WorldWideScience

Sample records for altay orogenic belt

  1. Three-dimensional thermoluminescence spectra of different origin quartz from Altay Orogenic belt, Xinjiang, China

    International Nuclear Information System (INIS)

    Tan Kaixuan; Liu Zehua; Zeng Sheng; Liu Yan; Xie Yanshi; Rieser, Uwe

    2009-01-01

    Three-dimensional thermoluminescence spectra are measured for different types of geological origin quartz from the Altay orogenic belt, northern Xinjiang, China. The results show striking differences which appear to be characteristic of their geological origin. Granitic quartz is dominated by emission bands at 420-430 nm, 550-560 nm, at a temperature of 170 deg. C. Pegmatite quartz is characterized by an intense 480 nm emission band at 170 deg. C. Volcanic quartz has exclusive UV (340-360 nm) and violet (410-430 nm) emission bands. Hydrothermal quartz exhibits very different TL spectral characteristics because of different hydrothermal activity and mineralization. Only one TL peaks at 485 nm/170 deg. C was observed in sedimentary quartz. An intense 730 nm emission band observed at 170 deg. C considered generally to be characteristics of feldspar was observed in quartz from granite and hydrothermal Au-bearing quartz. This TL peak is probably related to the centre of [FeO 4 ] 0 on an Si site. All samples show an intense 990-1000 nm emission band at 330 deg. C. Identical types of quartz formed in different regions or different geological and tectonic settings can also exhibit striking differences in TL spectra.

  2. Earthquake activity along the Himalayan orogenic belt

    Science.gov (United States)

    Bai, L.; Mori, J. J.

    2017-12-01

    The collision between the Indian and Eurasian plates formed the Himalayas, the largest orogenic belt on the Earth. The entire region accommodates shallow earthquakes, while intermediate-depth earthquakes are concentrated at the eastern and western Himalayan syntaxis. Here we investigate the focal depths, fault plane solutions, and source rupture process for three earthquake sequences, which are located at the western, central and eastern regions of the Himalayan orogenic belt. The Pamir-Hindu Kush region is located at the western Himalayan syntaxis and is characterized by extreme shortening of the upper crust and strong interaction of various layers of the lithosphere. Many shallow earthquakes occur on the Main Pamir Thrust at focal depths shallower than 20 km, while intermediate-deep earthquakes are mostly located below 75 km. Large intermediate-depth earthquakes occur frequently at the western Himalayan syntaxis about every 10 years on average. The 2015 Nepal earthquake is located in the central Himalayas. It is a typical megathrust earthquake that occurred on the shallow portion of the Main Himalayan Thrust (MHT). Many of the aftershocks are located above the MHT and illuminate faulting structures in the hanging wall with dip angles that are steeper than the MHT. These observations provide new constraints on the collision and uplift processes for the Himalaya orogenic belt. The Indo-Burma region is located south of the eastern Himalayan syntaxis, where the strike of the plate boundary suddenly changes from nearly east-west at the Himalayas to nearly north-south at the Burma Arc. The Burma arc subduction zone is a typical oblique plate convergence zone. The eastern boundary is the north-south striking dextral Sagaing fault, which hosts many shallow earthquakes with focal depth less than 25 km. In contrast, intermediate-depth earthquakes along the subduction zone reflect east-west trending reverse faulting.

  3. The eastern Central Asian Orogenic Belt: formation and evolution

    Science.gov (United States)

    Xu, Bei; Xu, Wenliang

    2017-08-01

    The Central Asian Orogenic Belt (CAOB) extends from the northern Eurasian continent in the west via Mongolia, Inner Mongolia and northeast part of China to the Russia Far East in the east. It is characterized by complex trench-arc-basin subduction system, exotic terrane (microcontinents) accretion, massive generation of juvenile crust during the Neoproterozoic-Phanerozoic (e.g., Jahn et al., 2000, 2004; Sengör et al., 1993). A lot of papers about formation and evolution of the CAOB have been published and new field observations and geochemical data for key areas of the CAOB challenge to previous assessments. Several areas previously defined as juvenile are now shown to have mixed crustal compositions. For example, Kröner et al. (2014, in press) estimated that the distribution of various crustal provinces is truly juvenile crustal material ca. 20%, mixed crust ca. 30%, old crust ca. 50%,respectively, in the CAOB, similar to those in other accretionary orogens through Earth history. A two-stage model for the evolution of the CAOB has been suggested based on recent data from the Eastern Tianshan and Beishan (Gao et al., 2011; Su et al., 2011; Chen et al., 2016; Wang et al., 2017), which suggests the process of the formation and evolution of the CAOB includes closure of the Paleo Asian ocean (PAO), formation of orogenic belt before the late Paleozoic and crustal extension and magmatism resulted from plume upon the young orogenic belt after the late Paleozoic. This new model changes previous concept that the CAOB developed through the Paleozoic and is supported by recent researches on the eastern CAOB.

  4. Metamorphic complexes in accretionary orogens: Insights from the Beishan collage, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Yang, Lei

    2016-10-01

    The sources of ancient zircons and the tectonic attributions and origins of metamorphic complexes in Phanerozoic accretionary orogens have long been difficult issues. Situated between the Tianshan and Inner Mongolia orogens, the Beishan orogenic collage (BOC) plays a pivotal role in understanding the accretionary processes of the southern Central Asian Orogenic Belt (CAOB), particularly the extensive metamorphic and high-strained complexes on the southern margin. Despite their importance in understanding the basic architecture of the southern CAOB, little consensus has been reached on their ages and origins. Our new structural, LA-ICP-MS zircon U-Pb and Hf isotopic data from the Baidunzi, Shibandun, Qiaowan and Wutongjing metamorphic complexes resolve current controversial relations. The metamorphic complexes have varied lithologies and structures. Detrital zircons from five para-metamorphic rocks yield predominantly Phanerozoic ages with single major peaks at ca. 276 Ma, 286 Ma, 427 Ma, 428 Ma and 461 Ma. Two orthogneisses have weighted mean ages of 294 ± 2 Ma and 304 ± 2 Ma with no Precambrian inherited zircons. Most Phanerozoic zircons show positive εHf(t) values indicating significant crustal growth in the Ordovician, Silurian and Permian. The imbricated fold-thrust deformation style combined with diagnostic zircon U-Pb-Hf isotopic data demonstrate that the metamorphic rocks developed in a subduction-accretion setting on an arc or active continental margin. This setting and conclusion are supported by the nearby occurrence of Ordovician-Silurian adakites, Nb-rich basalts, Carboniferous-Permian ophiolitic mélanges, and trench-type turbidites. Current data do not support the presence of a widespread Precambrian basement in the evolution of the BOC; the accretionary processes may have continued to the early Permian in this part of the CAOB. These relationships have meaningful implications for the interpretation of the tectonic attributions and origins of other

  5. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Yuan, Yu; Zong, Keqing; He, Zhenyu; Klemd, Reiner; Jiang, Hongying; Zhang, Wen; Liu, Yongsheng; Hu, Zhaochu; Zhang, Zeming

    2018-03-01

    The Beishan Orogenic Belt is located in the central southernmost part of the Central Asian Orogenic Belt (CAOB), which plays a key role in understanding the formation and evolution of the CAOB. Granitoids are the documents of crustal and tectonic evolution in orogenic belts. However, little is known regarding the petrogenesis and geodynamic setting of the widely distributed Paleozoic granitoids in the Northern Beishan Orogenic Belt (NBOB). The present study reveals significant differences concerning the petrogenesis and tectonic setting of early and late Paleozoic granitoids from the NBOB. The early Paleozoic granitoids from the 446-430 Ma Hongliuxia granite complex of the Mazongshan unit and the 466-428 Ma Shibanjing complex of the Hanshan unit show classic I-type granite affinities as revealed by the relative enrichment of LILEs and LREEs, pronounced depletions of Nb, Ta and Ti and the abundant presence of hornblende. Furthermore, they are characterized by strongly variable zircon εHf(t) values between - 16.7 and + 12.8 and evolved plagioclase Sr isotopic compositions of 0.7145-0.7253, indicating the involvement of both juvenile and ancient continental crust in the magma source. Thus, we propose that the early Paleozoic granitoids in the NBOB were generated in a subduction-related continental arc setting. In contrast, the late Paleozoic 330-281 Ma granitoids from the Shuangjingzi complex of the Hanshan unit exhibit positive zircon εHf(t) values between + 5.8 and + 13.2 and relatively depleted plagioclase Sr isotopic compositions of 0.7037-0.7072, indicating that they were mainly formed by remelting of juvenile crust. Thus, an intra-plate extensional setting is proposed to have occurred during formation of the late Paleozoic granitoids. Therefore, between the early and late Paleozoic, the magma sources of the NBOB granitoids converted from the reworking of both juvenile and ancient crusts during a subduction-induced compressional setting to the remelting of

  6. Late-orogenic mantle garnet pyroxenites evidence mantle refertilization during exhumation of orogenic belt

    Science.gov (United States)

    Chazot, G.; France, L.; Kornprobst, J.; Dallai, L.; Vannucci, R.

    2008-12-01

    The petrological and geochemical study of garnet bearing pyroxenites from four localities (FMC, Morocco, Jordan, Cameroon) demonstrates that these rocks are cumulates crystallised in the lithospheric mantle domain. Metamorphic reactions, exsolutions and trace elements WR analysis demonstrate that their crystallisation pressure ranges between 1 and 2GPa (30 to 60km). The elaboration of the PTt paths for the studied samples attests of important movements in the respective lithospheres. Replaced in the geodynamical contexts, the samples are interpreted to represent the crystallisation of melts formed during exhumation of orogenic domains. Radiogenic isotopes (Sr-Nd) show that in a very same region, the samples are isotopicaly heterogeneous but are similar to the respective regional lithosphere. Initial isotopic ratios lead to propose that the FMC samples have crystallised at the end of the Hercynian orogen and that the samples from the other localities (Morocco, Jordan and Cameroon) have crystallised at the end of the Pan-African orogen. After recalculation at the crystallisation time, the isotopic compositions are in good agreement with the respective regional lithosphere ones and so samples of this study could represent the product of the melting of these lithospheres. The analyses of oxygen stable isotopes allow to precise the model; they show that twelve of the samples come from the melting of a lherzolitic mantle and that the four others come from the melting of a heterogeneous mantle formed of lherzolites and eclogites. The presence of some hydrous minerals such as amphiboles and micas and the trace elements WR analyses show that some of the samples were affected by a late metasomatic event. Results of our study show that thermal relaxation following orogenic events lead to the crystallisation of pyroxenites in the lithosphere. The presence of lage amounts of mantle pyroxenites in old orogenic regions confers physical and chemical particularities to these

  7. Continental origin of the Gubaoquan eclogite and implications for evolution of the Beishan Orogen, Central Asian Orogenic Belt, NW China

    Science.gov (United States)

    Saktura, Wanchese M.; Buckman, Solomon; Nutman, Allen P.; Belousova, Elena A.; Yan, Zhen; Aitchison, Jonathan C.

    2017-12-01

    The Gubaoquan eclogite occurs in the Paleozoic Beishan Orogen of NW China. Previously it has been interpreted as a fragment of subducted oceanic crust that was emplaced as a mélange within continental rocks. Contrary to this, we demonstrate that the Gubaoquan eclogite protolith was a Neoproterozoic basic dyke/sill which intruded into Proterozoic continental rocks. The SHRIMP Usbnd Pb zircon dating of the metamorphic rims of the Gubaoquan eclogite yields an age 466 ± 27 Ma. Subdued heavy rare earth element abundances and lack of negative Eu anomalies of the metamorphic zircon domains confirm that this age represents eclogite facies metamorphism. The host augen orthogneiss has a Usbnd Pb zircon age of 920 ± 14 Ma, representing the timing of crystallization of the granitic protolith. A leucogranitic vein which intrudes the eclogite has a Usbnd Pb zircon age of 424 ± 8.6 Ma. This granitic vein marks the end of high-grade metamorphism in this area. The overcomplication of tectonic history of the Beishan Orogen is partially caused by inconsistent classifications and nomenclature of the same rock units and arbitrary subdivisions of Precambrian blocks as individual microcontinents. In an attempt to resolve this, we propose a simpler model that involves the partial subduction of the northern passive margin of the Dunhuang Block beneath the active continental margin developing on the Mazongshan-Hanshan Block to the north. Ocean closure and continental collision during the Late Ordovician resulted in continental thickening and eclogite facies metamorphism recorded by the mafic dykes/sills (now the Gubaoquan eclogite). In the light of the new data, the tectonothermal evolution of the Beishan Orogen is reviewed and integrated with the evolution of the Central Asian Orogenic Belt.

  8. Accretionary and collisional orogenesis in the south domain of the western Central Asian Orogenic Belt (CAOB)

    Science.gov (United States)

    Cai, Keda; Long, Xiaoping; Chen, Huayong; Sun, Min; Xiao, Wenjiao

    2018-03-01

    The Central Asian Orogenic Belt (CAOB) was the result of long-lived multi-stage tectonic evolution, including Proterozoic to Paleozoic accretion and collision, Mesozoic intracontinental modification, and Cenozoic rapid deformation and uplift. The accretionary and collisional orogenesis of its early history generated a huge orogenic collage consisting of diverse tectonic units including island arcs, ophiolites, accretionary prisms, seamounts, oceanic plateaus and micro-continents. These incorporated orogenic components preserved valuable detailed information on orogenic process and continental crust growth, which make the CAOB a key region to understanding of continental evolution, mantle-crust interaction and associated mineralization. The western CAOB refers to the west region in North Xinjiang of China and circum-Balkash of Kazakhstan, with occurrences of the spectacular Kazakhstan orocline and its surrounding mountain belts. Because orogenic fabrics of this part mostly preserve their original features caused by the interactions among the southern Siberian active margin in the north and the Tarim Craton in the south, the western CAOB can be regarded as an ideal region to study the processes of the accretionary and collisional orogenesis and associated mineralization. Since a large number of researchers have been working on this region, research advances bloom strikingly in a short-time period. Therefore, we, in this special issue, focus on these new study advances on the south domain of the western CAOB, including the Kazakhstan collage system, Tianshan orogenic belt and Beishan region, and it is anticipated that this issue can draw more attention from the international research groups to be interested in the studies on orogenesis of the CAOB.

  9. Tectonic evolution of the Black Sea orogene belt and the history of opening of the Black Sea basin

    Energy Technology Data Exchange (ETDEWEB)

    Uesuemezsoy, S. (Istanbul Univ. (Turkey))

    1988-08-01

    The Black Sea basin is surrounded by successive orogenic belts of Hercynian, Cimmerian, and Alpine ages. The Rhodope, Thracian, western Pontian, and Transcaucasian (RTPT) blocks of Precambrian age were involved by the circum-Black Sea orogene belts. The Hercynian orogene was documented in the Balkanide, Great Caucasian, Kriastide, southern Pontian, and Transcaucasian belts. The Cimmerian orogene extended north and south of the Black Sea. The southern Cimmerian orogene was represented by the circum-Rhodope and East Thracian-Strandja-Kuere belts. The northern Cimmerian orogene belt extended along the Dobruca-Crimean and southern slope belts. Following the demise of the Black Sea Cimmerian basin, the northernmost oceanic branch extending from Nish-Trajan through the present Black Sea to the intra-Transcaucasian basin, was opened within the Hercynian and Cimmerian consolidated terrain in the Late Jurassic. The other oceanic branch, extending from Izmir-Ankara through circum Kirsehir to various basins, was opened within the Paleotethyan collision belt, considered to be eastern extension of the Pindus basin. The Nish-Trajan sector of the northernmost basin was closed in the middle Cretaceous, and the Moesian platform re-fused to the Getic-Serbo-Macedonian-Rhodope belt. The easternmost extension of the intra-Transcaucasian basin disappeared in the Late Cretaceous. Consequently, the northernmost oceanic branch was reduced to the present Black Sea basin.

  10. Structure of the Kaoko Belt, Namibia: progressive evolution of a classic transpressional orogen

    Science.gov (United States)

    Goscombe, Ben; Hand, Martin; Gray, David

    2003-07-01

    The Kaoko Belt portion of the Damara Orogen, Namibia, is the deeply eroded core of a sinistral transpressional orogen that has half-flower structure geometry centred on the major, 4-5-km-wide Purros Mylonite Zone. Formed between the Congo Craton in the east and Rio De La Plata Craton in Brazil, the Kaoko Belt represents the northern coastal arm of a triple junction within the Pan-African Orogenic System. Consisting of reworked Archaean, Palaeoproterozoic and Mesoproterozoic basement and a cover of Neoproterozoic Damara Sequence, the Kaoko Belt can be sub-divided structurally into three parallel NNW-trending zones. The Eastern Kaoko Zone comprises sub-greenschist facies shelf carbonates that have been uprightly folded. The Central Kaoko Zone contains a slope and deep basin facies succession that has experienced intense deformation, including pervasive reworking of basement into large-scale east-vergent nappes. The Western Kaoko Zone is predominantly deep basin facies of high metamorphic grade intruded by numerous granites. It has experienced intense wrench-style deformation with formation of upright isoclines and steep, crustal-scale shear zones. The Kaoko Belt evolved through three distinct phases of a protracted Pan-African Orogeny in the late Neoproterozoic to Cambrian. (1) An early Thermal Phase (M 1) was responsible for pervasive partial melting and granite emplacement in the Western Kaoko Zone from 656 Ma. (2) The Transpressional Phase produced the geometry of the belt by progressive sinistral shearing between 580 and 550 Ma. Deformation was continuously progressive through two stages and involved both temporal and spatial migration of deformation outwards towards the margin. The early strike-slip Wrench-Stage produced a high-strain L-S fabric by sub-horizontal transport. Deformation became progressively more transpressive, with high-angle convergence and flattening strains during the Convergent-Stage. In this stage, strike-slip movements evolved through

  11. A Paleozoic Japan-type subduction-accretion system in the Beishan orogenic collage, southern Central Asian Orogenic Belt

    Science.gov (United States)

    Song, Dongfang; Xiao, Wenjiao; Windley, Brian F.; Han, Chunming; Tian, Zhonghua

    2015-05-01

    Magmatic arcs ascribed to oceanic lithosphere subduction played a dominant role in the construction of the accretionary Central Asian Orogenic Belt (CAOB). The Beishan orogenic collage, situated between the Tianshan Orogen to the west and the Inner Mongolia Orogen to the east, is a key area to understanding the subduction and accretionary processes of the southern CAOB. However, the nature of magmatic arcs in the Beishan and the correlation among different tectonic units along the southern CAOB are highly ambiguous. In order to investigate the subduction-accretion history of the Beishan and put a better spatial and temporal relationship among the tectonic belts along the southern CAOB, we carried out detailed field-based structural geology and LA-ICP-MS zircon U-Pb geochronological as well as geochemical studies along four cross-sections across crucial litho-tectonic units in the central segment of the Beishan, mainly focusing on the metamorphic assemblages and associated plutons and volcanic rocks. The results show that both the plutonic and volcanic rocks have geochemical characteristics similar to those of subduction-related rocks, which favors a volcanic arc setting. Zircons from all the plutonic rocks yield Phanerozoic ages and the plutons have crystallization ages ranging from 464 ± 2 Ma to 398 ± 3 Ma. Two volcanic-sedimentary rocks yield zircons with a wide age range from Phanerozoic to Precambrian with the youngest age peaks at 441 Ma and 446 Ma, estimated to be the time of formation of the volcanic rocks. These new results, combined with published data on ophiolitic mélanges from the central segment of the Beishan, favor a Japan-type subduction-accretion system in the Cambrian to Carboniferous in this part of the Paleo-Asian Ocean. The Xichangjing-Niujuanzi ophiolite probably represents a major suture zone separating different tectonic units across the Beishan orogenic collage, while the Xiaohuangshan-Jijitaizi ophiolitic mélange may represent a

  12. Proterozoic orogenic belts and rifting of Indian cratons: Geophysical constraints

    Directory of Open Access Journals (Sweden)

    D.C. Mishra

    2014-01-01

    Full Text Available The Aravalli–Delhi and Satpura Mobile Belts (ADMB and SMB and the Eastern Ghat Mobile Belt (EGMB in India form major Proterozoic mobile belts with adjoining cratons and contemporary basins. The most convincing features of the ADMB and the SMB have been the crustal layers dipping from both sides in opposite directions, crustal thickening (∼45 km and high density and high conductivity rocks in upper/lower crust associated with faults/thrusts. These observations indicate convergence while domal type reflectors in the lower crust suggest an extensional rifting phase. In case of the SMB, even the remnant of the subducting slab characterized by high conductive and low density slab in lithospheric mantle up to ∼120 km across the Purna–Godavari river faults has been traced which may be caused by fluids due to metamorphism. Subduction related intrusives of the SMB south of it and the ADMB west of it suggest N–S and E–W directed convergence and subduction during Meso–Neoproterozoic convergence. The simultaneous E–W convergence between the Bundelkhand craton and Marwar craton (Western Rajasthan across the ADMB and the N–S convergence between the Bundelkhand craton and the Bhandara and Dharwar cratons across the SMB suggest that the forces of convergence might have been in a NE–SW direction with E–W and N–S components in the two cases, respectively. This explains the arcuate shaped collision zone of the ADMB and the SMB which are connected in their western part. The Eastern Ghat Mobile Belt (EGMB also shows signatures of E–W directed Meso–Neoproterozoic convergence with East Antarctica similar to ADMB in north India. Foreland basins such as Vindhyan (ADMB–SMB, and Kurnool (EGMB Supergroups of rocks were formed during this convergence. Older rocks such as Aravalli (ADMB, Mahakoshal–Bijawar (SMB, and Cuddapah (EGMB Supergroups of rocks with several basic/ultrabasic intrusives along these mobile belts, plausibly formed during

  13. Recent advances about of the orogenic modern belt (1000-500 M.A.) in Uruguay

    International Nuclear Information System (INIS)

    Bossi, J.

    1989-01-01

    Progress in lithologic, structural, tectonic and geo tectonic data about a 1000-500 m.y.orogenic belt developed at the East of Uruguay, arrived in the 80, are here described. Conclusions are mainly based on the 1/100.000 scale geologic map of a 6000 sq. km comprised between Sierra Ballena, Sierra de Animas, Pan de Azucar and Mariscala. These new data clearly states the lithological distribution and contribute to guide strategic prospect ion.

  14. EARLY STAGE OF THE CENTRAL ASIAN OROGENIC BELT BUILDING: EVIDENCES FROM THE SOUTHERN SIBERIAN CRATON

    Directory of Open Access Journals (Sweden)

    D. P. Gladkochub

    2017-01-01

    Full Text Available The origin of the Central-Asian Orogenic Belt (CAOB, especially of its northern segment nearby the southern margin of the Siberian craton (SC is directly related to development and closure of the Paleo-Asian Ocean (PAO. Signatures of early stages of the PAO evolution are recorded in the Late Precambrian sedimentary successions of the Sayan-Baikal-Patom Belt (SBPB on the southern edge of SC. These successions are spread over 2000 km and can be traced along this edge from north-west (Sayan area to south-east (Baikal area and further to north-east (Patom area. Here we present the synthesis of all available and reliable LA-ICP-MS U-Pb geochronological studies of detrital zircons from these sedimentary successions.

  15. Quantitative insights into the role of gravitational collapse in major orogenic belts

    Directory of Open Access Journals (Sweden)

    E. Mantovani

    2006-06-01

    Full Text Available Abstract Previous works have proposed gravitational collapse as the driving mechanism of extensional deformation of thickened continental crust. In this work we investigate the physical plausibility of this interpretation for the most important orogenic belts of the world by computing the spreading force induced by lateral variations of crustal thickness and the possible resisting forces. Two collapse mechanisms, one involving the upper crust only and the other the whole crust, have been considered. Particular attention has been devoted to constrain the uncertainty affecting such computations, mostly due to the large variability of the thermal and mechanical properties of rocks. The results obtained show that gravitational collapse is not a plausible mechanism in the four Mediterranean orogens here considered (Northern Apennines, Calabrian Arc, Hellenic Arc and Carpathians. For the other orogenic zones we have taken into account (Western U.S. Cordillera, Central Andes, Himalayas and Central Alps, the large uncertainty that affects the estimate of spreading and resisting forces does not allow to firmly assess the feasibility of gravitational collapse.

  16. Geometry, kinematics and tectonic models of the Kazakhstan Orocline, Central Asian Orogenic Belt

    Science.gov (United States)

    Li, Pengfei; Sun, Min; Rosenbaum, Gideon; Yuan, Chao; Safonova, Inna; Cai, Keda; Jiang, Yingde; Zhang, Yunying

    2018-03-01

    The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary orogens on Earth and is characterized by the occurrence of tight oroclines (Kazakhstan and Tuva-Mongolian oroclines). The origin of these large-scale orogenic curvatures is not quite understood, but is fundamentally important for understanding crustal growth and tectonic evolution of the CAOB. Here we provide an outline of available geological and paleomagnetic data around the Kazakhstan Orocline, with an aim of clarifying the geometry, kinematics and geodynamic origin of the orocline. The Kazakhstan Orocline is evident in a total magmatic image, and can be traced by the continuation of high magnetic anomalies associated with the Devonian Volcanic Belt and the Late Devonian to Carboniferous Balkhash-Yili arc. Paleomagnetic data show ∼112-126° clockwise rotation of the northern limb relative to the southern limb in the Late Devonian to Early Carboniferous, as well as ∼15-28° clockwise rotation of the northern limb and ∼39-40° anticlockwise rotation of the southern limb relative to the hinge of the orocline during the Late Carboniferous to Permian. We argue that the Kazakhstan Orocline experienced two-stage bending with the early stage of bending (Late Devonian to Early Carboniferous; ∼112-126°) driven by slab rollback, and the later stage (Late Carboniferous to Permian; 54-68°) possibly associated with the amalgamation of the Siberian, Tarim and Baltic cratons. This new tectonic model is compatible with the occurrence of rift basins, the spatial migration of magmatic arc, and the development of large-scale strike-slip fault systems during oroclinal bending.

  17. Nature and provenance of the Beishan Complex, southernmost Central Asian Orogenic Belt

    Science.gov (United States)

    Zheng, Rongguo; Li, Jinyi; Xiao, Wenjiao; Zhang, Jin

    2018-03-01

    The ages and origins of metasedimentary rocks, which were previously mapped as Precambrian, are critical in rebuilding the orogenic process and better understanding the Phanerozoic continental growth in the Central Asian Orogenic Belt (CAOB). The Beishan Complex was widely distributed in the southern Beishan Orogenic Collage, southernmost CAOB, and their ages and tectonic affinities are still in controversy. The Beishan Complex was previously proposed as fragments drifted from the Tarim Craton, Neoproterozoic Block or Phanerozoic accretionary complex. In this study, we employ detrital zircon age spectra to constrain ages and provenances of metasedimentary sequences of the Beishan Complex in the Chuanshanxun area. The metasedimentary rocks here are dominated by zircons with Paleoproterozoic-Mesoproterozoic age ( 1160-2070 Ma), and yield two peak ages at 1454 and 1760 Ma. One sample yielded a middle Permian peak age (269 Ma), which suggests that the metasedimentary sequences were deposited in the late Paleozoic. The granitoid and dioritic dykes, intruding into the metasedimentary sequences, exhibit zircon U-Pb ages of 268 and 261 Ma, respectively, which constrain the minimum deposit age of the metasedimentary sequences. Zircon U-Pb ages of amphibolite (274 and 216 Ma) indicate that they might be affected by multi-stage metamorphic events. The Beishan Complex was not a fragment drifted from the Tarim Block or Dunhuang Block, and none of cratons or blocks surrounding Beishan Orogenic Collage was the sole material source of the Beishan Complex due to obviously different age spectra. Instead, 1.4 Ga marginal accretionary zones of the Columbia supercontinent might have existed in the southern CAOB, and may provide the main source materials for the sedimentary sequences in the Beishan Complex.

  18. Crustal structure of the Dabie orogenic belt (eastern China) inferred from gravity and magnetic data

    Science.gov (United States)

    Yang, Yu-shan; Li, Yuan-yuan

    2018-01-01

    In order to better characterize the crustal structure of the Dabie orogen and its tectonic history, we present a crustal structure along a 500 km long profile across the Dabie orogenic belt using various data processing and interpretation of the gravity and magnetic data. Source depth estimations from the spectral analysis by continuous wavelet transform (CWT) provide better constraints for constructing the initial density model. The calculated gravity effects from the initial model show great discrepancy with the observed data, especially at the center of the profile. More practical factors are then incorporated into the gravity modeling. First, we add a high density body right beneath the high pressure metamorphic (HPM) and ultrahigh pressure metamorphic (UHPM) belt considering the exposed HPM and UHPM rocks in the mid of our profile. Then, the anomalous bodies A, B, and C inferred from the CWT-based spectral analysis results are fixed in the model geometry. In the final crustal density structure, two anomalous bodies B and C with high density and low magnetization could possibly be attributed to metasomatised mantle materials by SiO2-rich melt derived from the foundering subducted mafic lower crust. Under the extensional environment in the early Cretaceous, the upwelling metasomatised mantle was partially melted to produce the parental magma of the post-collisional mafic-ultramafic intrusive rocks. As for the low density body A with strong magnetization located in the lower crust right beneath the HP and UHP metamorphic belt, it is more likely to be composed of serpentinized mantle peridotite (SMP). This serpentinized mantle peridotite body (SMPB) represents the emplacement of mantle-derived peridotites in the crust, accompanying the exhumation of the UHP metamorphic rocks.

  19. Polyphase Neoproterozoic orogenesis within the east Africa- Antarctica orogenic belt in central and northern Madagascar

    Science.gov (United States)

    Key, R.M.; Pitfield, P.E.J.; Thomas, Ronald J.; Goodenough, K.M.; Waele, D.; Schofield, D.I.; Bauer, W.; Horstwood, M.S.A.; Styles, M.T.; Conrad, J.; Encarnacion, J.; Lidke, D.J.; O'connor, E. A.; Potter, C.; Smith, R.A.; Walsh, G.J.; Ralison, A.V.; Randriamananjara, T.; Rafahatelo, J.-M.; Rabarimanana, M.

    2011-01-01

    Our recent geological survey of the basement of central and northern Madagascar allowed us to re-evaluate the evolution of this part of the East Africa-Antarctica Orogen (EAAO). Five crustal domains are recognized, characterized by distinctive lithologies and histories of sedimentation, magmatism, deformation and metamorphism, and separated by tectonic and/or unconformable contacts. Four consist largely of Archaean metamorphic rocks (Antongil, Masora and Antananarivo Cratons, Tsaratanana Complex). The fifth (Bemarivo Belt) comprises Proterozoic meta-igneous rocks. The older rocks were intruded by plutonic suites at c. 1000 Ma, 820-760 Ma, 630-595 Ma and 560-520 Ma. The evolution of the four Archaean domains and their boundaries remains contentious, with two end-member interpretations evaluated: (1) all five crustal domains are separate tectonic elements, juxtaposed along Neoproterozoic sutures and (2) the four Archaean domains are segments of an older Archaean craton, which was sutured against the Bemarivo Belt in the Neoproterozoic. Rodinia fragmented during the early Neoproterozoic with intracratonic rifts that sometimes developed into oceanic basins. Subsequent Mid- Neoproterozoic collision of smaller cratonic blocks was followed by renewed extension and magmatism. The global 'Terminal Pan-African' event (560-490 Ma) finally stitched together the Mid-Neoproterozoic cratons to form Gondwana. ?? The Geological Society of London 2011.

  20. A Major Out of Sequence Fault in Central Range and Its Implication to Mountain Building Process of Taiwan Orogenic Belt

    Science.gov (United States)

    Lee, Y. H.

    2015-12-01

    A Major Out of Sequence Fault in Central Range and Its Implication to Mountain Building Process of Taiwan Orogenic Belt Yuan-Hsi Lee1, Wei Lo2, Wei-Hau Wang1, Tim-Byrne 3, Ruey-Juen Rau 41. Department of Earth and Environmental Sciences, National Chung Cheng University, Taiwan, R.O.C. 2. Department of Materials and Mineral Resources Engineering, Taipei, National Taipei University of Technology, Taiwan, R.O.C. 3. Center for Integrative Geosciences, University of Connecticut, Storrs, CT, USA 4. Department of Earth Science, National Chen-Kung University, Taiwan, R.O.C. Taiwan mountain belt results from collision between Eurasia continental crust and Philippine Sea plate that result in exposing the metamorphic complex with high exhumation rate in eastern Central Range of Taiwan orogenic belt. In this study we combine with field survey, zircon fission track (ZFT), metamorphic grade, and tomography data to identify there exists a major out of sequence fault (MOSF) in eastern Central Range of Taiwan orogenic belt. This MOSF extends from north to south of eastern central Range with several segments and the total length is more than 250 km. The ZFT shows total annealing age of ca.1-3 Ma on the hanging wall and partial annealing ages on the foot wall. The seismicity data indicates the MOSF is still active from central to southern central Range. We consider that the MOSF is related with crustal channel flow in depth. To the western side of crustal flow it shows thrusting mechanism associated with MOSF and the normal faults (or normal shearing zone) develop in eastern side of the crustal channel flow. This crustal channel flow is also related with exposing the metamorphic complex in Central Range that is important mechanism for the mountain building process of Taiwan orogenic belt.

  1. The Paleozoic metamorphic history of the Central Orogenic Belt of China from 40Ar/39Ar geochronology of eclogite garnet fluid inclusions

    NARCIS (Netherlands)

    Qiu, H.N.; Wijbrans, J.R.

    2008-01-01

    The pressure-temperature-time evolution of the UHP eclogites of Dabie-Sulu, in the eastern sector of the Central Orogenic Belt of China shows a complex pattern of predominantly Triassic, and to a lesser extent Early Paleozoic ages.

