional fault systems occurred in the Qaidam and adjacent mountain belts, controlling the development and evolution of the Qaidam basin. These fault systems are: (1)north Qaidam-Qilian Mountain fault system; (2) south Qaidam-East Kunlun Mountain fault system; (3)Altun strike-slip fault system; (4)Elashan strike-slip fault system, and (5) Gansen-Xiaochaidan fault system. It is indicated that the fault systems controlled the orientation of the Qaidam basin, the formation and distribution of secondary faults within the basin,the migration of depocenters and the distribution of hydrocarbon accumulation belt.

  14. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Yang, Lei

    2016-10-01

    The sources of ancient zircons and the tectonic attributions and origins of metamorphic complexes in Phanerozoic accretionary orogens have long been difficult issues. Situated between the Tianshan and Inner Mongolia orogens, the Beishan orogenic collage (BOC) plays a pivotal role in understanding the accretionary processes of the southern Central Asian Orogenic Belt (CAOB), particularly the extensive metamorphic and high-strained complexes on the southern margin. Despite their importance in understanding the basic architecture of the southern CAOB, little consensus has been reached on their ages and origins. Our new structural, LA-ICP-MS zircon U-Pb and Hf isotopic data from the Baidunzi, Shibandun, Qiaowan and Wutongjing metamorphic complexes resolve current controversial relations. The metamorphic complexes have varied lithologies and structures. Detrital zircons from five para-metamorphic rocks yield predominantly Phanerozoic ages with single major peaks at ca. 276 Ma, 286 Ma, 427 Ma, 428 Ma and 461 Ma. Two orthogneisses have weighted mean ages of 294 ± 2 Ma and 304 ± 2 Ma with no Precambrian inherited zircons. Most Phanerozoic zircons show positive εHf(t) values indicating significant crustal growth in the Ordovician, Silurian and Permian. The imbricated fold-thrust deformation style combined with diagnostic zircon U-Pb-Hf isotopic data demonstrate that the metamorphic rocks developed in a subduction-accretion setting on an arc or active continental margin. This setting and conclusion are supported by the nearby occurrence of Ordovician-Silurian adakites, Nb-rich basalts, Carboniferous-Permian ophiolitic mélanges, and trench-type turbidites. Current data do not support the presence of a widespread Precambrian basement in the evolution of the BOC; the accretionary processes may have continued to the early Permian in this part of the CAOB. These relationships have meaningful implications for the interpretation of the tectonic attributions and origins of other

  15. Qinling Orogenic Belt: Its Palaeozoic- Mesozoic Evolution and Metallogenesis

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The formation, development and evolution of the Qinling orogenic belt can be divided into three stages: (1) formation and development of Precambrian basement in the Late Archaean- Palaeoproterozoic (3.0- 1.6 Ga), (2) plate evolution (0.8- 0.2 Ga), and (3) intracontinental orogeny and tectonic evolution in the Mesozoic. The Devonian (D) and Triassic (T) were the key transition period of the tectonic evolution of the Qinling orogenic belt. That is to say, in the Devonian, the Qinling micro-plate was separated from the northern margin of the Yangtze plate (passive continental margin). This period witnessed transition of the micro-plate from the compressional to extensional state, and consequently three types of sedimentary basins were formed, namely, the rift hydrothermal basin in the micro-plate, restricted ocean basin in the south, and residual ocean basin resulting from collision on the northern margin. In the Triassic the Qinling area was turned into the intracontinental orogen.The Devonian and Triassic were the main periods of enrichment of large amounts of metals. In the Devonian, many sedex-type massive Pb-Zn- (Cu)-Ag deposits were formed in the hydrothermal basins. In the Triassic (Indosinian-Yanshanian movements), many sediment-hosted disseminated gold deposits and reworked sedimentary type Pb-Zn-Hg-Sb (Au) deposits were formed in the rift hydrothermal basins. Many ductile shear zone-related gold deposits were formed in the restricted ocean basins and residual ocean basins on the two sides of the Qinling micro-plate. The above-mentioned discussion indicates that metallogenesis is not only consistent with geological events, but also controlled by them.

  16. Crustal Development in the Northeast Asian Orogenic Belt and its comparison with the Central Asian Orogenic Belt

    Science.gov (United States)

    Jahn, Bor-ming

    2016-04-01

    The Northeast Asian Orogenic Belt is a Mesozoic-Cenozoic accretionary orogenic collage, and it constitutes the northern and principal part of the "Nipponides" (Sengor and Natal'in, 1996). The tectonic framework was formed in Mesozoic and Cenozoic, and it continues to evolve along the modern Pacific arc-trench systems. Generally, a oceanward younging of tectonic units may be discerned, but such a simple pattern is disrupted in many places by extensive strike-slip faulting, most of which is left-lateral. In this talk, the issue of crustal development in the sector of Sikhote-Alin and Japanese Islands will be discussed based on the geochemical and isotopic analyses of granitoids that intruded in various tectonostratigraphic terrains. The majority of granitoids in the NE Asian Orogenic Belt formed from Jurassic to late Cenozoic, with Cretaceous as the dominant period of granitic magmatism and tectonothermal events. A few Early Paleozoic granitic rocks (500 to 450 Ma) have been identified in SW Japan (Kurosegawa Belt) as well as in NE Japan (Kitakami Belt), among them the ca. 500 Ma diorites and tonalites of southern Kitakami are the oldest rocks in Japan and interpreted as the first TTG crust of proto-Japan (Isozaki et al., 2015). Cretaceous granitoids are widespread in Sikhote-Alin and in NE and SW Japan. However, granitoids were emplaced only in the Cenozoic in Sakhalin (ca. 44 - 42 Ma) and Hokkaido (45, 37 and 18 Ma). Most granitoids from Sikhote-Alin are of I-type and have ISr = 0.7040 to 0.7083, and ɛNd(T) = +3.0 to -6.0 (mostly 0 to -5). The Sr-Nd isotopic data fall within the range of granitoids from SW Japan (0.704 to 0.712; +5.0 to -13.0), and the data of Cretaceous granitoids from Sikhote-Alin and SW Japan overlap almost completely. The Cenozoic granitoids of Hokkaido are characterized by ISr = 0.7044 - 0.7061, ɛNd(T) = +1.0 to +4.7, and Sm-Nd model-1 ages = 400-1000 Ma. This is remarkably similar to the Sakhalin granitoids with ISr = 0.7047 - 0.7050,

  17. How many sutures in the southern Central Asian Orogenic Belt: Insights from East Xinjiang–West Gansu (NW China?

    Directory of Open Access Journals (Sweden)

    Wenjiao Xiao

    2014-07-01

    Full Text Available How ophiolitic mélanges can be defined as sutures is controversial with regard to accretionary orogenesis and continental growth. The Chinese Altay, East Junggar, Tianshan, and Beishan belts of the southern Central Asian Orogenic Belt (CAOB in Northwest China, offer a special natural laboratory to resolve this puzzle. In the Chinese Altay, the Erqis unit consists of ophiolitic mélanges and coherent assemblages, forming a Paleozoic accretionary complex. At least two ophiolitic mélanges (Armantai, and Kelameili in East Junggar, characterized by imbricated ophiolitic mélanges, Nb-enriched basalts, adakitic rocks and volcanic rocks, belong to a Devonian–Carboniferous intra-oceanic island arc with some Paleozoic ophiolites, superimposed by Permian arc volcanism. In the Tianshan, ophiolitic mélanges like Kanggurtag, North Tianshan, and South Tianshan occur as part of some Paleozoic accretionary complexes related to amalgamation of arc terranes. In the Beishan there are also several ophiolitic mélanges, including the Hongshishan, Xingxingxia–Shibangjing, Hongliuhe–Xichangjing, and Liuyuan ophiolitic units. Most ophiolitic mélanges in the study area are characterized by ultramafic, mafic and other components, which are juxtaposed, or even emplaced as lenses and knockers in a matrix of some coherent units. The tectonic settings of various components are different, and some adjacent units in the same mélange show contrasting different tectonic settings. The formation ages of these various components are in a wide spectrum, varying from Neoproterozoic to Permian. Therefore we cannot assume that these ophiolitic mélanges always form in linear sutures as a result of the closure of specific oceans. Often the ophiolitic components formed either as the substrate of intra-oceanic arcs, or were accreted as lenses or knockers in subduction-accretion complexes. Using published age and paleogeographic constraints, we propose the presence of (1 a major

  18. Differential uplift between Beihuaiyang and Dabie orogenic belt

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Isotope dating,hornblende geobarometer,fission-track analysis and fluid inclusion homogeneous temperature analysis have been applied to Caledonian,Variscan and Yenshan plutons in Bei Huaiyang (BHY) and Dabie orogenic belt (DOB),and the emplaced depths and ages of these plutons have been obtained in order to obtain differential uplift time and uplift heights between BHY and DOB since late Paleozoic era.BHY had experienced three stages of uplift (C1-C2,T-J2,J3-K1) and its total uplift height is about 10 km,but,DOB had only experienced two stages of uplift (T-J2,J3-K1) and its maximum uplift height is more than 15 km.BHY uplift occurred mainly before the mid-Jurassic (about 150 Ma),but DOB uplift took place after the mid-Jurassic (about 150 Ma).

  19. Crustal structure beneath the Songpan-Garze orogenic belt

    Institute of Scientific and Technical Information of China (English)

    王椿镛; 韩渭宾; 吴建平; 楼海; 白志明

    2003-01-01

    The Benzilan-Tangke deep seismic sounding profile in the western Sichuan region passes through the Songpan-Garze orogenic belt with trend of NNE. Based on the travel times and the related amplitudes of phases in the record sections, the 2-DP-wave crustal structure was ascertained in this paper. The velocity structure has quite strong lateral variation along the profile. The crust is divided into 5 layers, where the first, second and third layer belong to the upper crust, theforth and fifth layer belong to the lower crust. The low velocity anomaly zone generally exists in the central part of the upper crust on the profile, and it integrates into the overlying low velocity basement in the area to the north of Ma.erkang. The crustal structure in the section can be divided into 4 parts: in the south of Garze-Litang fault, between Garze-Litang fault and Xianshuihe fault,between Xianshuihe fault and Longriba fault and in the north of Longriba fault,which are basically coincided with the regional tectonics division. The crustalthickness decreases from southwest to northeast along the profile, that is, from 62 km in the region of the Jinshajiang River to 52 km in the region of the Yellow River. The Moho discontinuity does not obviously change across the Xianshuihe fault based on the PmP phase analysis. The crustal average velocity along the profile is lower, about 6.30 km/s. The Benzilan-Tangke profile reveals that the crust in the study area is orogenic. The Xianshuihe fault belt is located in thecentral part of the profile, and the velocity is positive anomaly on the upper crust, and negative anomaly on the lower crust and upper mantle. It is considered as a deep tectonic setting in favor of strong earthquake's accumulation and occurrence.

  20. Dynamic Settings and Interactions between Basin Subsidence and Orogeny in Zhoukou Depression and Dabie Orogenic Belt

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a study of the geo-dynamic setting and the relation between orogenic uplift and basin subsidence in the inland Zhoukou depression and Dabie orogenic belt. Since the Mesozoic the evolution of Zhoukou depression can be divided into three stages: (1) foreland basin, (2) transitional stage, (3) fault depression. Formation and variations of basin were not only related to the orogenesis, but also consistent with the orogenic uplift.

  1. Cobalt Deposits in the Central China Orogenic Belt

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Cobalt mostly occurs as an associated metal in Cu-Ni sulphide deposits, skarn Fe-Cu-Pb-Zn deposits and volcanic-hosted massive sulphide (VHMS) or sedex deposits. There are different types of cobalt deposits in the Central China orogenic belt. In the Tamu-Kalangu Mississippi-valley type Pb-Zn deposits, many cobalt-nickel sulphide minerals were found. The cobalt content of the ore is 0.064%- 0.46% in sedex-type Kendekeke Fe-Pb-Zn-Au deposits, and cobalt sulphide veins with Co contents of 4%- 9% have also been found. About 28000 tons of cobalt reserves were delineated in the Durgoi Cu-Co-Zn deposit of VHMS type in the A'nyemaqên Mountains. It is considered that the exploration potential for cobalt is attractive in this district, especially in sedex-type deposits and Co-rich sulphide veins in sedex-type Fe, Cu and Pb-Zn deposits and their surroundings.

  2. Significance of evolution features of organic matter in studying orogenic belt

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D.; Zhang, S. [China University of Mining and Technology, Beijing (China). Dept of Resource Exploitation Engineering

    2000-07-01

    The evolution features of depositional organic matters in orogenic belt may reflect a lot of geological information such as temperature, confining pressure, stress, strain, and so on. Organic matters maybe coming into use as the sensitive temperature-pressure-meter for the reconstruction of orogenic process, especially at the stage of very low-grade metamorphism. The basic evolution law of organic matter and its controlling factors were introduced. Based on this, the possible uses of analysing the evolution features of organic matter in studying orogenic belt were discussed. 37 refs., 2 figs.

  3. Structural inversion of the Tamworth Belt: Insights into the development of orogenic curvature in the southern New England Orogen, Australia

    Science.gov (United States)

    Phillips, G.; Robinson, J.; Glen, R.; Roberts, J.

    2016-05-01

    The middle to late Permian Hunter Bowen Event is credited with the development of orogenic curvature in the southern New England Orogen, yet contention surrounds the structural dynamics responsible for the development of this curvature. Debate is largely centred on the roles of orogen parallel strike-slip and orogen normal extension and contraction to explain the development of curvature. To evaluate the dynamic history of the Hunter Bowen Event, we present new kinematic reconstructions of the Tamworth Belt. The Tamworth Belt formed as a Carboniferous forearc basin and was subsequently inverted during the Hunter Bowen Event. Kinematic reconstructions of the Tamworth Belt are based on new maps and cross-sections built from a synthesis of best-available mapping, chronostratigraphic data and new interpretations of depth-converted seismic data. The following conclusions are made from our study: (i) the Hunter Bowen Event was dominantly driven by margin normal contraction (east-west shortening; present-day coordinates), and; (ii) variations in structural style along the strike of the Tamworth Belt can be explained by orthogonal vs. oblique inversion, which reflects the angular relationship between the principal shortening vector and continental-arc margin. Given these conclusions, we suggest that curvature around the controversial Manning Bend was influenced by the presence of primary curvature in the continental margin, and that the Hastings Block was translated along a sinistral strike-slip fault system that formed along this oblique (with respect to the regional east-west extension and convergence direction) part of the margin. Given the available temporal data, the translation of the Hastings Block took place in the Early Permian (Asselian) and therefore preceded the Hunter Bowen Event. Accordingly, we suggest that the Hunter Bowen Event was dominantly associated with enhancing curvature that was either primary in origin, or associated with fault block translation

  4. Junction and Evolution of the Qinling, Qilian and Kunlun Orogenic Belts

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    As the main part of the "central mountain system" in the continent of China, the Qinling, Qilian and Kunlun orogenic belts have been comprehensively and deeply studied since the 1970s and rich fruits have been reaped. However, these achievements were mostly confined to an individual orogenic belt and the study of the mutual relationship among the three orogenic belts was obliged to depend on comparative studies. Different views were produced therefrom. The material composition and structural features of the junction region show that there are several epicontinental and intracontinental transform faults developed in different periods. Restricted by these transform faults, the large-scale lateral movements and, as a consequence, complicated magmatism and tectonic deformation took place in the orogenic belts. According to these features, the authors put forward a three-stage junction and evolution model and point out that there is not a single junction zone traversing from west to east but that the three orogenic belts have been joined progressively by the epicontinental and intracontinental transform faults.

  5. Pb Isotope Mapping in the Tongbai-Dabie Orogenic Belt, Central China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; ZHONG Zengqiu; WANG Linsen; Zhang Benren

    2008-01-01

    Tongbai-Dabie orogenic belt in Central China is a part of the collisional belt between the Yangtze and North China cratons. It represents one of the most extensive ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic rocks in the world. The Pb isotope mapping in this area is a significant method to constrain the crustal structure and tectonic evolution and to identify the tectonic boundaries within the vertical tectonic stack. Based on the Pb isotope compositions of the Dabie complex (DBC), the Tongbai complex (TBC), UHP and HP metamorphic rocks and associated foliated granites, the lower metamorphosed rocks from North Huaiyang (NHY) tectonic belt, and Cretaceous granites in the Tongbai-Dabie orogenic belt, we determined the Pb isotope geochemical map of the Tongbai-Dabie orogenic belt. The Pb isotope map shows that the Pb isotope compositions are similar within each geological body or lithotectonic unit, but the Pb isotope compositions of different lithotectonic units show systematic variations in the Tongbai-Dabie orogenic belt. The NHY tectonic belt contrasts strongly with the Tongbal-Dabie UHP-HP metamorphic belt in Pb isotope compositions.It is suggested that the line along the Xiaotian-Mozitan fault, the north limit of the Tongbai-Dabie UHP and HP metamorphic rocks, represents an important tectonic boundary. Within the Tongbai-Dabie HP -UHP metamorphic belt, to the south of Xiaotian-Mozitan fault, the vertical variations of Pb isotope compositions in different lithotectonic units and the spatial relationship among different major lithotectonic units have been constrained.

  6. The Pattern and Evolution of the Permian Palaeobiogeography and Tectonic Palaeogeography in Jilin and Heilongjiang Orogenic Belt

    Institute of Scientific and Technical Information of China (English)

    Peng Xiangdong; Li Xiaomin; Liu Pengju

    2000-01-01

    The orogenic belt locates between the North China plate and Siberia plate. The Permian palaeobiogeography and tectonic palaeogeography changed quickly and clearly. The line from Changchun to Yanji is an important palaeobiogeographic provincing line, which may be the collission suture belt of the North China plate and north middle massifs. The orogenic belt has been divided into 2 regions: the North middle massif region and the North Margin of North China plate, the pattern and evolution of Permian palaeobiogeography in the present area were discussed and the Permian biota mixture and its significants were analysed. Then, Based on the above, the Permian tectonic palaeogeography of the orogenic belt is reconstructed.

  7. Evidence of Early Cretaceous transpression in the Sulu orogenic belt, eastern China

    Science.gov (United States)

    Wang, Jun; Chang, Su-Chin; Lin, Peijun; Zhu, Xiaoqing; Fu, Yongtao; Zhang, Haichun

    2016-09-01

    Recent studies have documented marine turbidites with syn-sedimentary deformation features in the central Sulu orogenic belt of eastern China. These units preserve essential information on the Late Mesozoic evolution of the Sulu orogenic belt. Referred to as the Baxiandun Formation, the turbidites exhibit similar lithologic characteristics to nearby units such as the Lingshandao Formation that have been well studied even though precise geochronologic constraints are lacking for a more precise correlation. This study reports detrital zircon Usbnd Pb age data that correlate the Baxiandun Formation turbidites of the central Sulu orogenic belt to the Early Cretaceous Lingshandao Formation. We also report Al-in-hornblende emplacement depth estimates for granitic intrusions of the Sulu orogenic belt's Laoshan mountain. A sharp contact between the Laoshan granites and the marine Baxiandun Formation indicates that the Baxiandun basin rapidly subsided to the emplacement depth of the Laoshan plutons. Lateral correlation among the marine turbidites, the Lingshandao and Baxiandun Formations, combined with information established by previous studies indicates initiation of transpressional tectonics at 122-121 Ma. Transpression ceased with the emplacement of the Laoshan granites, whose A1-type composition indicates a return to extensional tectonics at ca. 111 Ma.

  8. Orogen-scale L tectonite domain in the Tongbai orogenic belt, central China: Geological setting and origin

    Science.gov (United States)

    Liu, Huan; Lin, Shoufa; Song, Chuanzhong

    2017-01-01

    L tectonite is well developed and widely distributed in the Tongbai orogenic belt in central China. The orogenic belt as a whole has an antiformal geometry and the hinge of the antiform is subhorizontal and trends NW-SE. The L tectonite occurs in the core of the antiform, in a zone that is 10-30 km wide and over 100 km long. Lineations in the L tectonite are sub-horizontal, parallel to the hinge of the antiform. Sheath folds are also well developed associated with the L tectonite, with the hinges parallel to the lineations. Migmatite occurs in the core and structurally below the L tectonite and has a gradational relationship with the L tectonite. The domain of L tectonite is bounded by three ductile shear zones, on the north, at the top and on the south, respectively. Well-developed shear sense indicators indicate that the southern, the overlying and the northern shear zones have a dextral, top-to-NW and sinistral sense of shear, respectively. These geometrical and kinematic data indicate that the three shear zones are likely part of a single shear zone that wraps around the L-tectonite domain. The L-tectonite zone in the core moves southeast relative to the hanging wall. The development of the tectonite is interpreted to be a result of this special geometry and kinematics and reflects a post-collisional orogen-parallel extension synchronous with migmatization and the continuing convergence between the Yangtze Block and the North China Block in the Early Cretaceous.

  9. A preliminary study on the lithospheric thermal-rheological structure of the East Qinling orogenic belt

    Institute of Scientific and Technical Information of China (English)

    CHENG Shunyou; ZHANG Guowei; DIAO Bo; GUO Anlin; YU Xiangni

    2007-01-01

    This paper considers the lithospheric rheological structure of the East Qinling orogenic belt to explore its geodynamics. The lithospheric rheological structure was calculated by the constraints of the lithospheric temperature structure. The thermal-rheological stratification structures of the lithosphere in the East Qinling orogenic belt present different features from each other within different tectonic units. The hinterland fault-bounded fold zone (HLZ) and the North Qinling thick-skinned imbricated thrust zone (NQL) in the northern half part of the Qinling orogen, with a tempera-ture of 305℃ for the Moho boundary, are characterized by "cold" geotherm, thickened lithosphere and the model C for rheological stratification structure. The South Qinling tectonic zone (SQL), with a mean temperature of 642℃ and a high temperature of 826℃ for the Moho boundary, has obvious features with the model H of"hot" geotherm, thinned lithosphere and intensive rheological behavior within moderate-lower crust and top of the upper mantle. During post-orogenesis, the NQL, being the convergent frontal region of continental subduction beneath the Qinling orogen by both the North China craton (NC) and Yangtze craton (YZ), is in a coexistence period of a dominantly thickened lithosphere and an initial delamination, and the SQL, proba-bly under pluming, has been developing new delamination and underplating and partial melting within the crust in its axel area and recycling for mass and energy (in the forms of heat transfer and convection) between the crust and mantle.

  10. Three-dimentional architecture and dynamic analysis of the Qinling Orogenic Belt

    Institute of Scientific and Technical Information of China (English)

    张国伟; 郭安林; 刘福田; 肖庆辉; 孟庆任

    1996-01-01

    On the basis of synthetic studies of geology, geophysics and geochemistry, the present Qinling Orogenic Belt can be described as a 3-D "flyover-type" geometric model with rheological layering structures. Furthermore, the tectonic dynamic analyses have been done based on the structural geometry and kinematic features. Thus it can be concluded that its present structure has resulted from an adjustment of deep-seated mantle dynamics and lithosphere coupling relationship since the Mesozoic-Cenozoic time.

  11. Differential uplift between Beihuaiyang and Dabie orogenic belt

    Institute of Scientific and Technical Information of China (English)

    杨坤光; 马昌前; 许长海; 杨巍然

    2000-01-01

    Isotope dating, hornblende geobarometer, fission-track analysis and fluid inclusion homogeneous temperature analysis have been applied to Caledonian, Variscan and Yenshan plutons in Bei Huaiyang (BHY) and Dabie erogenic belt (DOB), and the emplaced depths and ages of these plutons have been obtained in order to obtain differential uplift time and uplift heights between BHY and DOB since late Paleozoic era. BHY had experienced three stages of uplift (C1-C2, T-J2, J3-K1) and its total uplift height is about 10 km, but, DOB had only experienced two stages of uplift (T-J2, J3-K1) and its maximum uplift height is more than 15 km. BHY uplift occurred mainly before the mid-Jurassic (about 150 Ma), but DOB uplift took place after the mid-Jurassic (about 150 Ma).

  12. Axial Belt Provenance: modern river sands from the core of collision orogens

    Science.gov (United States)

    Resentini, A.; Vezzoli, G.; Paparella, P.; Padoan, M.; Andò, S.; Malusà, M.; Garzanti, E.

    2009-04-01

    Collision orogens have a complex structure, including diverse rock units assembled in various ways by geodynamic processes. Consequently, orogenic detritus embraces a varied range of signatures, and unravelling provenance of clastic wedges accumulated in adjacent foreland basins, foredeeps, or remnant-ocean basins is an arduous task. Dickinson and Suczek (1979) and Dickinson (1985) recognized the intrinsically composite nature of orogenic detritus, but did not attempt to establish clear conceptual and operational distinctions within their broad "Recycled Orogenic Provenance". In the Alpine and Himalayan belts, the bulk of the detritus is produced by focused erosion of the central backbone of the orogen, characterized by high topography and exhumation rates (Garzanti et al., 2004; Najman, 2006). Detritus derived from such axial nappe pile, including slivers of thinned continental-margin lithosphere metamorphosed at depth during early collisional stages, has diagnostic general features, which allows us to define an "Axial Belt Provenance" (Garzanti et al., 2007). In detail, "Axial Belt" detrital signatures are influenced by metamorphic grade of source rocks and relative abundance of continental versus oceanic protoliths, typifying distinct subprovenances. Metasedimentary cover nappes shed lithic to quartzolithic detritus, including metapelite, metapsammite, and metacarbonate grains of various ranks; only amphibolite-facies metasediments supply abundant heavy minerals (e.g., almandine garnet, staurolite, kyanite, sillimanite, diopsidic clinopyroxene). Continental-basement nappes shed hornblende-rich quartzofeldspathic detritus. Largely retrogressed blueschist to eclogite-facies metaophiolites supply albite, metabasite and foliated antigorite-serpentinite grains, along with abundant heavy minerals (epidote, zoisite, clinozoisite, lawsonite, actinolitic to barroisitic amphiboles, glaucophane, omphacitic clinopyroxene). Increasing metamorphic grade and deeper

  13. BASIN-RANGE SYSTEM EVOLUTION OF QINLING-DABIE OROGENIC BELT AND ITS IMPACT ON REGIONAL ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    HU Baoqing; ZENG Qiaosong; LIU Shunsheng; WANG Shijie

    2004-01-01

    As the structural body related to temporal-spatial evolution and tectonic dynamic system, the orogenic belt and basin are not only dependent on each other in space but also closely related with each other in terms of infrastructure, matter transference and dynamic mechanisms. By using apatite fission-track method, the authors firstly analyze the uplift and denudation ratios of the Qinling-Dabie orogenic belt, and by using tectonically deformed combination analysis and tectonic-thermal simulation the main geological occurrences are also illustrated. It is found that there must have had multi-phase differential uplift and denudation phenomena in the Qinling-Dabie orogenic belt during the Mesozoic-Cenozoic. Then, the regional evolution pattern of qualitative and quantitative denudation process is obtained during the post-orogenic period. On the basis of summarizing evolution process of the basin-range system in the Qinling-Dabie orogenic belt during the Mesozoic-Cenozoic and its effects on regional environment, the influence of evolution process on geomorphologic landscapes change, water system vicissitude, eco-environment succession and drainage basin system evolution is discussed.

  14. Tectono-metamorphic evolution of the internal zone of the Pan-African Lufilian orogenic belt (Zambia): Implications for crustal reworking and syn-orogenic uranium mineralizations

    Science.gov (United States)

    Eglinger, Aurélien; Vanderhaeghe, Olivier; André-Mayer, Anne-Sylvie; Goncalves, Philippe; Zeh, Armin; Durand, Cyril; Deloule, Etienne

    2016-01-01

    The internal zone of the Pan-African Lufilian orogenic belt (Zambia) hosts a dozen uranium occurrences mostly located within kyanite micaschists in a shear zone marking the contact between metasedimentary rocks attributed to the Katanga Neoproterozoic sedimentary sequence and migmatites coring domes developed dominantly at the expense of the pre-Neoproterozoic basement. The P-T-t-d paths reconstructed for these rocks combining field observations, microstructural analysis, metamorphic petrology and thermobarometry and geochronology indicate that they have recorded burial and exhumation during the Pan-African orogeny. Both units of the Katanga metasedimentary sequence and pre-Katanga migmatitic basement have underwent minimum peak P-T conditions of ~ 9-11 kbar and ~ 640-660 °C, dated at ca. 530 Ma by garnet-whole rock Lu-Hf isochrons. This suggests that this entire continental segment has been buried up to a depth of 40-50 km with geothermal gradients of 15-20 °C.km- 1 during the Pan-African orogeny and the formation of the West Gondwana supercontinent. Syn-orogenic exhumation of the partially molten root of the Lufilian belt is attested by isothermal decompression under P-T conditions of ~ 6-8 kbar at ca. 530-500 Ma, witnessing an increase of the geothermal gradients to 25-30 °C·km- 1. Uranium mineralizations that consist of uraninite and brannerite took place at temperatures ranging from ~ 600 to 700 °C, and have been dated at ca. 540-530 Ma by U-Pb ages on uraninite. The main uranium deposition thus occurred at the transition from the syn-orogenic burial to the syn-orogenic exhumation stages and has been then partially transposed and locally remobilized during the post-orogenic exhumation accommodated by activation of low-angle extensional detachment.

  15. Geochemical Characteristics and Implications of Eclogite Gravels from Mesozoic Strata at the Northern Margin of Dabie Orogenic Belt

    Institute of Scientific and Technical Information of China (English)

    李双应; 岳书仓; 王道轩; 刘因; 李任伟; 孟庆任; 金福全

    2004-01-01

    The eclogite gravels, which were found in the Mesozoic Fenghuangtai and Maotanchang formations on the northern margin of the Dabie orogenic belt, are rich in K2O ( 1.21% ), ∑REE (278μg/g), and LILE (such as Rb, Ba, K, Th, etc.), with high (La/Yb)N ratios ( 14.4 ), on the basis of the analyses of major elements, rare-earth elements (REE) and trace elements. Their enrichment in LILE, notable Nb-Ta depletion through, and depletion in HFSE relative to REE in comparison with the primitive mantle and N-MORB indicate that the protoliths of the eclogite gravels were formed in an island-arc setting. According to the Th-Hf-Ta discrimination diagram, the protoliths of the eclogite gravels are characterized by volcanic arc basalts. Trace element data indicate that the subducted marine sediments were assimilated in the magma chamber, resulting in the enrichment of LILE in the protoliths. Therefore, the protoliths of the eclogite gravels are considered to have been formed in an inland-arc setting, indicating that there had developed a paleo-inland arc before Triassic collision between the North and South China blocks in the Dabie orogenic belt. There is a marked difference between the eclogite gravels and the eclogites developed along the Dabie orogenic belt, solely based on their geochemical data, especially REE. Therefore, the eclogite gravels may not be derived from eclogite terrains preserved in the Dabie orogenic belt.

  16. Genesis of Yangla Banded Skarn-Hosted Copper Deposit in Tethys Orogenic Belt of Southwestern China

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Yangla copper deposit is the largest banded skarn-hosted copper deposit found recently in the Tethys orogenic belt of Southwestern China. On the basis of the study of distribution, petrology and mineralogy as well as major element, REE and isotope geochemistry, the authors find that the banded skarn, which hosts the deposit, was precipitated from hydrothermal solutions in the form of exhalate sediment. Therefore, the banded skarn-hosted copper deposit is a Sedex-type deposit, with a series of stacked, conformable lenses underlain by at least one stringer zone. The deposit, intercalated at the contact of lower clastic rock and upper carbonate rock of Gajinxueshan Group, was formed in the Carboniferous ((296.1±7.0) Ma), contemporary to the host Gajinxueshan Group. The interpretation of the genesis of Yangla banded skarn-hosted copper deposit is of fundamental exploration significance for the discovery of Sedex-type copper deposit in the region.

  17. Crust-Mantle Interaction in Dabie Orogenic Belt, Central China: Geochemical Evidence from Late Cretaceous Basalts

    Institute of Scientific and Technical Information of China (English)

    匡少平; 张本仁

    2003-01-01

    It has been suggested that eclogites in the Dabie orogenic belt are exhumation prod-ucts, which had subducted into the deep-seated mantle and undergone ultra-high pressure meta-morphism during the Triassic. But no direct evidence supports this process except the calculatedp-T conditions from mineral thermobarometers. The Late Cretaceous basalts studied in the pres-ent paper, however, have provided some geochemical evidence for crust-mantle interaction inthe area. These basalts are distributed in Mesozoic faulted basins in central and southern Dabieorogenic belt. Since little obvious contamination from continental crust and differentiation-crys-tallization were observed, it is suggested, based on a study of trace elements, that the basaltsare alkaline and resultant from batch partial melting of the regional mantle rocks, and share thesame or similar geochemical features with respect to their magma source. In the spider diagramnormalized by the primitive mantle, trace element geochemistry data show that their mantlesources are enriched in certain elements concentrated in the continental crust, such as Pb, K,Rb and Ba, and slightly depleted in some HFSE such as Hf, P and Nb. Pb-Sr-Nd isotopic com-positions further suggest the mantle is the mixture of depleted mantle (DM) and enriched one( EMI + EMII). This interaction can.explain the trace element characteristics of basaltic mag-mas, i.e. , the enrichment of Pb and the depletion of Hr, P and Nb in basalts can be interpre-ted by the blending of the eclogites in DOB (enriched in Pb and depleted in Hf, P and Nd)with the East China depleted mantle (As compared to the primitive mantle, it is neither en-riched in Pb nor depleted in Hf, P and Nb). It is also indicated that the eclogites in the Dabieorogenic belt were surely derived from the exhumation materials, which had delaminated into thedeep-seated mantle. Moreover, the process subsequently resulted in compositional variation ofthe mantle (especially in trace elements

  18. Yanshanian Magma-Tectonic-Metallogenic Belt in East China of Circum-Pacific Domain (Ⅰ):Igneous Rocks and Orogenic Processes

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Yanshanian igneous rocks in the East China, on an orogenic belt scale, are characterized by the continental marginal arc in petrology and geochemistry as Andes and West USA, except for the Hercyn-type biotite-two mica-muscovite granite belt in the Nanling region. Three segments of the Yanshanian igneous rocks along the belt are recognized. In terms of magma-tectonic event sequence, the north, middle and south segments have counter-clockwise (ccw), clockwise (cw) and ccw+cw pTt paths of the orogenic process, respectively. A genetic model of the lithospheric delamination (loss of the lithospheric root in about 120 km) in combination with the oceanic subduction for the Yanshanian Andes-like orogenic belt and both the crust and lithosphere thickening for the Yanshanian Hercyn-type Nanling orogenic belt in the East China is suggested.

  19. Remelting of subducted continental lithosphere:Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt

    Institute of Scientific and Technical Information of China (English)

    ZHAO ZiFu; ZHENG YongFei

    2009-01-01

    The Dabie-Sulu orogenic belt was formed by the Triassic continental collision between the South China Block and the North China Block.There is a large area of Mesozoic magmatic rocks along this orogenic belt,with emplacement ages mainly at Late Triassic,Late Jurassic and Early Cretaceous.The Late Triassic alkaline rocks and the Late Jurassic granitoids only crop out in the eastern part of the Sulu orogen,whereas the Early Cretaceous magmatic rocks occur as massive granitoids,sporadic intermediate-mafic intrusive and volcanic rocks throughout the Dabie-Sulu orogenic belt.Despite the different ages for their emplacement,the Mesozoic magmatic rocks are all characterized not only by enrichment of LREE and LILE but depletion of HFSE,but also by high initial Sr isotope ratios,low εNd(t) values and low radiogeneic Pb isotope compositions.Some zircons from the Jurassic and Cretaceous granitoids contain inherited magmatic cores with Neoprotozoic and Triassic U-Pb ages.Most of the Cretaceous mafic rocks have zircon δ18O values and whole-rock δ1C values lower than those for the normal mantle.A systematic comparison with adjacent UHP metaigneous rocks shows that the Mesozoic granitoids and mafic rocks have elemental and isotopic features similar to the UHP metagranite and metabasite,respectively.This indicates that these magmatic and metamorphic rocks share the diagnostic features of lithospheric source that has tectonic affinity to the northern edge of the South China Block.Their precursors underwent the UHP metamorphism and the post-collisional anatexis,respectively at different times and depths.Therefore,the Mesozoic magmatic rocks were derived from anatexis of the subducted continental lithosphere itself beneath the collision-thickened orogen;the geodynamic mechanism of the post-collisional magmatisms is tectonic collapse of orogenic roots in response to lithospheric extension.

  20. Remelting of subducted continental lithosphere: Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Dabie-Sulu orogenic belt was formed by the Triassic continental collision between the South China Block and the North China Block. There is a large area of Mesozoic magmatic rocks along this orogenic belt, with emplacement ages mainly at Late Triassic, Late Jurassic and Early Cretaceous. The Late Triassic alkaline rocks and the Late Jurassic granitoids only crop out in the eastern part of the Sulu orogen, whereas the Early Cretaceous magmatic rocks occur as massive granitoids, sporadic intermedi- ate-mafic intrusive and volcanic rocks throughout the Dabie-Sulu orogenic belt. Despite the different ages for their emplacement, the Mesozoic magmatic rocks are all characterized not only by enrichment of LREE and LILE but depletion of HFSE, but also by high initial Sr isotope ratios, low εNd(t) values and low radiogeneic Pb isotope compositions. Some zircons from the Jurassic and Cretaceous granitoids contain inherited magmatic cores with Neoprotozoic and Triassic U-Pb ages. Most of the Cretaceous mafic rocks have zircon δ18O values and whole-rock δ13C values lower than those for the normal mantle. A systematic comparison with adjacent UHP metaigneous rocks shows that the Mesozoic granitoids and mafic rocks have elemental and isotopic features similar to the UHP metagranite and metabasite, respectively. This indicates that these magmatic and metamorphic rocks share the diagnostic features of lithospheric source that has tectonic affinity to the northern edge of the South China Block. Their precursors underwent the UHP metamorphism and the post-collisional anatexis, respectively at different times and depths. Therefore, the Mesozoic magmatic rocks were derived from anatexis of the subducted continental lithosphere itself beneath the collision-thickened orogen; the geodynamic mechanism of the post-collisional magmatisms is tectonic collapse of orogenic roots in response to lithospheric extension.

  1. Polyphase Neoproterozoic orogenesis within the east Africa- Antarctica orogenic belt in central and northern Madagascar

    Science.gov (United States)

    Key, R.M.; Pitfield, P.E.J.; Thomas, Ronald J.; Goodenough, K.M.; Waele, D.; Schofield, D.I.; Bauer, W.; Horstwood, M.S.A.; Styles, M.T.; Conrad, J.; Encarnacion, J.; Lidke, D.J.; O'connor, E. A.; Potter, C.; Smith, R.A.; Walsh, G.J.; Ralison, A.V.; Randriamananjara, T.; Rafahatelo, J.-M.; Rabarimanana, M.

    2011-01-01

    Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa-Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820-760 Ma, 630-595 Ma and 560-520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global 'Terminal Pan-African' event (560-490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. ?? The Geological Society of London 2011.

  2. CHIME dating method and its application to the analysis of evolutional history of orogenic belts

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuhiro; Adachi, Mamoru; Kato, Takenori; Yogo, Setsuo [Nagoya Univ. (Japan)

    1999-03-01

    This paper outlines the CHIME (chemical Th-U-total Pb isochron method: Suzuki and Adachi, 1991a, b; Adachi and Suzuki, 1992) dating method and reviews its application to the event analysis of orogenic belts. The reviewed examples of the CHIME geochronology include (1) the electron microprobe observations of Pb diffusion in metamorphosed detrital monazites from high-grade Ryoke paragneisses (Suzuki et al., 1994), (2) the recycled Precambrian clastic materials from the Mino terrane (Adachi and Suzuki, 1993, 1994), (3) the late Permian-early Triassic metamorphism and plutonism in the Hida terrane (Suzuki and Adachi, 1991b, 1994), (4) the relationship between the Hikami Granite and Siluro-Devonian clastic rocks in the South Kitakami terrane (Suzuki et al, 1992; Adachi et al., 1994), and (5) the denudation history of the high T/P Ryoke metamorphic belt (Suzuki and Adachi, 1998). The CHIME dating method is based on precise electron microprobe analyses of Th, U and Pb as low as 0.01wt.% in an area of 5 {mu}m across within a single grain of compositionally ununiformed Th-and U-bearing accessory minerals like monazite and zircon. This method has an advantage of high spatial resolution, and provides a new vista on the study of igneous, metamorphic and sedimentary rocks that underwent complex thermo-tectonic history. Monazite is most suitable to the CHIME dating, since it shows a concordant Th-U-Pb relation, contains 5-20 wt.% ThO{sub 2} and 0.1-1.5wt.% UO{sub 2} that can produce 0.01-0.06wt.% PbO during 50 Myr, and remains immune to significant Pb-loss during the sillimanite grade metamorphism; it has great chronological potential for the analysis of the detailed sequence of geologic events. (author)

  3. Strong Lg-wave attenuation in the Middle East continental collision orogenic belt

    Science.gov (United States)

    Zhao, Lian-Feng; Xie, Xiao-Bi

    2016-04-01

    Using Lg-wave Q tomography, we construct a broadband crustal attenuation model for the Middle East. The QLg images reveal a relationship between attenuation and geological structures. Strong attenuation is found in the continental collision orogenic belt that extends from the Turkish and Iranian plateau to the Pamir plateau. We investigate the frequency dependence of QLg in different geologic formations. The results illustrate that QLg values generally increase with increasing frequency but exhibit complex relationships both with frequency and between regions. An average QLg value between 0.2 and 2.0 Hz, QLg (0.2-2.0 Hz), may be a critical index for crustal attenuation and is used to infer the regional geology. Low-QLg anomalies are present in the eastern Turkish plateau and correlate well with low Pn-velocities and Cenozoic volcanic activity, thus indicating possible partial melting within the crust in this region. Very strong attenuation is also observed in central Iran, the Afghanistan block, and the southern Caspian Sea. This in line with the previously observed high crustal temperature, high-conductivity layers, and thick marine sediments in these areas, suggests the high Lg attenuation is caused by abnormally high tectonic and thermal activities.

  4. Mianlüe tectonic zone and Mianlüe suture zone on southern margin of Qinling-Dabie orogenic belt

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The Mianlue tectonic zone (Mianlue zone), an ancient suture zone in addition to theShangdan suture in the Qinling-Dabie orogenic belt, marks an important tectonic division geo-logically separating north from south and connecting east with west in China continent. To de-termine present structural geometry and kinematics in the Mianlue tectonic zone and to recon-struct the formation and evolution history involving plate subduction and collision in theQinling-Dabie orogenic belt, through a multidisciplinary study, are significant for exploring themountain-building orogenesis of the central orogenic system and the entire process of the majorChinese continental amalgamation during the Indosinian.

  5. Petrology, geochemistry and geodynamics of basic granulite from the Altay area, North Xinjiang, China.

    Science.gov (United States)

    Li, Zi-Long; Chen, Han-Lin; Yang, Shu-Feng; Dong, Chuan-Wan; Xiao, Wen-Jiao

    2004-08-01

    The basic granulite of the Altay orogenic belt occurs as tectonic lens in the Devonian medium- to lower-grade metamorphic beds through fault contact. The Altay granulite (AG) is an amphibole plagioclase two-pyroxene granulite and is mainly composed of two pyroxenes, plagioclase, amphibole and biotite. Its melano-minerals are rich in Mg/(Mg+Fe2+), and its amphibole and biotite are rich in TiO2. The AG is rich in Mg/(Mg+Fe2+), Al2O3 and depletion of U, Th and Rb contents. The AG has moderate SigmaREE and LREE-enriched with weak positive Eu anomaly. The AG shows island-arc pattern with negative Nb, P and Ti anomalies, reflecting that formation of the AG may be associated with subduction. Geochemical and mineral composition data reflect that the protolith of the AG is calc-alkaline basalt and formed by granulite facies metamorphism having peak P-T conditions of 750 degrees C-780 degrees C and 0.6-0.7 Gpa. The AG formation underwent two stages was suggested. In the early stage of oceanic crustal subduction, calc-alkaline basalt with island-arc environment underwent granulite facies metamorphism to form the AG in deep crust, and in the late stage, the AG was thrust into the upper crust.

  6. Petrology, geochemistry and geodynamics of basic granulite from the Altay area, North Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    厉子龙; 陈汉林; 杨树锋; 董传万; 肖文交

    2004-01-01

    The basic granulite of the Altay orogenic belt occurs as tectonic lens in the Devonian medium- to lower-grade metamorphic beds through fault contact. The Altay granulite (AG) is an amphibole plagioclase two-pyroxene granulite and is mainly composed of two pyroxenes, plagioclase, amphibole and biotite. Its melano-minerals are rich in Mg/(Mg+Fe2+),and its amphibole and biotite are rich in TiO2. The AG is rich in Mg/(Mg+Fe2+), Al2O3 and depletion of U, Th and Rb contents. The AG has moderate ∑REE and LREE-enriched with weak positive Eu anomaly. The AG shows island-arc pattern with negative Nb, P and Ti anomalies, reflecting that formation of the AG -05 be associated with subduction. Geochemical and mineral composition data reflect that the protolith of the AG is calc-alkaline basalt and formed by granulite facies metamorphism having peak P-T conditions of 750 ℃-780 ℃ and 0.6-0.7 Gpa. The AG formation underwent two stages was suggested. In the early stage of oceanic crustal subduction, calc-alkaline basalt with island-arc environment underwent granulite facies metamorphism to form the AG in deep crust, and in the late stage, the AG was thrust into the upper crust.

  7. Petrology, geochemistry and geodynamics of basic granulite from the Altay area, North Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    厉子龙; 陈汉林; 杨树锋; 董传万; 肖文交

    2004-01-01

    The basic granulite of the Altay orogenic belt occurs as tectonic lens in the Devonian medium- to lower-grade metamorphic beds through fault contact. The Altay granulite (AG) is an amphibole plagioclase two-pyroxene granulite and is mainly composed of two pyroxenes, plagioclase, amphibole and biotite. Its melano-minerals are rich in Mg/(Mg+Fe2+),and its amphibole and biotite are rich in TiO2. The AG is rich in Mg/(Mg+Fe2+), Al2O3 and depletion of U, Th and Rbcontents. The AG has moderate ∑REE and LREE-enriched with weak positive Eu anomaly. The AG shows island-arc pattern with negative Nb, P and Ti anomalies, reflecting that formation of the AG may be associated with subduction. Geochemical and mineral composition data reflect that the protolith of the AG is calc-alkaline basalt and formed by granulite facies metamorphism having peak P-T conditions of 750℃-780℃ and 0.6-0.7 Gpa. The AG formation underwent two stages was suggested. In the early stage of oceanic crustal subduction, calc-alkaline basalt with island-arc environment underwent granulite facies metamorphism to form the AG in deep crust, and in the late stage, the AG was thrust into the upper crust.

  8. Shear wave velocity structure of the crust and upper mantle underneath the Tianshan orogenic belt

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    From April, 2003 to September, 2004, a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. Among them, 51 stations make up an about 500-km-long profile across the Tianshan Mountains from Kuytun to Kuqa. The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km deep are obtained by using the re-ceiver function method (Liu et al. 1996, 2000). The main results can be summarized as follows: (1) A clear mountain root does not exist beneath the Tianshan Mountains, and the crust-mantle boundaries underneath the stations mostly have transitional structures. This implies that the material differentia-tion between the crust and mantle is not yet accomplished and the orogenic process is still going on. (2) The crust beneath the Tianshan Mountains has laterally blocked structures in direction perpendicular to the mountain strike, and the crust-mantle boundary has a clear dislocation structure. Both of them correspond to each other. (3) The offsets of the Moho discontinuity are highly correlated to the tectonic borders on the surface and that corresponding to the frontal southern Tianshan fault reaches to 14 km. This manifests that large vertical divergent movement took place between different blocks. This sup-ports the discontinuous model of the Tianshan orogeny, and the Tarim block subduction is restricted only to the southern side of the South Tianshan. (4) Inside the upper and middle crust of the Tianshan Mountains exist several low-velocity bodies correlated with high seismicity located on the moun-tain-basin jointures on both sides of the mountain and between different blocks, and the low-velocity bodies on the mountain-basin jointures are inclined obviously to the mountain. This implies that the low-velocity bodies may be correlated closely to the thrust and subduction of

  9. Late Paleozoic tectonic evolution and concentrated mineralization in Balkhash and West Junggar, western part of the Central Asian Orogenic Belt

    Science.gov (United States)

    Dong, Shuwen; Chen, Xuanhua; Chen, Zhengle

    2016-04-01

    The Central Asia Orogenic Belt (CAOB) is an important area with significant growth of the crust and metallogeny in the Late Paleozoic. The Balkhash-Junggar tectono-metallogenic belt consists of the Balkhash, the West Junggar, and the East Junggar tectono-metallogenic belts in western part of the Central Asian Orogenic Belt (CAOB). According to the structural geological relationship, the East Junggar, the West Junggar, and the Balkhash belts are considered to be once a continuous E-W-trending tectono-metallogenic belt in Late Carboniferous. The West Junggar belt is featured with NE-trending left-lateral strike-slip faulting tectonic system (WJTS), while the left-lateral strike-slip faults are E-W-trending in the Balkhash belt. The WJTS consists of the Darabut, the Mayile, and the Baerluke faults, and the blocks among them. All these left-lateral strike-slip faults are forming due to the transition of tectonic settings from syn-collisional orogeny to post-collisional extension during the closure of the ocean (the Junggar Sea) in Late Carboniferous, with significant intrusion of batholiths and crust growth occurred in this period. These faults are truncated by the right-lateral strike-slip faults, such as the Chingiz-Junggar fault, and the Central Balkhash fault in Mesozoic. The Balkhash-Junggar tectono-metallogenic belt is important for the occurrence of many well-known super-large and large porphyry Cu-Mo deposits (such as the Kounrad, the Aktogai, the Borly, and the Baogutu deposits), large skarn Cu deposits (in the Sayak ore-filed), large rare metal deposits (such as the East Kounrad, the Zhanet, and the Akshatau deposits), and large gold deposits (such as the Hatu deposit). Zircon U-Pb ages, Re-Os isotopic dating of molybdenites, 40Ar/39Ar thermochronology of hornblendes, muscovites, biotites, and K-feldspars, and zircon and apatite fission track (FT) and (U-Th)/He dating and thermal history modeling, provide a multidisciplinary approach to constrain the whole

  10. Kanfenggou UHP Metamorphic Fragment in Eastern Qinling Orogen and Its Relationship to Dabie-Sulu UHP and HP Metamorphic Belts, Central China

    Institute of Scientific and Technical Information of China (English)

    Suo Shutian; Zhong Zengqiu; Zhou Hanwen; You Zhendong

    2003-01-01

    In the Central Orogenic Belt, China, two UHP metamorphic belts are discriminated mainly based on a detailed structural analysis of the Kanfenggou UHP metamorphic fragment exposed in the eastern Qinling orogen, and together with previous regional structural, petrological and geochronological data at the scale of the orogenic domain. The first one corresponds to the South Altun-North QaidamNorth Qinling UHP metamorphic belt. The other is the Dabie-Sulu UHP and HP metamorphic belts. The two UHP metamorphic belts are separated by a series of tectonic slices composed by the Qinling rock group, Danfeng rock group and Liuling or Foziling rock group etc. respectively, and are different in age of the peak UHP metamorphism and geodynamic implications for continental deep subduction and collision. Regional field and petrological relationships suggest that the Kanfenggou UHP metamorphic fragment that contains a large volume of the coesite- and microdiamond-bearing eclogite lenses is compatible with the structures recognized in the South Altun and North Qaidam UHP metamorphic fragments exposed in the western part of China, thereby forming a large UHP metamorphic belt up to 1 000 km long along the orogen strike. This UHP metamorphic belt represents an intercontinental deep subduction and collision belt between the Yangtze and Sino-Korean cratons, occurred during the Paleozoic. On the other hand, the well-constrained Dabie-Sulu UHP and HP metamorphic belts occurred mainly during Triassic time (250-220 Ma), and were produced by the intrucontinental deep subduction and collision within the Yangtze craton. The Kanfenggou UHP metamorphic fragment does not appear to link with the Dabie-Sulu UHP and HP metamorphic belts along the orogen. There is no reason to assume the two UHP metamorphic belts us a single giant deep subduction and collision zone in the Central Orogenic Belt situated between the Yangtze and Sino-Korean cratons. Therefore, any dynamic model for the orogen must account

  11. Role of Neogene Exhumation and Sedimentation on Critical-Wedge Kinematics in the Zagros Orogenic Belt, Northeastern Iraq, Kurdistan

    Science.gov (United States)

    Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of

  12. Temporal evolution of granitic magmas in the Luanchuan metallogenic belt, east Qinling Orogen, central China: Implications for Mo metallogenesis

    Science.gov (United States)

    Li, Dong; Han, Jiangwei; Zhang, Shouting; Yan, Changhai; Cao, Huawen; Song, Yaowu

    2015-11-01

    The Luanchuan metallogenic belt, located within the eastern part of the Qinling Orogen, central China, hosts a number of world-class Mo deposits that are closely related to small late Mesozoic granitic plutons. Zircon U-Pb dating of distinct plutons in the Luanchuan metallogenic belt has yielded ages of 153 ± 1, 154 ± 2, 152 ± 2, and 148 ± 1 Ma. Molybdenite Re-Os isotopic compositions of Yuku ore district in the southern part of Luanchuan metallogenic belt has yielded an isochron age of 146 ± 1 Ma, which is consistent with the large-scale mineralization ages in the northern part of the Luanchuan metallogenic belt. A combination of previous studies and new geochronological and isotopic data show a concordant temporal and genetic link between granitic magmatism and Mo mineralization in the Luanchuan metallogenic belt, suggesting that this mineralization episode formed the most extensive Mo mineralization belt in the east Qinling Orogen. Zircon grains from Mo-related granitic plutons show similar trace element distributions. High-precision Multi Collector-Inductively Coupled Plasma-Mass Spectrometry (MC-ICP-MS) Pb isotope analysis of K-feldspar megacrysts from mineralization-related granites suggest that they were derived from the lower crust. Similarly, the Pb isotopic compositions of pyrite coprecipitated with molybdenite also suggest that the metals were derived form the lower crust, with probably minor mantle contribution. A continuum mineralization model that describes the sourcing of Mo from an evolving granitic magma over successive differentiation events, possibly in separate but connected magma chambers, could explain the remarkable Mo enrichment in the Luanchuan metallogenic belt. The volatile- and Mo-bearing granitic magmas ascended as diapirs from the deep crust, and were emplaced as dikes in the upper crust. Lithological differences between these Mo-bearing granites may relate to different stages in the evolution of individual magmas. Finally, ore

  13. SHRIMP Zircon U-Pb Dating of Gabbro and Granite from the Huashan Ophiolite, Qinling Orogenic Belt, China: Neoproterozoic Suture on the Northern Margin of the Yangtze Craton

    Institute of Scientific and Technical Information of China (English)

    SHI Yuruo; LIU Dunyi; ZHANG Zongqing; MIAO Laicheng; ZHANG Fuqin; XUE Hongmei

    2007-01-01

    The recently identified Huashan ophiolitic mélange was considered as the eastern part of the Mianliie suture in the Qinling orogenic belt. SHRIMP zircon U-Pb geochronology on gabbro from the Huashan ophiolite and granite intruding basic volcanic rocks indicates crystallization ages of 947±14Ma and 876±17 Ma respectively. These ages do not support a recently proposed Hercynian Huashan Ocean, but rather favor that a Neoproterozoic suture assemblage (ophiolite) is incorporated into the younger (Phanerozoic) Qinling orogenic belt.

  14. Post-collisional magmatism: Consequences of UHPM terrane exhumation and orogen collapse, N. Qaidam UHPM belt, NW China

    Science.gov (United States)

    Wang, Mengjue; Song, Shuguang; Niu, Yaoling; Su, Li

    2014-12-01

    Exhumation of subducted slabs and extensional collapse of orogens are the main tectonic processes in ancient and modern continental collisional zones. Magmatism during these two processes may play important roles in understanding reworking and growth of the continental crust. We report here that a series of plutonic magmas, including intrusions of two-mica granite, tonalite, granodiorite, biotite monzogranite, porphyritic biotite granite and diorite, as well as contemporaneous mafic dykes, have been recognized in Dulan eclogite-bearing terrane, the North Qaidam ultra-high pressure metamorphic (UHPM) belt. The magmatism represented by these plutons is temporally ~ 20-30 million years (Mys) younger than the UHPM age, lasting for ~ 40 Mys and derived from different sources with different mechanisms. The magmatism was initiated by exhumation of UHPM terranes during which strongly-peraluminous two-mica granite and metaluminous tonalite were produced respectively by decompression melting of the exhumed UHPM upper and lower continental crust, respectively. The genesis of mafic magmatic enclave (MME)-hosting granodiorite with a clear hybrid signature and coeval biotite monzogranite reflected the upwelling of asthenospheric mantle by extension of lithosphere during the orogen collapse. It was induced by detachment of the subducted lithospheric mantle, which then brought heat and mantle material into continental crust and triggered the partial melting of the exhumed UHPM continental crust, and gave rise to mixing of crustal and mantle melts. Porphyritic biotite granite reflects a late melting event of continental crust. Diorite marked by high magnesium content represents mantle melts with slight crustal contamination, which implies that the orogen has been unrooted and collapsed completely. The post-collisional magmatism of the North Qaidam belt provides an improved understanding for the late thermal and tectonic evolution of a UHPM continental collision zone.

  15. Short-lived polyphase deformation during crustal thickening and exhumation of a collisional orogen (Ribeira Belt, Brazil)

    Science.gov (United States)

    Faleiros, F. M.; Campanha, G. A. C.; Pavan, M.; Almeida, V. V.; Rodrigues, S. W. O.; Araújo, B. P.

    2016-12-01

    The Ribeira Belt (Brazil) is a Neoproterozoic collisional-related feature that was located in a south-central position in West Gondwana. We present quantitative data on finite strain, flow vorticity and deformation temperatures for the Curitiba Terrane, a major segment of the southern Ribeira Belt. Six deformation phases (D1-D6) related with crustal thickening and exhumation were recognized. D1 and D2-related microstructures are preserved exclusively within porphyroblasts, in part grown during stages of high-pressure (∼9-12 kbar) isobaric heating after crustal thickening. D3 phase was active from peak metamorphism attained in contrasting crustal levels (810-400 °C), to the early stage of exhumation (500-400 °C), as indicated by petrological, microstructural and quartz c-axis fabric evidence. Kinematic vorticity results indicate that the SL3 mylonitic fabric resulted from a simple shear-dominated deformation related with westward thrusting. North-verging overturned D4 folds with E-W-trending subhorizontal axes derived from a pure shear-dominated deformation. Regional D5 open folds with subvertical axes and NNE-SSW-trending traces were produced by indentation tectonics. D6 phase comprises retrograde orogen-parallel transcurrent shear zones related with scape tectonics. Geochronological data indicate that D3-D6 phases occurred between 584 and 580 Ma, suggesting a fast exhumation rate of ∼8 mm/year for the deepest rocks from the southern Ribeira Belt.

  16. The early Cretaceous orogen-scale Dabieshan metamorphic core complex: implications for extensional collapse of the Triassic HP-UHP orogenic belt in east-central China

    Science.gov (United States)

    Ji, Wenbin; Lin, Wei; Faure, Michel; Shi, Yonghong; Wang, Qingchen

    2016-03-01

    The Dabieshan massif is famous as a portion of the world's largest HP-UHP metamorphic belt in east-central China that was built by the Triassic North-South China collision. The central domain of the Dabieshan massif is occupied by a huge migmatite-cored dome [i.e., the central Dabieshan dome (CDD)]. Origin of this domal structure remains controversial. Synthesizing previous and our new structural and geochronological data, we define the Cretaceous Dabieshan as an orogen-scale metamorphic core complex (MCC) with a multistage history. Onset of lithospheric extension in the Dabieshan area occurred as early as the commencement of crustal anatexis at the earliest Cretaceous (ca. 145 Ma), which was followed by primary (early-stage) detachment during 142-130 Ma. The central Dabieshan complex in the footwall and surrounding detachment faults recorded a consistently top-to-the-NW shearing. It is thus inferred that the primary detachment was initiated from a flat-lying detachment zone at the middle crust level. Removal of the orogenic root by delamination at ca. 130 Ma came into the extensional climax, and subsequently isostatic rebound resulted in rapid doming. Along with exhumation of the footwall, the mid-crustal detachment zone had been warped as shear zones around the CDD. After 120 Ma, the detachment system probably experienced a migration accommodated to the crustal adjustment, which led to secondary (late-stage) detachment with localized ductile shearing at ca. 110 Ma. The migmatite-gneiss with HP/UHP relicts in the CDD (i.e., the central Dabieshan complex) was product of the Cretaceous crustal anatexis that consumed the deep-seated part of the HP-UHP slices and the underlying para-autochthonous basement. Compared with the contemporaneous MCCs widely developed along the eastern margin of the Eurasian continent, we proposed that occurrence of the Dabieshan MCC shares the same tectonic setting as the "destruction of the North China craton". However, geodynamic trigger

  17. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt

    Institute of Scientific and Technical Information of China (English)

    ZHENG YongFei

    2008-01-01

    The study of continental deep-subduction has been one of the forefront and core subjects to advance the plate tectonics theory in the twenty-first century. The babie-Sulu orogenic belt in China crops out the largest lithotectonic unit containing ultrahigh-pressure metamorphic rocks in the world. Much of our understanding of the world's most enigmatic processes in continental deep-subduction zones has been deduced from various records in the Dabie-Sulu rocks. By taking these rocks as the natural laboratory, earth scientists have made seminal contributions to understanding of ultrahigh-pressure metamorphism and continental collision. This paper outlines twelve aspects of outstanding progress, including spatial distribution of the UHP metamorphic rocks, timing of the UHP metamorphism, time-scale of the UHP metamorphism, the protolith nature of deeply subducted continental crust, subduction erosion and crustal detachment during continental collision, the possible depths of continental sub-duction, fluid activity in the continental deep-subduction zone, partial melting during continental colli-sion, element mobility in continental deep-subduction zone, recycling of subducted continental crust, geodynamic mechanism of postcollisional magmatism, and lithospheric architecture of collision oro-gen. Some intriguing questions and directions are also proposed for future studies.

  18. Tectonic implications of U-Pb zircon ages of the himalayan orogenic belt in nepal

    Science.gov (United States)

    DeCelles; Gehrels; Quade; LaReau; Spurlin

    2000-04-21

    Metasedimentary rocks of the Greater Himalaya are traditionally viewed as Indian shield basement that has been thrust southward onto Lesser Himalayan sedimentary rocks during the Cenozoic collision of India and Eurasia. Ages determined from radioactive decay of uranium to lead in zircon grains from Nepal suggest that Greater Himalayan protoliths were shed from the northern end of the East African orogen during the late Proterozoic pan-African orogenic event. These rocks were accreted onto northern Gondwana and intruded by crustal melts during Cambrian-Ordovician time. Our data suggest that the Main Central thrust may have a large amount of pre-Tertiary displacement, that structural restorations placing Greater Himalayan rocks below Lesser Himalayan rocks at the onset of Cenozoic orogenesis are flawed, and that some metamorphism of Greater Himalayan rocks may have occurred during early Paleozoic time.

  19. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China

    Science.gov (United States)

    Tang, Gong-Jian; Chung, Sun-Lin; Hawkesworth, Chris J.; Cawood, P. A.; Wang, Qiang; Wyman, Derek A.; Xu, Yi-Gang; Zhao, Zhen-Hua

    2017-04-01

    Accretionary orogens are major sites of generation of continental crust but the spatial and temporal distribution of crust generation within individual orogens remains poorly constrained. Paleozoic (∼540-270 Ma) granitic rocks from the Alati, Junggar and Chinese Tianshan segments of the Central Asian Orogenic Belt (CAOB) have markedly bimodal age frequency distributions with peaks of ages at ∼400 Ma and 280 Ma for the Altai segment, and ∼430 Ma and 300 Ma for the Junggar and Chinese Tianshan segments. Most of the magma was generated in short time intervals (∼20-40 Ma), and variations in magma volumes and in Nd-Hf isotope ratios are taken to reflect variable rates of new crust generation within a long-lived convergent plate setting. The Junggar segment is characterized by high and uniform Nd-Hf isotope ratios (εNd (t) = + 5 to + 8; zircon εHf (t) = + 10 to + 16) and it appears to have formed in an intra-oceanic arc system. In the Altai and Chinese Tianshan segments, the Nd-Hf isotope ratios (εNd (t) = - 7 to + 8; zircon εHf (t) = - 16 to + 16) are lower, although they increase with decreasing age of the rock units. The introduction of a juvenile component into the Chinese Tianshan and Altai granitic rocks appears to have occurred in continental arc settings and it reflects a progressive reduction in the contributions from old continental lower crust and lithospheric mantle. Within the long-lived convergent margin setting (over ∼200 Ma), higher volumes of magma, and greater contributions of juvenile material, were typically emplaced over short time intervals of ∼20-40 Ma. These intervals were associated with higher Nb/La ratios, coupled with lower La/Yb ratios, in both the mafic and granitic rocks, and these episodes of increased magmatism from intraplate-like sources are therefore thought to have been in response to lithospheric extension. The trace element and Nd-Hf isotope data, in combination with estimates of granitic magma volumes, highlight

  20. The constraints of strain partitioning and geochronology in Luonan-Luanchuan tectonic belts on Qinling orogenic belt

    Institute of Scientific and Technical Information of China (English)

    SONG ChuanZhong; ZHANG GuoWei; WANG YongSheng; LI JiaHao; CHEN ZeChao; CAI ZhiChuan

    2009-01-01

    The Luonan-Luanchuan tectonic belt lies between the North China Block and Qinling Mountains,including the Luonan-Luanchuan fault zone and the strong deformation zone to the north of the fault.The ductile shear zone,imbricate brittle fault and duplex structure in the fault zone now are the expression of the same tectonic event in different depth.Such lineation structure exists in the tectonic belts as mineral lineation,elongation lineation,crenulation lineation,sheath folds and so on,indicating NE-directed plate motion.Fold axes and thrusts in the strong deformation zone are inclined to the Luonan-Luanchuan fault zone at small angles.The structures with different natures show a regular pattern,produced during oblique convergence of plates.The convergence factors are as follows:The direction of plate convergence is 22°,31° and the angle between the plate convergence direction and plate boundary is 73°,82° respectively in the west and east segment.The Luonan-Luanchuan tectonic belt was deformed strongly in 372 Ma,resulted from Erlangping back-arc ocean basin subduction sinistrally and obliquely to North China Block during the collision of North China Block and South China Block.

  1. The constraints of strain partitioning and geochronology in Luonan-Luanchuan tectonic belts on Qinling orogenic belt

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The Luonan-Luanchuan tectonic belt lies between the North China Block and Qinling Mountains, in- cluding the Luonan-Luanchuan fault zone and the strong deformation zone to the north of the fault. The ductile shear zone, imbricate brittle fault and duplex structure in the fault zone now are the expression of the same tectonic event in different depth. Such lineation structure exists in the tectonic belts as mineral lineation, elongation lineation, crenulation lineation, sheath folds and so on, indicating NE-directed plate motion. Fold axes and thrusts in the strong deformation zone are inclined to the Luonan-Luanchuan fault zone at small angles. The structures with different natures show a regular pattern, produced during oblique convergence of plates. The convergence factors are as follows:The direction of plate convergence is 22°, 31° and the angle between the plate convergence direction and plate boundary is 73°, 82° respectively in the west and east segment. The Luonan-Luanchuan tectonic belt was deformed strongly in 372 Ma, resulted from Erlangping back-arc ocean basin subduction sin- istrally and obliquely to North China Block during the collision of North China Block and South China Block.

  2. Geothermal structure of the eastern Black Sea basin and the eastern Pontides orogenic belt: Implications for subduction polarity of Tethys oceanic lithosphere

    Directory of Open Access Journals (Sweden)

    Nafiz Maden

    2013-07-01

    Full Text Available The numerical results of thermal modeling studies indicate that the lithosphere is cold and strong beneath the Black Sea basin. The thermal lithospheric thickness increases southward from the eastern Pontides orogenic belt (49.4 km to Black Sea basin (152.2 km. The Moho temperature increases from 367 °C in the trench to 978 °C in the arc region. The heat flow values for the Moho surface change between 16.4 mW m−2 in the Black Sea basin and 56.9 mW m−2 in the eastern Pontides orogenic belt. Along the southern Black Sea coast, the trench region has a relatively low geothermal potential with respect to the arc and back-arc region. The numerical studies support the existence of southward subduction beneath the Pontides during the late Mesozoic–Cenozoic.

  3. The recycled orogenic sand provenance from an uplifted thrust belt, Betic Cordillera, Southern Spain

    OpenAIRE

    Critelli, Salvatore; Arribas Mocoroa, José; Le Pera, Emilia; Tortosa, A; Marsaglia, Kathleen M.; Latter, Kelly K.

    2003-01-01

    The Betic Cordillera of southern Spain represents an uplifted foreland fold–thrust belt. Source rock types of the Betic Cordillera include metamorphic (mainly phyllite, schist, quartzite, and gneiss), sedimentary (siliciclastic and carbonate), volcanic (felsic to intermediate pyroclasts), and mantle-derived (peridotite, gabbro, serpentinite, and serpentine schist) rocks. The fluvial systems range that transect the Betic Cordillera are the major detrital source of sediment ...

  4. MULTI-ARC BASIN SYSTEM OF THE KUNLUN OROGENIC BELT AND PAN-CATHYSIAN CONTINENTAL ACCRETION

    Institute of Scientific and Technical Information of China (English)

    YIN Fuguang; PAN Guitang; LI Xingzhen

    2003-01-01

    After Rodinia supercontinent was disintegrated in Late Proterozoic, an ocean, namely, Tethys Ocean, occurred between Gondwana continental group and Pan-Cathaysian continental group from Late Proterozoic to Mesozoic. From Early Paleozoic to Mesozoic, Tethys Ocean was subducted toward Pan-Cathaysian block group, which results in backarc expansion, arc-land collision and forearc accretion. When the backarc basin expands and reaches the small oceanic basin, ophiolite melange will be generated. As accretion had already occurred in the south of the continental margin in the earlier stage, the succeeding backarc expansion and the frontal arc position were migrated toward south correspondingly. Therefore, multiple ophiolite belts and magmatic rock belts occurred, and show a trend of decreasing age from north toward south. As the continental margin was split and migrated toward south and reached a high latitude position, i.e., with the shortening and subduction of oceanic crust, the sedimentary bodies at high latitude was accreted continuously toward low latitude area together with the formation of oceanic island, mixing of cold-type and warm-type organism was generated. Moreover,blocks split and separated from Pan-Cathaysian or Gondwana continental group cannot traverse the oceanic median ridge and joins with another continental block. As a result, the Kunlun belt on the SW margin of the Pan-Cathaysian land was resulted from the multi-arc orogenesis such as the backarc seabed expansion, arc-arc collision, arc-land collision oceanic bed, and the continuous southward accretion process.

  5. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    Science.gov (United States)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  6. Accretionary prisms of the Sikhote-Alin Orogenic Belt: Composition, structure and significance for reconstruction of the geodynamic evolution of the eastern Asian margin

    Science.gov (United States)

    Kemkin, I. V.; Khanchuk, A. I.; Kemkina, R. A.

    2016-12-01

    We present overview for geological studies of the terranes of the Sikhote-Alin orogenic belt in the Russian Far East. The belt is formed by accretionary prisms with alternating tectonic packets of thrust-like slices which consist of complexly deformed marine (pelagic and hemipelagic deposits, as well as oceanic plateau and paleo-guyot fragments), marginal oceanic turbidites and chaotic (subduction mélange) formations. We reconstruct a stepwise history of accretion of paleo-oceanic crustal fragments of different ages, based on detailed lithological-biostratigraphic and structural analysis. We propose geodynamic model for evolution of the eastern margin of the paleo-Asian continent during the Mesozoic time by combining geological observations for the region with geological data for others terranes of the Sikhote-Alin Orogenic Belt. We recognize several principal Mesozoic geological processes that have led to formation of the continental crust at the eastern margin of Asia: (i) accretion of paleo-oceanic fragments to the continent margin during the subduction of the paleo-Pacific plate along the convergent margins, (ii) subsequent intense deformation of rocks of the accretionary prisms of the transform margin including folding and multiple thrusting which led to a multifold increase in thickness of sediments, (iii) formation of granitic-metamorphic complexes due to intrusion of the orogenic granites into the accretionary prisms.

  7. From folding to transpressional faulting: the Cenozoic Fusha structural belt in front of the Western Kunlun Orogen, northwestern Tibetan Plateau

    Science.gov (United States)

    Wang, Cong; Cheng, Xiao-Gan; Chen, Han-Lin; Li, Kang; Fan, Xiao-Gen; Wang, Chun-Yang

    2016-07-01

    Fusha structural belt (FSB) is one of the most important tectonic units in front of the Western Kunlun Orogen, northwestern Tibetan Plateau (NW China), in which the Kekeya oil field was discovered in 1971. However, there is no new oil field discovered since then due to the unclarity of the intense and complex Cenozoic deformation in this area. Based on field investigation, seismic interpretation and Continuous Electromagnetic Profile data, we analyze in detail the Cenozoic deformation history, emphasizing on the spatial and temporal variation of the deformation of the FSB in this paper. The result suggests that the FSB was dominated by two deformation events, (1) early (Miocene-early Pliocene) folding event expressed by anticline, with the western segment E-W orienting, while the eastern segment NWW-SEE orienting and (2) later (since late Pliocene) transpressional faulting event that destroyed and divided the earlier anticline into a number of fault blocks. The transpressional faulting caused dextral strike-slip reverse fault, with the dip angles decreasing eastward from ~90° to reserved. Based on the spatial variation of structural characteristics, we propose that the fault block traps and anticline traps in the eastern segment and fault block traps in western segment are favorable for hydrocarbon accumulation.

  8. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    Directory of Open Access Journals (Sweden)

    Hongzhong Li

    2014-01-01

    Full Text Available Marine siliceous rocks are widely distributed in the central orogenic belt (COB of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%, Ba (42.45–503.0 ppm, and ΣREE (3.28–19.75 ppm suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn, Sc/Th, (La/YbN, and (La/CeN ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  9. Juxtaposition of Neoproterozoic units along the Baruda - Tulu Dimtu shear-belt in the East African Orogen of western Ethiopia

    Science.gov (United States)

    Braathen, A.; Grenne, Tor; Selassie, M.G.; Worku, T.

    2001-01-01

    Amalgamation of East and West Gondwanaland during the Neoproterozoic East African Orogen is recorded by several shear-belts or 'suture zones', some of which are associated with ultramafic and mafic complexes that have been interpreted as ophiolite fragments. The Baruda shear-belt is a major structure of this type that belongs to the N-S trending Barka - Tulu Dimtu zone. The significance of this zone has been studied within a transect in western Ethiopia which covers a variety of metasedimentary and metavolcanic sequences, ultramafic rocks and synkinematic intrusive complexes. All rocks participated in the regional D1 event as reflected in a penetrative steep foliation in supracrustal rocks and marginal parts of the intrusions. Highly strained rocks contain a stretching lineation that plunge to the east. The several-km thick Baruda shear-belt, comprising mylonitic supracrustal and plutonic rocks including mafic-ultramafic mega-lenses, is the most prominent expression of this event. Shear-sense indicators demonstrate top-to-the-west shear. Subsequent D2 deformation is recorded in 2-300 m wide, N-S striking, subvertical shear-zones with subhorizontal stretching lineation relatable to sinistral transcurrent movements. Our data indicate that rock units on either side of the Baruda shear-belt are related, rather than being exotic to each other as implied in suture zone models, since there is no major lithologic or metamorphic difference, geochemical data on metavolcanic rocks and pre-tectonic intrusions suggest a paleotectonic link, and style and extent of deformation is similar across the shear-belt. A tentative model for the transect suggests an arc and back-arc setting which experienced later continental collision and tectonic shortening. The initial setting was that of a shallow marine platform characterised by carbonates and sandstones, which covered extensive areas prior to break-up of a pre-existing supercontinent. Continental convergence is first recorded in high

  10. Fisson-track constrains on superposed folding in the Beishan orogenic belt, southernmost Altaids

    Directory of Open Access Journals (Sweden)

    Zhonghua Tian

    2016-03-01

    Full Text Available The Hongyanjing inter-arc basin, is located at the central part of Beishan Orogenic College (BOC, Gansu Province, northwest China. Thick sequences of Permian sediments were strongly folded, forming extremely spectacular superposed folds. To better understand the thermal history of Hongyanjing inter-arc basin and to potentially constrain the timing of deformation, apatite fission track thermochronology method was applied on two superposed folds in the Hongyanjing Basin. Samples from the basin, yield central AFT ages ranging from ∼206 to 118 Ma. AFT peak ages were largely consistent between samples and can divided into three groups: 245, 204–170 and 112–131 Ma. Subsequent thermal history modeling of the samples from the Hongyanjing Basin can be summarized as follows: (1 thermal reheating by sedimentary burial at ∼ 260 to ∼220 Ma; (2 major cooling from ∼220 to ∼180 Ma; (3 an episode of very slow subsequent cooling from ∼180 to 65 Ma (∼80 °C to present-day outcrop temperatures. Sediments in the Hongyanjing Basin were folded forming F1 fold during the early to late Triassic (∼240–∼220 Ma, by regional stress, and at the time that the adjacent Xingxingxia shear zone started to become active. It is further suggested that the F2 folding occurred at ∼225–219 Ma. The deformation age of F2 should be extended to 180 Ma based on our thermal history modeling for the Hongyanjing Basin, which show a rapid exhumation and cooling at the late Triassic to early Jurassic (∼220–∼180 Ma. In our interpretations, the F1 folding is therefore thought to be related to the final closure of the Paleo-Asian Ocean, while the F2 folding occurred at ∼225–180 Ma associated with a major pulse of orogenesis in the BOC.