  2. Uranium cycle and tectono-metamorphic evolution of the Lufilian Pan-African orogenic belt (Zambia)

    International Nuclear Information System (INIS)

    Eglinger, Aurelien

    2013-01-01

    Uranium is an incompatible and lithophile element, and thus more concentrated in silicate melt produced by the partial melting of the mantle related to continental crust formation. Uranium can be used as a geochemical tracer to discuss the generation and the evolution of continental crust. This thesis, focused on the Pan-African Lufilian belt in Zambia, combines structural geology, metamorphic petrology and thermos-barometry, fluid inclusions, geochemistry and geochronology in order to characterize the uranium cycle for this crustal segment. Silici-clastic and evaporitic sediments have been deposited within an intra-continental rift during the dislocation of the Rodinia super-continent during the early Neo-proterozoic. U-Pb ages on detrital zircon grains in these units indicate a dominant Paleo-proterozoic provenance. The same zircon grains show sub-chondritic εHf (between 0 and -15) and yield Hf model ages between ∼2.9 and 2.5 Ga. These data suggest that the continental crust was generated before the end of the Archean (< 2.5 Ga) associated with uranium extraction from the mantle. This old crust has been reworked by deformation and metamorphism during the Proterozoic. Uranium has been re-mobilized and reconcentrated during several orogenic cycles until the Pan-African orogeny. During this Pan-African cycle, U-Pb and REY (REE and Yttrium) signatures of uranium oxides indicate a first mineralizing event at ca. 650 Ma during the continental rifting. This event is related to late diagenesis hydrothermal processes at the basement/cover interface with the circulation of basinal brines linked to evaporites of the Roan. The second stage, dated at 530 Ma, is connected to metamorphic highly saline fluid circulations, synchronous to the metamorphic peak of the Lufilian orogeny (P=9±3 kbar; T=610±30 deg. C). These fluids are derived from the Roan evaporite dissolution. Some late uranium re-mobilizations are described during exhumation of metamorphic rocks and their

  3. Cambrian ophiolite complexes in the Beishan area, China, southern margin of the Central Asian Orogenic Belt

    Science.gov (United States)

    Shi, Yuruo; Zhang, Wei; Kröner, Alfred; Li, Linlin; Jian, Ping

    2018-03-01

    We present zircon ages and geochemical data for Cambrian ophiolite complexes exposed in the Beishan area at the southern margin of the Central Asian Orogenic Belt (CAOB). The complexes consist of the Xichangjing-Xiaohuangshan and Hongliuhe-Yushishan ophiolites, which both exhibit complete ophiolite stratigraphy: chert, basalt, sheeted dikes, gabbro, mafic and ultramafic cumulates and serpentinized mantle peridotites. Zircon grains of gabbro samples yielded 206Pb/238U ages of 516 ± 8, 521 ± 4, 528 ± 3 and 535 ± 6 Ma that reflect the timing of gabbro emplacement. The geochemical data of the basaltic rocks show enrichment in large-ion lithophile elements and depletion in the high field strength elements relative to normal mid-oceanic ridge basalt (NMORB) in response to aqueous fluids or melts expelled from the subducting slab. The gabbro samples have higher whole-rock initial 87Sr/86Sr ratios and lower positive εNd(t) values than NMORB. These geochemical signatures resulted from processes or conditions that are unique to subduction zones, and the ophiolites are therefore likely to have formed within a supra-subduction zone (SSZ) environment. We suggest that the Cambrian ophiolite complexes in the Beishan area formed within a SSZ setting, reflecting an early Paleozoic subduction of components of the Paleo-Central Asian Ocean and recording an early Paleozoic southward subduction event in the southern CAOB along the northern margin of the Tarim and North China Cratons.

  4. Uraniferous alaskitic granites with special reference to the Damara Orogenic Belt

    International Nuclear Information System (INIS)

    Toens, P.D.; Corner, B.

    1980-10-01

    The control and patterns of uranium mineralisation in the alaskitic granites of the Damara Orogenic Belt are discussed. The polyphase Damara metamorphism produced high-grade metamorphic assemblages, migmatites and syn-, late-, and post-tectonic anatectic granites through reactivation of the basement and overlying Damara rocks. During anatexis the incompatible elements, particularly the uranium derived from these formations, were incorporated into the melts which then rose, in an attempt to attain gravitational equilibrium, by varying distances depending on the depth of origin of the melts, on their water content and on the availability of tensional environments. Fractional crystallisation during ascent and increased water content concentrated the uranium into residual melts which finally crystallised as alaskitic pegmatitic granite. Structural episodes played an important part in the emplacement of the uraniferous granites and the presence of marble bands was an important factor in not only providing a structural trap for the alaskitic melts and associated uranium-rich volatiles, but also by leading to the boiling of the magma and the subsequent deposition of uranium. The present-day level of erosion is considered to be an important factor contributing to the preservation of many of the uraniferous granite bodies. In addition it is suggested that secondary enrichment occurring above the water-table in the prevailing desert environment is an important criterion in enriching the tenor of mineralisation to ore grades. The exploration techniques necessary for the location of uraniferous granite bodies are briefly outlined [af

  5. Role of Neogene Exhumation and Sedimentation on Critical-Wedge Kinematics in the Zagros Orogenic Belt, Northeastern Iraq, Kurdistan

    Science.gov (United States)

    Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of

  6. Geochemistry, 40Ar/39Ar geochronology, and geodynamic implications of Early Cretaceous basalts from the western Qinling orogenic belt, China

    Science.gov (United States)

    Zhang, Feifei; Wang, Yuejun; Cawood, Peter A.; Dong, Yunpeng

    2018-01-01

    The Qinling-Dabie orogenic belt was formed by the collision of the North and South China Cratons during the Early Mesozoic and subsequently developed into an intracontinental tectonic process during late Mesozoic. Field investigations identified the presence of late Mesozoic basalts in the Duofutun and Hongqiang areas in the western Qinling orogenic belt. The petrogenesis of these basalts provides an important constraint on the late Mesozoic geodynamics of the orogen. The representative basaltic samples yield the 40Ar/39Ar plateau age of about 112 Ma. These samples belong to the alkaline series and have SiO2 ranging from 44.98 wt.% to 48.19 wt.%, Na2O + K2O from 3.44 wt% to 5.44 wt%, and MgO from 7.25 wt.% to 12.19 wt.%. They demonstrate the right-sloping chondrite-normalized REE patterns with negligible Eu anomalies (1.00-1.10) and PM-normalized patterns enriched in light rare earth element, large ion lithophile element and high field strength element, similar to those of OIB rocks. These samples additionally show an OIB-like Sr-Nd isotopic signature with εNd(t) values ranging from +6.13 to +10.15 and initial 87Sr/86Sr ratios from 0.7028 to 0.7039, respectively. These samples are geochemically subdivided into two groups. Group 1 is characterized by low Al2O3 and high TiO2 and P2O5 contents, as well as high La/Yb ratios (>20), being the product of the high-pressure garnet fractionation from the OIB-derived magma. Group 2 shows higher Al2O3 but lower P2O5 contents and La/Yb ratios (<20) than Group 1, originating from asthenospheric mantle with input of delaminated lithospheric component. In combination with available data, it is proposed for the petrogenetic model of the Early Cretaceous thickened lithospheric delamination in response to the asthenospheric upwelling along the western Qinling orogenic belt.

  7. SPECIFIC VELOCITY STRUCTURE OF THE UPPER MANTLE IN THE TRANSBAIKALIA SEGMENT OF THE MONGOLIA-OKHOTSK OROGENIC BELT

    Directory of Open Access Journals (Sweden)

    V. M. Soloviev

    2017-01-01

    Full Text Available The paper presents the results of deep seismic studies on Geophysical Reference Profile 1-SB (Sredneargunsk – Ust-Karenga – Taksimo – Vitim in East Transbaikalia,Russia. The1200 kmlong profile crosses the major tectonic structures of the Central Asian fold belt: the Argun median massif, the Selenga-Stanovoy and Transbaikalia folded regions, and the Baikal rift zone. Its northwestern fragment extends into the Angara-Lena monocline of the Siberian platform. The southeastern (Transbaikalia and northwestern (Baikal-Patom fragments of the profile are based on the spot (differential seismic sounding technique using explosions and 40-tonne vibrators. The south­eastern (Transbaikalia fragment shows small crustal thickness values (~40 km, an almost horizontal position of the Moho, and high velocities of longitudinal waves (~8.4 km/sec beneath the Moho. The analysis of parallelism graphs and the dynamic expression of the wave refracted from the Moho suggests a less than 5–10 km thick layer of high velocities and low gradients below Moho. The database on theterritoryofTransbaikaliaincludes ~200 wave arrival times from large earthquakes, which were refracted at the Moho at distances of ~200–1400 km. As part of the tomographic interpretation, using additional DSS data on the Moho, theterritoryofTransbaikaliahas been mapped to show the patterns of the threshold velocity values at the Moho. The seismic data was used to contour an area with high velocity values in the mantle in the central part of the Mongolia-Okhotsk orogenic belt and the neighboring fold structures of Transbaikalia. According to the analysis of the seismic and geologic data on the study area, the mantle layer with high velocity values in the Mongolian-Okhotsk orogenic belt may be represented by the eclogitic rock plates.

  8. Climate instability and tipping points in the Late Devonian: Detection of the Hangenberg Event in an open oceanic island arc in the Central Asian Orogenic Belt

    Czech Academy of Sciences Publication Activity Database

    Carmichael, A.; Waters, J. A.; Batchelor, C. J.; Coleman, D. M.; Suttner, T. J.; Kido, E.; Moore, L. M.; Chadimová, Leona

    2016-01-01

    Roč. 32, 1 April (2016), s. 213-231 ISSN 1342-937X Institutional support: RVO:67985831 Keywords : Central Asian Orogenic Belt * chemostratigraphy * Devonian-Carboniferous * Hangenberg Event * West Junggar Subject RIV: DB - Geology ; Mineralogy Impact factor: 6.959, year: 2016

  9. Nature and timing of the final collision of Central Asian Orogenic Belt: insights from basic intrusion in the Xilin Gol Complex, Inner Mongolia, China

    NARCIS (Netherlands)

    Li, Y.; Zhou, H.; Brouwer, F.M.; Xiao, W.; Wijbrans, J.R.; Zhao, J.; Zhong, Z.; Liu, H.

    2014-01-01

    The Solonker suture zone of the Central Asian Orogenic Belt (CAOB) records the final closure of the Paleo-Asian Ocean. The nature and timing of final collision along the Solonker suture has long been controversial, partly because of an incomplete record of isotopic ages and differing interpretations

  10. Palaeozoic polymetamorphism in the North Qinling orogenic belt, Central China: Insights from petrology and in situ titanite and zircon U-Pb geochronology

    NARCIS (Netherlands)

    Li, Y.; Zhou, H.; Li, Q.L.; Xiang, H.; Zhong, Z.Q.; Brouwer, F.M.

    2014-01-01

    The Qinling orogenic belt experienced multiple phases of orogenesis during the Palaeozoic. Unraveling the timing and P- T conditions of these events is the key to understanding the convergence processes between the South China and the North China Blocks. The Songshugou Complex, located in the

  11. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications

    Science.gov (United States)

    Shao, Fengli; Niu, Yaoling; Liu, Yi; Chen, Shuo; Kong, Juanjuan; Duan, Meng

    2017-06-01

    The East Kunlun Orogenic Belt (EKOB), an important part of the Greater Tibetan Plateau, is an ideal region for understanding the tectonic evolution of the Anyemaqen Ocean. Here, we present zircon U-Pb ages, bulk-rock major and trace element analyses and Sr-Nd-Hf isotope compositions on representative samples of the syn-collisional Dulan batholith at the eastern end of the EKOB. The zircon U-Pb age data indicate that the bulk of the Dulan batholith was emplaced at 240-235 Ma. The granitoids have high- to medium-K and metaluminous characteristics. They are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs) and depleted in some high field strength elements (HFSEs, e.g., Nb and Ta), while having a flat heavy REE (HREEs) pattern. The mafic magmatic enclaves (MMEs) share the same age, mineralogy and indistinguishable Sr-Nd-Hf isotopes with their granitoid hosts except for the higher HREE abundances. We show that the MMEs represent cumulate formed at earlier stages of the same magmatic system. The trace element data (e.g., Nb/Th, Ta/U) and inherited mantle isotopic characteristics of the Dulan batholith are also consistent with an origin via partial melting of the last fragments of underthrusting ocean crust. Simple mass balance calculations using the Sr-Nd-Hf isotopic data show that 85% Paleo-Tethys MORB and 15% mature crustal material (the Proterozoic gneiss of the study area) contribute to the source of the granitoids. The Dulan batholith shows compositional similarities to the bulk continental curst with inherited mantle isotopic signatures. The syn-collisional felsic magmatism must have contributed to the net continental crust growth in the EKOB. We infer that the Kunlun and Qinling orogens may actually be one single orogen offset later by the Wenquan fault system.

  12. Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model

    Science.gov (United States)

    Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza

    2017-08-01

    Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.

  13. Tectonic implications of U-Pb zircon ages of the himalayan orogenic belt in nepal

    Science.gov (United States)

    DeCelles; Gehrels; Quade; LaReau; Spurlin

    2000-04-21

    Metasedimentary rocks of the Greater Himalaya are traditionally viewed as Indian shield basement that has been thrust southward onto Lesser Himalayan sedimentary rocks during the Cenozoic collision of India and Eurasia. Ages determined from radioactive decay of uranium to lead in zircon grains from Nepal suggest that Greater Himalayan protoliths were shed from the northern end of the East African orogen during the late Proterozoic pan-African orogenic event. These rocks were accreted onto northern Gondwana and intruded by crustal melts during Cambrian-Ordovician time. Our data suggest that the Main Central thrust may have a large amount of pre-Tertiary displacement, that structural restorations placing Greater Himalayan rocks below Lesser Himalayan rocks at the onset of Cenozoic orogenesis are flawed, and that some metamorphism of Greater Himalayan rocks may have occurred during early Paleozoic time.

  14. The Sanfengshan copper deposit and early Carboniferous volcanogenic massive sulfide mineralization in the Beishan orogenic belt, Northwestern China

    Science.gov (United States)

    Wang, Jialin; Gu, Xuexiang; Zhang, Yongmei; Zhou, Chao; He, Ge; Liu, Ruiping

    2018-03-01

    The Sanfengshan copper deposit, located in the Beishan orogenic belt, Northwestern China, is hosted in the lower member of the Hongliuyuan Formation, an early Carboniferous metavolcanic-sedimentary sequence. Mineralization occurs as stratiform, stratiform-like and lenticular orebodies, and comprises of laminated, brecciated, banded, massive, and disseminated ores. The mineralogy is dominated by pyrite, chalcopyrite and sphalerite. Fe-Mn chert is widely distributed and generally occurs as massive, laminated, bands or lenses, which are consistent with the orebody. Alteration at Sanfengshan displays a clear concentric zoning pattern and the footwall alteration is more intense and somewhat thicker than the hanging-wall alteration. Systematic geochemical investigation on the volcanic rocks in this area shows that the basalts of the Hongliuyuan Formation (HLY) are predominantly tholeiites with nearly flat rare earth element (REE) pattern, insignificant negative anomalies of high field strength elements (HFSEs), and low Ti/V and Th/Nb ratios. They were most likely derived from partial melting of depleted asthenospheric mantle and formed in a fore-arc setting during initiation of the southward subduction of the Paleo-Asian Ocean. The basalts of the Maotoushan Formation (MTS) display a calc-alkaline nature and are enriched in large ion lithophile elements (LILEs) and depleted in HFSEs, suggesting an active continental margin setting. Sulfur isotope (δ34S) values of the sulfide and sulfate minerals vary between 0‰ and 5.4‰, which are consistent with sulfur derivation from leaching of the host volcanic rocks, although a direct magmatic contribution cannot be ruled out. The Re-Os isotope data of pyrite yield an isochron age of 353 ± 35 Ma, consistent with the age of the host HLY basalts. Thus, a syngenetic (volcanogenic massive sulfide) model is proposed and it is concluded that the Sanfengshan copper deposit is a typical Cyprus-type VMS deposit that formed in an early

  15. Geochemical Characteristics of Granitoids in southwest Tianshan: Four Stages for Geodynamic Evolution of the Southwest Tianshan Orogenic Belt

    Science.gov (United States)

    Zhu, Y.

    2016-12-01

    Paleozoic intrusive rocks widely exposed in the west Tianshan orogenic belt provides key to understand the geodynamic evolution of the central Asian orogenic belt. A synthesis involving the data for Chinese Yili-central Tianshan and southwest Tianshan and comparison of Kyrgyz Tianshan with a broader dataset including zircon U-Pb ages, zircon Hf isotopic composition, major and trace elements for Paleozoic intrusions are presented to classify the Paleozoic intrusive rocks in four categories which corresponding to subduction of the Terskey Ocean, initial subduction stage of South Tianshan Ocean (STO), major subduction stage of the STO, and collisional to post-collisional stages. The subduction of the Terskey Oceanic crust finally caused the closure of the Terskey Ocean and the opening of the South Tianshan back-arc basin. The development of the Southwest Tianshan back-arc basin formed the STO, which subducted under the Yili-central Tianshan during early Silurian to early Carboniferous, and consequently formed huge arc magmatic rocks. Both the Silurian and early Carboniferous intrusions showing arc geochemical characteristics were derived from partial melting of juvenile arc-derived rocks with involvement of old continental crust. The STO finally closed by the end of early Carboniferous. Afterwards, geodynamic setting changed from convergence to extensional during late Carboniferous to early Permian periods. There is a significant geodynamic change from convergence to extension during late Carboniferous to early Permian, which may be resulted from breakoff of the subducted slab (Fig. 1). Such processes caused upwelling of asthenosphere and triggered partial melting of continental crust, as evidenced by emplacement of voluminous granitic rocks. References: An F, et al, 2013. Journal of Asian Earth Sciences, 78: 100-113; Zhu YF, 2011. Ore Geology Reviews, 40: 108-121; Zhu YF, et al, 2009. Geological Society, London, 166: 1085-1099; Zhu YF et al, 2016. Journal of Earth

  16. Mesoproterozoic juvenile crust in microcontinents of the Central Asian Orogenic Belt: evidence from oxygen and hafnium isotopes in zircon.

    Science.gov (United States)

    He, Zhen-Yu; Klemd, Reiner; Yan, Li-Li; Lu, Tian-Yu; Zhang, Ze-Ming

    2018-03-22

    We report in situ O and Hf isotope data of zircon grains from coeval Mesoproterozoic (ca. 1.4 Ga) igneous metamafic (amphibolite) and granitic rocks of the Chinese Central Tianshan microcontinent (CTM) in the southern Central Asian Orogenic Belt (CAOB). Zircon grains from amphibolite have mantle-like δ 18 O VSMOW values of 4.7-5.6‰ and juvenile Hf isotopic compositions (ε Hf (t) = 8.4-15.3; T DMC  = 1.57-1.22 Ga), whereas those from granitic rocks have δ 18 O VSMOW values of 5.6-7.0‰ and evolved Hf isotopic compositions (ε Hf (t) = -1.0-8.2; T DMC  = 2.09-1.62 Ga). Zircon O-Hf isotopic compositions of the metamafic and granitic rocks provide evidence for Mesoproterozoic (ca. 1.4 Ga) crustal growth and a substantial Palaeoproterozoic supracrustal component in the CTM. These findings and previous studies, reporting ca. 1.4 Ga magmatic rocks from other microcontinents of the CAOB, suggest that a large belt of Mesoproterozoic (ca. 1.4 Ga) juvenile continental crust formed in a continental terrane, fragments of which now occur over a distance of more than a thousand kilometres in the southern CAOB.

  17. Origin of allanite in gneiss and granite in the Dabie orogenic belt, Central East China

    Science.gov (United States)

    Guo, Haihao; Xiao, Yilin; Xu, Lijuan; Sun, He; Huang, Jian; Hou, Zhenhui

    2017-03-01

    Allanite is a common accessory mineral phase, representing an important carrier of rare earth elements, Th, U, Sr and other trace elements in most continental rocks. As Th and U can be incorporated into the allanite lattice, the mineral is a good geochronological tool for constraining geological events. Moreover, the trace element features δEu, Th/U ratio and common lead content of allanite are indicators of the forming conditions. Allanite and coexisting epidote-group minerals are abundant in ultrahigh-pressure (UHP) metamorphic rocks from the Dabie-Sulu orogen in central East China. However, if these minerals formed in the Neoproterozoic as magmatic phases, or in the Triassic as metamorphic phases is a matter of long-standing controversy. We report major and trace element analyses of whole rocks, allanite and coexisting epidote-group minerals, together with U-Th-Pb isotopic compositions of allanite in UHP gneiss from the Dabie-Sulu orogen, and allanite in the adjacent Jingshan granite. The granite is emplaced along the southeastern margin of the North China Craton and considered a product of partial melting of the subducted Dabie-Sulu gneiss. Trace elements (low Th/U and La/Sm, high δEu and high Sr) and high common lead concentrations indicate a metamorphic origin of allanite-epidote in the UHP gneiss. On the other hand, coarse-grained allanite from the Jingshan granite shows a corrosion core and a magmatic rim with common 208Pb up to 70% in the core and less than 30% in the rim. The allanite cores are of peritectic and the rims of magmatic origin with ages of ∼160 Ma, consistent with the granite crystallization age. In combination with previous studies, we conclude that the allanite of the Jingshan granite has form from the subducted and remolten Dabie-Sulu gneiss. Allanite records Triassic UHP metamorphic ages as well as Jurassic peritectic-magmatic ages as a part of the evolution of the Dabie-Sulu orogen.

  18. Petrogenesis and tectonic implications of Upper Triassic appinite dykes in the East Kunlun orogenic belt, northern Tibetan Plateau

    Science.gov (United States)

    Liu, Bin; Ma, Chang-Qian; Huang, Jian; Wang, Lian-Xun; Zhao, Shao-Qing; Yan, Rong; Sun, Yang; Xiong, Fu-Hao

    2017-07-01

    This paper presents geochronological, mineralogical, geochemical, and Sr-Nd isotopic data for recently identified Upper Triassic appinite dyke swarms in the East Kunlun orogenic belt (EKOB), northern Tibetan Plateau. Zircon U-Pb isotopic analyses using SHRIMP and LA-ICP-MS techniques yield 206Pb/238U ages of 226.1 ± 1.9 Ma and 226.4 ± 3.5 Ma, which can be interpreted as the crystallization ages of the appinite dykes. All the samples are characterized by high Al2O3 contents, enrichments in light rare earth elements (LREEs) and large ion lithophile elements (LILEs) and strong depletions in Nb, Ta, Ti and P. These characteristics are comparable to those of subduction-related calc-alkaline high-Al basalts. Delayed plagioclase nucleation caused by relatively high-pressure conditions and high H2O contents is the most likely interpretation of the high Al contents. The geochemical and isotopic variations suggest that the appinite dykes were derived from partial melting of a mixed mantle source consisting of enriched lithospheric mantle and MORB-type asthenospheric mantle and had experienced some degree of crustal contamination during migration through continental crust. The appinite dykes are associated with previously documented, contemporaneous high-Ba-Sr and/or high-Sr/Y granites (225-223 Ma) derived from thickened mafic lower crust. These rocks provide important constraints on the compositional variations in the orogenic lithospheric mantle during the Late Triassic and provide evidence of a post-collisional environment associated with lithospheric delamination or slab break-off.

  19. Geothermal structure of the eastern Black Sea basin and the eastern Pontides orogenic belt: Implications for subduction polarity of Tethys oceanic lithosphere

    Directory of Open Access Journals (Sweden)

    Nafiz Maden

    2013-07-01

    Full Text Available The numerical results of thermal modeling studies indicate that the lithosphere is cold and strong beneath the Black Sea basin. The thermal lithospheric thickness increases southward from the eastern Pontides orogenic belt (49.4 km to Black Sea basin (152.2 km. The Moho temperature increases from 367 °C in the trench to 978 °C in the arc region. The heat flow values for the Moho surface change between 16.4 mW m−2 in the Black Sea basin and 56.9 mW m−2 in the eastern Pontides orogenic belt. Along the southern Black Sea coast, the trench region has a relatively low geothermal potential with respect to the arc and back-arc region. The numerical studies support the existence of southward subduction beneath the Pontides during the late Mesozoic–Cenozoic.

  20. Origins of two types of serpentinites from the Qinling orogenic belt, central China and associated fluid/melt-rock interactions

    Science.gov (United States)

    Wu, Kai; Ding, Xing; Ling, Ming-Xing; Sun, Wei-dong; Zhang, Li-Peng; Hu, Yong-Bin; Huang, Rui-Fang

    2018-03-01

    Serpentinites are important volatile and fluid mobile element repositories in oceanic lithosphere and subduction zones, and thus provide significant constraints on global geochemical cycles and tectonic evolution at convergent margins. In this contribution, two types of serpentinites from the Mianlue suture zone in the Qinling orogenic belt, central China, are identified on the basis of detailed mineralogical and geochemical study. Serpentinites from the Jianchaling region (Group 1) are composed of lizardite/chrysotile + magnesite + magnetite. Most of these serpentinites (Group 1a), consist of pseudomorphic orthopyroxene and olivine, and are characterized by low Al2O3/SiO2, high MgO/SiO2 and Ir-type PGEs to Pt ratios, suggesting a residual mantle origin. Meanwhile, the U-shape REE pattern and positive Eu, Sr and Ba anomalies of these serpentinites indicate that serpentinization fluids have interacted with gabbroic cumulates at moderately high temperatures or associate with the chlorinity and redox conditions of the fluid. Considering the limited mobility of U in the hydrating fluids for the Group 1a serpentinites, hydrating fluids for these serpentinites are most likely derived from the dehydrated slab, and have been in equilibrium with subducting sediments. There are also some serpentinites with low-grade metamorphic recrystallization from the Jianchaling region (Group 1b), represented by recrystallized serpentine minerals (antigorite). The trace element compositions of these Group 1b serpentinites suggest that partial dehydration of serpentinites associated with the transformation from lizardite to antigorite in subduction zone is also likely to affect the geochemistry of serpentinites. Serpentinites from the Liangyazi region (Group 2) are composed of antigorite + dolomite + spinel + magnetite. The high Cr number (0.65-0.80) and low Ti concentrations of spinels in Group 2 serpentinites indicate a refractory mantle wedge origin. Fertile major element compositions

  1. The distribution, geochronology and geochemistry of early Paleozoic granitoid plutons in the North Altun orogenic belt, NW China: Implications for the petrogenesis and tectonic evolution

    Science.gov (United States)

    Meng, Ling-Tong; Chen, Bai-Lin; Zhao, Ni-Na; Wu, Yu; Zhang, Wen-Gao; He, Jiang-Tao; Wang, Bin; Han, Mei-Mei

    2017-01-01

    Abundant early Paleozoic granitoid plutons are widely distributed in the North Altun orogenic belt. These rocks provide clues to the tectonic evolution of the North Altun orogenic belt and adjacent areas. In this paper, we report an integrated study of petrological features, U-Pb zircon dating, in situ zircon Hf isotope and whole-rock geochemical compositions for the Abei, 4337 Highland and Kaladawan Plutons from north to south in the North Altun orogenic belt. The dating yielded magma crystallization ages of 514 Ma for the Abei Pluton, 494 Ma for the 4337 Highland Pluton and 480-460 Ma for the Kaladawan Pluton, suggesting that they are all products of oceanic slab subduction because of the age constraint. The Abei monzogranites derived from the recycle of Paleoproterozoic continental crust under low-pressure and high-temperature conditions are products of subduction initiation. The 4337 Highland granodiorites have some adakitic geochemical signatures and are sourced from partial melting of thickened mafic lower continental crust. The Kaladawan quartz diorites are produced by partial melting of mantle wedge according to the positive εHf(t) values, and the Kaladawan monzogranite-syenogranite are derived from partial melting of Neoproterozoic continental crust mixing the juvenile underplated mafic material from the depleted mantle. These results, together with existing data, provide significant information about the evolution history of oceanic crust subduction during the 520-460 Ma. The initiation of subduction occurred during 520-500 Ma with formation of Abei Pluton; subsequent transition from steep-angle to flat-slab subduction at ca.500 Ma due to the arrival of buoyant oceanic plateaus, which induces the formation of 4337 Highland Pluton. With ongoing subduction, the steep-angle subduction system is reestablished to cause the formation of 480-460 Ma Kaladawan Pluton. Meanwhile, it is this model that account for the temporal-spatial distribution of these early

  2. Distribution, microfabric, and geochemical characteristics of siliceous rocks in central orogenic belt, China: implications for a hydrothermal sedimentation model.

    Science.gov (United States)

    Li, Hongzhong; Zhai, Mingguo; Zhang, Lianchang; Gao, Le; Yang, Zhijun; Zhou, Yongzhang; He, Junguo; Liang, Jin; Zhou, Liuyu; Voudouris, Panagiotis Ch

    2014-01-01

    Marine siliceous rocks are widely distributed in the central orogenic belt (COB) of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian--Ordovician, and Carboniferous--Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08-95.30%), Ba (42.45-503.0 ppm), and ΣREE (3.28-19.75 ppm) suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn), Sc/Th, (La/Yb) N, and (La/Ce) N ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  3. Distribution, Microfabric, and Geochemical Characteristics of Siliceous Rocks in Central Orogenic Belt, China: Implications for a Hydrothermal Sedimentation Model

    Directory of Open Access Journals (Sweden)

    Hongzhong Li

    2014-01-01

    Full Text Available Marine siliceous rocks are widely distributed in the central orogenic belt (COB of China and have a close connection to the geological evolution and metallogenesis. They display periodic distributions from Mesoproterozoic to Jurassic with positive peaks in the Mesoproterozoic, Cambrian—Ordovician, and Carboniferous—Permian and their deposition is enhanced by the tensional geological settings. The compressional regimes during the Jinning, Caledonian, Hercynian, Indosinian, and Yanshanian orogenies resulted in sudden descent in their distribution. The siliceous rocks of the Bafangshan-Erlihe ore deposit include authigenic quartz, syn-depositional metal sulphides, and scattered carbonate minerals. Their SiO2 content (71.08–95.30%, Ba (42.45–503.0 ppm, and ΣREE (3.28–19.75 ppm suggest a hydrothermal sedimentation origin. As evidenced by the Al/(Al + Fe + Mn, Sc/Th, (La/YbN, and (La/CeN ratios and δCe values, the studied siliceous rocks were deposited in a marginal sea basin of a limited ocean. We suggest that the Bafangshan-Erlihe area experienced high- and low-temperature stages of hydrothermal activities. The hydrothermal sediments of the former stage include metal sulphides and silica, while the latter was mainly composed of silica. Despite the hydrothermal sedimentation of the siliceous rocks, minor terrigenous input, magmatism, and biological activity partly contributed to geochemical features deviating from the typical hydrothermal characteristics.

  4. Tectonic-Climate Interactions in Action Orogenic Belts: Quantification of Dynamic Topography with SRTM data

    Science.gov (United States)

    Burbank, Douglas W.; Oskin, Mike; Niemi, Nathan; Miller, Scott

    2005-01-01

    This project was undertaken to examine the approach to steady state in collisional mountain belts. Although the primary thrust of this grant was to look at larger collisional mountain belts, such as the Himalaya, the Tien Shan, and Southern Alps, we began by looking at smaller structures represented by growing and propagating folds. Like ranges that are evolving toward a topographic steady state, these folds undergo a series of morphologic changes as they are progressively uplifted and eroded. We wanted to document the nature of these changes and to try to discern some of the underlying controls on them. We initially focused on the Wheeler Ridge anticline in southern California. Subsequently, we progressed to looking at the topographic development and the effects of differential uplift and glaciation on the Kyrgyz Range in the northern Tien Shan. This range is unusual inasmuch as it is transformed along its length from a simple uplift with a largely preserved Mesozoic erosion surface arching across it to a highly dissected and heavily glaciated uplift in the region where uplift has been sustained at higher rates over longer intervals. In efforts to understand the distribution of erosion rates at 10(exp 3) - 10(exp 5) year time scales, cosmogenic radionuclide (CRN) concentrations have been gaining increasingly widespread usage (Brown et al., 1995; Riebe et al., 2004; Riebe et al., 2001; Vance et al., 2003). Most studies to date, however, have been conducted in slowly eroding ranges. In rapidly eroding mountains where landslides deliver most of the sediments to the rivers, we hypothesized that CRN concentrations could be highly perturbed by the stochastic processes of landsliding. Therefore, we undertook the development of a numerical model that simulated the effects of both landsliding and grain-by-grain attrition within fluvial catchments. This modeling effort has shown the effects of catchment size and erosion rate on CRN concentrations and allows a prediction of

  5. Two-stage formation model of the Junggar basin basement: Constraints to the growth style of Central Asian Orogenic Belt

    Science.gov (United States)

    He, Dengfa

    2016-04-01

    Junggar Basin is located in the central part of the Central Asian Orogenic Belt (CAOB). Its basement nature is a highly controversial scientific topic, involving the basic style and processes of crustal growth. Some researchers considered the basement of the Junggar Basin as a Precambrian continental crust, which is not consistent with the petrological compositions of the adjacent orogenic belts and the crust isotopic compositions revealed by the volcanic rocks in the basin. Others, on the contrary, proposed an oceanic crust basement model that does not match with the crustal thickness and geophysical characteristics of the Junggar area. Additionally, there are several viewponits, such as the duplex basement with the underlying Precambrian crystalline rocks and the overlying pre-Carboniferous folded basement, and the collaged basement by the Precambrian micro-continent block in the central part and the Hercynian accretionary folded belts circling it. Anyway, it is necessary to explain the property of basement rock, its strong inhomogeneous compositions as well as the geophysical features. In this paper, based on the borehole data from more than 300 industry wells drilled into the Carboniferous System, together with the high-resolution gravity and magnetic data (in a scale of 1:50,000), we made a detailed analysis of the basement structure, formation timing and processes and its later evolution on a basis of core geochemical and isotopic analysis. Firstly, we defined the Mahu Pre-Cambrian micro-continental block in the juvenile crust of Junggar Basin according to the Hf isotopic analysis of the Carboniferous volcanic rocks. Secondly, the results of the tectonic setting and basin analysis suggest that the Junggar area incorporates three approximately E-W trending island arc belts (from north to south: Yemaquan- Wulungu-Chingiz, Jiangjunmiao-Luliang-Darbut and Zhongguai-Mosuowan- Baijiahai-Qitai island arcs respectively) and intervened three approximately E-W trending

  6. Porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides: China, Mongolia, Russia, Pakistan, Kazakhstan, Tajikistan, and India: Chapter X in Global mineral resource assessment

    Science.gov (United States)

    Mihalasky, Mark J.; Ludington, Stephen; Hammarstrom, Jane M.; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Robinson, Gilpin R.; Briggs, Deborah A.; Wallis, John C.; Miller, Robert J.; Bookstrom, Arthur A.; Panteleyev, Andre; Chitalin, Andre; Seltmann, Reimar; Guangsheng, Yan; Changyun, Lian; Jingwen, Mao; Jinyi, Li; Keyan, Xiao; Ruizhao, Qiu; Jianbao, Shao; Gangyi, Shai; Yuliang, Du

    2015-01-01

    The U.S. Geological Survey collaborated with international colleagues to assess undiscovered resources in porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides. These areas host 20 known porphyry copper deposits, including the world class Oyu Tolgoi deposit in Mongolia that was discovered in the late 1990s. The study area covers major parts of the world’s largest orogenic systems. The Central Asian Orogenic Belt is a collage of amalgamated Precambrian through Mesozoic terranes that extends from the Ural Mountains in the west nearly to the Pacific Coast of Asia in the east and records the evolution and final closure of the Paleo-Asian Ocean in Permian time. The eastern Tethysides, the orogenic belt to the south of the Central Asian Orogenic Belt, records the evolution of another ancient ocean system, the Tethys Ocean. The evolution of these orogenic belts involved magmatism associated with a variety of geologic settings appropriate for formation of porphyry copper deposits, including subduction-related island arcs, continental arcs, and collisional and postconvergent settings. The original settings are difficult to trace because the arcs have been complexly deformed and dismembered by younger tectonic events. Twelve mineral resource assessment tracts were delineated to be permissive for the occurrence of porphyry copper deposits based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges and compositions. These include (1) nine Paleozoic tracts in the Central Asian Orogenic Belt, which range in area from about 60,000 to 800,000 square kilometers (km2); (2) a complex area of about 400,000 km2 on the northern margin of the Tethysides, the Qinling-Dabie tract, which spans central China and areas to the west, encompassing Paleozoic through Triassic igneous rocks that formed in diverse settings; and (3) assemblages of late Paleozoic and Mesozoic rocks that define two other tracts in the Tethysides, the 100

  7. Paleozoic magmatism and porphyry Cu-mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China

    Science.gov (United States)

    Qiu, Kun-Feng; Deng, Jun; Taylor, Ryan D.; Song, Kai-Rui; Song, Yao-Hui; Li, Quan-Zhong; Goldfarb, Richard J.

    2016-01-01

    The NWW-striking North Qilian Orogenic Belt records the Paleozoic accretion–collision processes in NW China, and hosts Paleozoic Cu–Pb–Zn mineralization that was temporally and spatially related to the closure of the Paleo Qilian-Qinling Ocean. The Wangdian Cu deposit is located in the eastern part of the North Qilian Orogenic Belt, NW China. Copper mineralization is spatially associated with an altered early Paleozoic porphyritic granodiorite, which intruded tonalites and volcaniclastic rocks. Alteration zones surrounding the mineralization progress outward from a potassic to a feldspar-destructive phyllic assemblage. Mineralization consists mainly of quartz-sulfide stockworks and disseminated sulfides, with ore minerals chalcopyrite, pyrite, molybdenite, and minor galena and sphalerite. Gangue minerals include quartz, orthoclase, biotite, sericite, and K-feldspar. Zircon LA-ICPMS U–Pb dating of the ore-bearing porphyritic granodiorite yielded a mean 206Pb/238U age of 444.6 ± 7.8 Ma, with a group of inherited zircons yielding a mean U–Pb age of 485 ± 12 Ma, consistent with the emplacement age (485.3 ± 6.2 Ma) of the barren precursor tonalite. Rhenium and osmium analyses of molybdenite grains returned model ages of 442.9 ± 6.8 Ma and 443.3 ± 6.2 Ma, indicating mineralization was coeval with the emplacement of the host porphyritic granodiorite. Rhenium concentrations in molybdenite (208.9–213.2 ppm) suggest a mantle Re source. The tonalities are medium-K calc-alkaline. They are characterized by enrichment of light rare-earth elements (LREEs) and large-ion lithophile elements (LILEs), depletion of heavy rare-earth elements (HREEs) and high-field-strength elements (HFSEs), and minor negative Eu anomalies. They have εHf(t) values in the range of +3.6 to +11.1, with two-stage Hf model ages of 0.67–1.13 Ga, suggesting that the ca. 485 Ma barren tonalites were products of arc magmatism incorporating melts from the mantle wedge and

  8. Accreted seamounts in North Tianshan, NW China: Implications for the evolution of the Central Asian Orogenic Belt

    Science.gov (United States)

    Yang, Gaoxue; Li, Yongjun; Kerr, Andrew C.; Tong, Lili

    2018-03-01

    The Carboniferous Bayingou ophiolitic mélange is exposed in the North Tianshan accretionary complex in the southwestern part of the Central Asian Orogenic Belt (CAOB). The mélange is mainly composed of serpentinised ultramafic rocks (including harzburgite, lherzolite, pyroxenite, dunite and peridotite), pillowed and massive basalts, layered gabbros, radiolarian cherts, pelagic limestones, breccias and tuffs, and displays block-in-matrix structures. The blocks of ultramafic rocks, gabbros, basalts, cherts, and limestones are set in a matrix of serpentinised ultramafic rocks, massive basalts and tuffs. The basaltic rocks in the mélange show significant geochemical heterogeneity, and two compositional groups, one ocean island basalt-like, and the other mid-ocean ridge-like, can be distinguished on the basis of their isotopic compositions and immobile trace element contents (such as light rare earth element enrichment in the former, but depletion in the latter). The more-enriched basaltic rocks are interpreted as remnants/fragments of seamounts, derived from a deep mantle reservoir with low degrees (2-3%) of garnet lherzolite mantle melting. The depleted basalts most likely formed by melting of a shallower spinel lherzolite mantle source with ∼15% partial melting. It is probable that both groups owe their origin to melting of a mixture between plume and depleted MORB mantle. The results from this study, when integrated with previous work, indicate that the Junggar Ocean crust (comprising a significant number of seamounts) was likely to have been subducted southward beneath the Yili-Central Tianshan block in the Late Devonian-Early Carboniferous. The seamounts were scraped-off and accreted along with the oceanic crust in an accretionary wedge to form the Bayingou ophiolitic mélange. We present a model for the tectonomagmatic evolution of this portion of the CAOB involving prolonged intra-oceanic subduction with seamount accretion.

  9. Seismic model of the upper mantle beneath the Alpine-Himalayan orogenic belt from tomographic inversion of the ISC data

    Science.gov (United States)

    Koulakov, Ivan

    2010-05-01

    A new seismic model of P and S anomalies in the upper mantle beneath the Alpine-Himalayan orogenic belt is presented. Travel-time data from the ISC catalogue have been inverted using a linearized approach. A large amount of global data for more than 40 years enables good ray coverage which ensures high quality of synthetic tests (e.g. checkerboard tests). At the same time, these data are very noisy, and the noise seems often to be biased. The data quality varies in different parts of the study area that makes adequate simulating of real situation in synthetic modeling almost impossible. To validate our results, we present the result of independent inversion of two data subsets (with odd and even events) that allows us revealing robust features which are not affected by random factors. The presented seismic model reveals some important features which can be attributed to geodynamical processes controlling the collision process. In the Mediterranean part we observe complex shapes of the subducting African lithosphere. In particular, the Calabrian slab looks as an elongated (~700 km long and ~100 km thick) "sausage" which penetrates to the depth of 300-400 km. In Asia we observe a few high velocity patterns which can be attributed to the process of the lithosphere recycling in the collision belts. Beneath Zagros (Iran) a slab-shaped anomaly coincides with active seismicity down to 100 km depth and probably marks the final stage of the Tethyan subduction. A trace of suspended old slab is observed beneath Tien Shan. We observe an almost isometrical bright high-velocity anomaly beneath Pamir - Hindukush. We interpret this pattern as a drop of delaminating material triggered by eclogitization of the lower part of thickened crust, and not as a subducting lithosphere as often proposed. Based on our tomographic models, we claim that the delamination is the major mechanism of the lithosphere recycling in the continent-continent collision areas. Today we have a chance to

  10. Melting of subducted continental crust: Geochemical evidence from Mesozoic granitoids in the Dabie-Sulu orogenic belt, east-central China

    Science.gov (United States)

    Zhao, Zi-Fu; Liu, Zhi-Bin; Chen, Qi

    2017-09-01

    Syn-collisional and postcollisional granitoids are common in collisional orogens, and they were primarily produced by partial melting of subducted continental crust. This is exemplified by Mesozoic granitoids from the Dabie-Sulu orogenic belt in east-central China. These granitoids were emplaced in small volumes in the Late Triassic (200-206 Ma) and the Late Jurassic (146-167 Ma) but massively in the Early Cretaceous (111-143 Ma). Nevertheless, all of them exhibit arc-like trace element distribution patterns and are enriched in Sr-Nd-Hf isotope compositions, indicating their origination from the ancient continental crust. They commonly contain relict zircons with Neoproterozoic and Triassic U-Pb ages, respectively, consistent with the protolith and metamorphic ages for ultrahigh-pressure (UHP) metaigneous rocks in the Dabie-Sulu orogenic belt. Some granitoids show low zircon δ18O values, and SIMS in-situ O isotope analysis reveals that the relict zircons with Neoproterozoic and Triassic U-Pb ages also commonly exhibit low δ18O values. Neoproterozoic U-Pb ages and low δ18O values are the two diagnostic features that distinguish the subducted South China Block from the obducted North China Block. Thus, the magma source of these Mesozoic granitoids has a genetic link to the subducted continental crust of the South China Block. On the other hand, these granitoids contain relict zircons with Paleoproterozoic and Archean U-Pb ages, which are present in both the South and North China Blocks. Taken together, the Mesozoic granitoids in the Dabie-Sulu orogenic belt and its hanging wall have their magma sources that are predominated by the continental crust of the South China Block with minor contributions from the continental crust of the North China Block. The Triassic continental collision between the South and North China Blocks brought the continental crust into the thickened orogen, where they underwent the three episodes of partial melting in the Late Triassic, Late

  11. Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt, NW China: Constraints on the initiation of a magmatic arc in the southern Central Asian Orogenic Belt

    Science.gov (United States)

    Du, Long; Long, Xiaoping; Yuan, Chao; Zhang, Yunying; Huang, Zongying; Sun, Min; Zhao, Guochun; Xiao, Wenjiao

    2018-03-01

    Early Paleozoic dioritic and granitic plutons in the Eastern Tianshan Orogenic Belt (ETOB) have been studied in order to constraint the initiation of a magmatic arc formed in this region. Zircon U-Pb dating indicates that two dioritic plutons in the northern ETOB were generated in the Late Ordovician (452 ± 4 Ma) and the Early Silurian (442 ± 3 Ma), respectively. Diorites from the two plutons are characterized by enrichments in large ion lithophile elements (LILE) and highly incompatible elements, with depletions in high field strength elements (HSFE) displaying typical geochemical features of a subduction-related origin. They have positive εNd(t) values (+5.08-+6.58), relatively young Nd model ages (TDM = 0.71-1.08 Ga), with Ta/Yb (0.05-0.09) and Nb/Ta ratios (12.06-15.19) similar to those of depleted mantle, suggesting a juvenile mantle origin. Their high Ba/La (13.3-35.9), low Th/Yb (0.72-2.02), and relatively low Ce/Th (4.57-14.7) and Ba/Th (47.8-235) ratios indicate that these diorites were probably produced by partial melting of a depleted mantle wedge metasomatized by both subducted sediment-derived melts and slab-derived aqueous fluids. Zircon U-Pb dating of a granitic pluton in the northern ETOB yielded a Late Ordovician intrusion age of 447 ± 5 Ma. Granites from this pluton show calc-alkaline compositions with geochemical characteristics of I-type granites. They also show positive εNd(t) values (+6.49-+6.95) and young Nd model ages (TDM = 0.69-0.87 Ga), indicating that the granites were most likely derived from juvenile lower crust. Our new dating results on the dioritic and granitic plutons suggest that arc-type magmatism in the northern ETOB began prior to or at the Late Ordovician (452-442 Ma). In addition, north-dipping subduction of the Kangguertage oceanic lithosphere may account for the arc-type magmatism and the geodynamic process of the ETOB in the Early Paleozoic.

  12. Upper Paleozoic tectonics in the Tien Shan (Central Asian Orogenic Belt): insight from new structural data (Kyrgyzstan)

    Science.gov (United States)

    Jourdon, Anthony; Petit, Carole; Rolland, Yann; Loury, Chloé; Bellahsen, Nicolas; Guillot, Stéphane; Ganino, Clément

    2016-04-01

    Due to successive block accretions, the polarity of structures and tectonic evolution of the Central Asian Orogenic Belt (CAOB) are still a matter of debate. There are several conflicting models about the polarity of subduction during the Paleozoic, the number of microplates and oceanic basins and the timing of tectonic events in Kyrgyz and Chinese Tien Shan. In this study, we propose new structural maps and cross-sections of Middle and South Kyrgyz Tien Shan (MTS and STS respectively). These cross-sections highlight an overall dextral strike-slip shear zone in the MTS and a north verging structure related to south-dipping subduction in the STS. These structures are Carboniferous in age and sealed by Mesozoic and Cenozoic deposits. In detail, the STS exhibits two deformation phases. The first one is characterized by coeval top-to-the north thrusting and top-to-the-South normal shearing at the boundaries of large continental unit that underwent High-Pressure (Eclogite facies) metamorphism. We ascribe this phase to the exhumation of underthrusted passive margin units of the MTS. The second one corresponds to a top to the North nappe stacking that we link to the last collisional events between the MTS and the Tarim block. Later on, during the Late Carboniferous, a major deformation stage is characterized by the deformation of the MTS and its thrusting over the NTS. This deformation occurred on a large dextral shear zone between the NTS and the MTS known as Song-Kul Zone or Nikolaiev Line as a "side effect" of the Tarim/MTS collision. Based on these observations, we propose a new interpretation of the tectonic evolution of the CAOB. The resulting model comprises the underthrusting of the MTS-Kazakh platform beneath the Tarim and its exhumation followed by the folding, shortening and thickening of the internal metamorphic units during the last collisional events which partitioned the deformation between the STS and the MTS. Finally, the docking of the large Tarim Craton

  13. The New Consort Gold Mine, Barberton greenstone belt, South Africa: orogenic gold mineralization in a condensed metamorphic profile

    Science.gov (United States)

    Otto, A.; Dziggel, A.; Kisters, A. F. M.; Meyer, F. M.

    2007-10-01

    The New Consort Gold Mine in the Palaeo- to Mesoarchaean Barberton greenstone belt, South Africa is one of the oldest recognized orogenic gold deposits on Earth. The gold mineralization is hosted by discrete mylonitic units that occur at, or close to, the contact between the mafic and ultramafic volcanic rocks of the c. 3,280 Ma Onverwacht Group and the mainly metasedimentary rocks of the overlying c. 3,260-3,230 Ma Fig Tree Group. This contact, locally referred to as the Consort Bar, formed during ductile D1 imbrication of the metavolcanosedimentary sequence and predates the main stage of the gold mineralization. The imbricate stack is situated in the immediate hanging wall of the basal granitoid-greenstone contact along the northern margin of the greenstone belt. It is characterized by a condensed metamorphic profile in which the metamorphic grade increases from upper greenschist facies conditions (510-530°C, 4 kbar) in rocks of the Fig Tree Group to upper amphibolite facies grades (600-700°C, 6-8 kbar) in the basal Onverwacht Group. Detailed structural and petrological investigations indicate that the Consort Bar represents a major structural break, which is largely responsible for the telescoping of metamorphic isograds within the structural sequence. Two stages of mineralization can be distinguished. Loellingite, pyrrhotite, and a calc-silicate alteration assemblage characterize an early high-T mineralization event, which is restricted to upper amphibolite facies rocks of the Onverwacht Group. This early mineralization may correlate with the local D1 deformation. The second and main stage of gold mineralization was associated with renewed ductile shearing during D2. The D2 deformation resulted in the reactivation of earlier structures, and the formation of a NNW trending, steeply dipping shear zone system, the Shires Shear Zone, which separates two regional SE plunging D1 synclines. The mineralized shear zones are intruded by abundant syn-kinematic pegmatite

  14. A Comparative Study of the Electrical Structure of Circum Tibetan Plateau Orogenic Belts and its Tectonic Implications

    Science.gov (United States)

    Jin, Sheng; Zhang, Letian; Wei, Wenbo; Ye, Gaofeng; Jing, Jianen; Dong, Hao; Xie, Chengliang; Yin, Yaotian

    2017-04-01

    The Tibetan Plateau, as known as "roof of the world", was created through the on-going continent-continent collision between the Indian and Eurasian plates since 55 Ma. As the process continues, the plateau is growing both vertically and horizontally. The horizontal expansion of the plateau is blocked by the Yangtze block in the east, the Tarim block in the north, and the Ordos block in the northeast, and consequently lead to the formation of the circum Tibetan plateau orogenic belts. To better understand the mechanism behind this process, we conducted a comparative study by collecting 7 magnetotelluric (MT) profiles over the margins of the Tibetan plateau, namely, the INDEPTH 100, 700 and 800 lines in the southern Tibet, the INDEPTH 4000 and 5000 lines across the Altyn Tagh fault on the northern margin of the plateau, as well as other two profiles across the Haiyuan fault and the Longmenshan fault on the northeastern and eastern margins of the plateau deployed under the framework of project SinoProbe. The electrical features of the stable blocks surrounding the Tibetan plateau are generally resistive, while crustal conductive layers are found to be wide spread within the plateau. The southern margin of the Tibetan plateau is characterized by large scale underthrust of the Indian lithosphere beneath the plateau. This intense converging process created the thrust fault system distributed along the southern margin of the Tibetan plateau over 1000 km. Crustal conductive layers discovered in southern Tibet are generally associated with the southward crustal flow that originated from the lower crust within the plateau and exhumed along the thrust belts in the Himalayas. On the eastern margin of the Tibetan plateau, the electrical structures suggest that the Yangtze block wedged into the Tibetan lithosphere and caused decoupling between the crust and upper mantel. Large scale conductors discovered beneath the Songpan-Ganze block reflect that the eastward crustal flow was

  15. Sedimentary records on the subduction-accretion history of the Russian Altai, northwestern Central Asian Orogenic Belt

    Science.gov (United States)

    Chen, Ming; Sun, Min

    2017-04-01

    The Russian Altai, comprising the northern segment of the Altai-Mongolian terrane (AM) in the south, the Gorny Altai terrane (GA) in the north and the intervening Charysh-Terekta-Ulagan-Sayan suture zone, is a key area of the northwestern Central Asian Orogenic Belt (CAOB). A combined geochemical and detrital zircon study was conducted on the (meta-)sedimentary sequences from the Russian Altai to reveal the tectono-magmatic history of these two terranes and their amalgamation history, which in turn place constraints on the accretionary orogenesis and crustal growth in the CAOB. The Cambrian-Ordovician meta-sedimentary rocks from the northern AM are dominated by immature sediments possibly sourced from intermediate-felsic igneous rocks. Geochemical data show that the sediments were likely deposited in a continental arc-related setting. Zircons separated from these rocks are mainly 566-475 Ma and 1015-600 Ma old, comparable to the magmatic records of the Tuva-Mongolian terrane and surrounding island arcs in the western Mongolia. The similar source nature, provenance and depositional setting of these rocks to the counterparts from the Chinese Altai (i.e., the southern AM) imply that the whole AM possibly represents a coherent accretionary prism of the western Mongolia in the early Paleozoic rather than a Precambrian continental block with passive marginal deposition as previously thought. In contrast, the Cambrian to Silurian (meta-)sedimentary rocks from the GA are characterized by a unitary zircon population with ages of 640-470 Ma, which were potentially sourced from the Kuznetsk-Altai intra-oceanic island arc in the east of this terrane. The low abundance of 640-540 Ma zircons (5%) may attest that this arc was under a primitive stage in the late Neoproterozoic, when mafic igneous rocks dominated. However, the voluminous 530-470 Ma zircons (95%) suggest that this arc possibly evolved toward a mature one in the Cambrian to early Ordovician with increasing amount of

  16. Geochronological, geochemical, and Nd-Hf isotopic studies of the Qinling Complex, central China: Implications for the evolutionary history of the North Qinling Orogenic Belt

    Directory of Open Access Journals (Sweden)

    Chunrong Diwu

    2014-07-01

    The available data indicate that the NQOB was an independent micro-continent at least prior to the Neoproterozoic, and included a portion of the Grenville orogenic belt during the period of 1.2–0.8 Ga. The NQOB has experienced a unique geological history, which is obviously different from that of the North China Craton (NCC and the Yangtze Craton during the Precambrian. The Neoproterozoic granitoids that intruded the Qinling Complex can be interpreted as the products of assembly of the supercontinent Rodinia. The NQOB was separated from Rodinia at ca. 830–740 Ma. Subsequently, the NQOB moved closer to the northern margin of the NCC, and the initial accretion or collision with the NCC occurred from the late Cambrian to the early Ordovician.

  17. Geochronology and geochemistry of Early Cretaceous igneous units from the central Sulu orogenic belt: Evidence for crustal delamination during a shift in the regional tectonic regime

    Science.gov (United States)

    Wang, Jun; Chang, Su-Chin; Wang, Kuo-Lung; Lu, Hong-Bo; Zhang, Hai-Chun

    2015-11-01

    Widespread Late Mesozoic igneous events in northern China have been intensively investigated over the past decades and provide evidence for regional lithospheric thinning. The underlying mechanism causing lithospheric thinning remains unclear however. This study reports U-Pb zircon ages, geochemical data and isotopic ratios for Cretaceous igneous units from the central Sulu orogenic belt as it occurs in the Shandong Peninsula. LA-ICP-MS U-Pb analyses of magmatic zircons identified a relatively restricted population of ages ranging from 123 ± 2 Ma to 120 ± 2 Ma from four representative samples of igneous units in the study area. Geochemical analysis of the samples revealed LREE and LILE enrichment, HREE depletion, high initial 87Sr/86Sr values ranging from 0.7040 to 0.7096, and low negative εNd(t) values from -22.0 to -12.2. The data suggest lamprophyres derived separately from heterogeneous mantle inputs, which experienced crust-mantle interaction, andesitic porphyrites and syenogranites derived from enriched lithospheric mantle and rhyolites derived from partial melting of an ancient crustal component. Assimilation and fractionation processes did not contribute to lamprophyre formation, but did play an important role in generating andesitic porphyrites, syenogranites and rhyolites. The petrogenetic history of these rocks indicates intensive lithospheric thinning of the upper mantle and lower crust beneath the Sulu orogenic belt at 123-120 Ma. Given the timing and regional tectonic framework in which these units formed, thinning was likely caused by an abrupt change in the direction of the subducting Pacific plate.

  18. New Ar/Ar single grain mineral ages from Korean orogenic belts with implications for the Triassic cooling and exhumation history

    Science.gov (United States)

    de Jong, Koenraad; Ruffet, Gilles; Han, Seokyoung

    2013-04-01

    The Korean peninsula is located in the eastern margin of the Eurasian continent where major late Palaeozoic to early Mesozoic continental collision zones, like the Central Asian Orogenic Belt and the Qinling-Dabie-Sulu Belt, merge with circum-Pacific subduction-accretion systems. Deciphering the tectonic evolution of Korea is thus crucial for the understanding of the amalgamation of East Asia. Classically, research in Korea has focused on the search for (ultra)high-pressure metamorphic rocks and their isotopic dating, most recently applying SHRIMP on Th- and U-bearing accessory minerals, in order to substantiate links with the Qinling-Dabie-Sulu Belt across the Yellow Sea in China. Instead of trying to date peak pressure conditions we focused on 40Ar/39Ar laser-probe step-heating dating of single grains of the fabric-forming minerals muscovite, biotite and amphibole, formed during retrograde recrystallisation and exhumation. This is a big advantage as their growth can be straightforwardly correlated to major phases of the tectono-metamorphic evolution of rocks. This approach helps to meet the major geochronological challenge of obtaining age estimates for the timing of specific tectono-metamorphic events in the Korean orogenic belts. The Korean peninsula comprises a number of Palaeoproterozoic high-grade gneiss terranes; only one of which has been affected by Permo-Triassic metamorphism: the Gyeonggi Massif. We concentrated on the uppermost Gyeonggi Massif and the overlying Imjingang Belt, to the North, and the ill-defined Hongseong zone to the West, both constituted by younger metamorphic rocks. Both belts contain rare lenses of mafic rocks with relics of high-pressure metamorphism. Hornblende from a corona-textured amphibolite from the lowermost part of the Imjingang Belt yielded a U-shaped age spectrum, the base of which is formed by four concordant steps with a weighted mean age of 242.8 ± 2.4 Ma (15% 39Ar release). Muscovites from strongly retrogressed and

  19. Cambro-Ordovician post-collisional granites of the Ribeira belt, SE-Brazil: A case of terminal magmatism of a hot orogen

    Science.gov (United States)

    Valeriano, Claudio de Morisson; Mendes, Julio Cezar; Tupinambá, Miguel; Bongiolo, Everton; Heilbron, Monica; Junho, Maria do Carmo Bustamante

    2016-07-01

    This work presents an overview of the geology and chemical composition of the Cambrian-Ordovician post-collisional (COPC) granites and associated rocks of Ribeira belt, SE-Brazil. These COPC granites make up some of the most picturesque and highest (>2000 m) rocky peaks and cliffs of Rio de Janeiro state, an accessible case of post-orogenic granitic magmatism associated with the terminal stages of a hot Ediacaran-Cambrian (Brasiliano-Panafrican) orogen. The COPC magmatism intruded tonalitic to granitic orthogneisses of the Rio Negro arc (∼790-600 Ma) and associated paragneisses of the São Fidelis Group. Post-collisional magmatism started ∼10 m.y. after the latest collisional event, the Buzios Orogeny, lasting discontinuously from ∼510 Ma until ∼470 Ma. The 15 largest intrusive bodies in Rio de Janeiro State are referred to in the literature as the Parati/Mangaratiba, Vila Dois Rios, Pedra Branca, Suruí, Silva Jardim, Favela, Andorinha, Teresópolis, Frade, Nova Friburgo, Conselheiro Paulino, São José do Ribeirão, Sana and Itaoca granites. They crop out as rounded/elliptical stocks or gently-dipping sheets, always with sharp contacts with the country rocks, along with pegmatite and aplitic veins and dykes. COPC granites are grey and pink undeformed medium-grained biotite monzogranites with (K-feldspar) porphyritic, mega-crystic, equigranular and serial textures. Magmatic flow foliation is frequently observed. Peripheric xenolith zones are common as well as isolated xenoliths from the country rocks. In a compilation of more than 100 chemical compositions, SiO2 contents display a major mode at 71wt%. The COPC magmatism generated high-K calc-alkaline granites and quartz monzonites with predominantly metaluminous granites. Meso to melanocratic gabbroic and dioritic enclaves also have calc-alkaline affinity and likely represent more resistant mafic xenoliths from the Rio Negro Arc.

  20. A revised oxygen barometry in sulfide-saturated magmas and application to the Permian magmatic Ni-Cu deposits in the southern Central Asian Orogenic Belt

    Science.gov (United States)

    Mao, Ya-Jing; Qin, Ke-Zhang; Barnes, Stephen J.; Ferraina, Clément; Iacono-Marziano, Giada; Verrall, Michael; Tang, Dongmei; Xue, Shengchao

    2017-11-01

    Oxygen fugacity is a key parameter in controlling the petrogenesis of mafic-ultramafic rocks and their associated sulfide mineralization, especially in convergent settings. This study uses new and previously published experimental data on olivine-sulfide pairs to reparameterize an expression for oxygen barometry using the distribution coefficient K D FeNi for Fe-Ni exchange between olivine and sulfide. We derive a new expression, ΔQFM = (9.775 + 0.416 • C Ni - K D FeNi)/4.308, where ΔQFM denotes divergence from the fayalite-magnetite-quartz buffer. The revised oxygen barometry has been applied to the Permian magmatic Ni-Cu deposits in the Central Asian Orogenic Belt, NW China. The Ni-Cu deposits in the East Tianshan—North Tianshan, Central Tianshan, and Beishan—are considered as a single mineral system, whereas the spatially separated deposits in the East Junggar are considered as a separate system. The deposit of the East Tianshan group exhibits a large range of oxygen fugacity (QFM - 2 to QFM + 1) and Ni tenor (metal concentration in pure sulfide, 5 to 16 wt%). The Poyi and Huangshannan deposits contain high-Ni tenor sulfides, varying from 12 to 16 wt%. The relatively high Fo values (> 85 mol%) and Ni contents (> 2000 ppm) in olivine of these deposits indicate that the high-Ni tenor sulfides were segregated from less differentiated high-Ni magmas that also had relatively high oxygen fugacity ( QFM + 1). The remaining Ni-Cu deposits in the East Tianshan—the Huangshandong, Huangshanxi, Hulu, Tulaergen, Tudun, and Xiangshanzhong deposits—have intermediate Ni tenors (5-8 wt%). These sulfides correspond to intermediate Fo values (80-84 mol%) and Ni contents (700-1400 ppm) in the coexisting olivine, illustrating that they were segregated from magmas with lower Ni contents thought to be the result of a large amount (15-20%) of olivine fractionation at depth. These magmas are more reduced (- 2 fugacity and Ni tenor in the Permian Ni-Cu deposits in the Central

  1. U-Pb Dating and Lu-Hf Isotopes of Detrital Zircons From the Southern Sikhote-Alin Orogenic Belt, Russian Far East: Tectonic Implications for the Early Cretaceous Evolution of the Northwest Pacific Margin

    Science.gov (United States)

    Liu, Kai; Zhang, Jinjiang; Wilde, Simon A.; Liu, Shiran; Guo, Feng; Kasatkin, Sergey A.; Golozoubov, Vladimir V.; Ge, Maohui; Wang, Meng; Wang, Jiamin

    2017-11-01

    The Sikhote-Alin orogenic belt in Russian Far East is comprised of several N-S trending belts, including the Late Jurassic to Early Cretaceous accretionary prisms and turbidite basin which are now separated by thrusts and strike-slip faults. The origin and collage of the belts have been studied for decades. However, the provenance of the belts remains unclear. Six sandstone samples were collected along a 200 km long east-west traverse across the major belts in the southern Sikhote-Alin for U-Pb dating and Lu-Hf isotope analysis to constrain the provenance and evaluate the evolution of the northwest Pacific margin at this time. The result reveals that the sediments from the main Samarka belt was mainly from the adjacent Bureya-Jiamusi-Khanka Block (BJKB); the eastern Samarka belt and the Zhuravlevka turbidite basin were supplied by detritus from both the North China Craton (NCC) and the BJKB; the Taukha belt was mainly fed by sediments from the NCC; whereas the data from the Sergeevka nappes are insufficient to resolve their provenance. In the Late Jurassic to Early Cretaceous, collision and subduction was important in the initial collage of most belts in Sikhote-Alin. However, merely E-W trending collage cannot explain the increasing importance of the NCC provenance from west to east. It is proposed that the main Samarka belt was located adjacent to the BJKB when deposited, whereas the other belts were farther south to accept the materials from the NCC. Sinistral strike-slip faulting transported the eastern belts northward after their initial collage by thrusting.

  2. Basalts and picrites from a plume-type ophiolite in the South Qilian Accretionary Belt, Qilian Orogen: Accretion of a Cambrian Oceanic Plateau?

    Science.gov (United States)

    Zhang, Yuqi; Song, Shuguang; Yang, Liming; Su, Li; Niu, Yaoling; Allen, Mark B.; Xu, Xin

    2017-05-01

    Oceanic plateaus with high-Mg rocks in the present-day oceanic crust have attracted much attention for their proposed mantle-plume origins and abnormally high mantle potential temperatures (Tp). However, equivalent rocks in ancient oceanic environments are usually poorly preserved because of deformation and metamorphism. Here we present petrological, geochronological and geochemical data for pillow lavas from Cambrian ophiolites in the Lajishan and Yongjing regions of the South Qilian Accretionary Belt (SQAB), from the southern part of the Qilian Orogen, northern China. Three rock groups can be identified geochemically: (1) sub-alkaline basalts with enriched mid- ocean ridge basalt (E-MORB) affinity; (2) alkaline basalts with oceanic island basalt (OIB) features, probably derived from partial melting of an enriched mantle source; and (3) picrites with MgO (18-22 wt%). Cr-numbers [Cr# = Cr/(Cr + Al)] of spinels from the picrites suggest 18-21% degree of partial melting at the estimated mantle potential temperature (Tp) of 1489-1600 °C, equivalent to values of Cenozoic Hawaiian picrites (1500-1600 °C). Zircons from one gabbro sample yielded a U-Pb Concordia age of 525 ± 3 Ma, suggesting the oceanic crust formed in the Cambrian. Available evidence suggests that Cambrian mantle plume activity is preserved in the South Qilian Accretionary Belt, and influenced the regional tectonics: "jamming" of the trench by thick oceanic crust explains the emplacement and preservation of the oceanic plateau, and gave rise to the generation of concomitant Ordovician inner-oceanic island arc basalts via re-organisation of the subduction zones in the region.

  3. The Rio Pardo salient, northern Araçuaí orogen: an example of a complex basin-controlled fold-thrust belt curve

    Directory of Open Access Journals (Sweden)

    Eliza Peixoto

    Full Text Available ABSTRACT: The Rio Pardo salient, the large antitaxial curve described by the Araçuaí fold-and-thrust belt along the southeastern edge of the São Francisco craton, is one of the most prominent and one of the least studied features of the Brasiliano Araçuaí-West Congo orogenic system (AWCO. In addition to the Archean/Paleoproterozoic basement, the salient is comprised of metasedimentary rocks mainly from the Neoproterozoic Macaúbas Group and the Salinas Formation. Its western limb occupies a portion of the Espinhaço ridge, where the NS-trending structures of the Araçuaí belt progressively curve NE and E, thereby defining the hinge zone along the Serra Geral on the Minas-Bahia boundary. The eastern limb is NW-trending and marked by a major shear zone. In models postulated to generate the AWCO through the closure of the Neoproterozoic Macaúbas basin, this large curve plays a critical kinematic role. Yet, in spite of this, its development is still not fully understood. How did this curve originate? Which factors controlled its generation? Our field study performed in the northern Araçuaí orogen characterized the kinematic picture of the salient, and led to a model that addresses these questions. The results we obtained indicate that the Rio Pardo salient developed in response to four deformation phases. The contractional D1 and D2 phases are coaxial and responsible for a craton-directed tectonic transport along the salient’s outer arc, which is coupled with an overall southward motion of the inner arc, thereby giving rise to a rather complex kinematic picture. Furthermore, structures of the D1/D2 phases define a zigzag pattern with alternating NE- and NW-trending segments along the salient’s leading edge. Along the NE-trending segments, the metasedimentary rocks are thrust northwestwards on top of the craton basement, while along the NW-trending segments, the supracrustal rocks are displaced along dextral to reverse

  4. Teleseismic P-wave tomography and the upper mantle structure of the Sulu orogenic belt (China): implications for Triassic collision and exhumation mechanism

    Science.gov (United States)

    Peng, Miao; Tan, Handong; Jiang, Mei; Xu, Zhiqin; Li, Zhonghai; Xu, Lehong

    2016-12-01

    As the largest ultrahigh-pressure (UHP) metamorphic tectonic unit outcropping in the world, the Dabie-Sulu UHP metamorphic belt is considered to be one of the best areas for studying the continental dynamics. However, their continental collision and exhumation mechanism are still debated. We performed a 3D teleseismic P-wave tomography beneath the Sulu orogen for the purpose of understanding the deep structure. The tomographic results show that there is a prominently near-SN-trending low-velocity zone (LVZ) close to the Tanlu fault (TLF), indicating a slab tear of the subducted Yangtze plate (YZP) during the initial Early Triassic collision. Our results also suggest that both the Yangze crustal slab and the North China lithospheric slab were dragged downwards by the subducted oceanic slab, which constituted a ‘two-sided’ subduction mode. A conceptual geodynamic model is proposed to explain the exhumation of Sulu high- to UHP rocks and imply a polyphase exhumation driven by buoyancy of continental materials at different depth and upward extrusion of crustal partial melting rocks to the surface at the later stage.