  11. Two-stage formation model of the Junggar basin basement: Constraints to the growth style of Central Asian Orogenic Belt

    Science.gov (United States)

    He, Dengfa

    2016-04-01

    Junggar Basin is located in the central part of the Central Asian Orogenic Belt (CAOB). Its basement nature is a highly controversial scientific topic, involving the basic style and processes of crustal growth. Some researchers considered the basement of the Junggar Basin as a Precambrian continental crust, which is not consistent with the petrological compositions of the adjacent orogenic belts and the crust isotopic compositions revealed by the volcanic rocks in the basin. Others, on the contrary, proposed an oceanic crust basement model that does not match with the crustal thickness and geophysical characteristics of the Junggar area. Additionally, there are several viewponits, such as the duplex basement with the underlying Precambrian crystalline rocks and the overlying pre-Carboniferous folded basement, and the collaged basement by the Precambrian micro-continent block in the central part and the Hercynian accretionary folded belts circling it. Anyway, it is necessary to explain the property of basement rock, its strong inhomogeneous compositions as well as the geophysical features. In this paper, based on the borehole data from more than 300 industry wells drilled into the Carboniferous System, together with the high-resolution gravity and magnetic data (in a scale of 1:50,000), we made a detailed analysis of the basement structure, formation timing and processes and its later evolution on a basis of core geochemical and isotopic analysis. Firstly, we defined the Mahu Pre-Cambrian micro-continental block in the juvenile crust of Junggar Basin according to the Hf isotopic analysis of the Carboniferous volcanic rocks. Secondly, the results of the tectonic setting and basin analysis suggest that the Junggar area incorporates three approximately E-W trending island arc belts (from north to south: Yemaquan- Wulungu-Chingiz, Jiangjunmiao-Luliang-Darbut and Zhongguai-Mosuowan- Baijiahai-Qitai island arcs respectively) and intervened three approximately E-W trending

  12. Porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides: China, Mongolia, Russia, Pakistan, Kazakhstan, Tajikistan, and India: Chapter X in Global mineral resource assessment

    Science.gov (United States)

    Mihalasky, Mark J.; Ludington, Stephen; Hammarstrom, Jane M.; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Robinson,, Gilpin R.; Briggs, Deborah A.; Wallis, John C.; Miller, Robert J.; Bookstrom, Arthur A.; Panteleyev, Andre; Chitalin, Andre; Seltmann, Reimar; Guangsheng, Yan; Changyun, Lian; Jingwen, Mao; Jinyi, Li; Keyan, Xiao; Ruizhao, Qiu; Jianbao, Shao; Gangyi, Shai; Yuliang, Du

    2015-01-01

    The U.S. Geological Survey collaborated with international colleagues to assess undiscovered resources in porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides. These areas host 20 known porphyry copper deposits, including the world class Oyu Tolgoi deposit in Mongolia that was discovered in the late 1990s. The study area covers major parts of the world’s largest orogenic systems. The Central Asian Orogenic Belt is a collage of amalgamated Precambrian through Mesozoic terranes that extends from the Ural Mountains in the west nearly to the Pacific Coast of Asia in the east and records the evolution and final closure of the Paleo-Asian Ocean in Permian time. The eastern Tethysides, the orogenic belt to the south of the Central Asian Orogenic Belt, records the evolution of another ancient ocean system, the Tethys Ocean. The evolution of these orogenic belts involved magmatism associated with a variety of geologic settings appropriate for formation of porphyry copper deposits, including subduction-related island arcs, continental arcs, and collisional and postconvergent settings. The original settings are difficult to trace because the arcs have been complexly deformed and dismembered by younger tectonic events. Twelve mineral resource assessment tracts were delineated to be permissive for the occurrence of porphyry copper deposits based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges and compositions. These include (1) nine Paleozoic tracts in the Central Asian Orogenic Belt, which range in area from about 60,000 to 800,000 square kilometers (km2); (2) a complex area of about 400,000 km2 on the northern margin of the Tethysides, the Qinling-Dabie tract, which spans central China and areas to the west, encompassing Paleozoic through Triassic igneous rocks that formed in diverse settings; and (3) assemblages of late Paleozoic and Mesozoic rocks that define two other tracts in the Tethysides, the 100

  13. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    Science.gov (United States)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-01-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and

  14. Characteristics of Lower Crustal Granulite Xenoliths from the East Qinling Orogenic Belt and Their Tectonic Significance

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    The Tongbai granulites are present mainly as xenoliths in granodioritic gneisses. The xenoliths with a zircon age of 470Ma are older than host rocks of granoioritic gneisses which yield a zircon age of 435Ma. It is suggested that the granulites were transported from the lower crust to the upper level along with granodioritic magma. Geothermormetrical and geobarometrical strdies based on the coexisting minerals(Opx-Cpx and Opx-Gar) show that the granulites were crystallized at 818-840℃ and 9.5-9.8×108 Pa corresponding to the lower crust. Tectonically,the Shangdan suture zone constitutes the boundary between the North China and Yangtze plates.The zone is char-acterized by the occurrence of ophiolites in the western part and by that of granulites in the eastern part.So the western part marks the upper crustal level of the Qinling belt, while the eastern part represents the exposure of a deeper level.The results of isotopic dating and the geochemical character istics of the xenoliths are consistent with those of meta-tholeiites of the ophiolites in the western part. Therefore ,it is assumed that both ophiolites found in the west and granulites found in the east all represent the remnants of the ancient Qinling ocean plate .The difference is that the ophiolites are pieces of obducted fragments from the ocean floor during the subduction in the Early Palaeozoic. However,in the Tongbai area, when the ocean floor was subducting towards the lower crust, it underwent a granulite facies metamorphism.Subsequently, granodioritic magma formed by partial melting trapped some fragments of granulite upwards.

  15. Sedimentary geochemistry and provenance of the Lower and Middle Devonian Laojunshan Formation,the North Qilian Orogenic Belt

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The Laojunshan Formation is a suite of molasse formed during the rapid uplift of the North Qilian Orogenic Belt (NQOB). Forty-one samples of sandstone have been collected from the Sunan and Minle sections in the western sector and the Gulang and Jingyuan sections in the eastern sector of the NQOB belt. Geochemical analyses of those samples indicated: 1) The MgO+Fe2O3T and Al2O3/SiO2 values are higher, and K2O/Na2O ratios are lower in the western sector than those in the eastern sector. 2) All of them are depleted in Nb and Ta elements. The samples from the western sector are depleted in Rb element and enriched with Sc, Co, Ni, V, and Cr elements in the Upper Crust-normalized patterns. However, those from the eastern sector are depleted in Sr without enrichments of Sc, Co, Ni, V, and Cr. 3) All of the samples display a right-inclined REE pattern af- ter Chondrite-normalized REE pattern. But LaN/YbN and Eu/Eu* ratios of the samples from the western sector are lower than those of the samples from the eastern sector. These geochemical characteristics suggest the prominent input of mafic clast with minor granitic rocks into the Sunan area, felsic clast into the Gulang and Jingyuan area, and both mafic and felsic clast into the Minle area. The angular shapes of gravels imply that these ill-sorted sediments were deposited near their sources without recy- cling. Geochemical features above also demonstrated that no major chemical weathering occurred for the western provenance, but deposits in the eastern sector resulted from low or middle degree chemical weathering. Evidences combining tectonic discriminations and comparisons with potential provenances revealed that sediments in the Sunan area were derived mainly from the North Qilian Continental arc, whereas sediments in the Minle, Gulang, and Jingyuan areas were derived not only from the North Qilian Continental arc but also from the basement of the Middle Qilian block. Integrated with the characteristics of development

  16. 造山带沉积学系列之一——弧造山带的弧前沉积%Orogenic Sedimentology Series Ⅰ-Sedimentions in the Forearc of Orogenic Belts

    Institute of Scientific and Technical Information of China (English)

    李继亮; 陈隽璐; 白建科; 闫臻

    2013-01-01

    Since the widespread acceptance of the plate tectonics theory by geology community, much attention has been paid to sedimentology during investigating the orogenic belts. On the basis of summarizing the three main development stages of the plate tectonic sedimentology and several excellent individual researches, in this paper, we firstly focus on illustrating the definitions of trench basin, wedge-top basin and forearc basin in arc orogenic belt, and then explicitly introduce sedimentary environment, assemblage and provenance of three kinds of basins with specific examples. In summary, these discussions can serve as general introductions to the readers about the orogenic sedimentology.%板块构造理论得到地学界广泛接受以来,沉积学在造山带研究中得到了普遍的重视.笔者在归纳总结板块构造沉积学3个主要发展阶段及其相应的研究成果的基础上,重点讲述了弧造山带的弧前海沟盆地、楔顶盆地和弧前盆地的定义,并结合具体实例介绍了3类盆地沉积环境、沉积组合与物源背景.总之,希望这些讨论能使对造山带沉积学感兴趣的读者得到梗概的认识.

  17. The Paleozoic tectonic evolution and metallogenesis of the northern margin of East Junggar, Central Asia Orogenic Belt: Geochronological and geochemical constraints from igneous rocks of the Qiaoxiahala Fe-Cu deposit

    Science.gov (United States)

    Liang, Pei; Chen, Huayong; Hollings, Pete; Xiao, Bing; Wu, Chao; Bao, Zhiwei; Cai, Keda

    2016-11-01

    The East Junggar terrane (NW China) is an important constituent of the Central Asian Orogenic Belt (CAOB). From the Devonian to Permian, regional magmatism evolved from mainly calc-alkaline (I-type) to alkaline (A-type). The Qiaoxiahala Fe-Cu deposit, located in the Late Paleozoic Dulate island arc (northern margin of the East Junggar), is hosted in the volcanic rocks of the Middle Devonian Beitashan Formation. Two magmatic stages were identified in the deposit, the Qiaoxiahala diorite porphyry (380 ± 4.0 Ma) and a younger aplite (331 ± 3.1 Ma). The (high-K) calc-alkaline Beitashan Formation basaltic rocks are characterized by LILE and LREE enrichments and HFSE depletions, pointing to a subduction-related affinity. The high Mg# (42-75), elevated Ce/Th and Ba/Th, depleted Nb, positive εNd(t) (6.6), low (87Sr/86Sr)i (0.7037) and MORB-like Pb isotope characters all suggest an origin involving partial melting of a MORB-like depleted mantle wedge (metasomatized by slab-derived fluids) with little evidence of crustal contamination. The calc-alkaline (I-type) diorite porphyry, characterized by LILE and LREE enrichments and HFSE depletions, may have formed from fractional crystallization of the basaltic rocks, with its parental magma derived from the same depleted mantle wedge. The negative εHf(t) (-8.26), Hf model age (TDMC) of 1406 Ma and the presence of inherited zircons (ca. 470 and 506 Ma) indicate that the diorite has assimilated older crustal material. The alkaline, metaluminous (A-type) aplite is characterized by HFSE enrichment and depletions in Sr, P and Ti, distinct from the basaltic rocks and diorite porphyry at Qiaoxiahala. The low Mg# (35-38), positive Zr and Hf, positive εHf(t) (4.77-9.75) and εNd(t) (6.85-6.86) and low T2DM (538-520 Ma) suggest a juvenile lower crustal source due to partial melting of basaltic lower crust as a result of underplating of mantle-derived melts and accompanied by magma mixing. The tectonic evolution of the Paleozoic East

  18. Upper Paleozoic tectonics in the Tien Shan (Central Asian Orogenic Belt): insight from new structural data (Kyrgyzstan)

    Science.gov (United States)

    Jourdon, Anthony; Petit, Carole; Rolland, Yann; Loury, Chloé; Bellahsen, Nicolas; Guillot, Stéphane; Ganino, Clément

    2016-04-01

    Due to successive block accretions, the polarity of structures and tectonic evolution of the Central Asian Orogenic Belt (CAOB) are still a matter of debate. There are several conflicting models about the polarity of subduction during the Paleozoic, the number of microplates and oceanic basins and the timing of tectonic events in Kyrgyz and Chinese Tien Shan. In this study, we propose new structural maps and cross-sections of Middle and South Kyrgyz Tien Shan (MTS and STS respectively). These cross-sections highlight an overall dextral strike-slip shear zone in the MTS and a north verging structure related to south-dipping subduction in the STS. These structures are Carboniferous in age and sealed by Mesozoic and Cenozoic deposits. In detail, the STS exhibits two deformation phases. The first one is characterized by coeval top-to-the north thrusting and top-to-the-South normal shearing at the boundaries of large continental unit that underwent High-Pressure (Eclogite facies) metamorphism. We ascribe this phase to the exhumation of underthrusted passive margin units of the MTS. The second one corresponds to a top to the North nappe stacking that we link to the last collisional events between the MTS and the Tarim block. Later on, during the Late Carboniferous, a major deformation stage is characterized by the deformation of the MTS and its thrusting over the NTS. This deformation occurred on a large dextral shear zone between the NTS and the MTS known as Song-Kul Zone or Nikolaiev Line as a "side effect" of the Tarim/MTS collision. Based on these observations, we propose a new interpretation of the tectonic evolution of the CAOB. The resulting model comprises the underthrusting of the MTS-Kazakh platform beneath the Tarim and its exhumation followed by the folding, shortening and thickening of the internal metamorphic units during the last collisional events which partitioned the deformation between the STS and the MTS. Finally, the docking of the large Tarim Craton

  19. Lithospheric composition and structure beneath the northern margin of the Qinling orogenic belt--On deep-seated xenoliths in Minggang region of Henan Province

    Institute of Scientific and Technical Information of China (English)

    LU; Fengxiang; WANG; Chunyang; ZHENG; Jianping

    2004-01-01

    Swarms of mafic-intermediate volcaniclastic bodies occur in the Minggang region of Henan Province, a tectonic boundary between the North Qinling and the North China Block, and emplaced at (178.31±3.77) Ma. These volcanic rocks are subalkaline basaltic andesites and contain abundance of lower crust and mantle xenoliths. Thus this area is an ideal place to reveal the lithospheric composition and structure beneath the northern margin of the Qinling orogenic belt. Geochemical data indicate that these mafic granulites, eclogites and metagabbros have trace elemental and Pb isotopic characteristics very similar to those rocks from the South Qinling Block, representing the lower part of lower crust of the South Qinling which subducted beneath the North China Block. Talcic peridotites represent the overlying mantle wedge materials of the North China Block, which underwent the metasomatism of the acidic melt/fluid released from the underlying lower crust of the South Qinling Block. Deep tectonic model proposed in this paper is that after the Late Paleozoic South Qinling lithosphere subducted northward and decoupled, the upper part of the lithosphere emplaced under the North Qinling and the lower part continuously subducted northward under the North China Block. In Early Mesozoic, the North Qinling Block obducted northward and the North China Block inserted into the Qinling orogenic belt in a crocodile-mouth shape.

  20. Discovery of Paleogene Sporopollen from the Matrix Strata of the Naij Tal Group-Complex in the Eastern Kunlun Orogenic Belt

    Institute of Scientific and Technical Information of China (English)

    GUO Xianpu; WANG Naiwen; DING Xiaozhong; ZHAO Min; WANG Daning

    2006-01-01

    The Naij Tal Group-complex is a suite of tectonic-sedimentary mélange aggregation of the Eastern Kunlun orogenic belt, which is composed of two parts, i.e. the exotic blocks of various ages and the matrix strata. On the basis of coral, brachiopod and gastropod fossils found in the exotic blocks, the age of this group-complex was once defined to the Late Ordovician or the Paleozoic. This paper reports for the first time 44 genera and 31 species of Mid-Late Oligocene sporopollen in samples from the matrix strata in this group-complex and the Paleogene Quercoidites-Persicarioipollis assemblage is named. The paper aims to provide some detailed evidence for determining the age of the matrix strata in this group-complex based upon a study at the Caiyuanzigou section, which would be of great geological significance for further understanding this group-complex as a suite of tectonic-sedimentary and evolution mechanism for the Eastern Kunlun orogenic belt.

  1. The role of pleistocene strike-slip tectonics in the neogene-quaternary evolution of the southern Apennine orogenic belt: implications for oil trap development

    Energy Technology Data Exchange (ETDEWEB)

    Monaco, C.; Tortorici, L.; Catalano, S. [Universita degli Studi di Catania (Italy). Dipt. di Scienze Geologiche; Paltrinieri, W.; Steel, N. [British Gas Rimi, Milan (Italy)

    2001-07-01

    The Southern Apennine orogenic belt is composed of allochthonous continental units derived from the African and European palaeo-margins of NeoTethys (the Adria and Corsica-Sardinia Blocks, respectively), together with oceanic units derived from the intervening NeoTethyan domain. The frontal part of the belt has been thrust over a foredeep-foreland system consisting of the Bradano Trough and Apulian Platform. The belt can be divided into two structural levels which are separated by a major detachment surface. The upper level consists of a multilayer complex made up of allochthonous NeoTethyan nappes; these were deformed during oceanic subduction, and are now emplaced on the Adria Block as a consequence of continent-continent collision. The lower structural level is characterised by large-scale duplexes involving the Mesozoic-Cenozoic sedimentary cover of the Adria Block which in recent years has formed an important target for oil exploration. On top of these allochthonous terranes, a series of small Plio-Pleistocene basins developed during the final phases of the thrust belt's migration into the foreland. During the last stages of orogenesis, thrust migration became locked as a result of collisional thickening of the continental crust, and deformation in the southern Apennines was taken up by strike-slip faults which now cut across the fold and thrust belt. In this paper, we describe the major Pleistocene strike-slip structures in the southern Apennines between the Pollino Mountains in the south and the Potenza region in the north, and investigate the role of wrench tectonics in the belt's Neogene-Quaternary evolution. The study combines field mapping with analyses of satellite images and aerial photographs. Sinistral WNW-ESE trending strike-slip faults are accommodated by thrusts and folds which cross-cut the preexisting tectonic layering, giving rise to an interference pattern in which culminations may act as structural traps suitable for oil and gas

  2. The age of Au-Cu-Pb-bearing veins in the poly-orogenic Ubendian Belt (Tanzania): U-Th-total Pb dating of hydrothermally altered monazite

    Science.gov (United States)

    Kazimoto, Emmanuel Owden; Schenk, Volker; Appel, Peter

    2015-01-01

    The age of gold-copper-lead mineralization in the Katuma Block of the Ubendian Belt remains controversial because of the lack of radiometric ages that correlate with the age of tectonothermal events of this poly-orogenic belt. Previous studies reported whole rock and mineral Pb-Pb ages ranging between 1,660 and 720 Ma. In this study, we report U-Th-total Pb ages of monazite from hydrothermally altered metapelites that host the Au-Cu-Pb-bearing veins. Three types of chemically and texturally distinct types of monazite grains or zones of grains were identified: monazite cores, which yielded a metamorphic age of 1,938 ± 11 Ma ( n = 40), corresponding to known ages of a regional metamorphic event, deformation and granitic plutonism in the belt; metamorphic overgrowths that date a subsequent metamorphic event at 1,827 ± 10 Ma ( n = 44) that postdates known eclogite metamorphism (at ca. 1,880 Ma) in the belt; hydrothermally altered poikilitic monazite, formed by dissolution-precipitation processes, representing the third type of monazite, constrain the age of a hydrothermal alteration event at 1,171 ± 17 Ma ( n = 19). This Mesoproterozoic age of the hydrothermal alteration coincides with the first amphibolite grade metamorphism of metasediments in the Wakole Block, which adjoins with a tectonic contact the vein-bearing Katuma Block to the southwest. The obtained distinct monazite ages not only constrain the ages of metamorphic events in the Ubendian Belt, but also provide a link between the metamorphism of the Wakole metasediments and the generation of the hydrothermal fluids responsible for the formation of the gold-copper-lead veins in the Katuma Block.

  3. Flux rates for water and carbon during greenschist facies metamorphism: implications for the role of orogenic belts as a source/sink for atmospheric CO2

    Science.gov (United States)

    Skelton, A.

    2010-12-01

    The time-averaged flux rate for a CO2-bearing hydrous fluid during greenschist facies regional metamorphism was estimated to 10-10.2 ± 0.4 m3.m-2.s-1. This was evaluated by combining 1) Peclet numbers obtained by chromatographic analysis of the propagation of reaction fronts in 33 metamorphosed basaltic sills in the SW Scottish Highlands, 2) empirical diffusion rates for CO2 in water obtained by Wark & Watson (2003), and 3) calculated time-averaged metamorphic porosities. The latter were calculated using an expression obtained by combining estimated Peclet numbers with the empirical porosity - permeability relationships obtained by Wark and Watson (1998) and Price et al. (2006) and Darcy’s law. This approach yielded a time-averaged metamorphic porosity of 10-2.6 ± 0.2 for greenschist facies conditions. The corresponding timescale for metamorphic fluid flow was 103.6 ± 0.1 years. By using mineral assemblages to constrain fluid compositions, I further obtained a time-averaged annual flux rate for carbon of 0.5-7 mol-C.m-2.yr-1. This matches measured emission rates for metamorphic CO2 from orogenic hot springs. These fluxes significantly exceed estimated rates of CO2 drawdown by orogenic silicate weathering and therefore indicate that orogenic belts are a source rather than a sink of atmospheric CO2. Thin section in XPL showing replacement of amphibole by calcite recording syn-metamorphic carbonation of a metamorphosed basaltic sill in the SW Scottish Highlands.

  4. Geochemistry and SHRIMP Zircon U-Pb Age of Post-Collisional Granites in the Southwest Tianshan Orogenic Belt of China: Examples from the Heiyingshan and Laohutai Plutons

    Institute of Scientific and Technical Information of China (English)

    LONG Lingli; GAO Jun; WANG Jingbin; QIAN Qing; XIONG Xianming; WANG Yuwang; WANG Lijuan; GAO Liming

    2008-01-01

    The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron aikali-calcic peraluminous with a relatively high concentration of SiO2 (>70%), high alkali contents (Na2O + K2O = 7.14%-8.56%; K2O>N2O; A/CNK = 0.99-1.20), and pronounced negative anomales in Eu, Ba, Sr, P and Ti. A SHRIMP zircon U-Pb age of 285±4 Ma was obtained for the Heiyingshan hornblende biotite granite intrusion. The geochemical and age dating data reported in this paper indicate that these granites were formed during the post-collisional crustal extension of the Southwest Tianshan orogenic belt, in agreement with the published data for the granites in the South Tianshan.

  5. Geochronological, geochemical, and Nd-Hf isotopic studies of the Qinling Complex, central China: Implications for the evolutionary history of the North Qinling Orogenic Belt

    Directory of Open Access Journals (Sweden)

    Chunrong Diwu

    2014-07-01

    The available data indicate that the NQOB was an independent micro-continent at least prior to the Neoproterozoic, and included a portion of the Grenville orogenic belt during the period of 1.2–0.8 Ga. The NQOB has experienced a unique geological history, which is obviously different from that of the North China Craton (NCC and the Yangtze Craton during the Precambrian. The Neoproterozoic granitoids that intruded the Qinling Complex can be interpreted as the products of assembly of the supercontinent Rodinia. The NQOB was separated from Rodinia at ca. 830–740 Ma. Subsequently, the NQOB moved closer to the northern margin of the NCC, and the initial accretion or collision with the NCC occurred from the late Cambrian to the early Ordovician.

  6. Geochronological, geochemical, and Nd-Hf isotopic studies of the Qinling Complex, central China:Implications for the evolutionary history of the North Qinling Orogenic Belt

    Institute of Scientific and Technical Information of China (English)

    Chunrong Diwu; Yong Sun; Yan Zhao; BingXiang Liu; Shaocong Lai

    2014-01-01

    The Qinling Complex of central China is thought to be the oldest rock unit and the inner core of the North Qinling Orogenic Belt (NQOB). Therefore, the Qinling Complex is the key to understanding the pre-Paleozoic evolution of the NQOB. The complex, which consists of metagraywackes and marbles, un-derwent regional amphibolite-facies metamorphism. In this study, we constrained the formation age of the Qinling Complex to the period between the late Mesoproterozoic and the early Neoproterozoic (ca. 1062e962 Ma), rather than the Paleoproterozoic as previously thought. The LA-ICP-MS data show two major metamorphic ages (ca. 499 and ca. 420e400 Ma) for the Qinling Complex. The former age is consistent with the peak metamorphic age of the high- and ultra-high pressure (HP-UHP) rocks in the Qinling Complex, indicating that both the HP-UHP rocks and their country rocks experienced intensive regional metamorphism during the Ordovician. The latter age may constrain the time of partial melting in the NQOB between the late Silurian and early Devonian. The Qinling Complex is mostly affiliated with subductioneaccretion processes along an active continental margin, and should contain detritus deposited in a forearc basin. The available data indicate that the NQOB was an independent micro-continent at least prior to the Neoproterozoic, and included a portion of the Grenville orogenic belt during the period of 1.2e0.8 Ga. The NQOB has experienced a unique geological history, which is obviously different from that of the North China Craton (NCC) and the Yangtze Craton during the Precambrian. The Neoproterozoic granitoids that intruded the Qinling Complex can be interpreted as the products of assembly of the supercontinent Rodinia. The NQOB was separated from Rodinia at ca. 830e740 Ma. Subsequently, the NQOB moved closer to the northern margin of the NCC, and the initial accretion or collision with the NCC occurred from the late Cambrian to the early Ordovician.

  7. Petrology and geochemistry of Abyssal Peridotites from the Manipur Ophiolite Complex, Indo-Myanmar Orogenic Belt, Northeast India: Implication for melt generation in mid-oceanic ridge environment

    Science.gov (United States)

    Krishnakanta Singh, A.

    2013-04-01

    The Manipur Ophiolite Complex (MOC) located in the Indo-Myanmar Orogenic Belt (IMOB) of Northeast India forms a section of the Tethyan Ophiolite Belt of the Alpine-Himalayan orogenic system. Whole rock compositions and mineral chemistry of mantle peridotites from the MOC show an affinity to the abyssal peridotites, characterized by high contents of Al2O3 (1.28-3.30 anhydrous wt.%); low Cr# of Cr-spinel (0.11-0.27); low Mg# of olivine (˜Fo90) and high Al2O3 in pyroxenes (3.71-6.35 wt.%). They have very low REE concentrations (∑REE = 0.48-2.14 ppb). Lherzolites display LREE-depleted patterns (LaN/SmN = 0.14-0.45) with a flat to slightly fractionated HREE segments (SmN/YbN = 0.30-0.65) whereas Cpx-harburgites have flat to upward-inflected LREE patterns (LaN/SmN = 0.13-1.23) with more fractionated HREE patterns (SmN/YbN = 0.13-0.65) than the lherzolite samples. Their platinum group elements (PGE) contents (<50 ppb) and distinct mantle-normalised PGE patterns with the Pd/Ir values (1.8-11.9) and Pt/Pt* values (0.2-1.1) show an affinity to the characteristic of the residual mantle material. Evaluation of mineralogical and petrological characteristics of these peridotites suggests that they represent the residues remaining after low degree of partial melting (˜2-12%) in the spinel stability field of a mid-oceanic ridge environment. The well-preserved mid-oceanic ridge characteristics of these peridotites further suggest that the mantle section was subsequently trapped in the forearc region of the subduction zone without undergoing significant modification in their chemistry by later subduction-related tectonic and petrological processes before its emplacement to the present crustal level.

  8. The Pan-African orogenic belt of southern Mauritanides and northern Rokelides (southern Senegal and Guinea, West Aftica): gravity evidence for a collisional suture

    Science.gov (United States)

    Ponsard, J. F.; Roussel, J.; Villeneuve, M.; Lesquer, A.

    The geological history in southern Senegal and Guinea results in the existence, on the western margin of the West African craton, of a Pan-African orogenic belt which is capped in part with late Proterozoic and Paleozoic terranes. In addition to geological features, the gravity signature and deduced crustal model bear evidence of an eastern crustal block corresponding to the old rigid craton and a denser and thicker western block related to the reactivated basement province. The discontinuity in density between both is interpreted as the Pan-African suture which dips westward beneath the reactivated block. The short wavelength gravity highs superimposed to the gravity gradient in the central domain are interpreted as west-dipping wedge-shaped dense bodies squeezed at depth along the suture. These may reflect either remains of oceanic crust or granulite facies rocks derived from the crustal overthrusting process. Finally using both geological and geophysical materials, the Pan-African belt of southern Mauritanides and northern Rokelides appears to be consistent with a continental collision-basement reactivation model.

  9. Three-dimensional geometry of thrust surfaces and the origin of sinuous thrust traces in orogenic belts: Insights from scaled sandbox experiments

    Science.gov (United States)

    Chattopadhyay, A.; Jain, M.; Bhattacharjee, D.

    2014-12-01

    Sinuous traces of emerging thrust tips, comprising multiple salients and recesses, are commonly observed in orogenic belts (e.g. Lesser Himalayas of India, Nepal and Bhutan) and in accretionary prisms (e.g. Nankai Trough off the coast of Japan). Lateral (along the strike of the deformation zone) variation in the depths of foreland basins (i.e. variable sediment thickness) or in the strength of the basal detachment, or presence of a curved indenter has been traditionally cited to explain the formation of salients in fold-and-thrust belts, although they are not applicable in all cases. In the present work, we have carried out four series of scaled analog model experiments using dry quartz sand, changing the dip of the basal decollément (β = 0° or 5°) and the basal friction (μb = 0.5 or 0.3) to investigate the 3D shape of thrust surfaces under varying overall boundary conditions, but without any lateral variation of these parameters, within the models. The experimental results show that under all boundary conditions, thrust surfaces are curved both in their dip and strike directions (i.e. spoon-shaped in 3D). Multiple concave-upward and convex-upward segments constitute a thrust surface, which produces a sinuous trace when the tip line intersects the Earth's surface. It is also shown that thrust surface curvatures occur at different scales, and the overall thrust surface roughness (corrugations) has a self-affine fractal geometry.

  10. Cambro-Ordovician post-collisional granites of the Ribeira belt, SE-Brazil: A case of terminal magmatism of a hot orogen

    Science.gov (United States)

    Valeriano, Claudio de Morisson; Mendes, Julio Cezar; Tupinambá, Miguel; Bongiolo, Everton; Heilbron, Monica; Junho, Maria do Carmo Bustamante

    2016-07-01

    This work presents an overview of the geology and chemical composition of the Cambrian-Ordovician post-collisional (COPC) granites and associated rocks of Ribeira belt, SE-Brazil. These COPC granites make up some of the most picturesque and highest (>2000 m) rocky peaks and cliffs of Rio de Janeiro state, an accessible case of post-orogenic granitic magmatism associated with the terminal stages of a hot Ediacaran-Cambrian (Brasiliano-Panafrican) orogen. The COPC magmatism intruded tonalitic to granitic orthogneisses of the Rio Negro arc (∼790-600 Ma) and associated paragneisses of the São Fidelis Group. Post-collisional magmatism started ∼10 m.y. after the latest collisional event, the Buzios Orogeny, lasting discontinuously from ∼510 Ma until ∼470 Ma. The 15 largest intrusive bodies in Rio de Janeiro State are referred to in the literature as the Parati/Mangaratiba, Vila Dois Rios, Pedra Branca, Suruí, Silva Jardim, Favela, Andorinha, Teresópolis, Frade, Nova Friburgo, Conselheiro Paulino, São José do Ribeirão, Sana and Itaoca granites. They crop out as rounded/elliptical stocks or gently-dipping sheets, always with sharp contacts with the country rocks, along with pegmatite and aplitic veins and dykes. COPC granites are grey and pink undeformed medium-grained biotite monzogranites with (K-feldspar) porphyritic, mega-crystic, equigranular and serial textures. Magmatic flow foliation is frequently observed. Peripheric xenolith zones are common as well as isolated xenoliths from the country rocks. In a compilation of more than 100 chemical compositions, SiO2 contents display a major mode at 71wt%. The COPC magmatism generated high-K calc-alkaline granites and quartz monzonites with predominantly metaluminous granites. Meso to melanocratic gabbroic and dioritic enclaves also have calc-alkaline affinity and likely represent more resistant mafic xenoliths from the Rio Negro Arc.

  11. Detrital zircon provenance constraints on the initial uplift and denudation of the Chinese western Tianshan after the assembly of the southwestern Central Asian Orogenic Belt

    Science.gov (United States)

    Han, Yigui; Zhao, Guochun; Sun, Min; Eizenhöfer, Paul R.; Hou, Wenzhu; Zhang, Xiaoran; Liu, Dongxing; Wang, Bo

    2016-06-01

    U-Pb and Lu-Hf isotopic data of detrital zircons from late Paleozoic and Mesozoic strata along the southern flank of the Chinese western Tianshan enable to identify provenance changes and reconstruct early stage uplift and denudation history of the Tianshan range. Detrital zircons from Permian and Early-Middle Triassic siliciclastic rocks show two prominent age populations at 500-390 Ma and 310-260 Ma, and subordinate Precambrian ages at ~ 2.5 Ga, 2.0-1.7 Ga, 1.2-0.9 Ga and 900-600 Ma, with rare ages between 390 and 310 Ma. These characteristics and zircon εHf(t) data consistently suggest a sediment source predominantly from the Tarim Craton, rather than the Central Tianshan-Yili Block. In contrast, Late Triassic to Cretaceous strata additionally contain abundant 390-310 Ma and 260-220 Ma detrital zircons, implying multiple source regions from the Central Tianshan-Yili Block, Tarim Craton, and Western Kunlun Orogen. A significant switch of sedimentary provenances occurred in the mid-Triassic and is consistent with contemporaneous change of paleocurrent directions and the onset of intense tectonothermal events in the broad region of the Chinese western Tianshan and Kyrgyz Tianshan. These data collectively indicate that the significant surface uplift and denudation of the Tianshan range were probably initiated in the mid-Triassic (~ 240 Ma) after the assembly of the southwestern Central Asian Orogenic Belt. This uplifting event represents an intracontinental orogeny most likely in response to the collision between the Qiangtang Block and southern Eurasia, following the closure of the western part of the Paleo-Tethys Ocean.

  12. Partially Melted UHP Eclogite in the Sulu Orogenic Belt, China and its rheological significance to deep continental subduction: Micro- to Macro-scale Evidence

    Science.gov (United States)

    Wang, Lu; Kusky, Timothy; Polat, Ali; Wang, Songjie; Jiang, Xingfu; Zong, Keqing; Wang, Junpeng; Deng, Hao; Fu, Jianmin

    2015-04-01

    Partially Melted UHP Eclogite in the Sulu Orogenic Belt, China and its rheological significance to deep continental subduction: Micro- to Macro-scale Evidence Numerous studies have described partial melting processes in low-high pressure meta-sedimentary rocks, some of which may generate melts that coalesce to form plutons. However, migmatized ultrahigh pressure (UHP) eclogite has never been clearly described from the microscale to macroscale, though experimental studies prove dehydration partial melting of eclogite at high pressure condition1 and low degrees of partially melted eclogite have been reported from the Qaidam UHP orogenic belt in NW China2,3 or inferred from multiphase solid (MS) inclusions within eclogite4 in the Sulu UHP belt. We present field-based documentation of decompression partial melting of UHP eclogite from Yangkou and General's Hill, Sulu Orogen. Migmatized eclogite shows successive stages of anatexis, initially starting from intragranular and grain boundary melt droplets, which grow into a 3D interconnected intergranular network, then segregate and accumulate in pressure shadow areas, and finally merge to form melt channels and dikes that transport melts to upper lithospheric levels. In-situ phengite breakdown-induced partial melting is directly identified by MS inclusions of Kfs+ barium-bearing Kfs + Pl in garnet, connected by 4-10 μm wide veinlets consisting of Bt + Kfs + Pl next to the phengite. Intergranular veinlets of plagioclase + K-feldspar first form isolated beads of melt along grain boundaries and triple junctions of quartz, and with higher degrees of melting, eventually form interconnected 3D networks along grain boundaries in the leucosome, allowing melt to escape from the intergranular realm and collect in low-stress areas. U-Pb (zircon) dating and petrological analyses on residue and leucocratic rocks shows that partial melting occurred at 228-219 Ma, shortly after peak UHP metamorphism (~230 Ma), and at depths of 30-90 km

  13. Geochemistry of Gneisses from Dabie Complex and Tongbai Complex in Qinling-Tongbai-Dabie Orogenic Belt: Implications for Location of Yangtze-Sino-Korean Suture

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Dabie complex (DC) and the Tongbai complex (TBC) are separately distributed in the middle and eastern parts of the Qinling-Tongbai-Dabie orogenic belt. In this study, the Dabie complex can be divided into two units: one is the complex with no high pressure and ultrahigh pressure metamorphic rocks (DC1), and the other is the complex containing coesite-bearing eclogite lenses or boudins (DC2). Gneisses are predominant in the TBC, DC1 and DC2. Major and trace element data of gneisses in the TBC, DC1 and DC2 show them to be the orthogneisses. The gneisses in the DC1 have higher incompatible element contents and higher ratios of w(K2O)/w(Na2O) and w(La)n/w(Yb)n than those in the DC2. However, no obvious differences arise in other element contents and the ratios of w(La)/w( Nb), w(Nb)/w(Th), w(Nb)/w(Hf), w(Ba)/w(La), w(Sm)/w(Nd) and w(Th)/w(U) between the gneisses in the DC2 and those in the DC1. These observations suggest that the protoliths of the gneisses in the DC2 have affinities to those in the DC1. The difference between the DC1 and DC2 gneisses in incompat- ible element contents could reflect the difference in their partial melting extent. The TBC gneisses are geochemically similar to the DC1 gneisses, suggesting that the TBC and DC1 gneisses are the same lithologic unit in the Qinling-Tongbai-Dabie orogenic belt and that they have experienced similar formations and evolution histories. In the Qinling-Tongbai area, the TBC is part of the northern blocks of the Yangtze craton. Given the similarity of geochemical characteristics, the rock assemblage and the ages between the TBC and DC1 gneisses, we can infer that the Dabie complex also belongs to the northern blocks of the Yangtze craton. In terms of the distribution of eciogites and metamorphic facies, we propose that the collisionai suture in the Dabie area is distributed along the Xiaotian-Mozitan fault, at the contact with the Shang-Dan-Tongbai fault to the west.

  14. Geochronological Significance of the Post-Orogenic Mafic-Ultramafic Rocks in the Hongqiling Area of Jilin Province, Northeast China

    Institute of Scientific and Technical Information of China (English)

    Zhang Guangliang; Wu Fuyuan

    2006-01-01

    in NE Chinaand in the Altay-Tianshan-Junggar Orogenic Belt in Northern Xinjiang indicates that mafic intrusions are an important magmatic suite that evolved during post-orogenic processes.Portions of this mafic magma could have underplated the lower crust, and served as a heat source for associated late-stage granitic magmas.

  15. Granites and evolution of orogenic belt in Eastern Tianshan moutain%东天山花岗岩与造山带演化

    Institute of Scientific and Technical Information of China (English)

    马比阿伟; 木合塔尔·扎日; 阿以拉者

    2014-01-01

    文章通过建立花岗岩类类型与地球动力学之间的联系,试图利用分类清楚、测年准确的花岗岩解决本区地壳及造山带演化过程。根据 K2 O 等地壳成熟度的指标,得出了该地区地壳性质由不成熟→半成熟岛弧→成熟陆壳演变;构造环境由不成熟岛弧→成熟的“大陆化”岛弧→大陆碰撞带演化。总结了东天山地区经历了三大地壳演化时期,分别为前寒武纪基底演化阶段陆核及超大陆形成期;古生代古亚洲洋形成演化期和中生代特提斯―印欧板块碰撞阶段板内演化期。反演出了东天山造山带经历了俯冲汇聚及不成熟陆壳形成阶段→弧―陆碰撞及半成熟陆壳形成阶段→碰撞造山及成熟陆壳形成阶段→陆内造山及陆壳改造阶段→中生代板内演化阶段。%Based on the link between types of granites and geodynamics established in this paper,the author attempts to understand the evolution process of crust and orogenic belt in this area by utilizing clearly classi-fied and accurately dated granites.According to K2 O and other indexes of the degree of crustal maturity,it i-dentified that the development of crust is from immaturity to half-mature island arc to mature continental crust.The development of tectonic environment is from immature island arc to mature “continentized”island arc to continental collision zone.It is concluded in this paper that Eastern Tianshan moutain area experiences three major crustal evolution periods which are formation period of continental nucleus and supercontinent in Precambrian basement evolution stage,formation and evolution period of Paleo-Asian Ocean in Palaeozoic Era as well as intraplate evolution period of Tethys-Indo-European plate collision stage in Mesozoic Era.It is also reconstructed that the Eastern Tianshan moutain orogenic belt undergoes a process which in sequential order consists of a period of subduction and convergence as well

  16. Compositional change of granitoids from Eastern Pontides Orogenic Belt (NE Turkey) at ca. 84 Ma: Response to slab rollback of the Black Sea

    Science.gov (United States)

    Liu, Ze; Zhu, Di-Cheng; Eyuboglu, Yener; Wu, Fu-Yuan; Rızaoǧlu, Tamer; Zhao, Zhi-Dan; Xu, Li-Juan

    2016-04-01

    Magma generation and evolution is a natural consequence of mantle dynamics and crust-mantle interaction. As a result, changes of magma compositions in time and space can be used, in turn, to infer these deep processes. In this paper we report new zircon U-Pb age and Hf isotope, whole-rock major and trace element, and Nd isotope data for the granitoids from Kürtün in Eastern Pontides. These data, together with the data in the literature, reveal the occurrence of magma compositional variations at ca. 84 Ma in the region, providing new insights into the mantle dynamics responsible for the generation of the extensive Late Cretaceous felsic magmatism in Eastern Pontides Orogenic Belt (NE Turkey) (Eyuboglu et al., 2015). Group I samples (SiO2 = 77-62 wt.%) were concentrated in 91-86 Ma and are characterized by their low CaO (1.6-1.5 wt.%) and Th (8.2-3.0 ppm) contents and low K2O/Na2O (0.7-0.1) and Th/La (0.4-0.2) ratios. Group II samples (SiO2 = 71-63 wt.%) were concentrated in 82-72 Ma and include high concentrations of CaO (5.2-3.0 wt.%) and Th (29.6-14.3), high K2O/Na2O (1.5-1.1) and varying Th/La (1.0-0.5) ratios. Group I samples have positive zircon eHf(t) (+9.6 to +7.6) and whole-rock eNd(t) (+3.5 to +2.5), significantly differing from those of Group II samples with eHf(t) of +1.9 to -1.5 and whole-rock eNd(t) of -3.6 to -3.8. Modeling results indicate that the Nd-Hf isotopic compositions of Group I and II samples can be interpreted as having derived from partial melting of the low-K amphibolite within the juvenile lower crust beneath the Eastern Pontides Orogenic Belt that incorporated into 15-20% and 70-75% enriched components from the basement rocks represented by the Carboniferous granites exposed in the region, respectively. In combination with the geological observations that indicate the occurrence of regional thermal subsidence (Bektaş et al., 1999) and extensional structure (Bektaş et al., 1999, 2001) during the Campanian (83.6-72.1 Ma), the coeval

  17. Petrography and chemical evidence for multi-stage emplacement of western Buem volcanic rocks in the Dahomeyide orogenic belt, southeastern Ghana, West Africa

    Science.gov (United States)

    Nude, Prosper M.; Kwayisi, Daniel; Taki, Naa A.; Kutu, Jacob M.; Anani, Chris Y.; Banoeng-Yakubo, Bruce; Asiedu, Daniel K.

    2015-12-01

    The volcanic rocks of the Buem Structural Unit in the Dahomeyide orogenic belt of southeastern Ghana, constitute a unique assemblage among the monocyclic sedimentary formations of this structural unit. Representative volcanic rock samples were collected from the Asukawkaw, Bowiri-Odumase and Nkonya areas which form a roughly north-south trend. The volcanic rocks comprise spherulitic, amygdaloidal, vesicular, phyric and aphyric varieties. Whole rock geochemistry shows that these volcanic rocks exhibit both alkaline and subalkaline characteristics. The alkaline varieties are relatively enriched in REE and incompatible trace element concentrations, similar to OIB; the subalkaline varieties show E-MORB and N-MORB REE and incompatible element characteristics. The rocks have low La/Nb (<1), low K/Nb (<450) and high Nb/U (averagely 47.3) values, suggesting no significant effect of crustal contamination. The key characteristics of these volcanic rocks are the distinct petrography and geochemistry, shown from the three separate localities, which may suggest source fractionation at different depths or modes of emplacement. The association of volcanic rocks of OIB, E-MORB and N-MORB affinities, with no significant crustal contamination, may suggest mantle derived magma that may have been related to rifting event and eventual emplacement at the eastern passive margin of the West African Craton.

  18. Thermochronology of Mesozoic Sandstone from the Beipiao Basin and Its Implication to Meso-Cenozoic Tectonic Evolution of the Eastern Yan-Liao Orogenic Belt

    Institute of Scientific and Technical Information of China (English)

    YAN Yi; LIN Ge; XIA Bin; LI Zi'an; LI Zhongcheng

    2005-01-01

    Combining the single-grain low-temperature apatite fission track with high-temperature zircon U-Pb dating of sandstone can better reveal the temporal association between the source and depositional site, and identify both the age component of the source terrain and subsequent thermo-tectohic events after deposition. This paper introduces the singlegrain zircon U-Pb dating and fission track (FT) dating of sediments from the Beipiao basin in Northeast China. The U-Pb ages of 18 single zircon grains collected from the early Jurassic Beipiao Formation range from 194.3±2.9 to 233.8±4.2 Ma and most of apatite FI ages are about 30-40 Ma, indicating that the eastern part of the Yan-Liao orogenic belt experienced an obvious tectonic seesawing during Meso-Cenozoic time. The eastern part of Liaoning Province (the Liaodong block)uplifted in the early Mesozoic (230-190 Ma) and formed a geological landscape of high mountains, while the western part of the province (the Liaoxi area) subsided relatively and thousand-meter-scale sediments were deposited. During the Cenozoic (30-40 Ma), the Liaoxi area uplifted as a whole, and the Xialiaohe Basin sank intensively. The topographic landscape had a great change: high mountains in the west and east of Liaoning Province and low plains in the central area.

  19. Teleseismic P-wave tomography and the upper mantle structure of the Sulu orogenic belt (China): implications for Triassic collision and exhumation mechanism

    Science.gov (United States)

    Peng, Miao; Tan, Handong; Jiang, Mei; Xu, Zhiqin; Li, Zhonghai; Xu, Lehong

    2016-12-01

    As the largest ultrahigh-pressure (UHP) metamorphic tectonic unit outcropping in the world, the Dabie-Sulu UHP metamorphic belt is considered to be one of the best areas for studying the continental dynamics. However, their continental collision and exhumation mechanism are still debated. We performed a 3D teleseismic P-wave tomography beneath the Sulu orogen for the purpose of understanding the deep structure. The tomographic results show that there is a prominently near-SN-trending low-velocity zone (LVZ) close to the Tanlu fault (TLF), indicating a slab tear of the subducted Yangtze plate (YZP) during the initial Early Triassic collision. Our results also suggest that both the Yangze crustal slab and the North China lithospheric slab were dragged downwards by the subducted oceanic slab, which constituted a ‘two-sided’ subduction mode. A conceptual geodynamic model is proposed to explain the exhumation of Sulu high- to UHP rocks and imply a polyphase exhumation driven by buoyancy of continental materials at different depth and upward extrusion of crustal partial melting rocks to the surface at the later stage.

  20. Neoproterozoic diamictite-bearing sedimentary rocks in the northern Yili Block and their constraints on the Precambrian evolution of microcontinents in the Western Central Asian Orogenic Belt

    Science.gov (United States)

    He, Jingwen; Zhu, Wenbin; Zheng, Bihai; Wu, Hailin; Cui, Xiang; Lu, Yuanzhi

    2015-12-01

    The origin and tectonic setting of Precambrian sequences in the Central Asian Orogenic Belt (CAOB) have been debated due to a lack of high resolution geochronological data. Answering this question is essential for the understanding of the tectonic framework and Precambrian evolution of the blocks within the CAOB. Here we reported LA-ICP-MS detrital zircon U-Pb ages and in-situ Hf isotopic data for Neoproterozoic sedimentary cover in the northern Yili Block, an important component of the CAOB, in order to provide information on possible provenance and regional tectonic evolution. A total of 271 concordant U-Pb zircon ages from Neoproterozoic sedimentary cover in the northern Yili Block define three major age populations of 1900-1400 Ma, 1300-1150 Ma and 700-580 Ma, which are quite different from cratons and microcontinents involved in the CAOB. Although it is not completely consistent with the local basement ages, an autochthonous provenance interpretation is more suitable. Some zircon grains show significant old Hf model ages (TDMC; 3.9-2.4 Ga) and reveal continental crust as old as Paleoarchean probably existed. Continuous Mesoproterozoic zircon age populations exhibit large variations in the εHf(t) ratios, suggesting the long-time involvement of both reworked ancient crust and juvenile material. Similar Mesoproterozoic evolution pattern is identified in many continental terranes involved in the CAOB that surround the Tarim Craton. Based on our analysis and published research, we postulate that the northern Yili Block, together with Chinese Central Tianshan, Kyrgyz North Tianshan and some other microcontinents surrounding the Tarim Craton, once constituted the continental margin of the Tarim Craton in the Mesoproterozoic, formed by long-lived accretionary processes. Most of the late Neoproterozoic zircons exhibit significant positive εHf(t) ratios, suggesting the addition of juvenile crust. It is consistent with the tectonic event related to the East Africa

  1. Mesoproterozoic continental arc magmatism and crustal growth in the eastern Central Tianshan Arc Terrane of the southern Central Asian Orogenic Belt: Geochronological and geochemical evidence

    Science.gov (United States)

    He, Zhen-Yu; Klemd, Reiner; Zhang, Ze-Ming; Zong, Ke-Qing; Sun, Li-Xin; Tian, Zuo-Lin; Huang, Bo-Tao

    2015-11-01

    Numerous microcontinents are known to occur in the Central Asian Orogenic Belt (CAOB), one of the largest accretionary orogens and the most significant area of Paleozoic crustal growth in the world. The evolution of the Precambrian crust in these microcontinents is central to understanding the accretionary and collisional tectonics of the CAOB. Here, we present systematic zircon U-Pb dating and Hf isotope studies of Mesoproterozoic gneissic granitoids from the eastern Central Tianshan Arc Terrane (CTA) of the southern CAOB. The investigated intermediate to felsic (SiO2 = 60.48-78.92 wt.%) granitoids belong to the calcic- to calc-alkaline series and usually have pronounced negative Nb, Ta and Ti anomalies, relative enrichments of light rare earth elements (LREEs) and large ion lithophile elements (LILEs) while heavy rare earth elements (HREEs) and high field strength elements (HFSEs) are depleted, revealing typical active continental margin magmatic arc geochemical characteristics. These spatially-distant rocks show consistent zircon U-Pb crystallization ages from ca. 1.45 to 1.40 Ga and thus constitute a previously unknown Mesoproterozoic continental magmatic arc covering hundreds of kilometers in the eastern segment of the CTA. Furthermore the high and mainly positive zircon εHf(t) values between - 1.0 and + 8.6 and the zircon Hf model ages of 1.95 to 1.55 Ga, which are slightly older than their crystallization ages, suggest that they were mainly derived from rapid reworking of juvenile material with a limited input of an ancient crustal component. Therefore, the formation of these granitoids defines an extensive Mesoproterozoic intermediate to felsic, subduction-related intrusive magmatic arc activity that was active from at least 1.45 to 1.40 Ga, involving significant juvenile continental growth in the eastern segment of the CTA. Furthermore the zircon U-Pb and Hf isotopic data challenge the common belief that the CTA was part of the Tarim Craton during Paleo

  2. Paleomagnetic study on orogenic belt:An example from Early Cretaceous volcanic rocks,Inner Mongolia,China

    Institute of Scientific and Technical Information of China (English)

    REN; Shoumai; ZHU; Rixiang; HUANG; Baochun; ZHANG; Fuqin

    2004-01-01

    We report paleomagnetic results for Early Cretaceous lava flows collected from the Suhongtu area of Inner Mongolia, the middle part of the Tianshan-Mongolia Fold Belt (TMFB).Rock-magnetic experiments for different lava flows indicate that the main magnetic mineral is pseudo-single-domain (PSD) magnetite. The characteristic high-temperature remanence component is isolated by thermal demagnetization temperature steps between 300℃ and 585℃,which yields a mean direction of D= 23.6°, /= 56.0° with α95 = 2.3°. We interpret this high-temperature remanence component as primary magnetization based mainly upon the petrographic analysis, which shows that the shape of magnetite crystal is relatively rounded square or polygon without internal reflection and deuterogenous phenomenon. The corresponding pole of the high-temperature remanence component is at 71.1°N, 200.5°E with A95 = 2.7°.This Early Cretaceous pole is in good agreement with those for Siberia, North China, and Inner Mongolia, suggesting that these continental blocks had already sutured together in the Early Cretaceous, which would further provide constraints on better understanding of the formation and evolution of the TMFB.

  3. LA-ICP-MS U-Pb Zircon Geochronology of Basic Dikes within Maxianshan Rock Group in the Central Qilian Orogenic Belt and Its Tectonic Implications

    Institute of Scientific and Technical Information of China (English)

    He Shiping; Wang Hongliang; Chen Junlu; Xu Xueyi; Zhang Hongfei; Ren Guangming; Yu Jiyuan

    2007-01-01

    A large number of basic dikes, which indicate an important tectonic-magmatic event in the eastern part of the Central Qilian (祁连) orogenic belt, were found from Maxianshan (马衔山) rock group, Yongjing (永靖) county, Gansu (甘肃) Province, China. According to the research on the characteristics of geology and petrology, the basic dike swarms, widely intruded in Maxianshan rock group,are divided into two phases by the authors. U-Pb isotope of zircons from the basic dikes above two phases is separately determined by LA-ICP-MS in the Key Laboratory of Continental Dynamics of Northwest University, China and the causes of formation of the zircons are studied using CL images.The formation age of the earlier phase of metagabbro dikes is (441.1±1.4) Ma (corresponding to the early stage of Early Silurian), and the age of the main metamorphic period is (414.3±1.2) Ma (corresponding to the early stage of Early Devonian). The formation age of the later phase of diabase dike swarms is (434±1.0) Ma (corresponding to the late stage of Early Silurian). The cap- tured-zircons from diabase dike swarms saved some information of material interfusion by Maxianshan rock group (207pb/206Pb apparent ages are (2325±3)-(2573±6) Ma), and some zircons from diabase dike swarms also saved impacted information by tectonic thermal event during the late period of Caledonian movement (206pb/238U apparent ages are (400±2)-(429±2) Ma). By combining the results of the related studies, the basic dikes within Maxianshan rock group were considered to be formed in the transfer period, from subductional orogeny towards collisional orogeny, which represents geological records of NW-SE extension during regional NE-SW towards intense compression in the Central Qilian block.

  4. Crustal nature and origin of the Russian Altai: Implications for the continental evolution and growth of the Central Asian Orogenic Belt (CAOB)

    Science.gov (United States)

    Cai, Keda; Sun, Min; Buslov, M. M.; Jahn, Bor-ming; Xiao, Wenjiao; Long, Xiaoping; Chen, Huayong; Wan, Bo; Chen, Ming; Rubanova, E. S.; Kulikova, A. V.; Voytishek, E. E.

    2016-04-01

    The Central Asian Orogenic Belt is a gigantic tectonic collage of numerous accreted terranes. However, its geodynamic evolution has been hotly debated primarily due to incomplete knowledge on the nature of these enigmatic terranes. This work presents new detrital zircon U-Pb and Hf isotopic data to constrain the crustal nature and origin of the Russian Altai, a critical segment of Altai-Mongolian terrane. The youngest zircon 206Pb/238U ages of 470 Ma constrain that the Terekta Formation, previously envisaged as Precambrian basement, was actually deposited after the Middle Ordovician. As for the three more sedimentary sequences above the Terekta Formation, they have youngest zircon 206Pb/238U ages of 425 Ma, 440 Ma and 380 Ma, respectively, indicating their depositions likely in the Late Silurian to Devonian. From all analyses, it is noted that many zircon U-Pb ages cluster at ca. 520 Ma and ca. 800 Ma, and these zircons display oscillatory zoning and have subhedral to euhedral morphology, which, collectively, suggests that adjacent Neoproterozoic to Paleozoic igneous rocks were possibly dominant in the sedimentary provenance. Additionally, a few rounded Archean to Mesoproterozoic zircon grains are characterized by complex texture, which are interpreted as recycling materials probably derived from the Tuva-Mongolian microcontinent. Precambrian rocks have not been identified in the Russian Altai, Chinese Altai and Mongolian Altai so far, therefore, Precambrian basement may not exist in the Altai-Mongolian terrane, but this terrane probably represents a large subduction-accretion complex built on the margin of the Tuva-Mongolian microcontinent in the Early Paleozoic. Multiple episodes of ridge-trench interaction may have caused inputs of mantle-derived magmas to trigger partial melting of the newly accreted crustal materials, which contributed to the accretionary complex. During accretionary orogenesis of the CAOB, formation of such subduction-accretion complex is

  5. Crustal thickening prior to 220 Ma in the East Kunlun Orogenic Belt: Insights from the Late Triassic granitoids in the Xiao-Nuomuhong pluton

    Science.gov (United States)

    Xia, Rui; Wang, Changming; Deng, Jun; Carranza, Emmanuel John M.; Li, Wenliang; Qing, Min

    2014-10-01

    The East Kunlun Orogenic Belt (EKOB) played an important role in plate tectonics, magma generation, and crustal evolution. Late Triassic granodiorites and their mafic micro-granular enclaves (MMEs) from Xiao-Nuomuhong in the EKOB were studied for geochemistry and geochronology to constrain their petrogenesis. Zircon LA-ICP-MS dating indicates that the Xiao-Nuomuhong granodiorites are coeval with their MMEs (∼222 Ma). The granodiorites are high-K calc-alkaline rocks that are enriched in Rb, Th, U and LREE, and depleted in Cr, Ni and HFSE, with high Sr/Y ratios (82.2-85.3) and geochemically resemble the lower crust-derived adakites. The MMEs are also high-K calc-alkaline rocks, with high Al2O3 (16.8-18.8 wt.%), low Mg# (30-40), Nb, Zr and Hf, with weak negative Eu anomalies (Eu/Eu# = 0.8-0.9). We suggest the MMEs are mafic magmatic globules that were injected into the felsic host magma. The adakitic rocks from the Xiao-Nuomuhong pluton were generated by partial melting of thickened crust, while the primitive compositions of the MMEs were most likely from the lithospheric mantle beneath the EKOB. The Late Triassic Xiao-Nuomuhong pluton is important evidence that crustal thickening in the EKOB occurred prior to 220 Ma. The pluton is interpreted as the result of mixing between thickened lower crust-derived melts and lithospheric mantle-derived mafic melts and the protracted magmatic response to the break-off of the Paleo-Tethys oceanic slab at ∼232 Ma.

  6. EPIDEMIOLOGY OF CARDIOESOPHAGEAL CANCER AND STOMACH CANCER IN ALTAY REGION

    OpenAIRE

    Lazarev, A.; Shoyhet, Ya; Nechunaev, V.; Panasjan, A.; Tsyvkina, V.

    2007-01-01

    The article summarizes analytical results of morbidity and mortality of stomach cancer and cardioesophageal cancer in Altay region in comparison with Russian indices since 1990 to 2005. Downtrend of morbidity is registered morbidity was reduced on 10.000 (16 %) since 1990. At the same time specific increase of cardioesophageal cancer is registered including Altay region. Morbidity of cardioesophageal cancer is increased twice in Altay region. Different types of adenocarcinoma dominated (92 %)...

  7. Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper–molybdenum deposit, Western Qinling Orogenic Belt, China

    Science.gov (United States)

    Kun-Feng Qiu,; Taylor, Ryan D.; Yao-Hui Song,; Hao-Cheng Yu,; Kai-Rui Song,; Nan Li,

    2016-01-01

    Taiyangshan is a poorly studied copper–molybdenum deposit located in the Triassic Western Qinling collisional belt of northwest China. The intrusions exposed in the vicinity of the Taiyangshan deposit record episodic magmatism over 20–30 million years. Pre-mineralization quartz diorite porphyries, which host some of the deposit, were emplaced at 226.6 ± 6.2 Ma. Syn-collisional monzonite and quartz monzonite porphyries, which also host mineralization, were emplaced at 218.0 ± 6.1 Ma and 215.0 ± 5.8 Ma, respectively. Mineralization occurred during the transition from a syn-collisional to a post-collisional setting at ca. 208 Ma. A barren post-mineralization granite porphyry marked the end of post-collisional magmatism at 200.7 ± 5.1 Ma. The ore-bearing monzonite and quartz monzonite porphyries have a εHf(t) range from − 2.0 to + 12.5, which is much more variable than that of the slightly older quartz diorite porphyries, with TDM2 of 1.15–1.23 Ga corresponding to the positive εHf(t) values and TDM1 of 0.62–0.90 Ga corresponding to the negative εHf(t) values. Molybdenite in the Taiyangshan deposit with 27.70 to 38.43 ppm Re suggests metal sourced from a mantle–crust mixture or from mafic and ultramafic rocks in the lower crust. The δ34S values obtained for pyrite, chalcopyrite, and molybdenite from the deposit range from + 1.3‰ to + 4.0‰, + 0.2‰ to + 1.1‰, and + 5.3‰ to + 5.9‰, respectively, suggesting a magmatic source for the sulfur. Calculated δ18Ofluid values for magmatic K-feldspar from porphyries (+ 13.3‰), hydrothermal K-feldspar from stockwork veins related to potassic alteration (+ 11.6‰), and hydrothermal sericite from quartz–pyrite veins (+ 8.6 to + 10.6‰) indicate the Taiyangshan deposit formed dominantly from magmatic water. Hydrogen isotope values for hydrothermal sericite ranging from − 85 to − 50‰ may indicate that magma degassing progressively depleted residual liquid in

  8. Petrogenesis of the Early Permian volcanic rocks in the Chinese South Tianshan: Implications for crustal growth in the Central Asian Orogenic Belt

    Science.gov (United States)

    Huang, He; Zhang, Zhaochong; Santosh, M.; Zhang, Dongyang; Wang, Tao

    2015-07-01

    The Paleozoic and Early Mesozoic magmatic suites in the Central Asian Orogenic Belt (CAOB) provide important insights on the crustal growth and reworking process associated with the construction of the largest Phanerozoic orogen on the Earth. Among the tectonic blocks of the CAOB, the South Tianshan Terrane (STT) occupies the southwestern margin and is located adjacent to the Tarim Craton. Here we investigate the Early Permian Xiaotikanlike Formation in the central part of the Chinese STT in Xinjiang in Northwest China. The formation is composed of a series of terrestrial volcanic lava flows and volcanic breccia, interbedded with siltstones, sandstones and sandy conglomerates. Zircon U-Pb and Lu-Hf isotopic analysis, whole-rock major oxide, trace element and Sr-Nd isotopic data are presented for the volcanic lava flows of the Xiaotikanlike Formation exposed in the Boziguo'er, Laohutai and Wensu regions. The new zircon ages from our study, together with those reported in previous investigations on the rhyolitic lava flow from the Wensu region, suggest that the volcanic rocks of the Xiaotikanlike Formation simultaneously erupted at ca. 285 Ma. The lavas of the formation show a wide range of SiO2 (49.88 to 78.56 wt.%). The basaltic rocks show SiO2 from 49.88 to 53.78 wt.%, MgO from 3.73 to 7.01 wt.% and Mg# from 41 to 61. They possess slightly enriched Sr-Nd isotope signature [(87Sr/86Sr)t = 0.70495-0.70624 and εNd(t) = - 0.5 to + 0.6], and have trace and rare earth element patterns similar to those of oceanic island basalts (OIBs). Petrographic and whole-rock chemical characteristics indicate that the basaltic lava flows are dominantly tholeiitic, and were likely derived from a spinel-dominated peridotite asthenospheric mantle source. The felsic lavas of the Xiaotikanlike Formation show SiO2 in the range of 60.71 to 78.56 wt.% and display overall similar immobile element pattern characterized by notable troughs at Nb-Ta, P and Ti and gently sloping REEs. Zircon Lu

  9. 西南三江造山带火山岩-构造组合及其意义%Volcanic Petrotectonic Assemblages in Sanjiang Orogenic Belt,SW China and Implication for Tectonics

    Institute of Scientific and Technical Information of China (English)

    莫宣学; 邓晋福; 董方浏; 喻学惠; 王勇; 周肃; 杨伟光

    2001-01-01

    岩石构造组合是指表示板块边界或特定的板块内部环境特征的岩石组合。中国西南“三江”造山带的火山岩可划分为五种火山岩-构造组合:洋脊型/准洋脊型组合,岛弧及陆缘弧组合,碰撞型组合,碰撞后组合及陆内拉张型组合。阐述了各种火山岩-构造组合的特点及构造含义。对在造山带火山岩岩石-构造组合分析中经常遇到的一些问题,如“构造岩片”研究方法、地球化学判别图解的使用条件、准洋脊型火山岩组合的构造含义、蛇绿岩带-火山弧的成对性、岩浆作用的同步性和滞后性、以及火山岩的深部“探针”作用等问题进行了讨论。%Sanjiang Orogenic Belt is located geographically in the area of Jinshajiang, Lancangjiang and Nujiang (abbreviated from the “three rivers area”), and tectonically at the junction between the Himalaya-Tethyan tectonic domain and the Pacific tectonic domain. It is one of the key areas to understand the Tethyan evolution, Indian-Eurasia collision and the uplift of Tibet Plateau and its eastern extension. Various volcanic rocks of Proterozoic to Cenozoic age occur in Sanjiang Orogenic Belt. The majority of volcanic rocks, however, formed during the Tethyan and post-Tethyan stages, i.e., from early Carboniferous to the Cenozoic. Volcanic petrotectonic assemblages as geological records and a lithoprobe play an important role in understanding tectonic evolution and corresponding deep processes of the Sanjiang area.   Five types of volcanic petrotectonic assemblages in Sanjiang Orogenic Belt have been recognized as follows: Oceanic assemblages including MORB/Para-MORB(or MORB-LIKE) assemblage and OIB assemblage, island arc and continental marginal arc assemblage, collision-related assemblage, post-collisional assemblage and intracontinental assemblage. Fig 1 shows a frame of their spatial and temporal distribution.   Sanjiang MORB and para-MORB assemblages

  10. Correlation of Coseismic Velocity and Static Volumetric Strain Changes Induced by the 2010 Mw6.3 Jiasian Earthquake under the Southern Taiwan Orogenic Belt

    Science.gov (United States)

    Wu, S. M.; Hung, S. H.

    2015-12-01

    Earthquake-induced temporal changes in seismic velocity of the earth's crust have been demonstrated to be monitored effectively by the time-lapse shifts of coda waves recently. Velocity drop during the coseismic rupture has been explicitly observed in proximity to the epicenters of large earthquakes with different styles of faulting. The origin of such sudden perturbation in crustal properties is closely related to the damage and/or volumetric strain change influenced by seismic slip distribution. In this study, we apply a coda wave interferometry method to investigate potential velocity change in both space and time related to the moderate-sized (Mw6.3) 2010 Jiasian earthquake, which nucleated deeply in the crust (~23 km), ruptured and terminated around the depth of 10 km along a previously unidentified blind thrust fault near the lithotectonic boundary of the southern Taiwan orogenic belt. To decipher the surface and crustal response to this relatively deep rupture, we first measure relative time-lapse changes of coda between different short-term time frames spanning one year covering the pre- and post-seismic stages by using the Moving Window Cross Spectral Method. Rather than determining temporal velocity variations based on a long-term reference stack, we conduct a Bayesian least-squares inversion to obtain the optimal estimates by minimizing the inconsistency between the relative time-lapse shifts of individual short-term stacks. The results show the statistically significant velocity reduction immediately after the mainshock, which is most pronounced at the pairs with the interstation paths traversing through the hanging-wall block of the ruptured fault. The sensitivity of surface wave coda arrivals mainly in the periods of 3-5 s to shear wave speed perturbation is confined within the depth of 10 km, where the crust mostly experienced extensional strain changes induced by the slip distribution from the finite-fault model. Compared with coseismic slip

  11. Geochemistry and zircon U-Pb geochronology of granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau: origin and tectonic implications

    Science.gov (United States)

    Zhou, Bo; Dong, Yunpeng; Zhang, Feifei; Yang, Zhao; Sun, Shengsi; He, Dengfeng

    2016-11-01

    The East Kunlun Orogenic Belt (EKOB) in the northern margin of the Tibet Plateau is characterized by widespread granitic plutons, which are keys to understanding the tectonic evolution of the EKOB. The Zhiyu pluton, newly recognized in the central part of the EKOB, mainly consists of monzogranites, biotite granites and quartz diorites. Their LA-ICPMS zircon U-Pb results show formation ages of 447 ± 1.6 Ma, 448 ± 2.5 Ma and 408 ± 1.8 Ma. The monzogranites and biotite granites are characterized by relatively high Sr (208-631 ppm), low Y (4.28-15.82 ppm) and Yb (0.44-1.59 ppm) contents, thus resulting in elevated Sr/Y (30-105) and (La/Yb)N (4-79) ratios, indicating geochemical features of adakitic rocks. These adakitic granites are medium- to high-K, calcic or calc-alkaline in composition, and display a weak peraluminous character. They have low MgO (0.57-1.84 wt.%, average 1.01 wt.%), Mg# (40-53, average 45), as well as low Cr (3.67-17.98 ppm, average 7.19 ppm) and Ni (2.59-9.30 ppm, average 4.71 ppm) contents. These rocks are enriched in LREE, and show negligible or variable positive Eu anomalies (Eu/Eu∗ = 0.61-3.80, average 1.45) and significant negative Nb and Ta anomalies. Majority of the zircon grains from these adakitic granitic rocks have positive εHf(t) values of 0.09-5.21 with two-stage model ages ranging from 1.1 Ga to 1.6 Ga. These features are compatible with those of adakitic rocks derived from a thickened lower crust in the garnet stability field. Their formation is mainly controlled by the process of crust thickening following the closure of the Qimantag Ocean. The younger quartz diorites belong to medium- to high-K, calc-alkalic or alkali-calcic and metaluminous series, and exhibit a relatively high MgO (2.23-5.18 wt.%) and Mg# (40-56, average 50.11), with significant LREE enrichment and negative Eu anomalies, as well as depletion of Nb, Ta. In addition, the quartz diorites have an enriched εHf(t) values ranging from -5.25 to -3.19. Combining

  12. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore-bearing mafic-ultramafic intrusion in the Central Asian Orogenic Belt, western China

    Science.gov (United States)

    Mao, Ya-Jing; Qin, Ke-Zhang; Li, Chusi; Xue, Sheng-Chao; Ripley, Edward M.

    2014-07-01

    The Permian Huangshanxi mafic-ultramafic intrusion hosts one of the two largest magmatic sulfide deposits in the Eastern Tianshan which is situated in the southern margin of the Central Asian Orogenic Belt. In this paper we use mineral compositions and whole-rock geochemical data to decipher the genetic relationship between magma evolution and sulfide mineralization. The Huangshanxi intrusion consists of three separate intrusive units. Important sulfide mineralization occurs in the base of the last intrusive unit, an elongated, layered ultramafic body composed of lherzolite at the bottom, olivine websterite in the middle and websterite at the top. Based on olivine-liquid equilibria and mass balance, the MgO and FeO contents in the parental magma for a lherzolite sample are estimated to be 8.71 and 8.36 wt.%, respectively. The Huangshanxi mafic-ultramafic intrusive rocks and the estimated "trapped liquids" for several olivine-orthopyroxene cumulate rocks all show light rare earth element enrichments relative to heavy rare earth elements and significant Nb depletions relative to Th and La, which are similar to the characteristics of coeval basalts in the region. The arc-like geochemical features are attributed to pre-Permian mantle metasomatism by slab-derived fluids. Partial melting of the previously-modified mantle is thought to have resulted from heating by upwelling asthenosphere associated with post-subduction lithosphere delamination or by mantle plume activity. The relationship between the Fo and Ni contents of olivine crystals from the Huangshanxi sulfide-poor ultramafic rocks (source mantle. Stratigraphic reversals in olivine Fo contents and bulk sulfide PGE tenors suggest that multiple magma replenishments occurred during the development of the Huangshanxi magmatic Ni-Cu sulfide deposit. The sulfide ore formation can be divided into two stages: a conduit stage during which immiscible sulfide droplets and olivine crystals were brought up by ascending magma

  13. Reconstructing multiple arc-basin systems in the Altai-Junggar area (NW China): Implications for the architecture and evolution of the western Central Asian Orogenic Belt

    Science.gov (United States)

    Li, Di; He, Dengfa; Tang, Yong

    2016-05-01

    The Altai-Junggar area in northwestern China is a critical region to gain insights on the tectonic framework and geological evolution of the western Central Asian Orogenic Belt (CAOB). In this study, we report results from integrated geological, geochemical and geophysical investigations on the Wulungu Depression of the Junggar Basin to determine the basement nature of the basin and understand its amalgamation history with the Chinese Altai, within the broad tectonic evolution of the Altai-Junggar area. Based on borehole and seismic data, the Wulungu Depression is subdivided into two NW-trending tectonic units (Suosuoquan Sag and Hongyan High) by southward-vergent thrust faults. The Suosuoquan Sag consists of the Middle-Late Devonian basaltic andesite, andesite, dacite, tuff, tuffaceous sandstone and tuffite, and the overlying Early Carboniferous volcano-sedimentary sequence with lava flows and shallow marine sediments from a proximal juvenile provenance (zircon εHf(t) = 6.0-14.9), compared to the Late Carboniferous andesite and rhyolite in the Hongyan High. Zircon SIMS U-Pb ages for dacites and andesites indicate that these volcanics in the Suosuoquan Sag and Hongyan High erupted at 376.3 Ma and 313.4 Ma, respectively. The Middle-Late Devonian basaltic andesites from well LC1 are calc-alkaline and exhibit primitive magma-like MgO contents (7.9-8.6%) and Mg# values (66-68), with low initial 87Sr/86Sr (0.703269-0.704808) and positive εNd(t) values (6.6-7.6), and relatively high Zr abundance (98.2-116.0 ppm) and Zr/Y ratios (5.1-5.4), enrichment in LREEs and LILEs (e.g., Th and U) and depletion in Nb, Ta and Ti, suggesting that they were probably derived from a metasomatized depleted mantle in a retro-arc extensional setting. The well LC1 andesitic tuffs, well L8 dacites, well WL1 dacitic tuffs and well L5 andesites belong to calc-alkaline and metaluminous to peraluminous (A/CNK = 0.8-1.7) series, and display low Mg# values (35-46) and variably positive εNd(t) (4

  14. A westward propagating slab tear model for Late Triassic Qinling Orogenic Belt geodynamic evolution: Insights from the petrogenesis of the Caoping and Shahewan intrusions, central China

    Science.gov (United States)

    Hu, Fangyang; Liu, Shuwen; Zhang, Wanyi; Deng, Zhengbin; Chen, Xu

    2016-10-01

    Late Triassic granitoid intrusions are widespread in the South Qinling Belt (SQB), providing excellent subjects to understand the geodynamic evolution of the Qinling Orogenic Belt and the collision between the North China Craton (NCC) and Yangtze Craton (YZC). This study shows newly obtained geological, geochemical and zircon U-Pb-Hf isotopic data of the Caoping and Shahewan intrusions, revealing that the Caoping intrusion consists of ~ 215 Ma fined-grained granites, and ~ 221-215 Ma porphyritic and coarse to medium-grained tonalites, granodiorites and monzogranites, which assemble with coeval mafic magmatic enclaves (MMEs). The Shahewan intrusion is composed of ~ 215-210 Ma porphyritic granodiorites and monzogranites, which also assemble with coeval MMEs. The fine-grained granites from the Caoping intrusion are characterized by high SiO2, Rb and (La/Yb)N ratio, but low MgO, CaO and Sc contents, with εHf(t) values of - 8.6 to + 4.3 and TDM2(Hf) ages of 883-1596 Ma, suggesting that they are mainly derived from partial melting of the Meso- to Neoproterozoic metagreywackes. The porphyritic and coarse to medium-grained granitoid rocks from both Caoping and Shahewan intrusions are characterized by higher MgO, CaO, Sc, Mg# values, but low SiO2, Rb contents and (La/Yb)N ratio, with εHf(t) values of - 0.7 to + 2.8 and TDM2(Hf) values of 961-1158 Ma, suggesting that they are mainly formed by magma mixing between melts that were derived from Meso- to Neoproterozoic basement rocks of the SQB and metasomatized lithospheric mantle. The MMEs from Caoping and Shahewan intrusions are characterized by low SiO2, Sr/Y ratio, high MgO, K2O, Rb, Sc, total REE contents, with εHf(t) values of + 0.5 to + 6.1 and TDM(Hf) values of 661-846 Ma, suggesting that they are produced by partial melting of metasomatized lithospheric mantle. The rapakivi-like textures of the rocks from Shahewan intrusion may be caused by continued underplating and injection of mafic magma resulting in higher

  15. In-situ U-Pb, Hf and Re-Os isotopic analyses of the Xiangshan Ni-Cu-Co deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the timing and genesis of the mineralization

    Science.gov (United States)

    Han, Chunming; Xiao, Wenjiao; Zhao, Guochun; Ao, Songjian; Zhang, Jien; Qu, Wenjun; Du, Andao

    2010-12-01

    The timing and genesis of the major Ni-Cu-Co sulfide deposit in the Xiangshan intrusion have been studied based on newly obtained in-situ U-Pb, Hf and Re-Os isotopic analyses. The SIMS U-Pb zircon ages of the gabbro hosting the Ni-Cu-Co sulfide deposit indicate that the Xiangshan intrusion was emplaced at 279.6 ± 1.1 Ma (95% confidence level, MSWD = 1.30, n = 15). On the basis of combined geological and geochronological evidence, we suggest that the Xiangshan and other adjacent Ni-Cu deposits were formed in the same period. Sulphides have low common Os concentrations and high Re/Os ratios, similar to sulphide ores from the Duluth, Sally Malay and Voisey Bay complexes. The Re-Os isotopic data from the disseminated and massive ores from the Xiangshan intrusion do not form a single isochron, as they have different initial Os ratios. The Hf and Os isotopic data suggest that the Xiangshan intrusion and associated Ni-Cu-Co mineralization were derived from crustally contaminated mantle melts. The geochemical data show a tholeiitic affinity and a strong suprasubduction zone signature with negative Nb, Sr, and Ti anomalies similar to N-MORB and E-MORB. We suggest that the mafic-ultramafic rocks and associated Ni-Cu mineralization of the Eastern Tianshan orogen formed in an Alaska-type subduction zone-arc setting. Some diagnostic features of ridge-trench interaction are present in the Chinese East Tianshan orogen (e.g. granites, adakites, high-Mg andesites, near-trench magmatism, Alaskan-type mafic-ultramafic complexes, high-temperature metamorphic belts that prograde rapidly from low-grade belts, and orogenic gold deposits). The above distinctive rock groups are probably related to the same thermal event, ridge subduction, as in the Cenozoic orogen of Alaska. We suggest that ridge subduction is the most plausible mechanism to provide the necessary heat. Ridge subduction provides an important promising model for understanding many aspects of the evolution of the Chinese

  16. Coeval emplacement and orogen-parallel transport of gold in oblique convergent orogens

    Science.gov (United States)

    Upton, Phaedra; Craw, Dave

    2016-12-01

    Varying amounts of gold mineralisation is occurring in all young and active collisional mountain belts. Concurrently, these syn-orogenic hydrothermal deposits are being eroded and transported to form placer deposits. Local extension occurs in convergent orogens, especially oblique orogens, and facilitates emplacement of syn-orogenic gold-bearing deposits with or without associated magmatism. Numerical modelling has shown that extension results from directional variations in movement rates along the rock transport trajectory during convergence, and is most pronounced for highly oblique convergence with strong crustal rheology. On-going uplift during orogenesis exposes gold deposits to erosion, transport, and localised placer concentration. Drainage patterns in variably oblique convergent orogenic belts typically have an orogen-parallel or sub-parallel component; the details of which varies with convergence obliquity and the vagaries of underlying geological controls. This leads to lateral transport of eroded syn-orogenic gold on a range of scales, up to > 100 km. The presence of inherited crustal blocks with contrasting rheology in oblique orogenic collision zones can cause perturbations in drainage patterns, but numerical modelling suggests that orogen-parallel drainage is still a persistent and robust feature. The presence of an inherited block of weak crust enhances the orogen-parallel drainage by imposition of localised subsidence zones elongated along a plate boundary. Evolution and reorientation of orogen-parallel drainage can sever links between gold placer deposits and their syn-orogenic sources. Many of these modelled features of syn-orogenic gold emplacement and varying amounts of orogen-parallel detrital gold transport can be recognised in the Miocene to Recent New Zealand oblique convergent orogen. These processes contribute little gold to major placer goldfields, which require more long-term recycling and placer gold concentration. Most eroded syn-orogenic

  17. 40Ar-39Ar and U-Pb ages of metadiorite from the East Kunlun Orogenic Belt: Evidence for Early-Paleozoic magmatic zone and excess argon in amphibole minerals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Single-grain zircon U-Pb and amphibole 40Ar-39Ar dating have beenconducted on a deformed and metamorphosed diorite in the East Kunlun Orogenic Belt, which intruded into the middle Proterozoic Kuhai Group exposed in the south of Xiangride region, Dulan County, NW Qinghai Province. The zircon gives a concordant U-Pb age of (446.5±9.1) Ma. The amphibole yields Ar plateau age of (488.0±1.2) Ma and an isochronal age of (488.9±5.6) Ma. Age results of both stepwise released Ar and conventional K-Ar analysis are remarkably higher than that of zircon U-Pb, suggesting that the amphibole contains excess argon and the amphibole plateau age cannot be taken as the timing of metamorphism or deformation. The zircon age is interpreted to be crystallization age of the diorite pluton, which suggests that an Early-Paleozoic magmatic zone indeed existed in the East Kunlun Orogenic Belt stretching along the region south to the Golmud, Normuhong and Xiangride.

  18. Late Paleozoic closure of the Ob-Zaisan Ocean along the Irtysh/Chara shear zone and implications for arc amalgamation and oroclinal bending in the western Central Asian Orogenic Belt

    Science.gov (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon

    2016-04-01

    The Irtysh/Chara Shear Zone is one of the largest strike-slip systems in the Central Asian Orogenic Belt (CAOB). It records collisional processes of the peri-Siberian orogenic system with the West Junggar-Kazakhstan-Tianshan orogenic system following the closure of the Ob-Zaisan Ocean, but the exact timing of these events remains enigmatic. We conducted detailed structural analysis along the Irtysh Shear Zone (NW China), which together with new geochronological data allows us to reconstruct the tectonic evolution during the final closure of the Ob-Zaisan Ocean. Our results showed that subduction-accretion processes lasted at least until the Late Carboniferous in the Chinese Altai and the East/West Junggar. The subsequent arc amalgamation is characterized by a cycle of crustal thickening, orogenic collapse and transpressional thickening. On a larger scale, the West Junggar- Kazakhstan -Tianshan orogenic system defines a U-shape oroclinal structure (e.g. Xiao et al., 2010). A major phase of oroclinal bending that involved ~110° rotation may have occurred during the Late Devonian to Early Carboniferous (Levashova et al., 2012). Previous authors have linked oroclinal bending with the late Paleozoic amalgamation of the western CAOB, and proposed that a quasi-linear West Junggar- Kazakhstan -Tianshan orogenic system was buckled during the convergence of the Siberian and Tarim cratons following the closure of the Ob-Zaisan Ocean (in the north) and the South Tianshan Ocean (in the south) (e.g. Abrajevitch et al., 2008). This model, however, is not supported by our new data that constrain the closure of the Ob-Zaisan Ocean to the Late Carboniferous. Alternatively, we propose that oroclinal bending may have involved two phases of bending, with the ~110° rotation in the Late Devonian to Early Carboniferous possibly associated with trench retreat. Further tightening may have occurred in response to the convergence of the Siberian and Tarim cratons during the Late

  19. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia

    Science.gov (United States)

    Jian, Ping; Liu, Dunyi; Kröner, Alfred; Windley, Brian F.; Shi, Yuruo; Zhang, Wei; Zhang, Fuqin; Miao, Laicheng; Zhang, Liqao; Tomurhuu, Dondov

    2010-07-01

    The identification of a fossil arc-trench system from the ophiolite-decorated Solonker suture zone in the southernmost Central Asian Orogenic Belt (CAOB) enables us to constrain the timing of pre-subduction extension (ca. 299-290 Ma), subduction initiation (ca. 294-280 Ma), ridge-trench collision (ca. 281-273 Ma) and slab break-off (ca. 255-248 Ma) in the Permian. A fraction of proto-arc crust (ca. 45 km long, up to 8 km wide) is preserved as a volcanic-plutonic sequence and is juxtaposed against a wide (ca. 30-80 km) forearc mélange. This proto-arc crust comprises two distinct magma series, island arc tholeiite (IAT) and mid-ocean ridge basalt (MORB), both of which have strong supra-subduction zone (SSZ) geochemical signatures. Zircons from a gabbro and a plagiogranite yielded weighted mean 206Pb/ 238U ages of 284.0 ± 4.0 and 288.0 ± 6.0 Ma. The forearc mélange consists of numerous ophiolite fragments and continental margin-derived olistoliths/blocks that predate the ophiolite. The olistoliths are best represented by a gabbroic block (291.8 ± 2.3 Ma) that contains granite xenoliths (312.6 ± 1.8 and 313.6 ± 3.1 Ma). Other dated blocks include a trondhjemite (323.9 ± 2.7 Ma), a gabbro (296.6 ± 1.7 Ma) and a tonalite (294.9 ± 2.4 Ma). Small bodies of diabase, andesite and diorite in the forearc mélange exhibit a wide variety of geochemical signatures. We dated zircons from an N-MORB-like diabase (274.4 ± 2.5 Ma), an E-MORB-like diabase (252.5 ± 2.3 Ma), a transitional sanukitoid/adakite (andesite, 250.2 ± 2.4 Ma), a sanukitoid (high-Mg diorite; 251.8 ± 1.1 Ma) and an anorthosite (252.2 ± 1.7 Ma). The N-MORB-like diabase contains ca. 301-394 Ma zircon xenocrysts suggesting assimilation of trench sediments when a spreading ridge intersected a trench. The other dated rocks simultaneously formed near the Permian/Triassic boundary and captured abundant zircon xenocrysts (ca. 269-295 Ma; ca. 301-495 Ma; and ca. 923-2501 Ma). Our new formation ages constrain

  20. Thrust-related, diapiric, and extensional doming in a frontal orogenic wedge: example of the Montagne Noire, Southern French Hercynian Belt

    Science.gov (United States)

    Soula, Jean-Claude; Debat, Pierre; Brusset, Stéphane; Bessière, Gilbert; Christophoul, Frédéric; Déramond, Joachim

    2001-11-01

    The Montagne Noire, which is situated at the toe of the orogenic wedge of the French Massif Central South European Variscides, appears to be a well-suited area for studying the origin and evolution of middle to upper crustal domes adjacent to foreland basins. The data reported in the present paper show that the Montagne Noire dome is a particular type of basement-involved frontal culmination in an orogenic wedge and foreland basin system. This frontal culmination is characterized by a syn-contractional HT decompression recorded by clockwise PTt paths and widespread strata overturning in thrust and fold structures, which controlled the sedimentation in the adjacent foreland basin. These unusual characteristics are interpreted to be a result of the succession of thrusting, diapirism and extensional collapse. Antiformal stacking of syn-metamorphic thrust sheets controlled the first stages of the foreland basin development. Diapirism was essentially responsible for the HT decompression and widespread strata overturning. Extensional doming was a result of late- to post-metamorphic collapse acting on the pre-existing high-amplitude dome. Diapirism and associated isothermal decompression metamorphism, which constitute the essential difference between the Montagne Noire and 'ordinary' frontal ridges in orogenic wedges, were probably enhanced by a local partial melting of the upper to middle crust. It is suggested that the occurrence of these phenomena in front of an orogenic wedge was related to local over-thickening due to the superposition of an upper crustal antiformal stack on top of a lower crustal ramp anticline.

  1. Two stages of zircon crystallization in the Jingshan monzogranite, Bengbu Uplift: Implications for the syn-collisional granites of the Dabie-Sulu UHP orogenic belt and the climax of movement on the Tan-Lu fault

    Science.gov (United States)

    Wang, X.; Chen, J.; Griffin, W. L.; O'Reilly, S. Y.; Huang, P. Y.; Li, X.

    2011-03-01

    The detailed study of zircon can provide vital clues about the petrogenetic environment of granitoid rocks. Morphological and chemical studies of zircon grains from the Jingshan monzogranite in the Bengbu Uplift (Anhui province, eastern China) identify three phases of growth. Zircon I is brown, translucent, ovoid, and occurs as inherited cores. It shows two groups of 206Pb/ 238U ages, corresponding to the country rock of the Jingshan monzogranite and the basement of the Bengbu Uplift. Zircon II is colorless, transparent and idiomorphic-hypidiomorphic with Ipr = 0.34-0.52, Ipy = 0.03-0.24 and Iel = 0.26-0.34. It shows a very bright CL due to high contents of trace elements (e.g., Y, U and Th), and the oscillatory zoning associated with sector zoning. It contains 1.40-1.66 wt.% HfO 2 with a mean ɛ Hf (t) of - 17.88. These features indicate the igneous crystallization of Zircon II from a peraluminous granite of mainly crustal origin. Based on the field geology, petrography, geochemical analysis, and especially a weighted mean age of 222 Ma for Zircon II, we argue that the Jingshan monzogranite is a syn-collisional granite of the Dabie UHP orogenic belt. This provides new evidence for the northward subduction of the South China Block beneath the North China Block just before 222 Ma, and allows quantitative estimates of the rate of post-UHP exhumation in the Dabie orogenic belt. Zircon III is also colorless and transparent, but is totally idiomorphic with Ipr = 0.41-1.00, Ipy = 0.88-1.00 and Iel = 0.39-0.83. It occurs only as overgrowths on Zircon II, and shows weak CL due to its depletion in trace elements. Zircon III has widely variable contents of HfO 2 (1.12 to 3.01 wt.%) and Hf-isotope compositions very similar to those of Zircon II. These features suggest crystallization of Zircon III from small volumes of leucosome, probably in the beginning stages of migmatisation. Zircon III has a weighted mean age of 156 Ma, interpreted as representing the climax of movement

  2. The tectonic evolution of the Irtysh tectonic belt: New zircon U-Pb ages of arc-related and collisional granitoids in the Kalaxiangar tectonic belt, NW China

    Science.gov (United States)

    Hong, Tao; Klemd, Reiner; Gao, Jun; Xiang, Peng; Xu, Xing-Wang; You, Jun; Wang, Xin-Shui; Wu, Chu; Li, Hao; Ke, Qiang

    2017-02-01

    Precise geochronological constraints of the Irtysh tectonic belt situated between the Saur Island Arc and the Altay Terrane are crucial to a better understanding of the tectonic evolution of the Central Asian Orogenic Belt (CAOB). Recently, we discovered repeatedly deformed arc-related and collisional granitoids in the Kalaxiangar tectonic belt (KTB), which is located in the eastern part of the Irtysh tectonic belt. In this study, we report new whole-rock geochemical, zircon U-Pb and Hf isotopic data of the arc-related and collisional granitoids. Our data reveal that 1) arc-related granodioritic porphyries formed at ca. 382-374 Ma. Recrystallized zircon grains from a (ultra-)mylonitic granodiorite of the Laoshankou zone in the southern KTB display a U-Pb age of ca. 360 Ma; 2) syn-collisional granodioritic porphyries, which distribute along faults and parallel to the cleavage, were emplaced at ca. 367-356 Ma, with εHf(t) values varying from + 7.8 to + 14.2 and Hf model ages from 873 to 459 Ma; 3) a post-collisional A-type granodioritic porphyry, which crosscuts the NW-NNW trending schistosity of the metasedimentary country rocks at a low angle, has an age of ca. 324-320 Ma, while the εHf(t) values range from + 7.6 to + 14.4 with Hf model ages from 850 to 416 Ma; 4) post-collisional strike-slip A-type granite dykes, exposed along strike-slip faults, gave ages between 287 and 279 Ma, whereas the εHf(t) values range from + 4.9 to + 12.7 and the Hf model ages from 995 to 500 Ma; and 5) A-type biotite granite dykes, which intruded along conjugate tension joints, have ages of 274-271 Ma, and εHf(t) values from + 1.5 to + 13.2 with Hf model ages from 1196 to 454 Ma. Consequently, we propose that the collision between the Saur Island Arc and the Altay Terrane occurred in the Early Carboniferous (ca. 367-356 Ma) and the subsequent post-collisional tectonic process continued to the Late Carboniferous (ca. 324-320 Ma). It is further suggested that the Irtysh tectonic belt

  3. Early-Middle Paleozoic subduction-collision history of the south-eastern Central Asian Orogenic Belt: Evidence from igneous and metasedimentary rocks of central Jilin Province, NE China

    Science.gov (United States)

    Pei, Fu-Ping; Zhang, Ying; Wang, Zhi-Wei; Cao, Hua-Hua; Xu, Wen-Liang; Wang, Zi-Jin; Wang, Feng; Yang, Chuan

    2016-09-01

    To constrain the Early-Middle Paleozoic tectonic evolution of the south-eastern segment of the Central Asian Orogenic Belt (CAOB), we undertook zircon U-Pb dating and analyzed major and trace elements and zircon Hf isotope compositions of Late Cambrian to Middle Devonian igneous and metasedimentary rocks in central Jilin Province, NE China. LA-ICP-MS zircon U-Pb dating indicates that the Early-Middle Paleozoic magmatism in central Jilin Province can be divided into four episodes: Late Cambrian (ca. 493 Ma), Middle Ordovician (ca. 467 Ma), Late Ordovician-Early Silurian (ca. 443 Ma), and Late Silurian-Middle Devonian (425-396 Ma). The progression from subduction initiation to maturity is recorded by Late Cambrian low-K tholeiitic meta-diabase, Middle Ordovician medium-K calc-alkaline pyroxene andesite, and Late Ordovician to Early Silurian low-K tonalite, which all have subduction-related characteristics and formed in an evolving supra-subduction zone setting. Late Silurian to Middle Devonian calc-alkaline igneous rocks, with the lithological association of granodiorite, monzogranite, rhyolite, dacite, and trachydacite, show progressively increasing K2O contents from medium K to shoshonite series. Furthermore, the Early-Middle Devonian monzogranites are characterized by high K2O, Sr/Y, and [La/Yb]N values, indicating they were generated by the melting of thickened lower crust. These results suggest a transition from subduction to post-orogenic setting during the Late Silurian-Middle Devonian. Our interpretation is supported by the maximum age of molasse deposition in the Zhangjiatun member of the Xibiehe Formation. Overall, we suggest that Late Cambrian tholeiitic meta-diabase, Middle Ordovician pyroxene andesite, and Late Ordovician-Early Silurian tonalite formed above the northward-subducting and simultaneously seaward-retreating of Paleo-Asian Ocean plate. Subsequently, the northern arc collided with the North China Craton and post-orogenic extension occurred

  4. Geochemistry and zircon U-Pb-Hf isotopes of Early Paleozoic arc-related volcanic rocks in Sonid Zuoqi, Inner Mongolia: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt

    Science.gov (United States)

    Chen, Yan; Zhang, Zhicheng; Li, Ke; Yu, Haifei; Wu, Tairan

    2016-11-01

    An Early Paleozoic acid volcanic sequence has been recently detected southeast of Sonid Zuoqi in central Inner Mongolia to constrain the tectonic evolution of the Central Asian Orogenic Belt in this area. First, the volcanic rocks have zircon U-Pb ages of 439-445 Ma. They are characterized by (a) a high silica content, moderate alkali content and low iron content; (b) enrichment in light rare earth elements, depletion of heavy rare earth elements, and negative Eu anomalies; and (c) negative Nb, Ta, and Ti anomalies. Finally, the volcanic samples yield εHf(t) values of - 4.7 to + 9.2 with TDM2 ages of 835-1724 Ma. For petrogenesis, they were possibly arc derived, from predominant juvenile materials with subordinate ancient continental crust. Combined with previous studies, the Early Paleozoic Sonid Zuoqi arc magmatism can be divided into three stages: a primitive arc stage represented by 464-490 Ma low-K, calcic granitoids; a normal continental arc stage represented by 439-445 Ma medium-K, calcic to calcic-alkalic plutons and volcanic rocks and a syn-collisional stage represented by 423-424 Ma high-K granites. Furthermore, the timing and tectonic settings of the above magmatic rocks show similarities to those in Xilinhot and other areas of the northern Early to Mid-Paleozoic orogenic belt (NOB), although the rock assemblies and their proportions vary more or less in different areas. Accordingly, the NOB that formed on this arc was probably attributed to the northward subduction of the Paleo-Asian Ocean beginning at 500 Ma, which experienced this type of arc development and was terminated by a soft collision before the Late Devonian.

  5. RELATIONSHIP BETWEEN P-T CONTITIONS OF TWO PHASES OF TAN-LU STRIKE-SLIP SHEAR ZONES AND DELAMINATION OF OROGENIC BELTS ON THE EASTERN MARGIN OF THE DABIE MOUNTAINS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Tan-Lu fault zone joins the Dabie Mountains on its eastern margin, and offsets the Dabie and Sulu orogenic belts sinistrally for about 500 km. On the basis of calculation of temperature and pressure experienced by the two phases of the fault zone as well as the thermo-chronological information on mylonite from the earlier and later Tan-Lu fault zones on the eastern margin of the Dabie Mountains, this paper discusses the delamination history and uplifting magnitudes of the Dabie Mountains from earlier Jurassic to earlier Cretaceous. From mineral assemblages, mineral deformation and muscovite-chlorite geothermometry calculation, it is known that the temperature experienced by the two phases of Tan-Lu fault zones are between 400℃ and 450℃, and the confining pressures are between 0.25Gpa and 0.36GPa for the earlier shear zones and 0.24-0.39GPa for the late shear zones. According to the geobarometry of Si-in-phengite and by considering shear heating and tectonic over-pressure, it is concluded that the maximum formation depths for the two phases of the ductile shear zones are not more than 12 km.Differential formation depths for the two phases of shear zones are 1-2 km at most. At about 190 Ma and 128 Ma, the Tan-Lu fault zone experienced two phases of cooling events. During this period, the eastern margin of the Dabie Mountains experienced a tectonic calm period and no uplifting. According to information from the Tan-Lu fault zone, the uplifting magnitudes of the Dabie orogenic belts are not more than 12 km during the earlier Cretaceous.

  6. Geochemistry, geochronology and zircon Hf isotopic study of peralkaline-alkaline intrusions along the northern margin of the North China Craton and its tectonic implication for the southeastern Central Asian Orogenic Belt

    Science.gov (United States)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei; Liao, Wen; Wang, Yanyang

    2016-09-01

    A giant Permian alkaline magmatic belt has recently been identified in southern Inner Mongolia, along the northern margin of the North China Craton (NCC). This belt is mainly composed of syenite, quartz syenite, alkaline granite and mafic microgranular enclaves (MME)-bearing granodiorite. In order to study the petrogenesis and tectonic implications of these rocks, we undertook zircon U-Pb dating and geochemical analysis of two Permian alkaline plutons. The first Guangxingyuan Pluton occurs in the Hexigten area and is composed of MME-bearing tonalite, K-feldspar granite and syenite. The second Durenwuliji Pluton, located in the Xianghuangqi area, comprises syenite, quartz syenite and K-feldspar granite. Zircon U-Pb dating on tonalite, K-feldspar granite, syenite and quartz syenite from the two plutons yielded a tight range of ages from 259 to 267 Ma. The peralkaline-alkaline rocks show high abundance of total alkalis (K2O + Na2O = 7.9-12.9%) and K2O contents (3.9-8.0%), enrichment in large ion lithophile elements (LILE) and light rare earth element (LREE), and depletion of high field strength elements (HFSE). The associated tonalite and MMEs display I-type granitic geochemical affinity, with less total abundance of trace elements than the peralkaline-alkaline rocks. Zircon Hf isotopic analysis of the Guangxingyuan pluton yielded a large range of εHf(t) values from - 15.5 to + 6.7 and model ages (TDMC) from 781 to 2012 Ma. By contrast, the Hf isotopic data of the Durenwuliji pluton shows a small range of εHf(t) from + 6.2 to + 8.9 and TDMC from 667 to 816 Ma. The geochemical and Hf isotopic characteristics indicate that the parental magma was derived from a mixing of metasomatic mantle-derived mafic magma with different amount of crust-derived felsic magma, and followed by fractional crystallization. Considering previous tectonic studies in Inner Mongolia, a Permian post-orogenic extension was proposed to account for these peralkaline-alkaline intrusions following

  7. Emplacement ages, geochemical and Sr-Nd-Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal growth and regional tectonic evolution

    Science.gov (United States)

    Jahn, Bor-ming; Valui, Galina; Kruk, Nikolai; Gonevchuk, V.; Usuki, Masako; Wu, Jeremy T. J.

    2015-11-01

    The Sikhote-Alin Range of the Russian Far East is an important accretionary orogen of the Western Pacific Orogenic Belt. In order to study the formation and tectonic evolution of the orogen, we performed zircon U-Pb dating, as well as geochemical and Sr-Nd-Hf isotopic analyses on 24 granitoid samples from various massifs in the Primorye and Khabarovsk regions. The zircon dating revealed that the granitoids were emplaced from 131 to 56 Ma (Cretaceous to Paleogene). In the Primorye Region, granitoids in the coastal Sikhote-Alin intruded the Cretaceous Taukha Accretionary Terrane from ca. 90 to 56 Ma, whereas those along the Central Sikhote-Alin Fault zone intruded the Jurassic Samarka Accretionary Terrane during ca. 110-75 Ma. The "oldest" monzogranite (131 Ma) was emplaced in the Lermontovka area of the NW Primorye Region. Granitoid massifs along the Central Sikhote-Alin Fault zone in the Khabarovsk Region formed from 109 to 58 Ma. Thus, the most important tectonothermal events in the Sikhote-Alin orogen took place in the Cretaceous. Geochemical analysis indicates that most samples are I-type granitoids. They have initial 87Sr/86Sr ratios ranging from 0.7040 to 0.7083, and initial Nd isotopic ratios, expressed as εNd(t) values, from +3.0 to -5.0 (mostly 0 to -5). The data suggest that the granitoid magmas were generated by partial melting of sources with mixed lithologies, including the subducted accretionary complex ± hidden Paleozoic-Proterozoic basement rocks. Based on whole-rock Nd isotopic data, we estimated variable proportions (36-77%) of juvenile component (=mantle-derived basaltic rocks) in the generation of the granitic magmas. Furthermore, zircon Hf isotopic data (εHf(t) = 0 to +15) indicate that the zircon grains crystallized from melts of mixed sources and that crustal assimilation occurred during magmatic differentiation. The quasi-continuous magmatism in the Sikhote-Alin orogen suggests that the Paleo-Pacific plate subduction was very active in the

  8. Ployphase Early Paleozoic metamorphism in the northern Qinling orogenic belt%北秦岭造山带的早古生代多期变质作用

    Institute of Scientific and Technical Information of China (English)

    张建新; 于胜尧; 孟繁聪

    2011-01-01

    北秦岭造山带的秦岭岩群以高级变质岩石为特征,主要包括少量榴辉岩、高压麻粒岩和区域上广泛分布的麻粒岩-角闪岩相变质岩石.年代学研究显示秦岭岩群中不同岩石记录了多期变质作用.已有的定年资料给出北秦岭官坡地区的榴辉岩的年龄为500Ma左右,代表榴辉岩相的变质时代.结合岩相学资料,对两个高压麻粒岩样品的SHRIMP和LA-ICPMS U-Pb测定分别获得504±7Ma和506±3Ma的年龄,应代表高压麻粒岩相变质时代.这表明高压麻粒岩和相邻的榴辉岩有相近的变质时代,但形成在造山带中不同的构热造环境中.西峡地区的角闪二辉麻粒岩的U-Pb定年给出两组早古生代年龄,一组为440±2Ma,可能代表了中低压麻粒岩相的变质时代,另一组为426±1Ma,应代表区域角闪岩相的变质时代.桐柏山北部的石榴二辉麻粒岩的U-Pb定年数据给出436±lMa的年铃,为中压麻粒岩相的变质时代.这些资料表明北秦岭造山带经历了早奥陶世的俯冲和地壳增厚作用,并在晚志留世遭受了广泛的巴罗式区城变质作用.%High-grade metamorphic rocks in North Qinling orogen, traditionally regarded as the Qinling Croup, consist of minor eclogites, high pressure granutlite and widely distributed medium-low P/T granulite-amphibolite facies metamorphic rocks. Radiometric data indicate that ployphase Early Paleozoic metamorphisms are recorded in different rocks. The previous U-Pb datings of eclogites and associated rocks in the Cuanpo area of the North Qinling orogen gave an age of ca. 500Ma, interpreted as the time of eclogite facies metamorphism. In combination with petrological data, SHRIMP and LA-ICPMS U-Pb geochronology on two HP granulite samples in the Songshugou area of the North Qinling orogen yield ages of 504 ± 7Ma and 506 ± 3Ma, respectively, representing the time of high pressure granulite metamorphism. This implies that HP granulite-facies conditions in

  9. Crustal shortening followed by extensional collapse of the Cordilleran orogenic belt in northwestern Montana: Evidence from vintage seismic reflection profiles acquired in the Swan Range and Swan Valley

    Science.gov (United States)

    Rutherford, B. S.; Speece, M. A.; Stickney, M. C.; Mosolf, J. G.

    2013-12-01

    Reprocessing of one 24-fold (96 channel) and four 30-fold (120 channel) 2D seismic reflection profiles have revealed crustal scale reflections in the Swan Range and adjacent Swan River Valley of northwestern Montana. The five reprocessed profiles constitute 142.6 of the 303.3 linear km acquired in 1983-84 by Techo of Denver, Colorado. The four 30-fold profiles used helicopter-assisted dynamite shooting (Poulter method) and the 24-fold profile used the Vibroseis method. Acquisition parameters were state of the art for the time. The Swan Range lies east of the Rocky Mountain Trench and is part of the Cordilleran foreland thrust belt where the Lewis thrust system emplaced a thick slab of Proterozoic Belt Supergroup strata eastward and over Paleozoic and Mesozoic rocks during the Late Cretaceous to early Paleocene Laramide orogeny. Deeply drilled borehole data are absent within the study area; however, we generated a synthetic seismogram from the Arco-Marathon 1 Paul Gibbs well (total depth=5418 m), located approximately 70 km west of the reprocessed profiles, and correlated the well data to surface seismic profiles. Large impedance contrasts in the log data are interpreted to be tholeiitic Moyie sills within the Prichard Formation argillite (Lower Belt), which produce strong reflection events in regional seismic sections and result in highly reflective, east-dipping events in the reprocessed profiles. We estimate a depth of 10 km (3 to 3.5 seconds) to the basal detachment of the Lewis thrust sheet. The décollement lies within Belt Supergroup strata to the west of the Swan River Valley before contacting unreflective, west-dipping crystalline basement beneath the Swan Range--a geometry that results in a wedge of eastward-thinning, autochthonous Belt rocks. Distinct fault-plane signatures from the west-dipping, range-bounding Swan fault--produced by extensional collapse of the over-thickened Cordillera--are not successfully imaged. However, reflections from Cenozoic

  10. Detachment within subducted continental crust and multi-slice successive exhumation of ultrahigh-pressure metamorphic rocks: Evidence from the Dabie-Sulu orogenic belt

    Institute of Scientific and Technical Information of China (English)

    LIU YiCan; LI ShuGuang

    2008-01-01

    Although tectonic models were presented for exhumation of ultrahigh-pressure (UHP) metamorphic rocks during the continental collision, there is increasing evidence for the decoupling between crustal slices at various depths within deeply subducted continental crust. This lends support to the multi-slice successive exhumation model of the UHP metamorphic rocks in the Dabie-Sulu orogen. The available evidence is summarized as follows: (1) the low-grade metamorphic slices, which have geotectonic af-finity to the South China Block and part of them records the Triassic metamorphism, occur in the northern margin of the Dabie-Sulu UHP metamorphic zone, suggesting decoupling of the upper crust from the underlying basement during the initial stages of continental subduction; (2) the Dabie and Sulu HP to UHP metamorphic zones comprise several HP to UHP slices, which have an increased trend of metamorphic grade from south to north but a decreased trend of peak metamorphic ages corre-spondingly; and (3) the Chinese Continental Science Drilling (CCSD) project at Donghai in the Sulu orogen reveals that the UHP metamorphic zone is composed of several stacked slices, which display distinctive high and low radiogenic Pb from upper to lower parts in the profile, suggesting that these UHP crustal slices were derived from the subducted upper and middle crusts, respectively. Detachment surfaces within the deeply subducted crust may occur either along an ancient fault as a channel of fluid flow, which resulted in weakening of mechanic strength of the rocks adjacent to the fault due to fluid-rock interaction, or along the low-viscosity zones which resulted from variations of geotherms and lithospheric compositions at different depths. The multi-slice successive exhumation model is different from the traditional exhumation model of the UHP metamorphic rocks in that the latter as-sumes the detachment of the entire subducted continental crust from the underlying mantle lithosphere and its

  11. Palaeoproterozoic continental arc magmatism, and Neoproterozoic metamorphism in the Aravalli-Delhi orogenic belt, NW India: New constraints from in situ zircon U-Pb-Hf isotope systematics, monazite dating and whole-rock geochemistry

    Science.gov (United States)

    Kaur, Parampreet; Zeh, Armin; Chaudhri, Naveen

    2017-04-01

    Presently, the extent, origin and petrogenesis of late Palaeoproterozoic (ca. 1.85 Ga) magmatism in the north-central Aravalli-Delhi orogenic belt, NW India and subsequent metamorphic overprints are poorly constrained. Results of new in situ zircon U-Pb-Hf isotope analyses in combination with whole-rock elemental and isotopic data provide the first hard evidence that granitoid magmatism occurred in a continental magmatic arc setting between 1.86 and 1.81 Ga. The Hf-Nd model ages of 3.0-2.6 Ga and inherited zircon grains of 3.3-2.5 Ga indicate abundant reworking of Archaean crust. Flat HREE patterns with negative Eu anomalies furthermore reveal that the granitoids were generated from garnet-free and plagioclase-rich sources at shallow depths. Significant isotope variation among granitoid samples (εHft = -3.7 to -9.0; εNdt = -4.8 to -7.9) indicate that the reworked Archaean crust was not completely homogenised during the Palaeoproterozoic. This is best reflected by zircon Hf-isotope variation of ca. 9.5 epsilon units within the oldest granitoid sample. Zircon grains from this sample define three discrete Hf-isotope groups at εHf1.86Ga = -8.9, -4.8 and -1.6. These are interpreted to result from mixing of zircon-saturated magmas derived from three distinct sources within the crust prior to solidification. A monazite U-Pb isochron age of 868 ± 4 Ma from one of the granitoid samples furthermore indicates that the Aravalli fold belt was affected by an important post-magmatic overprint, perhaps related to the widespread metasomatic, granulite metamorphic and/or magmatic events during the same time span.

  12. Usbnd Pb zircon geochronology constraints on the ages of the Tananao Schist Belt and timing of orogenic events in Taiwan: Implications for a new tectonic evolution of the South China Block during the Mesozoic

    Science.gov (United States)

    Chen, Wen-Shan; Huang, Yi-Chang; Liu, Chang-Hao; Feng, Han-Ting; Chung, Sun-Lin; Lee, Yuan-Hsi

    2016-08-01

    The Tananao Schist Belt is a low-pressure metamorphic complex comprised of three lithological units of marble, schist formation, and granite, in ascending order of proportion. Previous studies have found that the schist formation was formed during the Mesozoic. However, there is a lack of geochronological data to corroborate the schist protolith and metamorphic ages. In this study, we have used Usbnd Pb zircon geochronology to provide a time frame for the creation of the schist formation and metamorphism, as well as a new tectonic model. Twenty-three schist and eleven meta-magmatic samples were used for Usbnd Pb dating by LA-ICP-MS. Results from the youngest peak age of detrital zircon indicate that the schist formed in a new depositional age of 120-110 Ma and, therefore, is different from the previously estimated age of the Paleozoic-Mesozoic. Additionally, the block-in-matrix schist indicates an age that ranges from 270 to 80 Ma and was inferred from the chaotic deposits to be a metamorphic mélange. The Tananao Schist Belt appears to represent an arc-trench system that formed during the Cretaceous in the South China Block margin. Moreover, the youngest Usbnd Pb age of 80 Ma from the leucogranite dike and schist, constrains the upper age limit for a metamorphism that is younger than the previously accepted age of 100-90 Ma. The contact layer between Permian-Triassic marble and the overlying early Cretaceous schists remains a chloritoid bed that is, therefore, considered to be a paleosol at the unconformity, which formed over an extended duration of 60 ± 30 Ma. The stratigraphic contact indicates a long period of erosion during the Jurassic and suggests that a tectonic event occurred. However, we propose that two important metamorphic events took place prior to, and following, the schist formation during the Jurassic and late Cretaceous orogenic events.

  13. K-Ar dating of late Mesozoic volcanism and geochemistry of volcanic gravels in the North Huaiyang Belt, Dabie orogen: Constraints on the stratigraphic framework and exhumation of the northern Dabie orthogneiss complex

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Two eruption episodes are identified through systematic field investigations and K-Ar dating of the lateMesozoic volcanic rocks in the North Huaiyang belt (NHB),Dabie orogenic belt, of which the earlier volcanic suitetermed Maotanchang Fm. (Fm.) occurring at Jinzhai,Xianhualing and Maotanchang, etc., was erupted from 149Ma to 138 Ma. The other named Xiaotian Fm. mainly dis-tributed at Xiaotian, Shucheng, etc., was formed between132 Ma and 116 Ma. During the eruption gap of the two vol-canic suites deposited a volcano-sedimentary conglomeratelayer, which are composed of the multi-compositional gravels, including the North Dabie orthogneiss complex (NDOC),volcanic gravels, etc. These volcanic gravels in the con-glomerate layer show identical geochemical and isotopic compositions (87Sr/86Sr(t) =0.7084-0.7092, (Nd (t) = 21.8-24.4) to the Maotanchang Fm. volcanic rocks (87Sr/86Sr = 0.7086-0.7102, (Nd = 19.2-24.4), but significantly distinct from those of Xiaotian Fm. (87Sr/86Sr = 0.7076-0.7084, (Nd = 17.2 - 19.2). K-Ar dating results of its underlying andoverlying volcanic sequences indicate that the conglomerate layers were deposite d at ~135 Ma. This suggests that the NDOC was rapidly exhumed to the surface dur ing or shortly before ~135 Ma and became the important provenance of the late Me sozoic volcano-sedimentary basins in the NHB. In combination with the regional v olcano-sedimentary correlation, we divided the Mesozoic stratigraphic sequence i n the NHB from base to top into Fanghushan Fm. (>160 Ma), Yuantongshan Fm. (/mid dle- lower segment of Sanjianpu Fm.) (160-149 Ma), Maotanchang Fm. (/Zhougongsh an Fm./upper segment of Sanjianpu Fm./Fenghuangtai Fm.) (149-135 Ma) and Xiaoti an Fm. (/Baidafan Fm./Heshidu Fm.) (135-116 Ma).

  14. Analogue modeling of the role of multi-level decollement layers on the geometry of orogenic wedge: an application to the Zagros Fold-Thrust Belt, SW Iran

    Science.gov (United States)

    Ghanadian, Mostafa; Faghih, Ali; Grasemann, Bernhard; Fard, Iraj Abdollahie; Maleki, Mehrdad

    2017-03-01

    The presence of evaporate and incompetent formations (i.e., decollement horizons) within the sedimentary sequence of fold-thrust belts can control their structural style and deformation evolution. In the present study, the influence of the decollement layers (e.g., basal and internal decollement layers) on the deformation style of several segments of the Zagros Fold-Thrust Belt (ZFTB), SW Iran (e.g., Fars Arc, Dezful Embayment, and Izeh Zone) was investigated using a series of analogue models of accretionary wedges. The study of seismic profiles to understand the structural evolution of these segments of the belt, where several decollement intervals acted as basal and internal decollements, is complemented by the analogue model results. The experimental results reveal that the thickness of the internal decollement layers influences the creation of fold-dominated or thrust-dominated deformations, respectively. Experimental models and seismic data highlight that incompetent layers act as barrier units against fault propagation (in-sequence and/or out-of-sequence faults) into overlying strata towards southwest by fore-deformation and control the rate of deformation propagation in the ZFTB. The presence of both the basal and internal decollement layers located at different stratigraphic levels is required to form disharmonic decollement folds in the foreland of the ZFTB. In addition, the geometry, spacing, activity, and propagation of faults as well as the topographic height of the critical wedges are directly controlled by low-frictional decollements (Geophys J Int, 165(1):336-356 2006; Geochem Geophys Geosyst, 14:1131-1155 2013). The seismic profiles of the ZFTB showed that in addition to lithological contrasts, the existence and activity of deep-seated and basement faults had a big impact on the structural styles of the region.

  15. Geochemistry and geochronology of late Mesozoic volcanic rocks in the northern part of the Eastern Pontide Orogenic Belt (NE Turkey): Implications for the closure of the Neo-Tethys Ocean

    Science.gov (United States)

    Özdamar, Şenel

    2016-04-01

    This paper presents 40Ar/39Ar and U-Pb age data, Sr-Nd isotopes, whole-rock and mineral compositions of Upper Cretaceous volcanic rocks from the Ordu area of the Eastern Pontide Orogenic Belt (EPOB) in northeastern Turkey. The volcanic rocks exhibit a wide compositional range: basalt, basaltic-andesites, andesites and a rhyodacite suite; they are characterized by subparallel light rare earth element (LREE)-enrichment, relatively flat heavy rare earth element (HREE) patterns with Eu anomalies and moderate fractionation [average (La/Yb)N = 8.55]. The geochemical results show that the volcanic rocks have calc-alkaline affinity consistent with arc volcanic rocks erupted in an active continental margin. Initial 87Sr/86Sr values vary between 0.70569 and 0.70606, while initial 143Nd/144Nd values lie between 0.51244 and 0.51249. Crustal contamination affected the mantle-originated primary magma, as indicated by increased 87Sr/86Sr and decreased 143Nd/144Nd ratios with increasing SiO2. New precise laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) 206Pb-238U age analyses of zircon and 40Ar/39Ar age data of plagioclase from the volcanics enable a more precise reconstruction of the EBOP. The ages provide insight into the timing of arc formation in this region, constrain the volcanic activity between 86 My (Coniacian) and 75 My (Campanian) and constrain the timing of closure of the Neo-Tethys.

  16. Multi-stage barites in partially melted UHP eclogite: implications for fluid/melt activities during deep continental subduction in the Sulu orogenic belt

    Science.gov (United States)

    Wang, Songjie; Wang, Lu

    2015-04-01

    Barite (BaSO4) is well-known from deep-sea sedimentary environments but has received less attention to its presence in high-grade metamorphic rocks. Recently, barite in ultrahigh pressure (UHP) eclogite has drawn increasing attention from geologists, especially in the Dabie-Sulu orogen, since it is an important indicator for high-salinity fluid events, thus aiding in further understanding HP-UHP fluid / melt evolution. However, its formation time and mechanism in UHP eclogite are still controversial, with three representative viewpoints: (1) Liu et al. (2000) found barite-anhydrite-coesite inclusions in zircon and interpreted them to have formed by UHP metamorphic fluids; (2) Zeng et al. (2007) recognized isolated barite within K-feldspar (Kfs) and Quartz (Qz) surrounded by radial cracks in omphacite, and interpreted Kfs+Qz to be reaction products of potassium-rich fluid/melt and coesite, with the barite formed by prograde metamorphic fluids; (3) Gao et al. (2012) and Chen et al. (2014) found barite-bearing Multiphase Solid (MS) inclusions within garnet and omphacite and assumed that the barite formed by phengite breakdown possibly caused by eclogite partial melting during exhumation, though no direct evidence were proposed. The controversy above is mainly due to the lack of direct formation evidence and absence of a clear link with the metamorphic evolution of UHP eclogite along the subduction-exhumation path. We report detailed petrological and micro-structural analyses revealing four types of barites clearly linked with (1) the prograde, (2) earlier stage of partial melting and (3) later stage of crystallization differentiation, as well as (4) high-grade amphibolite-facies retrogression of a deeply subducted and partially melted intergranular coesite-bearing eclogite from Yangkou Bay, Sulu Orogen. Round barite inclusions (type-I) within UHP-stage garnet and omphacite are formed by internally buffered fluids from mineral dehydration during prograde metamorphism

  17. The petrological evidence for the uplift of ultrahigh-pressure met-amorphic rocks in root zone of the Qinling-Dabie orogenic belt

    Institute of Scientific and Technical Information of China (English)

    游振东; 韩郁菁; 张泽明

    1996-01-01

    Petrographic evidence indicates that some of the ultrahigh-pressure (UHP) eclogites in Dabie Mountains area may be evolved from epidote amphibolite fades rocks recrystallized under ultrahigh pressure conditions. The evolution of the erogenic belt had eventually resulted in the uplift of the metamorphic terrane soon after the peak metamorphic ultrahigh pressure stage of collision. During the uplift the ultrahigh-pressure metamorphic rocks were superimposed by nearly isothermal decompressive retrograde metamorphism through high-pressure (HP) edogite fades to amphibolite fades. Some of them were followed by epidote amphibolite fades and greenschist fades of metamorphism, while others were followed by epidote blueschist fades and then lowered to greenschist fades. Accompanying the retrogressive metamorphism. the rocks underwent at least 6 stages of deformation ranging from plastic to brittle character. The decompressive P-T path is also shown in the evolution of fluid inclusions: the entrapment pressure is

  18. Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3-1.8 Ga Kuilyu Complex, East Kyrgyzstan - The oldest continental basement fragment in the Tianshan orogenic belt

    Science.gov (United States)

    Kröner, A.; Alexeiev, D. V.; Kovach, V. P.; Rojas-Agramonte, Y.; Tretyakov, A. A.; Mikolaichuk, A. V.; Xie, H.; Sobel, E. R.

    2017-03-01

    Precambrian microcontinents represent key tectonic units in the accretionary collages of the western Central Asian Orogenic Belt (CAOB), and their geological history is reasonably well established since the Mesoproterozoic but remains weakly constrained for older epochs due to a scarcity of exposed Palaeoproterozoic and Archaean rocks. Early Precambrian rocks were previously reported from several metamorphic complexes in the Kyrgyz Tianshan orogenic belt, mainly based on multigrain conventional zircon dating, but the present study only confirmed such rocks at one site, namely in the Kuilyu Complex of eastern Kyrgyzstan. New single grain SHRIMP II zircon ages, geochemical data, and whole-rock Nd isotopic compositions for granitoid gneisses of the Kuilyu Complex elucidate the age, origin and tectonic settings of this oldest continental fragment in the Tianshan. The Kuilyu Complex is part of the basement in the Ishim - Middle Tianshan microcontinent. It consist of a strongly deformed and metamorphosed supracrustal assemblage of paragneisses and schists which are tectonically interlayered with amphibolites, migmatites and granitoid gneisses. Our zircon dating indicates that the Kuilyu Complex contains two suites of Palaeoproterozoic granitoid gneisses with magmatic protolith ages of ca. 2.32-2.33 Ga and 1.85 Ga. Granitoid magmatism at 1.85 Ga was almost immediately followed by amphibolite-facies metamorphism at ca 1.83 Ga, evidenced by growth of metamorphic zircon rims. The older, ca 2.3 Ga granitoid gneisses chemically correspond to calc-alkaline, metaluminous, I-type magnesian quartz diorite and granodiorite. The protolith of the younger, ca. 1.85 Ga granite-gneiss is an alkalic-calcic, metaluminous to peraluminous, ferroan medium-grained porphyric granite with chemical features resembling A-type granites. The 2.3 Ga and 1.85 Ga granitoid gneisses have slightly to distinctly negative initial εNd values of -1.2 and -6.6, and similar depleted mantle Nd model ages of 2

  19. Petrography and Geochemistry of the Aimorés Charnockitic Complex: An Example of Post-orogenic Plutonism of the Araçuaí/Ribeira Belt

    Directory of Open Access Journals (Sweden)

    Fernando Machado de Mello

    2011-04-01

    Full Text Available The Aimorés Complex is an inversely zoned multistage ring-like structure which crops out over about 150 km2 and wasintruded approximately 500 Ma years ago, during the post-collision event related to Araçuai-Ribeira Fold Belt. This complexconsists of a monzodioritic core with hypersthene, and a charnockitic intermediary ring encircled by granodiorites. Thecontact between core and rim is marked by a mingled/mixed zone, where small occurrences of garnet-granite were also found.Abundant enclaves of different shapes and sizes occur showing circular, diffuse and sharp contacts with the groundmass. Thecontact with the country rocks is sharp and sub-vertical, varying from concordant to discordant and presenting dips toward theintrusion. The enclosing rocks are orthogneiss, which have experienced high-amphibolite to granulite-facies metamorphism.Most of the facies of the complex are metaluminous, except for the large enclaves embedded in the inner portion, which areperaluminous. The aluminium saturation index is approximately 1 and the agpaitic index ((Na+K/Al ranges from 0.45 to0.77. The negative correlation of CaO, MgO, Fe2O3, TiO2 e P2O5 in the Harker diagram can be explained by pyroxene andfeldspar fractionation. The MgO/TiO2 ratio close to 1 and the tectonic discrimination diagrams are compatible with postcollisionalgranitoids, as well as the sum of Zr, Nb, Ce and Y (500 - 1.000 ppm. The Ba/Sr, Sr/Rb, Ba/Rb and Zn/MgO ratiosindicate that there was initially fractionation by pyroxene and plagioclase, followed later by fractionation by amphibole, biotiteand K-feldspar. Geochemical data probably reflects the combination of crystal fractionation and/or crustal contamination andmagma mingling/mixing processes.

  20. ‘Indicator’ carbonaceous phyllite/graphitic schist in the Archean Kundarkocha gold deposit, Singhbhum orogenic belt, eastern India: Implications for gold mineralization vis-a-vis organic matter

    Indian Academy of Sciences (India)

    P R Sahoo; A S Venkatesh

    2014-10-01

    Carbonaceous rocks in the form of graphitic schist and carbonaceous phyllite are the major host rocks of the gold mineralization in Kundarkocha gold deposit of the Precambrian Singhbhum orogenic belt in eastern India. The detection of organic carbon, essentially in the carbonaceous phyllite and graphitized schist within the Precambrian terrain, is noted from this deposit. A very close relationship exists between gold mineralization and ubiquitous carbonaceous rocks containing organic carbon that seems to play a vital role in the deposition of gold in a Precambrian terrain in India and important metallogenetic implications for such type of deposits elsewhere. However, the role played by organic matter in a Precambrian gold deposit is debatable and the mechanism of precipitation of gold and other metals by organic carbon has been reported elsewhere. Fourier transform infrared spectroscopy (FTIR) results and total organic carbon (TOC) values suggest that at least part of the organic material acted as a possible source for the reduction that played a significant role in the precipitation of gold. Lithological, electron probe analysis (EPMA), fluid inclusions associated with gold mineralization, Total Carbon (TC), TOC and FTIR results suggest that the gold mineralization is spatially and genetically associated with graphitic schist, carbonaceous phyllite/shale that are constituted of immature organic carbon or kerogen. Nano-scale gold inclusions along with free milling gold are associated with sulfide mineral phases present within the carbonaceous host rocks as well as in mineralized quartz-carbonate veins. Deposition of gold could have been facilitated due to the organic redox reactions and the graphitic schist and carbonaceous phyllite zone may be considered as the indicator zone.

  1. FORMATION AND EVOLUTION OF THE CENOZOIC THRUST FOLD BELT IN JINPING, SICHUAN

    Institute of Scientific and Technical Information of China (English)

    LIAO Zhongli; DENG Yongfu; LIAO Guangyu

    2003-01-01

    The Jinping orogenic belt in Sichuan, China consists mainly of the Jinpingshan intracontinental thrust-nappe belt, foreland thrust-nappe belt and foreland uplift belt. Based on analyses about the characteristics of the structural units in this area, the authors propose in this paper that Chapuzi-Bazhe revival fault belt is the regional boundary fault, and points out that after the formation of the Pre-Sinian basement, the western edge of the Yangtze paraplatform was turned into the passive continental margin in Sinian to Triassic, then into the Mesozoic collision orogenic belt, and finally into the Cenozoic orogenic belt through intracontinental orogeny.

  2. Geochronology and geochemistry of Late Cretaceous-Paleocene granitoids in the Sikhote-Alin Orogenic Belt: Petrogenesis and implications for the oblique subduction of the paleo-Pacific plate

    Science.gov (United States)

    Tang, Jie; Xu, Wenliang; Niu, Yaoling; Wang, Feng; Ge, Wenchun; Sorokin, A. A.; Chekryzhov, I. Y.

    2016-12-01

    We present zircon U-Pb ages, major and trace element analyses, and zircon Hf isotope data on the Late Cretaceous-Paleocene granitoids at the southern end of the Sikhote-Alin Orogenic Belt of the Russian Far East. These data are used to discuss the petrogenesis of the granitoids in the context of the paleo-Pacific subduction beneath the eastern Eurasia. Zircons from four granitoid samples give emplacement ages of 56, 83, 91, and 92 Ma. These granitoids with high SiO2 (73.43-76.76 wt%) are metaluminous to weakly peraluminous (A/CNK = 0.97-1.03) and belong to the high-K calc-alkaline series (K2O = 3.75-4.95 wt%). They are all enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), and relatively depleted in high field strength elements (HFSEs) with striking depletion also in Ba, Sr, P and Eu. They are petrographically and geochemically consistent with being of I-type granitoids. The zircons have εHf (t) values (- 0.8 to + 7.6) higher than whole-rock εHf (t) values predicted from whole-rock εNd (t) (- 4.1 to + 0.5) in the literature. All these observations suggest that primary magmas parental to these granitoids were likely to have derived from partial melting of a juvenile lower crust accompanied by assimilation with ancient mature crust during magma ascent and evolution. A recent study illustrates that the collision of an exotic terrane carried by the paleo-Pacific plate with the continental China at 100 Ma accreted the basement of the Chinese continental shelf (beneath East and South China Seas), and resulted in a new plate boundary of transform nature between the NNW moving paleo-Pacific plate and the eastern margin of the shelf. Our new data and analysis of existing data support this hypothesis, but we hypothesize that this transform becomes transpressional in its northern segment with oblique subduction of the paleo-Pacific plate beneath northeastern Asia as manifested by the Late Cretaceous-Paleocene granitoids in the Russian

  3. Geochronology and geochemistry of early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China: Implications for the tectonic evolution of the eastern Central Asian Orogenic Belt

    Science.gov (United States)

    Wang, Zhi-wei; Xu, Wen-liang; Pei, Fu-ping; Wang, Feng; Guo, Peng

    2016-09-01

    This paper presents new zircon U-Pb, Hf isotope, and whole-rock major and trace element data for early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China, in order to constrain the early Paleozoic tectonic evolution of the eastern Central Asian Orogenic Belt (CAOB). Zircon U-Pb dating indicates that early Paleozoic magmatic events within the northern Songnen-Zhangguangcai Range Massif (SZM) can be subdivided into four stages: Middle Cambrian (~ 505 Ma), Late Cambrian (~ 490 Ma), Early-Middle Ordovician (~ 470 Ma), and Late Ordovician (460-450 Ma). The Middle Cambrian monzogranites are K-rich, weakly to strongly peraluminous, and characterized by pronounced heavy rare earth element (HREE) depletions, high Sr/Y ratios, low Y concentrations, low primary zircon εHf(t) values (- 6.79 to - 1.09), and ancient two-stage model (TDM2) ages (1901-1534 Ma). These results indicate derivation from partial melting of thickened ancient crustal materials that formed during the amalgamation of the northern SZM and the northern Jiamusi Massif (JM). The Late Cambrian monzonite, quartz monzonite, and monzogranite units are chemically similar to A-type granites, and contain zircons with εHf(t) values of - 2.59 to + 1.78 and TDM2 ages of 1625-1348 Ma. We infer that these rocks formed from primary magmas generated by partial melting of Mesoproterozoic accreted lower crustal materials in a post-collisional extensional environment. The Early-Middle Ordovician quartz monzodiorite, quartz monzonite, monzogranite, and rhyolite units are calc-alkaline, relatively enriched in light REEs (LREEs) and large ion lithophile elements (LILEs; e.g., Rb, Th, and U), depleted in HREEs and high field strength elements (HFSEs; e.g., Nb, Ta, and Ti), and contain zircons with εHf(t) values of - 7.33 to + 4.98, indicative of formation in an active continental margin setting. The Late Ordovician alkali-feldspar granite and rhyolite units have A-type granite affinities that suggest they formed in

  4. Geochronology and geochemistry of Permian bimodal volcanic rocks from central Inner Mongolia, China: Implications for the late Palaeozoic tectonic evolution of the south-eastern Central Asian Orogenic Belt

    Science.gov (United States)

    Zhang, Zhicheng; Chen, Yan; Li, Ke; Li, Jianfeng; Yang, Jinfu; Qian, Xiaoyan

    2017-03-01

    Zircon U-Pb ages, geochemical data and Sr-Nd isotopic data are presented for volcanic rocks from the lower Permian Dashizhai Formation. These rocks are widely distributed in the south-eastern Central Asian Orogenic Belt in central Inner Mongolia, China. The volcanic rocks mainly consist of basaltic andesite and rhyolite, subordinate dacite and local andesite, and exhibit bimodal geochemical features. The results of zircon U-Pb dating indicate that the volcanic rocks formed during the early Permian (292-279 Ma). The mafic volcanic rocks belong to low-K tholeiitic to medium-K calc-alkaline series. These mafic volcanic rocks are also characterised by moderately enriched light rare earth element (LREE) patterns; high abundances of Th, U, Zr and Hf; negative Nb, Ta and Ti anomalies; initial 87Sr/86Sr ratios of 0.70514-0.70623; and positive εNd(t) values (+1.9 to +3.8). These features indicate that the mafic volcanic rocks were likely derived from the high-percentage partial melting of subduction-related metasomatised asthenospheric mantle. The felsic rocks show an A-type affinity, with enrichments in alkalis, Th, U and LREEs. The felsic rocks are depleted in Ba, Sr, Nb, Ta and Ti and exhibit moderately LREE-enriched patterns (LaN/YbN = 2.09-6.45) and strongly negative Eu anomalies (Eu/Eu∗ = 0.04-0.25). These features, along with the positive εNd(t) values (+2.6 to +7.7) and young TDM2 ages (TDM2 = 435-916 Ma), indicate that the felsic rocks were likely derived from a juvenile crustal source that mainly consisted of juvenile mid-ocean ridge basalt-related rocks. The volcanic association in this study and in previously published work widely distributed in central Inner Mongolia. The observations in this study suggest that the lower Permian volcanic rocks formed in an identical tectonic environment. The regional geological data indicate that the bimodal volcanic rocks from the lower Permian Dashizhai Formation in the study area formed in an extensional setting that was

  5. Tectonic Evolution of Central and South Tianshan Orogenic Belts in the Central Asia and Mineralization Background%中亚地区中、南天山造山带构造演化及成矿背景分析

    Institute of Scientific and Technical Information of China (English)

    左国朝; 刘义科; 张招崇; 黄河

    2011-01-01

    The Central and South Tianshan orogenic belts are located across the Central Asia. The Late Proterozoic breakup event of Rodinia Supercontinent led to the formation of many variable-size blocks surrounded by palaeo-oceans. The NE-striking Talas-Fergana throughout the researched area was a characteristic of transform fault in Palaeozoic time, and it controlled the tectonic evolution and mineralization difference between east and west sections of the fault. In the north margin of the Central Tianshan microplate, there was a Cambrian-Ordovician paleo-ocean basin. The west section of its south margin had experienced two breakup events from Cambrian to Middle Devonian and formed an archipelago ocean setting. The carbonaceous-and siliceous-shale formations in the passive margin of Silurian oceanic province are the best layers for hosting gold deposits. The paleo-ocean in the east section of the south margin of the Central Tianshan microplate occurred from Sinian to Late Devonian. During Late Carboniferous time, there were northwest thrust orogenic events in the west, whereas there were the reverse thrust orogenic events in the east sections. Continental collision-type granites are widespread through the South Tianshan area in the Late Carboniferous, which are genetically related to tungsten, tin, niobium-tantalum, molybdenum, copper, lead and zinc deposits. Talas-Fergana fault, which formed in Late Permian and Triassic, was characterized by dextral strike slip. Subsequently, the emplacement of the post-collision-type granites plays a key role in the mercuric and antimony mineralization. Talas-Fergana fault was characterized by strike slip and extension during Jurassic. In Cenozoic, the tectonic uplift resulted in compression and shortening of the South Tianshan was triggered by the northward subduction of the Indian Plate.%横贯中亚地区的中、南天山造山带,在元古宙末罗迪尼亚超大陆裂解时,先后以中天山南缘断裂为主线分裂出被洋区

  6. Transformation of tectonic movement and deformation partitioning across the Himalayan orogenic belt%横跨喜马拉雅造山带的构造运动转换与变形分配

    Institute of Scientific and Technical Information of China (English)

    马晓静; 高祥林

    2011-01-01

    The Himalayan orogenic belt consists of 3 basic units, I. E. The Himalayan arc, eastern and western syntaxes, which are a deformation system resulted from the continuing northward motion and underthrust of the Indian plate after the India-Eurasia collision. In geology, this system is characterized by coexisting various kinds of crustal deformation, such as north-south shortening and east-west extension, plateau uplift and subsidence of intermountain basins, northward or southward dipping thrust faults that are roughly parallel to the strike of the orogenic belt, east-west trending and north-south trending normal faults, northeast or northwest directed strike-slip faults, and flexures around vertical or horizontal axes. These phenomena imply that after the intact and hard India plate plunged beneath the fragmented and soft Tibetan plateau, the northward motion of the Indian rigid body has transformed into various deformation across the Himalayas, which are partitioned in a broad intracontinental region in the north. Such a transformation might occurred in a discontinuous manner during different geological times, yielding varied signatures at different depths. The features of resultant deformation are associated with thermal state at depth and stratified rheology as well as other local conditions, such as the geometrical relationship between the existing structure and motion direction of the India plate, relative strength of deformed geological massifs, interaction between structures and variations of local stress state. The southward convex shape of the Himalayan arc is produced by the southward slide of hanging walls of thrust faults, that is dictated by topography and gravity gradients, roughly perpendicular to the strike of the arc, concealing the possible oblique subduction at depth. The proposed eastward and southeastward flow of lower crust in eastern Tibet is likely in part attributed to the differences of deformation processes in time and space of the

  7. Optical absorption spectra of tourmaline crystals from Altay,China

    Institute of Scientific and Technical Information of China (English)

    Xueliang Liu; Xiqi Feng; Manliang Fan; Shouguo Guo

    2011-01-01

    @@ Tourmaline is an important functional and gem material.The current study examines pink,green,and brownish-green tourmalines from Altay deposit.Based on X-ray fluorescence(XRF) quantitative analyses and ultraviolet-visible-near-infrared(UV-VIS-NIR) spectral analyses in combination with annealing experiments,the color center of tourmaline is found to be related to the d一d transitions of ions or the d-d transitions of exchange coupled ions.Annealing treatment affects the color improvement of tourmaline crystals.%Tourmaline is an important functional and gem material. The current study examines pink, green, and brownish-green tourmalines from Altay deposit. Based on X-ray fluorescence (XRF) quantitative analyses and ultrariolet-visible-near-infrared (UV-VIS-NIR.) spectral analyses in combination with annealing experiments, the color center of tourmaline is found to be related to the d - d transitions of ions or the d - d transitions of exchange coupled ions. Annealing treatment affects the color improvement of tourmaline crystals.

  8. Neoproterozoic-middle Paleozoic tectono-magmatic evolution of the Gorny Altai terrane, northwest of the Central Asian Orogenic Belt: Constraints from detrital zircon U-Pb and Hf-isotope studies

    Science.gov (United States)

    Chen, Ming; Sun, Min; Buslov, Mikhail M.; Cai, Keda; Zhao, Guochun; Zheng, Jianping; Rubanova, Elena S.; Voytishek, Elena E.

    2015-09-01

    The Gorny Altai terrane (GA) is a key area in understanding the crustal evolution of the Central Asian Orogenic Belt (CAOB). This paper reports U-Pb and Hf-isotope data for detrital zircons from Cambrian to early Devonian sedimentary sequences to constrain their provenance, as well as the tectono-magmatic events and crustal growth in this region. Nearly all the detrital zircons are characterized by euhedral to subhedral morphology, high Th/U ratios (ca. 0.1-1.6) and typical oscillatory zoning, indicating a magmatic origin. The three samples from the Gorny Altai Group (middle Cambrian to early Ordovician) yield detrital zircon populations that are composed predominantly of 530-464 Ma grains, followed by a subordinate group of 641-549 Ma old. The Silurian and Devonian samples exhibit similar major zircon populations (555-456 Ma and 525-463 Ma, respectively), but a significant amount of additional 2431-772 Ma zircons occur in the early Devonian sample. Our results suggest that detritus from the nearby Kuznetsk-Altai intra-oceanic island arc served as a unitary source for the Cambrian-Silurian sedimentary sequences, but older detritus from other sources added to the early Devonian sequence. The low abundance of ca. 640-540 Ma detrital zircons may testify that this island arc was under a primitive stage in this period, when mafic volcanic rocks probably dominated. In contrast, the dominant population of ca. 530-470 Ma zircons may indicate an increased amount of granitic rocks in the source area, suggesting that the Kuznetsk-Altai island arc possibly evolved into a mature one in the Cambrian to early Ordovician. The ca. 530-470 Ma detrital zircons are almost exclusively featured by positive εHf(t) values and have two-stage Hf model ages of ca. 1.40-0.45 Ga, indicating that the precursor magmas were sourced predominantly from heterogeneous juvenile materials. We conclude that the late Neoproterozoic to early Paleozoic magmatism in the Kuznetsk-Altai arc made a

  9. GEOPHYSICS. Layered deformation in the Taiwan orogen.

    Science.gov (United States)

    Huang, T-Y; Gung, Y; Kuo, B-Y; Chiao, L-Y; Chen, Y-N

    2015-08-14

    The underthrusting of continental crust during mountain building is an issue of debate for orogens at convergent continental margins. We report three-dimensional seismic anisotropic tomography of Taiwan that shows a nearly 90° rotation of anisotropic fabrics across a 10- to 20-kilometer depth, consistent with the presence of two layers of deformation. The upper crust is dominated by collision-related compressional deformation, whereas the lower crust of Taiwan, mostly the crust of the subducted Eurasian plate, is dominated by convergence-parallel shear deformation. We interpret this lower crustal shearing as driven by the continuous sinking of the Eurasian mantle lithosphere when the surface of the subducted plate is coupled with the orogen. The two-layer deformation clearly defines the role of subduction in the formation of the Taiwan mountain belt.

  10. Structure and Tectonics of the Saint Elias Orogen

    Science.gov (United States)

    Bruhn, R. L.; Pavlis, T. L.; Plafker, G.; Serpa, L.; Picornell, C.

    2001-12-01

    The Saint Elias orogen of western Canada and southern Alaska is a complex mountain belt formed by transform faulting and subduction between the Pacific and North American plates, and collision of the Yakutat terrane. The orogen is segmented into three regions of different structural style caused by lateral variations in transpression and processes of terrane accretion. Deformation is strain and displacement partitioned throughout the orogen; transcurrent motion is focused along discrete strike-slip faults, and shortening is distributed among reverse faults and folds with sub-horizontal axes. Plunging folds accommodate horizontal shortening and extension in the western part of the orogen. Segment boundaries extend across the Yakutat terrane where they coincide with the courses of huge piedmont glaciers that flow from the topographic backbone of the range onto the coastal plain. The eastern segment is marked by strike-slip faulting along the Fairweather transform fault and by a narrow belt of reverse faulting where the transpression ratio is 0.4:1 shortening to dextral shear. The transpression ratio is 1.7:1 in the central part of the orogen where a broad thin-skinned fold and thrust belt deforms the Yakutat terrane south of the Chugach-Saint Elias (CSE) suture. Dextral shearing is accommodated by strike-slip faulting beneath the Seward and Bagley glaciers in the hanging wall of the CSE suture, and partly by reverse faulting along a structural belt that cuts across the Yakutat terrane along the western edge of the Malaspina Glacier and links to the Pamplona fold and thrust belt offshore. Deformation along this segment boundary is probably also driven by vertical axis bending of the Yakutat microplate during collision. Subduction & accretion in the western segment of the orogen causes re-folding of previously formed structures when they are emplaced into the upper plate of the Alaska-Aleutian mega-thrust. Second phase folds plunge at moderate to steep angles and

  11. Linking magmatism with collision in an accretionary orogen.

    Science.gov (United States)

    Li, Shan; Chung, Sun-Lin; Wilde, Simon A; Wang, Tao; Xiao, Wen-Jiao; Guo, Qian-Qian

    2016-05-11

    A compilation of U-Pb age, geochemical and isotopic data for granitoid plutons in the southern Central Asian Orogenic Belt (CAOB), enables evaluation of the interaction between magmatism and orogenesis in the context of Paleo-Asian oceanic closure and continental amalgamation. These constraints, in conjunction with other geological evidence, indicate that following consumption of the ocean, collision-related calc-alkaline granitoid and mafic magmatism occurred from 255 ± 2 Ma to 251 ± 2 Ma along the Solonker-Xar Moron suture zone. The linear or belt distribution of end-Permian magmatism is interpreted to have taken place in a setting of final orogenic contraction and weak crustal thickening, probably as a result of slab break-off. Crustal anatexis slightly post-dated the early phase of collision, producing adakite-like granitoids with some S-type granites during the Early-Middle Triassic (ca. 251-245 Ma). Between 235 and 220 Ma, the local tectonic regime switched from compression to extension, most likely caused by regional lithospheric extension and orogenic collapse. Collision-related magmatism from the southern CAOB is thus a prime example of the minor, yet tell-tale linking of magmatism with orogenic contraction and collision in an archipelago-type accretionary orogen.

  12. Erosional Reduction of an Orogenic Wedge: Structural Response to Neogene Climate Change within the St. Elias Orogen, Alaska

    Science.gov (United States)

    Berger, A. L.; Spotila, J. A.; Chapman, J. B.; Pavlis, T. L.; Enkelmann, E.; Buscher, J. T.

    2007-12-01

    The kinematics and architecture of orogenic systems may be heavily influenced by climate, but little research has focused on the long term effects of glacial erosion on orogenesis. Apatite and zircon (U-Th)/He thermochronometry on >75 bedrock samples across the St. Elias orogen, one of the best examples of a glaciated orogenic wedge, is the basis for a new kinematic model and demonstrates an association between glacial denudation and orogenic architecture. The spatial pattern of low temperature cooling indicates that exhumation and deformation are focused within a thin-skinned fold and thrust belt on the windward flank, whereas the leeward flank of the orogen functions as a deformational backstop. A previously unrecognized structure beneath the Bagley ice field must separate these domains with south-side-up motion. We propose this structure is a backthrust making the orogen doubly-vergent. Suggestive of accelerated backthrust motion in response to climate change, cooling rates within the hanging wall block and across the entire windward flank of the orogen accelerated ten-fold coeval with enhanced glaciation. As backthrust motion increased, glacial unroofing also coincided with a regional shift in deformation away from prominent forethrusts including the North American-Yakutat terrane suture (Chugach St. Elias fault) and the seaward deformation front (Pamplona zone). Across the windward flank of the orogen, exhumation, at rates of up to 5 mm/yr, is focused within a narrow zone, where the glacial equilibrium line altitude (ELA) intersects the orogenic wedge. This zone of rapid exhumation, not present prior to the onset of enhanced glaciation, cuts across the structural trend of the orogen and is more narrowly focused than orographic precipitation. Accelerated denudation at the ELA thus appears to have redistributed strain along a series of forethrusts that lie at the zone of heaviest glacial flux, while the backthrust progressively truncates the southward

  13. Compressional intracontinental orogens: Ancient and modern perspectives

    Science.gov (United States)

    Raimondo, Tom; Hand, Martin; Collins, William J.

    2014-03-01

    Compressional intracontinental orogens are major zones of crustal thickening produced at large distances from active plate boundaries. Consequently, any account of their initiation and subsequent evolution must be framed outside conventional plate tectonics theory, which can only explain the proximal effects of convergent plate-margin interactions. This review considers a range of hypotheses regarding the origins and transmission of compressive stresses in intraplate settings. Both plate-boundary and intraplate stress sources are investigated as potential driving forces, and their relationship to rheological models of the lithosphere is addressed. The controls on strain localisation are then evaluated, focusing on the response of the lithosphere to the weakening effects of structural, thermal and fluid processes. With reference to the characteristic features of intracontinental orogens in central Asia (the Tien Shan) and central Australia (the Petermann and Alice Springs Orogens), it is argued that their formation is largely driven by in-plane stresses generated at plate boundaries, with the lithosphere acting as an effective stress guide. This implies a strong lithospheric mantle rheology, in order to account for far-field stress propagation through the discontinuous upper crust and to enable the support of thick uplifted crustal wedges. Alternative models of intraplate stress generation, primarily involving mantle downwelling, are rejected on the grounds that their predicted temporal and spatial scales for orogenesis are inconsistent with the observed records of deformation. Finally, inherited mechanical weaknesses, thick sedimentary blanketing over a strongly heat-producing crust, and pervasive reaction softening of deep fault networks are identified as important and interrelated controls on the ability of the lithosphere to accommodate rather than transmit stress. These effects ultimately produce orogenic zones with architectural features and evolutionary

  14. 青海东昆仑地区有色、贵金属矿床成矿系列%Study on the metallogenic series of nonferrous and precious metal deposits in eastern Kunlun orogenic belt, Qinghai

    Institute of Scientific and Technical Information of China (English)

    马顺清; 潘彤

    2012-01-01

    The eastern Kunlun metallogenic belt, located in Qinghai Province, is composed of northern Kunlun aulacogen belt, middle Kunlun granitic metamorphic complex belt and southern Kunlun composite merging zone, each with different geophysical and ge-ochemical characteristics. It passed through four tectonic evolution stages as followings; Late Proterozoic continental margin stage, Late Ordovician aulacogen stage, Late Paleozoic active multi- islands and sea continental margin stage and Middle - late Mesozoic back - arc amalgamation-and accretionary orogenesis stage. The mineralization is mainly formed in the Indonian and Caledonian periods, and outlined as three near EW - trending mineralization zones with different types of mineral deposits , and thus the metallogenetic series were formed by different tectonic evolution stages.%青海省东昆仑成矿带由昆北裂陷槽区、昆中花岗—变质杂岩带、昆南复合拼合带组成,各带形成了不同的地球物理、地球化学特征.其历经元古宙大陆边缘阶段,晚奥陶世裂陷槽阶段,晚古生代多岛洋活动大陆边缘阶段和中生代中—晚期弧后拼合—增生造山阶段4个构造演化阶段.成矿集中在印支期、加里东期,近东西向3条矿带形成不同类型矿产的分布.不同的演化阶段形成有色、贵金属矿成矿系列.

  15. 吉黑复合造山带古亚洲洋向滨太平洋构造域转换:时间标志与全球构造的联系%TRANSITION FROM PALEO-ASIAN OCEAN DOMAIN TO CIRCUM-PACIFIC OCEAN DOMAIN FOR THE JI-HEI COMPOSITE OROGENIC BELT: Time Mark and Relationship to Global Tectonics

    Institute of Scientific and Technical Information of China (English)

    彭玉鲸; 齐成栋; 周晓东; 卢兴波; 董红辰; 李壮

    2012-01-01

    The rhythmic coupling of geological events of tectonic movement, magmatism, metamorphism, deposit formation and so on indicate that, for the Ji-Hei composite orogenic belt, the ending time of the Paleo-Asian Ocean tectonic domain is 250 - 230 Ma; while the starting time of the Pacific Ocean tectonic domain is 227 - 222 Ma. From the view of global tectonics, they are constrained by the forming time of Pangaea (330 - 230 Ma) and its first splitting time (224 Ma) after it entered the new super-continent cycle (230 - 0 Ma).%构造运动、岩浆活动、变质作用、矿床形成等地质事件节律的耦合,表明吉黑复合造山带古亚洲洋构造体制结束的综合标志时间为250~230 Ma,太平洋构造体制启动的综合标志时间为227~222 Ma.从全球构造观之,它们受Pangaea联合古陆形成的时间(330~230 Ma)和进入新超大陆旋回(230~0 Ma)首次裂解的时间(224 Ma)所制约.

  16. Deformation during terrane accretion in the Saint Elias orogen, Alaska

    Science.gov (United States)

    Bruhn, R.L.; Pavlis, T.L.; Plafker, G.; Serpa, L.

    2004-01-01

    The Saint Elias orogen of southern Alaska and adjacent Canada is a complex belt of mountains formed by collision and accretion of the Yakutat terrane into the transition zone from transform faulting to subduction in the northeast Pacific. The orogen is an active analog for tectonic processes that formed much of the North American Cordillera, and is also an important site to study (1) the relationships between climate and tectonics, and (2) structures that generate large- to great-magnitude earthquakes. The Yakutat terrane is a fragment of the North American plate margin that is partly subducted beneath and partly accreted to the continental margin of southern Alaska. Interaction between the Yakutat terrane and the North American and Pacific plates causes significant differences in the style of deformation within the terrane. Deformation in the eastern part of the terrane is caused by strike-slip faulting along the Fairweather transform fault and by reverse faulting beneath the coastal mountains, but there is little deformation immediately offshore. The central part of the orogen is marked by thrusting of the Yakutat terrane beneath the North American plate along the Chugach-Saint Elias fault and development of a wide, thin-skinned fold-and-thrust belt. Strike-slip faulting in this segment may he localized in the hanging wall of the Chugach-Saint Elias fault, or dissipated by thrust faulting beneath a north-northeast-trending belt of active deformation that cuts obliquely across the eastern end of the fold-and-thrust belt. Superimposed folds with complex shapes and plunging hinge lines accommodate horizontal shortening and extension in the western part of the orogen, where the sedimentary cover of the Yakutat terrane is accreted into the upper plate of the Aleutian subduction zone. These three structural segments are separated by transverse tectonic boundaries that cut across the Yakutat terrane and also coincide with the courses of piedmont glaciers that flow from

  17. Coupled stratigraphic and structural evolution of a glaciated orogenic wedge, offshore St. Elias orogen, Alaska

    Science.gov (United States)

    Worthington, Lindsay L.; Gulick, Sean P. S.; Pavlis, Terry L.