  5. Compositional change of granitoids from Eastern Pontides Orogenic Belt (NE Turkey) at ca. 84 Ma: Response to slab rollback of the Black Sea

    Science.gov (United States)

    Liu, Ze; Zhu, Di-Cheng; Eyuboglu, Yener; Wu, Fu-Yuan; Rızaoǧlu, Tamer; Zhao, Zhi-Dan; Xu, Li-Juan

    2016-04-01

    Magma generation and evolution is a natural consequence of mantle dynamics and crust-mantle interaction. As a result, changes of magma compositions in time and space can be used, in turn, to infer these deep processes. In this paper we report new zircon U-Pb age and Hf isotope, whole-rock major and trace element, and Nd isotope data for the granitoids from Kürtün in Eastern Pontides. These data, together with the data in the literature, reveal the occurrence of magma compositional variations at ca. 84 Ma in the region, providing new insights into the mantle dynamics responsible for the generation of the extensive Late Cretaceous felsic magmatism in Eastern Pontides Orogenic Belt (NE Turkey) (Eyuboglu et al., 2015). Group I samples (SiO2 = 77-62 wt.%) were concentrated in 91-86 Ma and are characterized by their low CaO (1.6-1.5 wt.%) and Th (8.2-3.0 ppm) contents and low K2O/Na2O (0.7-0.1) and Th/La (0.4-0.2) ratios. Group II samples (SiO2 = 71-63 wt.%) were concentrated in 82-72 Ma and include high concentrations of CaO (5.2-3.0 wt.%) and Th (29.6-14.3), high K2O/Na2O (1.5-1.1) and varying Th/La (1.0-0.5) ratios. Group I samples have positive zircon eHf(t) (+9.6 to +7.6) and whole-rock eNd(t) (+3.5 to +2.5), significantly differing from those of Group II samples with eHf(t) of +1.9 to -1.5 and whole-rock eNd(t) of -3.6 to -3.8. Modeling results indicate that the Nd-Hf isotopic compositions of Group I and II samples can be interpreted as having derived from partial melting of the low-K amphibolite within the juvenile lower crust beneath the Eastern Pontides Orogenic Belt that incorporated into 15-20% and 70-75% enriched components from the basement rocks represented by the Carboniferous granites exposed in the region, respectively. In combination with the geological observations that indicate the occurrence of regional thermal subsidence (Bektaş et al., 1999) and extensional structure (Bektaş et al., 1999, 2001) during the Campanian (83.6-72.1 Ma), the coeval

  6. Syn-collisional felsic magmatism and continental crust growth: A case study from the North Qilian Orogenic Belt at the northern margin of the Tibetan Plateau

    Science.gov (United States)

    Chen, Shuo; Niu, Yaoling; Xue, Qiqi

    2018-05-01

    The abundant syn-collisional granitoids produced and preserved at the northern Tibetan Plateau margin provide a prime case for studying the felsic magmatism as well as continental crust growth in response to continental collision. Here we present the results from a systematic study of the syn-collisional granitoids and their mafic magmatic enclaves (MMEs) in the Laohushan (LHS) and Machangshan (MCS) plutons from the North Qilian Orogenic Belt (NQOB). Two types of MMEs from the LHS pluton exhibit identical crystallization age ( 430 Ma) and bulk-rock isotopic compositions to their host granitoids, indicating their genetic link. The phase equilibrium constraints and pressure estimates for amphiboles from the LHS pluton together with the whole rock data suggest that the two types of MMEs represent two evolution products of the same hydrous andesitic magmas. In combination with the data on NQOB syn-collisional granitoids elsewhere, we suggest that the syn-collisional granitoids in the NQOB are material evidence of melting of ocean crust and sediment. The remarkable compositional similarity between the LHS granitoids and the model bulk continental crust in terms of major elements, trace elements, and some key element ratios indicates that the syn-collisional magmatism in the NQOB contributes to net continental crust growth, and that the way of continental crust growth in the Phanerozoic through syn-collisional felsic magmatism (production and preservation) is a straightforward process without the need of petrologically and physically complex processes.

  7. Eclogites and garnet clinopyroxenites in the Anrakhai complex, Central Asian Orogenic Belt, Southern Kazakhstan: P-T evolution, protoliths and some geodynamic implications

    Science.gov (United States)

    Pilitsyna, Anfisa V.; Tretyakov, Andrey A.; Degtyarev, Kirill E.; Cuthbert, Simon J.; Batanova, Valentina G.; Kovalchuk, Elena V.

    2018-03-01

    The Anrakhai Metamorphic Complex (AMC), located in the SE part of the Chu-Ili Mountains of Southern Kazakhstan in the western part of Central Asian Orogenic Belt, exhibits occurrences of HP metamorphic rocks in the form of eclogites and garnet clinopyroxenites with peak metamorphic conditions of 750-850° and 15-19 kbar estimated with both conventional geothermobarometric methods and phase diagram modeling. P-T estimates as well as intimate field relations evidently imply a common metamorphic history for eclogites and garnet clinopyroxenites of the AMC. These high-pressure, medium temperature eclogite facies P-T conditions are indicative of a collision or subduction tectonic setting. Major and trace element geochemistry suggests that they probably had a common magmatic origin as part of a suite of differentiated tholeiitic intrusions. Furthermore, distinctive mineral and chemical compositions of these eclogites and garnet clinopyroxenites correspond to the Fe-Ti type of ultramafic rocks suggesting that they may have been derivatives of intraplate tholeiitic melts, introduced into continental crust before HP metamorphism.

  8. High-resolution multicomponent seismic imaging for VMS deposits within the Paleoproterozoic Flin Flon Belt, Trans-Hudson Orogen, Canada

    Science.gov (United States)

    Malinowski, M.; White, D.

    2008-12-01

    The Flin Flon-Glennie complex (Trans-Hudson Orogen) hosts the largest Paleoproterozoic volcanogenic massive sulphide (VMS) district in the world. The main deposits of the Flin Flon camp have mineral compositions of predominantly pyrite, pyrrhotite, sphalerite, and chalcopyrite. All of these minerals are characterised by high acoustic impedances relative to typical host rocks, thus making them excellent candidates for seismic exploration. In a concerted effort to support exploration for new ore deposits in the vicinity of Flin Flon and surrounding region, a program of seismic investigations has been implemented as part of the Targetted Geoscience Initiative-3 (TGI-3) Saskatchewan-Manitoba project. This project is a joint Federal-Provincial effort led by the Geological Survey of Canada with active participation by Hudson Bay Mining and Smelting Ltd. Rock property measurements, downhole geophysical logging and vertical seismic profiles acquired in advance of the main seismic survey demonstrated the expected reflectivity of the mining camp geology. The principle seismic survey was conducted during May-September, 2007 and comprised a total of 75 km of high- resolution 2D seismic profiles and a 3D survey covering approximately 10 km2. Seismic imaging in the Flin Flon area poses significant challenges due to the complex crystalline geology, the location of the imaging targets beneath an active town and operational mine site, and the highly variable terrain. Data were recoreded using IO System IV digital vector (3-component) accelerometers, spaced at 5 m intervals (for 2D survey) with recording times of 4 s. Seismic sources spaced at 20 m intervals included Vibroseis and dynamite sources on land, and an airgun for lake areas. The results of processing the vertical-component data for P-wave reflections reveal subhorizontal reflectivity associated mainly with the Missi metasedimentary complex and steeply dipping reflectivity associated with the polydeformed volcanic rocks

  9. Age and composition of the UHP garnet peridotites in the Dabie orogenic belt (central China) record complex crust-mantle interaction in continental margin

    Science.gov (United States)

    Zhao, Y.; Zheng, J.; Wang, B.

    2017-12-01

    The Dabie-Sulu UHP belt was created by the collision between the North and South China cratons in Middle Triassic time (240-225 Ma). There are lots of garnet-bearing ultramafic body occurs as a lens in the belt. Age and composition of the Maowu garnet peridotites in the Dabie orogenic belt are reported. The garnet harzburgites are main moderately refractory (Mg#Ol=92) and minor fertile (Mg#Ol=88) with high Ni (2344-2603 ppm) and low Al2O3 (0.35-0.54 wt.%), CaO (0.76-2.19 wt.%) and TiO2 (˜0.01 wt.%). Zircons in the harzburgites mainly document metamorphism at 230 ± 2 Ma, 275 ± 5 Ma, 357 ± 4 Ma, and complex minor populations of ages including: 1.8 Ga, 1.3 Ga, and Neoproterozic-early Paleozoic ages (901-420 Ma). The early Meszosic and late Paleozoic zircons have similar trace-element patterns and ranges in ɛHf(t) (+0.6 to +3.4), Th/U ratio (0.2-0.7) and Hf depleted-mantle model ages (TDM ) mainly cluster in the interval 1.2-0.9 Ga. In contrast, the Paleo-Mesoproterozoic zircons have negative ɛHf(t) (-24.9 to -2.7) and oldest Hf TDM = 3.4Ga. Zircons of Neoproterozic-early Paleozoic have a wide range of Hf depleted-mantle model ages (2.4-0.7Ga) and ɛHf(t) (-15.3 to +9.5). Above of the all, we suggest that the Maowu garnet harzburgites are interpreted as a fragment of the metasomatized ancient lithospheric mantle beneath the southern margin of the North China Craton. They experienced the Proterozoic thermal event (1.9-1.8Ga), which is coeval with the assembly of the supercontinent Columbia. And then 1.3Ga mantle metasomatism with asthenospheric materials resulted in the final breakup of the Columbia supercontinent. Neoproterozic-early Paleozoic (901-420 Ma), deep parts of the south margin of the craton were metasomatized during the assembly and breakup of the Rodinia supercontinent. Then, the southern margin of the craton occurred oceanic crust subduction ( 357 Ma), subsequent continental deep subduction and final continent-continent collision in Triassic.

  10. Late orogenic, large-scale rotations in the Tien Shan and adjacent mobile belts in Kyrgyzstan and Kazakhstan

    Science.gov (United States)

    Van der Voo, Rob; Levashova, Natalia M.; Skrinnik, Ludmila I.; Kara, Taras V.; Bazhenov, Mikhail L.

    2006-11-01

    Most of Kazakhstan belongs to the central part of the Eurasian Paleozoic mobile belts for which previously proposed tectonic scenarios have been rather disparate. Of particular interest is the origin of strongly curved Middle and Late Paleozoic volcanic belts of island-arc and Andean-arc affinities that dominate the structure of Kazakhstan. We undertook a paleomagnetic study of Carboniferous to Upper Permian volcanics and sediments from several localities in the Ili River basin between the Tien Shan and the Junggar-Alatau ranges in southeast Kazakhstan. Our main goal was to investigate the Permian kinematic evolution of these belts, particularly in terms of rotations about vertical axes, in the hope of deciphering the dynamics that played a role during the latest Paleozoic deformation in this area. This deformation, in turn, can then be related to the amalgamation of this area with Baltica, Siberia, and Tarim in the expanding Eurasian supercontinent. Thermal demagnetization revealed that most Permian rocks retained a pretilting and likely primary component, which is of reversed polarity at three localities and normal at the fourth. In contrast, most Carboniferous rocks are dominated by postfolding reversed overprints of probably "mid-Permian" age, whereas presumably primary components are isolated from a few sites at two localities. Mean inclinations of primary components generally agree with coeval reference values extrapolated from Baltica, whereas declinations from primary as well as secondary components are deflected counterclockwise (ccw) by up to ˜ 90°. Such ccw rotated directions have previously also been observed in other Tien Shan sampling areas and in the adjacent Tarim Block to the south. However, two other areas in Kazakhstan show clockwise (cw) rotations of Permian magnetization directions. One area is located in the Kendyktas block about 300 km to the west of the Ili River valley, and the other is found in the Chingiz Range, to the north of Lake

  11. Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics

    Science.gov (United States)

    Kröner, A.; Hegner, E.; Lehmann, B.; Heinhorst, J.; Wingate, M. T. D.; Liu, D. Y.; Ermelov, P.

    2008-03-01

    Early Palaeozoic tonalite to granodiorite intrusions in northern Kazakhstan are associated with lode gold mineralization and have SHRIMP zircon ages of 457.3 ± 6.6 Ma (Aksu), 452.9 ± 5.6 Ma and 447.4 ± 5.4 Ma (both Zholymbet). The Stepnyak intrusion contains large xenoliths with an age of 480.6 ± 5.0 Ma. One early Palaeozoic zircon from a porphyritic diorite at Stepnyak has a core with a near-concordant 207Pb/ 206Pb age of 3888 ± 1.5 Ma, whereas other xenocrystic grains are between 983 and 2698 Ma old. The early Archaean age is probably inherited from unexposed basement of the Kokchetav Massif and represents the oldest crustal material so far known from the Asian continent. It appears that the Aksu, Zholimbet and Stepnyak granitoids were emplaced in the late Ordovician in an Andean- or Japan-type continental arc environment on the margin of the Kokchetav Massif. Late Palaeozoic granitoids in central Kazakhstan have Devonian zircon ages of 407.1 ± 3.9, 381.1 ± 3.1 and 369.2 ± 4.9 Ma, whereas the youngest sample from the Topar Massif has a late Carboniferous emplacement age of 314.1 ± 5.1 Ma. Initial ɛNd values range from +5 to -1 corresponding to Nd-model ages of 1.1-0.6 Ga. The isotopic data are similar to those of other Phanerozoic granitoids of the Central Asian Orogenic Belt and corroborate melting of predominantly juvenile crustal protoliths. Our data also confirm that Devonian and Carboniferous arc magmatism in central Kazakhstan assimilated older and already accreted island arc systems, yet is derived from primitive sources, probably in a subduction setting. The range of ɛNd values with corresponding Nd mean crustal residence ages in the range of 0.6-1.1 Ga for most samples indicates variable recycling of late Proterozoic largely juvenile continental crust in the formation of the Palaeozoic magmatic arcs of central Kazakhstan. The orogenic evolution terminated with Permian anorogenic, rift-related alkaline granite magmatism ( ɛNd = +2 to +8) which

  12. Neoproterozoic diamictite-bearing sedimentary rocks in the northern Yili Block and their constraints on the Precambrian evolution of microcontinents in the Western Central Asian Orogenic Belt

    Science.gov (United States)

    He, Jingwen; Zhu, Wenbin; Zheng, Bihai; Wu, Hailin; Cui, Xiang; Lu, Yuanzhi

    2015-12-01

    The origin and tectonic setting of Precambrian sequences in the Central Asian Orogenic Belt (CAOB) have been debated due to a lack of high resolution geochronological data. Answering this question is essential for the understanding of the tectonic framework and Precambrian evolution of the blocks within the CAOB. Here we reported LA-ICP-MS detrital zircon U-Pb ages and in-situ Hf isotopic data for Neoproterozoic sedimentary cover in the northern Yili Block, an important component of the CAOB, in order to provide information on possible provenance and regional tectonic evolution. A total of 271 concordant U-Pb zircon ages from Neoproterozoic sedimentary cover in the northern Yili Block define three major age populations of 1900-1400 Ma, 1300-1150 Ma and 700-580 Ma, which are quite different from cratons and microcontinents involved in the CAOB. Although it is not completely consistent with the local basement ages, an autochthonous provenance interpretation is more suitable. Some zircon grains show significant old Hf model ages (TDMC; 3.9-2.4 Ga) and reveal continental crust as old as Paleoarchean probably existed. Continuous Mesoproterozoic zircon age populations exhibit large variations in the εHf(t) ratios, suggesting the long-time involvement of both reworked ancient crust and juvenile material. Similar Mesoproterozoic evolution pattern is identified in many continental terranes involved in the CAOB that surround the Tarim Craton. Based on our analysis and published research, we postulate that the northern Yili Block, together with Chinese Central Tianshan, Kyrgyz North Tianshan and some other microcontinents surrounding the Tarim Craton, once constituted the continental margin of the Tarim Craton in the Mesoproterozoic, formed by long-lived accretionary processes. Most of the late Neoproterozoic zircons exhibit significant positive εHf(t) ratios, suggesting the addition of juvenile crust. It is consistent with the tectonic event related to the East Africa

  13. Shoshonitic- and adakitic magmatism of the Early Paleozoic age in the Western Kunlun orogenic belt, NW China: Implications for the early evolution of the northwestern Tibetan plateau

    Science.gov (United States)

    Wang, Jian; Hattori, Keiko; Liu, Jianguo; Song, Yue; Gao, Yongbao; Zhang, Han

    2017-08-01

    The Western Kunlun orogenic belt in the northwestern margin of the Tibetan plateau contains two magmatic belts; early Paleozoic belt in the northern part of Western Kunlun Terrane (WKT), and early Mesozoic belt in the southern part of WKT. Both formed from northward subduction of the Paleo-Tethys. The early Paleozoic belt contains large Datong and Qiukesu igneous complexes and many smaller plutons. The Datong complex is mainly composed of dark-colored porphyritic syenite and monzonite with minor light-colored dykes of granite and monzonite. The dark-colored rocks are characterized by moderate SiO2 (58.2-69.3 wt.%), and high Al2O3 (15.3-17.1 wt.%), total alkali (Na2O + K2O = 8.07-10.2 wt.%) and ratios of K2O/Na2O (0.77-1.83). They plot in "shoshonite" field, and show high abundances of LILE including LREE ((La/Yb)n = 15.4-26.2; mean 20.2) with pronounced negative anomalies of Nb-Ta-P-Ti in normalized trace elemental patterns and weak negative anomalies of Eu (δEu = 2Eun/(Smn + Gdn) = 0.68-0.80). The light-colored rocks contain slightly higher concentrations of SiO2 (60.3-72.0 wt.%), similar Al2O3 (14.7-17.6 wt.%), and slightly lower total alkalis (6.57-9.14 wt.%) than dark-colored rocks. They show adakitic geochemical signatures with low Y (5.80-17.2 ppm) and Yb (0.63-1.59 ppm), and high Sr/Y (> 40). U-Pb zircon dating indicates that shoshonitic rocks and adakitic dykes formed at 444 Ma to 443 Ma, and a separate small adakitic plug at 462 Ma. The mean εHf(t) values of zircon range from - 1.6 to - 0.94 (n = 14) with TDM2 of 1.5 Ga for shoshonitic rocks and εHf(t) values from - 1.8 to + 0.72 (n = 12) with TDM2 of 1.4 to 1.5 Ga for adakitic rocks. Shoshonitic rocks show initial 87Sr/86Sr and εNd(t) of 0.7092-0.7100 and - 3.9 to - 3.2, respectively, and adakitic rocks yield initial 87Sr/86Sr and εNd(t) of 0.7099-0.7134 and - 3.6 to - 3.1, respectively. Similar Sr, Nd, and Hf isotope compositions for the shoshonitic and adakitic rocks suggest similar ancient rocks

  14. Mesozoic alkaline plutonism: Evidence for extensional phase in Alpine-Himalayan orogenic belt in Central Alborz, north Iran

    Directory of Open Access Journals (Sweden)

    Roghieh Doroozi

    2017-12-01

    Full Text Available The Kamarbon Jurassic alkaline basic intrusion crops out in Central Alborz, north Iran, along the northern margin of the Alpine-Himalayan belt. The intrusion includes foid gabbros at the margins and foid monzodiorites towards the center. The foid monzodiorites are considered as the evolved melts after the fractional crystallization mostly of olivine and clinopyroxene from a foid gabbro parental magma. Based on mass balance calculation the evolution of the Kamarbon alkaline gabbro could be explained by 19.2% fractionation of clinopyroxene, 13.8% of olivine, 3% of plagioclase and 1.0% Ti-Magnetite, with 63% of residual liquid. REE inversion modeling indicates that the Kamarbon intrusion magma was generated by low degrees (<3% of partial melting from a garnet-bearing mantle source. In primitive mantle-normalized incompatible element diagrams, the Kamarbon rocks show enrichment in LILE elements (Ba, Rb, Sr and Th, HFSE elements (Nb, Ta, Ti, Zr and Hf and P and depletion in K, Y and HREE (Yb, Lu which are similar to patterns of HIMU-OIBs or intraplate alkaline magmas. According to the existence of extensional phases and occurrence of different rifting during late Triassic to middle Jurassic in Central Alborz, the formation of Kamarbon intrusion could be related to an intracontinental rifting.

  15. Late Paleozoic tectono-metamorphic evolution of the Altai segment of the Central Asian Orogenic Belt: Constraints from metamorphic P-T pseudosection and zircon U-Pb dating of ultra-high-temperature granulite

    Science.gov (United States)

    Li, Zilong; Yang, Xiaoqiang; Li, Yinqi; Santosh, M.; Chen, Hanlin; Xiao, Wenjiao

    2014-09-01

    Ultra-high-temperature (UHT) granulite-facies rocks offer important constraints on crustal evolution processes and tectonic history of orogens. UHT granulites are generally rare in Phanerozoic orogens. In this study, we investigate the late Paleozoic pelitic UHT granulites from Altai in the western segment of the Central Asian Orogenic Belt (CAOB). The diagnostic minerals in these rocks include high alumina orthopyroxene (Al2O3 up to 9.76 wt.%, and y(opx) = AlVI in orthopyroxene up to 0.21) coexisting with sillimanite and quartz, and low Zn spinel (ZnO = 1.85-2.50 wt.%) overgrowth with quartz. Cordierite corona separates sillimanite from orthopyroxene. The high alumina orthopyroxene is replaced by symplectites of low-alumina orthopyroxene (~ 5.80 wt.% Al2O3) and cordierite. These textural observations are consistent with a significant decompression following the peak UHT metamorphism. Phase equilibrium modeling using pseudosections and the y(opx) isopleths indicate an anti-clockwise P-T path for the exhumation of the Altai orogenic belt. The pre-peak assemblage of spinel + quartz in garnet is stable at high- to ultra-high-temperature and low-pressure conditions (P 940 °C and 7.8 to 10 kbar. Subsequent near-isothermal decompression occurred at 890 to 940 °C and 5 to 6 kbar. The final-stage cooling is recorded at 750 and 800 °C and 4 to 5 kbar accompanied by a decrease in the y(opx) values (0.11-0.12). In the UHT granulite, zircon grains are commonly enclosed within cordierite. The overgrowth rims of the zircon grains yield a weighted mean 206Pb/238U age of 277 ± 2 Ma using LA-ICP-MS zircon dating, which is interpreted to mark the timing of decompression and cooling. We propose that the anti-clockwise P-T path of the UHT granulite in the Altai orogenic belt could be related to an extensional event related to the sinistral strike-slip along the Irtish tectonic belt after the subduction and slab detachment during the convergence of the Kazakhstan-Junggar plate and

  16. Differential unroofing within the central metasedimentary Belt of the Grenville Orogen: constraints from 40Ar/39Ar thermochronology

    Science.gov (United States)

    Cosca, Michael A.; Essene, Eric J.; Kunk, Michael J.; Sutter, John F.

    1992-04-01

    An 40Ar/39Ar thermochronological investigation of upper greenschist to granulite facies gneiss, amphibolite and marble was conducted in the Central Metasedimentary Belt (CMB), Ontario, to constrain its cooling history. Incremental 40Ar/39Ar release spectra indicate that substantial differential unroofing occurred in the CMB between ˜ 1000 and ˜ 600 Ma. A consistent pattern of significantly older hornblende and phlogopite 40Ar/3Ar cooling ages on the southeast sides of major northeast striking shear zones is interpreted to reflect late displacement due to extensional deformation. Variations in hornblende 40Ar/39Ar age plateaus exceeding 200 Ma occur over distances less than 50 km with major age discontinuities occurring across the Robertson Lake shear zone and the Sharbot Lake mylonite zone which separate the Sharbot Lake terrane from the Elzevir and Frontenac terranes. Extensional displacements of up to 14 km are inferred between the Frontenac and Elzevir terranes of the CMB. No evidence for significant post argon-closure vertical displacement is indicated in the vicinity of the Perth Road mylonite within the Frontenac terrane. Variations of nearly 100 Ma in phlogopite 40Ar/39Ar plateau ages occur in undeformed marble on either side of the Bancroft Shear Zone. Phlogopites from sheared and mylonitized marble within the shear zone yield 40Ar/39Ar diffusional loss profiles, but have older geologically meaningless ages thought to reflect incorporation of excess argon. By ˜ 900 Ma, southeast directed extension was occurring throughout the CMB, possibly initiated along previous zones of compressional shearing. An easterly migration of active zones of extension is inferred, possibly related to an earlier, overall easterly migration of active zones of regional thrusting and easterly migration of an ancient subduction zone. The duration of extensional shearing is not well constrained, but must have ceased before ˜ 600 Ma as required by the deposition of overlying

  17. Carboniferous - Early Permian magmatic evolution of the Bogda Range (Xinjiang, NW China): Implications for the Late Paleozoic accretionary tectonics of the SW Central Asian Orogenic Belt

    Science.gov (United States)

    Wali, Guzalnur; Wang, Bo; Cluzel, Dominique; Zhong, Linglin

    2018-03-01

    The Late Paleozoic magmatic evolution of the Bogda Range (Chinese North Tianshan) is important for understanding the accretionary history of the Central Asian Orogenic Belt. We investigated the Carboniferous and Lower Permian volcanic and sedimentary sequences of the Daheyan section, southern Bogda Range, and present new zircon U-Pb ages and whole-rock geochemical data for the volcanic rocks. One Carboniferous rhyolite is dated at 298 ± 8 Ma; a Permian basalt yielded many Proterozoic zircon xenocrysts, and its maximum age (∼297 Ma) is constrained by the detrital zircon ages of the sandstone that stratigraphically underlies it. These volcanic rocks belong to calc-alkaline series. We further synthesize previous geochronological, geochemical and isotopic data of magmatic and sedimentary rocks in the Bogda Range. The available data indicate that the magmatism occurred continuously from 350 Ma to 280 Ma. A comprehensive analysis allows us to propose that: (1) the Carboniferous to Early Permian magmatic rocks of the Bogda Range generally show consistent arc-type features; (2) increasing mantle input through time suggests intra-arc extension in a supra-subduction zone; (3) the localized occurrence of Early Permian alkaline pillow basalts and deep water sediments close to the major shear zone advocate a transtensional crustal thinning during the transition from Carboniferous convergence to Early Permian transcurrent tectonics; (4) occurrence of a large number of Proterozoic zircon xenocrysts in the Late Paleozoic magmatic rocks, and Proterozoic detrital zircons in the coeval clastic sediments suggest a continental or transitional basement of the Bogda Arc; (5) subduction in the Bogda area terminated prior to the deposition of Middle Permian terrestrial sediments.

  18. Inferred Early Permian Arc Rifting in Bogda Mountain, Southernmost of the Central Asia Orogenic Belt: Evidence from a Peperite Bearing Volcano-Sedimentary Succession

    Science.gov (United States)

    Memtimin, M.; Guo, Z.

    2017-12-01

    Late Paleozoic tectonic history, especially Carboniferous-Permian periods, of the Central Asia Orogenic Belt (CAOB) is considered to be the turning point for the termination of terrane amalgamation and closure of the Paleoasian Ocean. However, the debate about the paleoenvironment and tectonic setting of the region during the period is still not resolved. In this study, we report a set of volcano-sedimentary sequence in the Bogda Mountain of the southernmost of CAOB, which is associated with contemporaneous subaqueous emplacement of and interaction between mafic lava and carbonate sediments. The succession contains four distinct facies including closely packed pillow basalts, pillow basalts with interstitial materials, hyaloclastites and peperites. We discuss their formation and emplacement mechanism, interaction between hot magma-water/unconsolidated sediments and thermal metamorphism during the interaction. Textural features of the sequence, especially hyaloclastites and peperites, provide clear evidence for in situ autofragmentation of lava flows, synvolcanic sedimentation of carbonates, fuel coolant interaction when hot magma bulldozed into wet unconsolidated sediments, and represent autochthonous origin of the succession. Lateral transition of the lithofacies indicate a progressively deepening subaqueous environment, resembling a stepwise evolution from early stage of volcanic intrusion with lower lava flux in shallower water level to increasingly subsiding basin with more lava flux in greater depth. Previous studies determined that the mafic magma was intruded around the Carboniferous-Permian boundary ( 300Ma), and geochemical studies showed the magma was originated from dry depleted mantle with little crustal contamination. Nevertheless, the succession was thought to be fault related allochthones formation which was transferred in as part of a Carboniferous intraplate arc. Combining our findings with the previous study results, we propose a new model to

  19. Paleozoic structure of Middle Tien Shan (Kyrgyzstan Central Asian Orogenic Belt): Insights on the polarity and timing of tectonic motions, subductions, and lateral correlations

    Science.gov (United States)

    Jourdon, Anthony; Loury, Chloé; Rolland, Yann; Petit, Carole; Bellahsen, Nicolas

    2015-04-01

    The structure and Palaeozoic tectonic evolution in Kyrgyz and Chinese Tien Shan Central Asian Orogenic Belt (CAOB) are still a matter of debate. There are numerous and conflicting models about the polarity of tectonic motions in the Paleozoic, the number of continental blocks and oceanic basins involved and the timing of tectonic events. In this study we propose new maps and structural cross-sections of Middle and South Kyrgyz Tien Shan (TS). These cross-sections allow us to highlight an overall South-verging structure in the Middle TS, with a thick-skin style involving the crystalline basement. This deformation occurred during the Early Carboniferous, and is sealed by an Upper Carboniferous unconformity. We ascribe this structure to an Upper Plate deformation linked to north-dipping subduction below Middle TS. In contrast, the South TS exhibits a north-verging structure, linked to south-dipping subduction, which is evidenced by an accretionary prism, a volcanic arc, and high-pressure rocks (Loury et al., 2015), and is correlated to similar structures in the Chinese TS (e.g., Charvet et al., 2011). Based on these observations, we propose a new interpretation of the tectonic evolution of the Middle and South TS CAOB. The resulting model comprises a long-lived north-dipping subduction of the Turkestan Ocean below the Middle TS-Karazakh Platform and a short-lived south-dipping subduction of a marginal back-arc basin below the Tarim. Consequently, the South TS is interpreted as a rifted block from the Tarim. Finally, the docking of the large Tarim Craton to the CAOB corresponds to a rapid collision phase (320-300 Ma). This put an end to the long-lived Paleozoic subduction history in the CAOB. Charvet, J., Shu, L., et al., 2011. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Science China Earth Sciences, 54, 166-184. Loury, C. , Rolland, Y., Guillot S., Mikolaichuk, A.V., Lanari, P., Bruguier, O., D.Bosch, 2015. Crustal-scale structure of South Tien Shan

  20. Geochronology, geochemistry and Hf–Sr–Nd isotopes of the ore-bearing syenite from the Shapinggou porphyry Mo deposit, East Qinling-Dabie orogenic belt

    Directory of Open Access Journals (Sweden)

    Tao He

    2016-12-01

    Full Text Available The Shapinggou Mo deposit is located in the western Dabie mountains, the eastern part of the Qinling-Dabie molybdenum orogenic belt. Shapinggou Mo deposit is a concealed deposit with the ore body mainly hosted by explosive breccia of Gaijing and the granite porphyry as well as the syenite of Shapinggou. Geochemistry study show that the SiO2 contents of Shapinggou syenite range from 61.74 to 69.93%, and the A/CNK from 0.95 to 1.06, classified as metaluminous to weak peraluminous, belonging to alkalic to shoshonitic series. The Mo deposits in Qinling Mo belt formed in two main periods, i.e., the first period occurred in to the Early Cretaceous (145–130 Ma, the second period in the late Early Cretaceous (130–110 Ma. Most of the Mo deposits in Dabie region formed in the second period. The results of zircon U–Pb show that the age of the Shapinggou syenite is 111.3 ± 1.2 Ma, which belongs to the second period. Proterozoic-Archean inherited zircons suggest that it may include some more ancient crustal material like Kongling group. The ɛHf(t values of Shapinggou syenite range from −15.6 to −8.0, TDM2(Hf from 1.7 to 2.16 Ga, respectively. The ɛNd(t values of the Shapinggou syenite range from −12.29 to −11.76, TDM2(Nd from 1.85 to 1.89 Ga, the 87Sr/86Sr from 0.709 to 0.710, respectively. Results of zircon Hf isotope and whole rock Sr–Nd isotope of Shapinggou syenite indicate that the Mo ore-forming materials were mainly generated from old Yangtze craton, e.g., gneiss from Dabie orogeny, mixed with some juvenal mantle materials. The geodynamics of the Shapinggou Mo deposit corresponded to an extension period in Eastern China, which caused by large scale lithospheric thinning. The delamination caused asthenosphere upwelling and crust-mantle interaction, which provided the ore-forming material and heat.

  1. Provenance and tectonic setting of siliciclastic rocks associated with the Neoproterozoic Dahongliutan BIF: Implications for the Precambrian crustal evolution of the Western Kunlun orogenic belt, NW China

    Science.gov (United States)

    Hu, Jun; Wang, He; Wang, Min

    2017-10-01

    The Late Neoproterozoic Dahongliutan BIF is associated with siliciclastic rocks in the Tianshuihai terrane of the Western Kunlun orogenic belt (WKO), NW China. The sedimentary rocks have various weathering indices (e.g., CIA = 57-87, PIA = 61-96 and Th/U = 4.85-12.45), indicative of varying degrees of weathering in the source area. The rocks have trace element ratios, such as Th/Sc = 0.60-1.21 and Co/Th = 0.29-1.67, and light rare earth element (LREE) enriched chondrite-normalized REE patterns, suggesting that they were mainly sourced from intermediate and felsic rocks. Available U-Pb ages of detrital zircon from these rocks reveal that the detrital sources may have been igneous and metamorphic rocks from the WKO and the Tarim Block. Our study suggests that the Dahongliutan BIF and hosting siliciclastic rocks may have deposited in a setting transitional from a passive to active continental margin, probably related to the Late Neoproterozoic-Early Cambrian seafloor spreading and subduction of the Proto-Tethys Ocean. U-Pb dating of 163 detrital zircons defines five major age populations at 2561-2329 Ma, 2076-1644 Ma, 1164-899 Ma, 869-722 Ma and 696-593 Ma. These age groups broadly correspond to the major stages of supercontinent assembly and breakup events widely accepted for Columbia, Rodinia and Gondwana. Some zircons have TDM2 model ages of 3.9-1.8 Ga and negative εHf(t) values, suggesting that the Archean to Paleoproterozoic (as old as Eoarchean) crustal materials were episodically reworked and incorporated into the late magmatic process in the WKO. Some Neoproterozoic zircons have TDM2 model ages of 1.47-1.07 Ga and 1.81-1.53 Ga and positive εHf(t) values, indicating juvenile crustal growth during the Mesoproterozoic. Our new results, combined with published data, imply that both the Tianshuihai terrane in the WKO and the Tarim Block share the same Precambrian tectonic evolution history.

  2. Peeking out of the basins: looking for the Late Devonian Kellwasser Event in the open ocean in the Central Asian Orogenic Belt, southwestern Mongolia

    Science.gov (United States)

    Thomas, R. M., Jr.; Carmichael, S. K.; Waters, J. A.; Batchelor, C. J.