    2010-12-01

    The St. Elias orogen is the result of ˜10 Myr of oblique convergence and flat-slab subduction in the Gulf of Alaska between North America and the Yakutat microplate. Extensive glaciation and a complex tectonic environment make this region a unique case study in which to examine the details of terrane accretion and the possible coupled influence of climate and tectonic drivers on the structural and topographic evolution of an orogenic wedge. Reflection seismic profiles across the offshore Pamplona zone fold-thrust belt, the frontal St. Elias orogenic wedge, provide constraints for quantifying Pleistocene deformation recorded in the glaciomarine Yakataga formation. The total amount of Pleistocene shortening observed varies from ˜3 to 5 mm/yr, compared to the current GPS-derived Yakutat-North America convergence rate across the St. Elias orogen of ˜45 mm/yr. Growth strata and kinematic fold analysis allow comparison of relative timing of fault activity, which reveals temporal and spatial shifting of active deformation during the glacial period: faulting localized adjacent to the coastline and at the current submarine deformation front. The abandoned, currently inactive region is colocated with the major glacial depocenter in the region, the Bering Trough. These observations imply that glacial processes such as sediment loading and focused erosion during advance-retreat cycles has a direct effect on the evolution of individual faults within the Pamplona zone and the overall deformation pattern in the offshore St. Elias margin. This information provides key constraints for understanding how climatic shifts may have affected the evolution of margin architecture during Pleistocene glacial-interglacial periods.

  18. Zircon geochronology of Xingxingxia quartz dioritic gneisses:Implications for the tectonic evolution and Precambrian basement affinity of Chinese Tianshan orogenic belt%星星峡石英闪长质片麻岩的锆石年代学:对天山造山带构造演化及基底归属的意义

    Institute of Scientific and Technical Information of China (English)

    贺振宇; 张泽明; 宗克清; 王伟; 于飞

    2012-01-01

    天山造山带是中亚造山带(CAOB)的主要组成部分,对于其前寒武纪古老基底的起源、古生代构造单元划分和造山作用过程的认识还存在很大分歧.本文对分布在星星峡镇西的石英闪长质片麻岩开展了系统地岩相学观察和锆石U-Pb年龄、Hf同位素及全岩地球化学分析.根据矿物组成推测它们的原岩为石英闪长岩,两个样品中的锆石具有基本一致的内部结构特征,均发育黑色、均一的边部和具震荡环带的核部,部分保留有更早的继承锆石核.分析结果表明,它们的原岩形成于- 425 Ma,变质作用年龄为约320 ~ 360Ma,继承锆石的年龄为1381~ 1743Ma.原岩结晶锆石具有正的且变化较大的εHf (t)值(0.9~17.8),继承锆石的tDM2模式年龄变化于1.54~2.44Ga.在全岩地球化学组成上,石英闪长质片麻岩具有明显富集Rb、Ba、Th、K等大离子亲石元素和Pb、U元素,亏损Nb、Ta、Ti等高场强元素的特点.结合区域上已有的前寒武纪基底、高级变质岩、蛇绿混杂岩、岩浆岩的研究资料,获得以下认识:中天山地块的前寒武纪基底的起源与塔里木板块没有明显的相关性,可能是中元古代时期,由东欧板决边缘的弧增生造山作用形成;中天山地块东部在早古生代为大陆边缘弧的构造环境,可能形成于南天山洋向中天山板块的俯冲作用;南天山洋在天山造山带的东部和西部可能具有一致的闭合时间.%The Tianshan orogen is the major component of the Central Asian Orogenic Belt (CAOB). There has been a continued debate on the derivation of the old Precambrian crustal basements and Paleozoic tectonic divisions and evolutions of the orogen. In this paper we present pejjological characteristics, zircon U-Pb ages and Hf isotope compositions as well as the whole rock geochemistry of the quartz dioritic gneisses from west of the Xingxingxia Town. Based on the mineral assemblies, their

  19. Early Yanshanian post-orogenic granitoids in the Nanling region-- Petrological constraints and geodynamic settings

    Institute of Scientific and Technical Information of China (English)

    陈培荣; 华仁民; 章邦桐; 陆建军; 范春方

    2002-01-01

    Early Yanshanian magmatic suites predominate absolutely in the Nanling granite belt.They consist mainly of monzogranite and K-feldspar granite.There occur associations of early Yanshanian A-type granitoids(176 Ma-178 Ma) and bimodal volcanic rocks(158 Ma-179 Ma) in southern Jiangxi and southwestern Fujian in the eastern sector of the granite belt and early Yanshanian basalts(177 Ma-178 Ma) in southern Hunan in the central sector of the belt.Both the acid end-member rhyolite in the bimodal volcanic rock association and A-type granitoids in southern Jiangxi have the geochemical characteristics of intraplate granitic rocks and the basic end-member basalt of the association is intraplate tholeiite,while the basaltic rocks in southern Hunan include not only intraplate tholeiite but also intraplate alkali basalt.Therefore the early Yanshanian magmatic suites in the Nanling region are undoubtedly typical post-orogenic rock associations.Post-orogenic suites mark the end of a post-collision or late orogenic event and the initiation of Pangaea break-up,indicating that a new orogenic Wilson cycle is about to start.Therefore it may be considered that the early Yanshanian geodynamic settings in the Nanling region should be related to post-orogenic continental break-up after the Indosinian orogeny and the break-up did not begin in the Cretaceous.

  20. A preliminary study of the Xingshugou gold mineralization spots in the eastern segment of Kunlun orogenic belt and the dating of its surrounding rocks%东昆仑东段杏树沟金矿(化)点的成矿特征及其围岩时代的确定

    Institute of Scientific and Technical Information of China (English)

    时超; 李荣社; 何世平; 于浦生; 王超; 潘术娟; 张海迪

    2012-01-01

    东昆仑成矿带是中国西部重大成(找)矿潜力的贵金属-有色金属成矿带.对东昆仑东段都兰县诺木洪南部产于下石炭统哈拉郭勒组(C1h)中的杏树沟金矿(化)点进行了初步研究,认为该金矿(化)点受近东西向韧脆性剪切构造的控制,矿化带内中酸性脉岩发育,与构造蚀变岩型金矿有相似的特征,可以与东昆仑其它金矿对比,具有一定的成矿潜力.含矿围岩为一套火山碎屑岩-碎屑岩建造,矿化蚀变主要为褐铁矿化、孔雀石化和黄铁矿化.在围岩的灰岩夹层中发现大量珊瑚、腕足和腹足类化石,其中Siphonodendron asiatica Yabe et Hayasaka和Siphonodendron asiatica minor Minato这2种珊瑚化石是首次在哈拉郭勒组发现,这不仅丰富了哈拉郭勒组的化石组合类型,而且将杏树沟金矿(化)点的围岩时代进一步限定为早石炭世维宪期.%The Eastern Kunlun metallogenic belt is a precious metil—nonferrous metal ore—forming belt with great prospecting potential in western China. Some gold mineralization spots in Early Carboniferous Halaguole Formation were preliminarily studied during the investigation of Nomhon Township in Dulan County, which lies in the eastern segment of Kunlun orogenic belt. And it is thus believed that gold mineralization was affected by the EW—trending ductile shearing, with the development of acid dykes in these mineralization spots. These mineralization spots are similar to altered rock type gold deposits. The gold mineralization spots have some ore-forming potential because they are comparable with other ore deposits(spots) in eastern Kunlun metallogenic belt. The mineralization consists mainly of limonitization, pyritization and malachitization, with the surrounding rocks being pyroclastic rocks and clastic rocks. Fossils of corals, brachiopods and gastropod were found in the limestone interbed of the surrounding rocks in Halaguole Formation, and'two coral fossils, i

  1. Study on Mechanism of Formation of Volcanic Rock in North Altay by Using Rare Earths

    Institute of Scientific and Technical Information of China (English)

    袁峰; 周涛发; 岳书仓

    2003-01-01

    The characteristics of rare earth elements in the Devonian and Carboniferous volcanic rocks were studied in the north Altay. And the mechanism of formation of volcanic rocks were discussed by using the rare earth elements. The correlativity of rare earth elements and major elements shows that the fractional crystallization is undistinguishable during the formation of Devonian and Carboniferous volcanic rocks, and the mechanism of formation of volcanic rocks may be the partial melting. The further study of the relationship of manifold rare earth elements shows that the mechanism of formation of Devonian and Carboniferous volcanic rocks in the north Altay is the partial melting. And the result also shows that the rare earth elements in the Devonian and Carboniferous volcanic rocks inherited the characteristics of those in its source materiels.

  2. Architecture and Kinematics of the Dabie Orogen, Central Eastern China

    Institute of Scientific and Technical Information of China (English)

    XU Shutong; LIU Yican; CHEN Guanbao; WU Weiping

    2005-01-01

    The geometry of the Dabie Mountains is manifested in terms of the distribution of petro-tectonic units in three dimensions. It is identified into three segments from east to west, four horizons in vertical profiles and eight petrotectonic units from north to south. Three segments are the east, middle and west segments. Four horizons, from top to bottom, are two different meta-tectonic melange in the uppermost part, underthrust basement and cover below them, and mantle at the bottom of the profiles. Eight petro-tectonic units from north to south are: (1) the hinterland basin, (2) the meta-flysch, (3) the ultramafic rock belt (UM) + Sujiahe eclogite belt (SH), (4) eclogite belt 2 (Ec2) with most eclogites of continental affinity, (5) eclogite belt 1 (Ecl1) with some eclogite of oceanic affinity, (6) the Dabie complex or underthrust basement of the Yangtze continent, (7) the Susong and Zhangbaling Groups or underthrust cover of the Yangtze continent and (8) the foreland belt. The (3), (4) and (5) units belong to meta-tectonic melange. Some ultrahigh pressure metamorphic minerals such as coesite and micro-diamonds have been found in (3) and (4) units; a possible ultrahigh pressure mineral,clinozoisite aggregate pseudomorph after lawsonite, was found in unit (5). The three tectonic units are speculated to be coherent initially; the UM and SH units are suggested to be the root belt in the east, middle and west segments respectively.The kinematics of the Dabie orogen is divided into three stages: top-to-south thrusting during the eclogite-granulite facies metamorphism, top-to-north extension during the amphibolite metamorphic stage, and faults or shear bands of brittle deformation and greenschist facies metamorphism were formed in the post-orogenic stage since the Late Jurassic and the movement pictures of these faults is different from each other.

  3. Vorticity analysis in the Zagros orogen, Shiraz area, Iran

    Science.gov (United States)

    Sarkarinejad, Khalil; Heibati, Zahra

    2016-10-01

    Quantitative vorticity analyses in orogenic belts are essential for studying the kinematics of deformation and can be performed using a range of methods. The combination of microstructural analysis for vorticity with other methods creates a more rigorous analysis. In order to determine the degree of non-coaxiality and spatial pattern of vorticity during deformation in the Zagros Orogenic Belt, a study area containing the boundary of the Zagros Folded Belt and the Zagros Fold-and-Thrust Belt is selected. The study area is situated in the Shiraz region of E-Zagros in Iran. The kinematic vorticity analysis is carried out using 4 methods based on: (1) the degree of asymmetry of the calcite c-axis fabric, (2) the assumption that the orientation of the long axes of calcite within an oblique stylolite foliation delineates the direction of the instantaneous stretching axis, (3) the assumption that the tension gash tips determine the direction of the instantaneous stretching axis and (4) stylolite teeth determine the direction of the instantaneous stretching axis. C-axis data from calcite give a kinematic vorticity number between 0.68 and 0.83, and the orientation of the long axes of calcite grains yields a range between 0.5 and 0.84. Stylolites provide a kinematic vorticity number between 0.5 and 0.79, and tension gashes provide a kinematic vorticity number between 0.56 and 0.81. This range of vorticity numbers confirms the contributions of both simple (33-59%) and pure shear (41-67%). Twining of calcite also reveals that the last stage of deformation occurred at a temperature of 170-200 °C. Spatial analysis reveals an increase in the simple shear component from the SW of the Zagros Folded Belt to the NE of the Zagros Fold-and-Thrust Belt.

  4. The adder (Vipera berus in Southern Altay Mountains: population characteristics, distribution, morphology and phylogenetic position

    Directory of Open Access Journals (Sweden)

    Shaopeng Cui

    2016-08-01

    Full Text Available As the most widely distributed snake in Eurasia, the adder (Vipera berus has been extensively investigated in Europe but poorly understood in Asia. The Southern Altay Mountains represent the adder’s southern distribution limit in Central Asia, whereas its population status has never been assessed. We conducted, for the first time, field surveys for the adder at two areas of Southern Altay Mountains using a combination of line transects and random searches. We also described the morphological characteristics of the collected specimens and conducted analyses of external morphology and molecular phylogeny. The results showed that the adder distributed in both survey sites and we recorded a total of 34 sightings. In Kanas river valley, the estimated encounter rate over a total of 137 km transects was 0.15 ± 0.05 sightings/km. The occurrence of melanism was only 17%. The small size was typical for the adders in Southern Altay Mountains in contrast to other geographic populations of the nominate subspecies. A phylogenetic tree obtained by Bayesian Inference based on DNA sequences of the mitochondrial cytochrome b (1,023 bp grouped them within the Northern clade of the species but failed to separate them from the subspecies V. b. sachalinensis. Our discovery extends the distribution range of V. berus and provides a basis for further researches. We discuss the hypothesis that the adder expands its distribution border to the southwest along the mountains’ elevation gradient, but the population abundance declines gradually due to a drying climate.

  5. The adder (Vipera berus) in Southern Altay Mountains: population characteristics, distribution, morphology and phylogenetic position.

    Science.gov (United States)

    Cui, Shaopeng; Luo, Xiao; Chen, Daiqiang; Sun, Jizhou; Chu, Hongjun; Li, Chunwang; Jiang, Zhigang

    2016-01-01

    As the most widely distributed snake in Eurasia, the adder (Vipera berus) has been extensively investigated in Europe but poorly understood in Asia. The Southern Altay Mountains represent the adder's southern distribution limit in Central Asia, whereas its population status has never been assessed. We conducted, for the first time, field surveys for the adder at two areas of Southern Altay Mountains using a combination of line transects and random searches. We also described the morphological characteristics of the collected specimens and conducted analyses of external morphology and molecular phylogeny. The results showed that the adder distributed in both survey sites and we recorded a total of 34 sightings. In Kanas river valley, the estimated encounter rate over a total of 137 km transects was 0.15 ± 0.05 sightings/km. The occurrence of melanism was only 17%. The small size was typical for the adders in Southern Altay Mountains in contrast to other geographic populations of the nominate subspecies. A phylogenetic tree obtained by Bayesian Inference based on DNA sequences of the mitochondrial cytochrome b (1,023 bp) grouped them within the Northern clade of the species but failed to separate them from the subspecies V. b. sachalinensis. Our discovery extends the distribution range of V. berus and provides a basis for further researches. We discuss the hypothesis that the adder expands its distribution border to the southwest along the mountains' elevation gradient, but the population abundance declines gradually due to a drying climate.

  6. Origin and Tectonic Evolution of the Orogenic Nappe Structure Belt and Relative Basins of the Cuba Islands%古巴推覆构造带周边盆地充填序列及其构造演化

    Institute of Scientific and Technical Information of China (English)

    陈榕; 吴朝东; 申延平; 张晨晨; 房亚男

    2014-01-01

    came from different plate as exhibited by their unique stratigraphy. The Yucatan unit originated from the Yucatan platform and the Bahama unit was formed at the Bahama platform in Jurassic. The Central Arc unit derived from the Caribbean Arc in Cretaceous and the South Arc unit came from the Caribbean Arc at Paleocene. During the K-T boundary, the Caribbean Arc collided with the North American plate margin. The collision cohered the various parts of Cuba together, and promoted the development of the fold-thrust belt and related basins.

  7. The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt:Evidence from the Petrology,Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton%东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石 U-Pb 年代学的证据

    Institute of Scientific and Technical Information of China (English)

    张炜; 周汉文; 朱云海; 毛武林; 佟鑫; 马占青; 曹永亮

    2016-01-01

    The East Kunlun orogenic belt is not only an important intrusive magmatic tectonic belt,but also a very important poly-metallic metallogenic belt for national economy.There are a large number of granites associated with mineralization formed in Triassic in this area,but the connection between them and the relationship about the tectogenesis are still not clear.In this paper,detailed petrography,element geochemical and zircon geochronological studies are presented for the Mohexiala granite-porphyry associated with silver poly-metallic ore;we summarize the characteristics of Triassic granites associated with minerali-zation within the East Kunlun orogenic belt,and discuss their evolution.Results show that:(1)the Triassic granites associat-ed with mineralization within East Kunlun orogenic belt have a clear trend from low-K and mid-K calc-alkaline series to high-K calc-alkaline and shoshonite series during 250-200 Ma,their A/NK ratios decreased from 2.0 to 1.0 during 240-200 Ma;(2) the (87 Sr/86 Sr)i ratios between 0.710 to 0.715,εNd (t)=-0.6-0.0,the value ofεHf (t)are concentrated in -5-1 and the peak ranges between -2 to -1,indicating that the East Kunlun Triassic granites associated with mineralization were derived from the sources of ancient crust and mixed by mantle material;(3)the East Kunlun area got into the post-orogenic stage at 240 Ma and a large number of calc-alkaline granites formed,the granites gradually reduced after 220 Ma and some alkaline A-type granites occurred between 204 Ma and 210 Ma which indicates that the orogenic belt transformed from collision-orogeny to the intraplate break-up stage.%东昆仑造山带在三叠纪不仅是一个重要的构造-岩浆带,也是一个对于国民经济非常重要的多金属成矿带.该区在三叠纪形成了大量与成矿有关的花岗岩,它们之间的联系、与区域构造运动的关系目前尚未明确.在莫河下拉银多金属矿花岗斑岩岩相学、地球化学和锆石年

  8. Structural Geology of Daba Shan and its Tectonic Relationships with the Sichuan Basin and Central China Orogen, China

    Science.gov (United States)

    Guo, X.; Kusky, T.; Li, Z.

    2008-12-01

    Daba Shan is a fold-and-thrust belt located on the northeastern margin of the Sichuan Basin, central China orogen. It is the transitional zone between the Sichuan Basin and Qinling orogenic belt, and it is located in the middle part of the Mianlu suture zone which is the boundary between the Qinling orogenic belt and Yangtze block. Numerous faults and fault-related folds are well preserved in Daba Shan. It is a natural laboratory to carry out fold-thrust belt research on relationships between the Qingling orogen and subsidence in the Sichuan basin. In this talk, I will introduce the general geologic background about and around Daba Shan, including the geologic history of the central China orogen, the formation and development of the Mianlue suture, and the most popular ideas about the geodynamic evolution of Daba Shan, as well as its geologic position between the Sichuan Basin and North China craton and its relative geodynamic relationship with Mianlue suture zone. Field investigations have shown the different fault-related structure styles, e.g. fault-bend fold, fault-propagation fold, duplex structure across the orogen. In addition, a major extensional detachment fault, the Chengkou fault, crops out in the center of the orogen and dips beneath northern Daba Shan fold-thrust belt and Mianlue suture. It is so impressive of the typical and complex geological structure scenarios there, which were mostly caused by the collisional and post-collisional activities between Qinling micro-continent and Yangtze block since mid-Triassic time. Daba Shan has very important tectonic and economic significance in China. Although geoscientists have been working on the Sichuan Basin and central China orogen for many years, Daba Shan has gained little attention. These years, with gas and oil exploration development in foreland basin and fold-thrust belt areas, especially after the discovery of carbonate strata in Daba Shan, its economic potential has become more prominent. This

  9. ALTAY LANGUAGES IN NOSTRATIK LANGUAGES THEORY NOSTRATİK DİL TEORİSİ İÇERİSİNDE ALTAY DİLLERİ

    Directory of Open Access Journals (Sweden)

    Ekrem ARIKOĞLU

    2009-12-01

    Full Text Available Nostratic language of the theory of names Holger Pedersen his paternity, İlliç Svıtiç theory developed by the Afro-Asiatic, Kartvel, Elam-Dravid, Indo-European, Ural-Yukagir, Eskimo-Aleut, Altai, Korea, the Japanese language group of the common historical roots a defense theory. According to the theory of our day with each other within the same family or language group are not considered languages, at an earlier date (14 -10 thousands BC was based on the same origin. 8 thousand years ago, was separated from the main group of the Altaic language group. But today, many elements of restructuring through leksic history helps to establish ties. Altaic languages or language groups, with the above-mentioned links between the evaluation of the studies, examples are given in words. These links have been limited to elements leksical notice. Nostratik dil teorisi, isim babalığını Holger Pedersen’in yaptığı ve İlliç Svitıç tarafından geliştirilen; Afro-Asyatik, Kartvel, Elam-Dravit, Hint-Avrupa, Ural-Yukagir, Eskimo-Aleut, Altay, Kore ve Japon dillerinin aynı kökene dayandığını savunan bir teoridir.Bu teoriye göre, günümüzdeki pek çok dil ailesi MÖ 14-10 bin yıllarında aynı kökene dayanıyordu. 8 bin yıl önce Altay dil grubu ana gruptan ayrıldı. Fakat günümüzde pek çok leksik unsur tarihî bağların tespit edilmesine yardımcı olmaktadır. Altay dilleri veya dil grubunun diğer dil aileleriyle olan bağları, örnek kelimelerle gösterilmektedir. Bu bağlantılar daha çok leksik unsurlarla sınırlı tutulmuştur.

  10. Precipitation reconstruction for the northwestern Chinese Altay since 1760 indicates the drought signals of the northern part of inner Asia

    Science.gov (United States)

    Chen, Feng; Yuan, Yujiang; Zhang, Tongwen; Shang, Huaming

    2016-03-01

    Based on the significant positive correlations between the regional tree-ring width chronology and local climate data, the total precipitation of the previous July to the current June was reconstructed since AD 1760 for the northwestern Chinese Altay. The reconstruction model accounts for 40.7 % of the actual precipitation variance during the calibration period from 1959 to 2013. Wet conditions prevailed during the periods 1764-1777, 1784-1791, 1795-1805, 1829-1835, 1838-1846, 1850-1862, 1867-1872, 1907-1916, 1926-1931, 1935-1943, 1956-1961, 1968-1973, 1984-1997, and 2002-2006. Dry episodes occurred during 1760-1763, 1778-1783, 1792-1794, 1806-1828, 1836-1837, 1847-1849, 1863-1866, 1873-1906, 1917-1925, 1932-1934, 1944-1955, 1962-1967, 1974-1983, 1998-2001, and 2007-2012. The spectral analysis of the precipitation reconstruction shows the existence of some cycles (15.3, 4.5, 3.1, 2.7, and 2.1 years). The significant correlations with the gridded precipitation dataset revealed that the precipitation reconstruction represents the precipitation variation for a large area of the northern part of inner Asia. A comparison with the precipitation reconstruction from the southern Chinese Altay shows the high level of confidence for the precipitation reconstruction for the northwestern Chinese Altay. Precipitation variation of the northwestern Chinese Altay is positively correlated with sea surface temperatures in tropical oceans, suggesting a possible linkage of the precipitation variation of the northwestern Chinese Altay to the El Niño-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). The synoptic climatology analysis reveals that there is the relationship between anomalous atmospheric circulation and extreme climate events in the northwestern Chinese Altay.

  11. The thrust belts of Western North America

    Energy Technology Data Exchange (ETDEWEB)

    Moulton, F.C.

    1993-08-01

    Most of the Basin and Range physiographic province of western North America is now believed to be part of the overthrust. The more obvious overthrust belt along the eastern edge of the Basin and Range Province is named the Sevier orogenic belt, where older rocks are observed thrust onto younger rocks. More detailed surface geological mapping, plus deep multiple-fold geophysical work and many oil and gas wildcat wells, have confirmed an east-vergent shortened and stacked sequence is present in many places in the Basin and Range. This western compressive deformed area in east central Nevada is now named the Elko orogenic belt by the U.S. Geological Survey. This older compressed Elko orogenic belt started forming approximately 250 m.y. ago when the North American plate started to move west as the Pangaea supercontinent started to fragment. The North American plate moved west under the sediments of the Miogeocline that were also moving west. Surface-formed highlands and oceanic island arcs on the west edge of the North American plate restricted the westward movement of the sediments in the Miogeocline, causing east-vergent ramp thrusts to form above the westward-moving North American plate. The flat, eastward-up-cutting thrust assemblages moved on the detachment surfaces.

  12. Orogen-perpendicular structures in the central Tasmanides and implications for the Paleozoic tectonic evolution of eastern Australia

    Science.gov (United States)

    Abdullah, Rashed; Rosenbaum, Gideon

    2017-01-01

    The curvilinear E-W structures of the southern Thomson Orogen are approximately orthogonal to the general N-S structural trend of the Tasmanides of eastern Australia. The origin of these orogen-perpendicular structures and their implications to tectonic reconstructions of eastern Gondwana are not fully understood. Here we use geophysical data to unravel the geometry, kinematics and possible timing of major structures along the boundary between the Thomson Orogen and the southern Tasmanides (Delamerian and Lachlan orogens). Aeromagnetic data from the southern Thomson Orogen show WNW, E-W and/or ENE trending structural grains, corresponding to relatively long wavelength linear geophysical anomalies. Kinematic analyses indicate strike-slip and transpressional deformation along these geophysically defined faults. Structural relationships indicate that faulting took place during the Benambran (Late Ordovician to Middle Silurian) and Tabberabberan (late Early to Middle Devonian) orogenies. However, some of the described crustal-scale structures may have developed in the Cambrian during the Delamerian Orogeny. Interpretation of deep seismic data shows that the crust of the southern Thomson Orogen is substantially thicker than the Lachlan Orogen crust, which is separated from the Thomson Orogen by the north-dipping Olepoloko Fault. A major lithospheric-scale change across this boundary is also indicated by a contrast in seismic velocities. Together with evidence for the occurrence of Delamerian deformation in both the Koonenberry Belt and northeastern Thomson Orogen, and a significant contrast in the width of the northern Tasmanides versus the southern Tasmanides, it appears that the southern Thomson Orogen may represent the locus of orogen-perpendicular segmentation, which may have occurred in response to along-strike plate boundary variations.

  13. Xinjiang Altay skiing%新疆阿勒泰滑雪运动研究

    Institute of Scientific and Technical Information of China (English)

    阿不拉·玉素甫; 胡金明; 阿依夏木古丽·吐尔逊

    2015-01-01

    Since the development of the Winter Olympics,as athletes from European countries have won almost all the skiing competition gold medals,and there is a broad participation of skiing in Europe,it is generally thought that skiing originated from Europe.On the basis of Xinjiang Altay skiing history,this article has employed the methods of literature review,field survey and expert interview to probe into Xinjiang Altay skiing,including its origin and characteristics, distribution and inheritance, and put forward the corresponding countermeasures in view of the present situation,thus better accelerating development of Xinjiang Altay skiing as well as China competitive skiing.%自从开展冬季奥运会以来,欧洲国家运动员几乎包揽所有雪上竞赛项目金牌,欧洲大众参与滑雪运动的人数众多,使得世人普遍认为滑雪运动起源于欧洲。运用文献资料、实地调查、专家访谈等方法以新疆阿勒泰滑雪运动的产生历史背景为基础,探究新疆阿勒泰滑雪运动的产生与特点、分布与传承,并针对现状提出相应发展对策,从而更好地发展新疆阿勒泰滑雪运动,发展中国竞技滑雪运动。

  14. Orogenic Thrust Belt, Gulf of Mexico Basin [gcthrustbg

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — These data provide the general location of the Ouachita and Appalachian structural fronts slightly modified from Plate 4, Natural resources, Gulf of Mexico Basin...

  15. Polyphase tectonic events and Cenozoic basin-range coupling in the Tianshan Belt, Northwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Shu, L.S.; Wang, B.; Yang, F.; Lu, H.F.; Charvet, J.; Laurent-Charvet, S. [Nanjing University, Nanjing (China). Dept. of Earth Science

    2003-12-01

    Studies show that the Tianshan orogenic belt was built in the late stage of the Palaeozoic, as evidenced by the Permian red molasses and foreland basins; which are distributed in parallel with the Tianshan belt, indicating that an intense folding and uplifting event took place. During the Triassic, this orogenic belt was strongly eroded, and basins were further developed. The folding and faulting of Mesozoic sedimentary rocks, spontaneous combustion of Jurassic coal layers and formation of sintered rocks, the Cenozoic earthquakes and active faulting, and the unique mosaic pattern of basin-range framework of Xinjiang are all products of tectonism since the Neogene.

  16. 40Ar/39Ar geochronological constraints on syn-orogenic strike-slip movement of Tan-Lu fault zone

    Institute of Scientific and Technical Information of China (English)

    ZHU Guang; LIU Guosheng; W. J. Dunlap; C. Teyssier; WANG Yongsheng; NIU Manlan

    2004-01-01

    Two phases of sinistral strike-slip ductile shear belts occur on the eastern margin of the Dabie orogenic belt.A muscovite 40Ar/39Ar plateau age of 128 Ma was obtained from mylonite in the later ductile shear zone. Three muscovite samples separated from mylonites of 3 localities in the earlier ductile shear belts yield 40Ar/39Ar plateau ages of 192.5±0.7 Ma, 189.7±0.6 Ma and 188.7±0.7 Ma, respectively. They are interpreted as cooling ages of the earlier sinistrai strike-slip deformation. It is suggested that left-lateral displacement of the Tan-Lu fault zone started in a late stage of the collision orogeny in the Dabie-Sulu orogenic belt between the North and South China plates. Therefore, the earlier Tan-Lu fault zone was syn-orogenic strike-slip tectonics.The fault zone was used again for sinistral displacement during tectonic activities of peri-Pacific regime in Early Cretaceous. It is proposed that the fault zone occurred as a transform fault during the orogenic process.

  17. My View on Geotectonics of Xuefeng Uplift in Southeastern Guizhou Doubt about the Desision of South China Orogenic Belt Property%黔东南雪峰隆起区大地构造属性之我见——质疑其华南造山带属性判定

    Institute of Scientific and Technical Information of China (English)

    盛学庸

    2012-01-01

    Southeastern Guizhou has been called Xuefeng uplift, is situated in the west of Jiangnan upwarp which is the secondary tectonic unit of Yangtze block. After the introduction of far - field nappe structure theo- ry of Chinese- Amercian Xu Qing- hua which is geoteetonic scientist in 1970s, some domestic institutions and scholar have some review on the geotectonic property in this area, it striped from Yangtze block and classi- fied among Huanan orogenic belt of Early Paleozoic, but dais conclusion is in contradiction with the lamproite primary diamond metallogenic activity in this area objectively. In order to find out the reason, the dianond metallogenesis and ore -forming background in this area are studied completely. In the diamond geology, the location of Caledon subduction zone of nearby area and the big differences of lithofaeies palaeogeography, structure deformation, metamorphism and magmatic movements of Early Paleozoic in the two sides, it tested that cratonization has finished in Middle - Late Paleozoic, so it should he the secondary tectonic unit of Yan- gtze unit and Xuefeng uplift in the west of Jiangnan upwarp.%黔东南地区昔称雪峰隆起,属扬子地台次级构造单元江南台隆的西段。自70年代引进关籍华人比较大地构造学家许靖华远程推覆构造理论后,部分国内机构和学者对这一地区的大地构造属性进行了再认识,并最终将其从扬子地台剥离出去,归入早古生代华南造山带范畴。然而这一结论却与该区客观上存在钾镁煌斑岩型金刚石原生矿成矿活动相矛盾。为查明究竟,笔者对该区金刚石成矿作用及成矿地质背景进行了全面分析,从金刚石地质学;邻区加里东俯冲带的位置及其两侧早古生代岩相一古地理、构造变形、变质作用和岩浆活动的巨大差异出发,论证了该区的早在中一晚元古代即已克拉通化,故应还其本来面目——扬子地台次一级构造单元

  18. Crust-mantle transitional zone of Tianshan orogenic beltand Junggar Basin and its geodynamic implication

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The traveling time of the reflection waves of each shot point from the crust-mantle tran-sitional zone has been obtained by data processing using wavelet transform to the waves reflectedfrom the crust-mantle transitional zone. The crust-mantle transitional zone of the Xayar-Burjinggeoscience transect can be divided into three sections: the northern margin of the Tarim Basin, theTianshan orogenic belt and Junggar Basin. The crust-mantle transitional zone is composed mainlyof first-order discontinuity in the Tarim Basin and the Junggar Basin, but in the Tianshan orogenicbelt, it is composed of 7-8 thin layers which are 2-3 km in thickness and high and Iow alterna-tively in velocity, with a total thickness of about 20km. The discovery of the crust-mantle transi-tional zone of the Tianshan orogenic belt and Junggar Basin and their differences in tectonic fea-tures provide evidence for the creation of the geodynamic model “lithospheric subduction with in-trusion layers in crust” for the Tianshan orogenic belt.

  19. Basin-mountain structures and hydrocarbon exploration potential of west Junggar orogen in China

    Science.gov (United States)

    Wu, Xiaozhi; He, Dengfa; Qi, Xuefeng

    2016-04-01

    Situated in northern Xinjiang, China, in NE-SW trend, West Junggar Orogen is adjacent to Altai fold belt on the north with the Ertix Fault as the boundary, North Tianshan fold belt on the south with the Ebinur Lake Strike-slip Fault as the boundary, and the Junggar Basin on the southeast with Zaire-Genghis Khan-Hala'alat fold belt as the boundary. Covering an area of about 10×104 km2 in China, there are medium and small intermontane basins, Burqin-Fuhai, Tacheng, Hefeng and Hoxtolgay, distributing inside the orogen. Tectonically West Junggar Orogen lies in the middle section of the Palaeo-Asian tectonic domain where the Siberia, Kazakhstan and Tarim Plates converge, and is the only orogen trending NE-SW in the Palaeo-Asian tectonic domain. Since the Paleozoic, the orogen experienced pre-Permian plate tectonic evolution and post-Permian intra-plate basin evolution. Complex tectonic evolution and multi-stage structural superimposition not only give rise to long term controversial over the basin basement property but also complex basin-mountain coupling relations, structures and basin superimposition modes. According to analysis of several kinds of geological and geophysical data, the orogen was dominated by compressive folding and thrust napping from the Siberia plate in the north since the Late Paleozoic. Compressive stress weakened from north to south, corresponding to subdued vertical movement and enhanced horizontal movement of crustal surface from north to south, and finally faded in the overthrust-nappe belt at the northwest margin of the Junggar Basin. The variation in compressive stress is consistent with the surface relief of the orogen, which is high in the north and low in the south. There are two kinds of basin-mountain coupling relationships, i.e. high angle thrusting and overthrusting and napping, and two kinds of basin superimposition modes, i.e. inherited and progressive, and migrating and convulsionary modes. West Junggar orogen has rich oil and gas

  20. Ecosystem Services Evaluation and Its Spatial Characteristics in Central Asia’s Arid Regions: A Case Study in Altay Prefecture, China

    Directory of Open Access Journals (Sweden)

    Qi Fu

    2015-06-01

    Full Text Available Ecosystem services are important foundations to realize the sustainable development of economy and society. The question of how to quantitatively evaluate ecosystem services in a scientific way is a hot topic among international researchers. Studying the spatial characteristics of ecosystem services in arid regions can provide the theoretical and practical basis for coordinating a sustainable man-land relationship. Altay Prefecture of China, a typical arid region in Central Asia, was taken as the study area. It is on the Silk Road economic belt, which is a key region in the program of developing Western China. Three ecosystem services: water yield, soil conservation, and net primary productivity were quantitatively evaluated. The results show that (1 the spatial distribution pattern has a distinct characteristic of zonality; (2 mountain zone and mountain-oasis ecotone are the hotspots of ecosystem services; and (3 the correlation between water yield and net primary productivity shows a gradual increasing trend as altitude decreases. Objective analysis from the aspect of mechanism is given by discussing the causes of this particular pattern. It is found that altitude and slope have great influence on spatial distributions of ecosystem services, zones with the most amount of services are distributed in 1.5–2 km-altitude and 15–25°-slope. Different human activities in different regions and spatial distance decay of ecosystem services also contribute to the formation of spatial pattern. Thus, overgrazing, logging and mining are prohibited in mountain zones and mountain-oasis ecotones. Scholars are encouraged to focus on desert-ecosystem services in the future.

  1. Post-collisional polycyclic plutonism from the Zagros hinterland: the Shaivar Dagh plutonic complex, Alborz belt, Iran

    NARCIS (Netherlands)

    Aghazadeh, Mehraj; Castro, Antonio; Badrzadeh, Zahra; Vogt, Katharina

    2011-01-01

    The petrological and geochronological study of the Cenozoic Shaivar Dagh composite intrusion in the Alborz Mountain belt (NW Iran) reveals important clues to decipher complex relations between magmatic and tectonic processes in the central sectors of the Tethyan (Alpine–Himalayan) orogenic belt. Thi

  2. Restoration of Late Neoarchean-Early Cambrian tectonics in the Rengali orogen and its environs (eastern India): The Antarctic connection

    Science.gov (United States)

    Bhattacharya, A.; Das, H. H.; Bell, Elizabeth; Bhattacharya, Atreyee; Chatterjee, N.; Saha, L.; Dutt, A.

    2016-10-01

    Geological mapping and P-T path reconstructions are combined with monazite chemical age and Secondary Ion Mass Spectrometric (SIMS) U-Pb zircon age determinations to identify crustal domains with distinctive evolutionary histories in the Rengali orogen sandwiched between two Grenvillian-age metamorphic belts, i.e. the Eastern Ghats Granulite Belt (EGGB) in the south, and the amphibolite facies Gangpur Schist Belt (GSB) in the north, which in turn forms a collar along the NW/W margins of the Paleo/Mesoarchean Singhbhum Craton (SC) north of the Rengali orogen. Anatectic gneisses in the orogen core exhibit multi-phase Neoarchean/Paleoproterozoic deformation, metamorphic P-T histories and juvenile magma emplacement events. The high-grade belt is inferred to be a septum of the Bastar Craton (BC). The flanking supracrustal belt in the orogen - dominated by quartz-muscovite schists (± staurolite, kyanite, garnet pyrophyllite), inter-bedded with poorly-sorted and polymict meta-conglomerate, and meta-ultramafic/amphibolite bands - evolved along P-T paths characterized by sub-greenschist to amphibolite facies peak P-T conditions in closely-spaced samples. The supracrustal rocks and the anatectic gneisses of contrasting metamorphic P-T histories experienced D1, D2 and D3 fabric-forming events, but the high-angle obliquity between the steeply-plunging D3 folds in the anatectic gneisses and the gently-plunging D3 folds in the supracrustal unit suggests the two lithodemic units were tectonically accreted post-S2. The supracrustal belt is inferred to be a tectonic mélange formed in an accretionary wedge at the tri-junction of the Bastar Craton, the Eastern Ghats Granulite Belt and the Singhbhum Craton; the basin closure synchronous with the assembly of EGGB and the Singhbhum Craton-Gangpur Schist belt composite occurred between 510 and 610 Ma. Based on the available evidence across the facing coastlines of the Greater India landmass and the Australo-Antarctic blocks at ~ 500 Ma

  3. The deep structure of Alpine-type orogens: how important is rift-inheritance?

    Science.gov (United States)

    Tugend, Julie; Manatschal, Gianreto; Mohn, Geoffroy

    2016-04-01

    Collisional belts are commonly thought to result from the closure of oceanic basins and subsequent inversion of former rifted margins. The formation and evolution of collisional belts should therefore be closely interlinked with the initial architecture of former rifted margins. Reflection and refraction seismic data from present-day magma-poor rifted margins show the omnipresence of hyperextended domains (severely thinned continental crust (continental and oceanic domains. Integrating these new observations and exploring their impact on mountain building processes may result in alternative interpretations of the lithospheric structure of collisional orogens. We focus on the Pyrenees and Western to Central Alps, respectively resulting from the inversion of a Late Jurassic to Mid Cretaceous and an Early to Mid Jurassic rift system eventually floored by hyperextended crust, exhumed mantle or proto-oceanic crust. The rift-related pre-collisional architecture of the Pyrenees shows many similarities with that proposed for the Alps; although the width of the hyperextended and in particular of the proto-oceanic domains is little constrained. Contrasting with the Pyrenees, remnants of these domains are largely affected by orogeny-related deformation and show a HP-LT to HT-MP metamorphic overprint in the Alps. Nevertheless, in spite of the occurrence of these highly deformed and metamorphosed rocks constituting the internal parts of the Alps, the overall crustal and lithospheric structure looks surprisingly comparable. High resolution tomographic images across both orogens unravel the occurrence of a velocity anomaly dipping underneath the internal domains and progressively attenuated at depth that we interpret as former hyperextended domains subducted/underthrusted during collision. This interpretation contrasts with the classical assumption that the subducted material is made of lower crustal rocks only and may explain the emplacement of remnants of hyperextended domains

  4. The Impact of Air Pollution on Human Health: Focusing on the Rudnyi Altay Industrial Area

    Directory of Open Access Journals (Sweden)

    Vitaliy G. Salnikov

    2011-01-01

    Full Text Available Problem statement: Air pollution in Kazakhstan is significant environmental problem. The air pollution level of cities and industrial centers remains rather high. The highest level of air pollution is registered in Ridder, Ust-Kamenogorsk, Almaty, Zyryanovsk, Aktau, Atyrau, Shymkent, Taraz, Petropavlovsk and Temirtau. The enterprises of the Rudnyi Altay, Pavlodar Oblast and enterprises of oil and gas complex in West-Kazakhstan, Atyrau and Mangistau Oblasts play the negative role in air pollution. About one third of industrial enterprises have no sanitary protective zones of standard sizes. A considerable part of the population of industrial centers live in the zone of a direct impact of harmful industrial factors emissions of polluting substances into the air, noise, vibration, electrical magnet fields and other physical factors (Dahl et al., 2001; Kaiser and Pulsipher, 2007; Farmer and Farmer, 2000. Under the conditions of the air polluter impact there is high morbidity and mortality from cardio-vascular diseases, respiratory disease, nervous system and sensory organ disturbances, gastrointestinal disease and circulatory disease. Poor air quality has been cited as a factor in these conditions (Jensena et al., 1997; Namazbaeva et al., 2010. Then we provide details a correlation between the level of disease of malignant tumors and the emissions from stationary sources in Rudnyi Altay industrial area. To reveal the quantitative relationship between the disease of malignant tumors and the change in the quantity of emissions was carried out regression analysis and model. Regression analysis and model confirms a significant direct correlation between the incidence of malignant tumors and the amount of emissions from stationary sources (correlation coefficient R = 0,6. Analysis of vital statistics revealed the increased disease rate. Conclusion: Health status of the populations is negatively affected by the unfavorable environmental

  5. Belt conveyer

    Energy Technology Data Exchange (ETDEWEB)

    Cwieczek, A.; Dembinski, C.

    1982-04-30

    The patented belt conveyor is distinguished by the fact that the rate of motion of the belt changes smoothly depending on the load: the greater the load the higher the rate. This makes it possible to prolong the service life of the belt, i.e., during idling of the conveyor it is exposed to deformation on the drive and tension drums a fewer number of times. The essence of the invention is based on the use for driving the drum of a friction transmission. One of the elements of this transmission is the drive drum of the conveyor, and the other is the drive wheel which is pressed to the inner (or outer) surface of the drum. Change in rotation velocity of the drum is reached by changing the diameter of the drive wheel. The rim of the latter has an elastic tire to which compressed air is fed. The diameter of the drive wheel depends on the quantity of air in the tire. It is set automatically by a regulating system depending on the conveyor load. Variants are patented for the belt conveyor which is distinguished by the design of the friction transmission. It contains 1, 2 or more drive wheels. It can have a cylindrical or conical inner surface of the drive drum, etc.

  6. Orogen-parallel extension in Himalaya: Is it the indicator of collapse or the product in process of compressive uplift?

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Extensional structures developed extensively in Himalaya with their strikes perpendicular to that of the orogenic belt. The studies of such structures in Qusum, Burang, Lhozhag, Nyalam and Yadong show that they represent an orogen-parallel extension. The basins produced by the extension experienced orogen-perpendicular compression during their formation. The ages of the extension rang from 16 to 13 Ma and coincide with the intensive compressive stage in Southeastern Asia. Therefore, the extension is syn-shortening and the dominate tectonic movement in Himalaya was compression and uplift during the extension. The extension was the partition of compressive deformation rather than the indicator for the collapse and falling of the Tibetan Plateau.

  7. Effect of MSTN propeptide protein on the growth and development of Altay lamb muscle.

    Science.gov (United States)

    Du, W; Zhang, Y; Yang, J Z; Li, H B; Xia, J; Li, N; Zhang, J S; Yan, X M; Zhou, Z Y

    2016-06-24

    Prokaryotic expression technology was used to express maltose-binding protein binding myostatin (MSTN) propeptide fusion protein. Six disease-free Altay lambs were used in this study. The right leg gastrocnemii were injected with MSTN recombinant propeptide protein. The left leg gastrocnemii (the control group) were injected with the same dose of phosphate based saline. The lambs were fed during four months under the same conditions and then slaughtered. Gastrocnemius samples were hematoxylin-eosin stained and the size of the muscle fibers was measured. A real-time polymerase chain reaction (RT-PCR) showed that single gastrocnemius cells in the experimental group had an average area of 1163.01 µm(2), while it was 845.09 µm(2) in the control group (P group, expression levels of MSTN, Smad3, and p21 were lower than the control group, while Myf5, MyoD, and Myogenin were higher compared to the control group. This indicates that, when expression of the MSTN gene was inhibited, muscle cell differentiation and growth can be promoted by Smad3 up-regulated expression of Myf5, MyoD, and Myogenin.

  8. METAMORPHIC PETROLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132334 Chai Fengmei(Key Laboratory of Geodynamic Processes and Metallogenic Prognosis of the Central Asian Orogenic Belt,Xinjiang University,Urumqi 830049,China);Yang Fuquan Geochronology and Genesis of Meta-Felsic Volcanic Rocks from the Kangbutiebao Formation in Chonghuer Basin on Southern Margin of Altay,Xinjiang(Geological

  9. Paleozoic Orogens of Mexico and the Laurentia-Gondwana Connections: an Update

    Science.gov (United States)

    Ortega-Gutierrez, F.

    2009-05-01

    The present position of Mexico in North America and the fixist tectonic models that prevailed prior to the seventies of the past century, have considered the main Paleozoic tectonic systems of Mexico as natural extensions of the orogens that fringed the eastern and southern sides of the Laurentian craton. Well known examples of pre-Mesozoic orogens in Mexico are the Oaxacan, Acatlan, and Chiapas polymetamorphic terranes, which have been correlated respectively with the Grenville and Appalachian-Ouachitan orogens of eastern North America. Nonetheless, several studies conducted during the last decade in these Mexican orogenic belts, have questioned their Laurentian connections, regarding northwestern Gondwana instead as the most plausible place for their birth and further tectonic evolution. This work pretends to approach the problem by briefly integrating the massive amount of new geological information, commonly generated through powerful dating methods such as LA-ICPM-MS on detrital zircon of sedimentary and metasedimentary units in the Paleozoic crustal blocks, which are widely exposed in southern and southeastern Mexico. The Acatlan Complex bears the closest relationships to the Appalachian orogenic system because it shows thermotectonic evidence for opening and closure of the two main oceans involved in building the Appalachian mountains in eastern Laurentia, whereas two other Paleozoic terranes in NW and SE Mexico, until recently rather geologically unknown, may constitute fundamental links between the Americas for the last-stage suturing and consolidation of western Pangea. The buried basement of the Yucatan platform (400,000 squared km) on the other hand, remains as one of the most relevant problems of tectonostratigraphic correlations across the Americas, because basement clasts from the Chicxulub impact ejecta reveal absolute and Nd-model ages that suggest close Gondwanan affinities. Major changes in the comprehension of the Paleozoic orogens in Mexico

  10. The Russian-Kazakh Altai orogen: An overview and main debatable issues

    Directory of Open Access Journals (Sweden)

    Inna Safonova

    2014-07-01

    Full Text Available The paper reviews previous and recently obtained geological, stratigraphic and geochronological data on the Russian-Kazakh Altai orogen, which is located in the western Central Asian Orogenic Belt (CAOB, between the Kazakhstan and Siberian continental blocks. The Russian-Kazakh Altai is a typical Pacific-type orogen, which represents a collage of oceanic, accretionary, fore-arc, island-arc and continental margin terranes of different ages separated by strike-slip faults and thrusts. Evidence for this comes from key indicative rock associations, such as boninite- and turbidite (graywacke-bearing volcanogenic-sedimentary units, accreted pelagic chert, oceanic islands and plateaus, MORB-OIB-protolith blueschists. The three major tectonic domains of the Russian-Kazakh Altai are: (1 Altai-Mongolian terrane (AMT; (2 subduction-accretionary (Rudny Altai, Gorny Altai and collisional (Kalba-Narym terranes; (3 Kurai, Charysh-Terekta, North-East, Irtysh and Char suture-shear zones (SSZ. The evolution of this orogen proceeded in five major stages: (i late Neoproterozoic–early Paleozoic subduction-accretion in the Paleo-Asian Ocean; (ii Ordovician–Silurian passive margin; (iii Devonian–Carboniferous active margin and collision of AMT with the Siberian continent; (iv late Paleozoic closure of the PAO and coeval collisional magmatism; (v Mesozoic post-collisional deformation and anarogenic magmatism, which created the modern structural collage of the Russian-Kazakh Altai orogen. The major still unsolved problem of Altai geology is origin of the Altai-Mongolian terrane (continental versus active margin, age of Altai basement, proportion of juvenile and recycled crust and origin of the middle Paleozoic units of the Gorny Altai and Rudny Altai terranes.

  11. The Russian-Kazakh Altai orogen:An overview and main debatable issues

    Institute of Scientific and Technical Information of China (English)

    Inna Safonova

    2014-01-01

    The paper reviews previous and recently obtained geological, stratigraphic and geochronological data on the Russian-Kazakh Altai orogen, which is located in the western Central Asian Orogenic Belt (CAOB), between the Kazakhstan and Siberian continental blocks. The Russian-Kazakh Altai is a typical Pacific-type orogen, which represents a collage of oceanic, accretionary, fore-arc, island-arc and continental margin terranes of different ages separated by strike-slip faults and thrusts. Evidence for this comes from key indicative rock associations, such as boninite-and turbidite (graywacke)-bearing volcanogenic-sedimentary units, accreted pelagic chert, oceanic islands and plateaus, MORB-OIB-protolith blueschists. The three major tectonic domains of the Russian-Kazakh Altai are:(1) Altai-Mongolian terrane (AMT);(2) subduction-accretionary (Rudny Altai, Gorny Altai) and collisional (Kalba-Narym) terranes;(3) Kurai, Charysh-Terekta, North-East, Irtysh and Char suture-shear zones (SSZ). The evolution of this orogen proceeded in five major stages:(i) late Neoproterozoiceearly Paleozoic subduction-accretion in the Paleo-Asian Ocean; (ii) OrdovicianeSilurian passive margin;(iii) DevonianeCarboniferous active margin and collision of AMT with the Siberian conti-nent;(iv) late Paleozoic closure of the PAO and coeval collisional magmatism;(v) Mesozoic post-collisional deformation and anarogenic magmatism, which created the modern structural collage of the Russian-Kazakh Altai orogen. The major still unsolved problem of Altai geology is origin of the Altai-Mongolian terrane (continental versus active margin), age of Altai basement, proportion of juvenile and recycled crust and origin of the middle Paleozoic units of the Gorny Altai and Rudny Altai terranes.

  12. Late Pleistocene to Historical Activity of the Hovd Fault (Mongolian Altay) from Tectonic Geomorphology and Paleoseismology

    Science.gov (United States)

    Ferry, M. A.; Battogtokh, D.; Ritz, J. F.; Kurtz, R.; Braucher, R.; Klinger, Y.; Ulzibat, M.; Chimed, O.; Demberel, S.

    2015-12-01

    Active tectonics of western Mongolia is dominated by large strike-slip fault systems that produced great historical earthquakes: the Bulnay fault (Mw 8.1 and 8.4 in 1905), the Fu-Yun fault (Mw 8.0 in 1931) and the Bogd fault (Mw 8.1 in 1957). Central to these faults is the Altay Range that accommodates ~4 mm/yr of right-lateral motion. An earthquake of similar magnitude occurred in 1761 and has been attributed to the Hovd fault were seemingly fresh surface rupture was reported in 1985. Here, we study the Ar-Hötöl section of the Hovd fault where surface rupture was described over a length of ~200 km. Detailed mapping of stream gullies from high-resolution Pleiades satellite images show a consistent pattern of right-lateral offsets from a few meters to ~500 m. At Climbing Rock, we surveyed a gully offset by 75 ± 5 m. The associated surface was sampled for 10Be profile which yields an exposure age of 154 ± 20 ka. The resulting minimal right-lateral slip rate ranges 0.4-0.6 mm/yr. However, drainage reconstruction suggests this surface may have recorded as much as 400 ± 20 m of cumulative offset. This implies the Hovd fault may accommodate as much as 2.6 ± 0.4 mm/yr, which would make it the main active fault of the Altay. At a smaller scale, TLS topography documents offsets in the order of 2.5-5 m that likely correspond to the most recent surface-rupturing event with Mw ~8. A value of 2.8-3.0 m is reconstructed from a Uiger grave dated AD 750-840. At Marmot Creek and Small Creek, short drainages flow across the fault and form ponds against the main scarp. Two paleoseimic trenches reveal similar stratigraphy with numerous peat layers that developed over alluvial sands. The fault exhibits near vertical strands affecting pre-ponding units as well as a well-developed peat unit radiocarbon-dated AD 1465-1635. This unit likely corresponds to the ground surface at the time of the last rupture. It is overlain with a sandy pond unit on top of which a second continuous peat

  13. Noble gases fingerprint a metasedimentary fluid source in the Macraes orogenic gold deposit, New Zealand

    Science.gov (United States)

    Goodwin, Nicholas R. J.; Burgess, Ray; Craw, Dave; Teagle, Damon A. H.; Ballentine, Chris J.

    2017-02-01

    The world-class Macraes orogenic gold deposit (˜10 Moz resource) formed during the late metamorphic uplift of a metasedimentary schist belt in southern New Zealand. Mineralising fluids, metals and metalloids were derived from within the metasedimentary host. Helium and argon extracted from fluid inclusions in sulphide mineral grains (three crush extractions from one sample) have crustal signatures, with no evidence for mantle input (R/Ra = 0.03). Xenon extracted from mineralised quartz samples provides evidence for extensive interaction between fluid and maturing organic material within the metasedimentary host rocks, with 132Xe/36Ar ratios up to 200 times greater than air. Similarly, I/Cl ratios for fluids extracted from mineralised quartz are similar to those of brines from marine sediments that have interacted with organic matter and are ten times higher than typical magmatic/mantle fluids. The Macraes mineralising fluids were compositionally variable, reflecting either mixing of two different crustal fluids in the metasedimentary pile or a single fluid type that has had varying degrees of interaction with the host metasediments. Evidence for additional input of meteoric water is equivocal, but minor meteoric incursion cannot be discounted. The Macraes deposit formed in a metasedimentary belt without associated coeval magmatism, and therefore represents a purely crustal metamorphogenic end member in a spectrum of orogenic hydrothermal processes that can include magmatic and/or mantle fluid input elsewhere in the world. There is no evidence for involvement of minor intercalated metabasic rocks in the Macraes mineralising system. Hydrothermal fluids that formed other, smaller, orogenic deposits in the same metamorphic belt have less pronounced noble gas and halogen evidence for crustal fluid-rock interaction than at Macraes, but these deposits also formed from broadly similar metamorphogenic processes.

  14. HP metamorphic belt of the western Alps

    Institute of Scientific and Technical Information of China (English)

    RobertoCompagnoni

    2003-01-01

    The understanding of the subduction-related processes benefited by the studies of the high-pressure (HP) meta-morphic rocks from the western Alps. The most stimu-lating information was obtained from the inner part of the western Alpine belt, where most tectonic units show an early Alpine eclogite-facies recrystallisation. This is especially true for the Austroalpine Sesia Zone and the Penninic Dora-Maira massif. From the Sesia zone,which consists of a wide spectrum of continental crust lithologies recrystallised to quartz-eclogite-facies min-eral assemblages, the first finding of a jadeite-bearingmeta-granitoid has been described, supporting evidencethat even continental crust may subduct into the mantle.From the Dora-Maira massif the first occurrence of regional metamorphic coesite has been reported, open-ing the new fertile field of the ultrahigh-pressure meta-morphism (UHPM), which is now becoming the rule in the collisional orogenic belts.

  15. U-Pb zircon geochronology of ''brasiliano'' granitoids from the Serido orogenic belt (Borborema Province, NE Brazil). Ages U-Pb sur zircon de granitoides ''brasilianos'' de la ceinture du Serido (Province Borborema, NE Bresil)

    Energy Technology Data Exchange (ETDEWEB)

    Leterrier, J.; Bertrand, J.M. (Centre National de la Recherche Scientifique (CNRS), 54 - Nancy (France). Centre de Recherches Petrographiques et Geochimiques); Pin, C. (Clermont-Ferrand-2 Univ., 63 - Aubiere (France)); Jardim de Sa, E.

    1994-06-01

    Diorites previously attributed to an early stage of the 'brasiliano' plutonic evolution of the Serido belt yielded U-Pb zircon age of 579 [+-]7 Ma. The age of associated granites is slightly younger although a synchronous emplacement of granites and diorites is suggested by field relationships. Such an age difference may result from difficulties to distinguish 'crystallization age' from 'emplacement age', which is still to be determined precisely. (authors). 16 refs., 3 figs., 1 tab.

  16. Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution☆

    Science.gov (United States)

    Fritz, H.; Abdelsalam, M.; Ali, K.A.; Bingen, B.; Collins, A.S.; Fowler, A.R.; Ghebreab, W.; Hauzenberger, C.A.; Johnson, P.R.; Kusky, T.M.; Macey, P.; Muhongo, S.; Stern, R.J.; Viola, G.

    2013-01-01

    The East African Orogen, extending from southern Israel, Sinai and Jordan in the north to Mozambique and Madagascar in the south, is the world́s largest Neoproterozoic to Cambrian orogenic complex. It comprises a collage of individual oceanic domains and continental fragments between the Archean Sahara–Congo–Kalahari Cratons in the west and Neoproterozoic India in the east. Orogen consolidation was achieved during distinct phases of orogeny between ∼850 and 550 Ma. The northern part of the orogen, the Arabian–Nubian Shield, is predominantly juvenile Neoproterozoic crust that formed in and adjacent to the Mozambique Ocean. The ocean closed during a protracted period of island-arc and microcontinent accretion between ∼850 and 620 Ma. To the south of the Arabian Nubian Shield, the Eastern Granulite–Cabo Delgado Nappe Complex of southern Kenya, Tanzania and Mozambique was an extended crust that formed adjacent to theMozambique Ocean and experienced a ∼650–620 Ma granulite-facies metamorphism. Completion of the nappe assembly around 620 Ma is defined as the East African Orogeny and was related to closure of the Mozambique Ocean. Oceans persisted after 620 Ma between East Antarctica, India, southern parts of the Congo–Tanzania–Bangweulu Cratons and the Zimbabwe–Kalahari Craton. They closed during the ∼600–500 Ma Kuungan or Malagasy Orogeny, a tectonothermal event that affected large portions of southern Tanzania, Zambia, Malawi, Mozambique, Madagascar and Antarctica. The East African and Kuungan Orogenies were followed by phases of post-orogenic extension. Early ∼600–550 Ma extension is recorded in the Arabian–Nubian Shield and the Eastern Granulite–Cabo Delgado Nappe Complex. Later ∼550–480 Ma extension affected Mozambique and southern Madagascar. Both extension phases, although diachronous,are interpreted as the result of lithospheric delamination. Along the strike of the East African Orogen, different geodynamic settings

  17. The nature of orogenic crust in the central Andes

    Science.gov (United States)

    Beck, Susan L.; Zandt, George

    2002-10-01

    The central Andes (16°-22°S) are part of an active continental margin mountain belt and the result of shortening of the weak western edge of South America between the strong lithospheres of the subducting Nazca plate and the underthrusting Brazilian shield. We have combined receiver function and surface wave dispersion results from the BANJO-SEDA project with other geophysical studies to characterize the nature of the continental crust and mantle lithospheric structure. The major results are as follows: (1) The crust supporting the high elevations is thick and has a felsic to intermediate bulk composition. (2) The relatively strong Brazilian lithosphere is underthrusting as far west (65.5°W) as the high elevations of the western part of the Eastern Cordillera (EC) but does not underthrust the entire Altiplano. (3) The subcrustal lithosphere is delaminating piecemeal under the Altiplano-EC boundary but is not completely removed beneath the central Altiplano. The Altiplano crust is characterized by a brittle upper crust decoupled from a very weak lower crust that is dominated by ductile deformation, leading to lower crustal flow and flat topography. In contrast, in the high-relief, inland-sloping regions of the EC and sub-Andean zone, the upper crust is still strongly coupled across the basal thrust of the fold-thrust belt to the underthrusting Brazilian Shield lithosphere. Subcrustal shortening between the Altiplano and Brazilian lithosphere appears to be accommodated by delamination near the Altiplano-EC boundary. Our study suggests that orogenic reworking may be an important part of the "felsification" of continental crust.

  18. Seat belt reminders.

    NARCIS (Netherlands)

    2008-01-01

    Seat belts are an effective way of reducing the number or road deaths and severe road injuries in crashes. Seat belt reminders warn car drivers and passengers if the seat belt is not fastened. This can be done by a visual signal or an acoustic signal or by a combination of the two. Seat belt reminde

  19. Out-of-sequence thrusting in polycyclic thrust belts: An example from the Mesozoic Yanshan belt, North China Craton

    Science.gov (United States)

    Li, Chengming; Zhang, Changhou; Cope, Tim D.; Lin, Yi

    2016-09-01

    The EW trending Yanshan belt, an intraplate fold-thrust belt located in the northern North China Craton that has experienced several episodes of deformation widely separated in time, is characterized by out-of-sequence thrusts. According to detailed mapping in the central Yanshan belt, five geometric and stratigraphic criteria used to aid in determining whether a thrust has an out-of-sequence geometry or not can be recognized. They are (1) unconformable relationships, (2) inclination of fault surfaces, (3) irregular changes in apparent offset along strike, (4) short fault length relative to apparent offset, and (5) in-sequence geometry. With the help of these criteria, two generations of out-of-sequence thrusts that postdate the original in-sequence thrusting in the central Yanshan belt are recognized. The ancestral southward verging fold-and-thrust belt that formed prior to 180 Ma was deformed and cut by two younger generations of faults that are probably more deeply rooted and are constrained to between 172-165 Ma and 152-135 Ma. A series of thrusts with opposite vergence formed during the last period, resulting in abundant abnormal field relationships such as younger-on-older thrust relations, fold truncation, and cutting down-section. The nature and occurrence of faults in the Yanshan belt implies that superimposed deformation, a common feature in polycyclic orogenic belts, is a mechanism for the generation of out-of-sequence thrusting. This adds to mechanisms already described in the literature, such as maintaining constant critical taper at an orogenic scale, inhibition of the deformation front, and lateral changes in the nature of the décollement horizons.

  20. How Orogen-scale Exhumed Strike-slip Faults Initiate

    Science.gov (United States)

    Cao, S.; Neubauer, F.

    2015-12-01

    Orogen-scale strike-slip faults present one the most important geodynamic processes affecting the lithosphere-asthenosphere system. In specific subtypes, faulting is virtually initiated along hot-to-cool boundaries, e.g. at such of hot granite intrusions or metamorphic core complexes to cool country rocks. Such fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust and are stacked within each other ("telescoping"). Exhumation of rocks is, therefore, a common feature of such strike-slip faults implying major transtensive and/or transpressive processes accompanying pure strike-slip motion. The hot-to-cool thermal structure across the fault zone significantly influences the physical fault rock properties. One major question is how and where a major strike-slip initiates and further development. Here, we propose a model in which major continental exhumed strike-slip faults potentially evolve along rheologically weak zones such as plutons or margins of metamorphic complexes. As an example, we propose a model for the Ailao Shan-Red River (ASRR) fault, SE Asia, which initiated along the edge of a plutonic belt and evolved in response to India-Asia collision with four tectonic phases.

  1. Belt attachment and system

    Science.gov (United States)

    Schneider, Abraham D.; Davidson, Erick M.

    2016-02-02

    Disclosed herein is a belt assembly including a flexible belt with an improved belt attachment. The belt attachment includes two crossbars spaced along the length of the belt. The crossbars retain bearings that allow predetermined movement in six degrees of freedom. The crossbars are connected by a rigid body that attaches to the bearings. Implements that are attached to the rigid body are simply supported but restrained in pitching rotation.

  2. Crustal Structure And Magmatism, Coast Mountains Orogen, Latitude 52-53 degrees North, British Columbia, Canada

    Science.gov (United States)

    Rusmore, M. E.; Gehrels, G.; Woodsworth, G. J.

    2007-12-01

    New geologic data and U-Pb ages reveal complex history of arc accretion, crustal thickening and migration of magmatic fronts during deformation. Plutonic ages define distinct western and eastern Jurassic - mid Cretaceous arcs that share a common history after ~90 Ma. Juxtaposition of these arcs occurred during mid- Cretaceous crustal shortening in a dominantly SW-vergent crustal-scale thrust belt. Significant crustal thickening buried 151 Ma granitic clasts to pressures > 6 kb, and mid-Cretaceous plutons were emplaced at this depth along the axis of the orogen. Thrusting continued after establishment of the 90 Ma arc; a regional SW-verging thrust emplaced high-grade metamorphic rocks of the Yukon-Tanana terrane and deep-seated plutons over low- grade rocks of the Alexander and Wrangellia terranes. The shear zone is coincident with the western boundary of 82-89 Ma plutons and a regionally extensive, late-kinematic, sill-like pluton. Dextral shear zones preserved on the flanks of the orogen suggest a component of Late Cretaceous transpression. By 75 Ma, metamorphism, deformation, and magmatism had migrated central portions of the orogen and there is no evidence of ductile deformation and syn-kinematic metarmorphism younger than ~70 - 65 along the western flank of the orogen. The Coast shear zone localized 62-58 Ma synkinematic plutons during NE-side up displacement, creating a sharp western magmatic front. Sparse cooling ages suggest plutons and metamorphic rocks adjacent to the CSZ cooled through 500-600 deg between 54-58 Ma during exhumation along the shear zone. Voluminous granitic plutons were emplaced from ~55-50 Ma, but significant crustal extension that affected the eastern side of the orogen farther north is not evident along this transect. This history supports previous models of crustal subcretion and the generation of arc magmas in thickened crust. Definition of two pre-90 Ma arcs negates models calling for simple Andean-style orogen prior to mid

  3. EVIDENCE OF NEOTECTONIC IMPACT ON A LARGE SEDIMENTARY BASIN BETWEEN TIBETAN PLATEAU AND GOBI ALTAY,NW CHINA

    Institute of Scientific and Technical Information of China (English)

    K.ttartmann; B.Wünnemann; Hucai Zhang

    2009-01-01

    The Ejina(Gaxun Nur)Basin-enclosed by the Tibetan Plateau in the south and the Gobi Altay in the north has continuously evolved as a strong continental endorheic depositional environment.Medium scale geomorphological mapping by Landsat-and Corona-Images as well as SRTM-topographic data,combined with field-surveys and geophysical investigation provides evidence for tectonic impact on sedimentary processes during the Late Quaternary.Analyses of SRTM-Data and Landsat-Images reveal a system of up to 20m high inverted channels developed on the inactive eastern part of the large Hei river drainage delta south of the ancient lake Juyanze.The complex evolution of these landforms requires a relative lowering of the lake basin at least two times since the last 40ka.A 26m high cliff section of gravel-covered lake sediments within the Juyanze paleolake indicates a strong subsidence of the lake bottom of 10m/1000yrs since 18kaB.P.North of Ejina river oasis a distinct north-south striking scarp up to 13m high constitutes the eastern margin of the Gaxun Nur.Palaeodrainage channels derived from the Gobi Altay.They display a sinistral offset of some decametres along a set of WE-trending faults.The rhombic shape of the modern dry Gaxun Nur,fossil cliffs,well preserved beach ridges along the margins of the palaeolake system as well as gravel covered topsets of lacustrine sediments indicate local displacements of morphological features.The displacements of lake sediments at the southern margin of the modern Gaxun Nut Basin imply a subsidence of at least 0.81m/1000 yrs since 25kaB.P.as a result of a pull-apart development due to the left stepping faults in a sinistral system.

  4. Orogenesis and dynamics of the Qinling Orogen

    Institute of Scientific and Technical Information of China (English)

    张国伟; 孟庆任; 于在平; 孙勇; 周鼎武; 郭安林

    1996-01-01

    The Qinling is a composite orogen which experienced three different developmental stages under distinct tectonic regimes. The main stage (Neo-Proterozoic- Middle Triassic) of the erogenic evolution is a prolonged and complicated process, and characterized by subduction and collision along two suture zones between three plates. The details of the orogenic processes, such as transition from rift system to plate-tectonic regime, from drifting to subduction and collision, and especially from point-contact initial collision through linear-contact collision to fully collisional orogeny, demonstrate that the Qinling was built up by dispersion, integration and accretion of a number of crustal blocks in Tethyan domain, and evolved under the influence of variation in coupling relationship between both ancient and modern mantle dynamics and lithosphere.

  5. Multistase evolution of continental collision orogen:A case study for western Dabie orogen

    Institute of Scientific and Technical Information of China (English)

    WU YuanBao

    2009-01-01

    The foramtion and evolution of collisional orogen is a prominent feature along convergent plate margins,and is generally a complex process.This article presents an integrated study of zircon genesis,U-Pb age and Lu-Hf isotope composition as well as geological characteristics for the western Dabie orogen to constrain its multi-stage evolution history.The results suggest that the formation of oceanic crust in the Huwan area was constrained at ca.400-430 Ma,which was slightly later than the collision of the northern Qinling with the North China Block.It formed in a marginal basin in the northern margin of the Yangtze Block.The peak metamorphism of eclogite in the Huwan area occurred at ca.310 Ma,and the timing of the initial exhumation of oceanic eclogite was about 270 Ma.The high to ultrahigh pressure (HP-UHP) metamorphic rocks in the Xinxian and the Hong'an metamorphic zones have the same ages and natures as those of the HP-UHP metamorphic rocks in the other Dabie-Sulu terrains,and also have experienced multi-stage exhumation,and thus can be taken as a coherent part of the Dabie-Sulu orogen.Therefore,the Qinling-Dabie-Sulu orogen is a typical multi-stage continental collision orogen,with an amalgamation process extending more than 200 Ma.

  6. Geochemistry, Geochronology and Genesis of Gold Mineralization in Nurt of Northern Altay, Xinjiang:A Case Study on the Aketishikan Gold Deposit

    Institute of Scientific and Technical Information of China (English)

    YUAN Feng; ZHOU Taofa; TAN Lugui; LUO Xianrong; YUE Shucang

    2004-01-01

    Gold deposits such as the Aketishikan, Togetobie, Tasbig-Kokeydlas, Kums and Hongshanzui gold deposits in the Nurt area in Altay of Xinjiang were found in Member 3 rhyolite tufflava, fragmental lava and ignimbrite of the Carboniferous Hongshanzui Group. Trace and rare earth elements, sulfur, lead, oxygen and hydrogen isotopes, and geochronological studies indicate that the ore-forming material was mostly supplied by the Carboniferous volcanic rocks through water-rock interaction under a low-to-moderate temperature, and the hydrothermal ore-forming fluid came from meteoric water with some magmatic water input evolved from the granitic magmas. Gold deposits in the Nurt area as well as in the northern Altay might form in multiple stages, and the Yanshanian mineralization period should be paid more attention besides the Variscan mineralization period.

  7. LA-ICP-MS Zircon U-Pb Ages and Implications for Tectonic Setting of the Mangling Granitoid Plutons in Qinling Orogen Belt%秦岭造山带蟒岭花岗岩锆石LA-ICP-MS U-Pb年龄及其地质意义

    Institute of Scientific and Technical Information of China (English)

    秦海鹏; 吴才来; 武秀萍; 雷敏; 侯振辉

    2012-01-01

    蟒岭花岗岩位于东秦岭地区商南-丹凤断裂带北侧的北秦岭构造带上,呈北西西走向,与区域构造线方向基本一致.本文报道了该岩体的锆石LA-ICP-MS U-Pb定年数据和地球化学数据,并结合前人的资料初步总结了该岩体的年代学特征.结果显示,蟒岭花岗岩的岩浆演化可以分为两个阶段:晚侏罗世-早白垩世的二长花岗岩(158.4±1.8Ma~160.5±1.3Ma)和早白垩世中期的钾长花岗岩(124.1±2.0Ma).此外,样品09CL264获得锆石继承核部年龄为1883±36Ma、1860±35Ma,可能代表了源岩年龄.地球化学特征上,早期的二长花岗岩具有高硅、碱,K2O/Na2O>1,以及高Sr、低Yb、Y的特征,而晚期的钾长花岗岩具有高硅、碱,K2O/Na2O<1,低Sr、低Y、Yb的特征.其中,晚侏罗世-早白垩世的二长花岗岩(09CL260)的εHf(t)值变化于-9.4~-3.1,暗示其可能具有多源特征,源岩主要为下地壳元古宙物质.%The Mangling granite is located on the north side of the Shannan-Danfeng foult, eastern sector of the north Qinling Orogen. The granite is in North-West-West strech and in agreement with structural lineament. The paper reports the results of Zircon LA-ICP-MS U-Pb age and geochemical data. The results show that the Mangling granite includs two granite emplacements. Early Monzogranite whose ages ranging from 158.4 ± 1. 8Ma to 160.5 ± 1.3 Ma belongs to Late Jurassic Early Cretaceous period and the late alkali granite has an age of 124. 1 ± 2.0 Ma belonging to Middle Cretaceous. In addition, sample 09CL264 give inherited core age of 1883 ±36Ma and 1860 ±35 Ma belonging to proterozoic and may represent its protolith age. In geochemistry, monzogranite with the characteristics of high SiO2, K2O + Na2O , K2O/Na2O > 1 and high Sr low Yb, Y. The alkali granite has the characteristic ofhighSiO2, K2O + Na2O, K2O/Na2O

  8. [Spatio-temporal variation of drought condition during 1961 to 2012 based on composite index of meteorological drought in Altay region, China].

    Science.gov (United States)

    Wu, Yan-feng; Bake, Batur; Li, Wei; Wei, Xiao-qin; Wozatihan, Jiayinaguli; Rasulov, Hamid

    2015-02-01

    Based on the daily meteorological data of seven stations in Altay region, China, this study investigated the temporal ( seasonal, inter-annual and decadal) and spatial variations of drought by using composite index of meteorological drought, as well as trend analysis, M-K abrupt analysis, wavelet analysis and interpolation tools in ArcGIS. The results indicated that the composite index of meteorological drought could reflect the drought condition in Altay region well. Although the frequency and the covered area of both inter-annual and seasonal droughts presented decreasing trends in the recent 52 a, the drought was still serious when considering the annual drought. The frequencies of inter-annual and spring droughts had no abrupt changes, whereas the frequencies of inter-summer, autumn and winter droughts had abrupt changes during the past 52 a. A significant periodic trend was also observed for the frequencies of inter-annual and seasonal droughts. The distribution of frequency and covered area suggested that the conditions of drought were heavily serious in Qinghe County, moderately serious in Altay City, Fuyun County, Buerjin County and Fuhai County, and slightly serious in Habahe County and Jimunai County.

  9. Early Yanshanian post-orogenic granitoids in the Nanling region——Petrological constraints and geodynamic settings

    Institute of Scientific and Technical Information of China (English)

    陈培荣; 陆建军; 范春方; 华仁民; 章邦桐

    2002-01-01

    Early Yanshanian magmatic suites predominate absolutely in the Nanling granite belt. They consist mainly of monzogranite and K-feldspar granite. There occur associations of early Yanshanian A-type granitoids (176 Ma-178 Ma) and bimodal volcanic rocks (158 Ma-179 Ma) in southern Jiangxi and southwestern Fujian in the eastern sector of the granite belt and early Yanshanian basalts (177 Ma-178 Ma) in southern Hunan in the central sector of the belt. Both the acid end-member rhyolite in the bimodal volcanic rock association and A-type granitoids in southern Jiangxi have the geochemical characteristics of intraplate granitic rocks and the basic end-member basalt of the association is intraplate tholeiite, while the basaltic rocks in southern Hunan include not only intraplate tholeiite but also intraplate alkali basalt. Therefore the early Yanshanian magmatic suites in the Nanling region are undoubtedly typical post-orogenic rock associations. Post-orogenic suites mark the end of a post-collision or late oroge

  10. The Indo-Chinese Epoch Arc Magmatism of Geza Island-Arc and Porphyry Copper Mineralization in Pulang Sanjiang Orogenic Belt, Southwest China%云南省格咱岛弧印支期岩浆演化及普朗斑岩型铜矿成矿作用

    Institute of Scientific and Technical Information of China (English)

    刘学龙; 李文昌; 尹光侯; 张娜

    2012-01-01

    Geza island arc located in the southern of Yidun arc of southwest Sanjiang tectonic igneous rock belts in China, it was the result that Ganzi-Litang oceanic crust dived to the Zhongdian Landmasses in late Triassic. The belt is an important discovered copper-polymetallic metallogenic belt in the recent years in China. The regional strong tectonic-magmatic activity runs through the orogenesis of island arc, the rich mineralization developed in the different times and different circumstances of island arc orogenesis, where outputed the large sized Pulang and Xuejiping porphyry-related copper polymetallic deposit. The Pulang porphyry copper deposits is a typical representative of Indosinian porphyry copper deposits, the ore-bearing porphyry SiO2 content in 60. 07% ~65. 78%, it belongs to the neutral-acid rocks. A12O3content is 14. 80% ~ 15.97%, (K2O+Na2O) is 5. 79% ~10. 99% , K2O/Na2O is 0.7 ~ 1.14, Rittmann index (σ) is 1.02 ~ 1. 9, Consolidation index (SI) is in the range of 7. 65 — 24. 77, Differentiation index (DI) is in the range of 61. 17 ~ 70. 58, so the rocks belong to calc-alkaline rocks series and have the better magma differentiation. A/CNK values in 0. 74~0. 981, average of 0. 87, rocks belong to prospective aluminous granits. Zircon U-Pb dating results show that the quartz diorite formation age was 220. 8 ± 4. IMa, the quartz monzonite porphyry formation age was 214. 8±3. 5Ma, porphyries rocks metallogenic epoch is mainly concentrated in the Indosinian.%格咱岛弧位于西南三江构造火成岩带义敦岛弧南端,是晚三叠世甘孜-理塘洋壳向德格-中甸陆块俯冲的产物,是我国近年来新发现的重要铜多金属成矿带.该区强烈的构造-岩浆活动贯穿于岛弧造山作用的始终,丰富的成矿作用发育于岛弧造山的不同时代、不同环境,产出了普朗、雪鸡坪等大型铜多金属矿床.其中普朗斑岩型铜矿是印支期斑岩铜矿的典型代表,其含矿斑岩体SiO2

  11. Dating and Fluid Geochemistry of the Sarkobu Gold Deposit in Altay, Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    DING Rufu; WANG Jingbin; ZHAO Lunshan; MA Zhongmei; ZHANG Jinhong

    2004-01-01

    The dating of fluid inclusions of quartz yields an Ar-Ar isochrone age of 320.4±6 Ma. Three types of fluid inclusions have been identified with the homogenization temperature ranging from 157℃ to 362℃. The homogenization temperature consists of two groups. The first group varies from 157℃ to 166℃, and the second from 232℃ to 362℃.Their chemical composition is dominated by Na+-Ca2+-Mg2+ and Cl-. The relative concentration of ions is characteristic by Na+>Ca2+>K+>Mg2+ and C1->SO42-> F-. The δD and δ180 values indicate that the ore-forming fluid originates from mixing of multi-source water. The Sarkobu gold deposit has experienced two mineralization stages: gold was enriched during the volcanic-exhalative-sedimentary process in the early stage, while the gold deposit was finally formed under compression-shearing during the orogenic period.

  12. Paleozoic accretionary orogenesis in the eastern Beishan orogen: constraints from zircon U-Pb and 40Ar/39Ar geochronology

    Science.gov (United States)

    Ao, Songjian; Xiao, Wenjiao; Windley, Brian; Mao, Qigui

    2016-04-01

    The continental growth mechanism of the Altaids in Central Asia is still in controversy between models of continuous subduction-accretion versus punctuated accretion by closure of multiple oceanic basins. The Beishan orogenic belt, located in the southern Altaids, is a natural laboratory to address this controversy. Key questions that are heavily debated are: the closure time and subduction polarity of former oceans, the emplacement time of ophiolites, and the styles of accretion and collision. This paper reports new structural data, zircon ages and Ar-Ar dates from the eastern Beishan Orogen that provide information on the accretion process and tectonic affiliation of various terranes. Our geochronological and structural results show that the younging direction of accretion was northwards and the subduction zone dipped southwards under the northern margin of the Shuangyingshan micro-continent. This long-lived and continuous accretion process formed the Hanshan accretionary prism. Our field investigations show that the emplacement of the Xiaohuangshan ophiolite was controlled by oceanic crust subduction beneath the forearc accretionary prism of the Shuangyingshan-Mazongshan composite arc to the south. Moreover, we address the age and terrane affiliation of lithologies in the eastern Beishan orogen through detrital zircon geochronology of meta-sedimentary rocks. We provide new information on the ages, subduction polarities, and affiliation of constituent structural units, as well as a new model of tectonic evolution of the eastern Beishan orogen. The accretionary processes and crustal growth of Central Asia were the result of multiple sequences of accretion and collision of manifold terranes. Reference: Ao, S.J., Xiao, W., Windley, B.F., Mao, Q., Han, C., Zhang, J.e., Yang, L., Geng, J., Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U-Pb and 40Ar/39Ar geochronology. Gondwana Research, doi: http://dx.doi.org/10.1016/j

  13. Carboniferous rifted arcs leading to an archipelago of multiple arcs in the Beishan-Tianshan orogenic collages (NW China)

    Science.gov (United States)

    Tian, Zhonghua; Xiao, Wenjiao; Windley, Brian F.; Zhang, Ji'en; Zhang, Zhiyong; Song, Dongfang

    2016-12-01

    The Beishan and East Tianshan Orogenic Collages in the southernmost Central Asian Orogenic Belt (CAOB) record the final stages of evolution of the Paleo-Asian Ocean. These collages and their constituent arcs have an important significance for resolving current controversies regarding their tectonic setting and age, consequent accretionary history of the southern CAOB, and the closure time of the Paleo-Asian Ocean. In this paper, we present our work on the southern Mazongshan arc and the northern Hongyanjing Basin in the Beishan Orogenic Collage (BOC), and our comparison with the Bogda arc and associated basins in the East Tianshan Orogenic Collage. Field relationships indicate that the Pochengshan fault defines the boundary between the arc and basin in the BOC. Volcanic rocks including basalts and rhyolites in the Mazongshan arc have bimodal calc-alkaline characteristics, an enrichment in large ion lithophile elements such as Rb, Ba, and Pb and depletion in high field-strength elements (e.g., Nb and Ta), which were probably developed in a subduction-related tectonic setting. We suggest that these bimodal calc-alkaline volcanic rocks formed in rifted arcs instead of post-orogenic rifts with mantle plume inputs. By making detailed geochemical comparisons between the Mazongshan arc and the Bogda arc to the west, we further propose that they are similar and both formed in arc rifts, and helped generate a Carboniferous archipelago of multiple arcs in the southern Paleo-Asian Ocean. These data and ideas enable us to postulate a new model for the tectonic evolution of the southern CAOB.

  14. Differential decay of the East-African Antarctic Orogen : an integrated examination of Northeastern Mozambique

    Science.gov (United States)

    Ueda, K.; Jacobs, J.; Emmel, B.; Thomas, R. J.; Matola, R.

    2009-04-01

    In Northeastern Mozambique, the late Proterozoic - early Paleozoic East African-Antarctic Orogen can be subdivided into two major blocks that exhibit some relevant differences. The line of divide is represented by the Lurio Belt, a kinematically poorly constrained shear zone that also marks the conceptual northern limit of frequent late-tectonic granitoid intrusions. Moreover, far-travelled granulite-facies nappes cover a much larger area north of this belt (Viola et. al, 2008), giving rise to the assumption of different exhumation and present exposure levels. U/Pb data from previous surveys (e.g., Norconsult consortium, 2007) show coeval high-grade metamorphism in the whole region between c. 610 - 550 Ma, while the block south of the Lurio Belt also shows continuing metamorphism until c. 490 Ma that can be related to extension. Geothermobarometry for samples from within the Lurio Belt (Engvik et. al, 2007) indicates rapid exhumation after high-pressure granulite facies metamorphism and is consistant with the assumption of long tectonic activity. A possible model for the outlined pattern is the delamination of the orogenic root only in the southern part, followed by rapid mechanical thinning as well as by isostatic accommodation along the Lurio Belt. A valuable marker was identified in the metasedimentary Mecuburi group that overlies the southern basement. U/Pb analysis of detrital zircons have yielded a maximum deposition age of c. 600 Ma, while metamorphism is recorded until c. 505 Ma. Investigations of the relationship between metasediments and older basement show that the basal contact is a fairly preserved depositional contact, allowing to suppose a conjoint post-depositional evolution. It is notable that the timing of deposition shortly follows the onset of the main, widespread high-grade metamorphism. Relatively high but variable degrees of migmatisation in the Mecuburi Group require a phase of burial from surface to deep levels after 600 Ma, followed by

  15. Responses to climate warming of hydrological processes in the upper Kelan River in the Altay Mountains, Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Kelan River is a branch of the Ertix River, originating in the Altay Mountains in Xinjiang, northwestern China. The upper streams of the Kelan River are located on the southern slope of the Altay Mountains; they arise from small glacial lakes at an elevation of more than 2,500 m. The total water-collection area of the studied basin, from 988 to 3,480 m, is about 1,655 km2. Almost 95 percent of the basin area is covered with snow in winter. The westerly air masses deplete nearly all the moisture that comes in the form of snow during the winter months in the upper and middle reaches of the basin. That annual flow from the basin is about 382 mm, about 45 percent of which is contributed by snowmelt. The mean annual precipitation in the basin is about 620 mm, which is primarily concentrated in the upper and middle basin. The Kelan River system could be vulnerable to climate change because of substantial contribution from snowmelt runoff. The hydrological system could be altered significantly because of a warming of the climate. The impact of climate change on the hydrological cycle and events would pose an additional threat to the Altay region. The Kelan River, a typical snow-dominated watershed, has more area at higher elevations and accumulates snow during the winter. The peak flow occurs as a result of snow-melting during the late spring or early summer. Stream flow varies strongly throughout the year because of seasonal cycles of precipitation, snowpack, temperature, and groundwater. Changes in the temperature and precipitation affect the timing and volume of stream-flow. The stream-flow consists of contributions from meltwater of snow and ice and from runoff of rainfall. Therefore, it has low flow in winter, high flow during the spring and early summer as the snowpack melts, and less flows during the late summer. Because of the warming of the current climate change, hydrology processes of the Kelan River have undergone marked changes, as evidenced by the shift of

  16. Limited climate control of the Chugach/St. Elias thrust wedge in southern Alaska demonstrated by orogenic widening during Pliocene to Quaternary climate change

    Science.gov (United States)

    Meigs, Andrew

    2014-05-01

    Critical taper wedge theory is the gold standard by which climate control of convergent orogenic belts is inferred. The theory predicts (and models reproduce) that an orogenic belt narrows if erosion increases in erosion in the face of a constant tectonic influx. Numerous papers now argue on the basis of thermochronologic data that the Chugach/ St. Elias Range (CSE) of southern Alaska narrowed as a direct response to Quaternary climate change because glaciers dominated erosion of the orogenic belt. The CSE formed in response to collision of a microplate with North America and is notable because glacial erosion has dominated the CSE for the past 5 to 6 Ma. An increase in sediment accumulation rates in the foreland basin over that time suggests that glacial erosion become more efficient. If correct, it is possible that glacial erosion outpaced rock influx thereby inducing a climatically controlled narrowing of the orogenic wedge during the Quaternary. Growth strata preserved within the wedge provide a test of that interpretation because they demonstrate the spatial and temporal pattern of deformation during the Pliocene to Quaternary climate transition. A thrust front established between 6 and 5 Ma jumped towards the foreland by 30 and 15 km at 1.8 and 0.25 Ma, respectively. Distributed deformation within the thrust belt accompanied the thrust front relocations. Continuous exhumation recorded by low-temperature thermochronometers occurred contemporaneously with the shortening, parallel the structural not the topographic grain, and ages become younger towards the foreland as well. Interpreted in terms of critical wedge theory, continuous distributed deformation reflects a sub-critical wedge taper resulting from the combined effects of persistent exhumation and incremental accretion and orogenic widening via thrust front jumps into the undeformed foreland. Taper angle varies according to published cross-sections and ranges from 3 to 9 degrees. If the wedge oscillated

  17. Precise timing of the Early Paleozoic metamorphism and thrust deformation in the Eastern Kunlun Orogen

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In Dulan County, Qinghai Province NW China, the arc volcanic sequences in the northern side of the Central Fault of the East Kunlun were metamorphosed progressively from upper greenschist facies in the south to epidote-amphibolite facies in the north. High-angle thrust deforma-tion was developed synchronously with the peak metamor-phim and superimposed with later low-angle striking-slip deformation. Zircon U-Pb dating yields a concordant age of (448 ± 4) Ma for the metavolcanics. Syn-kinematic horn-blende and muscovite separated from the high-angle thrust-ing belt give 40Ar-39Ar plateau age of (427 ± 4) Ma and 408 Ma, respectively. These results precisely constrain the timing of the closure of early Paleozoic volcanic basin (Proto-Tethys) over the eastern portion of the East Kunlun Orogen, and the thrust tectonic slice had a cool rate of ca. 9℃/Ma.

  18. Possible polyphase metamorphic evolution of high grade metabasic rocks from the Songshugou ophiolite, Qinling orogen, China

    Science.gov (United States)

    Belic, Maximilian; Hauzenberger, Christoph; Dong, Yunpeng; Chen, Danling

    2014-05-01

    The Proterozoic Songshugou ophiolite consists of a series of ultrabasic and tholeitic metabasic rocks. They were emplaced as a lense shaped body into the southern margin of the Qinling Group. Isotope composition and trace element geochemistry display an E-MORB and T-MORB signature for the mafic rocks (Dong et al., 2008). Within the ophiolite sequence some rudimental fresh peridotites (dunites and harzburgites) within serpentines display low CaO (Uninet is gratefully acknowledged. Dong, Y.P., Zhou, M.F., Zhang, G.W., Zhou, D.W., Liu, L., Zhang, Q., 2008. The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China: implications for the tectonic evolution of the Qinling orogenic belt. Journal of Asian Earth Science 32 (5-6), 325-335. Zhang, Z.J., 1999. Metamorphic evolution of garnet-clinopyroxene-amphibole rocks from the Proterozoic Songshugou mafic-ultramafic complex, Qinling Mountains, central China. The Island Arc, 8, 259-280.

  19. Petrology of metabasic and peridotitic rocks of the Songshugou ophiolite, Qinling orogen, China

    Science.gov (United States)

    Belic, Maximilian; Hauzenberger, Christoph; Dong, Yunpeng

    2013-04-01

    The Proterozoic Songshugou ophiolite outcrops as a rootless nappe which was emplaced into the southern margin of the Qinling Group. It consists mainly of amphibolite facies metamafic and -ultramafic rocks. Trace element geochemistry and isotope composition show that the mafic rocks are mainly E-MORB and T-MORB metabasalts (Dong et al., 2008b). Within the ophiolite sequence, ultramafic rocks consist mainly of peridotites and serpentinites. Particularly, extremely fresh dunites and harzburgites, are found which do not display a conspicuous metamorphic overprint. The low CaO (Uninet is gratefully acknowledged. Dong, Y.P., Zhou, M.F., Zhang, G.W., Zhou, D.W., Liu, L., Zhang, Q., 2008. The Grenvillian Songshugou ophiolite in the Qinling Mountains, Central China: implications for the tectonic evolution of the Qinling orogenic belt. Journal of Asian Earth Science 32 (5-6), 325-335.

  20. 东秦岭秋树湾铜钼矿流体包裹体和稳定同位素特征及其地质意义%Fluid inclusions and stable isotopes of Qiushuwan copper-molybdenum deposit in East Qinling orogenic belt and their geological implications

    Institute of Scientific and Technical Information of China (English)

    秦臻; 戴雪灵; 邓湘伟

    2012-01-01

    The Qiushuwan copper-molybdenum deposit in the East Qinling molybdenum belt is atypical skarn-por-phyry breccia pipe controlled by the porphyry. Ore bodies occur in the biotite granite porphyry, skarn and breccia pipes. According to mineral paragenesis, ore fabrics, wall-rock alteration and intersecting relationship of the veins, the formation of the ore deposit can be divided into three periods, i.e., high-temperature alteration-skarn period ( Ⅰ ), sulfide precipitation period ( Ⅱ ) and low-temperature mineral-free period ( Ⅲ ), composed of six ore-forming stages: dry skarn -K-feldspar-quartz stage ( Ⅰ1), explosion breccia stage ( Ⅰ 2). wet skarn stage ( Ⅰ3), magnetite stage ( Ⅰ4), porphyry copper (molybdenum) ore stage ( Ⅱ b) and quartz sulfide mineralization ( Ⅱ s), and calcite, barite, quartz stage (Ⅲ ). Mineral-forming fluids in quartz, garnet and calcite can be divided into five types, i.e., S-type multi-phase inclusions containing daughter minerals, L-type pure liquid inclusions, C-type three-phase CQ2-bearing inclusions, W-type gas-liquid two-phase inclusions, and G type pure gas inclusions. Ore-forming fluid temperature, salinity and redox environment are characterized by regular evolution: homogenization temperature values of I period, Ⅱ period and Ⅲ period are 222 ~ 406℃, 152~315℃, and 119~189X3 respectively, whereas salinities ω(NaCleq) of I period, Ⅱ period and Ⅲ period are 4.2% ~ 36.5%, 3.3%~34.8% and 4.2% ~ 11.9%, respectively; Raman spectroscopy and analysis of group inclusions show that the fluid compositions are mainly H2O, CO2, CH4, H2S in Ⅰ period, implying a reduction environment, H2O, CO2, N2, O2, (SO4,2-) Cl-, F- in Ⅱ period, suggesting an oxidation environment and the derivation of fluid from the magma. Inclusions petrography and thermometry shows that the fluid was originally high temperature, high salinity, CO2-bearing H2O-NaCl-CO2 system magmatic fluid, and experienced boiling and phase

  1. The evolving anatomy of a collapsing orogen

    NARCIS (Netherlands)

    Hinsbergen, D.J.J. van

    2004-01-01

    The Tethys Oceans separated Africa and Arabia from Eurasia, and India from Asia. Closure of the Tethys started in the Jurassic and led to the Alpine-Himalayan mountain chain. This thesis will focus on the Aegean segment of this mountain belt. The Aegean region is occupied by a stack of nappes that

  2. Crust-mantle transitional zone of Tianshan orogenic beltand Junggar Basin and its geodynamic implication

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Junmeng

    2001-01-01

    [1]Zeng Rongsheng, Kan Rongju, He Chuanda, Refraction from the basement and wide angle reflection in Chaidamu basin,Chinese Journal of Geophysics, 1961, 10: 54-66.[2]Davydova, N. I., Possibilities of the DSS Technique in Studying Properties of the Deep Seated Interface in Seismic Properties of Mohorovicic Discontinuity, Springfield, Va: National Technical Information Service, US Dept. of Commerce,1975.4-22.[3]Wang Chunyong. Wu Qingju, Tang Jingjian et al., Discussion on tectonic feature of the crust mantle transitional zone in Jizhong depression, in Seismology in Progress(in Chinese) (ed. Lu Zaoxun), Beijing: Seismological Press, 1995, 172-179.[4]Zhao Junmeng. Meng Buzai, Li Aimin et al., Tectonic characteristics of the Moho discontinuity in southem Liaoning Province, in Seismology in Progress(in Chinese) (ed. Lu Zaoxun), Beijing: Seismological Press, 1995, 223-229.[5]Ma Zongjin, Zhao Junmeng, Contrast research on Tianshan orogenic belt and Yinshan-Yanshan orogenic belt, Earth Science Frontiers(in Chinese), 1999, (3): 95-102.[6]Zhao Junmeng, Tang Ji, Zhang Haijiang et al., Wavelet transform and its application in data processing and interpretation of seismic reflection/refraction profile, Chinese Joumal of Geophysics, 2000, 43(5): 666-676.[7]Zhao Junmeng, Zhang Xiankang, Zhao Guoze et al., Structure of crust mantle transitional zone in different tectonic environments, Earth Science Frontiers(in Chinese), 1999, (3): 165-172.[8]Liu Guodong, Continental crust and dynamics, in A Collection of Papers for Discussing Modem Day Dynamic Problems (in Chinese). Beijing: Seismological Press, 1994, 131-153.[9]Zhao Junmeng, Lu Zaoxun, Deep structure of the Liaohe riff and the lateral migration of the rifting, Seismology and Geology(in Chinese), 20(3): 225-233.

  3. Exploring for hydrocarbons under thrust belts - A challenging new frontier in the Carpathians and elsewhere

    Energy Technology Data Exchange (ETDEWEB)

    Picha, F.J. [Chevron Overseas Petroleum, Inc., San Ramon, CA (United States)

    1996-10-01

    New significant reserves of hydrocarbons may occur in subthrust autochthonous and parautochthonous series buried below the frontal zones of thin-skinned thrust belts. The subthrust plays have been tested in several orogenic belts of the world, the Carpathians being one of the best examples. The arcuate thin-skinned Carpathian orogenic belt, which evolved during the Mesozoic and Cenozoic, is thrust tens of kilometers over its Neogene foredeeps and the underlying. European plate. Various structural and stratigraphic settings and potential hydrocarbon plays have been recognized within the buried margins of the European plate, including a late Paleozoic Hercynian compressional system, Mesozoic rifted margins of the Tethys, and a Cenozoic synorogenic foreland-type fault system. Possibly, deeper parautochthonous structures, documented on examples from the southern Apennines, may also be present below the thin-skinned frontal zone of the Carpathian thrust belt. In addition to these structural settings, large Paleogene valleys/submarine canyons have been found within the margins of the European plate. These structural and morphologic features, if combined with source rocks, reservoirs, and proper burial history, represent potential hydrocarbon plays. Generation of hydrocarbons from sources within the subthrust plate was greatly enhanced by emplacement of the wedge-shaped thrust belt, which may also provide a regional seal; therefore, the combination of the long and complex geological history of the European plate with the impact of the Alpine thrusting and foreland deformation created unique conditions for generation, entrapment, and preservation of hydrocarbons in subthrust settings.

  4. Orogenic delamination - dynamics, effects, and geological expression

    Science.gov (United States)

    Ueda, Kosuke; Gerya, Taras

    2010-05-01

    Unbundling of continental lithosphere and removal of its mantle portion have been described by two mutually rather exclusive models, convective thinning and integral delamination. Either disburdens the remaining lithosphere, weakens the remainder, and causes uplift and extension. Increased heat flux is likely to promote high-degree crustal melting, and has been viewed as a source for voluminous granitic intrusions in late or collapsing orogenic settings. Collapse may be driven by any of gravitational potential differences from orogen to foreland, by stress inversion in the unburdened domain, or by suction of a retreating trench. In this study, we investigate prerequisites, mechanism, and development paths for orogeny-related mantle lithosphere removal. Our experiments numerically reproduce delamination which self-consistently results from the dynamics of a decoupling collision zone. In particular, it succeeds without a seed facilitating initial separation of layers. External shortening of a continent - ocean - continent assembly, such as to initiate oceanic subduction, is lifted before the whole oceanic part is consumed, leaving slab pull to govern further convergence. Once buoyant continental crust enters, the collision zone locks, and convergence diminishes. Under favourable conditions, delamination then initiates close to the edge of the mantle wedge and at deep crustal levels. While it initially separates upper crust from lower crust according to the weakness minimum in the lithospheric strength profile, the lower crust is eventually also delaminated from the subducting lithospheric mantle, owing to buoyancy differences. The level of delamination within the lithosphere seems thus first rheology-controlled, then density-controlled. Subduction-coupled delamination is contingent on retreat and decoupling of the subducting slab, which in turn is dependent on effective rheological weakening of the plate contact. Weakening is a function of shear-heating and hereby of

  5. Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran

    Science.gov (United States)

    Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza

    2016-04-01

    Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or

  6. Seat belt restraint system

    Science.gov (United States)

    Garavaglia, A.; Matsuhiro, D.

    1972-01-01

    Shoulder-harness and lap-belt restraint system was designed to be worn by individuals of widely different sizes and to permit normal body motion except under sudden deceleration. System is divided into two basic assemblies, lap belt and torso or shoulder harness. Inertia-activated reels immediately lock when seat experiences sudden deceleration.

  7. Structural development of an Archean Orogen, Western Point Lake, Northwest Territories

    Science.gov (United States)

    Kusky, Timothy M.

    1991-08-01

    crush zones in the region of emergent thrusts in Keskarrah Bay. Depth differences can account for only half of the metamorphic gradient; thermal profiles which increased downwards in obducted greenstone belts and synthrusting plutonism explains other high metamorphic gradients. A tectonic model involving the collision of an accretionary prism with a continental margin best explains the structural and sedimentological evolution of the orogen.

  8. Paleo-Mesoproterozoic arc-accretion along the southwestern margin of the Amazonian craton: The Juruena accretionary orogen and possible implications for Columbia supercontinent

    Science.gov (United States)

    Scandolara, J. E.; Correa, R. T.; Fuck, R. A.; Souza, V. S.; Rodrigues, J. B.; Ribeiro, P. S. E.; Frasca, A. A. S.; Saboia, A. M.; Lacerda Filho, J. V.

    2017-01-01

    The southwestern portion of the Amazonian craton, between the Ventuari-Tapajós province and the Andean chain, has been ascribed to a succession of orogenic events from 1.81 to 0.95 Ga, culminating with widespread anorogenic magmatism. Southwestward of the Serra do Cachimbo graben occurs the Juruena accretionary orogenic belt (ca. 1.81-1.51 Ga), previously included in the Rio Negro-Juruena and Rondonian/San Ignácio geocronological provinces or Rondônia-Juruena geologic province. The Juruena orogen proposed here includes the Jamari and Juruena tectonostratigraphic terranes, products of convergence which culminated in the soft collision of the Paraguá protocraton and the Tapajós-Parima arc system (Tapajós Province) ca. 1.69-1.63 Ga ago. Geophysical, geochemical, petrological and geochronological data and systematic geological mapping suggest that the convergent event resulted in a single orogenic system with two continental margin arcs, namely the Jamari and Juruena arcs. Modern geological and tectonic approaches, combined with aerogeophysics data, enable to interpreting this wide region of the Amazonian craton as a Paleoproterozoic orogen with well defined petrotectonic units and tectonoestructural framework. The Juruena orogen is an E-W trending belt, about 1100 km long and 350 km wide, inflecting to NW-SE, in Mato Grosso, Amazonas and Rondonia, Brazil. The general direction of the belt, its inflections and internal geometric and kinematic aspects of its macrostructures do not corroborate the general NW-SE trend of the originally proposed geocronological provinces. The Juruena accretionary orogen has been the site of repeated reactivation with renewed basin formation, magmatism and orogeny during the Mesoproterozoic and the early Neoproterozoic. U-Pb and whole-rock Sm-Nd ages, Ar-Ar and Rb-Sr mineral ages suggest that the older high grade tectonometamorphic events in the Juruena accretionary orogen took place between 1.69 and 1.63 Ga, defining the metamorphic

  9. Disclosing the Paleoarchean to Ediacaran history of the São Francisco craton basement: The Porteirinha domain (northern Araçuaí orogen, Brazil)

    Science.gov (United States)

    Silva, Luiz Carlos da; Pedrosa-Soares, Antonio Carlos; Armstrong, Richard; Pinto, Claiton Piva; Magalhães, Joana Tiago Reis; Pinheiro, Marco Aurélio Piacentini; Santos, Gabriella Galliac

    2016-07-01

    This geochronological and isotopic study focuses on one of the Archean-Paleoproterozoic basement domains of the São Francisco craton reworked in the Araçuaí orogen, the Porteirinha domain, Brazil. It also includes a thorough compilation of the U-Pb geochronological data related to the adjacent Archean and Rhyacian terranes from the São Francisco craton and Araçuaí orogen. The main target of this study is the TTG gneisses of the Porteirinha complex (Sample 1). The gneiss dated at 3371 ± 6 Ma unraveled a polycyclic evolution characterized by two metamorphic overprinting episodes, dated at 3146 ± 24 Ma (M1) and ca. 600 Ma (M2). The former (M1) is so far the most reliable evidence of the oldest metamorphic episode ever dated in Brazil. The latter (M2), in turn, is endemic in most of the exposed eastern cratonic margin within the Araçuaí orogen. Whole-rock Sm-Nd analysis from the gneiss provided a slightly negative εNd(t3370) = - 0.78 value, and a depleted mantle model (TDM) age of 3.5 Ga, indicating derivation mainly from the melting of a ca. 3.5 Ga tholeiitic source. Sample 2, a K-rich leuco-orthogneiss from the Rio Itacambiriçu Complex, was dated at 2657 ± 25 Ma and also presents a ca. 600 Ma M2 overprinting M2 age. The other two analyses were obtained from Rhyacian granitoids. Sample 3 is syn-collisional, peraluminous leucogranite from the Tingui granitic complex, showing a crystallization age of 2140 ± 14 Ma and strong post-crystallization Pb*-loss, also ascribed to the Ediacaran overprinting. Accordingly, it is interpreted as a correlative of the late Rhyacian (ca. 2150-2050 Ma) collisional stage of the Mantiqueira orogenic system/belt (ca. 2220-2000 Ma), overprinted by the Ediacaran collage. Sample 4 is a Rhyacian post-orogenic (post-collisional), mixed-source, peralkaline, A1-type suite, with a crystallization age of 2050 ± 10 Ma, presenting an important post-crystallization Pb*-loss related to Ediacaran collision. The focused region records some

  10. Large along-strike variations in the onset of Subandean exhumation: Implications for Central Andean orogenic growth

    Science.gov (United States)

    Lease, Richard O.; Ehlers, Todd A.; Enkelmann, Eva

    2016-10-01

    Plate tectonics drives mountain building in general, but the space-time pattern and style of deformation is influenced by how climate, geodynamics, and basement structure modify the orogenic wedge. Growth of the Subandean thrust belt, which lies at the boundary between the arid, high-elevation Central Andean Plateau and its humid, low-elevation eastern foreland, figures prominently into debates of orogenic wedge evolution. We integrate new apatite and zircon (U-Th)/He thermochronometer data with previously published apatite fission-track data from samples collected along four Subandean structural cross-sections in Bolivia between 15° and 20°S. We interpret cooling ages vs. structural depth to indicate the onset of Subandean exhumation and signify the forward propagation of deformation. We find that Subandean growth is diachronous south (11 ± 3 Ma) vs. north (6 ± 2 Ma) of the Bolivian orocline and that Subandean exhumation magnitudes vary by more than a factor of two. Similar north-south contrasts are present in foreland deposition, hinterland erosion, and paleoclimate; these observations both corroborate diachronous orogenic growth and illuminate potential propagation mechanisms. Of particular interest is an abrupt shift to cooler, more arid conditions in the Altiplano hinterland that is diachronous in southern Bolivia (16-13 Ma) vs. northern Bolivia (10-7 Ma) and precedes the timing of Subandean propagation in each region. Others have interpreted the paleoclimate shift to reflect either rapid surface uplift due to lithosphere removal or an abrupt change in climate dynamics once orographic threshold elevations were exceeded. These mechanisms are not mutually exclusive and both would drive forward propagation of the orogenic wedge by augmenting the hinterland backstop, either through surface uplift or spatially variable erosion. In summary, we suggest that diachronous Subandean exhumation was driven by piecemeal hinterland uplift, orography, and the outward

  11. Orogeny processes of the western Jiangnan Orogen, South China:Insights from Neoproterozoic igneous rocks and a deep seismic profile

    Science.gov (United States)

    Su, Jinbao; Dong, Shuwen; Zhang, Yueqiao; Li, Yong; Chen, Xuanhua; Ma, Licheng; Chen, Jiansheng

    2017-01-01

    The Jiangnan Orogen is a collisional suture belt between the Yangtze and Cathaysia Blocks in South China, with many unanswered questions regarding its tectonic evolution. Using the basement structure of the Jiangnan Orogen, we investigate the granite and dacite exposed along the western Jiangnan Orogen and present new LA-ICP-MS zircon U-Pb ages, Hf isotopes, and whole rock geochemistry data. The results suggest that the granite plutons belong to the calc-alkaline series and are typical S-type granites. It yields a mean U-Pb age of 854 ± 2 Ma, which is determined from the core of zircon and possibly inherited from its source or wall rocks. The initial emplacement age of granite may be 826-805 Ma, whereas the dacites yield an age of 805 ± 1.6 Ma and belong to the shoshonite series. The initial Hf-isotope ratios (176Hf/177Hf) in the granite sample are mostly negative εHf(t), with a few of positive value with 1.38-1.6 Ga TDM and 1.67-2.06 Ga TDM2, whereas the dacite samples have mostly positive εHf(t), with a 0.78-1.6 Ga TDM and 0.83-2.2 Ga TDM2t. A comparison of the εHf(t) and TDM2t with the corresponding intruded strata, helps illustrate the origin of the magma and the finals stages ofcollision. Based on our results, we conclude that the western Jiangnan Orogen was a back-arc foreland basin that developed on the margin of the Yangtze continent and collided with the Cathaysia Block, forming a continent-arc-continent accretionary orogeny between 860 and 800 Ma.

  12. Petrology and provenance of the Neogene fluvial succession in Pishin Belt (Katawaz Basin) western Pakistan: Implications for sedimentation in peripheral forelands basins

    DEFF Research Database (Denmark)

    Kasi, Aimal Khan; Kassi, Aktar Muhammad; Friis, Henrik;

    2017-01-01

    FL and QmFLt diagrams show recycled and transitional recycled orogenic source for both the successions. The Dasht Murgha Group is rich in sedimentary and metamorphic lithics and poor in volcanic fragments (Lm35Lv18Ls47). The LmLvLs plot indicate that most of the samples lie in the fields of suture belts...

  13. 40 Ma years of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U-Pb dating of wolframite

    Science.gov (United States)

    Harlaux, Matthieu; Romer, Rolf L.; Mercadier, Julien; Morlot, Christophe; Marignac, Christian; Cuney, Michel

    2017-03-01

    We present U-Pb thermal ionization mass spectrometer (TIMS) ages of wolframite from several granite-related hydrothermal W±Sn deposits in the French Massif Central (FMC) located in the internal zone of the Variscan belt. The studied wolframite samples are characterized by variable U and Pb contents (typically <10 ppm) and show significant variations in their radiogenic Pb isotopic compositions. The obtained U-Pb ages define three distinct geochronological groups related to three contrasting geodynamic settings: (i) Visean to Namurian mineralization (333-327 Ma) coeval with syn-orogenic compression and emplacement of large peraluminous leucogranites (ca. 335-325 Ma), (ii) Namurian to Westphalian mineralization (317-315 Ma) synchronous with the onset of late-orogenic extension and emplacement of syn-tectonic granites (ca. 315-310 Ma) and (iii) Stephanian to Permian mineralization (298-274 Ma) formed during post-orogenic extension contemporaneous with the Permian volcanism in the entire Variscan belt. The youngest ages (276-274 Ma) likely reflect the reopening of the U-Pb isotopic system after wolframite crystallization and may correspond to late hydrothermal alteration (e.g. ferberitization). Our results demonstrate that W(±Sn) mineralization in the FMC formed during at least three distinct hydrothermal events in different tectono-metamorphic settings over a time range of 40 Ma.

  14. Provenance of Cretaceous trench slope sediments from the Mesozoic Wandashan Orogen, NE China: Implications for determining ancient drainage systems and tectonics of the Paleo-Pacific

    Science.gov (United States)

    Sun, Ming-Dao; Xu, Yi-Gang; Wilde, Simon A.; Chen, Han-Lin

    2015-06-01

    The Wandashan Orogen of NE China is a typical accretionary orogen related to Paleo-Pacific subduction. The Raohe Complex, as a major part of the orogen, consists of mid-Triassic to mid-Jurassic radiolarian chert and intraoceanic igneous rocks in an accretionary prism overlain by weakly sheared terrestrial-sourced clastic trench slope sediments. Sensitive high-resolution ion microprobe U-Pb dating and LA-MC-ICPMS Hf isotopic analysis of detrital zircons from the terrestrial-sourced Yongfuqiao Formation sandstone show that most zircons are Phanerozoic (90%): 140-150 Ma (10%), 180-220 Ma (25%), 240-270 Ma (15%), 300-360 Ma (15%), 391-395 Ma (3%), and 450-540 Ma (20%), whereas 10% are Precambrian in age. About 90% of the zircons have ɛHf(t) values ranging from +11.1 to -12.8. This suggests that the major provenance of the trench slope sediments was from the adjacent eastern segment of the Central Asian Orogenic Belt and the Jiamusi Block. The age of the Yongfuqiao Formation is constrained to the earliest Cretaceous, which represents the accretion time of the mid-Triassic to mid-Jurassic oceanic complexes. When compared with the Mino Complex in Japan and the Tananao Complex in Taiwan, three different provenances are identified suggesting three ancient drainage systems which transported sediments from NE China, North China, and South China to the Paleo-Pacific subduction-accretion system.

  15. Thick-skinned tectonics and basement control on geometry, kinematics and mechanics of fold-and-thrust belts. Insights from some cenozoic belts worldwide

    Science.gov (United States)

    Lacombe, Olivier; Bellahsen, Nicolas

    2015-04-01

    Fold-and-thrust belts (FTBs) form either in lower and upper plates at the expense of proximal parts of former passive margins during collision or within the upper plate of subduction orogens. In contrast, inner parts of mountain belts are likely made of stacked units from the distal passive margin domains that have undergone continental subduction and HP-LT metamorphism. There are increasing lines of evidence that the basement is involved in shortening in many FTBs worldwide, either pervasively (across the entire belt; tectonic inversion may even occur more forelandward than the mountain front) or mainly in their innermore domains where this basement is commonly exhumed. For thick-skinned FTBs that developed from former passive margins, the occurrence of weak mechanical layers within the proximal margin lithosphere (the middle and most of the lower crust are expectedly ductile) may explain that contractional deformation be distributed within most of the crust giving rise to basement-involved tectonic style. In contrast, because these weak crustal levels are usually lacking in distal parts of the margins as a result of thinning, these stronger lithospheric domains are more prone to localized deformation/subduction. Less understandable this way is the occurrence of thick-skinned wide domains within cold and strong interiors of upper plates of subduction zones, such as the Paleocene Laramide orogenic belt or the active Sierras Pampeanas belt. Structural, geophysical and thermochronological investigations within Cenozoic thick-skinned (or basement-involved thin-skinned) FTBs provide evidence for how the pre-orogenic and syn-orogenic deformation of the basement may control the geometry, kinematics and mechanics of FTBs. In this contribution, we examine some examples of FTBs where the basement is known to be involved in shortening and we review some aspects of the control exerted by the basement on the deformation. This control is demonstrated (1) at the scale of the

  16. Structural features and petroleum geology of the fold-thrust belt in the southern Tarim basin, China

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xinyuan; LUO Jinhai; WANG Qinghua

    2004-01-01

    The west Kunlun fold-thrust belt (WKFTB) and the Altun fold-thrust belt (AFTB) are respectively located in the southern margin of the Tarim basin, NW China. The analyses of typical structures and regional dynamics of the fold-thrust belts reveal their different structural and petroleum features and mechanisms. WKFTB differs from AFTB by abundant fault-related folds and triangles zones, and was formed by northward extrusion of the west Kunlun orogen. AFTB was affected synchronously by northward extrusion of the Altun orogen and the sinistral strike-slipping of the Altun Fault, so it is characterized by the minor scale and the monotonous structural styles. The Aqike anticline and the Aqike fault, of which the strikes are orthogonal to the strike of the fold-thrust belts, are regarded as the adjustive structures between both of the fold-thrust belts. The oil-gas pools of WKFTB develop mainly in the faulted-related anticline traps, but the oil-gas pools of AFTB develop mainly in the low fault-block and anticlines traps related with the paleo-uplifts. There are different exploration countermeasures for both of the fold-thrust belts.

  17. Spatial and temporal distribution of the orogenic gold deposits in the Late Palaeozoic Variscides and Southern Tianshan: How orogenic are they?

    NARCIS (Netherlands)

    Boorder, H. de

    2012-01-01

    A principal uncertainty in models of orogenic ore deposits concerns their ages relative to orogenic processes. The yardstick of the relation has resided, loosely, in the peak of metamorphism. Age estimates in the Variscides and Tianshan indicate that most orogenic ore deposits were formed in the cou

  18. Geochemistry and geochronology of the Rathjen Gneiss: implications for the early tectonic evolution of the Delamerian Orogen

    Energy Technology Data Exchange (ETDEWEB)

    Foden, J.; Sandiford, M.; Dougherty-Page, J. [University of Adelaide, SA (Australia). Department of Geology; Williams, I. [Australian National University, ACT (Australia). Research School of Earth Sciences

    1999-06-01

    The Rathjen Gneiss is the oldest and structurally most complex of the granitic intrusives in the southern Adelaide Fold-Thrust Belt and therefore provides an important constraint on the timing of the Delamerian Orogen. Zircons in the Rathjen Gneiss show a complex growth history, reflecting inheritance, magmatic crystallisation and metamorphism. Both single zircon evaporation (`Kober` technique) and SHRIMP analysis yield best estimates of igneous crystallisation of 514 {+-} 5 Ma, substantially older than other known felsic intrusive ages in the southern Adelaide Fold-Thrust Belt. This age places an older limit on the start of the Delamerian metamorphism and is compatible with known stratigraphic constraints suggesting the Early Cambrian Kanmantoo Group was deposited, buried and heated in less than 20 million years. High-U overgrowths on zircons were formed during subsequent metamorphism and yield a {sup 206}Pb/{sup 238}U age of 503 {+-} 7 Ma. The Delamerian Orogeny lasted no more than 35 million years. The emplacement of the Rathjen Gneiss as a pre- or early syntectonic granite is emphasised by its geochemical characteristics, which show affiliations with within-plate or anorogenic granites. In contrast, younger syntectonic granites in the southern Adelaide Fold-Thrust Belt have geochemical characteristics more typical of granites in convergent orogens. The Early Ordovician post-tectonic granites then mark a return to anorogenic compositions. The sensitivity of granite chemistry to changes in tectonic processes is remarkable and clearly reflects changes in the contribution of crust and mantle sources. Copyright (1999) Blackwell Science Pty Ltd 35 refs., 3 tabs., 11 figs.

  19. High-temperature metamorphism of the Yushugou ophiolitic slice: Late Devonian subduction of seamount and mid-oceanic ridge in the South Tianshan orogen

    Science.gov (United States)

    Zhang, Li; Jin, Zhenmin

    2016-12-01

    The South Tianshan Orogenic Belt (STOB), representing the southern segment of the Central Asian Orogenic Belt (CAOB), underwent a long-lived and subduction-related accretionary orogenic process. Revealing the petrogenesis of high-pressure (HP) metamorphic ophiolitic slices within this orogen is of crucial importance to understanding the geodynamic evolution of the STOB. In this study, we carry out a petrological, geochemical and geochronological study of HP mafic granulites from the Yushugou ophiolitic slice within the South Tianshan Accretionary Complex. Our results combined with previously published data suggest that the Yushugou mafic granulites, including garnet-clinopyroxene granulite, garnet two-pyroxene granulite and garnet-orthopyroxene granulite, are generally subalkaline to alkaline basalts, and show geochemical characteristics of MORB and OIB. The nominally anhydrous minerals of the mafic granulites contain certain but trace amounts of water in the manner of structural OH and sub-microscopic fluid inclusions. The granulites have a possible protolith age of ca. 400 Ma and metamorphic age of 390-360 Ma, and underwent HP and high-temperature (HT) granulite-facies metamorphism under conditions of 12-14 kbar and 840-950 °C and low H2O activity. Our study indicates that the Yushugou ophiolitic slice was probably derived from seamount that formed at mid-oceanic ridge closing to the oceanic trench and subduction zone during the Early Devonian, and then underwent metamorphism and deformation as a result of the subduction of the seamount and associated spreading ridge during the Middle to Late Devonian. Therefore, the Yushugou HP ophiolitic slice provides an important information of the Paleozoic tectonic evolutionary of the STOB.

  20. Mixed brittle-plastic deformation behaviour in a slate belt. Examples from the High-Ardenne slate belt (Belgium, Germany)

    Science.gov (United States)

    Sintubin, Manuel; van Baelen, Hervé; van Noten, Koen; Muchez, Philippe

    2010-05-01

    In the High-Ardenne slate belt, part of the Rhenohercynian external fold-and-thrust belt at the northern extremity of the Late Palaeozoic Variscan orogen (Belgium, Germany, France), particular quartz vein occurrences can be observed in predominantly fine-grained siliciclastic metasediments. Detailed structural, petrographical and geochemical studies has revealed that these vein occurrences can be related to a mixed brittle-plastic deformation behaviour in a low-grade metamorphic mid-crustal environment. The first type of quartz veins are bedding-perpendicular, lens-shaped extension veins that are confined to the sandstone layers within the multilayer sequence. Fluid inclusion studies demonstrate high fluid pressures suggesting that the individual sandstone bodies acted as isolated high-pressure compartments in an overpressured basin. Hydraulic fracturing occurred during the tectonic inversion (from extension to compression) in the earliest stages of the Variscan orogeny. The vein fill shows a blocky character indicating crystal growth in open cavities. Both the typical lens shape of the veins and the subsequent cuspate-lobate folding of the bed interfaces in between the quartz veins suggest plastic deformation of cohesionless fluid-filled fissures. Metamorphic grade of the host rock and fluid temperature and pressure clearly indicates mid-crustal conditions below the brittle-plastic transition. This first type of quartz veins exemplifies mixed brittle-plastic deformation behaviour, possibly related to a transient deepening of the brittle-plastic transition. This is in contrast with contemporaneous bedding-perpendicular crack-seal veins observed in higher - upper-crustal - structural levels in the slate belt, reflecting pure brittle deformation behaviour. The second type are discordant quartz veins confined to extensional low-angle detachment shear zones. These very irregular veins transect a pre-existing pervasive cleavage fabric. They show no matching walls and

  1. Precambrian crustal evolution and Cretaceous–Palaeogene faulting in West Greenland: Zircon geochronology from the Kangaatsiaq–Qasigiannguit region, the northern part of the 1.9–1.8 Ga Nagssugtoqidian orogen, West Greenland

    Directory of Open Access Journals (Sweden)

    Conelly, James N.

    2006-12-01

    Full Text Available The Kangaatsiaq–Qasigiannguit region in the northern part of the Palaeoproterozoic Nagssugtoqidian orogen of West Greenland consists of poly-deformed orthogneisses and minor occurrences of interleaved, discontinuous supracrustal belts. Laser ablation ICP-MS 207Pb/206Pb analyses of detrital zircons from four metasedimentary rocks (supplemented by ion probe analysis of one sample and igneous zircons from six granitoid rocks cutting metasedimentary units indicate that the supracrustal rocks in the Kangaatsiaq–Qasigiannguit (Christianshåb region are predominantly Archaean in age. Four occurrences of metasedimentary rocks are clearly Archaean, two have equivocal ages, and only one metasedimentary unit, from within the Naternaq (Lersletten supracrustal belt, is demonstrably Palaeoproterozoic and readily defines a large fold complex of this age at Naternaq. The 2.9–2.8 Ga ages of detrital Archaean grains are compatible with derivation from the local basement orthogneisses within the Nagssugtoqidian orogen. The detrital age patterns are similar to those of metasediments within the central Nagssugtoqidian orogen but distinct from age patterns in metasediments of the Rinkian belt to the north, where there is an additional component of pre-2.9 Ga zircons. Synkinematic intrusive granitoid rocks constrain the ages of some Archaean deformation at 2748 ± 19 Ma and some Palaeoproterozoic deformation at 1837 ± 12 Ma.

  2. Morphometric properties of the trans-Himalayan river catchments: Clues towards a relative chronology of orogen-wide drainage integration

    Science.gov (United States)

    Ghosh, Parthasarathi; Sinha, Sayan; Misra, Arindam

    2015-03-01

    The geomorphological evolution of the Himalayan mountain belt both in terms of crustal deformation and concomitant erosion by surface processes has been suggested to have a profound influence on a number of earth system processes and has been extensively researched through a number of different techniques. The huge catchments of the trans-Himalayan rivers are the product of long-term fluvial erosion of the landscape. This work attempts to understand their evolution through a study of drainage network, morphology, and internal organization of the smaller watersheds nested within each catchment. Using morphometric techniques applied to an orogen-wide digital elevation data grid, we characterized the drainage network structure and catchment of all the 18 trans-Himalayan rivers situated between the exits of the Indus and Brahmaputra rivers and constructed rectangular approximations of the catchment geometries. With the help of catchment dimensions measured transverse and parallel to the strike of the orogen, and by analyzing the dimension and spatial dispositions of the rectangular approximations, we demonstrate that the trans-Himalayan catchment shapes cannot be explained only as a product of the headward enlargement of drainage networks on a topographic slope, or orogenic taper. Within individual catchments we identified the existence of drainage components (watersheds) that are organized in a systematic manner with respect to the first-order physiographic features of the Himalayas, formed at different periods of geological time. Each of them shows distinct morphometric characteristics that are indicative of differences in processes and / or time scale involved in their formation. The hypsometric properties of the watersheds occupying the upper part of the catchments suggest that they are the remnants of pre-orogenic drainage that became confined to the leeward side of the Himalayas before the advent of monsoon circulation. The shape and organization of the

  3. Dynamic characteristics of conveyor belts

    Institute of Scientific and Technical Information of China (English)

    HOU You-fu; MENG Qing-rui

    2008-01-01

    The dynamic characteristics of a belt conveyor are determined to a large extent by the properties of the belt. This paper describes experiments designed to establish the dynamic properties of belting material. The dynamic elastic modulus, viscous damping and theological constants of the belt were measured. Several properties were studied as a function of the tensile loading on the belt. These included longitudinal vibration, the natural vibration frequency in the transverse direction and the response to an impulse excitation. Vibration response was observed under several different excitation frequencies. Most of these properties have not been tested previously under conditions appropriate for the ISO/DP9856 standard. Two types of belt were tested, a steel reinforced belt and a fabric reinforced belt. The test equipment was built to provide data appropriate for designing belt conveyors. It was observed that the stress wave propagation speed increased with tensile load and that tensile load was the main factor influencing longitudinal vibrations.

  4. Deformation Characters of the Maowen Fault Belt in Longmenshan,Western Sichuan

    Institute of Scientific and Technical Information of China (English)

    TANG Zemin; ZHANG Yueqiao; YANG Nong

    2001-01-01

    The Maowen fault belt is one of important fault belts of the intercontinental orogenic belt of Longmenshan, mainly experienced three stage deformation; they are ductile shearing of thrust napping, brittle thrust napping and sinstral strike-slipping. Although Sc strike of mylonite formed by ductile shearing in early stage was reformed by later two stage brittle deformation, and changed greatly along the strike and inclination, the shear zone, as a whole, strikes NE and inclines NW. The stretching lineation is parallel or nearly parallel to the inclination of the ductile shear zone. According to the development of conjugated joints, the main compressive stress of the two stage brittle deformation is oriented to 306°and 2°, respectively.

  5. Sand petrology and focused erosion in collision orogens: the Brahmaputra case

    Science.gov (United States)

    Garzanti, Eduardo; Vezzoli, Giovanni; Andò, Sergio; France-Lanord, Christian; Singh, Sunil K.; Foster, Gavin

    2004-03-01

    The high-relief and tectonically active Himalayan range, characterized by markedly varying climate but relatively homogeneous geology along strike, is a unique natural laboratory in which to investigate several of the factors controlling the composition of orogenic sediments. Coupling of surface and tectonic processes is most evident in the eastern Namche Barwa syntaxis, where the Tsangpo-Siang-Brahmaputra River, draining a large elevated area in south Tibet, plunges down the deepest gorge on Earth. Here composition of river sands changes drastically from lithic to quartzofeldspathic. After confluence with the Lohit River, draining the Transhimalayan-equivalent Mishmi arc batholiths, sediment composition remains remarkably constant across Assam, indicating subordinate contributions from Himalayan tributaries. Independent calculations based on petrographical, mineralogical, and geochemical data indicate that the syntaxis, representing only ∼4% of total basin area, contributes 35±6% to the total Brahmaputra sediment flux, and ∼20% of total detritus reaching the Bay of Bengal. Such huge anomalies in erosion patterns have major effects on composition of orogenic sediments, which are recorded as far as the Bengal Fan. In the Brahmaputra basin, in spite of very fast erosion and detrital evacuation, chemical weathering is not negligible. Sand-sized carbonate grains are dissolved partially in mountain reaches and completely in monsoon-drenched Assam plains, where clinopyroxenes are selectively altered. Plagioclase, instead, is preferentially weathered only in detritus from the Shillong Plateau, which is markedly enriched in microcline. Most difficult to assess is the effect of hydraulic sorting in Bangladesh, where quartz, garnet and epidote tend to be sequestered in the bedload and trapped on the coastal plain, whereas cleavable feldspars and amphiboles are concentrated in the suspended load and eventually deposited in the deep sea. High-resolution petrographic and

  6. Strong imprint of past orogenic events on the thermochronological record

    Science.gov (United States)

    Braun, Jean

    2016-06-01

    Using a simple solution to the heat conduction equation, I show how, at the end of an orogenic event, the relaxation of isotherms from a syn-orogenic advection-dominated geometry to a post-orogenic conduction-dominated geometry leads to the creation of a thick iso-age crustal layer. Subsequent erosion of this layer yields peculiar age-elevation profiles and detrital age distributions that cannot be easily interpreted using traditional techniques. I illustrate these points by using a simple analytical solution of the heat equation as well as a transient, three-dimensional numerical model. I also demonstrate that the age of the end of an orogenic event is so strongly imprinted in the thermochronological record that it erases most of the information pertaining to the orogenic phase itself and the subsequent isostatically-driven exhumation. The concept is used to explain two thermochronological datasets from the Himalayas and demonstrate that their most likely interpretation involves the sudden interruption of extremely fast exhumation accommodated by movement along the South Tibetan Detachment in the Higher Himalayas around 15 Ma.

  7. A geochronological framework for orogenic gold mineralisation in central Victoria, Australia

    Science.gov (United States)

    Bierlein, Frank P.; Arne, Dennis C.; Foster, David A.; Reynolds, Peter

    2001-12-01

    New 40Ar/39Ar geochronological data support, and significantly expand upon, preliminary age data that were interpreted to suggest an episodic and diachronous emplacement of gold across the western Lachlan fold belt, Australia. These geochronological data indicate that mineralisation in the central Victorian gold province occurred in response to episodic, eastward progressing deformation, metamorphism and exhumation associated with the formation of the western Lachlan fold belt. Initial gold formation throughout the Stawell and the Bendigo structural zones can be constrained to a broad interval of time between 455 and 435 Ma, with remobilisation of metals into new structures and/or new pulses of mineralisation occurring between 420 and 400 Ma, and again between 380 and 370 Ma, linked to episodic variations in the regional stress-field and during intrusion of felsic dykes and plutons. This separation of ages is incompatible with the view that gold emplacement in the western Lachlan fold belt was the result of a single, orogen-wide event during the Devonian. A distinct phase of gold mineralisation, characterised by elevated Cu, Mo, Sb or W, is associated with both Late Silurian to Early Devonian (~420 to 400 Ma) and Middle to Late Devonian (~380 to 370 Ma) magmatism, when crustal thickening and shortening during the ongoing consolidation of the western Lachlan Fold Belt led to extensive melt development in the lower crust and resulted in widespread magmatism throughout central Victoria. These ~420 to 400 Ma and ~380 to 370 Ma occurrences, best exemplified by the Wonga deposit in the Stawell structural zone and many of the Woods Point deposits in the Melbourne structural zone, but also evidenced by occurrences at Fosterville and Maldon in the Bendigo structural zone, clearly formed synchronous with, or post-date, the emplacement of plutons and dykes, and thus are spatially (if not genetically) related to melt generation at depth. This later, magmatic-associated and

  8. Fault-related fold styles and progressions in fold-thrust belts: Insights from sandbox modeling

    Science.gov (United States)

    Yan, Dan-Ping; Xu, Yan-Bo; Dong, Zhou-Bin; Qiu, Liang; Zhang, Sen; Wells, Michael

    2016-03-01

    Fault-related folds of variable structural styles and assemblages commonly coexist in orogenic belts with competent-incompetent interlayered sequences. Despite their commonality, the kinematic evolution of these structural styles and assemblages are often loosely constrained because multiple solutions exist in their structural progression during tectonic restoration. We use a sandbox modeling instrument with a particle image velocimetry monitor to test four designed sandbox models with multilayer competent-incompetent materials. Test results reveal that decollement folds initiate along selected incompetent layers with decreasing velocity difference and constant vorticity difference between the hanging wall and footwall of the initial fault tips. The decollement folds are progressively converted to fault-propagation folds and fault-bend folds through development of fault ramps breaking across competent layers and are followed by propagation into fault flats within an upper incompetent layer. Thick-skinned thrust is produced by initiating a decollement fault within the metamorphic basement. Progressive thrusting and uplifting of the thick-skinned thrust trigger initiation of the uppermost incompetent decollement with formation of a decollement fold and subsequent converting to fault-propagation and fault-bend folds, which combine together to form imbricate thrust. Breakouts at the base of the early formed fault ramps along the lowest incompetent layers, which may correspond to basement-cover contacts, domes the upmost decollement and imbricate thrusts to form passive roof duplexes and constitute the thin-skinned thrust belt. Structural styles and assemblages in each of tectonic stages are similar to that in the representative orogenic belts in the South China, Southern Appalachians, and Alpine orogenic belts.

  9. 新疆阿勒泰地区夏旱风险评估分析%Risk Assessment of Summer Drought in Altay Area of Xinjiang

    Institute of Scientific and Technical Information of China (English)

    潘冬梅; 王建刚

    2012-01-01

    针对小区域历史干旱灾情资料缺乏,用传统的统计模型进行风险估计精度不高的特点,基于模糊数学和信息扩散理论,对干旱区阿勒泰地区夏旱进行分析,并结合Surfer软件对夏旱风险进行了区划。结果表明,阿勒泰地区夏季旱灾年年发生,出现偏旱的风险概率接近80%,发生重旱的概率约30%,农牧业严重受损程度较大;轻旱风险概率分布上东、西部大于北部和中部,重旱分布正好相反,干旱高风险区主要集中在中部及北部,这一地区应该成为阿勒泰防御农业干旱的重点区域。%In general, the historical data about natural disasters in small region is not enough to be used for estimating the probability distribution in risk estimation. In this paper, the probability of drought in Altay area was calculated by using the theory of the fuzzy mathematics and information diffusion, and the risk assessment of drought disaster and its regionalization were obtained based on Suefer. The results show that summer drought disaster frequency was higher in Altay area, the probability of drought and serious drought reached 80% and 30% , respectively. The probability of light drought risk was higher in the western and eastern region than that in the middle and northern area, but severe drought probability distribution was on the contrary, the higher risk region was in the middle and northern of Altay area, so these regions should be the key area for defensing drought disaster.

  10. The thermal regime beneath cultural blocky materials: Ground temperature measurements in and around the Scythian Kurgans of the Russian Altay Mountains.

    Science.gov (United States)

    van de Kerchove, Ruben; Goossens, Rudi

    2010-05-01

    During historical times, the Altay Mountains were repeatedly occupied by several, mainly nomadic, cultures. Among them were the Scythians who lived in the area (and far beyond), from the 8th until the 2nd century BC. This culture is widely known for their specific burial rituals, including the burying of their death in a kurgan: a burial mound consisting of a coarse debris surface layer, overlaying a burial chamber. Due to this composition, together with the continental alpine climate of the Altay Mountains, several of these graves were found frozen, thanks to the existence of ice lenses and permafrost beneath the structures. If frozen, these kurgans contained well preserved bodies, often with the tattoos on their skin intact. As nowadays a distinct temperature rising is showed in these continental mountain ranges, the hundreds of kurgans, and especially these ones located at the lower fringe of the permafrost area, are likely to defrost within decades. As a result, the valuable, frozen, organic and inorganic content will get lost, resulting in a loss of extremely valuable cultural heritage and knowledge. Therefore, extensive permafrost research regarding the thermal state of the frozen tombs and the spatial distribution of the mountain permafrost is necessary to forecast which of the tombs are endangered by thawing. In the framework of this project a first expedition was organized in the Russian Altay Mountains during the summer of 2008. During this expedition, the valleys of Dzhazator, Tarkhata, Kalanegir and Ulandryk were visited in succession and temperature installments were made in order to give an overview of the thermal regime in the area. Beside installments intended for regional modelling, special sensors were placed in order to focus on the specific thermal regime related to the Scythian kurgans. This poster gives the first results of the temperature data as recorded by sensors located in and around the burial mounds. At first attention is given to the

  11. The Impact of Partial Melting in the Orogenic Cycle

    Science.gov (United States)

    Rey, P. F.; Teyssier, C.; Whitney, D. L.

    2010-12-01

    Open source, community driven numerical codes available at geodynamics.org allow geologists to model orogenic processes including partial melting and its consequences during orogenic cycles. Here we explore the role of partial melting during continental subduction and its impact on the evolution of orogenic plateaux and that of migmatite-cored metamorphic core complexes. Continental subduction and orogenic plateaux: Numerical experiments show that when continental slabs buried into the mantle meet their solidus, crustal melt is confined to the slab during its ascent and ponds at the Moho (Fig. 1a). The displaced overlying crust is extruded horizontally into the weak lower crust of the continent, resulting in Earth’s surface uplift to form an orogenic plateau, and Moho downward motion to accommodate the influx of material into the lower crust. This model suggests a link between continental subduction, melting and the build up of orogenic plateaux, and show that partial melting may be a significant process in exhumation of ultrahigh-pressure (UHP) rocks. Model results are consistent with the common association of UHP rocks and migmatite. Growth and destruction of orogenic plateaux: The lateral growth of orogenic plateaux is often attributed to the flow of the plateau weak partially melted lower crust into its foreland in some cases over a distance > 1500 km in 15 myr. Using pre-thickening temperatures compatible with Tibet’s uplift history, we show that mass redistribution processes are dynamically coupled, and that CFE velocities are limited to less than 1 cm.yr-1 (~150 km in 15 myr) by cooling and crystallization of the melted channel in the foreland and by any upward deviation into metamorphic domes of the melted channel by extension in the plateau (Fig. 1b). Gravitational collapse and metamorphic core complexes: Localization of extension in the upper crust triggers convergent flow in the partially molten deep crust channel. This convergent flow leads to the

  12. Geochemical Evidence for Subduction in the Early Archaean from Quartz-Carbonate-Fuchsite Mineralization, Isua Supracrustal Belt, West Greenland

    Science.gov (United States)

    Pope, E. C.; Rosing, M. T.; Bird, D. K.

    2011-12-01

    Quartz, carbonate and fuchsite (chromian muscovite) is a common metasomatic assemblage observed in orogenic gold systems, both in Phanerozoic convergent margin settings, and within supracrustal and greenstone belts of Precambrian rocks. Geologic and geochemical observations in younger orogenic systems suggest that ore-forming metasomatic fluids are derived from subduction-related devolitilization reactions, implying that orogenic Au-deposits in Archaean and Proterozoic supracrustal rock suites are related to subduction-style plate tectonics beginning early in Earth history. Justification of this metasomatic-tectonic relationship requires that 1) Phanerozoic orogenic Au-deposits form in subduction-zone environments, and 2) the geochemical similarity of Precambrian orogenic deposits to their younger counterparts is the result of having the same petro-genetic origin. Hydrogen and oxygen isotope compositions of fuchsite and quartz from auriferous mineralization in the ca. 3.8 Ga Isua Supracrustal Belt (ISB) in West Greenland, in conjunction with elevated concentrations of CO2, Cr, Al, K and silica relative to protolith assemblages, suggest that this mineralization shares a common petro-tectonic origin with Phanerozoic orogenic deposits and that this type of metasomatism is a unique result of subduction-related processes. Fuchsite from the ISB has a δ18O and δD of +7.7 to +17.9% and -115 to -61%, respectively. δ18O of quartz from the same rocks is between +10.3 and +18.6%. Muscovite-quartz oxygen isotope thermometry indicates that the mineralization occurred at 560 ± 90oC, from fluids with a δD of -73 to -49% and δ18O of +8.8 to +17.2%. Calculation of isotopic fractionation during fluid-rock reactions along hypothetical fluid pathways demonstrates that these values, as well as those in younger orogenic deposits, are the result of seawater-derived fluids liberated from subducting lithosphere interacting with ultramafic rocks in the mantle wedge and lower crust

  13. 40Ar-39Ar Age and Geological Significance of the Sawur Gold Belt in Northern Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    SHEN Ping; SHEN Yuanchao; ZENG Qingdong; LIU Tiebing; LI Guangming

    2005-01-01

    The 40Ar-39Ar age method is employed in this work to analyze fluid inclusions of quartz in the ore bodies from the Kuo'erzhenkuola and Bu'erkesidai gold deposits in the Sawur gold belt, northern Xinjiang. The results show that the main mineralization occurred in 332.05±2.02-332.59±0.51 Ma and 335.53±0.32 Ma-336.78±0.50 Ma for the Kuo'erzhenkuola and Bu'erkesidai gold deposits respectively, indicating that the two deposits are formed almost at the same time, and the metallogenic time of the two deposits are close to those of the hosting rocks formed by volcanic activity of the Sawur gold belt. This geochronological study supplies new evidence for determining the timing of gold mineralization, the geneses of gold deposits, and identifies that in the Hercynian period, the Altay area developed a tectonic-magmatic-hydrothermal mineralization of the Early Carboniferous period, except the two known mineralization periods including the tectonic-magmatic-hydrothermal mineralization of the Devonian period and Late CarboniferousPermian period.

  14. Petrological and geochronological constraints on the origin of HP and UHP kyanite-quartzites from the Sulu orogen, Eastern China

    Science.gov (United States)

    Wang, Wei; Zhang, Zeming; Yu, Fei; Liu, Feng; Dong, Xin; Liou, J. G.

    2011-09-01

    Kyanite (Ky)-quartzites occur in both the high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic belts in the southern Sulu orogen. The HP Ky-quartzites consist of quartz, kyanite and minor rutile with or without topaz and phengite, whereas those from the UHP unit consist of quartz, kyanite, phengite and rutile. The HP Ky-quartzites are characterized by high Al 2O 3 (up to 32.9 wt.%) and low SiO 2 (down to 60.4 wt.%) with very low other oxides contents (country rock gneisses, we conclude that these quartzites were metasomatic products of granitic gneisses. Thus, they were interpreted as a part of the coherent Sulu terrane that was subjected to the coeval Triassic HP and UHP metamorphism at different subduction depths of the Yangtze plate.

  15. Changes in basal dip and frictional properties controlling orogenic wedge propagation and frontal collapse: the External central Betics case

    Science.gov (United States)

    Jiménez-Bonilla, Alejandro; Torvela, Taija; Balanyá, Juan-Carlos; Díaz-Azpiroz, Manuel; Expósito, Inmaculada

    2016-04-01

    Orogenic wedges and their key component, thin-skinned fold-and-thrust belts (FTBs), have been extensively studied through both field examples and modelling. The overall dynamics of FTBs are, therefore, well understood. One of the less understood aspects is: what is the combined influence of across-strike changes in the detachment properties and the basement topography on the behaviour of an orogenic wedge, as the deformation progresses towards the foreland? In this study, we use field data combined with reflection seismic interpretation and well data from the External Zones of the Central Betics FTB, S Spain, to identify a basement "threshold" coinciding with a thinning out of a weak substrate (Triassic evaporites) in the wedge basal detachment. The basal changes influenced the tempo-spatial (4D) local wedge dynamics at ~Early Langhian times, leading to stagnation of FTB propagation, topographic build-up and subsequent collapse of the FTB front, which was enhanced by arc-parallel stretching. This development led to a formation of an important depocentre filled with a thick Langhian mélange unit and later sediments deposited in the NW-migrating foreland basin. This case study illustrates the importance of across-strike changes in wedge basal properties to the stability of the FTB front, especially in terms of the collapse/extensional structures.

  16. Radiation belts of jupiter.

    Science.gov (United States)

    Stansberry, K G; White, R S

    1973-12-07

    Predictions of Jupiter's electron and proton radiation belts are based mainly on decimeter observations of 1966 and 1968. Extensive calculations modeling radial diffusion of particles inward from the solar wind and electron synchrotron radiation are used to relate the predictions and observations.

  17. Subduction and accretion of sedimentary rocks in the Yakutat collision zone, St. Elias orogen, Gulf of Alaska

    Science.gov (United States)

    Van Avendonk, Harm J. A.; Gulick, Sean P. S.; Christeson, Gail L.; Worthington, Lindsay L.; Pavlis, Terry L.; Ridgway, Kenneth D.

    2013-11-01

    The collision of the Yakutat Block with the continental margin of North America in the Gulf of Alaska has intensified exhumation and erosion in the Chugach-St. Elias orogen over the last few million years. The resultant sediment flux and deposition of the glaciomarine Yakataga Formation on the continental shelf has filled a deep sedimentary basin offshore, where the Pamplona fold-thrust belt first deforms these strata. It is presently unclear whether the older sedimentary rocks of the Poul Creek and Kulthieth Formations are also accreted in the Pamplona Zone, or whether they are underthrusting the margin. In this paper we use marine seismic and well logging data to show that in the offshore Yakataga strata, porosity loss and lateral compaction can account for half of the convergence between the Yakutat Block and North America over the last 2 Myr. A lateral seismic velocity gradient in these syn-orogenic strata suggests that this layer-parallel shortening starts approximately 100 km outboard of the deformation front. Beneath the fold-and-thrust belt, where the seismic velocity is as high as 4.7 km/s, we image a large low-velocity zone (2.0-2.5 km/s) at 5 km depth. The dramatic decrease in seismic velocity with depth coincides with the boundary between the Yakataga and Poul Creek Formations in well data. Fine-grained and organic-rich Poul Creek strata possibly accommodate slip, such that older sedimentary rocks are entrained with the subducting Yakutat Block. Alternatively, the imaged low-velocity zone may have formed by increased fluid pressures in the hanging wall. In that case the décollement would lie beneath this low-velocity zone, possibly within the coal-bearing layers of the older and deeper Kulthieth Formation.

  18. Mesozoic basin-fill records in south foot of the Dabie Mountains: Implication for Dabie Orogenic attributes

    Institute of Scientific and Technical Information of China (English)

    李忠; 李任伟; 孙枢; 张雯华

    2003-01-01

    Five evolutional phases are found from Mesozoic basin-fill sequences in the northern Jianghan basin, the south foot of the Dabie Mountains: (i) Early Triassic to the early period of Late Triassic showing continental shelf marine and paralic deposits; (ii) the middle-late period of Late Triassic indicating the uplift and erosion in compressional tectonic setting; (iii) the late period of Late Triassic to Early-Middle Jurassic showing peneplain terrestrial and fluvial clastic deposits interlayered with coal-seams; (iv) Late-Jurassic to Early-Cretaceous characterized by cycle fills of acidic volcanic rocks interstratified with pyroclastic rocks in intracontinental extension tectonic regime; (v) a lot of coarse clastic deposits similar to molasses occur in Late-Cretaceous mainly. Based on the compositions of detrital sandstones and conglomerates, combined with the analysis of sedimentary facies, it is indicated that most clasts sourced from the Yangtze continent from phase one to phase three, whose provenances are attributed to "recycled orogenic belt" types. On the other hand, detrital assemblages of the fifth phase deposits are mainly related with pre- Mesozoic metamorphic rocks of the Dabie Mountains, subjected to "arc orogenic belt" provenance types. In the Mesozoic basins of the south foot of the Dabie Mountains, it is proved that there are no direct depositional records corresponding to "Late Triassic syn-collisional orogenesis". Molasse depositional records of Upper Cretaceous distinctly reflect post-collisional orogenesis of the Dabie Mountains (intracontinental orogenesis) and intensive exhumation in extensional tectonic regime. This paper further discusses the inconsistent relations existing between basin-fill records at the south and north feet of the Dabie Mountains and the uplift models of the Dabie Mountains published, and indicates their key problems.

  19. U-Pb dating of zircon from the Central Zone of the East Kunlun Orogen and its implications for tectonic evolution

    Institute of Scientific and Technical Information of China (English)

    CHEN NengSong; SUN Min; WANG QinYan; ZHANG KeXin; WAN YuSheng; CHEN HaiHong

    2008-01-01

    LA-ICP-MS and SHRIMP U-Pb dating of zircons from orthogneisses and amphibolite from the Central Zone of the Kunlun Orogen is reported in this paper. One orthogneiss sample has metamorphic zircons yielding weighted average 206Pb/238U age of 517.0 +5.0/-6.0 Ma,and the other orthogneiss sample contains zircons with inherited magmatic cores giving three population 207Pb/206Pb ages of 955 Ma,895 Ma and 657 Ma for the magmatic protolith,and metamorphic recrystallized rims with peak 206pb/238U ages of 559 +12/-17 Ma and 516 + 13 Ma. The amphibolite yielded three populations of weighted average 206Pb/238U age of 482.0 +10/-8.0 Ma,516.2 ± 5.8 Ma and 549 ± 10 Ma for the metamorphic zircons. These dating results recorded the tectonothermal events that occurred in the early Paleozoic and the Precambrian time. The records of the Cambrian magmatic-metamorphic event in the Qinling Orogen,the Altyn Tagh belt,north margin of the Qaidam Block and the Kunlun Orogen suggest that continental assembly probably occurred in the early evolutionary history of the Proto-Tethys.

  20. Precambrian crustal evolution and Cretaceous–Palaeogene faulting in West Greenland: A lead isotope study of an Archaean gold prospect in the Attu region, Nagssugtoqidian orogen, West Greenland

    Directory of Open Access Journals (Sweden)

    Stendal, Henrik

    2006-12-01

    Full Text Available This paper presents a lead isotope investigation of a gold prospect south of the village Attu in the northern part of the Nagssugtoqidian orogen in central West Greenland. The Attu gold prospect is a replacement gold occurrence, related to a shear/mylonite zone along a contact between orthogneissand amphibolite within the Nagssugtoqidian orogenic belt. The mineral occurrence is small, less than 0.5 m wide, and can be followed along strike for several hundred metres. The mineral assemblage is pyrite, chalcopyrite, magnetite and gold. The host rocks to the gold prospect are granulite facies ‘brown gneisses’ and amphibolites. Pb-isotopic data on magnetite from the host rocks yield an isochron in a 207Pb/204Pb vs. 206Pb/204Pb diagram, giving a date of 3162 ± 43 Ma (MSWD = 0.5. This date is interpreted to represent the age of the rocks in question, and is older than dates obtained from rocks elsewhere within the Nagssugtoqidian orogen. Pb-isotopic data on cataclastic magnetite from the shear zone lie close to this isochron, indicating a similar origin. The Pb-isotopic compositions of the ore minerals are similar to those previously obtained from the close-by ~2650 Ma Rifkol granite, and suggest a genetic link between the emplacement of this granite and the formation of the ore minerals in the shear/mylonite zone. Consequently, the age of the gold mineralisation is interpreted tobe late Archaean.

  1. U-Pb dating of zircon from the Central Zone of the East Kunlun Orogen and its implications for tectonic evolution

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    LA-ICP-MS and SHRIMP U-Pb dating of zircons from orthogneisses and amphibolite from the Central Zone of the Kunlun Orogen is reported in this paper. One orthogneiss sample has metamorphic zircons yielding weighted average 206Pb/238U age of 517.0 +5.0/-6.0 Ma, and the other orthogneiss sample con- tains zircons with inherited magmatic cores giving three population 207Pb/206Pb ages of 955 Ma, 895 Ma and 657 Ma for the magmatic protolith, and metamorphic recrystallized rims with peak 206Pb/238U ages of 559 +12/?17 Ma and 516 ± 13 Ma. The amphibolite yielded three populations of weighted average 206Pb/238U age of 482.0 +10/?8.0 Ma, 516.2 ± 5.8 Ma and 549 ± 10 Ma for the metamorphic zircons. These dating results recorded the tectonothermal events that occurred in the early Paleozoic and the Pre- cambrian time. The records of the Cambrian magmatic-metamorphic event in the Qinling Orogen, the Altyn Tagh belt, north margin of the Qaidam Block and the Kunlun Orogen suggest that continental assembly probably occurred in the early evolutionary history of the Proto-Tethys.

  2. Linking glacial erosion and low-relief landscapes in tropical orogens

    Science.gov (United States)

    Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Galewsky, J.; Yoo, J.

    2015-12-01

    One significant way that climate influences orogenic evolution is by modulating glacial erosion. At mid-latitudes it is hypothesized that this climate-tectonic interplay is so strong that a "glacial buzzsaw" acting throughout the Quaternary outpaced tectonic uplift in most mountain belts and concentrated topography in a zone defined by the bounds of ELA fluctuation. Less attention has been paid to how the buzzsaw might manifest itself at low latitudes, where many mountain belts are just high enough to have been glaciated at the LGM but today sit well below the ELA. We have focused on the glacial history of Costa Rica and Taiwan, where we find evidence of ice cap erosion coincident with low-relief landscapes near the LGM ELA. Previous attempts to understand the formation of these perched, low-relief landscapes has mostly concerned interactions between fluvial erosion and geodynamics. Our work aims instead to describe the role that glacial erosion played in the evolution of these landscapes, and how they fit in the buzzsaw paradigm. At Cerro Chirripó in Costa Rica we use 10-Be surface exposure age dating of moraine boulders and scoured bedrock, field mapping, and remote sensing to constrain the timing, areal extent, and pattern of glacial erosion. We made similar observations of ice extent at Nanhudashan in Taiwan, where surface exposure age dating has previously been applied to glacial landforms (e.g. Hebenstreit et al., 2011; Siame et al., 2007). In Costa Rica, our 10-Be dates from scoured bedrock near the highest peak and terminal/lateral moraines show signs of ice-cap erosion until 22 ka. Similar arguments for LGM ice cap erosion have been made for Nanhudashan. Regional climate simulations (WRF) further constrain the timing and spatial extent of glaciation in these places, and the combination of field data and climate modeling will inform estimates of the magnitude of glacial erosion on perched landscapes.

  3. Earthquake source characteristics along the arcuate Himalayan belt: Geodynamic implications

    Indian Academy of Sciences (India)

    Prosanta Kumar Khan; Md Afroz Ansari; S Mohanty

    2014-07-01

    The occurrences of moderate to large magnitude earthquakes and associated subsurface geological processes were critically examined in the backdrop of Indian plate obliquity, stress obliquity, topography, and the late Tertiary regional tectonics for understanding the evolving dynamics and kinematics in the central part of the Himalayas. The higher topographic areas are likely associated with the zones of depressions, and the lower topographic areas are found around the ridges located in the frontal part of the orogen. A positive correlation between plate and stress obliquities is established for this diffuse plate boundary. We propose that the zone of sharp bending of the descending Indian lithosphere is the nodal area of major stress accumulation which is released occasionally in form of earthquakes. The lateral geometry of the Himalayas shows clusters of seismicity at an angle of ∼20° from the centre part of the arc. Such spatial distribution is interpreted in terms of compression across the arc and extension parallel to the arc. This biaxial deformation results in the development of dilational shear fractures, observed along the orogenic belt, at an angle of ∼20° from the principal compressive stress axis.