    2017-12-01

    Two of the top five most devastating mass extinctions in Earth's history occurred during the Late Devonian (419.2 Ma - 358.9 Ma), and are commonly associated with the black shale deposits of the Kellwasser and Hangenberg ocean anoxia events. Our understanding of these extinction events is incomplete partly due to sample bias, as 95% of the field sites studying the Late Devonian are limited to continental shelves and continental marine basins, and 77% of these sites are derived from the Euramerican paleocontinent. The Samnuuruul Formation at the Hoshoot Shiveetiin Gol locality (HSG), located in southwestern Mongolia, offers a unique opportunity to better understand global oceanic conditions during the Late Devonian. The HSG locality shows a continuous sequence of terrestrial to marine sediments on the East Junggar arc; an isolated, open-ocean island arc within the Central Asian Orogenic Belt (CAOB). Samples from this near shore locality consist of volcanogenic silts, sands and immature conglomerates as well as calc-alkalic basalt lava flows. Offshore sections contain numerous limestones with Late Devonian fossil assemblages. Preliminary biostratigraphy of the associated marine and terrestrial sequences can only constrain the section to a general Late Devonian age, but TIMS analysis of detrital zircons from volcanogenic sediments from the Samnuuruul Formation in localities 8-50 km from the site suggests a late Frasnian age (375, 376 Ma). To provide a more precise radiometric age of the HSG locality, zircon geochronology using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) will be performed at UNC-Chapel Hill. If the HSG section crosses the Frasnian-Famennian boundary, geochemical, mineralogical, and ichnological signatures of the Kellwasser Event are expected to be preserved, if the Kellwasser Event was indeed global in scope (as suggested by Carmichael et al. (2014) for analogous sites on the West Junggar arc in the CAOB). Black shale

  3. In-situ U-Pb, Hf and Re-Os isotopic analyses of the Xiangshan Ni-Cu-Co deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the timing and genesis of the mineralization

    Science.gov (United States)

    Han, Chunming; Xiao, Wenjiao; Zhao, Guochun; Ao, Songjian; Zhang, Jien; Qu, Wenjun; Du, Andao

    2010-12-01

    The timing and genesis of the major Ni-Cu-Co sulfide deposit in the Xiangshan intrusion have been studied based on newly obtained in-situ U-Pb, Hf and Re-Os isotopic analyses. The SIMS U-Pb zircon ages of the gabbro hosting the Ni-Cu-Co sulfide deposit indicate that the Xiangshan intrusion was emplaced at 279.6 ± 1.1 Ma (95% confidence level, MSWD = 1.30, n = 15). On the basis of combined geological and geochronological evidence, we suggest that the Xiangshan and other adjacent Ni-Cu deposits were formed in the same period. Sulphides have low common Os concentrations and high Re/Os ratios, similar to sulphide ores from the Duluth, Sally Malay and Voisey Bay complexes. The Re-Os isotopic data from the disseminated and massive ores from the Xiangshan intrusion do not form a single isochron, as they have different initial Os ratios. The Hf and Os isotopic data suggest that the Xiangshan intrusion and associated Ni-Cu-Co mineralization were derived from crustally contaminated mantle melts. The geochemical data show a tholeiitic affinity and a strong suprasubduction zone signature with negative Nb, Sr, and Ti anomalies similar to N-MORB and E-MORB. We suggest that the mafic-ultramafic rocks and associated Ni-Cu mineralization of the Eastern Tianshan orogen formed in an Alaska-type subduction zone-arc setting. Some diagnostic features of ridge-trench interaction are present in the Chinese East Tianshan orogen (e.g. granites, adakites, high-Mg andesites, near-trench magmatism, Alaskan-type mafic-ultramafic complexes, high-temperature metamorphic belts that prograde rapidly from low-grade belts, and orogenic gold deposits). The above distinctive rock groups are probably related to the same thermal event, ridge subduction, as in the Cenozoic orogen of Alaska. We suggest that ridge subduction is the most plausible mechanism to provide the necessary heat. Ridge subduction provides an important promising model for understanding many aspects of the evolution of the Chinese

  4. Reactivation of inherited structures during the opening of the South Atlantic: a low-temperature thermochronology study on the Araçuaí orogenic belt (east Brazilian margin)

    Science.gov (United States)

    Van Ranst, Gerben; De Grave, Johan; Pedrosa-Soares, Antonio Carlos; Tack, Luc; Baudet, Daniel; Novo, Tiago

    2017-04-01

    A subject that has historically been regarded with increasing interest in geology are the supercontinent-cycles. This still poses questions about tectonic evolution on a regional scale, more precisely on the role of reactivation of older, pre-existing structures (inheritance), in which the same faults or weak zones are reactivated rather than the emergence of new systems. A region that is ideally suited for this research is the Araçuaí-West Congo Orogenic belt (AWCO), which is situated partly in eastern Brazil (Gonçalves et al., 2014) and partly in western Africa (D.R. Congo, Congo Brazza, Gabon and Angola; Frimmel et al., 2006; Tack et al., 2001). This orogenic belt was formed during the Cambrian as a result of a series of extension and compression events, of which the final phase is known as the Braziliano-Pan-African orogenesis (e.g. Pedrosa-Soares & Alkmim, 2011). During the break-up of Gondwana and the opening of the South Atlantic, the AWCO became separated. The main part is situated in east Brazil, known as the Araçuaí orogeny, while on the west African margin, the West Congo Belt is a witness to this event. In order to gain a better understanding, the tectonic movements should be placed in an absolute timeframe. Multi-method low-temperature thermochronology lends itself as an ideal tool for this purpose. In this study samples from N-S and E-W profiles in east Brazil (Caparáo-Vitória-Gov. Valadares) have been acquired. These samples are investigated using the apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) methods. In a later phase the samples which were taken on profiles in the D.R. Congo (Lower Congo) will be analysed by the same methods. Preliminary results for the Brazilian margin indicate cooling ages ranging between 55 Ma and c. 80 Ma.

  5. Devonian granitoids and their hosted mafic enclaves in the Gorny Altai terrane, northwestern Central Asian Orogenic Belt: crust-mantle interaction in a continental arc setting

    Science.gov (United States)

    Chen, Ming; Sun, Min

    2016-04-01

    Granitoids are a major component in the upper continental crust and hold key information on how did the continental crust grow and differentiate. This study focuses on the Yaloman intrusive complex from the Gorny Altai terrane, northwestern Central Asian Orogenic Belt (CAOB). The association of granitoids and mafic enclaves can provide important clues on the source nature, petrogenetic processes and geodynamic setting of the Yaloman intrusive complex, which in turn will shed light on the crustal evolution in the northwestern CAOB. Zircon U-Pb dating shows that the granitoids, including quartz diorites and granodiorites, were emplaced in ca. 389-387 Ma. The moderate Na2O + K2O contents and low A/CNK values indicate that these rocks belong to the sub-alkaline series with metaluminous to weakly peraluminous compositions. The granitoids yield two-stage zircon Hf model ages of ca. 0.79-1.07 Ga and whole-rock Nd model ages of ca. 0.90-0.99 Ga, respectively, implying that they were mainly sourced from Neoproterozoic juvenile crustal materials. The mafic enclaves show an almost identical crystallization age of ca. 389 Ma. The identification of coarse-grained xenocrysts and acicular apatites, together with the fine-grained texture, makes us infer that these enclaves are likely to represent magmatic globules commingled with the host magmas. The low SiO2 and high MgO contents of the mafic enclaves further suggest that substantial mantle-derived mafic melts were probably involved in their formation. Importantly, the SiO2 contents of the granitoids and mafic enclaves are well correlated with other major elements and most of the trace elements. Also a broadly negative correlation exists between the SiO2 contents and whole-rock epsilon Nd (390 Ma) values of the granitoids. Given the observation of reversely zoned plagioclases within the granitoids and the common occurrence of igneous mafic enclaves, we propose that magma mixing probably played an important role in the formation

  6. A Silurian-early Devonian slab window in the southern Central Asian Orogenic Belt: Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China

    Science.gov (United States)

    Zheng, Rongguo; Xiao, Wenjiao; Li, Jinyi; Wu, Tairan; Zhang, Wen

    2018-03-01

    The Beishan orogenic belt is a key region for deciphering the accretionary processes of the southern Central Asian Orogenic Belt. Here in this paper we present new zircon U-Pb ages, bulk-rock major and trace element, and zircon Hf isotopic data for the Baitoushan, and Bagelengtai plutons in the western Central Beishan region to address the accretionary processes. The Baitoushan pluton consists of quartz diorites, monzonites and K-feldspar granites, with zircon LA-ICP-MS U-Pb ages of 435 Ma, 421 Ma and 401 Ma, respectively. The Baitoushan quartz diorites and quartz monzonites exhibit relatively high MgO contents and Mg# values (63-72), display enrichments in LILEs and LREEs, and exhibit high Ba (585-1415 ppm), Sr (416-570 ppm) and compatible element (such as Cr and Ni) abundances, which make them akin to typical high-Mg andesites. The Baitoushan quartz diorites and quartz monzonites were probably generated by the interaction of subducted oceanic sediment-derived melts and mantle peridotites. The Baitoushan K-feldspar granites are ascribed to fractionated I-type granites with peraluminous and high-K calc-alkaline characteristics. They exhibit positive εHf(t) values (2.43-7.63) and Mesoproterozoic-Neoproterozoic zircon Hf model ages (0.92-1.60 Ga). Those early Devonian granites, including Baitoushan K-feldspar granite and Gongpoquan leucogranites (402 Ma), are derived from melting of the mafic lower crust and/or sediments by upwelling of hot asthenospheric mantle. The Bagelengtai granodiorites exhibit similar geochemical signatures with that of typical adakites, with a zircon SHRIMP U-Pb age of 435 Ma. They exhibit relatively high Sr (502-628 ppm) and Al2O3 (16.40-17.40 wt.%) contents, and low MgO (1.02-1.29 wt.%), Y (3.37-6.94 ppm) and HREEs contents, with relatively high Sr/Y and (La/Yb)N ratios. The Bagelengtai granodiorites were derived from partial melting of subducted young oceanic crust, with significant contributions of subducted sediments, subsequently

  7. The Western Carpathians fold and thrust belt and its relationships with the inner zone of the orogen: constraints from sequentially restored, balanced cross-sections integrated with low-temperature thermochronometry

    Science.gov (United States)

    Mazzoli, Stefano; Castelluccio, Ada; Andreucci, Benedetta; Jankowski, Leszek; Ketcham, Richard A.; Szaniawski, Rafal; Zattin, Massimiliano

    2017-04-01

    The Western Carpathians are the northernmost, W-E-trending branch of a more than 1500 km long, curved orogen. Traditionally, the Western Carpathians have been divided into two distinct parts, namely the Inner Carpathians (including basement nappes) and the Outer Carpathians fold and thrust belt. These two major domains are separated by the so-called 'Pieniny Klippen Belt', a narrow zone of intensely deformed and sheared Mesozoic to Palaeogene rocks. In this contribution, a new interpretation for the tectonic evolution of the Western Carpathians is provided based on: (i) the analysis of the stratigraphy of the Mesozoic-Tertiary successions across the different orogenic domains; (ii) the construction of a series of balanced and restored cross-sections, validated by 2D forward modeling; and (iii) the integration of a large thermochronometric dataset (apatite fission tracks and apatite and zircon (U-Th-(Sm))/He ages). The latter work included thermo-kinematic modeling using FetKin, a finite element solver that takes as input a series of balanced cross-sections. The software solves the heat flow equations in 2D together with the predicted thermochronometric ages, which can be compared with the measured data. Moreover, the spatial distribution of burial depths, cooling ages and the rate of exhumation were correlated with heat flow, topographic relief, crustal and lithospheric thickness. This process allowed us to obtain the cooling history along each section and test the response of low-temperature thermochronometers to the changes in the thrust belt geometry produced by fault activity and topography evolution. Our sequentially restored, balanced cross-sections, showing a mix of thin-skinned thrusting and thick-skinned tectonic inversion involving the reactivation of pre-existing basement normal faults, effectively unravel the tectonic evolution of the thrust belt-foreland basin system. Our analysis provides a robust correlation of the stratigraphy from the Outer to the

  8. Gold and uranium metallogenesis in the framework of Neo-proterozoic crust growth and differentiation: example of the Mayo-Kebbi Massif (Chad) in the Central Africa Orogenic belt

    International Nuclear Information System (INIS)

    Mbaguedje, Diondoh

    2015-01-01

    The Mayo Kebbi massif located in southwestern Chad between the Congo craton in the South, the West African craton in the west and the Sahara meta-craton to the east exposes a segment of Neo-proterozoic juvenile crust accreted in the Central African orogenic belt during the Pan African orogeny. It consists of two greenstone belts (Zalbi and Goueygoudoum) separated by the May Kebbi calc-alkaline batholith complexes and intruded by calc-alkaline high-K granitic plutons. The whole is covered by Phanerozoic sedimentary formations. The greenstone belts contain sulphide zones hosted mainly by meta-plutonic rocks (granodiorites) and meta-basalts and meta-volcaniclastics. The mineralization comprises pyrite, pyrrhotite, arsenopyrite, chalcopyrite, pentlandite, pentlandite silver, pentlandite cobaltiferous, sphalerite, cobaltite. These sulphides are disseminated, aggregated in form of layers or are filling veins and cracks. The greenstones also contain quartz veins with calcite and chlorite comprising a mineralization made of pyrite, chalcopyrite, galena and gold. Gold is present both as native crystals and as electrum. The high-K calc-alkaline Zabili granitic pluton hosts uranium mineralization related to a superposition of: (1) ductile deformation and metasomatic alteration implying the interaction between magmatic minerals with a Na-rich fluid, of potential magmatic origin, coeval to the main deposition of uranium oxides, followed by (2) brittle deformation and deposition of secondary hydrated uranium silicates involving a Na-Ca-rich fluid. We propose that these uranium mineralizations represent the extreme expression of crustal differentiation as a result of Pan-African reworking of a Neo-proterozoic juvenile crustal segment. (author) [fr

  9. The onset of flysch sedimentation in the Kaoko Belt (NW Namibia) - Implications for the pre-collisional evolution of the Kaoko-Dom Feliciano-Gariep orogen

    Czech Academy of Sciences Publication Activity Database

    Konopásek, J.; Hoffmann, K.-H.; Sláma, Jiří; Košler, J.

    2017-01-01

    Roč. 298, September 2017 (2017), s. 220-234 ISSN 0301-9268 Institutional support: RVO:67985831 Keywords : Gondwana * Rodinia * Sturtian * Marinoan * Kaoko and Dom Feliciano belts * rifting Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 3.843, year: 2016

  10. Isotopic dating of low-grade metamorphic shales in northern Namibia (South West Africa) and implications for the orogenic evolution of the Pan-African Damara Belt

    International Nuclear Information System (INIS)

    Kroener, A.; Clauer, N.

    1979-01-01

    The fine mineral fractions (<2 μm) from pelitic sediments of the molasse-type Mulden Group in the Pan-African Damara belt of Namibia were dated by the Rb-Sr and K-Ar methods. The sediments contain two major parageneses of metamorphic origin which can be related to two separate low-grade regional tectono-thermal events of anchizonal intensity at about 535 (545) Ma and 455 (465) Ma respectively. (Auth.)

  11. A connection between the Neoproterozoic Dom Feliciano (Brazil/Uruguay) and Gariep (Namibia/South Africa) orogenic belts – evidence from a reconnaissance provenance study •

    International Nuclear Information System (INIS)

    Basei, M.; Frimmel, H.; Nutman, A.; Preciozzi, F.; Jacob, J.

    2005-01-01

    A provenance study of Neoproterozoic siliciclastic successions in the stratigraphically and tectonically lowermost and uppermost parts of the Pan-African Gariep Belt (Stinkfontein Subgroup and Oranjemund Group, respectively) in southwestern Africa, as well as in the Rocha Group of the Punta del Este Terrane (Dom Feliciano Belt) in Uruguay, revealed that the Oranjemund and Rocha Groups can be correlated and most likely formed in the same basin. Thus the Rocha Group is considered to represent the fill of the westernmost part of a re-activated Vendian Gariep Basin. The lower parts of the Oranjemund and Rocha Groups reflect erosion of mafic rocks, whereas the upper parts are derived from a predominantly felsic source area. Oceanic islands of within-plate geochemistry in the immediate vicinity were the most likely source of the mafic input into the lower part of the Oranjemund Group, with most of the other sediments derived from a passive continental margin, i.e. the western margin of the Kalahari Craton. Age spectra obtained by U-Pb SHRIMP analyses of detrital zircon grains from the Stinkfontein Subgroup (Port Nolloth Group), the Oranjemund Group and the Rocha Group are very similar, except for a lack of the youngest age group around 600 Ma in the Stinkfontein Subgroup. In all three units, zircon grains of 1000 – 1200 Ma dominate, with a further peak in the age distribution between 1700 and 2000 Ma. These ages compare well with the pre-Gariep basement geology in southwestern Africa, where the former age range corresponds to magmatic and high-grade metamorphic activity in the Mesoproterozoic Namaqua-Natal Belt and the latter to an extensive Palaeoproterozoic Andean-type volcanic arc (Richtersveld Terrane). Comparable ages are conspicuously absent in the basement of the Rio de la Plata Craton in South America. Derivation of the Rocha Group sediments from a similar source as the contemporaneous Oranjemund Group sediments is therefore suggested. The most likely source of

  12. Sediment provenance in contractional orogens: The detrital zircon record from modern rivers in the Andean fold-thrust belt and foreland basin of western Argentina

    Science.gov (United States)

    Capaldi, Tomas N.; Horton, Brian K.; McKenzie, N. Ryan; Stockli, Daniel F.; Odlum, Margaret L.

    2017-12-01

    This study analyzes detrital zircon U-Pb age populations from Andean rivers to assess whether active synorogenic sedimentation accurately records proportional contributions from varied bedrock source units across different drainage areas. Samples of modern river sand were collected from west-central Argentina (28-33°S), where the Andes are characterized by active uplift and deposition in diverse contractional provinces, including (1) hinterland, (2) wedge-top, (3) proximal foreland, and (4) distal broken foreland basin settings. Potential controls on sediment provenance were evaluated by comparing river U-Pb age distributions with predicted age spectra generated by a sediment mixing model weighted by relative catchment exposure (outcrop) areas for different source units. Several statistical measures (similarity, likeness, and cross-correlation) are employed to compare how well the area-weighted model predicts modern river age populations. (1) Hinterland basin provenance is influenced by local relief generated along thrust-bounded ranges and high zircon fertility of exposed crystalline basement. (2) Wedge-top (piggyback) basin provenance is controlled by variable lithologic durability among thrust-belt bedrock sources and recycled basin sediments. (3) Proximal foreland (foredeep) basin provenance of rivers and fluvial megafans accurately reflect regional bedrock distributions, with limited effects of zircon fertility and lithologic durability in large (>20,000 km2) second-order drainage systems. (4) In distal broken segments of the foreland basin, regional provenance signatures from thrust-belt and hinterland areas are diluted by local contributions from foreland basement-cored uplifts.

  13. 3230-3200 Ma post-orogenic extension and mid-crustal magmatism along the southeastern margin of the Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Lana, Cristiano; Buick, Ian; Stevens, Gary; Rossouw, Riana; De Wet, Willem

    2011-05-01

    The Barberton Granitoid-Greenstone Terrain (South Africa) preserves a complex and protracted evolution involving several events of magmatism and terrain accretion along convergent tectonic boundaries. Recent studies propose that the main period of tectonic accretion and arc-related magmatism is linked to a system of divergent subduction zones above which voluminous TTG magmas were emplaced between ca. 3236 and 3227 Ma. Our structural and LA-ICP-MS U-Pb geochronology study along the southeastern margin of the Barberton Greenstone Belt (BGB) ties the waning stages of this TTG magmatism to a short (ca. BGB. The timing of the granodiorite emplacement also constrains a minimum age for the deposition of the Moodies Group clastic sediments, which for much of the southern and southeastern parts of the BGB must have happened before ca. 3228 Ma. 3205 ± 9 Ma subvolcanic dykes intruded into the granodiorite complex indicate that the period of exhumation and cooling of the crystalline rocks along the extensional detachment was relatively short (<30 Ma), between 3228 and 3205 Ma. Our observations combined with previously published structural data from the northwestern and southern margin of the belt suggest that the main mechanism of large-scale infolding of the supracrustal strata was shortly followed by the extension-related magmatism and subsequent, solid-state diapiric movement of the arc-related plutons.

  14. Multi-stage barites in partially melted UHP eclogite: implications for fluid/melt activities during deep continental subduction in the Sulu orogenic belt

    Science.gov (United States)

    Wang, Songjie; Wang, Lu

    2015-04-01

    Barite (BaSO4) is well-known from deep-sea sedimentary environments but has received less attention to its presence in high-grade metamorphic rocks. Recently, barite in ultrahigh pressure (UHP) eclogite has drawn increasing attention from geologists, especially in the Dabie-Sulu orogen, since it is an important indicator for high-salinity fluid events, thus aiding in further understanding HP-UHP fluid / melt evolution. However, its formation time and mechanism in UHP eclogite are still controversial, with three representative viewpoints: (1) Liu et al. (2000) found barite-anhydrite-coesite inclusions in zircon and interpreted them to have formed by UHP metamorphic fluids; (2) Zeng et al. (2007) recognized isolated barite within K-feldspar (Kfs) and Quartz (Qz) surrounded by radial cracks in omphacite, and interpreted Kfs+Qz to be reaction products of potassium-rich fluid/melt and coesite, with the barite formed by prograde metamorphic fluids; (3) Gao et al. (2012) and Chen et al. (2014) found barite-bearing Multiphase Solid (MS) inclusions within garnet and omphacite and assumed that the barite formed by phengite breakdown possibly caused by eclogite partial melting during exhumation, though no direct evidence were proposed. The controversy above is mainly due to the lack of direct formation evidence and absence of a clear link with the metamorphic evolution of UHP eclogite along the subduction-exhumation path. We report detailed petrological and micro-structural analyses revealing four types of barites clearly linked with (1) the prograde, (2) earlier stage of partial melting and (3) later stage of crystallization differentiation, as well as (4) high-grade amphibolite-facies retrogression of a deeply subducted and partially melted intergranular coesite-bearing eclogite from Yangkou Bay, Sulu Orogen. Round barite inclusions (type-I) within UHP-stage garnet and omphacite are formed by internally buffered fluids from mineral dehydration during prograde metamorphism

  15. Skarn-mineralized porphyry adakites in the Harlik arc at Kalatage, E. Tianshan (NW China): Slab melting in the Devonian-early Carboniferous in the southern Central Asian Orogenic Belt

    Science.gov (United States)

    Mao, Qigui; Yu, Mingjie; Xiao, Wenjiao; Windley, Brian F.; Li, Yuechen; Wei, Xiaofeng; Zhu, Jiangjian; Lü, Xiaoqiang

    2018-03-01

    The geodynamic control of mineralization in the accretionary evolution of the Central Asian Orogenic Belt (CAOB) has long been controversial. Here we report new field, geochemical and geochronological data on recently defined porphyry and skarn-type ore deposits (Devonian-Early Carboniferous) in the Kalatage area in the middle of the Harlik-Dananhu arc, Eastern Tianshan, NW China in the southern CAOB, with the aim of better understanding the accretionary tectonics and genesis of porphyry and skarn-type mineralization. The Yudai porphyry Cu-(Au) deposits and the Xierqu skarn Cu-Fe-(Au) deposits are closely associated with Middle Devonian adakitic diorite porphyries (382-390 Ma), which are calc-alkaline and characterized by high Na2O/K2O ratios and Sr contents (310-1020 ppm), strong depletion of HREE (e.g., Yb = 0.80-1.44 ppm) and Y (7.68-14.50 ppm), and all enriched in Rb, Sr, Ba, K and depleted in Nb and Ti. They are characterized by distinctive Eu positive anomalies, high Na2O contents and MORB-like Sr and Nd isotope signatures (high εNd(t) = +6.1 to +7.0 and low (87Sr/86Sr)i = 0.70412-0.70462). These adakites most likely formed by melting of a young/hot subducted oceanic slab, and adakites in general are important carriers of porphyry Cu ± (Au) deposits. Early Carboniferous adakites in the Tuwu area south of Kalatage are known to have similar features. Therefore, skarn-mineralized porphyry adakites get younger from north to south, suggesting southward migration of the Harlik-Dananhu arc from 390 Ma to 322 Ma. These data indicate that partial melting of hot (and/or young) oceanic crustal slabs were an important mechanism of accretionary crustal growth and mineralization in the southern CAOB.

  16. Origin of ore-forming fluids of the Haigou gold deposit in the eastern Central Asian Orogenic belt, NE China: Constraints from H-O-He-Ar isotopes

    Science.gov (United States)

    Zeng, Qingdong; He, Huaiyu; Zhu, Rixiang; Zhang, Song; Wang, Yongbin; Su, Fei

    2017-08-01

    The Haigou lode deposit contains 40 t of gold at an average grade of 3.5 g/t, and is one of the largest deposits in the Jiapigou gold belt located along the eastern segment of the northern margin of the North China Craton. The deposit comprises 15 gold-bearing quartz veins hosted in a Carboniferous monzonite-monzogranite stock. Cretaceous dikes consisting of diorite, diabase, and granodiorite porphyries are well developed in the deposit. The diorite porphyry dikes (130.4 ± 6.3 Ma) occur together with gold-bearing quartz veins in NNE- and NE-striking faults. Gold-bearing quartz veins crosscut the diorite porphyry dikes, and the veins are in turn crosscut by E-W-striking 124.6 ± 2.2 Ma granodiorite porphyry dikes. The mineralization mainly occurs as auriferous quartz veins with minor amounts of sulfide minerals, including pyrite, galena, chalcopyrite, and molybdenite. Gold occurs as either native gold or calaverite. Common gangue minerals in the deposit include quartz, sericite, and calcite. The deposit is characterized by various types of hydrothermal alteration, including silicification, sericitization, chloritization, potassic alteration, and carbonatization. Three stages of hydrothermal activity have been recognized in the deposit: (1) a barren quartz stage; (2) a polymetallic sulfide (gold) stage; (3) a calcite stage. Fluid inclusions in hydrothermal pyrites have 3He/4He ratios of 0.3 to 3.3 Ra and 40Ar/36Ar ratios of 351 to 1353, indicating mixing of fluids of mantle and crustal origin. Hydrothermal quartz yielded δ18O values of -1.3‰ to +7.2‰ and δD values of fluid inclusions in the quartz vary between -80‰ and -104‰. These stable isotope data also suggest mixing of magmatic and meteoric fluids. Noble gas and stable isotopic data suggest that the ore fluids have a predominant mantle source with a significant crustal component. Based on the spatial association of gold-bearing quartz veins with early Cretaceous intrusions, and the H-O-He-Ar isotopic

  17. EARLY PRECAMBRIAN CRUSTAL EVOLUTION OF THE BELOMORIAN AND TRANS-NORTH CHINA OROGENS AND SUPERCONTINENTS RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    A. I. Slabunov

    2017-01-01

    Full Text Available Comparative analysis of the crustal evolution of the Early Precambrian Belomorian and Trans-North China orogens (Fig. 1 has shown [Slabunov et al., 2015] that: Both belts were formed by the superposition of two Precambrian orogenies. The earth crust of the Belomorian belt was produced during the Mesoarchaean to Neoarchaean Belomorian collisional orogeny [Slabunov, 2008; Slabunov et al., 2006] and then was reworked during the Palaeoproterozoic Lapland-Kola collisional orogeny [Daly at al., 2006; Balagansky et al., 2014]. The earth crust of the Trans-North China orogen was formed during a Neoarchean accretionary orogeny and then was reworked during a Paleoproterozoic collisional orogeny [Zhao et al., 2012; Guo et al., 2012, 2005]. The Lapland granulite belt is the core of the Lapland-Kola Palaeoproterozoic collisional orogen in the Fennoscandian shield and the Khondolite belt occupies the same tectonic position in a Palaeoproterozoic collisional orogen in the North China craton.

  18. Calcite Twins, a Tool for Tectonic Studies in Thrust Belts and Stable Orogenic Forelands Les macles de la calcite, un outil pour les études tectoniques dans les chaînes plissées et les avant-pays peu déformés des orogènes

    Directory of Open Access Journals (Sweden)

    Lacombe O.

    2010-10-01

    Full Text Available Calcite twins have been used for a long time as indicators of stress/strain orientations and magnitudes. Recent developments during the last 15 years point toward significant improvements of existing techniques as well as new applications of calcite twin analysis in thrust belts and forelands. This paper summarizes the principles of the most common techniques in this tectonic field and illustrates some aspects of the use of calcite twins to constrain not only stress/strain orientations and magnitudes, but also to some extent paleotemperature or paleoburial in orogenic forelands. This review is based in a large part on the studies that I conducted in various geological settings such as the forelands of Taiwan, Pyrenees, Zagros, Rockies and Albanides orogens. The contribution of calcite twin analysis to the understanding of the intraplate stress transmission away from plate boundaries is also emphasized. Les macles de la calcite sont utilisees depuis longtemps comme indicateurs de paleocontraintes et comme marqueurs de la deformation finie, en orientations comme en grandeurs. Au cours des 15 dernieres annees, des ameliorations importantes des methodes d’analyses existantes ont ete realisees et ont donne lieu a de nouvelles applications dans les chaines plissees et les avant-pays peu deformes des orogenes. Cet article resume le principe des methodes les plus utilisees en tectonique et illustre quelques apports de l’analyse des macles de la calcite pour la caracterisation non seulement des orientations et des grandeurs des paleocontraintes et de la deformation finie, mais egalement dans une certaine mesure de la paleotemperature et du paleoenfouissement. Cette revue se fonde en grande partie sur les etudes regionales que j’ai effectuees dans des contextes geologiques varies, comme les avant-pays des chaines de Taiwan, des Pyrenees, du Zagros, des Rocheuses et des Albanides. Cet article discutera egalement la contribution de l’etude des

  19. GEOPHYSICS. Layered deformation in the Taiwan orogen.

    Science.gov (United States)

    Huang, T-Y; Gung, Y; Kuo, B-Y; Chiao, L-Y; Chen, Y-N

    2015-08-14

    The underthrusting of continental crust during mountain building is an issue of debate for orogens at convergent continental margins. We report three-dimensional seismic anisotropic tomography of Taiwan that shows a nearly 90° rotation of anisotropic fabrics across a 10- to 20-kilometer depth, consistent with the presence of two layers of deformation. The upper crust is dominated by collision-related compressional deformation, whereas the lower crust of Taiwan, mostly the crust of the subducted Eurasian plate, is dominated by convergence-parallel shear deformation. We interpret this lower crustal shearing as driven by the continuous sinking of the Eurasian mantle lithosphere when the surface of the subducted plate is coupled with the orogen. The two-layer deformation clearly defines the role of subduction in the formation of the Taiwan mountain belt. Copyright © 2015, American Association for the Advancement of Science.

  20. The adder (Vipera berus in Southern Altay Mountains: population characteristics, distribution, morphology and phylogenetic position

    Directory of Open Access Journals (Sweden)

    Shaopeng Cui

    2016-08-01

    Full Text Available As the most widely distributed snake in Eurasia, the adder (Vipera berus has been extensively investigated in Europe but poorly understood in Asia. The Southern Altay Mountains represent the adder’s southern distribution limit in Central Asia, whereas its population status has never been assessed. We conducted, for the first time, field surveys for the adder at two areas of Southern Altay Mountains using a combination of line transects and random searches. We also described the morphological characteristics of the collected specimens and conducted analyses of external morphology and molecular phylogeny. The results showed that the adder distributed in both survey sites and we recorded a total of 34 sightings. In Kanas river valley, the estimated encounter rate over a total of 137 km transects was 0.15 ± 0.05 sightings/km. The occurrence of melanism was only 17%. The small size was typical for the adders in Southern Altay Mountains in contrast to other geographic populations of the nominate subspecies. A phylogenetic tree obtained by Bayesian Inference based on DNA sequences of the mitochondrial cytochrome b (1,023 bp grouped them within the Northern clade of the species but failed to separate them from the subspecies V. b. sachalinensis. Our discovery extends the distribution range of V. berus and provides a basis for further researches. We discuss the hypothesis that the adder expands its distribution border to the southwest along the mountains’ elevation gradient, but the population abundance declines gradually due to a drying climate.

  1. Metallogenic relationships to tectonic evolution - the Lachlan Orogen, Australia

    Science.gov (United States)

    Bierlein, Frank P.; Gray, David R.; Foster, David A.

    2002-08-01

    Placing ore formation within the overall tectonic framework of an evolving orogenic system provides important constraints for the development of plate tectonic models. Distinct metallogenic associations across the Palaeozoic Lachlan Orogen in SE Australia are interpreted to be the manifestation of interactions between several microplates and three accretionary complexes in an oceanic back-arc setting. In the Ordovician, significant orogenic gold deposits formed within a developing accretionary wedge along the Pacific margin of Gondwana. At the same time, major porphyry Cu-Au systems formed in an oceanic island arc outboard of an evolved magmatic arc that, in turn, gave rise to granite-related Sn-W deposits in the Early Silurian. During the ongoing evolution of the orogen in the Late Silurian to Early Devonian, sediment-hosted Cu-Au and Pb-Zn deposits formed in short-lived intra-arc basins, whereas a developing fore-arc system provided the conditions for the formation of several volcanogenic massive sulphide deposits. Inversion of these basins and accretion to the Australian continental margin triggered another pulse of orogenic gold mineralisation during the final consolidation of the orogenic belt in the Middle to Late Devonian.

  2. Changes in Lipid Oxidation and Fatty Acids in Altay Sheep Fat during a Long Time of Low Temperature Storage.

    Science.gov (United States)

    Li, Yu; Li, Ying Biao; Liu, Cheng Jiang

    2017-04-03

    Previously, we have shown that the fatty acid composition of Altay sheep tail fat is of reasonable value and is suitable for further development of possible commercial products. Changes in lipids of Altay sheep tail fat during 50 days of 4°C refrigerated storage were investigated. Lipid oxidation and lipolysis occurred during the storage. The pH showed a continually decreased from first day to the end of the storage (p acid-reactive substances (TBARS). The increase PV was observed in Altay sheep fat up to 24 days of storage and decreased from then to the day 30 (p acids identified by GS-MS demonstrated that saturated fatty acids increased from 43.6% to 56.3% and that polyunsaturated fatty acids and monounsaturated fatty acids decreased form 51.2% to 43.7% and from 2.4% to 2.1%, respectively. The content of the functional fatty acids except (C18:2 n-9), started to decrease after 20 days of storage. Those changes indicated that lipid oxidation occurred in Altay sheep tail fat during a long time of low temperature storage. In addition, the good correlation between PV/TBARS values and changes of individual fatty acids could be used as an indicator to monitor the changes of the unsaturated fatty acid during the development process of Altay sheep tail fat-related commercial products.

  3. Apatite fission track dating and thermal history of Qing-He region in Altay Mountains

    International Nuclear Information System (INIS)

    Bao Zengkuan; Chinese Academy of Sciences, Beijing; Yuan Wanming; Dong Jinquan; Gao Shaokai

    2005-01-01

    Fission track ages (FTA) and track lengths of apatite from Qing-He diorite intrusion in Altay Mountains are measured. Apatite fission track ages of three diorite samples is range from (78±5) Ma to (95 ± 5) Ma, and the lengths of horizontal confined spontaneous fission tracks are (13.2 ± 1.2)-(13.5 ±1.3) μm. The distribution of the track length is narrow and symmetrical with a mean length of approximately 13.3 μm and a standard deviation of around 0.1 μm. The inverse modeling results show that thermal history of this region has four stages, two rapid uplift of this region still existed magmatic intrusion and tectonic movements in Yanshanian. (authors)

  4. Orogenic, Ophiolitic, and Abyssal Peridotites

    Science.gov (United States)

    Bodinier, J.-L.; Godard, M.

    2003-12-01

    "Tectonically emplaced" mantle rocks include subcontinental, suboceanic, and subarc mantle rocks that were tectonically exhumed from the upper mantle and occur:(i) as dispersed ultramafic bodies, a few meters to kilometers in size, in suture zones and mountain belts (i.e., the "alpine," or "orogenic" peridotite massifs - De Roever (1957), Thayer (1960), Den Tex (1969));(ii) as the lower ultramafic section of large (tens of kilometers) ophiolite or island arc complexes, obducted on continental margins (e.g., the Oman Ophiolite and the Kohistan Arc Complex - Coleman (1971), Boudier and Coleman (1981), Burg et al. (1998));(iii) exhumed above the sea level in ocean basins (e.g., Zabargad Island in the Red Sea, St. Paul's islets in the Atlantic and Macquarie Island in the southwestern Pacific - Tilley (1947), Melson et al. (1967), Varne and Rubenach (1972), Bonatti et al. (1981)).The "abyssal peridotites" are samples from the oceanic mantle that were dredged on the ocean floor, or recovered from drill cores (e.g., Bonatti et al., 1974; Prinz et al., 1976; Hamlyn and Bonatti, 1980).Altogether, tectonically emplaced and abyssal mantle rocks provide insights into upper mantle compositions and processes that are complementary to the information conveyed by mantle xenoliths (See Chapter 2.05). They provide coverage to vast regions of the Earth's upper mantle that are sparsely sampled by mantle xenoliths, particularly in the ocean basins and beneath passive continental margins, back-arc basins, and oceanic island arcs.Compared with mantle xenoliths, a disadvantage of some tectonically emplaced mantle rocks for representing mantle compositions is that their original geodynamic setting is not exactly known and their significance is sometimes a subject of speculation. For instance, the provenance of orogenic lherzolite massifs (subcontinental lithosphere versus upwelling asthenosphere) is still debated (Menzies and Dupuy, 1991, and references herein), as is the original setting

  5. Granulite belts of Central India with special reference to the Bhopalpatnam Granulite Belt: Significance in crustal evolution and implications for Columbia supercontinent

    Science.gov (United States)

    Vansutre, Sandeep; Hari, K. R.