  4. Metallogenesis of the Ertix gold belt, Xinjiang and its rela-tionship to Central Asia-type orogenesis

    Institute of Scientific and Technical Information of China (English)

    CHEN; Huayong; (

    2001-01-01

    [1]Rui, X.J., Zhu, S.H., Liu, K.J., The basic features and regional ore-forming model of Altay primary gold deposits in Xinjiang, Geology Reviews (in Chinese), 1993, 39(2): 138.[2]Wang, G. R., Explanation to the ‘Regional Geological Structures and Geological Evolution of Northern Xinjiang in China and Its Adjacent Regions’ (in Chinese), Wuhan: China University of Geosciences Press, 1996, 108.[3]Li, H.Q., Xie, C.F., Chang, H.L., Geochronology of Mineralization of Nonferrous and Precious Metallic Deposits in Northern Xinjiang (in Chinese), Beijing: Geological Publishing House, 1998, 264.[4]Groves, D. I., Goldfarb, R. J., Gebre-Mariam, M. et al., Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types, Ore Geology Reviews, 1998, 13: 7. [5]Qiu, Y. M., Groves, D. I., Late Archean collision and delamination in the southwest Yilgarn craton: The driving force for Archean orogenic lode gold mineralization? Economic Geology, 1999, 94: 115.[6]Kerrich, R., Perspectives on genetic model for lode gold deposits, Mineral Deposits, 1993, 28: 362.[7]Chen, Y. J., Fluidization model for continental collision in special reference to study on ore-forming fluid of gold deposits in the eastern Qinling Mountains, China, Progress in Natural Sciences, 1998, 8(4): 385.[8]Chen, Y. J., Guo, G. J, Li, X., Metallogenic geodynamic background of Mesozoic gold deposits in granite-greenstone terrains of North China Craton, Science in China, Series D, 1998, 41(2): 113.[9]Chen, Y. J., Chen, H. Y., Liu, Y. L. et al., Progress and records in the study of endogenetic mineralization during collisional orogenesis, Chinese Science Bulletin, 2000, 45(1): 1.[10]Seltmann, R., Kampf, H., Moller, P., Metallogenesis in Collisional Orogens, Potsdam: GeoForschungs Zentrum Potsdam, 1994, 4-34.[11]Chen, Y. J., Yu, F., Wei, Q. Y. et al., Significance and current situation of study on

  5. Juvenile crustal recycling in an accretionary orogen: Insights from contrasting Early Permian granites from central Inner Mongolia, North China

    Science.gov (United States)

    Yuan, Lingling; Zhang, Xiaohui; Xue, Fuhong; Liu, Fulin

    2016-11-01

    Coeval high-K calc-alkaline to alkaline granites constitute important components of post-collisional to post-orogenic igneous suites in most orogenic belts of various ages on Earth and their genesis harbors a key to ascertaining critical geodynamic controls on continental crustal formation and differentiation. This zircon U-Pb dating and geochemical study documents three contrasting Early Permian granites from Erenhot of central Inner Mongolia, eastern Central Asian Orogenic Belt (CAOB) and reveals concurrent high-K calc-alkaline to alkaline granite association derived from successive partial melting of distinct protoliths. The ca. 280 Ma Gancihuduge (GCG) pluton shows a calc-alkaline I-type character, with initial 87Sr/86Sr ratios of 0.7035 to 0.7039, εNd(t) of + 1.87 to + 4.70, zircon εHf(t) of + 8.0 to + 13.2 and δ18O from 7.4 to 8.7‰. The ca. 276 Ma Cailiwusu (CLS) pluton is magnesian and peraluminous, with initial 87Sr/86Sr ratios of 0.7036 to 0.7040, εNd(t) of + 1.9 to + 2.4, zircon εHf(t) of + 6.5 to + 12.1 and δ18O from 9.7 to 10.9‰. These features are consistent with partial melts of mixed sources composed of newly underplated meta-basaltic to -andesitic protoliths and variable supracrustal components, with distinctively higher proportion of the latter in the CLS pluton. By contrast, the ca. 279 Ma Kunduleng (KDL) suite exhibits an A-type magmatic affinity, with typical enrichment in alkalis, Ga, Zr, Nb and Y, εNd(t) of + 2.39 to + 3.55, zircon εHf(t) from + 8.3 to + 12.3 and δ18O values from 6.8 to 7.5‰. These features suggest that they stem from high-temperature fusion of dehydrated K-rich mafic to intermediate protoliths. Besides presenting a snapshot into a stratified crustal architecture in δ18O, these contrasting granites could not only serve as a temporal marker for monitoring post-collisional extension in the aftermath of a retreating subduction zone, but also present spatial magmatic proxy for tracing crustal formation and

  6. Radiation Belt Dynamics

    Science.gov (United States)

    2015-12-27

    document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government...release; distribution is unlimited. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information...Radiation Belt Modeling,” co-lead by J. Albert (AFRL), W. Li (UCLA), S. Morley ( LANL ), and W. Tu (UWV). Figure 6. Precipitating Energy Flux, Simulated

  7. Kuiper Belt Occultation Predictions

    CERN Document Server

    Fraser, Wesley C; Trujillo, Chad; Stephens, Andrew W; Kavelaars, JJ; Brown, Michael E; Bianco, Federica B; Boyle, Richard P; Brucker, Melissa J; Hetherington, Nathan; Joner, Michael; Keel, William C; Langill, Phil P; Lister, Tim; McMillan, Russet J; Young, Leslie

    2013-01-01

    Here we present observations of 7 large Kuiper Belt Objects. From these observations, we extract a point source catalog with $\\sim0.01"$ precision, and astrometry of our target Kuiper Belt Objects with $0.04-0.08"$ precision within that catalog. We have developed a new technique to predict the future occurrence of stellar occultations by Kuiper Belt Objects. The technique makes use of a maximum likelihood approach which determines the best-fit adjustment to cataloged orbital elements of an object. Using simulations of a theoretical object, we discuss the merits and weaknesses of this technique compared to the commonly adopted ephemeris offset approach. We demonstrate that both methods suffer from separate weaknesses, and thus, together provide a fair assessment of the true uncertainty in a particular prediction. We present occultation predictions made by both methods for the 7 tracked objects, with dates as late as 2015. Finally, we discuss observations of three separate close passages of Quaoar to field star...

  8. 阿尔泰南缘晚石炭世淡色花岗岩的发现及其构造意义%Discovery of the Late Carboniferous Leucogranite in the Southern Altay Range and its Tectonic Implications

    Institute of Scientific and Technical Information of China (English)

    沈晓明; 张海祥; 马林

    2013-01-01

    在阿尔泰南缘的多摩拉克布拉克地区,新发现含石榴子石和白云母的淡色花岗岩侵入于早石炭世南明水组火山沉积地层中。LA-ICP-MS锆石U-Pb测年结果表明,淡色花岗岩形成于311±3 Ma的晚石炭世早期。该淡色花岗岩的发现及其年龄的确定,结合区域岩浆岩、变质岩和沉积学等资料分析,表明阿尔泰造山带南缘在~311 Ma前完成碰撞过程,并从此进入后碰撞时代。该发现为进一步研究阿尔泰造山带晚古生代构造演化提供了新的证据。%The time frame for the collision between Siberia Plate and Kazakhstan-Junggar Plate and the initiation of post-collision of the Southern Altay Range in the Late Paleozoic remain controversial. Paleozoic granitoid magmatism played an important role in the tectonic evolution of the Southern Altay Range and various origins of granitoids have been found in this region, including I-, S-, A-and M-type granitoids. Here, we report the newly discovered Duomolakebulake garnet-and muscovite-bearing leucogranite which intruded the Early Carboniferous Nanmingshui volcanic-sedimentary formation in the southern Altay Range. LA-ICP-MS zircon U-Pb dating indicates that the leucogranite was generated in the early Late Carboniferous (311±3 Ma). As an important rock type for tectonic implications, leucogranite is considered to be generated in a post-collision setting. In combination with lithology data in this region, we suggest that the collision ended prior to~311 Ma in the southern Altay Range, and then evolved into the post-collisional stage. This new discovery may shed lights on the tectonic evolution of the Altay Range in the Late Paleozoic.

  9. Summer Drought in Altay Based on Drought K Index%基于K指数的阿勒泰地区夏季气象干旱特征

    Institute of Scientific and Technical Information of China (English)

    潘冬梅; 潘雪梅

    2013-01-01

    In this paper,the characteristics of summer drought in recent 30 years were analyzed using the EOF and REOF methods based on the monthly precipitation and evaporation data and the calculated and drought K index at 7 meteorological stations in Altay,Xinjiang during the period from June to August from 1981 to 2010,and the maximum entropy spectrum and the harmonic analysis were used to analyze the major cycles of the drought K index in three regions of Altay. The results showed that, according to the drought K index, the drought occurring frequency in the western and central regions was higher than that in the eastern region of Altay. The study area could be divided into 3 regions, i. e. the southwestern valley-plain region (region Ⅰ ) , eastern hilly region ( region Ⅱ ) and northern mountainous region (region Ⅲ). Summer drought intensity in these three regions was holistically in a decrease trend. The spatial distribution of drought was affected by not only the large-scale weather system including precipitation change,but also by many other factors,such as geographical location and terrain. There were the relatively stable 10-year and 3 -5-year fluctuations of drought,but their main periodic and annual changes were significant.%利用阿勒泰地区7个气象站1981-2010年6-8月降水量以及计算得到的蒸发量和K指数,用经验正交函数分解(EOF)和旋转经验正交函数分解(REOF)方法,分析了近30 a阿勒泰地区夏季干旱特征,用最大熵谱和谐波分析方法对阿勒泰3个分区K干旱指数的主要周期进行了分析.结果显示:用K干旱指数为指标,阿勒泰地区中西部干旱发生频率高于偏东地区;全地区可分为3个区域,Ⅰ西南谷地平原,Ⅱ东部丘陵地区,Ⅲ北部山区;各分区夏季干旱总体呈下降趋势.阿勒泰干旱的空间分布除受大尺度天气系统影响外,还受地理位置、地形地势等多种因子影响.各区干旱存在准10 a的长周期和3~5a短周期

  10. Lap belt injuries in children.

    LENUS (Irish Health Repository)

    McGrath, N

    2010-07-01

    The use of adult seat belts without booster seats in young children may lead to severe abdominal, lumbar or cervical spine and head and neck injuries. We describe four characteristic cases of lap belt injuries presenting to a tertiary children\\'s hospital over the past year in addition to a review of the current literature. These four cases of spinal cord injury, resulting in significant long-term morbidity in the two survivors and death in one child, arose as a result of lap belt injury. These complex injuries are caused by rapid deceleration characteristic of high impact crashes, resulting in sudden flexion of the upper body around the fixed lap belt, and consequent compression of the abdominal viscera between the lap belt and spine. This report highlights the dangers of using lap belts only without shoulder straps. Age-appropriate child restraint in cars will prevent these injuries.

  11. SLH Timing Belt Powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Abe

    2014-04-09

    The main goal of this proposal was to develop and test a novel powertrain solution for the SLH hydroEngine, a low-cost, efficient low-head hydropower technology. Nearly two-thirds of U.S. renewable electricity is produced by hydropower (EIA 2010). According to the U.S. Department of Energy; this amount could be increased by 50% with small hydropower plants, often using already-existing dams (Hall 2004). There are more than 80,000 existing dams, and of these, less than 4% generate power (Blankinship 2009). In addition, there are over 800 irrigation districts in the U.S., many with multiple, non-power, low-head drops. These existing, non-power dams and irrigation drops could be retrofitted to produce distributed, baseload, renewable energy with appropriate technology. The problem is that most existing dams are low-head, or less than 30 feet in height (Ragon 2009). Only about 2% of the available low-head hydropower resource in the U.S. has been developed, leaving more than 70 GW of annual mean potential low-head capacity untapped (Hall 2004). Natel Energy, Inc. is developing a low-head hydropower turbine that operates efficiently at heads less than 6 meters and is cost-effective for deployment across multiple low-head structures. Because of the unique racetrack-like path taken by the prime-movers in the SLH, a flexible powertrain is required. Historically, the only viable technological solution was roller chain. Despite the having the ability to easily attach blades, roller chain is characterized by significant drawbacks, including high cost, wear, and vibration from chordal action. Advanced carbon- fiber-reinforced timing belts have been recently developed which, coupled with a novel belt attachment system developed by Natel Energy, result in a large reduction in moving parts, reduced mass and cost, and elimination of chordal action for increased fatigue life. The work done in this project affirmatively addressed each of the following 3 major uncertainties concerning

  12. The tectonic evolution of the Neoproterozoic Brasília Belt, central Brazil: a geochronological and isotopic approach

    Directory of Open Access Journals (Sweden)

    Márcio Martins Pimentel

    Full Text Available ABSTRACT: The Brasília Belt is one of the most complete Neoproterozoic orogens in western Gondwana. Rapid progress on the understanding of the tectonic evolution of the belt was achieved due to new U-Pb data, combined with Sm-Nd and Lu-Hf analyses. The evolution of the Brasília orogen happened over a long period of time (900 - 600 Ma involving subduction, magmatism and terrain accretion, as a result of the consumption of the Goiás oceanic lithosphere. Provenance studies, based on U-Pb zircon data, indicate that the sedimentary rock units record different tectonic settings and stages of the evolution of the orogen. The Paranoá and Canastra groups represent passive margin sequences derived from the erosion of the São Francisco Craton. The Araxá and Ibiá groups, however, have dominant Neoproterozoic detrital zircon populations, as young as 650 Ma, suggesting derivation from the Goiás Magmatic Arc. The Goiás Magmatic Arc represents a composite arc terrain, formed by the accretion of older (ca. 0.9 - 0.8 Ga intraoceanic island arc(s, followed by more evolved continental arcs. It extends for several thousand kilometers, from SW Goiás, through NE Brazil and into Africa. Metamorphism took place between 650 - 630 Ma reflecting final closure of the Goiás Ocean and continental collision.

  13. Orogenic gold and geologic time: A global synthesis

    Science.gov (United States)

    Goldfarb, R.J.; Groves, D.I.; Gardoll, S.

    2001-01-01

    Orogenic gold deposits have formed over more than 3 billion years of Earth's history, episodically during the Middle Archean to younger Precambrian, and continuously throughout the Phanerozoic. This class of gold deposit is characteristically associated with deformed and metamorphosed mid-crustal blocks, particularly in spatial association with major crustal structures. A consistent spatial and temporal association with granitoids of a variety of compositions indicates that melts and fluids were both inherent products of thermal events during orogenesis. Including placer accumulations, which are commonly intimately associated with this mineral deposit type, recognized production and resources from economic Phanerozoic orogenic-gold deposits are estimated at just over one billion ounces gold. Exclusive of the still-controversial Witwatersrand ores, known Precambrian gold concentrations are about half this amount. The recent increased applicability of global paleo-reconstructions, coupled with improved geochronology from most of the world's major gold camps, allows for an improved understanding of the distribution pattern of orogenic gold in space and time.

  14. Dunlop Enerka Belting supplies and installs Europe's longest conveyor belt at British Coal-Mine

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ Dunlop Enerka Belting of Farington, U.K., has supplied a steel cord conveyor belt to the mine complex at Selby in North Yorkshire operated by RJB Mining plc. The new conveyor belt replaces the belt supplied and installed in 1981 by Dunlop Enerka Belting (then BTR Belting Ltd.).

  15. Coronal radiation belts

    CERN Document Server

    Hudson, H S; Frewen, S F N; DeRosa, M L

    2009-01-01

    The magnetic field of the solar corona has a large-scale dipole character, which maps into the bipolar field in the solar wind. Using standard representations of the coronal field, we show that high-energy ions can be trapped stably in these large-scale closed fields. The drift shells that describe the conservation of the third adiabatic invariant may have complicated geometries. Particles trapped in these zones would resemble the Van Allen Belts and could have detectable consequences. We discuss potential sources of trapped particles.

  16. Large landslides lie low: Vertical domains of denudation processes in the arid Himalaya-Karakoram orogen

    Science.gov (United States)

    Blöthe, Jan Henrik

    2014-05-01

    Large bedrock landslides (defined here as affecting >0.1 km2 in planform area) are thought to substantially contribute to denuding active mountain belts, and limiting the growth of topographic relief produced by concurrent tectonic uplift and fluvial or glacial incision. While most research on large landslides has focused on tectonically active, humid mountain belts with varying degrees of rainstorm and earthquake activity, lesser attention has been devoted to arid mountain belts. Especially in the Himalaya, where high denudation rates are commonly associated with high landslide activity, previous work has largely ignored landslide processes in the arid compartments of the orogen. This was motivation for us to compile a landslide inventory covering the arid Himalaya-Karakoram of NW India and N Pakistan within the Indus catchment. Our data set contains 493 rock-slope failures that we compiled from published studies and mapping from remote sensing imagery. Using an empirical volume-area scaling approach we estimate the total landslide volume at >250 km3. This is more than thousand times the contemporary annual sediment load in the Indus River. We analyse the distribution of these volumetrically significant landslides with respect to the regional hypsometry, contemporary glacier cover, and the distribution of rock glaciers. We find that large bedrock landslides in the arid Himalaya-Karakoram region preferentially detach near or from below the study area's median elevation, while glaciers and rock glaciers occupy higher elevations almost exclusively. This trend holds true for both the study area and parts thereof. The largest and highest-lying landslides occur in the Karakoram mountains, where local relief exceeds 6 km, and >90% of the landslide areas lie below the region's median elevation. Our analysis reveals a hitherto unrecognized vertical layering of denudation processes, with landslides chiefly operating below the median elevation, whereas mass transport by

  17. What controls the growth and shape of the Himalayan foreland fold-and-thrust belt?

    Science.gov (United States)

    Grujic, Djordje; Hirschmiller, John; Mallyon, Deirdre

    2014-05-01

    We provide empirical evidence for the impact of surface processes on the structure and geometry of the present-day foreland fold-and-thrust belt (FTB) of the Himalaya. We have reconstructed and analysed ten balanced cross sections distributed along the entire length of the Himalayan arc. Here, we focus on the Siwalik Group, which represents the deformed part of the foreland basin and consists of synorogenic middle Miocene to Pleistocene sediments that form the youngest and frontal part of the Himalayan orogen. Within the active foreland fold-and-thrust belt of the Himalaya, extension, strain rate, and belt morphology vary systematically from west to east. Strain rates correlate well with west-to east increases in convergence rates according to both long-term plate velocity data and GPS data, suggesting that Pliocene to Holocene shortening is externally imposed and related to plate convergence rates. Conversely, the eastward decrease in belt width corresponds to an eastward increase in rainfall rates and specific stream power. Although mass accretion rates have not been well constrained, we argue that they remain relatively constant along the FTB. We suggest that the morphology of the Himalayan FTB is controlled primarily by erosion, in accordance with the critical taper model. Surface material removal is mainly controlled through rainfall and runoff and can be expressed as specific stream power. Thus, we propose that climatically induced erosion is the principal control on Himalayan foreland fold-and-thrust belt morphology. We test this hypothesis through a series of 1D numerical models. Among the parameters controlling the form of a wedge, lithology, erodibility, and rock mechanical properties are relatively homogeneous throughout the belt. Hence, within the range of observed values in the Himalaya, we investigate the sensitivity of the shape of the Himalayan fold-and-thrust belt to the sole-out depth of the basal décollement, flux of tectonically added material

  18. Growth of the Zagros Fold-Thrust Belt and Foreland Basin, Northern Iraq, Kurdistan

    Science.gov (United States)

    Koshnaw, Renas; Horton, Brian; Stockli, Daniel; Barber, Douglas; Ghalib, Hafidh; Dara, Rebwar

    2016-04-01

    The Zagros orogenic belt in the Middle Eastern segment of the Alpine-Himalayan system is among the youngest seismically active continental collision zones on Earth. However, due to diachronous and incremental collision, the precise ages and kinematics of shortening and deposition remain poorly understood. The Kurdistan region of the Zagros fold-thrust belt and foreland basin contains well-preserved Neogene wedge-top and foredeep deposits that include clastic nonmarine fill of the Upper Fars, Lower Bakhtiari, and Upper Bakhtiari Formations. These deposits record significant information about orogenic growth, fold-thrust dynamics, and advance of the deformation front. Thermochronologic and geochronologic data from thrust sheets and stratigraphic archives combined with local earthquake data provide a unique opportunity to address the linkages between surface and subsurface geologic relationships. This research seeks to constrain the timing and geometry of exhumation and deformation by addressing two key questions: (1) Did the northwestern Zagros fold-thrust belt evolve from initial thin-skinned shortening to later thick-skinned deformation or vice-versa? (2) Did the fold-thrust belt advance steadily under critical/supercritical wedge conditions involving in-sequence thrusting or propagate intermittently under subcritical conditions with out-of-sequence deformation? From north to south, apatite (U-Th)/He ages from the Main Zagros Thrust, the Mountain Front Flexure (MFF), and additional frontal thrusts suggest rapid exhumation by ~10 Ma, ~5 Ma, and ~8 Ma respectively. Field observations and seismic sections indicate progressive tilting and development of growth strata within the Lower Bakhtiari Formation adjacent to the frontal thrusts and within the Upper Bakhtiari Formation near the MFF. In the Kurdistan region of Iraq, a regional balanced cross section constrained by new thermochronometric results, proprietary seismic reflection profiles, and earthquake hypocenters

  19. Apatite fission-track thermochronological constraints on the pattern of late Mesozoic-Cenozoic uplift and exhumation of the Qinling Orogen, central China

    Science.gov (United States)

    Chen, Hong; Hu, Jianmin; Wu, Guoli; Shi, Wei; Geng, Yingying; Qu, Hongjie

    2015-12-01

    The Qinling Orogen of central China was formed by intracontinental collision between the North and South China Blocks. The orogen comprises several micro-blocks bounded by sutures and faults, and has undergone long-term intracontinental deformation since the Late Triassic. The micro-blocks include the southern margin of the North China Block (S-NCB), the Northern Qinling Belt (NQB), the Southern Qinling Belt (SQB), and the northern margin of the South China Block (N-SCB). Under a uniform tectonic setting in late Mesozoic-Cenozoic, these micro-blocks have been subjected to a range of deformation styles, as demonstrated by their structural deformation, history of magmatism, and the development of sedimentary basins. To investigate the differences among the micro-blocks and to quantify their uplift and exhumation, we obtained 45 rock samples from eight Mesozoic granites in these micro-blocks, and conducted apatite fission-track (AFT) thermochronological modeling. The results reveal that the Qinling Orogen underwent four distinct stages of rapid cooling histories during the late Mesozoic-Cenozoic, and showed variation in uplift and exhumation whereby the intracontinental deformation started in the south (the N-SCB) and propagated to the north (S-NCB). In the first stage, during the Late Jurassic-Early Cretaceous (ca. 160-120 Ma), rock cooling occurred mainly in the N-SCB, attributed to the clockwise rotation and northward subduction of the South China Block beneath the Qinling Orogen. In the second stage, compression- and extension-related uplift was initiated during the late Early Cretaceous-early Late Cretaceous (ca. 120-90 Ma) in the SQB, consistent with the southward subduction of the North China Block and broadly extensional deformation in the eastern China continent. In the third stage, a gentle regional-scale cooling event that occurred during the latest Cretaceous-Paleocene (ca. 90-50 Ma) started in the NQB and became widespread in the Qinling Orogen. This

  20. Precambrian crustal evolution and Cretaceous–Palaeogene faulting in West Greenland: Evolution of Neoarchaean supracrustal belts at the northern margin of the North Atlantic Craton, West Greenland

    Directory of Open Access Journals (Sweden)

    Stensgaard, Bo Møller

    2006-12-01

    Full Text Available The Archaean North Atlantic Craton of West Greenland collided at c. 1.9 Ga with a lesser-known Archaean craton to the north, to form the Nagssugtoqidian orogen. The Palaeoproterozoic metamorphic grade and strain intensity decrease northward through the orogen, allowing investigation of the reworked Archaean components in its northern part. Two Archaean supracrustal belts in this region – the Ikamiut and Kangilinaaq belts – are investigated here using field mapping, aeromagnetic data, zircon geochronology, and geochemistry. Both belts comprise quartzo-feldspathic and pelitic metasedimentary rocks, amphibolite, and minor calc-silicate rocks, anorthosite and ultramafic rocks. Pb-Pb and U-Pb dating of detrital zircons and host orthogneisses suggest deposition at c. 2800 Ma (Kangilinaaq belt and after 2740 Ma (Ikamiut belt; both belts have zircons with Neoarchaean metamorphic rims. Metasedimentary rocks and orthogneisses at Ikamiut share similar steep REE signatures with strong LREE enrichment, consistent with local derivation of the sediment and deposition directly onto or proximal to the regional orthogneiss precursors. Zircon age data from Kangilinaaq indicate both local and distal sources for the sediment there. Geochemical data for Kangilinaaq amphibolites indicate bimodal, mixed felsic–mafic source rocks with island-arc basaltic affinities, consistent with a shelf or arc setting. Both belts experienced a similar tectono-metamorphic history involving Neoarchaean amphibolite facies peak metamorphism at c. 2740–2700 Ma, possibly due to continued emplacement of tonalitic and granodioritic magmas. Nagssugtoqidian lower amphibolite facies metamorphism at c. 1850 Ma was associated with development of the large-scale F2 folds and shear zones that control the present outcrop pattern. The observed differences in the sources of the Kangilinaaq and Ikamiut belts and their shared post-Archaean history suggest they were formed in different

  1. Crustal mechanics control the geometry of mountain belts. Insights from numerical modelling

    Science.gov (United States)

    Vogt, Katharina; Matenco, Liviu; Cloetingh, Sierd

    2017-02-01

    Continental collision forms mountain ranges that have shaped much of Earth's topography. Yet, the process by which material is transported and redistributed in collision zones remains debatable. Here we present a series of two-dimensional thermo-mechanical experiments on continent-continent collision zones to investigate the role of crustal strength in terms of geometry, deformation and exhumation. Depending on the crustal rheology, rate of collision and initial temperature distribution, continental collision may form double vergent orogens or result in continental subduction. Double vergent orogens are characterized by subduction of the lithospheric mantle, diffuse fore- and highly localized retro-shears, elevated topographies, and exhumation of high grade metamorphic rocks. In contrast, continental subduction results in subduction of lower continental crust, the formation of a wedge shaped Moho, a foreland propagating deformation zone, "lower" topographic build-up and exhumation of low grade metamorphic rocks. It is the combination of strength variations and ambient conditions that determines the geometry of mountain belts. Strong rheological coupling of upper and lower crust forms double vergent orogens; low rheological coupling of upper and lower crust results in continental subduction.

  2. U-Pb zircon ages and geochemistry of the Wuguan complex in the Qinling orogen, central China: Implications for the late Paleozoic tectonic evolution between the Sino-Korean and Yangtze cratons

    Science.gov (United States)

    Chen, Longyao; Liu, Xiaochun; Qu, Wei; Hu, Juan

    2014-04-01

    The tectonic evolution of the Qinling orogen, central China, is the key to understanding the assembly of the Sino-Korean and Yangtze cratons. The Wuguan complex, between the early Paleozoic North Qinling and Mesozoic South Qinling tectonic belts, can provide important constraints on the late Paleozoic evolutionary processes in the Qinling orogen. U-Pb zircon analyses, using laser ablation-multicollector-inductively coupled plasma-mass spectrometry, reveal protolith ages of 446 ± 2 Ma for a garnet amphibolite, 368 ± 3 Ma for a meta-andesite, and 351 ± 2 Ma for a mylonitized granitic dike from the Wuguan complex. Elemental geochemistry indicates typical island arc affinities for all the above rocks, but some amphibolites of unknown age have E-MORB signatures. Detrital zircons from a metaquartzite have an age spectrum with a major peak at 462 Ma, two subordinate peaks at 828 and 446 Ma, and a youngest weighted mean age of 423 ± 5 Ma. This suggests that at least some of metasedimentary rocks from the Wuguan complex belong to the part of the Devonian turbidite sequence of the Liuling Group, which was deposited in a fore-arc basin along the southern accreted margin of the Sino-Korean craton, whereas the late Ordovician precursors of the amphibolite might be derived from the Danfeng Group. The occurrence of late Devonian-early Carboniferous arc-related rocks in the Wuguan complex implies penecontemporaneous oceanic subduction, and therefore the Paleo-Qinling Ocean was not finally closed until the early Carboniferous. On the other hand, metamorphic zircon grains from two amphibolites yielded ages of 321 ± 2 and 318 ± 3 Ma. Hence, the Wuguan complex in the Qinling orogen and the Guishan complex in the Tongbai orogen constitute a medium-pressure Carboniferous metamorphic belt that is more than 500 km long, and which was formed in the hanging wall of a subduction zone.

  3. Geography of the asteroid belt

    Science.gov (United States)

    Zellner, B. H.

    1978-01-01

    The CSM classification serves as the starting point on the geography of the asteroid belt. Raw data on asteroid types are corrected for observational biases (against dark objects, for instance) to derive the distribution of types throughout the belt. Recent work on family members indicates that dynamical families have a true physical relationship, presumably indicating common origin in the breakup of a parent asteroid.

  4. Ore fluid geochemistry of the Jinlongshan Carlin type gold ore belt in Shaanxi Province, China

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Jinlongshan gold ore belt in southern Shaanxi Province contains a number of Carlin-type gold deposits in the Qinling collisional orogenic belt. Their fluid inclusions are of the Na+ - Cl- type. From the main metallogenic stage to later stages, the total quantity of anions and cations, temperature and deoxidation parameter (R) for fluid inclusions all gradu ally decreased, suggesting the gradual intensification of fluid oxidation, the reduction of met allogenic depth and the input of meteoric water and organic components. The deposits were formed during crustal uplifting and hence had similar tectonic settings to orogenic gold depos its. The CO2 contents and CO2/H2O values of the ore fluid increased from early to late sta ges, and the wall-rock alteration is represented by decarbonation, which is inconsistent with the characteristics of orogenic gold deposits. It is also discovered that Na + , K + ,SO42-, Cl-and the total amounts of anions and cations in the inclusions in quartz are higher than those in the coexisting calcite. The H, O and C isotope ratios indicate that the ore fluid was sourced from meteoric water and metamorphic devolatilisation of the sedimentary rocks that host the ores. The high background δ18O and δ13C values of wall rocks resulted in high δ18O and δ13 C values of ore fluid and also high δ 18 O and δ 13 C values of hydrothermal minerals such as quartz and carbonate. The carbon in ore fluid stemmed largely from the hosting strata. The δ 18O and δ13C values of Fe-calcite and the δD values of fluid inclusions are lower than those of calcite and quartz. In terms of the theory of coordination chemistry, all these differences can be ascribed to water-rock interaction in the same fluid system, instead, to the multi source of ore fluid.

  5. Early Jurassic tectonism occurred within the Basu metamorphic complex, eastern central Tibet: Implications for an archipelago-accretion orogenic model

    Science.gov (United States)

    Li, Hua-Qi; Xu, Zhi-Qin; Webb, A. Alexander G.; Li, Tian-Fu; Ma, Shi-Wei; Huang, Xue-Meng

    2017-04-01

    The Basu metamorphic complex, surrounded by ophiolitic melanges and intruded by a large volume of undeformed granitoid rocks along the eastern segment of the Bangong-Nujiang suture, holds one of the keys to understanding the pre-Cenozoic tectonic evolution of central Tibet. Zircon U-Pb dating of rocks from the Basu metamorphic complex reveals that meta-igneous rocks yield Early Paleozoic crystallization ages of 500-492 Ma and an Early Jurassic metamorphic age of 173 Ma, and that undeformed granitoid rocks yield crystallization ages of approximately 186-174 Ma. Whole rock geochemical and zircon Lu-Hf isotopic data indicate that the undeformed granitoid rocks originated mainly from partial melting of ancient crustal sources, which may reflect a collisional orogenic setting. 40Ar/39Ar dating of biotite from a sillimanite-garnet-biotite paragneiss shows cooling to 300 ± 50 °C at 165 Ma. These data indicate significant Early Jurassic tectonism, during which most of the Basu metamorphic complex was formed. Furthermore, the age data resemble those of the Amdo metamorphic complex located approximately 500 km to the west along the Bangong-Nujiang suture. Together, these complexes may represent a ;destroyed or unrecognized; block, i.e., the Amdo-Tongka block, which may be the eastern extension of the South Qiangtang terrane. Based on the tectonic outlines of the multiple ophiolitic zones and magmatic belts, we suggest a new archipelago-accretion model that attributes the Early Jurassic tectonism to an arc-continent/micro-continent collision. This model further enables the reconstruction of the eastern Tethyan Ocean and the orogenic processes of central Tibet during the Mesozoic.

  6. Two types of mineralization and genesis in Sarekoubu-Tiemurte area of Altay Xinjiang%新疆阿尔泰萨热阔布—铁木尔特地区两类矿化及成因

    Institute of Scientific and Technical Information of China (English)

    王琳琳; 徐九华; 孙丰月; 林龙华; 褚海霞

    2012-01-01

    新疆阿尔泰南缘萨热阔布—铁木尔特一带的矿床均赋存于下泥盆统康布铁堡组的变质岩系中.早泥盆世的海相火山形成了Zn-Pb (Cu)矿化,晚泥盆世-早石炭世的碰撞造山相应形成了Cu- Au石英脉矿化;前者以铁木尔特VMS型Zn-Pb (Cu)矿床为代表,后者以造山型萨热阔布金矿为代表,与造山有关的脉状矿化还叠加在铁木尔特等VMS矿床中.通过对比两类矿化的稳定同位素特征,结合矿化的变形变质和流体包裹体特征,研究了成矿物质、成矿流体来源和矿床成因.萨热阔布金矿主成矿阶段硫化物石英脉和铁木尔特Zn-Pb (Cu)矿床中晚期发育的含黄铜矿石英脉中均富含碳质( CO2-CH4-N2)流体包裹体,可能与碰撞造山的热液流体作用有关.铁木尔特Zn-Pb (Cu)矿床中代表VMS期的浸染状矿石中硫化物δ34S为-26.46×10-3~-19.72×10-3,硫主要来源于海水硫酸盐的无机还原和细菌还原作用;而代表后期叠加改造的脉状矿化硫化物值与萨热阔布金矿床硫化物石英脉中δ34S值接近,硫主要来源于造山过程中的深源流体.萨热阔布金矿床硫化物石英脉和铁木尔特Zn-Pb (Cu)矿床晚期含黄铜矿石英脉的δDH2o值和δ18OH2O值,均反映了碰撞造山期热液与岩浆活动和变质作用有关.萨热阔布金矿硫化物石英脉中碳质流体包裹体CO2体系中δ13C为- 21.15×10-3~-7.51×10-3,CH4体系的δ13C为-34.11 ×10-3~-28.38×10-3;铁木尔特Zn-Pb (Cu)矿床含黄铜矿石英脉中碳质包裹体测得的δ13C为-8.02×10-3~-6.99×10-3,δ13C特征与海相火山沉积无关,具岩浆源或深部源的特点.%The Sarekoubu-Tiemurte deposits in southern Altay of Xinjiang occurred in metamorphic rocks of Lower Devonian Kangbutiebao Formation. The Zn-Pb (Cu) mineralization related to the Early Devonian marine volcanic deposition Zn-Pb (Cu) and the late Devonian-Early carbonifeneus quartz veins mineralization related to the

  7. Metallogenesis of the Ertix gold belt, Xinjiang and its rela-tionship to Central Asia-type orogenesis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Ertix gold belt is located on the boundary of the Kalatongkearc and the Kelan back-arc basin of D-C1. Most scholars used to interpret the formation and distribution of the gold deposits in the Ertix tectonic belt in terms of the petrogenic and metallogenic models for active continental margins. However, enormous data of isotopic dating and geologic research show that the mineralization was obviously later than the oceanic subduction, whereas exactly simultaneous with the collisional orogenesis during C2-P, especially at the transition stage from collisional compression to extension. Based on study of metallogenic time, tectonic background, ore geology, ore fluid nature, ore material source, etc., we reveal that all the gold deposits possess the character of orogenic deposits formed in collisional orogenic system, and that their ore-forming materials mainly have derived from the stratigraphic terranes south to individual deposits. Accordingly, the theoretical tectonic model for collisional metallogenesis and petrogenesis is employed to explain the formation of the Ertix gold belt and to determine the gold exploration directions.

  8. Evaluation of the static belt fit provided by belt-positioning booster seats.

    Science.gov (United States)

    Reed, Matthew P; Ebert, Sheila M; Sherwood, Christopher P; Klinich, Kathleen D; Manary, Miriam A

    2009-05-01

    Belt-positioning booster seats are recommended for children who use vehicle seat belts as primary restraints but who are too small to obtain good belt fit. Previous research has shown that belt-positioning boosters reduce injury risk, but the belt fit produced by the wide range of boosters in the US market has not previously been assessed. The present study describes the development of a method for quantifying static belt fit with a Hybrid-III 6-year-old test dummy. The measurement method was applied in a laboratory seat mockup to 31 boosters (10 in both backless and highback modes) across a range of belt geometries obtained from in-vehicle measurements. Belt fit varied widely across boosters. Backless boosters generally produced better lap belt fit than highback boosters, largely because adding the back component moved the dummy forward with respect to the lap belt routing guides. However, highback boosters produced more consistent shoulder belt fit because of the presence of belt routing guides near the shoulder. Some boosters performed well on both lap belt and shoulder belt fit. Lap belt fit in dedicated boosters was generally better than in combination restraints that also can be used with an integrated harness. Results demonstrate that certain booster design features produce better belt fit across a wide range of belt geometries. Lap belt guides that hold the belt down, rather than up, and shoulder belt guides integrated into the booster backrest provided better belt fit.

  9. Recognition of hyper-extended rifted margin remnants in the internal zone of the Alpine belt: A tribute to Marco Beltrando

    Science.gov (United States)

    Mohn, Geoffroy; Manatschal, Gianreto

    2016-04-01

    Marco Beltrando was part of the young generation of Alpine geologists who challenged the interpretation of the Western Alps by combining a classical field approach and modern techniques (e.g. 40Ar/39Ar and (U-Th)/He thermochronology). His work provides the foundation to re-interpret some of the classical sections through the Alpine belt and may impact the way of thinking about the nature and structure of internal parts of collisional orogens. This contribution will present the main outcomes of the work of Marco Beltrando and their implications for the understanding of Alpine type orogens. Since his PhD, Marco Beltrando focused most of his work on the study of the internal parts of the Western Alps. He investigated in great details the complex, multiphase structural and metamorphic evolution of the Penninic units in the Western Alps. He concluded that these units went through several cycles of shortening and extension during the Alpine orogeny, with major implications for the Alps but also other orogenic belts. After his PhD, he focused his research on the pre-orogenic evolution of the Alpine belt. He first worked on the Petit St. Bernard area, where he identified relics of the former hyper-extended Tethyan rifted margin. Thanks to his work and his amazing knowledge of the Western Alps, he understood the potential importance of rift-inheritance in controlling the architecture and evolution of the Alpine belt. In parallel to the study of the orogenic evolution, he developed a new methodology to recognize rift-related lithostratigraphic units in highly deformed and metamorphosed parts of the Alps. His innovative work allowed a re-assessment of several areas in the Western Alps and demonstrates the importance of rift inheritance. Recently, he started a new research project on the evolution of the Southern Alps highlighting the importance of heating and cooling cycles resulting from complex successions of rifting events. In spite of his young age, Marco Beltrando was at

  10. Tectonic evolution of the Irtysh collision belt: New zircon U-Pb ages of deformed and collisional granitoids in the Kalaxiangar area, NW China

    Science.gov (United States)

    Tao, Hong; Jun, Gao; Xingwang, Xu; Klemd, Reiner

    2016-04-01

    The CAOB is thought to have formed by multiple accretion and collision of various microcontinents, island arcs, oceanic plateaus and accretionary wedges due to the closure of the Paleo-Asia Ocean [1, 2, 3]. The Irtysh collision belt is located at the middle-western part of the CAOB and generally thought to be the result of the collision of the Sawuer Island arc and the Altay Terrane, subsequent to the consumption of the Early Paleozoic Junggar Ocean, a branch of Paleo-Asia Ocean. Therefore, the exact timing of the Irtysh collision belt is crucial for a better understanding of the tectonic evolution of this collision belt and will provide constraints on the evolution of the CAOB. Recently, we discovered various collisional granitoids in the Kalaxiangar tectonic belt (KTB), which is located in the eastern part of the Irtysh collision belt. In this contribution, we report new geochemical whole-rock, zircon U-Pb and Hf isotopic data of the arc-related and collisional granitoids. Our new results reveal that 1) the arc-related granodioritic porphyries formed at ca. 374 Ma. Furthermore, recrystallized zircons from the granodioritic mylonite and ultramylonite of the Laoshankou ductile deformation zone have a similar U-Pb age of ca. 360 Ma; 2) the syn-collisional granodioritic porphyries, which distribute along cleavege, were emplaced at ca. 355 Ma; 3) the post-collisional A-type granodioritic porphyry, which cuts the NW-NNW trending schistosity at a low angle, has an age of ca. 323 Ma, ɛHf(t) values from + 7.5 to + 14.4, and young Hf model ages between 387 and 658 Ma; 4) the post-collisional A-type granite dykes, which are exposed along strike-slip faults, have ages between 282.5 and 279.2Ma, ɛHf(t) values from + 4.8 to + 12.6, and Hf model ages between 436 and 729 Ma; 5) the A-type biotite granite dykes that intruded along conjugate tension joints have ages between 273.9 and 271.4 Ma, ɛHf(t) values from + 1.1 to + 12.8, and Hf model ages between 393 and 979 Ma. In

  11. Cambro-Ordovician magmatism in the Araçuaí Belt (SE Brazil): Snapshots from a post-collisional event

    Science.gov (United States)

    De Campos, Cristina P.; de Medeiros, Silvia R.; Mendes, Julio C.; Pedrosa-Soares, Antonio C.; Dussin, Ivo; Ludka, Isabel P.; Dantas, Elton L.

    2016-07-01

    The focus of the present work is the rebound of the magmatism at the late stages of orogenic collapse in the Araçuaí Belt, in Brazil. At the end of the orogen bimodal inversely zoned plutons were emplaced along a tectonic corridor following the Atlantic coast of Brazil. This event culminates around 500 Ma. We review geology, petrography, geochemistry and geochronology of these plutonic structures in the region of Espírito Santo. New geochemical modeling of trace element data together with new whole rock Sm-Nd and Rb-Sr isotopic data depict a gradual process of mantle contamination during different stages of the orogen. In the post-orogenic stage contamination reaches extreme values. Basic rocks reach εNd(0.5Ga) values below -10. Gabbros to peridotites are more enriched in Ba, Zr, LREE and Sr than the surrounding metasediments. Four new U-Pb data sets from determinations in zircon and monazite crystals, (central northern part of the belt) confirm peak magma production around 500 ± 15 Ma, ranging up to 525 ± 3 Ma in one of the structures. Based on the pictured data, we discuss the significance of this magmatism and present a possible model: a process of gradational delamination of the subcontinental lithospheric mantle and adjacent deep continental crust through underplating. As a consequence, an already enriched mantle was dramatically further contaminated. At the end of this event the intrusion of alkaline melts, with less negative εNd (-5) and further enrichment in incompatible elements, point towards a new input of deeper juvenile mantle magma. Our data suggest the possible onset of a hotspot due to the destabilization of the asthenospheric mantle after orogenic collapse.

  12. Seat Belt Use and Stress in Adolescents.

    Science.gov (United States)

    Schichor, Aric; And Others

    1990-01-01

    Explored adolescent seat belt use and psychosocial risk factors in urban minority population (n=541). Found seat belt use reported by 49 percent of respondents. Those reporting no or intermittent seat belt use were significantly more likely than seat belt users to feel down, have decreased home support, have problems with school and the law, and…

  13. 49 CFR 393.93 - Seats, seat belt assemblies, and seat belt assembly anchorages.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Seats, seat belt assemblies, and seat belt... § 393.93 Seats, seat belt assemblies, and seat belt assembly anchorages. (a) Buses—(1) Buses... the driver's seat and seat belt assembly anchorages that conform to the location and...

  14. Tectonic evolution of the Dom Feliciano Belt in Southern Brazil: Geological relationships and U-Pb geochronology

    Directory of Open Access Journals (Sweden)

    Ruy Paulo Philipp

    Full Text Available ABSTRACT: The Dom Feliciano Belt is an important Neoproterozoic to Cambrian orogenic complex, extending from eastern Uruguay to southern Brazil. It comprises a collage of oceanic domains and continental fragments developed between 900 and 540 Ma between the Rio de La Plata, Congo and Kalahari cratons. The integration of field and structural data with recent isotopic results has introduced new insights on the sources of the magmatism and sedimentary processes. This paper presents a review of the geochronological results combined with stratigraphic, structural and geochemical data. The evolution of the Dom Feliciano Belt involved three orogenic events known as the Passinho (0.89 - 0.86 Ga, São Gabriel (0.77 - 0.68 Ga and Dom Feliciano (0.65 - 0.54 Ga. The first two events involved the closure of the Charrua Ocean generating an intra-oceanic arc (Passinho and, subsequently, an active continental margin arc (São Gabriel. This ocean separated the continental areas represented by the Rio de la Plata Craton and the Nico Perez continental microplate. Closure of the Adamastor ocean resulted in an important collisional event between the Nico Perez Microplate/Rio de La Plata Craton and Kalahari and Congo cratons between 650 and 620 Ma, involving high T/intermediate P metamorphism. At this time of crustal thickening, the partition of the deformation controled the final evolution of the belt with important escape tectonics, responsible for nucleating crustal-scale transcurrent shear zones. These structures were deep and promoted the rise of mafic magmas, which, associated with high regional thermal gradient, lead to an important event of crustal reworking, responsible for the formation of the Pelotas Batholith. The orogenic collapse is represented by late magmatism of Pelotas Batholith and deposition of upper section of the Camaquã Basin.

  15. Thermo-kinematic evolution of the Annapurna-Dhaulagiri Himalaya, central Nepal: The Composite Orogenic System

    Science.gov (United States)

    Parsons, A. J.; Law, R. D.; Lloyd, G. E.; Phillips, R. J.; Searle, M. P.

    2016-04-01

    The Himalayan orogen represents a "Composite Orogenic System" in which channel flow, wedge extrusion, and thrust stacking operate in separate "Orogenic Domains" with distinct rheologies and crustal positions. We analyze 104 samples from the metamorphic core (Greater Himalayan Sequence, GHS) and bounding units of the Annapurna-Dhaulagiri Himalaya, central Nepal. Optical microscopy and electron backscatter diffraction (EBSD) analyses provide a record of deformation microstructures and an indication of active crystal slip systems, strain geometries, and deformation temperatures. These data, combined with existing thermobarometry and geochronology data are used to construct detailed deformation temperature profiles for the GHS. The profiles define a three-stage thermokinematic evolution from midcrustal channel flow (Stage 1, >700°C to 550-650°C), to rigid wedge extrusion (Stage 2, 400-600°C) and duplexing (Stage 3, modular components of a Composite Orogenic System. These Orogenic Domains may be active at the same time at different depths/positions within the orogen. The thermokinematic evolution of the Annapurna-Dhaulagiri Himalaya describes the migration of the GHS through these Orogenic Domains and reflects the spatial and temporal variability in rheological boundary conditions that govern orogenic systems.

  16. Chaos on the conveyor belt

    CERN Document Server

    Sándor, Bulcsú; Tél, Tamás; Néda, Zoltán

    2013-01-01

    The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by spring to an external static point, and due to the dragging effect of the belt the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can only be achieved by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic dynamics and phase transition-like behavior. Noise induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks, around five.

  17. The Pyhäntaka formation, southern Finland: a sequence of metasandstones and metavolcanic rocks upon an intra-orogenic unconformity

    Directory of Open Access Journals (Sweden)

    Mikko Nironen

    2011-08-01

    Full Text Available Detrital zircon studies suggest that the few quartzite occurrences in southern Finland are younger than 1.87 Ga and express sedimentation after 1.89–1.87 Ga accretional deformation and metamorphism in the Svecofennian orogenic belt. Detailed field work in the high-grade metamorphic Pyhäntaka area allowed to distinguish an overturnedformation within metagraywackes (cordierite paragneisses and psammites. The Pyhäntaka formation has a maximum thickness of 1000 meters and consists of quartzite overlain by meta-arkose, metatuff, and metabasalt on top. An uncorformity, expressed by aweathering surface, separates the quartzite from underlying metagraywacke. The metavolcanic rocks within, stratigraphically underlying and overlying the Pyhäntaka formation are mostly basalts and basaltic andesites, but a felsic volcanic rock and dacitic fragments in volcaniclastic rocks imply bimodal affinity. The quartzite was deposited during a stable intra-orogenic period probably after accretion but before 1.83–1.80 Ga collisionaldeformation and metamorphism in the Svecofennian orogen. Rifting during the intraorogenic period and accumulation of variable material in the rift from nearby sources by fluvial processes is a viable scenario for deposition and preservation of the Pyhäntakaformation. Geochemical diagrams of the metavolcanic rocks show a scatter that is best explained by source heterogeneity and crustal contamination. Despite their (likely postaccretion setting the basaltic rocks show arc-type characteristics due to subduction-modified lithospheric mantle sources. Because of recycling, also the paragneisses in the Pyhäntaka area are geochemically similar in spite that they represent different tectonic settings. The use of elemental geochemistry alone appears to be insufficient for discriminatingtectonic settings of basalts or graywackes in the Svecofennian of southern Finland where accretion and post-accretion settings were largely obliterated by late

  18. The lithosphere of the Appalachian orogen and Atlantic passive margin

    Science.gov (United States)

    Fischer, K. M.; MacDougall, J. G.; Hawman, R. B.; Parker, E. H.; Wagner, L. S.

    2012-12-01

    The lithosphere of the Appalachian orogen and Atlantic passive margin has recorded repeated episodes of continental collision and break-up. Improved resolution of crust and mantle structure in this region holds promise for better understanding of orogenesis, rifting and passive margin development. At a broad scale, tomographic models manifest a decrease in lithospheric thickness from the central U.S. craton into the Appalachian orogen. Migration of Sp scattered waves indicates that a significant drop in shear-wave velocity typically occurs at depths of 80-120 km in the eastern U.S., and where these phases fall within the transition from high velocity lid to lower velocity mantle obtained from tomography, they are interpretable as the seismological lithosphere-asthenosphere boundary. Beneath the Appalachians and coastal plain, Sp-derived lithospheric thicknesses are larger than those found in the tectonically active western U.S. where values range from 40-90 km. The vertical shear velocity gradients required to produce the observed Sp phases are sharp (drops of 4-10% over governed solely by temperature, but they may be explained by small amounts of partial melt or enhanced volatile content in the asthenosphere. While an asthenospheric low velocity zone appears to be ubiquitous beneath the continent, minimum velocities (and likely viscosities) within the eastern U.S. asthenosphere are not as low as those in the western U.S. At smaller scales, Sp imaging hints at lithospheric thickness variations that are correlated with tectonic features (e.g. orogenic boundaries, failed rifts) but resolution will be vastly improved with analysis of data from USArray Transportable and Flexible Arrays. The goal of the Southeastern Suture of the Appalachian Margin Experiment (SESAME) is to better understand lithospheric structures produced by accretion and rifting processes, with a particular focus on the Laurentia-Gondwana suture proposed in southern Georgia, adjacent regions of

  19. A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China

    Directory of Open Access Journals (Sweden)

    Franco Pirajno

    2011-04-01

    Full Text Available In this paper we present a review of mineral systems in northern Xinjiang, NW China, focussing on the Tianshan, West and East Junggar and Altay orogenic belts, all of which are part of the greater Central Asian Orogenic Belt (CAOB. The CAOB is a complex collage of ancient microcontinents, island arcs, oceanic plateaux and oceanic plates, which were amalgamated and accreted in Early Palaeozoic to Early Permian times. The establishment of the CAOB collage was followed by strike-slip movements and affected by intraplate magmatism, linked to mantle plume activity, best exemplified by the 250 Ma Siberian Traps and the 280 Ma Tarim event. In northern Xinjiang, there are numerous and economically important mineral systems. In this contribution we describe a selection of representative mineral deposits, including subduction-related porphyry and epithermal deposits, volcanogenic massive sulphides and skarn systems. Shear zone-hosted Au lodes may have first formed as intrusion-related and subsequently re-worked during strike-slip deformation. Intraplate magmatism led to the emplacement of concentrically zoned (Alaskan-style mafic–ultramafic intrusions, many of which host orthomagmatic sulphide deposits. A huge belt of pegmatites in the Altay orogen, locally hosts world-class rare metal deposits. Roll-front, sandstone-hosted U mineralisation completes the rich mineral endowment of the northern Xinjiang terranes.

  20. Geological and geochemical character and genesis of the Jinlongshan-Qiuling gold deposits in Qinling orogen: Metallogenic mechanism of the Qinling-pattern Carlin-type gold deposits

    Institute of Scientific and Technical Information of China (English)

    张复新,陈衍景,李超Department; of; Geology,; Peking; University,; Beijing; 100871,; China; ,张静Department; of; Geology,; Peking; University,; Beijing; 100871,; China; ,马建秦,李欣Department; of; Geology,; Peking; University,; Beijing; 100871,; China

    2000-01-01

    The Qinling Carlin-type gold deposit belt is the second largest Carlin-type gold ore concentrated area in the world and occurs in Mesozoic intracontinental collisional orogen, contrasting to the Carlin-type gold deposits in the Basin and Range province in Cenozoic active continental margin of West America. With ore-forming ages focussed at the range of 197.45-129.45 Ma, its metallogenic geodynamic background was the decornpression-pyrogenation regime at the transition stage from collisional compression to extension, indicating that gold mineralization synchronized with the Mesozoic continental collision. Geochemical studies discover that ore fluids and materials mainly came from the Hercynian-lndosinian tectonic layer. Mesozoic intracontinental subduction of Hercynian-lndosinian association along the Shuanghe-Gongguan fault led to the formation of Jinlongshan-Qiuling gold deposits. Accordingly, the tectonic metallogenic model is established for Qinling-pattern Carlin-type gold deposits.

  1. Experimental deformation partitioning in obliquely converging orogens with lateral variations of basal décollement rheology: Inferences for NW Zagros, Iran

    Science.gov (United States)

    Sadeghi, Shahriar; Storti, Fabrizio; Yassaghi, Ali; Nestola, Yago; Cavozzi, Cristian

    2016-12-01

    The rheology of décollement materials fundamentally constrains the kinematic evolution and tectonic architecture of orogenic belts. In this paper, we present the result of an experimental program designed for investigating, by sandbox analog modeling, the impact of the spatial distribution of décollement rheology underneath an inner carbonate platform-basin-outer carbonate platform paleogeographic architecture undergoing traspressional deformations. Our models indicate that viscous décollements at the base of both platforms favor the outward propagation of deformation, duplexing in the Inner Platform (that faces the wedge toe), and deep burial of basinal sediments. On the other hand, frictional rheologies favor internal shortening in the basin, strong uplift and limited burial. Application of experimental results to better constrain the late Cretaceous tectonic evolution of the NW Zagros is discussed.

  2. Using vein fabric and fluid inclusion characteristics as an integrated proxy to constrain the relative timing of non cross-cutting, syn- to late-orogenic quartz vein generations

    Science.gov (United States)

    Jacques, Dominique; Muchez, Philippe; Sintubin, Manuel

    2014-05-01

    Research on ancient fluid systems mainly focuses on veins, because they offer the opportunity to combine macro- and microstructural data with geochemical data to gain insight into the P-T-X conditions present during veining. By applying such an integrated petrographic and microthermometric methodology to syn- to late-orogenic quartz veins in the Palaeozoic High-Ardenne slate belt (Belgium), we were able to define the relative timing and related P-T-X conditions of different quartz vein generations, despite of the absence of any mutual cross-cutting relationships in the field (Jacques et al., 2014). The different quartz vein generations represent the meso-scale brittle accommodation during fold initiation, amplification and locking. The presence of free polycrystal growth in cavities at a midcrustal depth, and fluid-assisted brecciation indicate that veining occurred under overpressured fluid conditions during the orogeny. Significant differences in crystal-plastic deformation microstructures and P-T trapping conditions indicate that the different processes accommodating folding occurred in a progressive manner along a retrograde deformation path. While vein quartz in an extrados vein and in the peripheral part of a lenticular, fault-accommodating vein shows moderate crystal-plastic deformation (e.g. bulging recrystallisation, deformation lamellae, shear bands), crystal-plastic deformation is relatively absent in the vein quartz of a saddle reef and the core of the lenticular vein (i.e. no to minor undulose extinction). Successive veining occurred from peak metamorphic conditions (ca. 300 ° C and 190 MPa), measured in the extrados vein, to lower P-T conditions in the periphery of the lenticular vein (ca. 275 ° C and 180 MPa), the late-orogenic saddle reef (ca. 245 ° C and 160 MPa) and the core of the lenticular vein (ca. 220 ° C and 150 MPa). The relative timing and accompanying decrease in P-T conditions of the different quartz vein generations reflect the

  3. Northern Belt of Jupiter

    Science.gov (United States)

    2000-01-01

    [figure removed for brevity, see original site] A four-panel frame shows a section of Jupiter's north equatorial belt viewed by NASA's Cassini spacecraft at four different wavelengths, and a separate reference frame shows the location of the belt on the planet.A fascinating aspect of the images in the four-panel frame is the small bright spot in the center of each. The images come from different layers of the atmosphere, so the spot appears to be a storm penetrating upward through several layers. This may in fact be a 'monster' thunderstorm, penetrating all the way into the stratosphere, as do some summer thunderstorms in the midwestern United States. These images were taken on Nov. 27, 2000, at a resolution of 192 kilometers (119 miles) per pixel. They have been contrast-enhanced to highlight features in the atmosphere.The top panel of the four-panel frame is an image taken in a near-infrared wavelength at which the gases in Jupiter's atmosphere are relatively non-absorbing. Sunlight can penetrate deeply into the atmosphere at this wavelength and be reflected back out, providing a view of an underlying region of the atmosphere, the lower troposphere.The second panel was taken in the blue portion of wavelengths detected by the human eye. At these wavelengths, gases in the atmosphere scatter a modest amount of sunlight, so the clouds we see tend to be at somewhat higher altitudes than in the top panel.The third panel shows near-infrared reflected sunlight at a wavelength where the gas methane, an important constituent of Jupiter's atmosphere, absorbs strongly. Dark places are regions without high-level clouds and consequently large amounts of methane accessible to sunlight. Bright regions are locations with high clouds in the upper troposphere shielding the methane below.The bottom panel was taken in the ultraviolet. At these very short wavelengths, the clear atmosphere scatters sunlight, and hazes in the stratosphere, above the troposphere, absorb sunlight. That

  4. Neoproterozoic magmatism in Southwestern Algeria (Sebkha el Melah inlier): a northerly extension of the Trans-Saharan orogen

    Science.gov (United States)

    Dostal, J.; Caby, R.; Keppie, J. D.; Maza, M.

    2002-08-01

    The Neoproterozoic Sebkha el Melah inlier is a part of the Pan-African Trans-Saharan orogenic belt that is exposed in northwestern Africa east of the West African craton. The inlier is composed of a 4-5 km thick sequence of fine-grained marine to fluvial clastic sedimentary rocks intercalated with, and conformably overlain by, mafic lava flows and proximal volcaniclastic deposits, 600-1000 m thick. The lava flows and associated minor intrusives are mainly shoshonites. Their geochemical characteristics are indicative of subduction-related magmas and are characterized by relative depletion of Nb, Ta and Ti with respect to rare-earth elements and Th. Their positive but highly variable ɛNd values (+1-+5) are interpreted to reflect contamination of mantle-derived mafic melts (˜+6) by continental crust. It is suggested that the Sebkha el Melah shoshonitic rocks formed in a backarc or rifted arc setting. Their location, close to the Trans-Saharan suture, is interpreted to be the result of subduction erosion which removed the forearc and possibly also part of the arc. The shallow source (Sebkha el Melah volcanic rocks is related to flat-slab subduction. Traced along strike to the south, the >620 Ma, Neoproterozoic volcanic suites of the Trans-Saharan belt change to typical continental, Andean margin calc-alkaline rocks in the northwestern Hoggar and an oceanic island arc complex in Mali. This may indicate that the rate of convergence of the West African craton and the Tuareg (Saharan) paleocontinent increased from south to north due to a change in the angle of convergence across the margin (oblique in the south to orthogonal in the north), resulting from the curve of the eastern margin of the West African craton that swings from N-S to NW-SE.

  5. Insight into tectonically coupled sediment routing systems of the south Pyrenean fold-thrust belt via integration of field analysis with thermochronology

    Science.gov (United States)

    Whitchurch, A.; Allen, P.; Carter, A.; Duller, R.; Whittaker, A.

    2009-04-01

    The dynamic coupling between tectonics and surface processes is particularly evident in compressional mountain belts. Numerical models clearly demonstrate the fundamental control exerted by surface processes on orogen evolution, with recent studies emphasising the importance of sedimentation and mass redistribution in determining the style and timescale of landscape response to tectonic convergence. Efficient surface processes are shown to promote filling of well-developed foredeeps, fold-thrust belt exhumation and draping and slowing of frontal thrust propagation. However, these predicted relationships have proved harder to demonstrate in field and analytical studies. Here we attempt to better understand tectonic and surface process coupling and the importance of sediment mass transfer on orogenic development, using field and thermochronological analyses to reconstruct the complex evolution of the south-central Pyrenees. Trending east-west, the Pyrenees formed due to collision between the Iberian and European plates during the Late Cretaceous through Oligocene to early Miocene. Previous work demonstrates that the cessation of thrust front propagation is synchronous with the deposition of a thick piedmont of conglomerate over the foreland fold-thrust belt during the Oligocene. By integrating field observation with thermochronological analyses of detrital zircon fission track and U-Pb age dating of syn-orogenic strata, we can therefore reconstruct the long-term exhumational history of the Pyrenees in relation to the tectonic and stratigraphic evolution of its wedge-top and foreland basins. Results from our field and laboratory analyses support initiation of the Pyrenean orogeny during the Late Cretaceous, with the division of detrital zircon fission track ages into four basic tectonic events that have been previously described for the Pyrenean region: the main orogenic phase (- 50-30 Ma); the early orogenic phase (- 90-50 Ma); the opening of the Bay of Biscay (- 110

  6. Syn- and post-orogenic alkaline magmatism in a continental arc: Along-strike variations in the composition, source, and timing of igneous activity in the Ross Orogen, Antarctica

    Science.gov (United States)

    Hagen-Peter, G.; Cottle, J. M.

    2013-12-01

    Neoproterozoic-Paleozoic convergence and subduction along the margin of East Gondwana (Australia, New Zealand, Antarctica) resulted in a belt of deformed and metamorphosed sedimentary rocks and batholith-scale igneous intrusions comparable in size to the present day Andes. Mid-crustal levels of this belt, known as the Ross Orogen in Antarctica, are exposed in the basement of the Cenozoic Transantarctic Mountains, providing snapshots of the intrusive magma system of a major continental arc. Whole rock major- and trace-element geochemistry, Hf isotopes in zircon, and U-Pb geochronology have identified along-strike variations in the composition, source, and timing of magmatism along ~200 km of the southern Victoria Land segment of the orogen. There is an apparent younging of the igneous activity from south to north. New U-Pb ages for intrusive rocks from the Koettlitz Glacier Alkaline Province (KGAP) reveal that igneous activity spanned ca. 565-500 Ma (~30 m.y. longer than previously recognized), while immediately to the north in the Dry Valleys area most igneous activity was confined to a relatively short period (ca. 515-495 Ma). Alkaline and subalkaline igneous rocks occur in both the Dry Valleys area and the KGAP, but alkaline rocks in the Dry Valleys are restricted to the latest phase of magmatism. Na-alkaline rocks in the KGAP, including nepheline syenites, carbonatites, and A-type granites, range in age from ca. 545-500 Ma and overlap in age with more typical subduction/collision-related I- and S-type granites elsewhere in southern Victoria Land. Strong enrichments in the LILE and LREE and high LILE/HFSE and LREE/HREE of samples from the KGAP reveal a source enriched in aqueous-mobile elements, potentially a strongly metasomatized mantle wedge beneath the arc. In the Dry Valleys area, rocks with alkali-calcic composition constitute only the youngest intrusions (505-495 Ma), apparently reflecting a shift to post-orogenic magmatism. Zircons from Dry Valleys

  7. New (U-Th)/He titanite data from a complex orogen-passive margin system: A case study from northern Mozambique

    Science.gov (United States)

    Bauer, Friederike U.; Jacobs, Joachim; Emmel, Benjamin U.; van Soest, Matthijs C.

    2016-08-01

    New titanite (U-Th)/He (He) data on basement rocks from NE Mozambique are presented. The objective was to test the applicability of titanite He thermochronology in an orogen-passive margin setting and to better constrain the exhumation history across the Lurio Belt, a major structural discontinuity in Mozambique. Therefore, samples from existing geochronological and thermochronological studies were dated using titanite He thermochronology. Resulting titanite He data (from abraded crystals) provide average cooling ages from 178 ± 15 to 383 ± 23 Ma. The data fit well into the age pattern obtained from previous thermochronological studies in NE Mozambique, revealing differential exhumation across the Lurio Belt. The basement to the north experienced earlier cooling than that to the south, while overall youngest titanite He ages are from the Lurio Belt, indicating reactivation linked to the post-collisional extension and break-up of Gondwana. Thermal history modelling revealed two possibilities, able to account for the different cooling histories of NE Mozambique since initial Gondwana break-up in Permian times: One involves a transient sedimentary overburden that buried and (re)heated the southern basement, with subsequent basin inversion at ˜250 Ma in response to rift shoulder uplift. The second model implies delayed cooling of the southern basement, possibly due to delamination of the crustal root shortly after Gondwana formation. The formerly upwelling asthenosphere and the subsequently formed sag basin might have caused a prolonged thermal effect. Titanite He ages and thermal histories point to rift shoulder uplift of the southern part and increased thermal activity within the reactivated Lurio Belt, signifying first rifting activities as precursor of Gondwana break-up.

  8. The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt

    DEFF Research Database (Denmark)

    Schiffer, Christian; Stephenson, Randell Alexander; Oakey, Gordon;

    2016-01-01

    Ellesmere Island in Arctic Canada displays a complex geological evolution. The region was affected by two distinct orogenies, the Palaeozoic Ellesmerian orogeny (the Caledonian equivalent in Arctic Canada and Northern Greenland) and the Palaeogene Eurekan orogeny, related to the opening of Baffin...

  9. Mapping seismic moment and b-value within the continental-collision orogenic-belt region of the Iranian Plateau

    Science.gov (United States)

    Mousavi, S. Mostafa

    2017-01-01

    In this paper, high-resolution map of the Gutenberg-Richter b-value and seismic moment-release are provided for the Iranian Plateau using the unified and homogeneous part of the seismicity record of the region (January 1995-July 2016). We use these parameters as stressmeters and qualitatively explore their correlations with the GPS velocity field, strain rate, faulting mechanism, attenuation, and structure of the region. Our goal is to reveal the correlations and anomalous patterns that can help to better understand the seismotectonics and the state of present-day crustal stress within the region. A negative correlation between b-value and seismic moment release as well as convergence rates is found. Correlation between geodetic measurements and seismic observations might indicate the existence of a strong mechanical coupling between the basement and the sediment cover across Zagros. High geodetic strain rates east of the Hormuz strait, southern central Alborz, and along the north Tabriz fault correspond to low b-value anomalies at these areas. A strong low b-value anomaly is observed at the major tectonic discontinuity between the Zagros continental collision and the oceanic Makran subduction.

  10. Anatexis of accretionary wedge, Pacific-type magmatism, and formation of vertically stratified continental crust in the Altai Orogenic Belt

    Science.gov (United States)

    Jiang, Y. D.; Schulmann, K.; Sun, M.; Å típská, P.; Guy, A.; Janoušek, V.; Lexa, O.; Yuan, C.

    2016-12-01

    Granitoid magmatism and its role in differentiation and stabilization of the Paleozoic accretionary wedge in the Chinese Altai are evaluated in this study. Voluminous Silurian-Devonian granitoids intruded a greywacke-dominated Ordovician sedimentary succession (the Habahe Group) of the accretionary wedge. The close temporal and spatial relationship between the regional anatexis and the formation of granitoids, as well as their geochemical similarities including rather unevolved Nd isotopic signatures and the strong enrichment of large-ion lithophile elements relative to many of the high field strength elements, may indicate that the granitoids are product of partial melting of the accretionary wedge rocks. Whole-rock geochemistry and pseudosection modeling show that regional anatexis of fertile sediments could have produced a large amount of melts compositionally similar to the granitoids. Such process could have left a high-density garnet- and/or garnet-pyroxene granulite residue in the deep crust, which can be the major reason for the gravity high over the Chinese Altai. Our results show that melting and crustal differentiation can transform accretionary wedge sediments into vertically stratified and stable continental crust. This may be a key mechanism contributing to the peripheral continental growth worldwide.

  11. Uplifting of the Jiamusi Block in the eastern Central Asian Orogenic Belt, NE China: evidence from basin provenance and geochronology

    Science.gov (United States)

    Liu, Yongjiang; Wen, Quanbo; Han, Guoqing; Li, Wei

    2010-05-01

    The main part of Jiamusi Block, named as Huanan-Uplift, is located in the northeastern Heilongjiang, China. The Huanan-Uplift is surrounded by many relatively small Mesozoic-Cenozoic basins, e.g. Sanjiang Basin, Hulin Basin, Boli Basin, Jixi Basin, Shuangyashan Basin and Shuanghua Basin. However previous research works were mainly focused on stratigraphy and palaeontology of the basins, therefore, the coupling relation between the uplift and the surrounding basins have not been clear. Based on the field investigations, conglomerate provenance studies of the Houshigou Formation in Boli Basin, geochronology of the Huanan-Uplift basement, we have been studied the relationships between Huanan-Uplift and the surrounding basins. The regional stratigraphic correlations indicates that the isolated basins in the area experienced the same evolution during the period of the Chengzihe and the Muling Formations (the Early Cretaceous). The paleogeography reconstructions suggest that the area had been a large-scale basin as a whole during the Early Cretaceous. The Huanan-Uplift did not exist. The paleocurrent directions, sandstone and conglomerate provenance analyses show that the Huanan-Uplift started to be the source area of the surrounding basins during the period of Houshigou Formation (early Late Cretaceous), therefore, it suggests that the Jiamusi Block commenced uplift in the early Late Cretaceous. The granitic gneisses in Huanan-Uplift give 494-415 Ma monazite U-Th-total Pb ages, 262-259 Ma biotite and 246-241 Ma K-feldspar 40Ar/39Ar ages. The cooling rates of 1-2 ℃/Ma from 500-260 Ma and 10-11 ℃/Ma from 260-240 Ma have been calculated based on the ages. This suggests that the Jiamusi Block had a rapid exhumation during late Permian, which should be related to the closure of the Paleo-Asian Ocean between the Siberian and North China continents. It is concluded that during the late Paleozoic the Jiamusi Block was stable with a very slow uplifting. With the closure of the Paleo-Asian Ocean the Jiamusi Block underwent a very rapid exhumation in the late Permian. In the early Mesozoic the area went into a basin developing stage and formed a large basin as a whole during the Early Cretaceous. In the Late Cretaceous the Jiamusi Block started uplifting and the basin was broken into isolate small basins. References: Bureau of Geology and Mineral Resources of Heilongjiang Province. Regional geology of Heilongjiang Province. Beijing: Geological Publishing House, 1993.578-581. Cao Chengrun, Zheng Qingdao. Structural evolution feature and its significance of hydrocarbon exploration in relict basin formation, Eastern Heilongjiang province. Journal of Jilin university (Earth Science Edition), 2003, 33(2):167-172. Lang Xiansheng. Biologic Assemblage features of Coal-bearing Strata in Shuangyashan-Jixian coal-field. Coal geology of China, 2002, 14(2):7-12. Piao Taiyuan , Cai Huawei , Jiang Baoyu. On the Cretaceous coal-bearing Strata in Eastern Heilongjiang. Journal Of Stratigraphy, 2005, 29:489-496. Wang Jie , He Zhonghua , Liu Zhaojun , Du Jiangfeng , Wang Weitao. Geochemical characteristics of Cretaceous detrital rocks and their constraint on provenance in Jixi Basin. Global Geology,2006, 25(4):341-348. DickinsonW R and Christopher A. Suczek. Plate Tectonics and Sandstone Composition. AAPG B. 1979,63(12 ):2164-2182. DickinsonW R, Beard L S, Brakenridge G R, et al. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Bull Geo-Soc Amer, 1983, 94: 222-235. Maruyama S, Seno T. Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics, 1986,127(3-4):305-329. Maruyama S, Isozaki Y, Kimura Gand Terabayashi M C.Paleogeographic maps of the Japanese Islands: plate tectonic systhesis from 750 Ma to the present. Island Arc, 1997,6:121-142.

  12. Microphysical effects of Saharan dusts on an orogenic thunderstorm

    Directory of Open Access Journals (Sweden)

    T. Hashino

    2008-06-01

    Full Text Available This study investigates the microphysical sensitivity of an orogenic thunderstorm during Genoa 1992 flood event to the concentration and solubility of nucleating aerosols. Idealized 2-D simulations with a new microphysical scheme and a cloud resolving model showed the solubility of CCN can be as important as their concentration. High solubility cases of CCN led to less accumulation of precipitation on the ground and more fraction of the accumulation produced by heavy precipitation than lower solubility cases. The response of vertical motion to the solubility was different for cases with and without dust layer. The preliminary results show that the ice nucleation processes affected by solubility and dust layer may be detected by remote sensing technology.

  13. Effects of vehicle seat and belt geometry on belt fit for children with and without belt positioning booster seats.

    Science.gov (United States)

    Reed, Matthew P; Ebert-Hamilton, Sheila M; Klinich, Kathleen D; Manary, Miriam A; Rupp, Jonathan D

    2013-01-01

    A laboratory study was conducted to quantify the effects of belt-positioning boosters on lap and shoulder belt fit. Postures and belt fit were measured for forty-four boys and girls ages 5-12 in four highback boosters, one backless booster, and on a vehicle seat without a booster. Belt anchorage locations were varied over a wide range. Seat cushion angle, seat back angle, and seat cushion length were varied in the no-booster conditions. All boosters produced better mean lap belt fit than was observed in the no-booster condition, but the differences among boosters were relatively large. With one midrange belt configuration, the lap belt was not fully below the anterior-superior iliac spine (ASIS) landmark on the front of the pelvis for 89% of children in one booster, and 75% of children failed to achieve that level of belt fit in another. In contrast, the lap belt was fully below the ASIS for all but two children in the best-performing booster. Child body size had a statistically significant but relatively small effect on lap belt fit. The largest children sitting without a booster had approximately the same lap belt fit as the smallest children experienced in the worst-performing booster. Increasing lap belt angle relative to horizontal produced significantly better lap belt fit in the no-booster condition, but the boosters isolated the children from the effects of lap belt angles. Reducing seat cushion length in the no-booster condition improved lap belt fit but changing cushion angle did not. Belt upper anchorage (D-ring) location had a strong effect on shoulder belt fit in conditions without shoulder belt routing from the booster. Unexpectedly, the worst average shoulder belt fit was observed in one highback booster with a poorly positioned shoulder belt routing clip. The shoulder belt was routed more outboard, on average, with a backless booster than without a booster, but raising the child also amplified the effect of D-ring location, such that children were

  14. Geology and Genesis of the Mafic—Ultramafic Complexes in the Huangshan—Jingerquan(HJ) Belt,East Xinjiang

    Institute of Scientific and Technical Information of China (English)

    顾连兴; 王金珠; 等

    1995-01-01

    More than twenty mafic-ultramafic complexes,which host several medium-or large-sized Cu-Ni deposits,occur the Huangshan-Jingerquan(HJ) belt in East Xinjiang. Rock types in these complexes are ptrdominated by peridotite, pyroxene peri-dotite, olivine pyroxenite, gabbronorite, orthopyroxene gabbro, troctolite, gabbro and diorite. The ultramafic rocks are relatively Fe-enriched and are characterized by an as-semblage of olivine+orthopyroxene+clinopyroxene+hornblende±plagioclase without obvious metamorphic textures. Chemically, these complexes are relatively Fe-enriched and show a tholeiitic trend of evolution. The complexes in this blet are intruded under the extensional environment in a Mid-Carboniferous back-arc basin. They can be consid-ered as a new type of mafic-ultramafic complexes in orogenic belts, as designated by the name of the East-Xinjiang-type complexes.

  15. A review of the tectonic evolution of the Sunsás belt, SW Amazonian Craton

    Science.gov (United States)

    Teixeira, Wilson; Geraldes, Mauro Cesar; Matos, Ramiro; Ruiz, Amarildo Salina; Saes, Gerson; Vargas-Mattos, Gabriela

    2010-01-01

    The Sunsás-Aguapeí province (1.20-0.95 Ga), SW Amazonian Craton, is a key area to study the heterogeneous effects of collisional events with Laurentia, which shows evidence of the Grenvillian and Sunsás orogens. The Sunsás orogen, characterized by an allochthonous collisional-type belt (1.11-1.00 Ga), is the youngest and southwesternmost of the events recorded along the cratonic fringe. Its evolution occurred after a period of long quiescence and erosion of the already cratonized provinces (>1.30 Ga), that led to sedimentation of the Sunsás and Vibosi groups in a passive margin setting. The passive margin stage was roughly contemporary with intraplate tectonics that produced the Nova Brasilândia proto-oceanic basin (aborted rifts that evolved to the Huanchaca-Aguapeí basin (1.17-1.15 Ga). The Sunsás belt is comprised by the metamorphosed Sunsás and Vibosi sequences, the Rincón del Tigre mafic-ultramafic sill and granitic intrusive suites. The latter rocks yield ɛNd(t) signatures (-0.5 to -4.5) and geochemistry (S, I, A-types) suggesting their origin associated with a continental arc setting. The Sunsás belt evolution is marked by "tectonic fronts" with sinistral offsets that was active from c. 1.08 to 1.05 Ga, along the southern edge of the Paraguá microcontinent where K/Ar ages (1.27-1.34 Ga) and the Huanchaca-Aguapeí flat-lying cover attest to the earliest tectonic stability at the time of the orogen. The Sunsás dynamics is coeval with inboard crustal shortening, transpression and magmatism in the Nova Brasilândia belt (1.13-1.00 Ga). Conversely, the Aguapeí aulacogen (0.96-0.91 Ga) and nearby shear zones (0.93-0.91 Ga) are the late tectonic offshoots over the cratonic margin. The post-tectonic to anorogenic stages took place after ca. 1.00 Ga, evidenced by the occurrences of intra-plate A-type granites, pegmatites, mafic dikes and sills, as well as of graben basins. Integrated interpretation of the available data related to the Sunsás orogen

  16. The Caucasian-Arabian segment of the Alpine-Himalayan collisional belt: Geology, volcanism and neotectonics

    Directory of Open Access Journals (Sweden)

    E. Sharkov

    2015-07-01

    Full Text Available The Caucasian-Arabian belt is part of the huge late Cenozoic Alpine-Himalayan orogenic belt formed by collision of continental plates. The belt consists of two domains: the Caucasian-Arabian Syntaxis (CAS in the south and the EW-striking Greater Caucasus in the north. The CAS marks a zone of the indentation of the Arabian plate into the southern East European Craton. The Greater Caucasus Range is located in the south of the Eurasian plate; it was tectonically uplifted along the Main Caucasian Fault (MCF, which is, in turn, a part of a megafault extended over a great distance from the Kopetdag Mts. to the Tornquist-Teisseyre Trans-European Suture Zone. The Caucasus Mts. are bounded by the Black Sea from the west and by the Caspian Sea from the east. The SN-striking CAS is characterized by a large geophysical isostatic anomaly suggesting presence of mantle plume head. A 500 km long belt of late Cenozoic volcanism in the CAS extends from the eastern Anatolia to the Lesser and Greater Caucasus ranges. This belt hosts two different types of volcanic rocks: (1 plume-type intraplate basaltic plateaus and (2 suprasubduction-type calc-alkaline and shoshonite-latite volcanic rocks. As the CAS lacks signatures of subduction zones and is characterized by relatively shallow earthquakes (50–60 km, we suggest that the “suprasubduction-type” magmas were derived by interaction between mantle plume head and crustal material. Those hybrid melts were originated under conditions of collision-related deformation. During the late Cenozoic, the width of the CAS reduced to ca. 400 km due to tectonic “diffluence” of crustal material provided by the continuing Arabia-Eurasia collision.

  17. Kuiper Belts Around Nearby Stars

    CERN Document Server

    Nilsson, R; Brandeker, A; Olofsson, G; Pilbratt, G L; Risacher, C; Rodmann, J; Augereau, J -C; Bergman, P; Eiroa, C; Fridlund, M; Thébault, P; White, G J

    2010-01-01

    In order to detect and characterise cold extended circumstellar dust originating from collisions of planetesimal bodies in disks, belts, or rings at Kuiper-Belt distances (30--50\\,AU or beyond) sensitive submillimetre observations are essential. Measurements of the flux densities at these wavelengths will extend existing IR photometry and permit more detailed modelling of the Rayleigh-Jeans tail of the disks spectral energy distribution (SED), effectively constraining dust properties and disk extensions. By observing stars spanning from a few up to several hundred Myr, the evolution of debris disks during crucial phases of planet formation can be studied. // We have performed 870\\,$\\mu$m observations of 22 exo-Kuiper-Belt candidates, as part of a Large Programme with the LABOCA bolometer at the APEX telescope. Dust masses (or upper limits) were calculated from integrated 870\\,$\\mu$m fluxes, and fits to the SED of detected sources revealed the fractional dust luminosities $f_{\\mathrm{dust}}$, dust temperatures...

  18. Sinistral strike-slip dominated inclined transpression along the Pai-Khoi fold-and-thrust belt, Russian Arctic

    Science.gov (United States)

    Curtis, Michael

    2014-05-01

    The Arctic Uralides comprise Pai-Khoi, Novaya Zemlya and the Taimyr Peninsula. Together they form a margin controlled salient in the former Baltica margin of Laurussia. This arcuate orogen forms a fundamental tectonic boundary between major hydrocarbon provinces; Timan-Pechora and Barents Sea to the southwest and west, respectively, and the South Kara Sea to the east. To understand the complex regional tectonic relationship between the Arctic Uralides and the South Kara Sea, it is essential to establish the structural and kinematic style of the various sectors of this remote orogen. This contribution focuses on the southern limb of the salient, the NW-SE trending, Pai-Khoi fold-and-thrust belt (PKFB), which links the Polar Urals with Novaya Zemlya approximately 600 km to the northwest. The PKFB comprises a highly deformed, Late Cambrian to Mississippian age, passive margin succession, with allochthonous deep-water and continental slope facies rocks thrust over a shallow-water carbonate platform succession along the Main Pai-Khoi Thrust. Deformation is interpreted to have occurred between the Late Palaeozoic and end Triassic resulting in the formation of an apparent southwesterly verging fold-and-thrust belt with an associated foreland basin. Analysis of regional scale geological maps reveals the presence of large scale en-echelon folds, together with late stage, orogen-parallel faults, indicating that the evolution of PKFB has been influenced by a component of sinistral strike-slip. Detailed field data from a transect across the largest structure in the orogen, the Main Pai-Khoi Thrust, confirms the obliquity of both planar structures and finite stretching lineations to this major allochthon bounding thrust. Subtle but consistent variations in the orientation of finite stretching directions within zones of qualitatively differing finite strain were identified. Comparison of these variations with theoretical models of inclined transpression suggests that deformation

  19. French experience in seat belt use.

    NARCIS (Netherlands)

    Lassarre, S. & Page, Y.

    1992-01-01

    This paper concerns the French experience in seat belt use. As well as the seat belt regulations, the strategies employed to reinforce the wearing of seat belts by using information and encouragement campaigns and checks by the police and gendarmerie are described here along with their timetables an

  20. Appendiceal transection associated with seat belt restraint.

    Science.gov (United States)

    Go, Seung Je; Sul, Young Hoon; Ye, Jin Bong; Kim, Joong Suck

    2016-08-01

    The seat belt is designed for safety in a motor vehicle and should be worn to prevent severe injuries. But, the seat belt itself can be an injury factor in combination with deceleration forces applied to fixation points of mobile viscera. Here, we present a 23-year-man with traumatic transection of the appendix, highly mobile viscera, following seat belt injury.

  1. The Bossoroca Complex, São Gabriel Terrane, Dom Feliciano Belt, southernmost Brazil: Usbnd Pb geochronology and tectonic implications for the neoproterozoic São Gabriel Arc

    Science.gov (United States)

    Gubert, Mauricio Lemos; Philipp, Ruy Paulo; Stipp Basei, Miguel Angelo

    2016-10-01

    Usbnd Pb LA-ICPMS geochronological analyses were carried out on zircon grains from metavolcanic rocks of the Bossoroca Complex and for one ash tuff of the Acampamento Velho Formation of the Camaquã Basin, in order to understand the evolution of the Neoproterozoic São Gabriel magmatic arc. A total of 42 analyses of igneous zircon grains were performed in three samples. The results yielded Usbnd Pb ages of 767.2 ± 2.9 Ma for the metavolcanic agglomerate (BOS-02); 765 ± 10 Ma for the metacrystal tuff (BOS-03) and 565.8 ± 4.8 Ma for the ash tuff (BOS-04). The Orogenic Cycle in Brazil is characterized by a set of orogenic belts consisting of petrotectonic associations juxtaposed by two collisional events that occurred at the end of the Neoproterozoic. In southern Brazil this orogeny formed the Dom Feliciano Belt, a unit composed of associations of rocks developed during two major orogenic events called São Gabriel (900-680 Ma) and Dom Feliciano (650-540 Ma). The main São Gabriel associations are tectonically juxtaposed as elongated strips according to the N20-30°E direction, bounded by ductile shear zones. The Bossoroca Complex comprises predominantly metavolcano-sedimentary rocks, characterized by medium-K calc-alkaline association generated in a cordillera-type magmatic arc. The volcanism occurred in sub-aerial environment, developing deposits generated by flow, resurgence and fall, sporadically interrupted by subaqueous epiclastic deposits, suggesting an arc related basin. The São Gabriel Terrane contains the petrotectonic units that represent the closure of the Charrua Ocean associated to the subduction period of the Brasiliano Orogenic Cycle in the Sul-rio-grandense Shield.

  2. Timing of late Palaeoproterozoic metamorphism in the northern Belomorian Belt, White Sea region: conclusions from U-Pb isotopic data and P-T evidence

    Directory of Open Access Journals (Sweden)

    Torbjörn Skiöld

    2001-01-01

    Full Text Available Brilliant-looking zircon crystals from a garnet-amphibolitic, metamorphosed mafic dyke at Lyagkomina in the Lake Kovdozero area, northern Belomorian Belt, most probably mark the 1875±4 Ma age of peak late Palaeoproterozoic regional metamorphism which followed upon dyke intrusion associated with deformation of the Lapland-Kola orogenic tectonic collage. U-Pb ages of titanites (ca. 1860 Ma and rutiles (ca. 1750 Ma help reconstruct the retrograde path and the cooling rates which decreased with time. The new titanite and rutile ages agree well with similar age data previously obtained on a regional scale from the central part of the belt and suggest absence of variation in mineral ages as a function of lithological differences. P-T analysis of the metamorphic parageneses indicates initial sharp decompression after peak metamorphism and jump uplift with unroofing of ca. 9-10 km of the crust in the Belomorian Belt previously thickened by late Palaeoproterozoic orogenic thrusting and stacking.

  3. Seat belt sign and its significance.

    Science.gov (United States)

    Agrawal, Amit; Inamadar, Praveenkumar Ishwarappa; Subrahmanyam, Bhattara Vishweswar

    2013-07-01

    Safety belts are the most important safety system in motor vehicles and when worn intend to prevent serious injuries. However, in unusual circumstances (high velocity motor vehicle collisions) these safety measures (seat belts) can be the source and cause of serious injuries. The seat belt syndrome was first described as early by Garrett and Braunste in but the term "seat belt sign" was discussed by Doersch and Dozier. Medical personnel's involved in emergency care of trauma patients should be aware of seat belt sign and there should a higher index of suspicion to rule out underlying organ injuries.

  4. Evolution of fold-thrust belts and Cenozoic uplifting of the South Tianshan Mountain range in the Kuqa region, Northwest China

    Science.gov (United States)

    Wen, Lei; Li, Yue-Jun; Zhang, Guang-Ya; Tian, Zuo-Ji; Peng, Geng-Xin; Qiu, Bin; Huang, Zhi-Bin; Luo, Jun-Cheng; Zhang, Qiang

    2017-03-01

    The evolution of the Kuqa fold-thrust belt is accompanied with the Cenozoic uplifting of South Tianshan Mountain range. The critical Coubomb wedge theory can be well applied to the structural evolution of the Kuqa fold-thrust belt where the décollement structures are well developed. Following the initial hypotheses of this theory, with the base of the taper wedge (not the sea level) as the reference level, we propose a geometric relationship between the evolution of fold-thrust belt and tectonic uplifting of orogen, and deduce a calculation formula between orogen tectonic uplifting amount (very different from the topographic uplifting) (∂H), fold-thrust belt extending distance (∂S) and crustal shortening amount (∂L): ∂H = (∂S - ∂L) ∗ tan(α + ∂α) + [tan(α + ∂α)/tanα - 1] ∗ H0. In this paper we select two representative seismic profiles across the Kuqa fold-thrust belt to reconstruct the structural evolution, and use the calculation formula to get the uplifting amount of the South Tianshan Mountain range in Kuqa region during two geological periods. The results showed: during the end of Miocene to the end of Pliocene, the uplifting amount of the South Tianshan Mountain range in the middle segment of Kuqa (∂HM1) is 4.1 km; during the end of Pliocene to the present, the uplifting amount of the South Tianshan Mountain range in the middle segment of Kuqa (∂HM2) is 4.7 km, and in the east segment of Kuqa (∂HE) is 5.0 km.

  5. Detrital zircon U-Pb and Hf isotopic data from the Liuling Group in the South Qinling belt: Provenance and tectonic implications

    Science.gov (United States)

    Liao, Xiao-ying; Wang, Ya-wei; Liu, Liang; Wang, Chao; Santosh, M.

    2017-02-01

    The Liuling Group is exposed in the Northern part of the South Qinling orogenic belt. LA-ICP-MS U-Pb analysis of detrital zircons from the meta-sandstones in this Group yields ages ranging between 400 Ma and 3200 Ma, with three prominent age clusters at 500-400 Ma, 850-700 Ma and 1000-900 Ma. A few older zircon populations with U-Pb ages of 1750-1450 Ma, 2000 Ma and 2600-2400 Ma are also present. Age data integrated with cathodoluminescence, trace element data and εHf(t) values of zircon grains show that the Liuling sediments have a complex source. Source rocks mainly include Early Neoproterozoic and Early Paleozoic granitoids, together with minor ultra-high pressure/high pressure (HP-UHP) metamorphic rocks, and paragneiss in the North Qinling belt, and Middle-Late Neoproterozoic magmatic rocks in the South Qinling belt. The dominant population of detrital zircon grains with ages between 500 Ma and 400 Ma show the characteristics of both magmatic and metamorphic zircons. They show three age clusters at 497 Ma, 451 Ma, and ca. 420 Ma and show marked correlation with the three stages of Palaeozoic magmatism, as well as with the peak and retrograde HP-UHP metamorphic stages in the North Qinling belt. This correlation demonstrates that these Early Palaeozoic granitoids and HP-UHP metamorphic rocks in the North Qinling belt were already exhumed to the surface, underwent erosion prior to Middle Devonian time and were then deposited in an extensional basin. Based on the results from detrital zircon U-Pb dating, combined with geochemical data and the regional geology, the deposition of Liuling sediments is inferred to have occurred in a post-orogenic extensional basin, rather than a subduction-related fore-arc basin or a foreland basin formed during or after continental collision.

  6. The Neoproterozoic-Cambrian Paraguay Belt, central Brazil: Part I - New structural data and a new approach on the regional implications

    Science.gov (United States)

    Silva, Luiz José Homem D'el-Rey; Walde, Detlef Hans-Gerd; Saldanha, Davi Oliveira

    2016-04-01

    Together with the Araguaia and Brasília belts, the Paraguay belt forms in central Brazil, the Tocantins Province that is one of the largest orogens of western Gondwana. The Corumbá area occupies the site where the northern and southern parts of the Paraguay belt form, together with the Chiquitos-Tucavaca aulacogen (stretching E-W in the adjacent Bolivian territory) an R-R-R basin system opened-filled in the ~ 700/650-540 Ma interval within the Amazon-Rio Apa paleo-continent. The sedimentary (volcanic) rocks of the Jacadigo and Corumbá Groups found around the Corumbá city record part of the Neoproterozoic-Cambrian passive margin precursor of the Paraguay belt. Our pioneer structural analysis reveals that these rocks experienced progressive deformation (phases D1-D2-D3) and low-grade metamorphism during the Brasiliano Cycle (540-513 Ma). The crystalline basement was also involved, according to structural data and K-Ar ages in the literature. The paleo-passive margin was thickened during the D1-D2 deformation and was lately shortened (D3) in two orthogonal directions, SE-NW (D3P) and SW-NE (D3T). Developed co-axially and verging to NW, D1-D2-D3P structures record the closure of the basin precursor of the Paraguay belt, whereas D3T structures seem related to the inversion of the aulacogen. Although the tectonic transport to NW, as observed in the Corumbá area, matches the reported transport of Paraguay belt's supracrustal rocks towards the eastern margin of the Rio Apa block and Araguaia belt's rocks towards the Amazon craton, the transport direction is opposite in other parts of the Paraguay belt. Our comprehensive discussion of these facts brings to light profound regional implications.

  7. Temporal constraints on the kinematics of the destabilization of an orogen : syn- to post-orogenic extensional collapse of the Northern Aegean region

    NARCIS (Netherlands)

    Lips, A.L.W.

    1998-01-01

    The Mediterranean region is situated at the interface of the African and Eurasian plates and has been shaped by the Alpine Orogeny and the subsequent post-orogenic extension during the convergence and collision of the African and Eurasian plates. Numerous tectonic studies have focussed on the role o

  8. Ring current and radiation belts

    Science.gov (United States)

    Williams, D. J.

    1987-01-01

    Studies performed during 1983-1986 on the ring current, the injection boundary model, and the radiation belts are discussed. The results of these studies yielded the first observations on the composition and charge state of the ring current throughout the ring-current energy range, and strong observational support for an injection-boundary model accounting for the origins of radiation-belt particles, the ring current, and substorm particles observed at R less than about 7 earth radii. In addition, the results have demonstrated that the detection of energetic neutral atoms generated by charge-exchange interactions between the ring current and the hydrogen geocorona can provide global images of the earth's ring current and its spatial and temporal evolution.

  9. Continental Growth and Recycling in Convergent Orogens with Large Turbidite Fans on Oceanic Crust

    Directory of Open Access Journals (Sweden)

    Ben D. Goscombe

    2013-07-01

    Full Text Available Convergent plate margins where large turbidite fans with slivers of oceanic basement are accreted to continents represent important sites of continental crustal growth and recycling. Crust accreted in these settings is dominated by an upper layer of recycled crustal and arc detritus (turbidites underlain by a layer of tectonically imbricated upper oceanic crust and/or thinned continental crust. When oceanic crust is converted to lower continental crust it represents a juvenile addition to the continental growth budget. This two-tiered accreted crust is often the same thickness as average continental crustal and is isostatically balanced near sea level. The Paleozoic Lachlan Orogen of eastern Australia is the archetypical example of a tubidite-dominated accretionary orogeny. The Neoproterozoic-Cambrian Damaran Orogen of SW Africa is similar to the Lachlan Orogen except that it was incorporated into Gondwana via a continent-continent collision. The Mesozoic Rangitatan Orogen of New Zealand illustrates the transition of convergent margin from a Lachlan-type to more typical accretionary wedge type orogen. The spatial and temporal variations in deformation, metamorphism, and magmatism across these orogens illustrate how large volumes of turbidite and their relict oceanic basement eventually become stable continental crust. The timing of deformation and metamorphism recorded in these rocks reflects the crustal thickening phase, whereas post-tectonic magmatism constrains the timing of chemical maturation and cratonization. Cratonization of continental crust is fostered because turbidites represent fertile sources for felsic magmatism. Recognition of similar orogens in the Proterozoic and Archean is important for the evaluation of crustal growth models, particularly for those based on detrital zircon age patterns, because crustal growth by accretion of upper oceanic crust or mafic underplating does not readily result in the addition of voluminous zircon

  10. Tourmaline from the Archean G.R.Halli gold deposit, Chitradurga greenstone belt, Dharwar craton (India): Implications for the gold metallogeny

    OpenAIRE

    Susmita Gupta; Jayananda, M.; Fareeduddin

    2014-01-01

    Tourmaline occurs as a minor but important mineral in the alteration zone of the Archean orogenic gold deposit of Guddadarangavanahalli (G.R.Halli) in the Chitradurga greenstone belt of the western Dharwar craton, southern India. It occurs in the distal alteration halo of the G.R.Halli gold deposit as (a) clusters of very fine grained aggregates which form a minor constituent in the matrix of the altered metabasalt (AMB tourmaline) and (b) in quartz-carbonate veins (vein tourmaline). The vein...

  11. Thermal evolution of the central Halls Creek Orogen, northern Australia

    Energy Technology Data Exchange (ETDEWEB)

    Bodorkos, S.; Cawood, P.A. [Curtin University of Technology, Perth, WA (Australia). Tectonics Special Research Centre, School of Applied Geology; Oliver, N.H.S. [James Cook University, Townsville, QLD (Australia). Economic Geology Research Unit, School of Earth Sciences

    1999-06-01

    The Halls Creek Orogen in northern Australia records the Palaeoproterozoic collision of the Kimberley Craton with the North Australian Craton. Integrated structural, metamorphic and geochronological studies of the Tickalara Metamorphics show that this involved a protracted episode of high temperature, low-pressure metamorphism associated with intense and prolonged mafic and felsic intrusive activity in the interval ca 1850-1820 Ma. Tectonothermal development of the region commenced with an inferred mantle perturbation event, probably at ca 1880 Ma. This resulted in the generation of mafic magmas in the upper mantle or lower crust, while upper crustal extension preceded the rapid deposition of the Tickalara sedimentary protoliths. An older age limit for these rocks is provided by a psammopelitic gneiss from the Tickalara Metamorphics, which yield a {sup 207}Pb/{sup 206}Pb SHRIMP age of 1867 {+-} 4 Ma for the youngest detrital zircon suite. Voluminous layered mafic intrusives were emplaced in the middle crust at ca 1860-1855 Ma. prior to the attainment of lower granulite facies peak metamorphic conditions in the middle crust. Locally preserved layer-parallel D{sub 1} foliations that were developed during prograde metamorphism were pervasively overprinted by the dominant regional S{sub 2} gneissosity coincident with peak metamorphism. Overgrowths on zircons record a metamorphic {sup 207}Pb/{sup 206}Pb age of 1845 {+-} 4 Ma. The S{sub 2} fabric is folded around tight folds and cut by ductile shear zones associated with D{sub 3} (ca 1830 Ma), and all pre-existing structures are folded around large-scale, open F{sub 4} folds (ca 1820 Ma). Construction of a temperature-time path for the mid-crustal section exposed in the central Halls Creek Orogen, based on detailed SHRIMP zircon data, key field relationships and petrological evidence, suggests the existence of one protracted thermal event (>400-500degC for 25-30 million years) encompassing two deformation phases

  12. The 1.0 Ga S-type granite in the East Kunlun Orogen, Northern Tibetan Plateau: Implications for the Meso- to Neoproterozoic tectonic evolution

    Science.gov (United States)

    He, Dengfeng; Dong, Yunpeng; Zhang, Feifei; Yang, Zhao; Sun, Shengsi; Cheng, Bin; Zhou, Bo; Liu, Xiaoming

    2016-11-01

    The East Kunlun Orogen (EKO) is characterized by widely distributed granitoids with different ages, which are keys to understanding the tectonic evolution of the Central China Orogenic Belt. Zircon U-Pb ages and Hf isotopic compositions, as well as the whole rock geochemistry of the gneissic granite from the basement rock, are carried out to elucidate the Meso- to Neoproterozoic tectonics of the EKO. The Al-rich minerals, including muscovite and tourmaline, and the A/CNK ratios (1.07-1.18) indicate S-type affinity of the granite. The granite displays high SiO2 and K2O contents, and slightly enrichment in LREE in chondrite normalized REE distribution pattern with strong negative Eu anomalies (δEu = 0.10-0.15). The samples exhibit positive anomalies of Rb, Th, U and Pb, and depletion of Ba, Nb, Ta, Sr and Ti. Meanwhile, the high Rb/Ba and Rb/Sr ratios and low (CaO + FeO + MgO + TiO2) contents indicate that they were derived from pelitic material. Together with the negative εHf(t) values ranging from -5.97 to -2.34 and two-stage Hf model ages varying from 1968 to 1786 Ma, the gneissic granite is suggested being originally derived from partial melting of the metasedimentary rocks of the Paleoproterozoic Jinshuikou Group in the central EKO due to the crust thickening. Most zircon grains from the gneissic granite show typical magmatic zircon morphology, and yield an U-Pb upper intercept age of 1006 ± 20 Ma (MSWD = 1.5), representing the crystallization age. Integrated with the regional geology, our results suggest that the EKO has been probably involved into a Meso- to Neoproterozoic plate collisional event related to the assembly of the Rodinia supercontinent.

  13. Spatial and temporal distribution of deformation at the front of the Andean orogenic wedge in Bolivia and implications for incremental wedge evolution

    Science.gov (United States)

    Weiss, J. R.; Brooks, B. A.; Vergani, G.; Arrowsmith, R.

    2012-12-01

    There is no consensus regarding how orogenic wedges accommodate deformation over seismo-tectonic timescales. Results from the Himalaya and Taiwan suggest differing mechanisms including localized deformation along a single wedge-front structure and distributed shortening across multiple structures respectively. Here we provide the first detailed constraints on the distribution and timing of deformation at the front of the Andean orogenic wedge using industry acquired seismic reflection data from the ~500-km-long thin-skinned fold-and-thrust belt of the Bolivian Subandes (BSA). Almost no information exists on the recent history of BSA wedge-front deformation despite the presence of multiple ~10-m-high topographic scarps on Holocene surfaces and a recent analysis of the GPS-derived velocity field, which suggests the frontal Mandeyapecua thrust fault system (MTFS) is capable of >Mw 8 earthquakes. We use stratigraphic relationships across fault-related folds to depict the onset of deformation for the complete suite of structures comprising the MTFS. For each structure we determine the uncertainty in timing using an envelope of seismic velocity models from ~70 well-logs and published Quaternary sedimentation rates for the region. We further explore fault geometry and fault slip parameters associated with the displacement field of seismic reflection horizons using elastic dislocation theory. Our analyses reveal the presence of at least eight distinct fault segments comprising the MTFS, including previously unrecognized subsurface thrust faults that have been active since ~1 Ma. Shortening rates are generally higher across the younger, northern portion of the fault system but across-strike, in a ~50-km-wide zone from west to east, no distinct pattern of deformation migration exists. We estimate the percentage of whole-wedge deformation accommodated by wedge-front structures using our new fault slip rates combined with the wedge-loading rate of ~10 mm/yr and place our

  14. Variations in erosional efficiency modulate orogenic growth of the Alborz Mountains (N Iran)

    Science.gov (United States)

    Ballato, Paolo; Landgraf, Angela; Stockli, Daniel; Ghasemi, Mohammad; Strecker, Manfred; Kirby, Eric

    2014-05-01

    The recognition that redistribution of mass by erosion governs orogenic evolution has radically changed our perspective on the coupling between climate and mountain building processes. Climate modulates the efficiency of surface processes, which modifies crustal stresses and this is expected to produce the cessation of shortening at the orogenic front, onset of out-of-sequence thrusting, and increased rates of rock -uplift and sediment supply. Unambiguous characterization of these multiple responses through field-based studies, however, has remained challenging. Here, we show that coordinated changes in the rates and patterns of exhumation and deformation during the development of the Alborz Mountains (N Iran) were driven by abrupt, large magnitude (0.6 to 1.5 km) fluctuations in base level in the adjacent Caspian Sea. We argue that sustained regression of the paleoshoreline from ~6 to 3.2 Ma enhanced erosional efficiency of fluvial systems and increased exhumation within the axial orogenic zone and along the northern range flank which, in turn, drove coordinated retreat of the deformation fronts. When base level rose again at 3.2 Ma, exhumation in the orogen interior slowed and range-bounding faults were reactivated. This was associated with the progressive establishment of positive feedbacks loop between orographically-induced precipitation, focused erosion, exhumation, and rock uplift. Overall, these coordinated changes offer compelling evidence that enhanced erosion can indeed trigger a structural reorganization within an actively deforming orogen.

  15. Synchronous and Cogged Fan Belt Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, D.; Dean, J.; Acosta, J.

    2014-02-01

    The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

  16. Highly refractory peridotites in Songshugou, Qinling orogen: Insights into partial melting and melt/fluid-rock reactions in forearc mantle

    Science.gov (United States)

    Cao, Yi; Song, Shuguang; Su, Li; Jung, Haemyeong; Niu, Yaoling

    2016-05-01

    The Songshugou ultramafic massif is located in the eastern segment of the Qinling orogenic belt, central China. It is a large spinel peridotite body dominated by coarse-grained, porphyroclastic, and fine-grained dunite with minor harzburgite, olivine clinopyroxenite, and banded/podiform chromitite. The compositions of the bulk-rock dunite and harzburgite, and the constituent olivine and spinel, together with the textures and chemical characteristics of multiphase mineral inclusions, point to the highly refractory nature of these rocks with complex histories of high-temperature boninite melt generation and boninitic melt-rock reaction, probably in a young, warm, and volatile-rich forearc lithospheric mantle setting. Additionally, a subsequent low-temperature fluid-rock reaction is also recorded by TiO2-rich spinel with Ti solubility/mobility enhanced by chloride- or fluoride-rich subduction-zone fluids as advocated by Rapp et al. (2010). The olivine clinopyroxenite, on the other hand, was likely crystallized from a residual boninitic melt that had reacted with harzburgitic residues. The ubiquitous occurrences of hydrous minerals, such as anthophyllite, tremolite, Cr-chlorite, and serpentine (stable at lower P-T crustal conditions) in the matrix, suggest that further low-temperature fluid-rock reaction (or retrograde metamorphism) has affected the original volatile-poor peridotites either in a mature and cool subduction zone, or in a continental crust during their exhumation into the Qinling collisional orogeny at early Paleozoic era, or both. The prolonged and intense ductile/brittle deformation can decrease the mineral grain size through dynamic recrystallization and fracturing, and thus aid the fluid-rock reaction or retrograde metamorphism and mineral chemical re-equilibration processes. Therefore, the Songshugou peridotites present a good example for understanding the petrogenesis and evolution of the mantle wedge, with the emphasis on the complex partial

  17. 1962 Satellite High Altitude Radiation Belt Database

    Science.gov (United States)

    2014-03-01

    TR-14-18 1962 Satellite High Altitude Radiation Belt Database Approved for public release; distribution is unlimited. March...the Status of the High Altitude Nuclear Explosion (HANE) Trapped Radiation Belt Database”, AFRL-VS-PS-TR- 2006-1079, Air Force Research Laboratory...Roth, B., “Blue Ribbon Panel and Support Work Assessing the Status of the High Altitude Nuclear Explosion (HANE) Trapped Radiation Belt Database

  18. Confirmation of pelitic granulite in the Altai orogen and its geological significance

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; WEI ChunJing; WANG Tao; LOU YuXing; CHU Hang

    2009-01-01

    The existence of pelitic granulite in the Altai orogen was confirmed for the first time by detailed petro-graphic research and P-T pseudosection modeling. The pelitic granulite has the assemblage of garnet + cordierite + K-feldspar + biotite + sillimanite + plagioclase + quartz with some samples containing the paragenesis of cordierite + spinel. Peak conditions of the pelitic granulite determined from the P-T pseudosection involved P= 0.5-0.6 GPa, T= 780-800?*, belonging to medium-to low-pressure type. SHRIMP U-Pb dating of zircon presented a metamorphic age of 292.8 ± 2.3 Ma. The discovery of pelitic granulite reflects an extensional environment with high heat flow in the southern margin of the Altai orogen during the Early Permian, which provides an important petrological constraint on the evolution of the Altai orogen.

  19. Geochemical features of gold-quartz veins in granitoid intrusives and terrigenous masses of the Yana-Kolyma folded belt in the northeast of Russia

    Science.gov (United States)

    Volkov, A. V.; Sidorov, A. A.; Savva, N. E.; Kolova, E. E.; Murashov, K. Yu.; Sidorova, N. V.

    2016-09-01

    The main task of this study was to reveal geochemical and distinctive features of gold-quartz vein ores of deposits in granitoid intrusive bodies and in terrigenous black-schist masses of the Yana-Kolyma folded belt. The results obtained point to the significant role of metamorphism of the enclosing terrigenous carbonaceous masses in ore formation of both types of deposits. The established facts are not contradictory to the metamorphic-magmagene model of the formation of gold deposits in the Yana-Kolyma belt. The geochemical similarity of both types of deposits shows that these are products of the same orogenic system, which confirms the validity of combining these deposits to form a unified gold-quartz formation.

  20. Shear zone evolution and timing of deformation in the Neoproterozoic transpressional Dom Feliciano Belt, Uruguay

    Science.gov (United States)

    Oriolo, Sebastián; Oyhantçabal, Pedro; Wemmer, Klaus; Heidelbach, Florian; Pfänder, Jörg; Basei, Miguel A. S.; Hueck, Mathias; Hannich, Felix; Sperner, Blanka; Siegesmund, Siegfried

    2016-11-01

    New structural, microstructural and geochronological (U-Pb LA-ICP-MS, Ar/Ar, K-Ar, Rb-Sr) data were obtained for the Dom Feliciano Belt in Uruguay. The main phase of crustal shortening, metamorphism and associated exhumation is recorded between 630 and 600 Ma. This stage is related to the collision of the Río de la Plata and Congo cratons at ca. 630 Ma, which also involved crustal reworking of minor crustal blocks such as the Nico Pérez Terrane and voluminous post-collisional magmatism. Subsequent orogen-parallel sinistral shearing gave rise to further deformation up to ca. 584 Ma and resulted from the onset of the convergence of the Kalahari Craton and the Río de la Plata-Congo cratons. Sinistral shear zones underwent progressive strain localization and retrograde conditions of deformation during crustal exhumation. Dextral ENE-striking shear zones were subsequently active at ca. 550 Ma, coeval with further sinistral shearing along N- to NNE-striking shear zones. The tectonothermal evolution of the Dom Feliciano Belt thus recorded the collision of the Río de la Plata and Congo cratons, which comprised one of the first amalgamated nuclei of Gondwana, and the subsequent incorporation of the Kalahari Craton into Western Gondwana.

  1. Kinematics, Thermicity and Petroleum Potential Appraisal in the External Parts of FOLD-and-THRUST Belts

    Science.gov (United States)

    Roure, Francois

    2014-05-01

    Fold-and-thrust belts still constitute frontier areas for HC exploration. However, coupled 2D kinematic and thermal modelling techniques, based on seismic interpretation and the input of balanced cross sections, can be used to recontruct the burial history of source rocks and reservoirs, and to identify the timing of petroleum generation. Fluid flow and pore-fluid pressure modelling can be used also to get estimates on the hydrocarbon charge of potential prospects, and on chemical transfers occurring at both regional and reservoir scale when diagenesis operates in an open system. Bottom hole temperature and maturity ranks of the organic matter (Tmax, and R) can be used to calibrate the overall thermal history, but paleo-thermo-barometers are likely to provide better controls on the paleo-thickness of the eroded overburden. Further post-orogenic controls exerted by mantle dynamics must be also taken into account, because they can induce rapid uplift and erosion in both the foothills and adjacent foreland, and modify strongly the overall drainage areas. The integrated workflow developped at IFP-EN for the evaluation of the petroleum potential of fold-and-thrust belts will be documented by regional case studies in the Apennines, Sicily, Albania and North Algeria in the Mediterranean, as well as in the Sub-Andean basins from Veezuela and Colombia, and in Mexican and Canaduian segments of the North American Cordillera.

  2. The giant Jiaodong gold province:The key to a unified model for orogenic gold deposits?

    Institute of Scientific and Technical Information of China (English)

    David I. Groves; M. Santosh

    2016-01-01

    Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially e associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve meta-morphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedi-mentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many other subduction

  3. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  4. Early Cenozoic Shortening and Foreland Basin Sedimentation in the Marañon Fold-thrust Belt, Central Peruvian Andes

    Science.gov (United States)

    Jackson, L. J.; Carlotto, V.; Horton, B. K.; Rosell, L. N.

    2015-12-01

    The Marañon fold-thrust belt in the westernmost Andes of Peru has long been considered a robust signature of early Cenozoic shortening in the Andean orogenic belt. However, the structural details and potential records of coeval synorogenic sedimentation remain elusive. We report results from new geologic mapping (1:50,000), cross-section construction, and U-Pb geochronology for the Matucana-Ticlio region at 11-12°S along the Lima-La Oroya highway. Zircon U-Pb age data from volcanic rocks and clastic basin fill provide a maximum depositional age of ~43 Ma for a middle Eocene syndeformational unit that we identify as the Anta Formation, which overlies the Paleocene Casapalca Formation. Sedimentary lithofacies and unconformable relationships within the volcaniclastic Anta Formation reveal mixed fluvial, alluvial-fan, and volcanic depositional conditions during shortening accommodated by a NE-verging thrust/reverse fault and corresponding backthrust (here named the Chonta fault system). Our cross-section reconstruction and geochronological data indicate that the region is a critical, possibly unique, zone of the broader NE-directed Marañon fold-thrust belt where pre-Neogene synorogenic sediments and their associated structures are preserved. We interpret this combined structural and basin system as an Eocene-age (Incaic) frontal thrust belt and corresponding foredeep to wedge-top depozone in central Peru. As one of the better-constrained segments of the Marañon fold-thrust belt, this zone provides insight into potential linkages with elusive early Cenozoic (Incaic) structures and foreland basin fill of the Western Cordillera and Altiplano farther south in the central Andean plateau.

  5. Tectonic Map of the Ellesmerian and Eurekan deformation belts on Svalbard, North Greenland and the Queen Elizabeth Islands (Canadian Arctic)

    Science.gov (United States)

    Piepjohn, Karsten; von Gosen, Werner; Tessensohn, Franz; Reinhardt, Lutz; McClelland, William C.; Dallmann, Winfried; Gaedicke, Christoph; Harrison, Christopher

    2016-04-01

    The tectonic map presented here shows the distribution of the major post-Ellesmerian and pre-Eurekan sedimentary basins, parts of the Caledonian Orogen, the Ellesmerian Fold-and-Thrust Belt, structures of the Cenozoic Eurekan deformation, and areas affected by the Eurekan overprint. The present continental margin of North America towards the Arctic Ocean between the Queen Elizabeth Islands and Northeast Greenland and the present west margin of the Barents Shelf are characterized by the Paleozoic Ellesmerian Fold-and-Thrust Belt, the Cenozoic Eurekan deformation, and, in parts, the Caledonian Orogen. In many areas, the structural trends of the Ellesmerian and Eurekan deformations are more or less parallel, and often, structures of the Ellesmerian Orogeny are affected or reactivated by the Eurekan deformation. While the Ellesmerian Fold-and-Thrust Belt is dominated by orthogonal compression and the formation of wide fold-and-thrust zones on Ellesmere Island, North Greenland and Spitsbergen, the Eurekan deformation is characterized by a complex network of regional fold-and-thrust belts (Spitsbergen, central Ellesmere Island), large distinct thrust zones (Ellesmere Island, North Greenland) and a great number of strike-slip faults (Spitsbergen, Ellesmere Island). The Ellesmerian Fold-and-Thrust Belt was most probably related to the approach and docking of the Pearya Terrane (northernmost part of Ellesmere Island) and Spitsbergen against the north margin of Laurasia (Ellesmere Island/North Greenland) in the earliest Carboniferous. The Eurekan deformation was related to plate tectonic movements during the final break-up of Laurasia and the opening of Labrador Sea/Baffin Bay west, the Eurasian Basin north, and the Norwegian/Greenland seas east of Greenland. The tectonic map presented here shows the German contribution to the Tectonic Map of the Arctic 1:5,000,000 (TeMAr) as part of the international project "Atlas of geological maps of Circumpolar Arctic at 1

  6. Apatite-fission-track geochronology and its tectonic correlation in the Dabieshan orogen, central China

    Institute of Scientific and Technical Information of China (English)

    XU; Changhai; ZHOU; Zuyi; P.; Van; Den; Haute; R.; A.; Donel

    2005-01-01

    AFT data of granitoid and metamorphic samples from the Dabieshan orogen have an age range between 96.4 Ma and 41.9 Ma coupled with confined track lengths of 11.5-14.0 μm, reflecting the cooling time of rocks differentially through the 100℃±isotherm. The Jurassic-Eogene sediments from the North Huaiyang and Hefei basin, however, yield their AFT ages of 128.8-62.0 Ma with mean track lengths of 8.6-11.9 μm, recording a complicated thermal development of the basin. These AFT data structurally allowing the coupling between the orogen and the basin are to a great extent considered as the result from the control of NNE-trending regional tectonics. It took place approximately at 95-90 Ma that the orogen developed with an abrupt shift from the doming extension to the differential transtension, which is assumed to be related with the changes of the convergence between the Western Pacific and Eurasia plates. The differentially sinistral strike-slipping from the transtension between Tanlu and Shangcheng-Macheng faults brought the doming extension of the orogen shrunk sharply in Late Cretaceous. In Eogene, the full-grown transtension that dominated in East Asia was caused mainly by a rapid decrease of the rates of the Western Pacific convergence, which can be therefore regarded as a major mechanism creating the zonal anomalies of 60-40 Ma in the orogen. The thermal anomaly of 70-40 Ma zonally along the Tanlu fault cooled more slowly than the anomaly of 60-55 Ma zoning along the Shangcheng-Macheng fault, but the 60-40 Ma anomaly trending E-W in hinterlands of the orogen seems to be relicts of the doming extension as a result of intensive rebuilding by the transtension. In addition, the orogen was also reactivated by the far-field effect from India-Asia collision in Eogene, where major NWW-trending faults played an important role in facilitating such far-field tectonic transferring. In Oligocene to Miocene, the Dabieshan orogen remained a few thermal disturbances with their

  7. Beyond the Kuiper Belt Edge

    Science.gov (United States)

    Sheppard, Scott

    2013-01-01

    Of the thousands of known objects beyond Neptune, only one has a perihelion significantly beyond 50 AU, Sedna at 75 AU. Most Kuiper Belt surveys to date either did not go faint enough, did not have the required long cadence to detect very slow moving objects or covered too small of an area of sky to efficiently detect objects beyond 50 AU. The dynamical and physical properties of objects in this region offer key constraints on the formation and evolution of our solar system. In order to probe the Sedna like population of objects with moderate radii (100 km) we are conducting a deep wide-field outer solar system survey. This survey will allow us to determine if the objects beyond 50 AU are fainter than expected, if there is truly a dearth of objects, or if the Kuiper Belt continues again after some sizable gap possibly caused by a planet sized object. We will be able to examine the origin of Sedna and determine if it is unique (as once believed for Pluto) or one of a new class of object. We request one night in 2013B to recover a very interesting object that we discovered at Subaru in July 2012 and complete the sky coverage needed to constrain the Sedna-like population. This one night was awarded to us in 2012B but lost because of instrument problems.

  8. Jupiter's radiation belts and atmosphere

    Science.gov (United States)

    De Pater, I.; Dames, H. A. C.

    1979-01-01

    Maps and stripscans of the radio emission from Jupiter were made during the Pioneer 10 flyby in December 1973 at wavelengths of 6 cm, 21 cm, and 50 cm using the Westerbork telescope in the Netherlands. With this instrument the disk of the planet was resolved at 6 and 21 cm. The pictures are averaged over 15 deg of Jovian longitude. At 21 cm the stripscans clearly show the existence of a 'hot region' in the radiation belts at a System III longitude (1965.0) of 255 + or - 10 deg. Its flux is about 9% of the total nonthermal flux, and it has a volume emissivity enhanced by a factor of about 1.6 with respect to the general radiation belts. The temperature of the thermal disk at 21 cm appears to be 290 + or - 20 K. This is likely due to a high ammonia mixing ratio in the atmosphere, a factor of 4-5 larger than the expected solar value of 0.00015.

  9. Formation of Kuiper Belt Binaries

    CERN Document Server

    Goldreich, P; Sari, R; Goldreich, Peter; Lithwick, Yoram; Sari, Re'em

    2002-01-01

    It appears that at least several percent of large Kuiper belt objects are members of wide binaries. Physical collisions are too infrequent to account for their formation. Collisionless gravitational interactions are more promising. These provide two channels for binary formation. In each, the initial step is the formation of a transient binary when two large bodies penetrate each other's Hill spheres. Stabilization of a transient binary requires that it lose energy. Either dynamical friction due to small bodies or the scattering of a third large body can be responsible. Our estimates favor the former, albeit by a small margin. We predict that most objects of size comparable to those currently observed in the Kuiper belt are members of multiple systems. More specifically, we derive the probability that a large body is a member of a binary with semi-major axis of order a. The probability depends upon sigma, the total surface density, Sigma, the surface density of large bodies having radius R, and theta=10^-4, t...

  10. Modeling of wind gap formation and development of sedimentary basins during fold growth: application to the Zagros Fold Belt, Iran.

    Science.gov (United States)

    Collignon, Marine; Yamato, Philippe; Castelltort, Sébastien; Kaus, Boris

    2016-04-01

    Mountain building and landscape evolution are controlled by the interactions between river dynamics and tectonic forces. Such interactions have been largely studied but a quantitative evaluation of tectonic/geomorphic feedbacks remains required for understanding sediments routing within orogens and fold-and-thrust belts. Here, we employ numerical simulations to assess the conditions of uplift and river incision necessary to deflect an antecedent drainage network during the growth of one or several folds. We propose that a partitioning of the river network into internal (endorheic) and longitudinal drainage arises as a result of lithological differences within the deforming crustal sedimentary cover. We show with examples from the Zagros Fold Belt (ZFB) that drainage patterns can be linked to the incision ratio R between successive lithological layers, corresponding to the ratio between their relative erodibilities or incision coefficients. Transverse drainage networks develop for uplift rates smaller than 0.8 mm.yr-1 and -10 rates up to 2 mm.yr-1 and incision ratios of 20. Parallel drainage networks and formation of sedimentary basins occur for large values of incision ratio (R >20) and uplift rates between 1 and 2 mm.yr-1. These results have implications for predicting the distribution of sediment depocenters in fold-and-thrust belts, which can be of direct economic interest for hydrocarbon exploration.

  11. Trans-Hudson Orogen of North America and Himalaya-Karakoram-Tibetan Orogen of Asia: Structural and thermal characteristics of the lower and upper plates

    Science.gov (United States)

    St-Onge, Marc R.; Searle, Michael P.; Wodicka, Natasha

    2006-08-01

    The Trans-Hudson Orogen (THO) of North America and the Himalaya-Karakoram-Tibetan Orogen (HKTO) of Asia preserve a Paleoproterozoic and Cenozoic record, respectively, of continent-continent collision that is notably similar in scale, duration and character. In THO, the tectonothermal evolution of the lower plate involves (1) early thin-skinned thrusting and Barrovian metamorphism, (2) out-of-sequence thrusting and high-T metamorphism, and (3) fluid-localized reequilibration, anatexis, and leucogranite formation. The crustal evolution of the Indian lower plate in HKTO involves (1) early subduction of continental crust to ultrahigh pressure (UHP) eclogite depths, (2) regional Barrovian metamorphism, and (3) widespread high-T metamorphism, anatexis, and leucogranite formation. The shallow depths of the high-T metamorphism in HKTO are consistent with early to mid-Miocene ductile flow of an Indian lower plate midcrustal channel, from beneath the southern Tibetan Plateau to the Greater Himalaya. Melt weakening of the lower plate in THO is not observed at a similar scale probably due to the paucity of pelitic lithologies. Tectonothermal events in the upper plate of both orogens include precollisional accretion of crustal blocks, emplacement of Andean-type plutonic suites, and high-T metamorphism. Syncollisional to postcollisional events include emplacement of garnet-biotite-muscovite leucogranites, anatectic granites, and sporadic metamorphism (up to 90 Myr following the onset of collision in THO). Comparing the type and duration of tectonothermal events for THO and HKTO supports the notion of tectonic uniformitarianism for at least the later half of dated Earth history and highlights the complementary nature of the rock record in an older "exhumed" orogen compared to one undergoing present-day orogenesis.

  12. The Administrator's "Handy Dandy" Tool Belt

    Science.gov (United States)

    Anderson, Terry

    2012-01-01

    Every good leader needs a tool belt. Throughout the author's years of building early childhood programs, she has acquired a number of tools for her personal belt. These tools have helped her sharpen her skills in supporting teachers and staff, connecting with families, and educating children. This article focuses on those leadership skills that…

  13. Biomechanics of seat belt restraint system.

    Science.gov (United States)

    Sances, Anthony; Kumaresan, Srirangam; Herbst, Brian; Meyer, Steve; Hock, Davis

    2004-01-01

    Seat belt system restrains and protects occupants in motor vehicle crashes and any slack in seat belt system induces additional loading on occupant. Signs of belt loading are more obvious in high-speed frontal collisions with heavy occupants. However subtle changes may occur at low speeds or with low forces from occupants during rollovers. In certain cases, the seat belt webbing is twisted and loaded by the occupant. The loading of webbing induces an observable fold/crimp on the seat belt. The purpose of the study is to biomechanically evaluate the force required to produce such marks using an anthropometric physical test dummy. Two tests were conducted to determine the amount of force required to put an observable fold/crimp in a shoulder belt. A head form designed by Voight Hodgson was used to represent the neck which interacted with the belt. The force was applied with a pneumatic pull ram (central hydraulic 89182 N) and the force was measured with a 44,000 N transducer load cell (DSM-10K). Results indicate that the force of over 1,000 N produced a fold or crimp in the belt.

  14. Seat Belts on School Buses: Some Considerations.

    Science.gov (United States)

    Soule, David

    1982-01-01

    A representative of the National Highway Traffic Safety Administration weighs advantages and discusses issues associated with installing seat belts in school buses. Federal regulations and research findings are considered. A list of guideline questions for school districts planning to install seat belts is included. (PP)

  15. Intelligent Belt Conveyor Monitoring and Control

    NARCIS (Netherlands)

    Pang, Y.

    2010-01-01

    Belt conveyors have been used worldwide in continuous material transport for about 250 years. Traditional inspection and monitoring of large-scale belt conveyors focus on individual critical components and response to catastrophic system failures. To prevent operational problems caused by the lack o

  16. Parameters affecting seat belt use in Greece.

    Science.gov (United States)

    Yannis, G; Laiou, A; Vardaki, S; Papadimitriou, E; Dragomanovits, A; Kanellaidis, G

    2011-09-01

    The objective of this research is the exploration of seat belt use in Greece and particularly the identification of the parameters affecting seat belt use in Greece. A national field survey was conducted for the analytical recording of seat belt use. A binary logistic regression model was developed, and the impact of each parameter on seat belt use in Greece was quantified. Parameters included in the model concern characteristics of car occupants (gender, age and position in the car), the type of the car and the type of the road network. The data collection revealed that in Greece, the non-use of seat belt on the urban road network was higher than on the national and rural road network and young and older men use seat belts the least. The developed model showed that travelling on a national road is negative for not wearing the seat belt. Finally, the variable with the highest impact on not wearing a seat belt is being a passenger on the back seats.

  17. Feeding the ';aneurysm': Orogen-parallel mass flux into Nanga Parbat and the western Himalayan syntaxis

    Science.gov (United States)

    Whipp, D. M.; Beaumont, C.; Braun, J.

    2013-12-01

    Over the last ~2 Ma, exhumation of the Nanga Parbat-Haramosh massif (NPHM) in the western Himalayan syntaxis region has occurred at rates that are more than double the exhumation rates in the central Himalaya (up to 13 mm/a). Coupled with surface elevations comparable to the rest of the Himalaya, this suggests an additional source of mass flux, over and above that supplied by normal convergence, is required to sustain localized, very rapid exhumation of the NPHM. The ';tectonic aneurysm' model provides an explanation for localized, rapid exhumation in the NPHM based on incision by the Indus River, but the source of the excess mass is not clear. One source capable of providing the requisite crustal mass is orogen-parallel (OP) mass transport as a result of strain partitioning along the Himalayan thrust front, where convergence is variably oblique, with obliquity up to ~40°. Conceptual and analog models of strain partitioning in convergent orogens have indicated how orogen-normal thrust motion results in OP mass transport within oblique orogenic wedges. However, there has been no quantitative demonstration that this may lead to the development of NPHM-type structures. We use geometrically simple 3D mechanical numerical experiments of an obliquely convergent orogen to demonstrate that the OP mass transport flux resulting from strain partitioning is capable of sustaining syntaxis topography and rapid exhumation rates. The model design includes a frictional-plastic orogenic wedge with predefined weak shear zones at its base and rear, and a neighboring plateau underlain by low-viscosity middle-lower crust. The geometry of the orogen thrust front is segmented, such that there is a region of oblique convergence at 45° obliquity bounded by two regions of orogen-normal convergence. Analytical and numerical results show that strain partitioning in the critical wedge orogen requires both the basal and rear shear zones to be very weak, with angles of internal friction of ~2

  18. Sulfur- and lead-isotope signatures of orogenic gold mineralisation associated with the Hill End Trough, Lachlan Orogen, New South Wales, Australia

    Science.gov (United States)

    Downes, P. M.; Seccombe, P. K.; Carr, G. R.

    2008-11-01

    The Hill End Trough (HET) is a deformed middle Silurian to Early Devonian sediment-dominated rift within the northeastern Lachlan Orogen. The HET hosts the Hill End, Hargraves, Napoleon Reefs, Stuart Town and Windeyer low-sulfide orogenic gold deposits. Adjacent to the HET are the Bodangora and Gulgong gold deposits. In this study we present 91 new sulfur- and 18 new lead-isotope analyses and collate a further 25 sulfur- and 32 lead-isotopes analyses from unpublished sources for these deposits. Larger gold deposits in the HET have near 0 δ34S‰ values indicating that sulfur in these systems was sourced from a magmatic reservoir. The dominant lead isotope signature for HET-hosted deposits reflects a crustal source however some mantle-derived lead has been introduced into the HET. Sulfur- and lead-isotopic results suggest that gold was sourced from mantle-derived magmatic units beneath the HET. The study supports earlier studies at Hill End by concluding that the majority of orogenic gold mineralisation in and adjacent to the HET formed during the Early Carboniferous period.

  19. The crustal structures from Wuyi-Yunkai orogen to Taiwan orogen: the onshore-offshore wide-angle seismic experiment of TAIGER and ATSEE projects

    Science.gov (United States)

    Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.

    2015-12-01

    The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.

  20. How does the mid-crust accommodate deformation in large, hot collisional orogens? A review of recent research in the Himalayan orogen

    Science.gov (United States)

    Cottle, John M.; Larson, Kyle P.; Kellett, Dawn A.

    2015-09-01

    The presence of hot, weak crust is a central component of recent hypotheses that seek to explain the evolution of continent-continent collisions, and in particular may play an important role in accommodating the >3000 km of convergence within the Himalaya-Tibetan collision over the last ∼55 Myr. Models that implicate flow of semi-viscous midcrustal rocks south toward the front of the Himalayan orogen, 'channel flow', are able to account for many geologic observations in the Himalaya, while alternative models of collision, particularly 'thrust-wedge taper', demonstrate that much of the observed geology could have formed in the absence of a low-viscosity mid-crustal layer. Several recent studies, synthesized here, have prompted a shift from initial assumptions that channel flow and thrust-wedge taper processes are by definition mutually exclusive. These new studies reveal the presence of several tectonometamorphic discontinuities in the midcrust that appear to reflect a continuum of deformation in which both channel- and wedge-type processes operate in spatially and temporally distinct domains within the orogen, and further, that the system may migrate back and forth between these types of behavior. This continuum of deformation styles within the collisional system is of crucial importance for explaining the evolution of the Himalayan orogen and, hence, for understanding the evolution of Earth's many continent-continent collision zones.

  1. Radiation belt dynamics during solar minimum

    Energy Technology Data Exchange (ETDEWEB)

    Gussenhoven, M.S.; Mullen, E.G. (Geophysics Lab., Air Force Systems Command, Hanscom AFB, MA (US)); Holeman, E. (Physics Dept., Boston College, Chestnut Hill, MA (US))

    1989-12-01

    Two types of temporal variation in the radiation belts are studied using low altitude data taken onboard the DMSP F7 satellite: those associated with the solar cycle and those associated with large magnetic storm effects. Over a three-year period from 1984 to 1987 and encompassing solar minimum, the protons in the heart of the inner belt increased at a rate of approximately 6% per year. Over the same period, outer zone electron enhancements declined both in number and peak intensity. During the large magnetic storm of February 1986, following the period of peak ring current intensity, a second proton belt with energies up to 50 MeV was found at magnetic latitudes between 45{degrees} and 55{degrees}. The belt lasted for more than 100 days. The slot region between the inner and outer electron belts collapsed by the merging of the two populations and did not reform for 40 days.

  2. New isotopic ages and the timing of orogenic events in the Cordillera Darwin, southernmost Chilean Andes

    Science.gov (United States)

    Hervé, F.; Nelson, E.; Kawashita, K.; Suárez, M.

    1981-10-01

    The Cordillera Darwin, a structural culmination in the Andes of Tierra del Fuego, exposes an orogenic core zone that has undergone polyphase deformation and metamorphism. Some of the classic problems of orogenic zones have remained unanswered in the Cordillera Darwin: the age of deformed plutonic rocks, the distinction of structurally reactivated basement and metamorphosed cover rocks, and the timing of orogenic events. This study addresses and partially answers these questions. A well-constrained Rb-Sr isochron age of157±8m.y. and an initial 87Sr/ 86Sr ratio of 0.7087 obtained from a pre-tectonic granitic suite suggest a genetic relation between this suite and Upper Jurassic silicic volcanic rocks in the cover sequence (Tobifera Formation), and also suggest involvement of continental crust in formation of these magmas. A poorly constrained Rb-Sr isochron age of240±40m.y. obtained from supposed basement schists is consistent with field relations in the area which suggest a late Paleozoic/early Mesozoic metamorphism for these pre-Late Jurassic rocks. However, because of scatter in the data and the uncertainties involved in dating metasedimentary rocks, the significance of the isotopic age is dubious. Compilation of previously published ages in the area [9] with new mineral ages reported here indicate that "early Andean" orogenic events occurred between 100 and 84 m.y. ago, and that subduction-related magmatism has contributed, probably discontinuously, to the crustal evolution of the region throughout the Mesozoic.

  3. Geochemical constraints on the petrogenesis of basalts from eastern Jiangnan orogen, South China

    Institute of Scientific and Technical Information of China (English)

    唐红峰; 周新民

    1997-01-01

    The basalts crop out widely in the eastern part of late Proterozoic Jiangnan orogen. In terms of their petrographical and geochemical characteristics, they can be divided into two distinct types: low- and high-Ti basalts. They crystallized from the magmas derived from the depleted upper mantle differing in partial melting degree.

  4. Kinematics of post-orogenic extension and exhumation of the Taku Schist, NE Peninsular Malaysia

    NARCIS (Netherlands)

    Md Ali, M.A.; Willingshofer, E.|info:eu-repo/dai/nl/197475167; Matenco, L.|info:eu-repo/dai/nl/163604592; Francois, T.; Daanen, T.P.; Ng, T.F.; Taib, N.I.; Shuib, M.K.

    2016-01-01

    Abstract Recent studies imply that the formation and evolution of many SE Asian basins was driven by extensional detachments or systems of low-angle normal faults that created significant crustal exhumation in their footwalls. In this context, the architecture of the Triassic Indosinian orogen prese

  5. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization

    Science.gov (United States)

    Johnson, Simon P.; Korhonen, Fawna J.; Kirkland, Christopher L.; Cliff, John B.; Belousova, Elena A.; Sheppard, Stephen

    2017-01-01

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as 'cratonization', is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons. The majority of magmatic zircons from the main magmatic cycles have Hf isotopic compositions that are generally more evolved than CHUR, forming vertical arrays that extend to moderately radiogenic compositions. Complimentary O isotope data, also show a significant variation in composition. However, combined, these data define not only the source components from which the magmas were derived, but also a range of physio-chemical processes that operated during magma transport and emplacement. These data also identify a previously unknown crustal reservoir in the Capricorn Orogen.

  6. Carbonatitic metasomatism in orogenic dunites from Lijiatun in the Sulu UHP terrane, eastern China

    Science.gov (United States)

    Su, Bin; Chen, Yi; Guo, Shun; Chu, Zhu-Yin; Liu, Jing-Bo; Gao, Yi-Jie

    2016-10-01

    Among orogenic peridotites, dunites suffer the weakest crustal metasomatism at the slab-mantle interface and are the best lithology to trace the origins of orogenic peridotites and their initial geodynamic processes. Petrological and geochemical investigations of the Lijiatun dunites from the Sulu ultrahigh-pressure (UHP) terrane indicate a complex petrogenetic history involving melt extraction and multistage metasomatism (carbonatitic melt and slab-derived fluid). The Lijiatun dunites consist mainly of olivine (Fo = 92.0-92.6, Ca = 42-115 ppm), porphyroblastic orthopyroxene (En = 91.8-92.8), Cr-spinel (Cr# = 50.4-73.0, TiO2 continental subduction channel. These dunites then suffered weak metasomatism by slab-derived fluids, forming pargasitic amphibole after pyroxene. This work indicates that modification of the SCLM beneath the eastern margin of the NCC had already taken place before the Triassic continental subduction. Orogenic peridotites derived from such a lithospheric mantle wedge may be heterogeneously modified prior to their incorporation into the subduction channel, which would set up a barrier for investigation of the mass transfer from the subducted crust to the mantle wedge through orogenic peridotites.

  7. SVM-based base-metal prospectivity modeling of the Aravalli Orogen, Northwestern India

    Science.gov (United States)

    Porwal, Alok; Yu, Le; Gessner, Klaus

    2010-05-01

    The Proterozoic Aravalli orogen in the state of Rajasthan, northwestern India, constitutes the most important metallogenic province for base-metal deposits in India and hosts the entire economically viable lead-zinc resource-base of the country. The orogen evolved through near-orderly Wilson cycles of repeated extensional and compressional tectonics resulting in sequential opening and closing of intracratonic rifts and amalgamation of crustal domains during a circa 1.0-Ga geological history from 2.2 Ga to 1.0 Ga. This study develops a conceptual tectonostratigraphic model of the orogen based on a synthesis of the available geological, geophysical and geochronological data followed by deep-seismic-reflectivity-constrained 2-D forward gravity modeling, and links it to the Proterozoic base-metal metallogeny in the orogen in order to identify key geological controls on the base-metal mineralization. These controls are translated into exploration criteria for base-metal deposits, validated using empirical spatial analysis, and used to derive input spatial variables for model-based base-metal prospectivity mapping of the orogen. A support vector machine (SVM) algorithm augmented by incorporating a feature selection procedure is used in a GIS environment to implement the prospectivity mapping. A comparison of the SVM-derived prospectivity map with the ones derived using other established models such as neural-networks, logistic regression, and Bayesian weights-of-evidence indicates that the SVM outperforms other models, which is attributed to the capability of the SVM to return robust classification based on small training datasets.

  8. Lateral thinking: 2-D interpretation of thermochronology in convergent orogenic settings

    Science.gov (United States)

    Batt, Geoffrey E.; Brandon, Mark T.

    2002-05-01

    Lateral motion of material relative to the regional thermal and kinematic frameworks is important in the interpretation of thermochronology in convergent orogens. Although cooling ages in denuded settings are commonly linked to exhumation, such data are not related to instantaneous behavior but rather to an integration of the exhumation rates experienced between the thermochronological 'closure' at depth and subsequent exposure at the surface. The short spatial wavelength variation of thermal structure and denudation rate typical of orogenic regions thus renders thermochronometers sensitive to lateral motion during exhumation. The significance of this lateral motion varies in proportion with closure temperature, which controls the depth at which isotopic closure occurs, and hence, the range of time and length scales over which such data integrate sample histories. Different chronometers thus vary in the fundamental aspects of the orogenic character to which they are sensitive. Isotopic systems with high closure temperature are more sensitive to exhumation paths and the variation in denudation and thermal structure across a region, while those of lower closure temperature constrain shorter-term behaviour and more local conditions. Discounting lateral motion through an orogenic region and interpreting cooling ages purely in terms of vertical exhumation can produce ambiguous results because variation in the cooling rate can result from either change in kinematics over time or the translation of samples through spatially varying conditions. Resolving this ambiguity requires explicit consideration of the physical and thermal framework experienced by samples during their exhumation. This can be best achieved through numerical simulations coupling kinematic deformation to thermal evolution. Such an approach allows the thermochronological implications of different kinematic scenarios to be tested, and thus provides an important means of assessing the contribution of

  9. Geochronological constraints on 140-85 Ma thermal doming extension in the Dabie orogen, central China

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Regional architecture of geochronology and differential cooling pattern show that the Dabie orogen underwent a thermal doming extension during 140-85 Ma. This extension resulted in widespread re-melting of the Dabie basement, intense volcanic activities in North Huaiyang and the formation of fault-controlled depressions in the Hefei basin. This thermal doming extension can be further divided into two consecutive evolving stages, i.e. the intensifying stage (140-105 Ma) and the declining stage (105-85 Ma). In the first stage (140-105 Ma), the thermal doming mainly was concentrated in the Dabie block, and to a less degree, in the Hongan block. The thermal doming structure of the Dabie block is configured with Macheng-Yuexi thermal axis, Yuexi/Luotian thermal cores and their downslide flanks. The orientation of thermal axis is dominantly parallel to the strike of orogen, and UHP/HP units together with metamorphic rocks of North Huaiyang constitute the downslide flanks. The Yuexi core differs from the Luotian core in both the intensity and the shaping time. To some extent, the Hongan block can be regarded as part of downslide systems of the Dabie doming structure. The doming process is characterized by thermal-center's migration along the Macheng-Yuexi thermal axis; consequently, it is speculated to be attributed to the convective removal of thickened orogenic root, which is a process characterized by intermittance, migration, large-scale and differentiation. During the declining stage (105-85 Ma), the dome- shaped figure still structurally existed in the Dabie orogen, but orogenic units cooled remarkably slow and magmatic activities stagnated gradually. Study on the thermal doming of Dabieshan Mountains can thus provide detailed constraints on the major tectonic problems such as the UHP/HP exhumation model, the boundary between North Dabie and South Dabie, and the orogenesis mechanism.

  10. Visualizing the sedimentary response through the orogenic cycle using multi-dimensional scaling

    Science.gov (United States)

    Spencer, C. J.; Kirkland, C.

    2015-12-01

    Changing patterns in detrital provenance through time have the ability to resolve salient features of an orogenic cycle. Such changes in the age spectrum of detrital minerals can be attributed to fluctuations in the geodynamic regime (e.g. opening of seaways, initiation of subduction and arc magmatism, and transition from subduction to collisional tectonics with arrival of exotic crustal material). These processes manifest themselves through a variety of sedimentary responses due to basin formation, transition from rift to drift sedimentation, or inversion and basement unroofing. This generally is charted by the presence of older detrital zircon populations during basement unroofing events and is followed by a successive younging in the detrital zircon age signature either through arrival of young island arc terranes or the progression of subduction magmatism along a continental margin. The sedimentary response to the aforementioned geodynamic environment can be visualized using a multi-dimensional scaling approach to detrital zircon age spectra. This statistical tool characterizes the "dissimilarity" of age spectra of the various sedimentary successions, but importantly also charts this measure through time. We present three case studies in which multi-dimensional scaling reveals additional useful information on the style of basin evolution within the orogenic cycle. The Albany-Fraser Orogeny in Western Australia and Grenville Orogeny (sensu stricto) in Laurentia demonstrate clear patterns in which detrital zircon age spectra become more dissimilar with time. In stark contrast, sedimentary successions from the Meso- to Neoproterozoic North Atlantic Region reveal no consistent pattern. Rather, the North Atlantic Region reflects a signature consistent with significant zircon age communication due to a distal position from an orogenic front, oblique translation of terranes, and complexity of the continental margin. This statistical approach provides a mechanism to

  11. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands

    Science.gov (United States)

    Bradley, D.C.; Leach, D.L.

    2003-01-01

    Most of the world's Mississippi Valley-type (MVT) zinc-lead deposits occur in orogenic forelands. We examine tectonic aspects of foreland evolution as part of a broader study of why some forelands are rich in MVT deposits, whereas others are barren. The type of orogenic foreland (collisional versus Andean-type versus inversion-type) is not a first-order control, because each has MVT deposits (e.g., Northern Arkansas, Pine Point, and Cevennes, respectively). In some MVT districts (e.g., Tri-State and Central Tennessee), mineralization took place atop an orogenic forebulge, a low-amplitude (a few hundred meters), long-wavelength (100-200 km) swell formed by vertical loading of the foreland plate. In the foreland of the active Banda Arc collision zone, a discontinuous forebulge reveals some of the physiographic and geologic complexities of the forebulge environment, and the importance of sea level in determining whether or not a forebulge will emerge and thus be subject to erosion. In addition to those on extant forebulges, some MVT deposits occur immediately below unconformities that originated at a forebulge, only to be subsequently carried toward the orogen by the plate-tectonic conveyor (e.g., Daniel's Harbour and East Tennessee). Likewise, some deposits are located along syn-collisional, flexure-induced normal and strike-slip faults in collisional forelands (e.g., Northern Arkansas, Daniel's Harbour, and Tri-State districts). These findings reveal the importance of lithospheric flexure, and suggest a conceptual tectonic model that accounts for an important subset of MVT deposits-those in the forelands of collisional orogens. The MVT deposits occur both in flat-lying and in thrust-faulted strata; in the latter group, mineralization postdated thrusting in some instances (e.g., Picos de Europa) but may have predated thrusting in other cases (e.g., East Tennessee).

  12. Seat belt use law in developing countries

    Institute of Scientific and Technical Information of China (English)

    SangWanLee

    1999-01-01

    Objective:To highlight the way to successful implementation of mandantory seat belt use law in developing countries particulary where have significant increase in number or cars and subsequent increase in car occupant casualties.Methods:Literatures concerning seat belt use were reviewed and experiences of the world.Satisfactory or not,investigated.It summed up general aspects of seat belt use as well as benefits,attitude toward legislation and measures to enhance the usage.Results:Seat belt use has been proven and stood time tested as the most effective means to protect car occupants from road crash injuries.It appears to be arduous to achieve the golal of seat belt use law in developing countries. but possible via strategies appropriately leading to legislation and promotion of the belt usage.Conclusions:It is prime necessity for the government authorities to recognize the importance of seat belt use.There needs an organizational structure composed of relevant professional from both private and government sectors which is able to carry out every steps toward successful legislation and implementation:education,publicity,enforcement,evaluation and dissemination of the law's benefits.

  13. Three evolutionary stages of the collision orogenic deformation in the Middle Yangtze Region

    Institute of Scientific and Technical Information of China (English)

    SUN; Yan

    2001-01-01

    13]Sun Yan Sbu Liangshu, Faure, M. et al., Tectonic development of the metamorphic core complex of Wugongshan in the Northern Jiangxi Province, Jour. of Nanjing University, 1997, 33: 447-449.[14]Faure. M., Sun Yah, Shu Liangshu et al., Extensional tectonics within a subduction-type orogen, the case study of the Wugongshan dome, Tectonophysics, 1996, 263: 77- 106.[15]Shu Liangshu, Shi Yangshen, Guo Lingzhi et al., Plate Tectonic Evolution and the Kinematics of Collisional Orogeny in the Middle Jiangnan, Eastern China, Nanjing: Publishing House of Nanjing University, 1995, 14-149.[16]Sun Yan, Shi Zejin Study on mechanical parameters of rocks and regional layerslip system in Hunan-Jiangxi area, Science in China, Ser. B. 1993, 36(8): 962-975.[17]Xu Zhiqin, Chui Junwen, Tectonic Dynamics of the Continental China, Beijing: Metallurgical Industry Publishing House, 1996, 89-178.[18]Sun Yan, Tectonics and mineralization of Lachlan Fold Belt, Canberra, Geol. Soc. of Australia, 1991, 29: 52-53.[19]Faure, M., The geodynamic evolution of the Eastern Eurasian margin in Mesozoic times, Tectonophysics, 1992, 208: 97-411.[20]Herwegh, M., Handy, M. R., Heilbronner, R., Evolution of mylonitic microfabric (EMM), a computer application for educational purposes, Tectonophysics, 1999, 303: 141-146.21.Wiens, D. A., Sliding skis and slipping faults, Nature, 1998, 279: 824-825.[21]Sun Yan, Suzuki, T., Study on the ductile deformation domain of the simple shear in rocks, Science in China, Ser. B, 1992,35(12): 1512-1520.[22]Molnar, P., Tapponnier, P., Cenozoic tectonics of Asia: effects of a continental collision, Science, 1975, 189: 419-426.[23]Buke, K.. Sengor, A. B. C., Tectonic escape in evolution of the continenental crust, in Reflection Seismology, The Continental Crust, Geodynamics Series (14). (eds. Barazangi, M., Brown, L.), Washington D.C.: American Geophysical Union,1986. 41 -53.[24]Shan Yanjun, Xia Bangdong, A preliminary discussion on

  14. Drive Alive: Teen Seat Belt Survey Program

    Directory of Open Access Journals (Sweden)

    Loftin, Laurel

    2010-08-01

    Full Text Available Objective: To increase teen seat belt use among drivers at a rural high school by implementing the Drive Alive Pilot Program (DAPP, a theory-driven intervention built on highway safety best practices.Methods: The first component of the program was 20 observational teen seat belt surveys conducted by volunteer students in a high school parking lot over a 38-month period before and after the month-long intervention. The survey results were published in the newspaper. The second component was the use of incentives, such as gift cards, to promote teen seat belt use. The third component involved disincentives, such as increased police patrol and school policies. The fourth component was a programmatic intervention that focused on education and media coverage of the DAPP program.Results: Eleven pre-intervention surveys and nine post-intervention surveys were conducted before and after the intervention. The pre- and post-intervention seat belt usage showed significant differences (p<0.0001. The average pre-intervention seat belt usage rate was 51.2%, while the average post-intervention rate was 74.5%. This represents a percentage point increase of 23.3 in seat belt use after the DAPP intervention.Conclusion: Based on seat belt observational surveys, the DAPP was effective in increasing seat belt use among rural high school teenagers. Utilizing a theory-based program that builds on existing best practices can increase the observed seat belt usage among rural high school students. [West J Emerg Med. 2010; 11(3: 280-283.

  15. 3-D ore body modeling and structural settings of syn-to late orogenic Variscan hydrothermal mineralization, Siegerland district, Rhenish Massif, NW Germany

    Science.gov (United States)

    Peters, Meike; Hellmann, André; Meyer, Franz Michael

    2013-04-01

    The Siegerland district is located in the fold-and thrust-belt of the Rhenish Massif and hosts diverse syn-to late orogenic mineralization styles. Peak-metamorphism and deformation occurred at 312-316±10 Ma (Ahrendt et al., 1978) at temperature-pressure conditions of 280-320°C and 0.7-1.4 kbar (Hein, 1993). In addition to syn-orogenic siderite-quartz mineralization at least four different syn-to late orogenic mineralization stages are identified comprising Co-Ni-Cu-Au, Pb-Zn-Cu, Sb-Au, and hematite-digenite-bornite ores (Hellmann et al., 2012). The earliest type of syn-orogenic ore mineralization is formed by siderite-quartz veins, trending N-S, E-W and NE-SW. The vein systems are closely related to fold and reverse fault geometries (Hellmann et al., 2012). The most important structural feature is the first-order Siegen main reverse fault showing an offset into three major faults (Peters et al., 2012). The structural control on ore formation is demonstrated by the Co-Ni-Cu-Au mineralization generally hosted by NE-ENE trending reverse faults and associated imbrication zones that have reactivated the older siderite-quartz veins. In this study, we developed a 3-D model of the Alte Buntekuh ore bodies in the Siegerland district, using Datamine Studio3 to investigate the structural setting of Co-Ni-Cu-Au mineralization. The salient structural and spatial data for the 3-D model were taken from old mine level plans as well as from geological and topographical maps. The ore bodies are located immediately in the hanging wall of the southern branch of the Siegen main reverse fault (Peters et al., 2012). From the model it becomes obvious, that the earlier siderite-quartz veins, dipping steeply to the NW, are cross-cut and segmented by oppositely dipping oblique reverse faults. Individual ore body segments are rotated and displaced, showing a plunge direction to the SW. The 3-D model further reveals the presence of hook-like, folded vein arrays, highly enriched in cobalt

  16. From hyper-extended rifts to orogens: the example of the Mauléon rift basin in the Western Pyrenees (SW France)

    Science.gov (United States)

    Masini, E.; Manatschal, G.; Tugend, J.

    2011-12-01

    An integral part of plate tectonic theory is that the fate of rifted margins is to be accreted into mountain belts. Thus, rift-related inheritance is an essential parameter controlling the evolution and architecture of collisional orogens. Although this link is well accepted, rift inheritance is often ignored. The Pyrenees, located along the Iberian and European plate boundary, can be considered as one of the best places to study the reactivation of former rift structures. In this orogen the Late Cretaceous and Tertiary convergence overprints a Late Jurassic to Lower Cretaceous complex intracontinental rift system related to the opening of the North Atlantic. During the rifting, several strongly subsiding basins developed in the axis of the Pyrenees showing evidence of extreme crustal extension and even locale mantle exhumation to the seafloor. Although the exact age and kinematics of rifting is still debated, these structures have an important impact in the subsequent orogenic overprint. In our presentation we discuss the example of the Mauléon basin, which escaped from the most pervasive deformations because of its specific location at the interface between the western termination of the chain and the Bay of Biscay oceanic realm. Detailed mapping combined with seismic reflection, gravity data and industry wells enabled to determine the 3D rift architecture of the Mauléon basin. Two major diachronous detachment systems can be mapped and followed through space. The Southern Mauléon Detachment (SMD) develops first, starts to thin the crust and floors the Southern Mauléon sub-Basin (SMB). The second, the Northern Mauléon Detachment (SMD) is younger and controls the final crustal thinning and mantle exhumation to the north. Both constitute the whole Mauléon basin. Like at the scale of the overall Pyrenees, the reactivation of the Mauléon Basin increases progressively from west to east, which enables to document the progressive reactivation of an aborted hyper

  17. Computer-aided design of conveyor belts

    Energy Technology Data Exchange (ETDEWEB)

    Karolewski, B.; Pytel, J.