    2010-11-01

    The Central Indian collage incorporates the following major granulite belts: (1) the Balaghat-Bhandara Granulite Belt (BBG), (2) the Ramakona-Katangi Granulite Belt (RKG), (3) the Chhatuabhavna Granulite (CBG) of Bilaspur-Raigarh Belt, (4) the Makrohar Granulite Belt (MGB) of Mahakoshal supracrustals, (5) the Kondagaon Granulite Belt (KGGB), (6) the Bhopalpatnam Granulite Belt (BGB), (7) the Konta Granulite Belt (KTGB) and (8) the Karimnagar Granulite Belt (KNGB) of the East Dharwar Craton (EDC). We briefly synthesize the general geologic, petrologic and geochronologic features of these belts and explain the Precambrian crustal evolution in Central India. On the basis of the available data, a collisional relationship between Bastar craton and the EDC during the Paleo-Mesoproterozoic is reiterated as proposed by the earlier workers. The tectonic evolution of only few of the orogenic belts (BGB in particular) of Central India is related to Columbia.

  6. Ecosystem Services Evaluation and Its Spatial Characteristics in Central Asia’s Arid Regions: A Case Study in Altay Prefecture, China

    Directory of Open Access Journals (Sweden)

    Qi Fu

    2015-06-01

    Full Text Available Ecosystem services are important foundations to realize the sustainable development of economy and society. The question of how to quantitatively evaluate ecosystem services in a scientific way is a hot topic among international researchers. Studying the spatial characteristics of ecosystem services in arid regions can provide the theoretical and practical basis for coordinating a sustainable man-land relationship. Altay Prefecture of China, a typical arid region in Central Asia, was taken as the study area. It is on the Silk Road economic belt, which is a key region in the program of developing Western China. Three ecosystem services: water yield, soil conservation, and net primary productivity were quantitatively evaluated. The results show that (1 the spatial distribution pattern has a distinct characteristic of zonality; (2 mountain zone and mountain-oasis ecotone are the hotspots of ecosystem services; and (3 the correlation between water yield and net primary productivity shows a gradual increasing trend as altitude decreases. Objective analysis from the aspect of mechanism is given by discussing the causes of this particular pattern. It is found that altitude and slope have great influence on spatial distributions of ecosystem services, zones with the most amount of services are distributed in 1.5–2 km-altitude and 15–25°-slope. Different human activities in different regions and spatial distance decay of ecosystem services also contribute to the formation of spatial pattern. Thus, overgrazing, logging and mining are prohibited in mountain zones and mountain-oasis ecotones. Scholars are encouraged to focus on desert-ecosystem services in the future.

  7. U-Pb age and Hf isotopic data of detrital zircons from the Devonian and Carboniferous sandstones in Yimin area, NE China: New evidences to the collision timing between the Xing'an and Erguna blocks in eastern segment of Central Asian Orogenic Belt

    Science.gov (United States)

    Han, Guoqing; Liu, Yongjiang; Neubauer, Franz; Bartel, Esther; Genser, Johann; Feng, Zhiqiang; Zhang, Li; Yang, Mingchun

    2015-01-01

    New U-Pb age data and Hf isotope systematics on zircons from Middle Devonian and Lower Carboniferous units from NE China provide evidence for the depositional age of these poorly constrained units as well as for the timing of the collision between the Erguna (Ergun in some references) and Xing'an blocks in the eastern end of Central Asian Orogenic Belt (CAOB). The detrital zircons from the Devonian and Carboniferous sandstones yielded similar age spectra in probability diagrams showing three distinct peaks at ∼450 Ma, ∼500 Ma and ∼540 Ma, respectively, along with Proterozoic and Archean age groups, except for a relatively young age population at ∼360 Ma detected for zircons from the Hongshuiquan Fm. The dating results suggest that the depositional time of the Niqiuhe Fm. should be younger than Late Silurian, as indicated by the youngest 422-Ma detrital zircon from this Fm., and that of the Hongshuiguan Fm. with a youngest detrital age of ca. 338 Ma, is younger than Middle Mississippian (Visean), which is in accordance with those inferred from biostratigraphic data. These dominant age groups are widely found in the Erguna and Xing'an blocks, it is suggested that the sediments of the studied sandstones from Niuqiuhe and Hongshuiquan Fms come mainly from the Erguna and Xing'an blocks. The εHf (t) value of dated zircons from our sandstones has a wide range (-21 to 16), which shows a mixed signature of that from Paleozoic granitoids in Xing'an block (6-17) and Erguna block (-2 to 6), indicating that Erguna and Xing'an blocks had connected before the Middle Devonian deposition of the Niqiuhe Fm. (422 ± 5 Ma). Combined with the age data, we suggest that the Erguna and Xing'an blocks started to accrete at ∼540 Ma, reached the peak of collision at ∼500 Ma, and went into the post-collision stage from ∼490 to ∼450 Ma. The study provides more evidences and constraints for the early Paleozoic evolutions of the inter-continental block amalgamations and

  8. Brittle tectonic history document the late- to post-orogenic evolution in the Lufilian Arc, RDCongo

    Science.gov (United States)

    Kipata, Louis; Delvaux, Damien; Ntabwoba Sebagenzi, Mwene; Cailteux, Jean-Jacques; Sintubin, Manuel

    2013-04-01

    Pan-African orogenic processes in Centra Africa involve intracontinental collision but also late-orogenic and intraplate processes that occurred in dominantly brittle conditions and can be documented by fault kinematic analysis and paleostress reconstructions. The Congo and Tanzania cratons in Central Africa are surrounded by Pan-African belts orogenic belts which all entered almost synchronously in collision stage in the early Paleozoic. While their tectonic history up to the collision stage is increasingly better documented by ductile deformation and metamorphic studies, their late evolution remain poorly known as soon as they enter in the brittle deformation regime. This results in an incomplete understanding of the orogenic processes, especially when the transition from ductile to the brittle regime occurred at the end of the orogenic compression. In this case, the last compressional stages and the entire late orogenic extension and extensional collapse stages remain undocumented. This is the case for the Lufilian orogeny which developed along the southern margin of the Congo Craton in Central Africa during the pan-African and was marked by a collisional event with crustal thickening and white schist formation at 550-530 Ma. The Lufilian Arc which forms the external part of the Lufilian orogeny developed as an arcuate fold-and-thrust belt. Its foreland is formed by the Kundelungu plateau, between the Bangweulu block and the Kibaran belt. This entire region is also tectonically active, as part of the incipient SW branch of the East African rift system. The long period between the paroxysm of the Lufilian orogeny and the late Neogene to Quaternary rifting has been investigated by fault-kinematic analysis and paleostress reconstruction in open mines spread over the entire arc and foreland. Paleostress tensors were computed from 23 sites totaling 1900 fault-slip data by interactive stress tensor inversion and data subset separation, and a succession of 8 brittle

  9. In-situ observations and modeling of spring snowmelt processes in an Altay Mountains river basin

    Science.gov (United States)

    Wu, Xuejiao; Wang, Ninglian; Shen, Yongping; He, Jianqiao; Zhang, Wei

    2014-01-01

    Snowmelt is a principal source for ground-water recharge and stream flows in mountainous regions of northwestern China. Knowledge of the timing, magnitude, and processes of snowmelt under changing climate conditions is required for appropriate water resource management. The Utah energy balance (UEB) model was used to simulate the development and melting of spring (March 2012) snow cover at an observation site in the Kayiertesi River Basin in the Altay Mountains in Xinjiang. The modeled results were validated by field measurements and remotely sensed data. Results show that the simulation of the snowmelt process lasted for 24 days and the modeled snow water equivalent (SWE) closely matched the observed SWE, with a mean relative error of 7.2%. During the snowmelt process, net radiation was the major energy source of the snow layer. The variation of the snowmelt outflow was closely related to the snowmelt amounts and air temperature. The initial results of this modeling process show that our calibrated parameters were reasonable and the UEB model can be used for simulating and forecasting peak snowmelt outflows in this region.

  10. Orogenic structural inheritance and rifted passive margin formation

    Science.gov (United States)

    Salazar Mora, Claudio A.; Huismans, Ritske S.

    2016-04-01

    Structural inheritance is related to mechanical weaknesses in the lithosphere due to previous tectonic events, e.g. rifting, subduction and collision. The North and South Atlantic rifted passive margins that formed during the breakup of Western Gondwana, are parallel to the older Caledonide and the Brasiliano-Pan-African orogenic belts. In the South Atlantic, 'old' mantle lithospheric fabric resulting from crystallographic preferred orientation of olivine is suggested to play a role during rifted margin formation (Tommasi and Vauchez, 2001). Magnetometric and gravimetric mapping of onshore structures in the Camamu and Almada basins suggest that extensional faults are controlled by two different directions of inherited older Brasiliano structures in the upper lithosphere (Ferreira et al., 2009). In the South Atlantic Campos Basin, 3D seismic data indicate that inherited basement structures provide a first order control on basin structure (Fetter, 2009). Here we investigate the role of structural inheritance on the formation of rifted passive margins with high-resolution 2D thermo-mechanical numerical experiments. The numerical domain is 1200 km long and 600 km deep and represents the lithosphere and the sublithospheric mantle. Model experiments were carried out by creating self-consistent orogenic inheritance where a first phase of orogen formation is followed by extension. We focus in particular on the role of varying amount of orogenic shortening, crustal rheology, contrasting styles of orogen formation on rifted margin style, and the time delay between orogeny and subsequent rifted passive formation. Model results are compared to contrasting structural styles of rifted passive margin formation as observed in the South Atlantic. Ferreira, T.S., Caixeta, J.M., Lima, F.D., 2009. Basement control in Camamu and Almada rift basins. Boletim de Geociências da Petrobrás 17, 69-88. Fetter, M., 2009. The role of basement tectonic reactivation on the structural evolution

  11. Spatial and temporal characterization of progressive deformation during orogenic growth: Example from the Fuegian Andes, southern Argentina

    Science.gov (United States)

    Torres Carbonell, Pablo J.; Cao, Sebastián J.; Dimieri, Luis V.

    2017-06-01

    Superposed structural fabrics in the easternmost Fuegian Andes reveal two distinct, non-coaxial deformation phases across the transition from the orogenic core to the thrust-fold belt. Each phase is characterized by different metamorphic conditions and consistently different orientations, which allow the structural correlation between the orogenic core and the internal thrust-fold belt. The first deformation phase was coeval with regional metamorphism reaching upper greenschist facies, and featured simple shear deformation of the basement (Paleozoic and Jurassic) and cover (Cretaceous) in the top of the underthrusting South American plate. The second phase developed during collision of the orogenic wedge with the Río Chico Arch, a promontory in the underthrusting plate; this phase was characterized by thrust sheet emplacement and formation of a crustal duplex, with rock uplift and consequent low to very-low grade metamorphism. Buttressing against the Río Chico Arch is responsible for the change in shortening orientation that distinguishes both phases.

  12. Some aspects of the role of rift inheritance on Alpine-type orogens

    Science.gov (United States)

    Tugend, Julie; Manatschal, Gianreto; Mohn, Geoffroy; Chevrot, Sébastien

    2017-04-01

    Processes commonly recognized as fundamental for the formation of collisional orogens include oceanic subduction, arc-continent and continent-continent collision. As collisional belts result from the closure of oceanic basins and subsequent inversion of former rifted margins, their formation and evolution may also in theory be closely interlinked with the initial architecture of the former rifted margins. This assumption is indeed more likely to be applicable in the case of Alpine-type orogens, mainly controlled by mechanical processes and mostly devoid of arc-related magmatism. More and more studies from present-day magma-poor rifted margins illustrate the complex evolution of hyperextended domains (i.e. severely thinned continental crust (images across the Pyrenees (PYROPE) and the Alps (CIFALPS) reveal a surprisingly comparable present-day overall crustal and lithospheric structure. Based on the comparison between the two orogens we discuss: (1) the nature and depth of decoupling levels inherited from hyperextension; (2) the implications for restorations and interpretations of orogenic roots (former hyperextended domains vs. lower crust only); and (3) the nature and major role of buttresses in controlling the final stage of collisional processes. Eventually, we discuss the variability of the role of rift-inheritance in building Alpine-type orogens. The Pyrenees seem to represent one extreme, where rift-inheritance is important at different stages of collisional processes. In contrast, in the Alps the role of rift-inheritance is subtler, likely because of its more complex and polyphase compressional deformation history.

  13. Tectonic stress evolution in the Pan-African Lufilian Arc and its foreland (Katanga, DRC): orogenic bending, late orogenic extensional collapse and transition to rifting

    Science.gov (United States)

    Kipata, M. L.; Delvaux, D.; Sebagenzi, M. N.; Cailteux, J.; Sintubin, M.

    2012-04-01

    Between the paroxysm of the Lufilian orogeny at ~ 550 Ma and the late Neogene to Quaternary development of the south-western branch of the East African rift system, the tectonic evolution of the Lufilian Arc and Kundelungu foreland in the Katanga region of the Democratic Republic of Congo remains poorly unknown although it caused important Cu-dominated mineral remobilizations leading to world-class ore deposits. This long period is essentially characterized by brittle tectonic deformations that have been investigated by field studies in open mines spread over the entire arc and foreland. Paleostress tensors were computed for a database of 1450 fault-slip data by interactive stress tensor inversion and data subset separation, and the relative succession of 8 brittle deformation events established. The oldest brittle structures observed are related to the Lufilian brittle compressional climax (stage 1). They have been re-oriented during the orogenic bending that led to the arcuate shape of the belt. Unfolding the stress directions from the first stage allows to reconstruct a consistent NE-SW direction of compression for this stage. Constrictional deformation occurred in the central part of the arc, probably during orogenic bending (Stage 2). After the orogenic bending, a sequence of 3 deformation stages marks the progressive onset of late-orogenic extension: strike-slip deformations (stages 3-4) and late-orogenic arc-parallel extension (stage 5). It is proposed that these 3 stages correspond to orogenic collapse. In early Mesozoic, NW-SE compression was induced by a transpressional inversion, interpreted as induced by far-field stresses generated at the southern active margin of Gondwana (stage 6). Since then, this region was affected by rift-related extension, successively in a NE-SW direction (stage 7, Tanganyika trend) and NW-SE direction (stage 8, Moero trend).

  14. Granite ascent and emplacement during contractional deformation in convergent orogens

    Science.gov (United States)

    Brown, Michael; Solar, Gary S.

    1998-09-01

    Based on a case study in the Central Maine Belt of west-central Maine, U.S.A., it is proposed that crustal-scale shear zone systems provide an effective focussing mechanism for transfer of granite melt through the crust in convergent orogens. During contractional deformation, flow of melt in crustal materials at depths below the brittle-plastic transition is coupled with plastic deformation of these materials. The flow is driven by pressure gradients generated by buoyancy forces and tectonic stresses. Within the oblique-reverse Central Maine Belt shear zone system, stromatic migmatite and concordant to weakly discordant irregular granite sheets occur in zones of higher strain, which suggests percolative flow of melt to form the migmatite leucosomes and viscous flow of melt channelized in sheet-like bodies, possibly along fractures. Cyclic fluctuations of melt pressure may cause instantaneous changes in the effective permeability of the flow network if self-propagating melt-filled tensile and/or dilatant shear fractures are produced due to melt-enhanced embrittlement. Inhomogeneous migmatite and schlieric granite occur in zones of lower strain, which suggests migration of partially-molten material through these zones en masse by granular flow, and channelized flow of melt carrying entrained residue. Founded on the Central Maine Belt case study, we develop a model of melt extraction and ascent using the driving forces, stress conditions and crustal rheologies in convergent, especially transpressive orogens. Ascent of melt becomes inhibited with decreasing depth as the solidus is approached. For intermediate a(H 2O) muscovite-dehydration melting, the water-saturated solidus occurs between 400 and 200 MPa, near the brittle-plastic transition during high- T-low- P metamorphism, where the balance of forces favors (sub-) horizontal fracture propagation. Emplacement of melt may be accommodated by ductile flow and/or stoping of wall rock, and inflation may be accommodated

  15. Thermal history of the Tiereketi batholith in Altay Mountains, northern Xinjiang: evidence from apatite fission track analysis

    International Nuclear Information System (INIS)

    Yuan Wanming; Dong Jinquan; Tang Yunhui; Bao Zengkuan

    2003-01-01

    The result of fission track analysis of 4 apatite samples collected from Tiereketi granite-batholith in Altay Mountains, northern Xinjiang, shows a three stages of thermal history. First, before 120 Ma the temperature was 105-130∼90-120; second, the temperature quite ranged from 90-120 to 20-65 during 60-120 Ma and third, it was 20-65∼12-18 since 60 Ma. The 60~90 Ma was a rapid cooling and uplift stage, with cooling rate of 2.5-3.23/Ma and uplift rate of 3.3-107.7 m/Ma. The rapid uplift during the 60-120 Ma and the apatite fission track age of 80.4-91.9 Ma indicate that there was a intracontinental press-orogeny in about 60-120 Ma, which is a new understand. (authors)

  16. Post-collisional magmatism in the central East African Orogen: The Maevarano Suite of north Madagascar

    Science.gov (United States)

    Goodenough, K.M.; Thomas, Ronald J.; De Waele, B.; Key, R.M.; Schofield, D.I.; Bauer, W.; Tucker, R.D.; Rafahatelo, J.-M.; Rabarimanana, M.; Ralison, A.V.; Randriamananjara, T.

    2010-01-01

    Late tectonic, post-collisional granite suites are a feature of many parts of the Late Neoproterozoic to Cambrian East African Orogen (EAO), where they are generally attributed to late extensional collapse of the orogen, accompanied by high heat flow and asthenospheric uprise. The Maevarano Suite comprises voluminous plutons which were emplaced in some of the tectonostratigraphic terranes of northern Madagascar, in the central part of the EAO, following collision and assembly during a major orogeny at ca. 550 Ma. The suite comprises three main magmatic phases: a minor early phase of foliated gabbros, quartz diorites, and granodiorites; a main phase of large batholiths of porphyritic granitoids and charnockites; and a late phase of small-scale plutons and sheets of monzonite, syenite, leucogranite and microgranite. The main phase intrusions tend to be massive, but with variably foliated margins. New U-Pb SHRIMP zircon data show that the whole suite was emplaced between ca. 537 and 522 Ma. Geochemically, all the rocks of the suite are enriched in the LILE, especially K, and the LREE, but are relatively depleted in Nb, Ta and the HREE. These characteristics are typical of post-collisional granitoids in the EAO and many other orogenic belts. It is proposed that the Maevarano Suite magmas were derived by melting of sub-continental lithospheric mantle that had been enriched in the LILE during earlier subduction events. The melting occurred during lithospheric delamination, which was associated with extensional collapse of the East African Orogen. ?? 2009 Natural Environment Research Council.

  17. Two Explanations of Curvature in Variscan Orogen of Moravia: Terrane Segmentation With Clockwise Rotation Vs. Strong Effect of the Moravian Shear Zone

    Czech Academy of Sciences Publication Activity Database

    Hladil, Jindřich; Melichar, R.

    1999-01-01

    Roč. 99, č. 1 (1999), s. 106-107 ISSN 0946-8978. [Old Crust - New Problems: Geodynamics and Utilization Includes the final international colloquium of the DFG priority programme Orogenic Processes Quantification and Modeling in the Variscan Belt. 22.02.1999-26.02.1999, Freiberg/ Saxony ] Subject RIV: DB - Geology ; Mineralogy

  18. Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution

    Science.gov (United States)

    Fritz, H.; Abdelsalam, M.; Ali, K. A.; Bingen, B.; Collins, A. S.; Fowler, A. R.; Ghebreab, W.; Hauzenberger, C. A.; Johnson, P. R.; Kusky, T. M.; Macey, P.; Muhongo, S.; Stern, R. J.; Viola, G.

    2013-10-01

    The East African Orogen, extending from southern Israel, Sinai and Jordan in the north to Mozambique and Madagascar in the south, is the world´s largest Neoproterozoic to Cambrian orogenic complex. It comprises a collage of individual oceanic domains and continental fragments between the Archean Sahara-Congo-Kalahari Cratons in the west and Neoproterozoic India in the east. Orogen consolidation was achieved during distinct phases of orogeny between ∼850 and 550 Ma. The northern part of the orogen, the Arabian-Nubian Shield, is predominantly juvenile Neoproterozoic crust that formed in and adjacent to the Mozambique Ocean. The ocean closed during a protracted period of island-arc and microcontinent accretion between ∼850 and 620 Ma. To the south of the Arabian Nubian Shield, the Eastern Granulite-Cabo Delgado Nappe Complex of southern Kenya, Tanzania and Mozambique was an extended crust that formed adjacent to theMozambique Ocean and experienced a ∼650-620 Ma granulite-facies metamorphism. Completion of the nappe assembly around 620 Ma is defined as the East African Orogeny and was related to closure of the Mozambique Ocean. Oceans persisted after 620 Ma between East Antarctica, India, southern parts of the Congo-Tanzania-Bangweulu Cratons and the Zimbabwe-Kalahari Craton. They closed during the ∼600-500 Ma Kuungan or Malagasy Orogeny, a tectonothermal event that affected large portions of southern Tanzania, Zambia, Malawi, Mozambique, Madagascar and Antarctica. The East African and Kuungan Orogenies were followed by phases of post-orogenic extension. Early ∼600-550 Ma extension is recorded in the Arabian-Nubian Shield and the Eastern Granulite-Cabo Delgado Nappe Complex. Later ∼550-480 Ma extension affected Mozambique and southern Madagascar. Both extension phases, although diachronous,are interpreted as the result of lithospheric delamination. Along the strike of the East African Orogen, different geodynamic settings resulted in the evolution of

  19. Continental Collision Structures and Post-Orogenic Geological History of the Kangerlussuaq Area in the Southern Part of the Nagssugtoqidian Orogen, Central West Greenland

    Directory of Open Access Journals (Sweden)

    Jon Engström

    2014-12-01

    Full Text Available Deep-seated continental collision sutures, formed at a depth of more than 20 km, are exposed near Kangerlussuaq, close to the Greenland ice cap, on the southern margin of the Nagssugtoqidian orogen in Central West Greenland, thus offering a rare opportunity to study the tectonic deformation style of such an orogen. This paper adds new information on the tectonic history of the southern flank of the Nagssugtoqidian orogen. It focuses on (1 the results of a detailed structural investigation of lineament zones revealed from remote sensing of geophysical and topographic data and aerial photo interpretation, (2 detailed geological mapping at key locations and (3 a tectonic structural model describing the geological development of the area. The area has undergone several episodes of deformation, which have been compiled into an event succession that recognizes eight tectonic events overprinting each other: Two stages of folding (F1 and F2 have been identified along with one major episode of intrusion of the Kangâmiut mafic dyke swarm (2.05 Ga into the Archaean continent. These dyke intrusions are very important, since by examining the style of deformation for these intrusions it is possible to define the transition from the North Atlantic Craton in the south to the mobile belts in the Nagssugtoqidian orogen in the north. Five different types of pronounced lineaments and one less pronounced lineament post-dating the Kangâmiut dykes extending from ductile deformation shearing events to brittle deformation with extensive faulting. These lineaments cover both the collisional and post-collisional tectonic history of the area. The study focused on two types of lineaments: one semi-ductile type trending E–W with a dextral sense of shear and a second, a pronounced lineament outlining the Kangerlussuaq–Russell thrust fault. These two features are interpreted to be related to the Nagssugtoqidian orogeny, while the latter lineaments have a more brittle

  20. Belt attachment and system

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Abraham D.; Davidson, Erick M.

    2018-03-06

    Disclosed herein is a belt assembly including a flexible belt with an improved belt attachment. The belt attachment includes two crossbars spaced along the length of the belt. The crossbars retain bearings that allow predetermined movement in six degrees of freedom. The crossbars are connected by a rigid body that attaches to the bearings. Implements that are attached to the rigid body are simply supported but restrained in pitching rotation.

  1. Belt attachment and system

    Science.gov (United States)

    Schneider, Abraham D.; Davidson, Erick M.

    2016-02-02

    Disclosed herein is a belt assembly including a flexible belt with an improved belt attachment. The belt attachment includes two crossbars spaced along the length of the belt. The crossbars retain bearings that allow predetermined movement in six degrees of freedom. The crossbars are connected by a rigid body that attaches to the bearings. Implements that are attached to the rigid body are simply supported but restrained in pitching rotation.

  2. On thrusting, regional unconformities and exhumation of high-grade greenstones in Neoarchean orogens. The case of the Waroonga Shear Zone, Yilgarn Craton

    Science.gov (United States)

    Zibra, I.; Korhonen, F. J.; Peternell, M.; Weinberg, R. F.; Romano, S. S.; Braga, R.; De Paoli, M. C.; Roberts, M.

    2017-08-01

    During the Neoarchean, the dominant tectonic style progressively changed from an episodic-overturn/stagnant-lid regime to modern-style plate tectonics. The Neoarchean strengthening of continental lithosphere changed the style of deformation of orogenic belts. The case study presented here provides insights into how such transition in tectonic style occurred, a matter that is generally controversial. We present structural and metamorphic data from the c. 2660 Ma Waroonga Shear Zone (WSZ) in the Neoarchean Yilgarn orogen (Western Australia). The WSZ contains a syntectonic pluton and older, high-grade greenstones. The tectonic fabric in the pluton developed during melt-present thrusting, followed by syn-cooling wrench-dominated transpression. Mafic greenstones preserve three metamorphic assemblages. The M1 assemblage (Grt-Cpx-Qtz) records peak P-T conditions of 12 ± 1 kbar and 800 ± 50 °C, followed by isothermal decompression to 9 kbar (M2). These anhydrous assemblages might predate the WSZ. Greenstones then underwent decompression at c. 2660 Ma (3-4 kbar; 600-650 °C), defined by the amphibole-rich M3 assemblage, synkinematic with the tectonic fabric in the WSZ. We show that shearing along the WSZ exhumed these greenstones by at least 10 km, inducing major uplift and erosion. Archean accretionary orogens developed on weak lithosphere, where deformation suppressed crustal thickening, orogenic relief and synorogenic exhumation of orogenic roots. However, our study indicates a genetic link between (i) strain localization along contractional structures, inducing large-scale uplift; (ii) exhumation of high-grade greenstones; (iii) development of inverse metamorphic gradients; (iv) establishment of a regional unconformity, with clastic sediments fed by the uplifted terrane; (v) incorporation of portions of the newly-formed orogenic basins into the footwall of the WSZ. These features imply that the Yilgarn orogenic lithosphere at c. 2660 Ma was stiff enough to allow

  3. Active Seismic Monitoring Using High-Power Moveable 40-TONS Vibration Sources in Altay-Sayn Region of Russia

    Science.gov (United States)

    Soloviev, V. M.; Seleznev, V. S.; Emanov, A. F.; Kashun, V. N.; Elagin, S. A.; Romanenko, I.; Shenmayer, A. E.; Serezhnikov, N.

    2013-05-01

    determined variations in velocities of longitudinal and transverse waves. Both from 100-tons and 40-tons vibration sources there are distinctly determined annual and semiannual variations, and also variations of 120 and 90 days. There is determined correlations of revealed variations of P- and S-wave velocities with drowning of the upper part of the Earth`s crust because of season changes of water volumes in the biggest Novosibirsk water reservoir. There were carried out experiments on aperture widening of operating vibroseismic observations in seismic active zones of the South of Altay. All these results prove possibility of using moveable collapsible 40-tons vibration sources for active monitoring of seismic dangerous zones, nuclear power plants, nuclear waste storage etc.

  4. Lap belts and three-point belts.

    NARCIS (Netherlands)

    Kampen, L.T.B. van & Edelman, A.

    1975-01-01

    Results of the swov-accident investigation prove that if there are any differences in the effectiveness of lap belts and three-point belts, these are so small that they cannot form a basis for giving preference to one type over the other. Furthermore, in spite of the results of this investigation

  5. Carboniferous rifted arcs leading to an archipelago of multiple arcs in the Beishan-Tianshan orogenic collages (NW China)

    Science.gov (United States)

    Tian, Zhonghua; Xiao, Wenjiao; Windley, Brian F.; Zhang, Ji'en; Zhang, Zhiyong; Song, Dongfang

    2017-10-01

    The Beishan and East Tianshan Orogenic Collages in the southernmost Central Asian Orogenic Belt (CAOB) record the final stages of evolution of the Paleo-Asian Ocean. These collages and their constituent arcs have an important significance for resolving current controversies regarding their tectonic setting and age, consequent accretionary history of the southern CAOB, and the closure time of the Paleo-Asian Ocean. In this paper, we present our work on the southern Mazongshan arc and the northern Hongyanjing Basin in the Beishan Orogenic Collage (BOC), and our comparison with the Bogda arc and associated basins in the East Tianshan Orogenic Collage. Field relationships indicate that the Pochengshan fault defines the boundary between the arc and basin in the BOC. Volcanic rocks including basalts and rhyolites in the Mazongshan arc have bimodal calc-alkaline characteristics, an enrichment in large ion lithophile elements such as Rb, Ba, and Pb and depletion in high field-strength elements (e.g., Nb and Ta), which were probably developed in a subduction-related tectonic setting. We suggest that these bimodal calc-alkaline volcanic rocks formed in rifted arcs instead of post-orogenic rifts with mantle plume inputs. By making detailed geochemical comparisons between the Mazongshan arc and the Bogda arc to the west, we further propose that they are similar and both formed in arc rifts, and helped generate a Carboniferous archipelago of multiple arcs in the southern Paleo-Asian Ocean. These data and ideas enable us to postulate a new model for the tectonic evolution of the southern CAOB.

  6. Cenozoic structural evolution, thermal history, and erosion of the Ukrainian Carpathians fold-thrust belt

    Science.gov (United States)

    Nakapelyukh, Mykhaylo; Bubniak, Ihor; Bubniak, Andriy; Jonckheere, Raymond; Ratschbacher, Lothar

    2018-01-01

    The Carpathians are part of the Alpine-Carpathian-Dinaridic orogen surrounding the Pannonian basin. Their Ukrainian part constitutes an ancient subduction-accretion complex that evolved into a foreland fold-thrust belt with a shortening history that was perpendicular to the orogenic strike. Herein, we constrain the evolution of the Ukrainian part of the Carpathian fold-thrust belt by apatite fission-track dating of sedimentary and volcanic samples and cross-section balancing and restoration. The apatite fission-track ages are uniform in the inner―southwestern part of the fold-thrust belt, implying post-shortening erosion since 12-10 Ma. The ages in the leading and trailing edges record provenance, i.e., sources in the Trans-European suture zone and the Inner Carpathians, respectively, and show that these parts of the fold-thrust were not heated to more than 100 °C. Syn-orogenic strata show sediment recycling: in the interior of the fold-thrust belt―the most thickened and most deeply eroded nappes―the apatite ages were reset, eroded, and redeposited in the syn-orogenic strata closer to the fore- and hinterland; the lag times are only a few million years. Two balanced cross sections, one constructed for this study and based on field and subsurface data, reveal an architecture characterized by nappe stacks separated by high-displacement thrusts; they record 340-390 km shortening. A kinematic forward model highlights the fold-thrust belt evolution from the pre-contractional configuration over the intermediate geometries during folding and thrusting and the post-shortening, erosional-unloading configuration at 12-10 Ma to the present-day geometry. Average shortening rates between 32-20 Ma and 20-12 Ma amounted to 13 and 21 km/Ma, respectively, implying a two-phased deformation of the Ukrainian fold-thrust belt.

  7. Eastern Turkish high plateau as a small Turkic-type orogen: Implications for post-collisional crust-forming processes in Turkic-type orogens

    Science.gov (United States)

    Şengör, A. M. Celâl; Özeren, Mehmet Sinan; Keskin, Mehmet; Sakınç, Mehmet; Özbakır, Ali Değer; Kayan, İlhan

    Post-collisional magmatism may be generated by extensive crustal melting in Tibet-type collisional environments or by falling out of slabs from under giant subduction-accretion complexes in Turkic-type collisional orogens giving rise to decompression melting of the asthenospheric mantle replacing the removed oceanic lithosphere. In Turkic-type post-collisional magmatism, the magmatic products are dominantly alkalic to peralkalic and greatly resemble those of extensional regions giving rise to much confusion especially in interpreting old collisional orogenic belts. Such magmatic regions are also host to a variety of economically valuable ore deposits, including gold. One place in the world where today active, Turkic-type post-collisional magmatism is present is the eastern Anatolian high plateau, produced after the terminal Arabia/Eurasia collision in the late Miocene. The plateau is mostly underlain by the late Cretaceous to Oligocene East Anatolian Accretionary Complex, which formed south of the Rhodope-Pontide magmatic arc. This subduction-accretion complex has been further shortening since the collision, but it has also since been domed and became almost entirely covered by at least 15,000 km 3 of volcanic rocks. The volcanic rocks are calc-alkalic in the north, transitional in the middle, and alkalic in the south of the plateau. Where the crust is thinnest today (less than 38 km), the volcanics are derived almost entirely from an enriched mantle. The ages of the volcanics also become younger from north to south, from about 11 Ma to possibly 17th century AD. We interpret the origin of the magmatic rocks as the result of decompression melting of the asthenospheric mantle sucked towards the exposed base of the East Anatolian Accretionary Complex as the oceanic lithosphere beneath it fell out. The lower density of the hot asthospheric material was the cause of the doming. We believe that similar processes dominated the post-collisional tectonics of such vast

  8. Deformation of the Songshugou ophiolite in the Qinling orogen

    Science.gov (United States)

    Sun, Shengsi; Dong, Yunpeng

    2017-04-01

    The Qinling orogen, middle part of the China Central Orogenic Belt, is well documented that was constructed by multiple convergences and subsequent collisions between the North China and South China Blocks mainly based on geochemistry and geochronology of ophiolites, magmatic rocks as well as sedimentary reconstruction. However, this model is lack of constraints from deformation of subduction/collision. The Songshugou ophiolite outcropped to the north of the Shangdan suture zone represents fragments of oceanic crust and upper mantle. Previous works have revealed that the ophiolite was formed at an ocean ridge and then emplaced in the northern Qinling belt. Hence, deformation of the ophiolite would provide constraints for the rifting and subduction processes. The ophiolite consists chiefly of metamorphosed mafic and ultramafic rocks. The ultramafic rocks contain coarse dunite, dunitic mylonite and harzburgite, with minor diopsidite veins. The mafic rocks are mainly amphibolite, garnet amphibolite and amphibole schist, which are considered to be eclogite facies and retrograde metamorphosed oceanic crust. Amphibole grains in the mafic rocks exhibit a strong shape-preferred orientation parallel to the foliation, which is also parallel to the lithologic contacts between mafic and ultramafic rocks. Electron backscattered diffraction (EBSD) analyses show strong olivine crystallographic preferred orientations (CPO) in dunite including A-, B-, and C-types formed by (010)[100], (010)[001] and (100)[001] dislocation slip systems, respectively. A-type CPO suggests high temperature plastic deformation in the upper mantle. In comparison, B-type may be restricted to regions with significantly high water content and high differential stress, and C-type may also be formed in wet condition with lower differential stress. Additionally, the dunite evolved into amphibolite facies metamorphism with mineral assemblages of olivine + talc + anthophyllite. Assuming a pressure of 1.5 GPa

  9. New Sm-Nd isotopic data from the Southern Aracuai-Ribeira belt: Parabaiba Do Sul group and associated granitic intrusions

    International Nuclear Information System (INIS)

    Medeiros, Silvia Regina de; Wiedemann, Cristina Maria

    2001-01-01

    The Aracuai-Ribeira belt is a Neoproterozoic orogenic belt extending along the Brazilian Coast, bordering the eastern margin of the Sao Francisco craton (Pedrosa Soares et al., in press). In this work we start unveiling the magmatic source characteristics of the southern Espirito Santo segment of this belt through the use of new Sm-Nd data were obtained from exactly the same sample which Sollner et al. (1991), took their U-Pb and Rb-Sr measurements (the major isotopic informations available up to now) allowing thus a correlation with this previous geochronologic work, contributing for an improvement of the evolution model of the whole belt (au)

  10. Rifts, orogens, cratons, and global tectonics: Introduction

    Directory of Open Access Journals (Sweden)

    S. V. Rasskazov

    2017-01-01

    Full Text Available A key role in developing the Earth theory is played by comparative studies of orogens, rifts, and platforms in the equatorial, middle and high latitudes of Asia and the adjacent Arctic regions. The modern shape of the planet’s triaxial asymmetrical cardioid ellipsoid results from its latest (Late Phanerozoic geodynamic evolution that began in Arctic and then commenced in Asia. At this stage, mechanisms of the lithosphere extension and compression, combined with extension, were launched in Arctic and Asia, respectively. The special issue of Geodynamics & Tectonophysics presents papers on this topic.

  11. Effects of land use and climate change on ecosystem services in Central Asia's arid regions: A case study in Altay Prefecture, China.

    Science.gov (United States)

    Fu, Qi; Li, Bo; Hou, Ying; Bi, Xu; Zhang, Xinshi

    2017-12-31

    The sustainable use of ecosystem services (ES) can contribute to enhancing human well-being. Understanding the effects of land use and climate change on ES can provide scientific and targeted guidance for the sustainable use of ES. The objective of this study was to reveal the way in which land use and climate change influence the spatial and temporal variations of ES in the mountain-oasis-desert system (MODS). In this study, we assessed water yield, soil conservation, crop production, and sand fixation in 1990, 2000, and 2010 in Altay Prefecture, which is representative of the MODS, based on widely used biophysical models. Moreover, we analyzed the effects of different land use and climate change conditions on ES. The results show that the area of forest and bare land decreased in Altay Prefecture. In contrast, the area of grassland with low coverage and cropland increased. The climate of this area presented an overall warming-wetting trend, with warming-drying and cooling-wetting phenomena in some areas. Soil conservation in the mountain zone, water yield in the oasis zone, and sand fixation in the desert zone all decreased under the influence of land use change alone. The warming-drying trend led to decreased water yield in the oasis zone and increased wind erosion in the desert zone. Based on the results, we recommend that local governments achieve sustainable use of ES by planting grasslands with high coverage in the oasis zone, increasing investment in agricultural science and technology, and establishing protected areas in the mountain and desert zones. The methodology in our study can also be applied to other regions with a MODS structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. From the plutonic root to the volcanic roof of a continental magmatic arc: a review of the Neoproterozoic Araçuaí orogen, southeastern Brazil

    Science.gov (United States)

    Gonçalves, Leonardo; Alkmim, Fernando F.; Pedrosa-Soares, Antônio; Gonçalves, Cristiane C.; Vieira, Valter

    2018-01-01

    The Araçuaí-West Congo orogen (AWCO) is one of the various components of the Brasiliano/Pan-African orogenic network generated during the amalgamation of West Gondwana. In the reconstructions of Gondwana, the AWCO, encompassing the Araçuaí orogen of South America and the West Congo belt of Southwestern Africa, appears as a tongue-shaped orogenic zone embraced by the São Francisco-Congo craton. Differing from the vast majority of the known orogens owing to its singular confined setting, the AWCO contains a large amount of orogenic igneous rocks emplaced in all stages of its tectonic evolution. We present new and revised information about the oldest Ediacaran granitic assemblage, the G1 Supersuite, which together with the Rio Doce Group defines the Rio Doce magmatic arc, and then we propose a new tectonic setting for the arc. Field relationships and mineralogical compositions of the G1 Supersuite allow us to characterize three lithofacies associations, Opx-bearing rocks, enclave-rich Tonalite-Granodiorite and enclave-poor Granite-Tonalite, suggesting different crustal levels are exposed in the central part of the Araçuaí orogen. The region is interpreted to represent a tilted crustal section, with deep arc roots now exposed along its western border. Chemically, these plutonic associations consist mostly of magnesian, metaluminous to slightly peraluminous, calc-alkaline to alkali-calcic and medium- to high-K acidic rocks. The dacitic and rhyolitic rocks of the Rio Doce Group are mainly magnesian, peraluminous, calcic to calc-alkaline, and medium- to high-K acidic rocks. Zircon U-Pb data constrain the crystallization of the granitoids between ca. 625 and 574 Ma, while the age of the metamorphosed volcanic rocks is around ca. 585 Ma. Thus, within errors, these rock associations likely belong to the same magmatic event and might represent the subduction-related, pre-collisional, evolution of the Araçuaí orogen. In addition, whole-rock Sm-Nd isotopic compositions

  13. Belt drive construction improvement

    Directory of Open Access Journals (Sweden)

    I.Yu. Khomenko

    2012-08-01

    Full Text Available The possibility of the traction capacity increase of the belt drive TRK is examined. This was done for the purpose of air conditioning system of passenger car with double-generator system energy supplying. Belts XPC (made by the German firm «Continental ContiTech» testing were conducted. The results confirmed the possibility of their usage in order to improve belt drive TRK characteristics.

  14. Isotopic evidence for two neoproterozoic high-grade metamorphic events in the Brazilia belt

    International Nuclear Information System (INIS)

    Pimentel, Marcio Martins; Fuck, Reinhardt Adolfo; Piuzanna, Danielle; Moraes, Renato de; Gioia, Simone Maria C.L

    2001-01-01

    The Brasilia Belt is part of a Brasiliano/Pan African orogen developed between the Amazon and Sao Francisco cratons. The stabilization of the belt occurred after the last metamorphic event at ca. 620 Ma. There has been increasing geochronological evidence, however, for an older Neoproterozoic metamorphic event at ca. 780 Ma, observed mainly in high grade rocks of three large mafic-ultramafic complexes in the northern part of the belt. In this study we present: (i) new U-Pb and Sm-Nd geochronological data, (ii) a review of the existing metamorphic ages in the Brasilia Belt, and (iii) a discussion on the tectonic model to explain the two Neoproterozoic metamorphic ages (au)

  15. Calcite twinning strain variations across the Proterozoic Grenville orogen and Keweenaw-Kapuskasing inverted foreland, USA and Canada

    Directory of Open Access Journals (Sweden)

    John P. Craddock

    2017-11-01

    Full Text Available We report the calcite twinning strain results of a traverse across the Grenville orogen from Parry Sound, Ontario (NW to Ft. Ann, New York (SE, including the younger, adjacent Ordovician Taconic allochthon. Fifty four carbonates (marbles, calcite veins, Ordovician limestone were collected resulting in 68 strain analyses on mechanically twinned calcite (n = 2337 grains across the Central Gneiss Belt (CGB; 3 samples, the Central Metasedimentary Belt (CMB; 27 samples, the Central Granulite Terrane (CGT; Adirondack's; 13 samples and the Ottawan Orogenic Lid (OOL; 11 samples. Twinning strains in the greenschist-grade OOL marbles preserve N–S shortening and U-Pb titanite ages (∼1150 Ma; n = 4 document these marbles formed during the Shawinigan (1190–1140 Ma part of the Grenville orogen. From northwest to southeast, the Ottawan (1095–1020 Ma twinning strain is dominantly a layer-parallel shortening fabric oriented N–S (Parry Sound, then becomes parallel to the Grenville thrust direction (NW–SE across the CMB to the Adirondack Highlands where the sub-horizontal shortening strain becomes margin-parallel (SW–NE. Within the regional sample suite there are two areas studied in detail, the Bancroft shear zone (n = 11 and a roadcut on the southeast side of the Adirondack Mountains (Ft. Ann, NY; n = 8. Marbles from the Bancroft shear zone contain calcite grains with 2 sets of twin lamellae (e1 and e2. The better-developed e1 sets (n = 406 record a horizontal fabric oriented NW–SE whereas the younger e2 lamellae (n = 146 preserve a margin-parallel (SW–NE horizontal fabric. Both the e1 and e2 strains record an overprint vertical shortening strain (NEV, perhaps related to extensional orogenic collapse. We also report an Ottawan orogen-aged granoblastic mylonite (1093 Ma, U-Pb zircon; 1102 Ma Ar-Ar biotite in the Keweenaw thrust hanging wall 500 km inboard of the Grenville front and interpret the relations of Grenville

  16. Mantle refertilization and magmatism in old orogenic regions: The role of late-orogenic pyroxenites

    Science.gov (United States)

    France, Lydéric; Chazot, Gilles; Kornprobst, Jacques; Dallai, Luigi; Vannucci, Riccardo; Grégoire, Michel; Bertrand, Hervé; Boivin, Pierre

    2015-09-01

    Pyroxenites and garnet pyroxenites are mantle heterogeneities characterized by a lower solidus temperature than the enclosing peridotites; it follows that they are preferentially involved during magma genesis. Constraining their origin, composition, and the interactions they underwent during their subsequent evolution is therefore essential to discuss the sources of magmatism in a given area. Pyroxenites could represent either recycling of crustal rocks in mantle domains or mantle originated rocks (formed either by olivine consuming melt-rock reactions or by crystal fractionation). Petrological and geochemical (major and trace elements, Sr-Nd and O isotopes) features of xenoliths from various occurrences (French Massif-Central, Jordan, Morocco and Cameroon) show that these samples represent cumulates crystallized during melt percolation at mantle conditions. They formed in mantle domains at pressures of 1-2 GPa during post-collisional magmatism (possibly Hercynian for the French Massif-Central, and Panafrican for Morocco, Jordan and Cameroon). The thermal re-equilibration of lithospheric domains, typical of the late orogenic exhumation stages, is also recorded by the samples. Most of the samples display a metasomatic overprint that may be either inherited or likely linked to the recent volcanic activity that occurred in the investigated regions. The crystallization of pyroxenites during late orogenic events has implications for the subsequent evolution of the mantle domains. The presence of large amounts of mantle pyroxenites in old orogenic regions indeed imparts peculiar physical and chemical characteristics to these domains. Among others, the global solidus temperature of the whole lithospheric domain will be lowered; in turn, this implies that old orogenic regions are refertilized zones where magmatic activity would be enhanced.

  17. Neoproterozoic collision tectonics in the Mozambique Belt of East Africa: evidence from the Uluguru mountains, Tanzania

    Science.gov (United States)

    Muhongo, Sospeter

    1994-10-01

    The fault-bounded Proterozoic metamorphic terranes lying to the E of the Tanzanian craton make up the Usagara tectonic domain and are a part of the transcontinental Mozambique Orogenic Belt (MB). The lithotectonic units in the MB of the East Africa consist of comparable rock assembles which underwent the same complex deformational history and are thought to represent large thrust sheets or nappes. Their shelf- and fore-deep terranes border the Tanzanian craton and make up the foreland terranes of the Pan-African Mozambique Belt. Granulite-gneiss nappes are ubiquitous in the orogen. Granulite-facies metamorphism, associated with recumbent folds, was due to crustal thickening, which took place during the collision between Gondwana fragments. Isotope data suggest a collision (and concomitant granulite-facies metamorphism) age of between 700 and 550 Ma. The orientations of planar and linear fabrics in the granulite-facies rocks of the Uluguru mountains are used to infer the relative crustal block motions during this collisional event. This Pan-African collisional event was characterized by NW-directed movements, oblique to the N-S trend of the orogen, and involved SE-directed backthrusting. The Ubendian Belt of Tanzania and the Aswa Shear Zone in Uganda and Kenya, which both bifurcate around the Tanzania craton, accommodated the tectonically thickened crust, created by the collisional event, through NW-SE sinistral strike-slip movements.

  18. Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran

    Science.gov (United States)

    Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza

    2016-04-01

    Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or

  19. Large along-strike variations in the onset of Subandean exhumation: Implications for Central Andean orogenic growth

    Science.gov (United States)

    Lease, Richard O.; Ehlers, T.A.; Enkelmann, E.

    2016-01-01

    Plate tectonics drives mountain building in general, but the space-time pattern and style of deformation is influenced by how climate, geodynamics, and basement structure modify the orogenic wedge. Growth of the Subandean thrust belt, which lies at the boundary between the arid, high-elevation Central Andean Plateau and its humid, low-elevation eastern foreland, figures prominently into debates of orogenic wedge evolution. We integrate new apatite and zircon (U-Th)/He thermochronometer data with previously published apatite fission-track data from samples collected along four Subandean structural cross-sections in Bolivia between 15° and 20°S. We interpret cooling ages vs. structural depth to indicate the onset of Subandean exhumation and signify the forward propagation of deformation. We find that Subandean growth is diachronous south (11 ± 3 Ma) vs. north (6 ± 2 Ma) of the Bolivian orocline and that Subandean exhumation magnitudes vary by more than a factor of two. Similar north-south contrasts are present in foreland deposition, hinterland erosion, and paleoclimate; these observations both corroborate diachronous orogenic growth and illuminate potential propagation mechanisms. Of particular interest is an abrupt shift to cooler, more arid conditions in the Altiplano hinterland that is diachronous in southern Bolivia (16-13 Ma) vs. northern Bolivia (10-7 Ma) and precedes the timing of Subandean propagation in each region. Others have interpreted the paleoclimate shift to reflect either rapid surface uplift due to lithosphere removal or an abrupt change in climate dynamics once orographic threshold elevations were exceeded. These mechanisms are not mutually exclusive and both would drive forward propagation of the orogenic wedge by augmenting the hinterland backstop, either through surface uplift or spatially variable erosion. In summary, we suggest that diachronous Subandean exhumation was driven by piecemeal hinterland uplift, orography, and the outward

  20. MESO-NEOPROTEROZOIC GRENVILLE-SVECONORWEGIAN INTRACONTINENTAL OROGEN: HISTORY, TECTONICS, GEODYNAMICS

    Directory of Open Access Journals (Sweden)

    M. V. Mints

    2017-01-01

    Full Text Available The objective of this paper is to represent the main features inherent to Grenville-Sveconorwegian Orogen (GSNO and to propose a model of tectonic and geodynamic evolution of this orogen based on the results of research concerning similar Precambrian tectonic units in the East European Craton. The studies of the conditions and settings related to origin and evolution of GSNO are of special interest, because it is located geographicaly and in a certain sense ideologically in the center of Rodinia, a supposed Neoproterozoic supercontinent. GSNO originated in the MezoNeoproterozoic in the inner region of the Lauroscandia continent. At present, the synformal tectonic structure of GSNO is divided into two portions: Grenville sector along the southeastern margin of the Canadian Shield, and Sveconorwegian sector in the southwestern Scandinavia. The integrity of Lauroscandia was twice disturbed in the MezoNeoproterozoic when oceanic structures resembling the Atlantic Ocean were formed. Later on, the continuity of the continent was restored with the involvement of oceanic lithosphere subduction and accretion and obduction of the island-arc and oceanic terranes. We distinguish two stages in the GSNO history: (1 ‘preparatory’ stage (from ~1.90 to ~1.16 Ga, and (2 formation of GSNO proper (from ~1.19 to ~0.90 Ga. The manifestations of granulite-facies metamorphism were repeatedly recorded before the Grenville Orogeny at 1.67–1.66, 1.47–1.45, 1.37–1.35, and 1.20–1.18 Ga. The Ottawan stage of the Grenville metamorphism proper is dated between 1.16 and 1.05–1.03 Ga. Metamorphism at the base of Allochthonous Belt corresponds to high-pressure granulite facies and, in a number of places, to hightemperature eclogite facies (800–900 °C at pressure in the range between 14 and 20 kbar. The age of metamorphism of rocks within Paraautochthonous Belt is 1.05–0.95 Ga; metamorphic grade increases from the greenschist facies near the Grenville front to

  1. 40 Ma of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U-Pb dating of wolframite

    Science.gov (United States)

    Harlaux, Matthieu; Romer, Rolf L.; Mercadier, Julien; Morlot, Christophe; Marignac, Christian; Cuney, Michel

    2018-01-01

    We present U-Pb thermal ionization mass spectrometer (TIMS) ages of wolframite from several granite-related hydrothermal W±Sn deposits in the French Massif Central (FMC) located in the internal zone of the Variscan belt. The studied wolframite samples are characterized by variable U and Pb contents (typically <10 ppm) and show significant variations in their radiogenic Pb isotopic compositions. The obtained U-Pb ages define three distinct geochronological groups related to three contrasting geodynamic settings: (i) Visean to Namurian mineralization (333-327 Ma) coeval with syn-orogenic compression and emplacement of large peraluminous leucogranites (ca. 335-325 Ma), (ii) Namurian to Westphalian mineralization (317-315 Ma) synchronous with the onset of late-orogenic extension and emplacement of syn-tectonic granites (ca. 315-310 Ma) and (iii) Stephanian to Permian mineralization (298-274 Ma) formed during post-orogenic extension contemporaneous with the Permian volcanism in the entire Variscan belt. The youngest ages (276-274 Ma) likely reflect the reopening of the U-Pb isotopic system after wolframite crystallization and may correspond to late hydrothermal alteration (e.g. ferberitization). Our results demonstrate that W(±Sn) mineralization in the FMC formed during at least three distinct hydrothermal events in different tectono-metamorphic settings over a time range of 40 Ma.

  2. Seismic behaviour of mountain belts controlled by plate convergence rate

    Science.gov (United States)

    Dal Zilio, Luca; van Dinther, Ylona; Gerya, Taras V.; Pranger, Casper C.

    2018-01-01

    The relative contribution of tectonic and kinematic processes to seismic behaviour of mountain belts is still controversial. To understand the partitioning between these processes we developed a model that simulates both tectonic and seismic processes in a continental collision setting. These 2D seismo-thermo-mechanical (STM) models obtain a Gutenberg-Richter frequency-magnitude distribution due to spontaneous events occurring throughout the orogen. Our simulations suggest that both the corresponding slope (b value) and maximum earthquake magnitude (MWmax) correlate linearly with plate convergence rate. By analyzing 1D rheological profiles and isotherm depths we demonstrate that plate convergence rate controls the brittle strength through a rheological feedback with temperature and strain rate. Faster convergence leads to cooler temperatures and also results in more larger seismogenic domains, thereby increasing both MWmax and the relative number of large earthquakes (decreasing b value). This mechanism also predicts a more seismogenic lower crust, which is confirmed by a transition from uni- to bi-modal hypocentre depth distributions in our models. This transition and a linear relation between convergence rate and b value and MWmax is supported by our comparison of earthquakes recorded across the Alps, Apennines, Zagros and Himalaya. These results imply that deformation in the Alps occurs in a more ductile manner compared to the Himalayas, thereby reducing its seismic hazard. Furthermore, a second set of experiments with higher temperature and different orogenic architecture shows the same linear relation with convergence rate, suggesting that large-scale tectonic structure plays a subordinate role. We thus propose that plate convergence rate, which also controls the average differential stress of the orogen and its linear relation to the b value, is the first-order parameter controlling seismic hazard of mountain belts.

  3. A new model for the granite-pegmatite genetic relationships in the Kaluan-Azubai-Qiongkuer pegmatite-related ore fields, the Chinese Altay

    Science.gov (United States)

    Zhang, Xin; Zhang, Hui; Ma, Zhan-Long; Tang, Yong; Lv, Zheng-Hang; Zhao, Jing-Yu; Liu, Yun-Long

    2016-07-01

    Pegmatites commonly form in the waning stage of magma evolution by fractional crystallization of volatile-rich magmas and may be important host rocks of strategic metals (e.g., Li, Be, Cs, Ta, and Nb) and high-quality gem minerals. This study reports new zircon U-Pb dating results and Hf isotopic compositions of the KLA803 pegmatite, the AZB-01 pegmatite, the JMK-09 pegmatite (abbreviated as the K-A-J pegmatites) and the Halong granite from the Chinese Altay to determine the potential petrogenetic relationships between them. The geochronological data document that the K-A-J pegmatites were emplaced at 224.6 ± 2.3 Ma, 191.6 ± 2.0 Ma and 192.0 ± 2.3 Ma, respectively, and they are characterized by negative to low positive εHf(t) values (from -1.0 to +6.3) and old model ages (TDM) (with the TDM1 from 874 to 597 Ma and TDM2 from 1298 to 833 Ma). In contrast, the Halong granite has an emplacement age of 398.3 ± 2.4 Ma and is characterized by higher positive εHf(t) values (from +9.9 to +15.2) and younger model ages (TDM) (with the TDM1 from 626 to 414 Ma and TDM2 from 760 to 423 Ma). They all have intruded into the Kulumuti group stratum, which has negative initial εNd(t) values (from -4.3 to -0.2) and old TDM model ages (between 1.22 and 1.56 Ga). Based on the calculated results of the mixing ratios (f) of the initial magmas and the prevailing Paleozoic tectonic framework of the Chinese Altay, we establish two petrogenetic models for the K-A-J pegmatites: Model 1 refers to that these pegmatites originated from a mixed magma that was composed of 72-91 wt.% depleted mantle components and 9-28 wt.% lower crust components; and Model 2 refers to that they were derived from the partial melting of 38-83 wt.% Halong granite and 17-62 wt.% sedimentary rocks from the Kulumuti group. We also suggest that the initial magma of the Halong granite was significantly contributed by juvenile materials with a slight involvement of crustal materials. In Model 1, because LCT

  4. Tectonic controls of Holocene erosion in a glaciated orogen

    OpenAIRE

    Adams, Byron A.; Ehlers, Todd A.

    2018-01-01

    Recent work has highlighted a strong, worldwide, glacial impact of orogen erosion rates over the last 2 Ma. While it may be assumed that glaciers increased erosion rates when active, the degree to which past glaciations influence Holocene erosion rates through the adjustment of topography is not known. In this study, we investigate the influence of long-term tectonic and post-glacial topographic controls on erosion in a glaciated orogen, the Olympic Mountains, USA. We present 14 new 10Be and ...

  5. Origin and significance of olistostromes in the evolution of orogenic belts : A global synthesis

    NARCIS (Netherlands)

    Festa, Andrea; Ogata, Kei; Pini, Gian Andrea; Dilek, Yildirim; Alonso, Juan Luis

    2016-01-01

    Olistostromes (sedimentary mélanges) represent the products of ancient submarine mass transport processes. We present a comparative analysis of the occurrences and internal structures of these sedimentary mélanges at a global scale with a focus on the Circum-Mediterranean, Appalachian and

  6. Extensional collapse in the Neoproterozoic Araçuaí orogen, eastern Brazil: a setting for reactivation of asymmetric crenulation cleavage

    Science.gov (United States)

    Marshak, Stephen; Alkmim, Fernando F.; Whittington, Alan; Pedrosa-Soares, Antônio Carlos

    2006-01-01

    The Araçuaí orogen of eastern Brazil is one of many Brasiliano/Pan African orogens formed during the Neoproterozoic assembly of Gondwana. Its western edge, bordering the São Francisco craton, is the Serra do Espinhaço fold-thrust belt, in which top-up-to-the-west (reverse-sense) faults, west-verging folds (F 1), and east-dipping spaced to phyllitic cleavage (S 1) developed. We have found that the kinematics of deformation changes markedly at the hinterland margin of this fold-thrust belt. Here, beneath a plateau known as the Chapada Acauã, metadiamictite and fine-grained pelitic schist comprise an east-dipping belt that contains an assemblage of structures indicative of top-down-to-the-east (normal-sense) shear. This assemblage includes a cascade of F 2 folds that refold F 1 folds and verge down the dip of the belt's enveloping surfaces, vertical tension gashes, and top-down-to-the-east rotated clasts. Based on the presence of these structures, we propose that the plateau exposes a regional-scale normal-sense shear zone, here called the Chapada Acauã shear zone (CASZ). Because F 2 folds refold F 1 folds, normal-sense shear in the CASZ occurred subsequent to initial west-verging thrusting. Considering this timing of motion in the CASZ, we suggest that the zone accommodated displacement of the internal zone of the Araçuaí orogen down, relative to its foreland fold-thrust belt, and thus played a role in extensional collapse of the orogen. The CASZ trends parallel to preserved thrusts to the west, and thus may represent an inverted thrust fault. Notably, throughout the CASZ, S 1 schistosity has been overprinted by a pervasive, west-dipping asymmetric crenulation cleavage (S 2). The sigmoid shape of S 1 surfaces in S 2 microlithons require that slip on each S 2 surface was top-down-to-the-west. S 2 cleavage is axial-planar to the down-dip verging F 2 folds. Based on its geometry, we suggest that S 2 cleavage initiated either as an antithetic extensional

  7. Diversity and abundance of the rumen and fecal methanogens in Altay sheep native to Xinjiang and the influence of diversity on methane emissions.

    Science.gov (United States)

    Liu, C; Zhu, Z P; Liu, Y F; Guo, T J; Dong, H M

    2012-05-01

    This study aims to investigate the influence of diet roughage proportion on the methanogenic communities from the rumen and fecal samples in Altay local sheep native to Xinjiang and better understand the association of methanogenic diversity or abundance with methane emissions of the ruminants. In this study, the high roughage diet was found to cause more methane emissions for either maintenance or ad-lib group, but the total methanogenic abundance was not influenced by roughage proportion and showed no significant difference between groups. Furthermore, the denaturing gradient gel electrophoresis was conducted to reveal the difference in methanogenic diversity. Phylogenetic analysis showed that the sequences obtained were divided into three groups, affiliated to the genus of Methanobrevibacter, Methanocorpusculum and an unidentified methanogenic-like group. Of these sequences, the predominant diversity from the genus of Methanobrevibacter and the unidentified methanogenic-like archaeons in the rumen was found to be significantly induced by the high roughage diet, implying that the variation of diversity at the species or strain level might have an effect on methane emissions from the rumen. Further analysis showed that five methangenic sequences from the rumen were possibly associated with the differential methane emissions.

  8. Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model

    Science.gov (United States)

    Yakubchuk, Alexander

    2004-09-01

    of the Paleo-Pacific Ocean. Several world-class Cu-(Mo)-porphyry, Cu-Pb-Zn VMS and intrusion-related Au mineral camps, which formed in the Altaids at this stage, coincided with the episodes of plate reorganization and oroclinal bending of magmatic arcs. Major Pb-Zn and Cu sedimentary rock-hosted deposits of Kazakhstan and Central Asia formed in backarc rifts, which developed on the earlier amalgamated fragments. Major orogenic gold deposits are intrusion-related deposits, often occurring within black shale-bearing sutured backarc basins with oceanic crust. After amalgamation of the western Altaids, this part of the collage and adjacent cratons were affected by the Siberian superplume, which ascended at the Permian-Triassic transition. This plume-related magmatism produced various deposits, such as famous Ni-Cu-PGE deposits of Norilsk in the northwest of the Siberian craton. In the early Mesozoic, the eastern Altaids were oroclinally bent together with the overlapping Transbaikal magmatic arc in response to the northward migration and anti-clockwise rotation of the North China craton. The following collision of the eastern portion of the Altaid collage with the Siberian craton formed the Mongol-Okhotsk suture zone, which still links the accretionary wedges of central Mongolia and Circum-Pacific belts. In the late Mesozoic, a system of continent-scale conjugate northwest-trending and northeast-trending strike-slip faults developed in response to the southward propagation of the Siberian craton with subsequent post-mineral offset of some metallogenic belts for as much as 70-400 km, possibly in response to spreading in the Canadian basin. India-Asia collision rejuvenated some of these faults and generated a system of impact rifts.

  9. Partial melting of amphibolites in the Eastern Segment of the Sveconorwegian orogen, southern Sweden.

    Science.gov (United States)

    Brophy, E.; Hansen, E. C.; Möller, C.; Huffman, M.

    2017-12-01

    Mafic migmatites with amphibolitic melanosome and tonalitic leucosome are a common feature in continental collision orogenic zones. However, the anatexis of mafic rocks has received much less attention than anatexis in felsic, intermediate or pelitic compositions. We examined mafic migmatites along a traverse within the Eastern Segment of the 1.14-0.9 Ga Sveconorwegian orogen, between Forsheda and Fegen southern Sweden. This traverse occurs in the center of a >150 km metamorphic transition from sub-greenschist facies in the east to high-pressure granulite and eclogite facies in the west (Möller and Andersson, unpublished metamorphic map). The Eastern Segment is a parautochthonous belt made up of rocks of the Fennoscandian shield that were deformed and metamorphosed during the Sveconorwegian orogeny. Within the traverse amphibolite bodies occur within migmatitic felsic to intermediate orthogneisses. The first appearance of tonalitic leucosome in amphibolite was observed towards the eastern edge of the traverse and continued to occur sporadically westward ranging in abundance (by outcrop area) from 0 to 25 %. The mineral assemblage in amphibolite is hbl + plag ( An30) + qtz + bt ± grt ± ilm ± ttn ± py ± SO2-rich scp. No examples of peritectic pyroxene associated with leucosome were found. The lack of peritectic pyroxene suggests that a water-rich phase was present at the onset of anatexis. The highly variable amount of leucosome further suggests that the amount of melt generated was determined by the amount of water available. Together these suggest that partial was driven by the local influx of a water-rich fluid. In the higher grade portions further west migmatitic amphibolite with tonalitic leucosome occurs in two varieties: one with peritectic pyroxene and relatively small amounts of leucosome, interpreted as forming by water-undersaturated dehydration melting, and another without peritectic pyroxene and with larger amounts of leucosome which is interpreted

  10. The Idaho cobalt belt

    Science.gov (United States)

    Bookstrom, Arthur A.

    2013-01-01

    The Idaho cobalt belt (ICB) is a northwest-trending belt of cobalt (Co) +/- copper (Cu)-bearing deposits and prospects in the Salmon River Mountains of east-central Idaho, U.S.A. The ICB is about 55 km long and 10 km long in its central part, which contains multiple strata-bound ore zones in the Blackbird mine area. The Black Pine and Iron Creek Co-Cu prospects are southeast of Blackbird, and the Tinkers Pride, Bonanza Copper, Elk Creek, and Salmon Canyon Copper prospects are northwest of Blackbird.

  11. The Wyoming gold deposits: volcanic-hosted lode-type gold mineralisation in the eastern Lachlan Orogen, Australia

    Science.gov (United States)

    Chalmers, D. Ian; Ransted, Terry W.; Kairaitis, Rimas A.; Meates, David G.

    2007-06-01

    The eastern Lachlan Orogen in southeastern Australia is noted for its major porphyry-epithermal-skarn copper-gold deposits of late Ordovician age. Whilst many small quartz vein-hosted or orogenic lode-type gold deposits are known in the region, the discovery of the Wyoming gold deposits has demonstrated the potential for significant lode-type mineralisation hosted within the same Ordovician volcanic stratigraphy. Outcrop in the Wyoming area is limited, with the Ordovician sequence largely obscured by clay-rich cover of probable Quaternary to Cretaceous age with depths up to 50 m. Regional aeromagnetic data define a north-south trending linear belt interpreted to represent the Ordovician andesitic volcanic rock sequence within probable Ordo-Silurian pelitic metasedimentary rocks. Drilling through the cover sequence in 2001 to follow up the trend of historically reported mineralisation discovered extensive alteration and gold mineralisation within an andesitic feldspar porphyry intrusion and adjacent volcaniclastic sandstones and siltstones. Subsequent detailed resource definition drilling has identified a substantial mineralised body associated with sericite-carbonate-albite-quartz-(±chlorite ± pyrite ± arsenopyrite) alteration. The Wyoming deposits appear to have formed as the result of a rheological contrast between the porphyry host and the surrounding volcaniclastic rocks, with the porphyry showing brittle fracture and the metasedimentary rocks ductile deformation. The mineralisation at Wyoming bears many petrological and structural similarities to orogenic lode-style gold deposits. Although the timing of alteration and mineralisation in the Wyoming deposits remain problematic, a relationship with possible early to middle Devonian deformation is considered likely.

  12. Reconciling regional continuity with local variability in structure, uplift and exhumation of the Timor orogen

    NARCIS (Netherlands)

    Tate, Garrett W.; McQuarrie, Nadine; Tiranda, Herwin; van Hinsbergen, D.J.J.; Harris, Ron; Zachariasse, Willem Jan; Fellin, Maria Giuditta; Reiners, Peter W.; Willett, Sean D.

    Along-strike variations in orogenic development can be difficult to constrain. Resulting assumptions projecting similarity or variability along strike can lead to erroneous conclusions at the orogen scale. Young orogens provide opportunities to document limits of along-strike projection and test

  13. Replacement charging belts - A Review

    Energy Technology Data Exchange (ETDEWEB)

    Bahner, Klaus [AMS 14C Dating Centre, University of Aarhus (Denmark)

    2008-07-01

    Manufacturing of the original High Voltage Engineering Corp. charging belts has been ceased many years ago, thus leaving users of these accelerators without access to a critical spare part. During the past 6 years we experimented with industrial conveyor belts, supplied by the Forbo Siegling GmbH as replacement charging belts. Our EN accelerator runs routinely on these belts over the past years and performs very well. Furthermore this so called 'Siegling belt' has been adopted by other laboratories, indicating that a viable solution for the charging belt problem in general has been found. This review addresses both the technical aspects of finding a replacement charging belt and our specific experiences with the Siegling belt.

  14. Differential decay of the East-African Antarctic Orogen : an integrated examination of Northeastern Mozambique

    Science.gov (United States)

    Ueda, K.; Jacobs, J.; Emmel, B.; Thomas, R. J.; Matola, R.