    1984-01-01

    Possibilities are discussed for using mathematical models of belt conveyors for development of computer-aided design of conveyors for coal mining. Examples of optimization tasks and methods for their solution using computerized simulation are analyzed. The analysis is illustrated by an algorithm used to design a starter for the drive system of a belt conveyor. Electromagnetic moment and starting current are used as optimization criteria. A simplified model of a belt conveyor is used. The model consists of an equation of motion with variable braking moment and variable moment of inertia. 3 references.

  18. Collisional evolution of the early asteroid belt

    Science.gov (United States)

    Gil-Hutton, Ricardo; Brunini, Adrián

    1999-04-01

    We present numerical results obtained by a simulation of the collisional process between asteroids and scattered comets from the Uranus-Neptune zone. This mechanism allows the use of single exponent incremental size distributions for the initial belt reaching a final distribution that matches the observed population very well. Since the cometary bombardment was extremely efficient removing mass from the primordial asteroid belt in a very short time, we always obtained belts with total masses less than 0.001 M ⊕ after ≈ 2×10 7 yrs. This result allows processes with an important initial mass preserving Vestas basaltic crust.

  19. Triassic tectonics of the Ailaoshan Belt (SW China): Early Triassic collision between the South China and Indochina Blocks, and Middle Triassic intracontinental shearing

    Science.gov (United States)

    Faure, Michel; Lin, Wei; Chu, Yang; Lepvrier, Claude

    2016-06-01

    In SE Yunnan, the Ailaoshan Belt has been extensively studied for the ductile shearing coeval with the left-lateral Cenozoic activity of the Red River fault. However, the Late Triassic unconformity of the continental red beds upon metamorphic and ductilely deformed rocks demonstrates that the Ailaoshan Belt was already built up by Early Mesozoic tectonics. From West to East, the belt is subdivided into Western, Central, Eastern Ailaoshan, and Jinping zones. The Western Ailaoshan and Central Ailaoshan zones correspond to a Carboniferous-Permian magmatic arc, and an ophiolitic mélange, respectively. The Eastern Ailaoshan, and the Jinping zones consist of deformed Proterozoic basement and Paleozoic to Early Triassic sedimentary cover series both belonging to the South China Block. This litho-tectonic zonation indicates that the Ailaoshan Belt developed through a SW-directed subduction followed by the collision between Indochina and South China blocks. Crustal thickening triggered per-aluminous magmatism dated at ca 247-240 Ma. Field and microscope-scale top-to-the-NE ductile shearing observed only in the pre-Late Triassic formations, but never in Late Triassic or younger formations, complies with this geodynamic polarity. Furthermore, the late collisional two-mica granitoids and felsic per-aluminous volcanites record a ductile deformation that argues for a continuing crustal shearing deformation after the Early Triassic collision up to the Middle Triassic. Therefore, a two-stage tectonic evolution accounts well for the documented structural and magmatic features. The Triassic architecture of the Ailaoshan Belt, and its geodynamic evolution, correlate well to the South and North with the North Vietnam orogens and the Jinshajiang Belt, respectively.

  20. The thin-skinned fold-and-thrust belt of Irecê Basin, São Francisco Craton: main structural setting and physical analog modeling

    Directory of Open Access Journals (Sweden)

    Humberto Luis Siqueira Reis

    2013-12-01

    Full Text Available Located in the central portion of Bahia state, Irecê Basin displays the best exposures of neoproterozoic sedimentary cover at Northern São Francisco Craton. Despite of the large amount of geological studies performed there, some questions remain unsolved, especially concerning the tectonic evolution of the thin-skinned fold-and-thrust belt that involves the rocks of the basin. In order to contribute to the understanding of such evolution, the present study reviews the main structural elements of the basin and surroundings, and present new data acquired through sandbox physical analog modeling. The Thin-skinned Fold-and-thrust Belt of Irecê Basin is a great curved feature, confined in the homonymous syncline, whose genesis is related to the development of orogenic belts north of São Francisco Craton. Its evolution was conditioned by a N-S tectonic vector, responsible by the nucleation of E-W folds and thrusts. At basin boundaries, the deformation is accommodated by strike-slip faults, which locally rotated early structures. Towards south, the belt gradually loses its expression, only remaining structures related to the Chapada Diamantina thrust-and-fold system. The sandbox analog model successfully simulated the development of the Thin-skinned Fold-and-thrust Belt of Irecê Basin, and indicates that its map-view curve results from the interaction with the syncline borders, as well as substrate geometry of the foreland belt. The propagation was made through a low-friction detachment, probably conditioned by the rheological contrast between the Una Group carbonates and the underlying Espinhaço Supergroup siliciclastic rocks.

  1. Orogenic development of the Adrar des Iforas (Tuareg Shield, NE Mali): New geochemical and geochronological data and geodynamic implications

    Science.gov (United States)

    Bosch, Delphine; Bruguier, Olivier; Caby, Renaud; Buscail, François; Hammor, Dalila

    2016-05-01

    Laser-ablation U-Th-Pb analyses of zircon and allanite from magmatic and metamorphic rocks of the Adrar des Iforas in Northern Mali allow re-examining the relationships between the different crustal units constituting the western part of the Tuareg Shield, as well as the timing of magmatic and metamorphic events in the West Gondwana Orogen. Granulite-facies metamorphism in the Iforas Granulitic Unit (IGU) and at In Bezzeg occurred at 1986 ± 7 Ma and 1988 ± 5 Ma respectively. This age is slightly younger, but consistent with that of the HT granulite facies event characterizing the In Ouzzal granulitic unit (IOGU), thereby substantiating the view that these units once formed a single granulitic belt of c. 800 km long. High-grade metamorphic basement units of the Kidal terrane surrounding the IGU contain Paleoproterozoic magmatic rocks crystallized between 1982 ± 8 Ma and 1966 ± 9 Ma. Inherited components in these rocks (2.1 Ga and 2.3-2.5 Ga) have ages similar to that of detrital zircons at In Bezzeg and to that of basement rocks from the IGU. This is taken as evidence that the Kidal terrane and the IGU formed a single crustal block at least until 1.9 Ga. East of the Adrar fault, the Tin Essako orthogneiss is dated at 2020 ± 5 Ma, but escaped granulite facies metamorphism. During the Neoproterozoic, the Kidal terrane underwent a long-lived continental margin magmatism. To the west, this terrane is bounded by the Tilemsi intra-oceanic island arc, for which a gneissic sub-alkali granite was dated at 716 ± 6 Ma. A synkinematic diorite extends the magmatic activity of the arc down to 643 ± 4 Ma, and, along with literature data, indicates that the Tilemsi arc has a life span of about 90 Ma. Backward docking to the western margin of the Kidal terrane is documented by migmatites dated at 628 ± 6 Ma. Subduction related processes and the development of the Kidal active margin was responsible for the development of a back-arc basin in the Tafeliant area, with

  2. Tectonothermal evolution in the core of an arcuate fold and thrust belt: the south-eastern sector of the Cantabrian Zone (Variscan belt, north-western Spain)

    Science.gov (United States)

    Valín, María Luz; García-López, Susana; Brime, Covadonga; Bastida, Fernando; Aller, Jesús

    2016-07-01

    The tectonothermal evolution of an area located in the core of the Ibero-Armorican Arc (Variscan belt) has been determined by using the conodont colour alteration index (CAI), Kübler index of illite (KI), the Árkai index of chlorite (AI) and the analysis of clay minerals and rock cleavage. The area is part of the Cantabrian Zone (CZ), which represents the foreland fold and thrust belt of the orogen. It has been thrust by several large units of the CZ, what resulted in the generation of a large number of synorogenic Carboniferous sediments. CAI, KI and AI values show an irregular distribution of metamorphic grade, independent of stratigraphic position. Two tectonothermal events have been distinguished in the area. The first one, poorly defined, is mainly located in the northern part. It gave rise to very-low-grade metamorphism in some areas and it was associated with a deformation event that resulted in the emplacement of the last large thrust unit and development of upright folds and associated cleavage (S1). The second tectonothermal event gave rise to low-grade metamorphism and cleavage (S2) crosscutting earlier upright folds in the central, western and southern parts of the study area. The event continued with the intrusion of small igneous rock bodies, which gave rise to contact metamorphism and hydrothermal alteration. This event was linked to an extensional episode due to a gravitational instability at the end of the Variscan deformation. This tectonothermal evolution occurred during the Gzhelian-Sakmarian. Subsequently, several hydrothermal episodes took place and local crenulation cleavage developed during the Alpine deformation.

  3. 30 CFR 56.14131 - Seat belts for haulage trucks.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Seat belts for haulage trucks. 56.14131 Section... Equipment Safety Devices and Maintenance Requirements § 56.14131 Seat belts for haulage trucks. (a) Seat belts shall be provided and worn in haulage trucks. (b) Seat belts shall be maintained in...

  4. Chronology and origin of VMS deposits in Xinjiang, NW CHINA

    Institute of Scientific and Technical Information of China (English)

    CHEN; Fuwen(陈富文); LI; Huaqin(李华芹); WANG; Denghong(王登红); XIE; Caifu(谢才富); LU; Yuanfa(路远发)

    2002-01-01

    VMS deposits in Xinjiang, NW China are widespread in the Altay, Tianshan and West Kunlun orogenic belt, mainly formed during the Proterozoic rifting and Phanerozoic post-orogenic extension and are related to the bimodal volcanism. The VMS deposits are middle and small in scale. According to assemblages of metallogenetic elements, they can be divided into four types (Cu-Zn, Cu-S, Pb-Zn-Cu and Pb-Zn types) with the Cu-Zn and Pb-Zn types being the most important ones. Research of isotopic chronology shows that the VMS deposits in Xinjiang were formed during the Proterozoic, Ordovician, Deovonian, Carboniferous and Permian periods and usually underwent multi-stage mineralization, especially the large-sized deposits usually have post- volcanic superimposed mineralization by tectonomagmatic or metamorphic hydrothermal metallogenic fluids.

  5. Simulation of engine auxiliary drive V-belt slip motion. Part 1. Development of belt slip model; Engine hoki V belt slip kyodo no simulation. 1. Belt slip model no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kurisu, T. [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    V-belts are widely used for driving auxiliary components of an engine. Inadequet design of such belt system sometimes results in troubles such as belt squeak, side rubber separation and/or bottom rubber crack. However, there has been no design tools which can predict belt slip quantitatively. The author developed a motion simulation program of Auxiliary Drive V-Belt System considering belt slip. The program showed good prediction accuracy for belt slip motion. This paper describes the simulation model. 1 ref., 12 figs.

  6. Oroclines - a century of discourse about curved mountain belts (Petrus Peregrinus Medal Lecture)

    Science.gov (United States)

    Van der Voo, Rob

    2014-05-01

    Exactly a century ago, in early 2014, a discussion appeared in the Journal of Geology by William H. Hobbs entitled "Mechanics of formation of arcuate mountains". In it, he notes how the concept of nappes "has now overcome all opposition in Switzerland" and, presumably in other countries just as much. With horizontal transport so central to the nappe concept, this must have paved the way for the idea that emplacement of trust sheets may have involved rotations. Where such rotations form a coherent regional pattern, a curved mountain belt may be the result. While the paper by Hobbs does not mention the word orocline, and while the dynamics of the situation is not yet illuminated, one must give credit to him for his foresights. The term "orocline" was introduced by S. Warren Carey of Tasmania in 1955, as part of a kinematic analysis of rhomb- and triangle-shaped basins and curved mountain belts. When the displacements involved in the analysis are undone, as he did, for instance, in the western Mediterranean, a grand scheme of simple convergent and divergent patterns emerges. Noteworthy is, of course, the fact that this mobilistic analysis preceded plate tectonics by more than a decade. From Carey (although not exactly in his words) we have inherited the definition of orocline, as "a thrust belt or orogen that is curved in map-view due to it having been bent or buckled about a vertical axis of rotation". Because oroclinal bending involves rotations, the declinations of paleomagnetic studies can be utilized to support and quantify them, and early efforts were already made in the 1960's and early 1970's to do so (e.g., Krs in the Carpathians; Ries & Shackleton in Cantabria; Roy, Opdyke & Irving in the Central Appalachians; Packer & Stone in Alaska). Curved mountain belts everywhere were subsequently investigated, and typically shown by paleomagnetists to be of the oroclinal variety. Few curved belts turned out to be curved from the start. Because these studies were

  7. The Compositional Structure of the Asteroid Belt

    CERN Document Server

    DeMeo, Francesca E; Walsh, Kevin J; Chapman, Clark R; Binzel, Richard P

    2015-01-01

    The past decade has brought major improvements in large-scale asteroid discovery and characterization with over half a million known asteroids and over 100,000 with some measurement of physical characterization. This explosion of data has allowed us to create a new global picture of the Main Asteroid Belt. Put in context with meteorite measurements and dynamical models, a new and more complete picture of Solar System evolution has emerged. The question has changed from "What was the original compositional gradient of the Asteroid Belt?" to "What was the original compositional gradient of small bodies across the entire Solar System?" No longer is the leading theory that two belts of planetesimals are primordial, but instead those belts were formed and sculpted through evolutionary processes after Solar System formation. This article reviews the advancements on the fronts of asteroid compositional characterization, meteorite measurements, and dynamical theories in the context of the heliocentric distribution of...

  8. Seat Belt Usage on School Buses.

    Science.gov (United States)

    Farmer, Ernest

    1985-01-01

    Studies on seat belt usage conducted under contract with governmental organizations or prepared by professional societies, state and local organizations, and transportation specialists have made significant contributions, but none has successfully resolved the issue. (MLF)

  9. Radiation Belt Storm Probe (RBSP) Mission

    Science.gov (United States)

    Sibeck, D. G.; Fox, N.; Grebowsky, J. M.; Mauk, B. H.

    2009-01-01

    Scheduled to launch in May 2012, NASA's dual spacecraft Living With a Star Radiation Belt Storm Probe mission carries the field and particle instrumentation needed to determine the processes that produce enhancements in radiation belt ion and electron fluxes, the dominant mechanisms that cause the loss of relativistic electrons, and the manner by which the ring current and other geomagnetic phenomena affect radiation belt behavior. The two spacecraft will operate in low-inclination elliptical lapping orbits around the Earth, within and immediately exterior to the Van Allen radiation belts. During course of their two year primary mission, they will cover the full range of local times, measuring both AC and DC electric and magnetic fields to 10kHz, as well as ions from 50 eV to 1 GeV and electrons with energies ranging from 50 eV to 10 MeV.

  10. Radiation Belt and Plasma Model Requirements

    Science.gov (United States)

    Barth, Janet L.

    2005-01-01

    Contents include the following: Radiation belt and plasma model environment. Environment hazards for systems and humans. Need for new models. How models are used. Model requirements. How can space weather community help?

  11. Eccentricity distribution in the main asteroid belt

    CERN Document Server

    Malhotra, Renu

    2016-01-01

    The observationally complete sample of the main belt asteroids now spans more than two orders of magnitude in size and numbers more than 64,000 (excluding collisional family members). We undertook an analysis of asteroids' eccentricities and their interpretation with simple physical models. We find that Plummer's (1916) conclusion that the asteroids' eccentricities follow a Rayleigh distribution holds for the osculating eccentricities of large asteroids, but the proper eccentricities deviate from a Rayleigh distribution: there is a deficit of eccentricities smaller than $\\sim0.1$ and an excess of larger eccentricities. We further find that the proper eccentricities do not depend significantly on asteroid size but have strong dependence on heliocentric distance: the outer asteroid belt follows a Rayleigh distribution, but the inner belt is strikingly different. Eccentricities in the inner belt can be modeled as a vector sum of a primordial eccentricity vector of random orientation and magnitude drawn from a Ra...

  12. Handbook Timing Belts Principles, Calculations, Applications

    CERN Document Server

    Perneder, Raimund

    2012-01-01

    Timing belts offer a broad range of innovative drivetrain solutions; they allow low-backlash operation in robot systems, they are widely used in automated processes and industrial handling involving highly dynamic start-up loads, they are low-maintenance solutions for continuous operation applications, and they can guarantee exact positioning at high operating speeds. Based on his years of professional experience, the author has developed concise guidelines for the dimensioning of timing belt drives and presents proven examples from the fields of power transmission, transport and linear transfer technology. He offers definitive support for dealing with and compensating for adverse operating conditions and belt damage, as well as advice on drive optimization and guidelines for the design of drivetrain details and supporting systems. All market-standard timing belts are listed as brand neutral. Readers will discover an extensive bibliography with information on the various manufacturers and their websites. This...

  13. Transpression and tectonic exhumation in the Heimefrontfjella, western orogenic front of the East African/Antarctic Orogen, revealed by quartz textures of high strain domains

    Directory of Open Access Journals (Sweden)

    Wilfried Bauer

    2016-06-01

    Full Text Available The metamorphic basement of the Heimefrontfjella in western Dronning Maud Land (Antarctica forms the western margin of the major ca. 500 million year old East African/East Antarctic Orogen that resulted from the collision of East Antarctica and greater India with the African cratons. The boundary between the tectonothermally overprinted part of the orogen and its north-western foreland is marked by the subvertical Heimefront Shear Zone. North-west of the Heimefront Shear Zone, numerous low-angle dipping ductile thrust zones cut through the Mesoproterozoic basement. Petrographic studies, optical quartz c-axis analyses and x-ray texture goniometry of quartz-rich mylonites were used to reveal the conditions that prevailed during the deformation. Mineral assemblages in thrust mylonites show that they were formed under greenschist-facies conditions. Quartz microstructures are characteristic of the subgrain rotation regime and oblique quartz lattice preferred orientations are typical of simple shear-dominated deformation. In contrast, in the Heimefront Shear Zone, quartz textures indicate mainly flattening strain with a minor dextral rotational component. These quartz microstructures and lattice preferred orientations show signs of post-tectonic annealing following the tectonic exhumation. The spatial relation between the sub-vertical Heimefront Shear Zone and the low-angle thrusts can be explained as being the result of strain partitioning during transpressive deformation. The pure-shear component with a weak dextral strike-slip was accommodated by the Heimefront Shear Zone, whereas the north–north-west directed thrusts accommodate the simple shear component with a tectonic transport towards the foreland of the orogen.

  14. Eccentricity distribution in the main asteroid belt

    Science.gov (United States)

    Malhotra, Renu; Wang, Xianyu

    2017-03-01

    The observationally complete sample of the main belt asteroids now spans more than two orders of magnitude in size and numbers more than 64 000 (excluding collisional family members). We undertook an analysis of asteroids' eccentricities and their interpretation with simple physical models. We find that a century old conclusion that the asteroids' eccentricities follow a Rayleigh distribution holds for the osculating eccentricities of large asteroids, but the proper eccentricities deviate from a Rayleigh distribution; there is a deficit of eccentricities smaller than ∼0.1 and an excess of larger eccentricities. We further find that the proper eccentricities do not depend significantly on asteroid size but have strong dependence on heliocentric distance; the outer asteroid belt follows a Rayleigh distribution, but the inner belt is strikingly different. Eccentricities in the inner belt can be modelled as a vector sum of a primordial eccentricity vector of random orientation and magnitude drawn from a Rayleigh distribution of parameter ∼0.06, and an excitation of random phase and magnitude ∼0.13. These results imply that when a late dynamical excitation of the asteroids occurred, it was independent of asteroid size and was stronger in the inner belt than in the outer belt. We discuss implications for the primordial asteroid belt and suggest that the observationally complete sample size of main belt asteroids is large enough that more sophisticated model-fitting of the eccentricities is warranted and could serve to test alternative theoretical models of the dynamical excitation history of asteroids and its links to the migration history of the giant planets.

  15. Jupiter's Radiation Belts: Can Pioneer 10 Survive?

    Science.gov (United States)

    Hess, W N; Birmingham, T J; Mead, G D

    1973-12-07

    Model calculations of Jupiter's electron and proton radiation belts indicate that the Galilean satellites can reduce particle fluxes in certain regions of the inner magnetosphere by as much as six orders of magnitude. Average fluxes should be reduced by a factor of 100 or more along the Pioneer 10 trajectory through the heart of Jupiter's radiation belts in early December. This may be enough to prevent serious radiation damage to the spacecraft.

  16. Drive Alive: Teen Seat Belt Survey Program

    OpenAIRE

    Burkett, Katie M.; Davidson, Steve; Cotton, Carol; Barlament, James; Loftin, Laurel; Stephens, James; Dunbar, Martin; Butterfield, Ryan

    2010-01-01

    Objective: To increase teen seat belt use among drivers at a rural high school by implementing the Drive Alive Pilot Program (DAPP), a theory-driven intervention built on highway safety best practices. Methods: The first component of the program was 20 observational teen seat belt surveys conducted by volunteer students in a high school parking lot over a 38-month period before and after the month-long intervention. The survey results were published in the newspaper. The second compo...

  17. Extensional orogenic collapse captured by strike-slip tectonics: Constraints from structural geology and Usbnd Pb geochronology of the Pinhel shear zone (Variscan orogen, Iberian Massif)

    Science.gov (United States)

    Fernández, Rubén Díez; Pereira, Manuel Francisco

    2016-11-01

    The late Paleozoic collision between Gondwana and Laurussia resulted in the polyphase deformation and magmatism that characterizes the Iberian Massif of the Variscan orogen. In the Central Iberian Zone, initial continental thickening (D1; folding and thrusting) was followed by extensional orogenic collapse (D2) responsible for the exhumation of high-grade rocks coeval to the emplacement of granitoids. This study presents a tectonometamorphic analysis of the Trancoso-Pinhel region (Central Iberian Zone) to explain the processes in place during the transition from an extension-dominated state (D2) to a compression-dominated one (D3). We reveal the existence of low-dipping D2 extensional structures later affected by several pulses of subhorizontal shortening, each of them typified by upright folds and strike-slip shearing (D3, D4 and D5, as identified by superimposition of structures). The D2 Pinhel extensional shear zone separates a low-grade domain from an underlying high-grade domain, and it contributed to the thermal reequilibration of the orogen by facilitating heat advection from lower parts of the crust, crustal thinning, decompression melting, and magma intrusion. Progressive lessening of the gravitational disequilibrium carried out by this D2 shear zone led to a switch from subhorizontal extension to compression and the eventual cessation and capture of the Pinhel shear zone by strike-slip tectonics during renewed crustal shortening. High-grade domains of the Pinhel shear zone were folded together with low-grade domains to define the current upright folded structure of the Trancoso-Pinhel region, the D3 Tamames-Marofa-Sátão synform. New dating of syn-orogenic granitoids (SHRIMP Usbnd Pb zircon dating) intruding the Pinhel shear zone, together with the already published ages of early extensional fabrics constrain the functioning of this shear zone to ca. 331-311 Ma, with maximum tectonomagmatic activity at ca. 321-317 Ma. The capture and apparent cessation

  18. Oroclines of the Variscan orogen of Iberia: Paleocurrent analysis and paleogeographic implications

    Science.gov (United States)

    Shaw, Jessica; Johnston, Stephen T.; Gutiérrez-Alonso, Gabriel; Weil, Arlo B.

    2012-05-01

    Coupled structural and paleomagnetic analyses have shown that the northern Iberian bend of the Variscan orogen, referred to as the Cantabrian Orocline, developed by vertical axis rotation of an originally linear orogen. However, palinspastic restoration of the orocline has proven difficult owing to (1) an unusually great orogenic width of over 700 km and (2) exposure of shallow water strata of the Gondwanan margin in the northern and southern portions of the orogen. We present paleocurrent data from Lower Ordovician shallow marine clastic sedimentary rocks across the Variscan of northern and central Iberia collected to constrain palinspastic restoration of the orogen. Paleocurrent data were collected from over 50 sites, and include cross bed foresets, ripple crests and casts, as well as rare ball and pillow structures, syn-sedimentary slump folds, and incised channels. Paleocurrent directions fan around the Cantabrian Orocline, are consistently oriented at a high angle to structural strike, and yield a consistent offshore direction outward from the oroclinal core. Similarly, changes in structural strike and paleocurrent direction across central Iberia imply the presence of a second more southerly orocline, the Central Iberian Orocline, that is continuous with, but convex in the opposite direction of the Cantabrian Orocline. Together, the Cantabrian and Central Iberian oroclines define an S-shaped pair of continental-scale buckle folds. Palinspastic restoration of the oroclines yields a linear continental margin > 1500 km long characterized by consistent offshore paleoflow to the west, defining a westerly oceanic domain (presumably the Rheic Ocean) and an easterly landward direction (presumably Gondwana). Recognition of the southern orocline explains the unusual width of the orogen, the geometry of aeromagnetic anomalies attributable to Variscan rocks, and is consistent with available structural data, paleomagnetic declination data, and the distribution of

  19. BRYANSK-KURSK-VORONEZH INTRA-CONTINENTAL COLLISIONAL OROGEN (EAST EUROPEAN CRATON

    Directory of Open Access Journals (Sweden)

    M. V. Mints

    2015-09-01

    Full Text Available The article presents new data on the deep crustal structure, origin and evolution of the Bryansk-Kursk-Voronezh orogen in the south-eastern segment of the East European craton; it is composed of the Paleoproterozoic formations and areas of reworked Archean crust. The purpose of this paper is the development and improvement of ideas on intra-continental orogens. The deep structure of the orogen is presented by the 3D model based on results of geological mapping of the Precambrian basement and interpretations of geophysical fields and seismic images of the crust along geotraverse 1-EB and profile DOBRE. It is established that the orogen originated with riftogenic extension of the crust at 2.6–2.5 Ga, that was repeated at 2.2–2.1 Ga, and formation of wide depressions that were efficiently filled in with volcanosedimentary layers including BIF, which accumulation was followed by high-temperature up to granulite facies metamorphism. Suprasubduction magmatism took place at 2.10–2.08 Ga and resulted in formation of the Lipetsk-Losevka volcano-plutonic complex. The active margin was completely formed at about 2.05 Ga. The short duration of subduction-related magmatic activity and the lack of relics of the oceanic lithosphere suggest short-term and spatially limited developing of the oceanic structure. The tectonothermal activity of collisional and postcollision stages was expressed in emplacement of alkaline ultramafic (2.1–2.0 Ga and gabbro-syenite (1.8–1.7 Ga complexes. It is difficult or impossible to explain specific features of the structure and evolution of the orogen in framework of the model of the Cordilleras type  accretionary orogen. Mafic-ultramafic magmatism and indications of intensive heating of the crust suggest a special role of plume type processes that provided for influx of mantle heat and juvenile mantle derived matter. 

  20. Synchronous unroofing and faulting in the Precordillera of Argentina: thermochronometric constraints on fault-propagation in a thin- to thick-skinned orogenic system

    Science.gov (United States)

    Fosdick, J. C.; Carrapa, B.

    2013-12-01

    Mass removal via erosion is an important process that interacts with deformation in convergent mountain belts such as the Andes, and improved quantification of denudation is critical for elucidating spatio-temporal patterns of deformation. We report new apatite and zircon (U-Th)/He (AHe, ZHe) and apatite fission track (AFT) results from the Precordillera of Argentina that record Neogene fault-related unroofing during growth of the Andean retroarc fold-and-thrust belt. The Precordillera fold-and-thrust belt of Argentina is located west of the thick-skinned Sierras Pampeanas and evolved concurrently with the Bermejo retroarc foreland basin since at least the early Miocene. At the Rio Jáchal latitude (30°S), most crustal shortening associated with the Andean orogen is accommodated across the Precordillera, however, its unroofing record remains poorly constrained. Here we test the relationships between thrust faulting and exhumation and quantify the erosional input of sediments to the foreland basin. ZHe samples from Silurian-Carboniferous metasedimentary rocks collected across the Rio Jáchal transect yield entirely Permo-Triassic cooling ages, indicating that the present-day erosional depth of the Precordillera has resided above the ZHe partial retention zone (PRZ) throughout Mesozoic-Cenozoic time. Preliminary AFT data of the Precordillera also indicate mixed pre-Cenozoic ages. ZHe and AFT ages provide a nominal Iglesia piggy-back basin and the Las Salinas anticline at the eastern boundary between the Precordillera and Pampean craton. Apatite AHe and AFT data from the western Sierras Pampeanas indicate cooling through both AHe and AFT PRZs between ~5-4 Ma and suggest rapid exhumation during faulting of the Sierra de Valle Fértil. These data suggest a higher magnitude of Miocene exhumation of the Sierras Pampeanas compared to the Precordillera. Miocene exhumation rates across the Precordillera range from 0.16 to 1.11 mm/yr, with highest rates concentrated along

  1. Decay rate of the second radiation belt.

    Science.gov (United States)

    Badhwar, G D; Robbins, D E

    1996-01-01

    Variations in the Earth's trapped (Van Allen) belts produced by solar flare particle events are not well understood. Few observations of increases in particle populations have been reported. This is particularly true for effects in low Earth orbit, where manned spaceflights are conducted. This paper reports the existence of a second proton belt and it's subsequent decay as measured by a tissue-equivalent proportional counter and a particle spectrometer on five Space Shuttle flights covering an eighteen-month period. The creation of this second belt is attributed to the injection of particles from a solar particle event which occurred at 2246 UT, March 22, 1991. Comparisons with observations onboard the Russian Mir space station and other unmanned satellites are made. Shuttle measurements and data from other spacecraft are used to determine that the e-folding time of the peak of the second proton belt. It was ten months. Proton populations in the second belt returned to values of quiescent times within eighteen months. The increase in absorbed dose attributed to protons in the second belt was approximately 20%. Passive dosimeter measurements were in good agreement with this value.

  2. THE GOULD'S BELT DISTANCE SURVEY

    Directory of Open Access Journals (Sweden)

    L. Loinard

    2011-01-01

    Full Text Available Observaciones que utilizan la interferometría de muy larga línea de base (VLBI por sus siglas en ingl´es pueden proveer la posición de radiofuentes compactas con una precisión del orden de 50 micro-segundos de arco. Esto es suficiente para medir la paralaje trigonométrica y los movimientos propios de cualquier objeto localizado hasta 500 pc del Sol con una precisión mejor que unos porcientos. Por ser magnéticamente activas, las estrellas jóvenes a menudo emiten emisión radio compacta detectable usando técnicas VLBI. Aquí, mostraremos cómo observaciones VLBI ya han restringido la distancia a las regiones de formación estelar cercanas más frecuentemente estudiadas (Tauro, Ofiuco, Orión, etc. y han empezado a revelar su estructura y su cinemática interna. Luego, describiremos un gran proyecto (llamado The Gould's Belt Distance Survey diseñado para proveer una vista detallada de la formación estelar en la vecindad Solar, usando observaciones VLBI.

  3. Jupiter's magnetosphere and radiation belts

    Science.gov (United States)

    Kennel, C. F.; Coroniti, F. V.

    1979-01-01

    Radioastronomy and Pioneer data reveal the Jovian magnetosphere as a rotating magnetized source of relativistic particles and radio emission, comparable to astrophysical cosmic ray and radio sources, such as pulsars. According to Pioneer data, the magnetic field in the outer magnetosphere is radially extended into a highly time variable disk-shaped configuration which differs fundamentally from the earth's magnetosphere. The outer disk region, and the energetic particles confined in it, are modulated by Jupiter's 10 hr rotation period. The entire outer magnetosphere appears to change drastically on time scales of a few days to a week. In addition to its known modulation of the Jovian decametric radio bursts, Io was found to absorb some radiation belt particles and to accelerate others, and most importantly, to be a source of neutral atoms, and by inference, a heavy ion plasma which may significantly affect the hydrodynamic flow in the magnetosphere. Another important Pioneer finding is that the Jovian outer magnetosphere generates, or permits to escape, fluxes of relativistic electrons of such intensities that Jupiter may be regarded as the dominant source of 1 to 30 MeV cosmic ray electrons in the heliosphere.

  4. Tectono-metamorphic evolution of the Paleoproterozoic ultra-high temperatures Khondalite Belt, North China Craton.

    Science.gov (United States)

    Lobjoie, Cyril; Trap, Pierre; Lin, Wei; Goncalves, Philippe; Marquer, Didier

    2016-04-01

    In the North China Craton, the Khondalite belt is a famous Paleoproterozoic domain where ultra-high temperatures (UHT) metamorphism was extensively documented over an area of 1000 square kilometers. Numerous petrological analyses argue for P-T conditions around 0.6-0.8GPa for temperature above 900°C for peak metamorphism. Unfortunately, the scarcity of available structural data prevents any discussion about thermo-mechanical behavior of the orogenic crust suffering high thermal regime. In this contribution, we present a detail structural analysis of the Khondalite belt that allowed to distinguish two main deformation events, named D1 and D2. The deformation D1 led to the formation of the S1 foliation that dips weakly toward the South-East. S1 holds a N70°E trending mineral and stretching L1 lineation that is sub-horizontal or plunges weakly to the East. The D1 fabrics is reworked by the dextral transpressional D2 deformation responsible for the development of km-scale S2-C2-C'2 system. The N30°E trending S2 foliation is sub-vertical to highly dipping toward the East. Kilometer-scale C2 and C'2 shear zones are sub-vertical and trend N70°E and N90-100°E, respectively. Petrological study and phase diagram modeling suggest that both D1 and D2 developed at UHT conditions. Garnet and spinel-bearing migmatites recording D1 fabric yield 0.7GPa for ca. 950-1015°C P-T conditions. Within D2 shear zones, numerous granitoids and mafic bodies are injected. Mafic intrusions are responsible for UHT contact metamorphism that can occur at low pressure as recorded in an olivine-bearing migmatite. This may suggest that the D2 S-C-C' system form an interconnected network of kilometer scale shear zones that act as pathways for percolation of mafic magmas from the mantle up to the base of the upper crust. Our results allow to discuss the role of localized heat advection along crustal-scale shear zones as a possible mechanism responsible for UHT metamorphism at regional scale, with

  5. Geologic evolution of the Cordillera Darwin orogenic core complex, Southern Andes

    Science.gov (United States)

    Nelson, E. P.

    1981-08-01

    Located in the east-west trending Andes of Tierra del Fuego is a structural culmination exposing deeper crustal levels than in surrounding areas, termed an orogenic core complex because of the localization there of relatively high-grade metamorphism, intense polyphase deformation, and differential uplift. Strongly deformed and regionally metamorphosed pre-Late Jurassic basement rocks mainly of sedimentary origin are unconformably overlain by a cover sequence of Upper Jurassic silicic-intermediate volcanic rocks (Tobifera Formation) and Lower Cretaceous clastic sedimentary rocks (Yahgan Formation). The D1 and D2 phases produced major and minor fold structures, extension and intersection lineations, and axial planar and transposition foliations in complex patterns similar to those in other collision-type orogens. The Darwin and Beagle suites show affinities with S- and I-type granitic suites respectively.

  6. Non-cylindrical fold growth in the Zagros fold and thrust belt (Kurdistan, NE-Iraq)

    Science.gov (United States)

    Bartl, Nikolaus; Bretis, Bernhard; Grasemann, Bernhard; Lockhart, Duncan

    2010-05-01

    The Zagros mountains extends over 1800 km from Kurdistan in N-Iraq to the Strait of Hormuz in Iran and is one of the world most promising regions for the future hydrocarbon exploration. The Zagros Mountains started to form as a result of the collision between the Eurasian and Arabian Plates, whose convergence began in the Late Cretaceous as part of the Alpine-Himalayan orogenic system. Geodetic and seismological data document that both plates are still converging and that the fold and thrust belt of the Zagros is actively growing. Extensive hydrocarbon exploration mainly focuses on the antiforms of this fold and thrust belt and therefore the growth history of the folds is of great importance. This work investigates by means of structural field work and quantitative geomorphological techniques the progressive fold growth of the Permam, Bana Bawi- and Safeen- Anticlines located in the NE of the city of Erbil in the Kurdistan region of Northern Iraq. This part of the Zagros fold and thrust belt belongs to the so-called Simply Folded Belt, which is dominated by gentle to open folding. Faults or fault related folds have only minor importance. The mechanical anisotropy of the formations consisting of a succession of relatively competent (massive dolomite and limestone) and incompetent (claystone and siltstone) sediments essentially controls the deformation pattern with open to gentle parallel folding of the competent layers and flexural flow folding of the incompetent layers. The characteristic wavelength of the fold trains is around 10 km. Due to faster erosion of the softer rock layers in the folded sequence, the more competent lithologies form sharp ridges with steeply sloping sides along the eroded flanks of the anticlines. Using an ASTER digital elevation model in combination with geological field data we quantified 250 drainage basins along the different limbs of the subcylindrical Permam, Bana Bawi- and Safeen- Anticlines. Geomorphological indices of the drainage

  7. Forearc basin correlations from around the Texas Orocline, New England Orogen, east Australia

    Science.gov (United States)

    Hoy, Derek; Rosenbaum, Gideon; Shaanan, Uri; Wormald, Richard

    2014-05-01

    The late Paleozoic to early Mesozoic New England Orogen occupies much of the eastern seaboard of Australia. The orogen formed by west-dipping subduction (present-day coordinates) of the paleo-Pacific plate beneath eastern Gondwana. The southern part of the orogen exhibits a series of tight bends (oroclines) that are evident in the curvature of a Devonian-Carboniferous subduction complex, in particular the forearc basin and accretionary complex. The Emu Creek Block is thought to be part of the forearc basin that is exposed in the eastern limb of the Texas Orocline, but until now the tectonostratigraphic origin of the Emu Creek Block has only been inferred from limited geological data. Here we present detrital zircon geochronology (U/Pb ICP-MS ages), a new geological map of the block, and a revised stratigraphic section. Lithological investigation of strata within the block and the age distribution of detrital zircons indicate that the sediments in the Emu Creek Block were derived from a Carboniferous magmatic arc and were most likely deposited in a forearc basin. Our new geochronological constraints indicate deposition during the late Carboniferous. We therefore propose that rocks in the Emu Creek Block are arc-distal correlatives of the forearc basin in the opposing (western) limb of the Texas Orocline, specifically the Willuri and Currabubula formations. Extensive orocline-parallel structures in the forearc basin indicate that the eastern limb of the Texas Orocline was rotated in the course of oroclinal bending by approximately 135 degrees relative to the western limb. The correlation of the forearc basin blocks on opposite limbs of the Texas Orocline provides an independent constraint on its geometry and further improves our understanding of New England Orogen tectonostratigraphy and the crustal structure of eastern Australia.

  8. Seat belts, airbags and child protection devices. [previously: Seat belts and child restraint seats.

    NARCIS (Netherlands)

    2010-01-01

    In the Netherlands, the use of seat belts results in a yearly reduction of hundreds of fatalities. Seat belts reduce the risk of fatal injury by 37 to 48%, depending on the position in the car. At 50%, the effect of child protection devices is even slightly higher. When last measured (in 2010), 97%

  9. Late Neogene Mountain Building of Eastern Kunlun Orogen: Constrained by DEM Analysis

    Institute of Scientific and Technical Information of China (English)

    Wang An; Wang Guocan; Zhang Kexin; Xiang Shuyuan; Li Dewei; Liu Demin

    2009-01-01

    Topography, as a net result of the dynamic interaction between endogenesis and exogenesis, holds immense information on tectonic uplift, surface erosion and thus mountain building. The eastern Kunlun (昆仑) orogen, which experienced significant Late Neogene tectonic uplift and is located in an arid environment, is advantageous for morphotectonlc analysis based on well-preserved tectonic landforms. The digital elevation model (DEM) analysis was carried out for the central segment of the eastern Kunlun orogen based on shuttle radar topography mission (SRTM) data. River longitudinal profile analysis indicates that major rivers across the orogen are characterized by high river gradient indexes and intensive tectonic uplift. Differential uplift was also identified in swath-topography analysis in the studied area, which can be divided into three major tectonic-geomorphic units by orogenicstrike-parallel faults. It is indicated that the most active region is located to the south of the Xidatan (西大滩) fault with significant differential uplift. Another identified fault with differential uplift is the Middle Kuninn fault; however, the timing of which is suggested to be much older than that of the Xidatan fault. These analyses are eoneordantly supported by both field survey and studies of thermochronology, which in turn indicates that the DEM analysis bears great potential in morphotectonic analysis.

  10. An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: from subduction magmatism to cratonization

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Simon P.; Korhonen, Fawna; Kirkland, Christopher; Cliff, John B.; Belousova, Elena; Sheppard, Stephen

    2017-01-03

    The in situ chemical differentiation of continental crust ultimately leads to the long-term stability of the continents. This process, more commonly known as ‘cratonization’, is driven by deep crustal melting with the transfer of those melts to shallower regions resulting in a strongly chemically stratified crust, with a refractory, dehydrated lower portion overlain by a complementary enriched upper portion. Since the lower to mid portions of continental crust are rarely exposed, investigation of the cratonization process must be through indirect methods. In this study we use in situ Hf and O isotope compositions of both magmatic and inherited zircons from several felsic magmatic suites in the Capricorn Orogen of Western Australia to highlight the differentiation history (i.e. cratonization) of this portion of late Archean to Proterozoic orogenic crust. The Capricorn Orogen shows a distinct tectonomagmatic history that evolves from an active continental margin through to intracratonic reworking, ultimately leading to thermally stable crust that responds similarly to the bounding Archean Pilbara and Yilgarn Cratons.

  11. Location of the Suture Zone between the South and North China Blocks in Eastern Dabie Orogen

    Institute of Scientific and Technical Information of China (English)

    Jiang Laili; Wu Weiping; Chu Dongru

    2005-01-01

    The Dabie Mountains are a collisional orogen between the South and North China blocks. The rock assemblages, isotopic dating and tectonic relationship of the tectonic-petrologic units in the eastern Dabie orogen indicate that the orogen is mainly composed of the different-grades metamorphic basement with minor low-grade metamorphic cover. No ophiolitic southern margin of the North China block were found there, suggesting that they belong to the northern margin of the South China block. The boundary between the tectonic-petrologic units is generally an extensional shear zone developed in the exhumation process of the ultrahigh pressure metamorphic rocks. In the northern part of the Dabie Mountains, the extensional-thrust and nappe structure represent the products of extensional tectonism. That is, there is no key tectonic boundary to indicate the occurrence of the suture zone there. Therefore, neither the Shuihou-Wuhe shear zone, nor the Mozitan-Xiaotian fault, is the suture zone between the South and North China blocks. The zone is believed to be at the front area of the Xinyang-Shucheng fault, covered by the Mesozoic-Cenozoic deposits within the Hefei basin.

  12. Tomographic images of subducted oceans matched to the accretionary records of orogens - Case study of North America and relevance to Central Asia

    Science.gov (United States)

    Sigloch, Karin; Mihalynuk, Mitchell G.; Hosseini, Kasra

    2016-04-01

    Accretionary orogens are the surface record of subduction on the 100-million-year timescale; they aggregate buoyant crustal welts that resisted subduction. The other record of subduction is found in the deep subsurface: oceanic lithosphere preserved in the mantle that records ocean basin closure between successive generations of arcs. Seismic tomography maps out these crumpled paleo-oceans down to the core-mantle boundary, where slab accumulates. One such accumulation of enormous scale is under Eastern Asia, recording the assembly of the Central Asian Orogenic Belt (CAOB). Deep CAOB slab has hardly been explored because tomographic image resolution in the lowermost mantle is limited, but this is rapidly improving. We present new images of the CAOB slabs from our P-wave tomography that includes core-diffracted waves as a technical novelty. The previous slab blur sharpens into the type of elongated geometries expected to trace paleo-trench lines. Since the North American Cordillera is younger than the CAOB (mostly 10,000 km long. North America converged on the two microcontinents by westward subduction of two intervening basins (which we name Mezcalera and Angayucham oceans), culminating in diachronous suturing between ~150 Ma and ~50 Ma. Hence geophysical subsurface evidence negates the widely accepted "Andean-style" model of Farallon-beneath-continent subduction since at least 180 Ma, and supports a Jura-Cretaceous paleogeography closer to today's Southwestern Pacific, or to the Paleozoic CAOB. Though advocated since the 1970's by a minority of geologists, this scenario had not gained wide acceptance due to a record obscured by overprinting, margin-parallel translation, and oroclinal bending. The new subsurface evidence provides specific indications where to seek the decisive Mezcalera-Angayucham suture. The suture is evident in a trail of collapsed Jura-Cretaceous basin relics that run the length of the Cordillera. Reference: Sigloch, K., & Mihalynuk, M. G. (2013

  13. Orogen-parallel mass transport along the arcuate Himalayan front into Nanga Parbat and the western Himalayan syntaxis

    Science.gov (United States)

    Whipp, David; Beaumont, Christopher

    2016-04-01

    Along the length of the Himalayan arc, Quaternary rock exhumation rates are highest in the Himalayan syntaxes at the lateral ends of the arc. In the western Himalayan syntaxis, these rates may exceed 10 mm/a over the past 2 Ma, requiring an additional source of crustal mass into this region to maintain the high-elevation topography. We have previously demonstrated that strain partitioning of oblique convergence can produce a significant orogen-parallel mass flux into the syntaxis of a Himalaya-like orogen and balance the rapid rates of surface denudation. However, the magnitude of this orogen parallel mass flux and whether strain is partitioned across the Himalayan thrust front is affected by the strength of the material bounding and within the Himalayan orogenic wedge, the dip angle of the basal detachment and the convergence obliquity angle γ. Strain partitioning is expected for a finite-length Himalaya-like segmented linear orogen with an obliquity of γ = 30 - 40°, but the obliquity angle in the Himalayan arc varies from 0 at the center of the arc to ˜ 40° in the western Himalayan syntaxis region. Thus, the conditions in which strain partitioning will occur may not be met along much of the length of the arc. Though there is clear evidence of strain partitioning in the Himalaya, preliminary results from 3D numerical geodynamic models of an orogen with an arcuate geometry based on the Himalaya suggest strain partitioning does not occur for the same conditions observed in earlier models of segmented linear orogens or orogens with a smaller arc radius. In those models, the proportion of the orogen length with a high obliquity angle was greater, which favors strain partitioning. In numerical experiments of an arcuate Himalayan orogen with weak material (friction angle φ ≤ 5°) at the back of the orogenic wedge, strain partitioning is only observed in the toe of the orogenic wedge (10-15 km from the thrust front) at the western end of the arc, rather than for

  14. Tectonic configuration of the Apuseni-Banat—Timok-Srednogorie belt, Balkans-South Carpathians, constrained by high precision R e-O s molybdenite ages

    Science.gov (United States)

    Zimmerman, Aaron; Stein, Holly J.; Hannah, Judith L.; Koželj, Dejan; Bogdanov, Kamen; Berza, Tudor

    2008-01-01

    and mineral dehydration fluids, which facilitate partial melting and metal leaching of SCML and asthenosphere. Cu-Au-Mo-(PGE) porphyry deposits may develop where melts are trapped at shallow crustal levels, often with associated volcanism and epithermal-style deposits (South Banat, Timok, and Panagyurishte). Mo-Fe-Pb-Zn skarn deposits may develop where felsic melts are trapped adjacent to Mesozoic limestones at moderate crustal levels (North Banat and Apuseni). Systematic spatial variations in deposit style, commodity enrichment, Re-Os ages, and Re concentrations support specific tectonic processes that led to ore formation. In a post-collisional setting, subduction of Vardar oceanic crust may have stalled, causing slab steepening and rollback. The slab rollback relaxes compression, facilitating and enhancing orogenic collapse of previously thickened Balkan-South Carpathian crust. The progression of coupled rollback-orogenic collapse is evidenced by the width of Late Cretaceous extensional basins and northward younging of Re-Os ages, from Panagyurishte (~60 km; 92-87 Ma) to Timok (~20 km; 88-81 Ma) to Apuseni-Banat (~5 km; 83-72 Ma). Generation of a well-endowed mineral belt, such as the ABTS, requires a temporally and spatially restricted window of magmatic-hydrothermal activity. This window is quickly opened as upper plate compression relaxes, thereby inducing melt generation and ingress of melt to higher crustal levels. The window is just as quickly closed as upper plate compression is reinstated. The transient tectonic state responsible for economic mineralization in the ABTS belt may be a paleo-analogue to transient intervals in the present subduction tectonics of SE Asia where much mineral wealth has been created in the last few million years.

  15. Analysis on S Drought Index Variation in Warm Season for Altay Area in Xinjiang%新疆阿勒泰地区暖季S干旱指数变化特征分析

    Institute of Scientific and Technical Information of China (English)

    庄晓翠; 赵正波; 杨森; 张林梅

    2011-01-01

    运用新疆阿勒泰地区1961 - 2009年7个测站暖季(4- 10月)月降水量与无降水日数定义了S干旱指数,采用Mann-Kendall趋势检验法、Morlet小波变换对该指数进行了分析.结果表明:S指数能较好地反映阿勒泰地区的干旱情况.暖季近49a来极端干旱和极端湿润出现了3a和1a;区域中,东部两站无极端干旱年,其它站有极端干旱年;布尔津和吉木乃站有1a和2a的极端湿润年,其它站无极端湿润年.各季中,春秋季分别出现了2a和1a极端干旱年,无极端湿润年;夏季出现了2a极端干旱年和3a极端湿润年;各区域极端干旱和极端湿润年分布较复杂.暖季20世纪80、90年代以湿润为主,其它时间以干旱为主;春季60年代以干旱为主,其它时间以湿润为主;夏季年代变化基本与暖季一致;秋季60、80年代以湿润为主,其它时间以干旱为主.该地区暖季及各季S指数趋势变化不显著.小波分析表明,S指数存在着明显不同的年代际和年际尺度的周期变化.%S drought index was established and analyzed by using Mann-Kendall drift test method and Morlet small wave transformation, based on monthly precipitation and non-precipitation day's number from 7 meteorological stations in warm season (April to October) from 1961 to 2009 in Altay, Xinjiang. The results showed that S drought index accorded with drought condition in Altay. There were 3 extreme drought years and 1 extreme wetness year in last 49 years, there were extreme drought years except for 2 east stations. There were 1 extreme wetness year in Burgin and 2 extreme wetness years in Jimunai, and not in other stations. There were 2 extreme drought years in spring and 1 extreme drought year in autumn, but no extreme wetness years. There were 2 extreme drought years and 3 extreme wetness years in summer. Wetness dominated in warm season during 1980s and 1990s, and drought usually in other time; drought dominated in spring during 1960s

  16. Characteristics of Tree-Ring Width Chronologies in Altay and Their Response to Climate Change%阿尔泰山区两种树轮宽度年表气候响应特征

    Institute of Scientific and Technical Information of China (English)

    牛军强; 袁玉江; 张同文; 尚华明; 张瑞波; 喻树龙; 陈峰; 姜盛夏

    2016-01-01

    The Altay Mountains are the optimum region for dendroclimatological research. In the region, few researches were conducted on the climate response difference of Larix Sibirica and Picea ob ov ata Ledeb at different elevations in the Altay Mountains. In the paper, we established the tree-ring width chronologies of Larix Sibirica and Picea obovata Ledeb for the different elevations and analyzed their response to climate. The results showed that, ①the limited climatic factor of tree ring radial growth is different at different elevations. In June temperature is the dominant factor of tree ring width of Larix Sibirica at the upper treeline and annual precipitation (from last July to current June)or spring precipitation (April to June)is the dominant factor to tree ring width of Picea ob ov ata Ledeb from the middle to lower treeline. ②From the middle to lower treeline, the response of Picea obovata Ledeb to precipitation is better than Larix Sibrica. ③The responses of tree ring width to climate of Larix Sibrica at different elevations are different. There is significant positive correlation (P<0.001)between June temperature and tree ring width of Larix Sibrica at the upper treeline. From the lower to middle treeline, there is no evidently limited factor of the tree ring width of Larix Sibrica.%阿尔泰山是树轮气候研究的理想区域,但此前关于阿尔泰山不同海拔高度西伯利亚落叶松和西伯利亚云杉树轮宽度气候响应差异的对比研究较少。本文利用阿尔泰山上树线西伯利亚落叶松以及森林中下部西伯利亚云杉和西伯利亚落叶松树轮宽度资料,在建立宽度年表的基础上,分析阿尔泰山南坡不同海拔高度不同树种对气候响应的差异。研究结果表明:①上树线与森林中下部区域树轮宽度生长的气候限制因子不同,上树线落叶松树轮宽度生长的气候限制因子为6月平均温度,森林中下部云杉树轮生长的气候

  17. Deepwater fold and thrust belt classification, tectonics, structure and hydrocarbon prospectivity: A review

    Science.gov (United States)

    Morley, C. K.; King, R.; Hillis, R.; Tingay, M.; Backe, G.

    2011-01-01

    and Type 2 systems is reservoir rock. High quality, continent-derived, quartz-rich sandstones are generally prevalent in Type 1 systems. More diagenetically reactive minerals derived from igneous and ophiolitic sources are commonly present in Type 2 systems, or many are simply poor in well-developed turbidite sandstone units. However, some Type 2 systems, particularly those adjacent to active orogenic belts are partially sourced by high quality continent-derived sandstones (e.g. NW Borneo, S. Caspian Sea, Columbus Basin). In some cases very high rates of deposition in accretionary prisms adjacent to orogenic belts, coupled with uplift due to collision, results in accretionary prism related fold belts that pass laterally from sub-aerial to deepwater conditions (e.g. S. Caspian Sea, Indo-Burma Ranges). The six major hydrocarbon producing regions of DWFTBs worldwide (Gulf of Mexico, Niger Delta, NW Borneo, Brazil, West Africa, S. Caspian Sea) stand out as differing from most other DWFTBs in certain fundamental ways, particularly the very large volume of sediment deposited in the basins, and/or the great thickness and extent of salt or overpressured shale sdetachments.

  18. Petrogenesis and tectonic settings of volcanic rocks of the Ashele Cu-Zn deposit in southern Altay, Xinjiang, Northwest China: Insights from zircon U-Pb geochronology, geochemistry and Sr-Nd isotopes

    Science.gov (United States)

    Wu, Yufeng; Yang, Fuquan; Liu, Feng; Geng, Xinxia; Li, Qiang; Zheng, Jiahao

    2015-11-01

    The Early-Mid-Devonian Ashele Formation of the southern margin of the Chinese Altay hosts the Ashele Cu-Zn volcanogenic massive sulfide (VMS) deposit and consists of intercalated volcanic and sedimentary rocks that have experienced regional greenschist-facies metamorphism. We studied the petrography, zircon U-Pb geochronology, geochemistry, and Sr-Nd isotopes of dacites and basalts in order to understand the petrogenesis of these rocks and the regional tectonic evolution. Two dacites yielded LA-MC-ICP-MS zircon U-Pb ages of 402 ± 6 Ma and 403 ± 2 Ma. The dacites are calc-alkaline, and characterized by high Na2O/K2O ratios (3.6-9.3), and high Mg# values (47-63), enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), depletion in Nb, Ta, Ti, and P, and relatively positive εNd(t) values (+3.6 to +7.5), collectively suggesting a sanukitic magma affinity. The variations in the major and trace elements of the dacites indicate that Fe-Ti oxide, plagioclase, and apatite were fractionated during their petrogenesis. The basalts are tholeiitic, and are characterized by high Mg# values (66-73), and negative Nb and Ta anomalies. The geochemical characteristics of the basalts are similar to those of N-MORB. Those characteristics together with the positive εNd(t) values (+6.8 to +9.2) of the basalts, indicate that the precursor magma was derived mainly from an N-MORB-type depleted asthenospheric mantle in an island arc setting. The geochemical similarities between the basalts and dacites indicate that they both originated from a similar depleted mantle source via partial melting under different magmatic conditions in each case, possibly related to ridge subduction.

  19. Flat belt continuously variable high speed drive

    Energy Technology Data Exchange (ETDEWEB)

    Kumm, E.L.

    1992-02-01

    A study was undertaken at Kumm Industries funded by DOE in the NBS/DOE Energy-Related Inventions Program starting in August 1990 to design, construct and test a novel very high speed flat belt drive. The test arrangement as shown in Figure 1 consists of a multiple belt-pulley configuration that transmits power from a low speed (2000--4000 RPM) input to a small pulley turbine'' (27,000 to 55,000 RPM) and then to the low speed output variable radius pulley (2000--5000 RPM) via a special self-active tensioner. Transmitting 25 HP to and from the turbine'' corresponds to obtaining 50 HP in one direction only in a possible turbo compounded engine application. The high speed of the turbine'' belts, i.e. 100 meters/sec. at 55,000 RPM, while transferring substantial power is a new much higher operating regime for belts. The study showed that the available belts gave overall test rig efficiencies somewhat above 80% for the higher speeds (50,000 RPM) and higher powers (corresponding to above 90% in the turbocompound application) and a significantly better efficiencies at slightly lower speeds. The tests revealed a number of improved approaches in the design of such high speed drives. It appears that there is considerable possibility for further improvement and application of such equipment.

  20. The effects of Maine's change to primary seat belt law on seat belt use and public perception and awareness.

    Science.gov (United States)

    Chaudhary, Neil K; Tison, Julie; Casanova, Tara

    2010-04-01

    Maine upgraded its seat belt law to primary enforcement on September 20, 2007. Belt observations during the day and night were conducted along with awareness surveys in state licensing offices. Both daytime and nighttime observed belt use increased in the months following implementation of the law (daytime 77-84%; night 69-81%). Although daytime belt use was generally higher, nighttime belt use showed a greater increase than daytime belt use. Awareness surveys indicated that Maine motorists were clearly aware of the law change and its consequences. Survey respondents also indicated having heard both messages about enforcement and messages encouraging belt use. Primary seat belt laws may have a stronger effect on belt use at night--when risk is higher--than during the day.

  1. Structure,change and its tendency of glacier systems in Altay Mountains%阿尔泰山冰川系统结构、近期变化及趋势预测

    Institute of Scientific and Technical Information of China (English)

    王淑红; 谢自楚; 戴亚南; 刘时银; 王欣

    2011-01-01

    地跨中、俄、哈、蒙四国的阿尔泰山共有冰川面积约1 700 km2,其中中国约280 km2,俄罗斯及哈萨克斯坦约880 km2,可作为统一的冰川系统进行研究.本文首先应用中国及前苏联冰川编目数据分析了本系统冰川的结构特征.表明本区冰川平衡线约为2 983 m,为中国的小型冰川(平均面积0.8 km2)作用区.应用最新的遥感影像与冰川编目数据对比,计算出近40~50 a来,已有208条冰川消失,总面积退缩12%,其中南侧中国为31%,北侧俄、哈两国为7%,这个差别与阿尔泰山南、北两地区近数10 a来气温上升幅度不同有关.应用冰川系统模型计算,阿尔泰山南、北两侧冰川径流在20世纪70-80年代达到最大,然后均逐渐减少,在增温为0.05℃/a的情景下,到本世纪末,阿尔泰山冰川将趋近完全消失,其中中国只剩下3%,俄、哈两国也还只有9%.%There are 1 700 km2 glaciers survived in the glacier system of Altay region which locates in the interface of Kazakhstan, Mongolia, Russia and China, with the area of 880 km2 in Russia and Kazakhstan and 280 km2 in China respectively. The characteristics of Altay glacier system were analyzed on the basis of Chinese and Former Soviet Union glacier inventories data. The glacier system's average area is 0. 8 km2 while the median size of Smed(N) ,Smed (S) ,Smed(V) are 0.3 km2,2 km2 and 3.4 km2 respectively. The ELA increases both from west to east and from outside mountains to the central mountains with the average elevation of 2 983 m under the effects of precipitation.The maximum area altitude (Hm=(s)) is 3 100 m,and HSR (i. e. the ratio of glacier area near the maximum area altitude ( Hm= (S) ) against the whole glacier system's area) is about 0.5 which is the medium level among the glacier systems in China. Two phases of glacier data from the newly remote sensing data ( TM/ETM ) and the glacier inventories data were obtained. When compared the two phases glacier data, the

  2. Oral health knowledge and attitudes in Kazakh of Altay%阿勒泰哈萨克族人群口腔健康知识态度调查分析

    Institute of Scientific and Technical Information of China (English)

    薛力; 王伟谦; 刘锐

    2016-01-01

    Objective To know the current situation of oral health⁃related knowledge and attitudes among different ethnic groups of Kazakh in Xinjiang Altay region. Methods According to the third national oral health survey standards and methods, stratified random sampling method was used to investigate 489 Kazakh people in urban and rural areas of Altay. Results 18.1% of the population were able to answer correctly the number of their teeth, 56.6% were able to realize that teeth bleeding is abnormal when blushing teeth, 51. 5% thought that sugar is one cause of tooth decay. The accuracy rates of these three issues by rural population were significantly lower than those by the urban population ( P0.05) . As to whether regular dental check is necessary, teeth conditions are inborn and have little to do with maintenance, and prevention of dental diseases is on their own, the ac⁃curacy rates were 70.5%, 58.2%, 67.7%, respectively. The accuracy rates of these three issues were significantly lower by the rural population than by the urban population ( P0.05) . Access to oral health knowledge via ra⁃dio/TV accounted for the highest proportion (67.6%), while that via hospital accounted for the lowest percentage (6%). Conclusion Health awareness of oral health in different Kazakh populations of Altay region is low, so oral health education should be made from avariety of ways to popularize the oral health knowledge.%目的:了解新疆阿勒泰地区哈萨克不同族群口腔健康相关知识、态度现况。方法按照第三次全国口腔健康流行病学调查标准和方法,采用分层随机抽样方法,对阿勒泰地区城市和农村哈萨克族人群489人进行调查。结果18.1%的人群能够正确答对牙齿的数目,56.6%的人能够正确认识到刷牙出血不正常,51.5%的人认为吃糖是引发龋齿的原因之一,在这3个问题中农村人群的正答率均明显低于城市人群,差异具有统计学意义( P<0.05

  3. Devonian to Triassic Successions of the Changning-Menglian Belt,Western Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    JIN Xiaochi; WANG Yizhao; XIE Guanglian

    2003-01-01

    Phanerozoic strata are distributed in several north-south trending zones in the central part of the Changning-Menglian Belt. Four types of Devonian to Triassic stratigraphic successions can be identified: (1) clastics with limestonelenses in the mid-section, changing up-section into alternations of fine clastics and cherts; (2) clastics with chertintercalations and limestone lenses, and topped by Permian basic volcanics; (3) clastics-basicvolcanics-carbonates-clastics; and (4) limestones, dolomitic limestones-dark gray thin-bedded limestones, argillaceouslimestones, mudstones and siliceous mudstones. Devonian to Triassic cherts occur in different horizons and differentzones from east to west. These cherts are usually transitional to their neighboring clastics. There is no continuousDevonian to Middle Triassic chert sequence in the central zone of the Changning-Menglian Belt as Liu et al. (1991, 1993)reported. Volcanics and the overlying carbonates described by some workers as "seamount" sequences are more likely tohave formed in a marine environment on continental crust. Succession (4) is newly recognized in the area from Menglai toYong'an in Cangyuan County and further north to Padi of Gengma County. Basalts, cherts and clastics also appear in thisarea. Mid-Triassic (very probably Ladinian) radiolarians extracted from bedded cherts in the Ganzhejidi section indicatethat they are in higher stratigraphic positions. The change from bedded cherts via siltstones to thick-bedded sandstoneswith thin-bedded fine intercalations in the Ganzhejidi section and (some other outcrops along the road from Cangyuan toGengma) suggests a fundamental change of sedimentary environment caused by a rapid increase of a large quantity ofdetritus supply. These siliciclastic sediments are possibly syn-orogenic deposits.

  4. Ionospheric heating for radiation-belt control

    Energy Technology Data Exchange (ETDEWEB)

    Burke, W.J.; Villalon, E.

    1990-10-01

    Pitch-angle scattering interactions of electromagnetic waves in the ELF/VLF bands with trapped electrons, as formulated by Kennel and Petschek 1, describe the dynamics of the freshly filled radiation belts flux tubes. The natural existence of a slot region with electron fluxes below the Kennel-Petschek limit requires non-local wave sources. We describe a set of planned, active experiments in which VLF radiation will be injected from ground and space based transmitters in conjunction with the CRRES satellite in the radiation belts. These experiments will measure the intensity of waves driving pitch-angle diffusion and the electron energies in gyroresonance with the waves. An ability to reduce the flux of energetic particles trapped in the radiation belts by artificial means could improve the reliability of microelectronic components on earth-observing satellites in middle-altitude orbits.

  5. Friction and Wear in Timing Belt Drives

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2010-09-01

    Full Text Available Timing belt tooth goes into contact with a drive pulley, stretched to the maximum, because of the previous tension. When the contact begins the peak of the belt tooth makes the contact with the outer surface of the pulley teeth. The process of the teeth entering into the contact zone is accompanied with the relative sliding of their side surfaces and appropriate friction force. The normal force value is changing with the parabolic function, which also leads to the changes of the friction force. The biggest value of the normal force and of the friction force is at the tooth root. Hollow between teeth and the tip of the pulley teeth are also in contact. Occasionally, the face surface of the belt and the flange are also in contact. The friction occurs in those tribomechanical systems, also. Values of these friction forces are lower compared with the friction force, which occurs at the teeth root.

  6. Composite Microdiscs with a Magnetic Belt

    DEFF Research Database (Denmark)

    Knaapila, Matti; Høyer, Henrik; Helgesen, Geir

    2015-01-01

    We describe an emulsion-based preparation of patchy composite particles (diameter of 100-500 mu m) consisting of a disclike epoxy core and a belt of porous polystyrene particles (diameter of 30 mu m) with magnetite within the pores. Compared to the magnetically uniform polystyrene particles......, the spontaneous aggregation of composite particles is suppressed when dispersed into liquid, which is attributed to the increased particle size, reduced magnetic susceptibility, and the shape of the magnetic domain distribution within the particles (spherical versus a belt). When the composite particles...

  7. Ionospheric heating for radiation belt control

    Science.gov (United States)

    Burke, William J.; Villalon, Elena

    1990-10-01

    Pitch-angle scattering interactions of electromagnetic waves in the ELF/VLF bands with trapped electrons describe the dynamics of the freshly filled radiation belts flux tubes. The natural existence of a 'slot' region with electron fluxes below the Kennel-Petschek limit requires non-local wave sources. A set of planned, active experiments is described in which VLF radiation is injected from ground and space band transmitters in conjunction with the Combined Release and Radiation Effects Satellite in the radiation belts. These experiments can measure the intensity if waves driving pitch-angle diffusion and the electron energies in gyroresonance with the waves.

  8. The radiation belt of the Sun

    CERN Document Server

    Gruzinov, Andrei

    2013-01-01

    For a given solar magnetic field, the near-Sun (phase-space) density of cosmic ray electrons and positrons of energy above about 10GeV can be calculated from first principles, without any assumptions about the cosmic ray diffusion. This is because the sunlight Compton drag must be more important than diffusion. If the solar magnetic field has an appreciable dipole component, the electron/positron density should have a belt-like dent, perhaps extending to several solar radii. The belt structure appears because the quasi-bound orbits are depopulated by the sunlight Compton drag.

  9. Drive Alive: Teen Seat Belt Survey Program

    OpenAIRE

    Loftin, Laurel; Barlament, James; Cotton, Carol; Davidson, Steve M; Burkett, Katie M.; Stephens, James

    2010-01-01

    Objective: To increase teen seat belt use among drivers at a rural high school by implementing the Drive Alive Pilot Program (DAPP), a theory-driven intervention built on highway safety best practices.Methods: The first component of the program was 20 observational teen seat belt surveys conducted by volunteer students in a high school parking lot over a 38-month period before and after the month-long intervention. The survey results were published in the newspaper. The second component was t...

  10. Development of belt conveyor driving system

    Institute of Scientific and Technical Information of China (English)

    FU Jun-qing(付峻青); WANG Cong(王聪); HUO Wei(霍伟)

    2004-01-01

    A short review for the existing various driving methods for belt conveyor was given, which include the analysis and comparison about the advantages, disadvantages and suitable application range of these methods. Based on this the variable-frequency-control(VFC) method for belt conveyor drive was fully discussed with focus on its application in medium-high voltage range. The principle of Neutral Point Clamped (NPC) Three-Level Inverter using high-voltage IGBTs together with the control strategy of rotor field-oriented vector control for induction motor drive were illustrated.

  11. CALCULATION OF TENSION FORCE OF BELT CONVEYOR

    Directory of Open Access Journals (Sweden)

    Ismet Ibishi

    2012-12-01

    Full Text Available In this paper is done the explanation on tension fashion of the belt conveyor which is employed in Kosovo Energy Corporation – KEK, for coal transportation to provide electric power plant. The aim of the paper enables to recognize tension forces not to pass with deformation of belt so that this problem will damage the workingprocess. Work principle is based on initial tension and tension during working process. The fact is known that the tension starts from the carriage on the way to tension mechanization, so forces on the rope passing through pulley there has to dominate the friction coefficient. All this process is related to economy of transportationmechanism.

  12. Origin of carbonatites in the South Qinling orogen: Implications for crustal recycling and timing of collision between the South and North China Blocks

    Science.gov (United States)

    Xu, Cheng; Chakhmouradian, Anton R.; Taylor, Rex N.; Kynicky, Jindrich; Li, Wenbo; Song, Wenlei; Fletcher, Ian R.

    2014-10-01

    Most studies of compositional heterogeneities in the mantle, related to recycling of crustal sediments or delaminated subcontinental lithosphere, come from oceanic setting basalts. In this work, we present direct geochronological and geochemical evidence for the incorporation of recycled crustal materials in collision-related carbonatites of the South Qinling orogenic belt (SQ), which merges with the Lesser Qinling orogen (LQ) to separate the South and North China Blocks. The SQ carbonatites occur mainly as stock associated with syenites. The data presented here show that zircon from the syenites yields an age of 766 ± 25 Ma, which differs significantly from the age of primary monazite from the carbonatites (233.6 ± 1.7 Ma). The syenites contain lower initial 87Sr/86Sr and higher εNd values. This indicates that the carbonatites do not have genetically related with the silicate rocks, and were directly derived from a primary carbonate magma generated in the mantle. The carbonatites show a Sr-Nd isotopic signature similar to that of the chondritic uniform reservoir (CHUR), and parallel Sm-Nd model ages (TCHUR) of 190-300 Ma. However, the rocks have extremely variable Pb isotopic values straddling between the HIMU and EM1 mantle end-members. Most carbon and oxygen isotopic compositions of the SQ carbonatites plot outside the field for primary igneous carbonates. Their δ13C shows higher value than a 'normal' mantle, which implies an incorporation of recycled inorganic carbon. The carbonatites were emplaced close to the Mianlue suture, and followed the closure of the Mianlue ocean and Triassic collision of the South and North China Blocks. However, direct melting of the subducted Mianlue oceanic crust characterized by high εNd and low (EM1-like) 206Pb/204Pb values cannot explain the CHUR-like Nd signature and the Pb isotopic trend toward HIMU in the SQ carbonatites. We conclude that their parental magma was derived from a source incorporating the Mianlue oceanic

  13. Ongoing compression triggered exhumation of the orogenic crust in the Variscan Maures-Tanneron Massif, France - Geological arguments and thermo-mechanical tests

    Science.gov (United States)

    Gerbault, Muriel; Schneider, Julie; Reverso-Peila, Alexandre; Corsini, Michel

    2016-04-01

    The Maures-Tanneron Massif (MTM), together with Corsica and Sardinia, hosted the South-Eastern Variscan belt and record a continuous evolution from continental collision to exhumation. We present a synthesis of the available geological and geochronogical data that explores the transition from convergence to perpendicular Permean extension in the MTM (at ~ 325 Ma ± 25 My). The migmatitic Internal Zone that composes the Western MTM displays structural clues such as backthrusting and magmatic foliations, and metamorphic data indicating exhumation of deep seated partially molten rocks at an apparent heating rate of 1-2 °C/km/My from ca. 345 Ma to 320 Ma. This suggests vertical advective heat transport during continued N140° convergence (D2 phase). In contrast at the same time, the low grade External zone composing the Eastern part of the MTM recorded exhumation of more conductive patterns at an apparent rate of 0.3-0.6 °C/km/My. It is only from ca. 320 Ma that transcurrent motion dominates in the Internal zone and progressively leaves way to N-S strecthing (D3 phase), indicative of orogenic collapse and extension and in asociation with emplacement of larger volumes of magmatism in the crust. Thermo-mechanical modeling complements this synthesis in order to highlight the conditions under which deep seated HP units could melt and massively start to exhume during maintained convergence (phase D2). Accounting for temperature dependent elasto-visco-plastic rheologies, our models explore the dynamics of an orogenic prism starting from a dis-equilibrated state just after slab break-off or delamination, at ca. 350 Ma. We simulate the development of gravitational instabilities in partially melting crust, a process that is already well known to depend on strain-rate, heat sources and strength layering. In order to reproduce the exhumation patterns of rocks from ~50 km depth over the appropriate time-scale (>20 My) and spatial extent (>100 km), a best fit was obtained with a

  14. Rock relationships in the Mogok metamorphic belt, Tatkon to Mandalay, central Myanmar

    Science.gov (United States)

    Mitchell, A. H. G.; Htay, Myint Thein; Htun, Kyaw Min; Win, Myint Naing; Oo, Thura; Hlaing, Tin

    2007-03-01

    The Mogok metamorphic belt (MMB), over 1450 km long and up to 40 km wide, consists of regionally metamorphosed rocks including kyanite and sillimanite schists and granites lying along the Western margin of the Shan Plateau in central Myanmar and continuing northwards to the eastern Himalayan syntaxis. Exposures in quarries allow correlation of Palaeozoic meta-sedimentary, early Mesozoic meta-igneous and late Mesozoic intrusive rocks within a 230 km long northerly-trending segment of the MMB, from Tatkon to Kyanigan north of Mandalay, and with the Mogok gemstone district 100 km to the northeast. Relationships among the metamorphic and intrusive rocks, with sparse published radiometric age controls, indicate at least two metamorphic events, one before and one after the intrusion of Late Jurassic to early Cretaceous calc-alkaline rocks. These relationships can be explained by either of two possible tectonic histories. One, constrained by correlation of mid-Permian limestones across Myanmar, requires early Permian and early Jurassic regional metamorphic events, prior to an early Tertiary metamorphism, in the western part of but within a Shan-Thai - western Myanmar block. The second, not compatible with a single laterally continuous Permian limestone, requires pre-Upper Jurassic regional metamorphism and orogenic gold mineralization in the Mergui Group and western Myanmar, early Cretaceous collision of an east-facing Mergui-western Myanmar island arc with the Shan Plateau, and early Tertiary metamorphism in the MMB related to reversal in tectonic polarity following the arc-Plateau collision.

  15. Reassessment of the geologic evolution of selected precambrian terranes in Brazil, based on SHRIMP U-Pb data, part 2: mineiro and Aracuai orogens and Southern Sao Francisco craton; Reavaliacao da evolucao geologica em terrenos pre-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, parte 2: orogeno Aracuai, cinturao mineiro e craton Sao Francisco Meridional

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz Carlos da; Pimentel, Marcio [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail: luizcarlos@aneel.gov.br; Leite, Carlos Augusto; Vieira, Valter Salino; Silva, Marcio Antonio da; Paes, Vinicius Jose de Castro; Cardoso Filho, Joao Moraes [Companhia de Pesquisas de Recursos Minerais (CPRM), Belo Horizonte, MG (Brazil); Armstrong, Richard [Australian National Univ., Canberra (Australia). Research School of Earth Sciences; Noce, Carlos Mauricio; Pedrosa-Soares, Antonio Carlos [Minas Gerais Univ., Belo Horizonte (Brazil). Inst. de Geociencias. Centro de Pesquisa Manuel Teixeira da Costa; Carneiro, Mauricio Antonio [Ouro Preto Univ., MG (Brazil). Dept. de Geologia

    2002-12-15

    This paper discusses new zircon SHRIMP (Sensitive High Resolution Ion Microprobe) U-Pb geochronological data for 19 key-exposures of several geological units exposed at the eastern border of the Southern Sao Francisco Craton and at the adjacent Proterozoic Mineiro and Aracuai orogens. Samples were collected along several E-W tran sects, aiming at tracing the precise limit of the Sao Francisco Craton Archean basement, as well as assessing the extension of the successive proterozoic orogenic collages. Due to the complex geologic history and/or high grade metamorphism which most of the rock units investigated have undergone, zircon morphology and the U-Pb analytical data exhibit very complex patterns. These are characterized by a combination of inheritance, partial resetting and new zircon growth during high-grade metamorphism. As a consequence, very careful and detailed analyses of cathodoluminescence imagery were required to allow distinction between inheritance, newly melt-precipitated zircon and partially reset zircons, as well as between the ages of magmatic and metamorphic events. In the southeastern border of the craton 5 units yielded Archean crystallization ages ranging from ca. 3000-2700 Ma, with poorly constrained metamorphic ages ranging from ca. 2850 to 550 Ma. The TTG gneissic complex exposed to the east and south of the Quadrilatero Ferrifero, formerly ascribed to the Archean basement, have crystallization ages from ca. 2210 Ma to 2050 Ma, and can now be interpreted as representing pre- to syn-collisional magmatic phases of the Mineiro Belt. Metamorphic ages of ca. 2100 Ma and 560 Ma are also well constrained in zircon populations from these gneisses. The crystallization age of ca 1740 Ma observed for an alkaline granite of the Borrachudos Suite (intrusive into the Archean basement east of the Southern Espinhaco Range) confirmed previous conventional U-Pb data for this Paleoproterozoic rift-related magmatism. One of the major basement inliers within the

  16. 14 CFR 125.211 - Seat and safety belts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Seat and safety belts. 125.211 Section 125... Requirements § 125.211 Seat and safety belts. (a) No person may operate an airplane unless there are available... share one approved safety belt and two persons occupying a multiple lounge or divan seat may share...

  17. 49 CFR 392.16 - Use of seat belts.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 5 2010-10-01 2010-10-01 false Use of seat belts. 392.16 Section 392.16... VEHICLES Driving of Commercial Motor Vehicles § 392.16 Use of seat belts. A commercial motor vehicle which has a seat belt assembly installed at the driver's seat shall not be driven unless the driver...

  18. Observed seat belt use in Kumasi Metropolis, Ghana.

    Science.gov (U