    2009-04-01

    In Northeastern Mozambique, the late Proterozoic - early Paleozoic East African-Antarctic Orogen can be subdivided into two major blocks that exhibit some relevant differences. The line of divide is represented by the Lurio Belt, a kinematically poorly constrained shear zone that also marks the conceptual northern limit of frequent late-tectonic granitoid intrusions. Moreover, far-travelled granulite-facies nappes cover a much larger area north of this belt (Viola et. al, 2008), giving rise to the assumption of different exhumation and present exposure levels. U/Pb data from previous surveys (e.g., Norconsult consortium, 2007) show coeval high-grade metamorphism in the whole region between c. 610 - 550 Ma, while the block south of the Lurio Belt also shows continuing metamorphism until c. 490 Ma that can be related to extension. Geothermobarometry for samples from within the Lurio Belt (Engvik et. al, 2007) indicates rapid exhumation after high-pressure granulite facies metamorphism and is consistant with the assumption of long tectonic activity. A possible model for the outlined pattern is the delamination of the orogenic root only in the southern part, followed by rapid mechanical thinning as well as by isostatic accommodation along the Lurio Belt. A valuable marker was identified in the metasedimentary Mecuburi group that overlies the southern basement. U/Pb analysis of detrital zircons have yielded a maximum deposition age of c. 600 Ma, while metamorphism is recorded until c. 505 Ma. Investigations of the relationship between metasediments and older basement show that the basal contact is a fairly preserved depositional contact, allowing to suppose a conjoint post-depositional evolution. It is notable that the timing of deposition shortly follows the onset of the main, widespread high-grade metamorphism. Relatively high but variable degrees of migmatisation in the Mecuburi Group require a phase of burial from surface to deep levels after 600 Ma, followed by

  15. Three Proterozoic orogenic cycles in the Livingstone Mountains, Tanzania: Evidence from petrology and ion microprobe dating of zircon and monazite

    Science.gov (United States)

    Nitsche, Christoph; Schenk, Volker; Schmitt, Axel; Kazimoto, Emmanuel

    2017-04-01

    The Livingstone Mountains at Lake Nyasa in southern Tanzania are situated in an area where three orogenic belts seem to be overlapping: the Ubendian-Usagaran belts, the Irumide Belt and the East African Orogen, whose formations are linked to the assembly of the Proterozoic supercontinents of Columbia, Rodinia and Gondwana. Granulite-facies migmatitic metapelites and two orthogneisses were studied petrologically and by ion microprobe dating of monazite and zircon to decipher their tectono-metamorphic history and to find out if and to which degree the rocks of the Livingstone Mountains were affected by the different orogenies. Zircon dating of orthogneiss yielded a magmatic age of ca. 2.2 Ga. Texturally controlled ion microprobe U-Pb dating of monazite inclusions in garnet of a Grt-Sil-Bt migmatite in combination with discordant zircon data point to sillimanite-garnet grade metamorphism at 1857±27 Ma during the Ubendian-Usagaran orogeny. Oscillatory zoned concordant zircon of another orthogneiss was dated at 997±8.6 Ma, whereas the age of monazite inclusions in garnet and matrix of a garnet-sillimanite-gneiss revealed an associated high-grade metamorphism at 1067±20 Ma during the Irumide orogeny. Low Th/U overgrowths on orthogneiss zircon and concordant matrix monazite in metapelite are dated at 653±9.1 Ma, which is in agreement with the known ages of Pan-African events in the East African Orogen and in the Ubendian Belt (655-550 Ma) (Möller et al., 2000; Boniface et al, 2012). Garnet is homogeneous in Fe and Mg, but cores are mantled by Ca-rich garnet which shows rim-ward depletion in Ca. Thermobarometry using compositions of garnet rims and matrix minerals yielded 770-820 °C and 7-8 kbar, which we interpret to represent conditions during the Neoproterozoic metamorphic event. The high-grossular mantle might reflect earlier conditions of kyanite-grade metamorphism tentatively correlated with high-pressure metamorphism during the Mesoproterozoic Irumide orogeny

  16. The Capricorn Orogen Passive source Array (COPA) in Western Australia

    Science.gov (United States)

    Gessner, K.; Yuan, H.; Murdie, R.; Dentith, M. C.; Johnson, S.; Brett, J.

    2015-12-01

    COPA is the passive source component of a multi-method geophysical program aimed at assessing the mineral deposits potential of the Proterozoic Capricorn Orogen. Previous results from the active source surveys, receiver functions and magnetotelluric studies show reworked orogenic crust in the orogen that contrasts with more simple crust in the neighbouring Archean cratons, suggesting progressive and punctuated collisional processes during the final amalgamation of the Western Australian craton. Previous seismic studies are all based on line deployment or single station analyses; therefore it is essential to develop 3D seismic images to test whether these observations are representative for the whole orogen. With a careful design that takes advantage of previous passive source surveys, the current long-term and short-term deployments span an area of approximately 500 x 500 km. The 36-month total deployment can guarantee enough data recording for 3D structure imaging using body wave tomography, ambient noise surface wave tomography and P- and S-wave receiver function Common Conversion Point (CCP) stacking techniques. A successive instrument loan from the ANSIR national instrument pool, provided 34 broadband seismometers that have been deployed in the western half of the orogen since March 2014. We expect approximately 40-km lateral resolution near the surface for the techniques we propose, which due to low frequency nature of earthquake waves will degrade to about 100 km near the base of the cratonic lithosphere, which is expected at depths between 200 to 250 km. Preliminary results from the first half of the COPA deployment will be presented in the light of the hypotheses that 1) distinct crustal blocks can be detected continuously throughout the orogen (using ambient noise/body wave tomography); 2) distinct lithologies are present in the crust and upper mantle across the orogen (using receiver function CCP images); and 3) crustal and lithosphere deformation along

  17. Crustal structure of a Proterozoic craton boundary: east Albany-Fraser Orogen, Western Australia, imaged with passive seismic and gravity anomaly data

    Science.gov (United States)

    Sippl, Christian; Brisbout, Lucy; Spaggiari, Catherine; Gessner, Klaus; Tkalcic, Hrvoje; Kennett, Brian; Murdie, Ruth

    2017-04-01

    We use passive seismic and gravity data to characterize the crustal structure and the crust-mantle boundary of the east Albany-Fraser Orogen in Western Australia, a Proterozoic orogen that reworked the southern and southeastern margin of the Archean Yilgarn Craton. The crustal thickness pattern retrieved from receiver functions shows a belt of substantially thickened crust - about 10 km thicker than the surrounding regions - that follows the trend of the orogen, but narrows to the southwest. Common conversion point profiles show a clear transition from a wide, symmetric Moho trough in the northeast to a one-sided, north-western Moho dip in the southwest, where the Moho appears to underthrust the craton towards its interior. The change from a Moho trough to an underthrust Moho appears to coincide with the inferred trace of the Ida Fault, a major terrane boundary within the Yilgarn Craton. Bulk crustal vp/vs ratios are mostly in the felsic to intermediate range, with clearly elevated values (≥1.8) at stations in the Fraser Zone granulite facies, dominantly mafic metamorphic rocks. Forward modelling of gravity anomaly data using the retrieved Moho geometry as a geometric constraint shows that a conspicuous, elongated gravity low on the northwestern side of the eastern Albany-Fraser Orogen is almost certainly caused by thickened Archean crust. To obtain a model that resembles the regional gravity pattern the following assumptions are necessary: high-density rocks occur in the upper crustal portion of the Fraser Zone, at depth inside the Moho trough and in parts of the eastern Nornalup Zone east of the Moho trough. Although our gravity models do not constrain at which crustal level these high-density rocks occur, active deep seismic surveys suggest that large extents of the east Albany-Fraser Orogen's lower crust include a Mesoproterozoic magmatic underplate known as the Gunnadorrah Seismic Province. The simplest interpretation of the imaged crustal structure is that

  18. Lap belt injuries in children.

    LENUS (Irish Health Repository)

    McGrath, N

    2010-07-01

    The use of adult seat belts without booster seats in young children may lead to severe abdominal, lumbar or cervical spine and head and neck injuries. We describe four characteristic cases of lap belt injuries presenting to a tertiary children\\'s hospital over the past year in addition to a review of the current literature. These four cases of spinal cord injury, resulting in significant long-term morbidity in the two survivors and death in one child, arose as a result of lap belt injury. These complex injuries are caused by rapid deceleration characteristic of high impact crashes, resulting in sudden flexion of the upper body around the fixed lap belt, and consequent compression of the abdominal viscera between the lap belt and spine. This report highlights the dangers of using lap belts only without shoulder straps. Age-appropriate child restraint in cars will prevent these injuries.

  19. First thermochronological constraints on the Cenozoic extension along the Balkan fold-thrust belt (Central Stara Planina Mountains, Bulgaria)

    Science.gov (United States)

    Kounov, Alexandre; Gerdjikov, Ianko; Vangelov, Dian; Balkanska, Eleonora; Lazarova, Anna; Georgiev, Stoyan; Blunt, Edward; Stockli, Daniel

    2017-11-01

    The Balkan fold-thrust belt, exposed in Bulgaria and north-east Serbia, is part of the north-east vergent segment of the bi-vergent Eastern Mediterranean Alpine orogen. It was formed during two distinct compressional stages; the first one lasted from the Middle Jurassic to the Early Cretaceous and the second from Late Cretaceous to the Paleogene. Although the compressional tectonic evolution of the Balkan fold-thrust belt since the Middle Jurassic and during most of the Mesozoic is relatively well studied, the final exhumation of the rocks of the belt during the Cenozoic has remained poorly understood. Here, we present the first thermochronological constraints, based on fission-track and [U-Th-(Sm)]/He analysis, showing that along the central part of the belt syn- to post-orogenic extension could have started as early as the middle Eocene. Low-temperature thermochronological analysis of samples collected from three areas reveals at least two phases of increased cooling and exhumation during the Cenozoic. The first exhumation phase took place between 44 and 30 Ma and appears to be related to the syn- to post-orogenic collapse coeval with the earliest Cenozoic extensional stage observed across the southern Balkan Peninsula. A period of relative quiescence (between 30 and 25 Ma) is followed by the next cooling stage, between 25 and 20 Ma, which appears to be related to late Oligocene to early Miocene crustal extension across the Balkan Peninsula. Extension accommodated by the late Miocene to Recent age Sub-Balkan Graben System does not appear to have produced exhumation of rocks from beneath 2-4 km depth, as it was not detected by the low-temperature thermochronological methods applied in this study.

  20. Topographic evolution of orogens: The long term perspective

    Science.gov (United States)

    Robl, Jörg; Hergarten, Stefan; Prasicek, Günther

    2017-04-01

    The landscape of mountain ranges reflects the competition of tectonics and climate, that build up and destroy topography, respectively. While there is a broad consensus on the acting processes, there is a vital debate whether the topography of individual orogens reflects stages of growth, steady-state or decay. This debate is fuelled by the million-year time scales hampering direct observations on landscape evolution in mountain ranges, the superposition of various process patterns and the complex interactions among different processes. In this presentation we focus on orogen-scale landscape evolution based on time-dependent numerical models and explore model time series to constrain the development of mountain range topography during an orogenic cycle. The erosional long term response of rivers and hillslopes to uplift can be mathematically formalised by the stream power and mass diffusion equations, respectively, which enables us to describe the time-dependent evolution of topography in orogens. Based on a simple one-dimensional model consisting of two rivers separated by a watershed we explain the influence of uplift rate and rock erodibility on steady-state channel profiles and show the time-dependent development of the channel - drainage divide system. The effect of dynamic drainage network reorganization adds additional complexity and its effect on topography is explored on the basis of two-dimensional models. Further complexity is introduced by coupling a mechanical model (thin viscous sheet approach) describing continental collision, crustal thickening and topography formation with a stream power-based landscape evolution model. Model time series show the impact of crustal deformation on drainage networks and consequently on the evolution of mountain range topography (Robl et al., in review). All model outcomes, from simple one-dimensional to coupled two dimensional models are presented as movies featuring a high spatial and temporal resolution. Robl, J., S

  1. Evidences for an orogenic-induced global cooling at the Frasnian-Famennian boundary (ca 376 Ma BP)

    Science.gov (United States)

    Averbuch, O.; Tribovillard, N.; Devleeschouwer, X.; Riquier, L.

    2003-04-01

    Late Devonian time (Famennian, 376--362 Ma BP) is a period of both intense orogenic activity and drastic climatic variations with the onset of a major glaciation event upon parts of the Gondwanian Southern America and Africa situated in high southern latitudes. This global cooling event is coeval with a significant fall in the atmospheric CO_2 content as suggested both by stomatal data and modelling. In the stratigraphic record, the Frasnian-Famennian transition is characterized by a great loss of biotic diversity and pronounced environmental changes with the demise of reefal carbonate platforms and the deposition of extensive organic-rich levels (Kellwasser levels) in Late Frasnian times followed by a rapid global scale sea-level fall and an increase in detrital input in the basal Famennian. We propose to relate the Famennian global cooling and the associated environnmental changes to the development of major mountain cordilleras extending on one hand from the Urals to South America (including the Central Asian, the European, the Northern African, the Appalachian belts) and on the other hand from the western American Antler to the Arctic Ellesmerian belt. Extensive high pressure metamorphic rocks dated between ca 380 and 360 Ma BP, pervasive deformations distributed along the belt (Eo-Variscan phase) and synorogenic molassic rocks trapped within the flexural foreland basins indicate a major collisional event in Late Frasnian-Famennian times inducing an important crustal thickening and associated high continental relief. The major drop in the atmospheric CO2 content would be driven by the conjunction of two orogenic-induced mechanisms : (1) the intensification of silicate weathering on the continental areas as attested by a major rise in the 87Sr/86Sr composition of sea water at the Frasnian-Famennian boundary ; the coeval development of vascular plants on emerged lands is also probably an important factor in enhanced chemical weathering of continental soils (2

  2. SLH Timing Belt Powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Abe

    2014-04-09

    The main goal of this proposal was to develop and test a novel powertrain solution for the SLH hydroEngine, a low-cost, efficient low-head hydropower technology. Nearly two-thirds of U.S. renewable electricity is produced by hydropower (EIA 2010). According to the U.S. Department of Energy; this amount could be increased by 50% with small hydropower plants, often using already-existing dams (Hall 2004). There are more than 80,000 existing dams, and of these, less than 4% generate power (Blankinship 2009). In addition, there are over 800 irrigation districts in the U.S., many with multiple, non-power, low-head drops. These existing, non-power dams and irrigation drops could be retrofitted to produce distributed, baseload, renewable energy with appropriate technology. The problem is that most existing dams are low-head, or less than 30 feet in height (Ragon 2009). Only about 2% of the available low-head hydropower resource in the U.S. has been developed, leaving more than 70 GW of annual mean potential low-head capacity untapped (Hall 2004). Natel Energy, Inc. is developing a low-head hydropower turbine that operates efficiently at heads less than 6 meters and is cost-effective for deployment across multiple low-head structures. Because of the unique racetrack-like path taken by the prime-movers in the SLH, a flexible powertrain is required. Historically, the only viable technological solution was roller chain. Despite the having the ability to easily attach blades, roller chain is characterized by significant drawbacks, including high cost, wear, and vibration from chordal action. Advanced carbon- fiber-reinforced timing belts have been recently developed which, coupled with a novel belt attachment system developed by Natel Energy, result in a large reduction in moving parts, reduced mass and cost, and elimination of chordal action for increased fatigue life. The work done in this project affirmatively addressed each of the following 3 major uncertainties concerning

  3. Belt of Yotvings. Radioecology

    International Nuclear Information System (INIS)

    Mazheika, J.; Petroshius, R.; Strzelecki, R.; Wolkovitcz, S.; Lewandowski, P.

    1997-01-01

    Full text: The map of gamma radiation dose of 'Belt of Yotvings' area displays the summarized gamma radiation coming from natural radionuclides of 238 U, 232 Th, 40 K and from cesium isotopes 137 Cs, 134 Cs, artificially supplied into the environment after the Chernobyl disaster. The average value of gamma radiation dose for 'Belt of Yotvings' area is 44.2 n Gy/h, with a distinct regional differentiation. The content of uranium varies from 0 to 4.5 g/t, with the average value of about 1.4 g/t. Thorium content varies from 0 to 10.3 g/t, with the average value of 4.3 g/t. Potassium content varies from 0.1 up to 2.5 %, with the average value of 1.2 %. The concentration of caesium radioisotopes reaches up to 11.6 kBq/m 2 , the average value being 3.8 kBq/m 2 . Radon concentration in soil air has been determined in 55 sites (83 analyses). Radon concentration has been noticed in volumes from trace amounts up to 55 kBq/m3.The radioecological mapping has documented that the highest concentrations of natural radioisotopes and, correspondingly, the highest total gamma radiation dose were observed in the northeastern part of the area studied, which is covered by clay-silty glaciolacustrine deposits. Slightly lower values are typical for the whole northwestern part of 'Belt of Yotvings'. Very low contents of radioactive elements and low total radiation doses are typical for eolian and sandur sands, occurring south-eastward from the line Augustow-Veisiejai. The Chernobyl NPP accident polluted the studied region with artificial cesium radioisotopes un significantly. The concentrations are low and they involve no radioecological hazard. The investigation of radon concentration in soil air have revealed several places affected by high radon emanation. These places should be studied in a more detailed way

  4. Growth of the Zagros Fold-Thrust Belt and Foreland Basin, Northern Iraq, Kurdistan

    Science.gov (United States)

    Koshnaw, Renas; Horton, Brian; Stockli, Daniel; Barber, Douglas; Ghalib, Hafidh; Dara, Rebwar

    2016-04-01

    The Zagros orogenic belt in the Middle Eastern segment of the Alpine-Himalayan system is among the youngest seismically active continental collision zones on Earth. However, due to diachronous and incremental collision, the precise ages and kinematics of shortening and deposition remain poorly understood. The Kurdistan region of the Zagros fold-thrust belt and foreland basin contains well-preserved Neogene wedge-top and foredeep deposits that include clastic nonmarine fill of the Upper Fars, Lower Bakhtiari, and Upper Bakhtiari Formations. These deposits record significant information about orogenic growth, fold-thrust dynamics, and advance of the deformation front. Thermochronologic and geochronologic data from thrust sheets and stratigraphic archives combined with local earthquake data provide a unique opportunity to address the linkages between surface and subsurface geologic relationships. This research seeks to constrain the timing and geometry of exhumation and deformation by addressing two key questions: (1) Did the northwestern Zagros fold-thrust belt evolve from initial thin-skinned shortening to later thick-skinned deformation or vice-versa? (2) Did the fold-thrust belt advance steadily under critical/supercritical wedge conditions involving in-sequence thrusting or propagate intermittently under subcritical conditions with out-of-sequence deformation? From north to south, apatite (U-Th)/He ages from the Main Zagros Thrust, the Mountain Front Flexure (MFF), and additional frontal thrusts suggest rapid exhumation by ~10 Ma, ~5 Ma, and ~8 Ma respectively. Field observations and seismic sections indicate progressive tilting and development of growth strata within the Lower Bakhtiari Formation adjacent to the frontal thrusts and within the Upper Bakhtiari Formation near the MFF. In the Kurdistan region of Iraq, a regional balanced cross section constrained by new thermochronometric results, proprietary seismic reflection profiles, and earthquake hypocenters

  5. Plate kinematics in the Cantabrian domain of the Pyrenean orogen

    Directory of Open Access Journals (Sweden)

    S. Tavani

    2012-09-01

    Full Text Available The Cantabrian domain represents the western portion of the Pyrenean orogen, in the area where the Iberian continental lithosphere was subducted toward the north underneath the transitional to oceanic lithosphere of the Bay of Biscay. There, the about 100 km of orogenic convergence have been mostly accommodated in the northern portion of the orogen (i.e. the retro wedge developed in the Bay of Biscay abyssal plain, while only crustal-scale folding with limited internal deformation occurred in the Cantabrian southern wedge (pro-wedge. Integrated meso- and macrostructural analyses and a reappraisal of available information from the transitional area between the Pyrenean and Cantabrian domains are presented in this work, allowing to set geometric and kinematic constraints on the entire Meso-Cenozoic history of the northern portion of the Iberian Plate, including subduction initiation and evolution in the western portion of the Pyrenean orogen.

    The structural record of the Late Jurassic to Early Cretaceous deformation stage, which was associated with rifting and seafloor spreading in the Bay of Biscay, indicates a ridge perpendicular (NNE-SSW oriented extension, with no evidence of relevant strike-slip components during rifting. A Cenozoic NNW-SSE oriented shortening stage followed, related to the limited (about 100 km north-directed subduction of the Iberian continental lithosphere underneath the transitional to oceanic lithosphere of the Bay of Biscay. Subduction led to the formation of the poorly-developed Cantabrian pro-wedge, which is laterally juxtaposed to the well-developed Pyrenean pro-wedge to the east. During this convergence stage, the structural framework in the Cantabrian pro-wedge, and particularly along its transition with the Pyrenean wedge to the east, was severely complicated by the reactivation of Paleozoic and Mesozoic inherited structures.

    Data presented in this work fully support the development of the

  6. Precambrian crustal evolution and Cretaceous–Palaeogene faulting in West Greenland: Evolution of Neoarchaean supracrustal belts at the northern margin of the North Atlantic Craton, West Greenland

    Directory of Open Access Journals (Sweden)

    Stensgaard, Bo Møller

    2006-12-01

    Full Text Available The Archaean North Atlantic Craton of West Greenland collided at c. 1.9 Ga with a lesser-known Archaean craton to the north, to form the Nagssugtoqidian orogen. The Palaeoproterozoic metamorphic grade and strain intensity decrease northward through the orogen, allowing investigation of the reworked Archaean components in its northern part. Two Archaean supracrustal belts in this region – the Ikamiut and Kangilinaaq belts – are investigated here using field mapping, aeromagnetic data, zircon geochronology, and geochemistry. Both belts comprise quartzo-feldspathic and pelitic metasedimentary rocks, amphibolite, and minor calc-silicate rocks, anorthosite and ultramafic rocks. Pb-Pb and U-Pb dating of detrital zircons and host orthogneisses suggest deposition at c. 2800 Ma (Kangilinaaq belt and after 2740 Ma (Ikamiut belt; both belts have zircons with Neoarchaean metamorphic rims. Metasedimentary rocks and orthogneisses at Ikamiut share similar steep REE signatures with strong LREE enrichment, consistent with local derivation of the sediment and deposition directly onto or proximal to the regional orthogneiss precursors. Zircon age data from Kangilinaaq indicate both local and distal sources for the sediment there. Geochemical data for Kangilinaaq amphibolites indicate bimodal, mixed felsic–mafic source rocks with island-arc basaltic affinities, consistent with a shelf or arc setting. Both belts experienced a similar tectono-metamorphic history involving Neoarchaean amphibolite facies peak metamorphism at c. 2740–2700 Ma, possibly due to continued emplacement of tonalitic and granodioritic magmas. Nagssugtoqidian lower amphibolite facies metamorphism at c. 1850 Ma was associated with development of the large-scale F2 folds and shear zones that control the present outcrop pattern. The observed differences in the sources of the Kangilinaaq and Ikamiut belts and their shared post-Archaean history suggest they were formed in different

  7. Gould Belt Origin

    Science.gov (United States)

    Rivera, Leticia; Loinard, Laurent; Dzib, Sergio

    2013-07-01

    Using archive VLA data and recent observations on the Karl G. Jansky Very Large Array it is worked on a semi-automatic python/CASA code to select, reduce and plot several young stars belonging to the Ophiuchus core. This code mean to help to select observations made along the 30 years of the VLA done in the selected area with the wide configurations A and B, and in the X and C band, to determine their position and compare it with the most recent ones. In this way it is possible to determinate their proper motion with very high precision. It is presented the phases of the process and our first results worked on three well know stars: S1, DoAr 21 and VLA1623. This is the tip of a bigger work that includes Taurus molecular cloud and other important recent star formation regions belonging to the Gould Belt. Our goal is to support the most suitable among several theories about Gould Belt origin or provide a new one taking in count the dynamics of those regions.

  8. Geography of the asteroid belt

    Science.gov (United States)

    Zellner, B. H.

    1978-01-01

    The CSM classification serves as the starting point on the geography of the asteroid belt. Raw data on asteroid types are corrected for observational biases (against dark objects, for instance) to derive the distribution of types throughout the belt. Recent work on family members indicates that dynamical families have a true physical relationship, presumably indicating common origin in the breakup of a parent asteroid.

  9. Magma-assisted strain localization in an orogen-parallel transcurrent shear zone of southern Brazil

    Science.gov (United States)

    Tommasi, AndréA.; Vauchez, Alain; Femandes, Luis A. D.; Porcher, Carla C.

    1994-04-01

    In a lithospheric-scale, orogen-parallel transcurrent shear zone of the Pan-African Dom Feliciano belt of southern Brazil, two successive generations of magmas, an early calc-alkaline and a late peraluminous, have been emplaced during deformation. Microstructures show that these granitoids experienced a progressive deformation from magmatic to solid state under decreasing temperature conditions. Magmatic deformation is indicated by the coexistence of aligned K-feldspar, plagioclase, micas, and/or tourmaline with undeformed quartz. Submagmatic deformation is characterized by strain features, such as fractures, lattice bending, or replacement reactions affecting only the early crystallized phases. High-temperature solid-state deformation is characterized by extensive grain boundary migration in quartz, myrmekitic K-feldspar replacement, and dynamic recrystallization of both K-feldspar and plagioclase. Decreasing temperature during solid-state deformation is inferred from changes in quartz crystallographic fabrics, decrease in grain size of recrystallized feldspars, and lower Ti amount in recrystallized biotites. Final low-temperature deformation is characterized by feldspar replacement by micas. The geochemical evolution of the synkinematic magmatism, from calc-alkaline metaluminous granodiorites with intermediate 87Sr/86Sr initial ratio to peraluminous granites with very high 87Sr/86Sr initial ratio, suggests an early lower crustal source or a mixed mantle/crustal source, followed by a middle to upper crustal source for the melts. Shearing in lithospheric faults may induce partial melting in the lower crust by shear heating in the upper mantle, but, whatever the process initiating partial melting, lithospheric transcurrent shear zones may collect melt at different depths. Because they enhance the vertical permeability of the crust, these zones may then act as heat conductors (by advection), promoting an upward propagation of partial melting in the crust

  10. Tectonic evolution of a part of the Tethyside orogenic collage: The Kargi Massif, northern Turkey

    Science.gov (United States)

    Tüysüz, Okan

    1990-02-01

    The central part of the Rhodope-Pontide fragment, one of the major tectonic units in Turkey, provides critical data for evaluating the Cimmeride and Alpide evolution of the Mediterranean Tethysides. Tectonic events that affected the central part of the Rhodope-Pontide fragment since the end of the Paleozoic, generated east-west trending belts with the event of every episode redeforming and partly obliterating the structures of previous episodes. This evolution may be conveniently described in terms of three major episodes: (1) Two different realms of pre-Dogger oceanic rocks are present in the area. The northern realm coincided with main branch of Paleo-Tethys that was being actively destroyed by south dipping subduction. The southern realm, the Karakaya ocean, a back arc basin related to this subduction, began opening by rifting of a retroarc carbonate platform during the Permo-Triassic. To the west a continental domain with sparse magmatism seperated the two oceanic areas. Toward the east the two oceans become united by the wedging out of the continental domain. These two pre-Dogger oceans closed during the Lias, and their remnants were emplaced between the southern margin of Laurasia and the fragments of the Cimmerian continent. (2) The second episode partly overlapped the first with rifting south of the Cimmerian continent fragment during the Lias. This rifting was followed by a transgression which covered the ruins of the Cimmeride orogenic belt by the Malm. This rifting concurrently led to the development of the northern branch of the Neo-Tethys and a south facing Atlantic-type continental margin. A southerly thickening sedimentary prism developed on this margin during the Lias to early Cretaceous interval. (3) The floor of the northern branch of Neo-Tethys began to be consumed along the north dipping subduction zone beneath the previosly constructed continental margin. This convergent margin generated a magmatic arc to the north and to the south a subduction

  11. The lithosphere of the Appalachian orogen and Atlantic passive margin

    Science.gov (United States)

    Fischer, K. M.; MacDougall, J. G.; Hawman, R. B.; Parker, E. H.; Wagner, L. S.

    2012-12-01

    The lithosphere of the Appalachian orogen and Atlantic passive margin has recorded repeated episodes of continental collision and break-up. Improved resolution of crust and mantle structure in this region holds promise for better understanding of orogenesis, rifting and passive margin development. At a broad scale, tomographic models manifest a decrease in lithospheric thickness from the central U.S. craton into the Appalachian orogen. Migration of Sp scattered waves indicates that a significant drop in shear-wave velocity typically occurs at depths of 80-120 km in the eastern U.S., and where these phases fall within the transition from high velocity lid to lower velocity mantle obtained from tomography, they are interpretable as the seismological lithosphere-asthenosphere boundary. Beneath the Appalachians and coastal plain, Sp-derived lithospheric thicknesses are larger than those found in the tectonically active western U.S. where values range from 40-90 km. The vertical shear velocity gradients required to produce the observed Sp phases are sharp (drops of 4-10% over Flexible Arrays. The goal of the Southeastern Suture of the Appalachian Margin Experiment (SESAME) is to better understand lithospheric structures produced by accretion and rifting processes, with a particular focus on the Laurentia-Gondwana suture proposed in southern Georgia, adjacent regions of Mesozoic extension and magmatism, and the architecture of southern Appalachian orogenic crust. SESAME comprises 85 broadband EarthScope Flexible Array stations deployed in two N-S lines that cross the proposed Laurentia-Gondwana suture and extend into Florida; a third line is oriented roughly normal to Appalachian crustal terranes from northern Georgia to eastern Tennessee. Stations were installed in three phases from 2010-2012, and will remain in the field until 2014. Preliminary data analyses reveal significant shear-wave splitting in SKS and SKKS phases beneath the western SESAME stations. Fast

  12. Evaluation of the static belt fit provided by belt-positioning booster seats.

    Science.gov (United States)

    Reed, Matthew P; Ebert, Sheila M; Sherwood, Christopher P; Klinich, Kathleen D; Manary, Miriam A

    2009-05-01

    Belt-positioning booster seats are recommended for children who use vehicle seat belts as primary restraints but who are too small to obtain good belt fit. Previous research has shown that belt-positioning boosters reduce injury risk, but the belt fit produced by the wide range of boosters in the US market has not previously been assessed. The present study describes the development of a method for quantifying static belt fit with a Hybrid-III 6-year-old test dummy. The measurement method was applied in a laboratory seat mockup to 31 boosters (10 in both backless and highback modes) across a range of belt geometries obtained from in-vehicle measurements. Belt fit varied widely across boosters. Backless boosters generally produced better lap belt fit than highback boosters, largely because adding the back component moved the dummy forward with respect to the lap belt routing guides. However, highback boosters produced more consistent shoulder belt fit because of the presence of belt routing guides near the shoulder. Some boosters performed well on both lap belt and shoulder belt fit. Lap belt fit in dedicated boosters was generally better than in combination restraints that also can be used with an integrated harness. Results demonstrate that certain booster design features produce better belt fit across a wide range of belt geometries. Lap belt guides that hold the belt down, rather than up, and shoulder belt guides integrated into the booster backrest provided better belt fit.

  13. AUTOMATION OF CONVEYOR BELT TRANSPORT

    Directory of Open Access Journals (Sweden)

    Nenad Marinović

    1990-12-01

    Full Text Available Belt conveyor transport, although one of the most economical mining transport system, introduce many problems to mantain the continuity of the operation. Every stop causes economical loses. Optimal operation require correct tension of the belt, correct belt position and velocity and faultless rolls, which are together input conditions for automation. Detection and position selection of the faults are essential for safety to eliminate fire hazard and for efficient maintenance. Detection and location of idler roll faults are still open problem and up to now not solved successfully (the paper is published in Croatian.

  14. Structure, metamorphism, and geochronology of the Cosmos Hills and Ruby Ridge, Brooks Range schist belt, Alaska

    Science.gov (United States)

    Christiansen, Peter B.; Snee, Lawrence W.

    1994-01-01

    The boundary of the internal zones of the Brooks Range orogenic belt (the schist belt) is a fault contact that dips toward the hinterland (the Yukon-Koyukuk province). This fault, here referred to as the Cosmos Hills fault zone, juxtaposes oceanic rocks and unmetamorphosed sedimentary rocks structurally above blueschist-to-greenschist facies metamorphic rocks of the schist belt. Near the fault contact, schist belt rocks are increasingly affected by a prominent, subhorizontal transposition foliation that is locally mylonitic in the fault zone. Structural and petrologic observations combined with 40Ar/39Ar incremental-release geochronology give evidence for a polyphase metamorphic and deformational history beginning in the Middle Jurassic and continuing until the Late Cretaceous. Our 40Ar/39Ar cooling age for Jurassic metamorphism is consistent with stratigraphic and other evidence for the onset of Brooks Range orogenesis. Jurassic metamorphism is nearly everywhere overprinted by a regional greenschist-facies event dated at 130–125 Ma. Near the contact with the Cosmos Hills fault zone, the schist belt is increasingly affected by a younger greenschist metamorphism that is texturally related to a prominent foliation that folds and transposes an older fabric. The 40Ar/39Ar results on phengite and fuchsite that define this younger fabric give recrystallization ages ranging from 103 to less than 90 Ma. We conclude that metamorphism that formed the transposition fabric peaked around 100 Ma and may have continued until well after 90 Ma. This age for greenschist metamorphism is broadly synchronous with the depositional age of locally derived, shallow-marine clastic sedimentary strata in the hanging wall of the fault zone and thus substantiates the interpretation that the fault zone accommodated extension in the Late Cretaceous. This extension unroofed and exhumed the schist belt during relative subsidence of the Yukon-Koyukuk province.

  15. Late-orogenic extension and strike-slip deformation in the Neogene of southeastern Spain

    NARCIS (Netherlands)

    Meijninger, B.M.L.

    2006-01-01

    The Betic Cordillera of southern Spain form the western end of the Alpine orogen, which during the Neogene was affected by large-scale late-orogenic extension. Extension, however, occurred within a setting of continuous slow convergence of the African and European plates. During the Neogene,

  16. Investigation of a new type charging belt

    International Nuclear Information System (INIS)

    Jones, N.L.

    1994-01-01

    There are many desirable characteristics for an electrostatic accelerator charging belt. An attempt has been made to find a belt that improves on these properties over the stock belt. Results of the search, procurement, and 1,500 hours of operational experience with a substantially different belt are reported

  17. Analysis of stitched arrangements in belt machines

    Directory of Open Access Journals (Sweden)

    Nasimova M. M.

    2017-10-01

    Full Text Available the article describes the main parameters that determine both the traction ability of the transmission and the life of the belt, which is the magnitude of the belt tension and its correspondence to the actual transfer load. The appendix shows the characteristics of the belts and their elasticity: shortening the belt when stitching or cross stitching for pulling; periodic movement.

  18. A Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula: New structural, geochemical, and chronological evidence

    Science.gov (United States)

    Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.

    2018-05-01

    The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.

  19. The Pyhäntaka formation, southern Finland: a sequence of metasandstones and metavolcanic rocks upon an intra-orogenic unconformity

    Directory of Open Access Journals (Sweden)

    Mikko Nironen

    2011-08-01

    Full Text Available Detrital zircon studies suggest that the few quartzite occurrences in southern Finland are younger than 1.87 Ga and express sedimentation after 1.89–1.87 Ga accretional deformation and metamorphism in the Svecofennian orogenic belt. Detailed field work in the high-grade metamorphic Pyhäntaka area allowed to distinguish an overturnedformation within metagraywackes (cordierite paragneisses and psammites. The Pyhäntaka formation has a maximum thickness of 1000 meters and consists of quartzite overlain by meta-arkose, metatuff, and metabasalt on top. An uncorformity, expressed by aweathering surface, separates the quartzite from underlying metagraywacke. The metavolcanic rocks within, stratigraphically underlying and overlying the Pyhäntaka formation are mostly basalts and basaltic andesites, but a felsic volcanic rock and dacitic fragments in volcaniclastic rocks imply bimodal affinity. The quartzite was deposited during a stable intra-orogenic period probably after accretion but before 1.83–1.80 Ga collisionaldeformation and metamorphism in the Svecofennian orogen. Rifting during the intraorogenic period and accumulation of variable material in the rift from nearby sources by fluvial processes is a viable scenario for deposition and preservation of the Pyhäntakaformation. Geochemical diagrams of the metavolcanic rocks show a scatter that is best explained by source heterogeneity and crustal contamination. Despite their (likely postaccretion setting the basaltic rocks show arc-type characteristics due to subduction-modified lithospheric mantle sources. Because of recycling, also the paragneisses in the Pyhäntaka area are geochemically similar in spite that they represent different tectonic settings. The use of elemental geochemistry alone appears to be insufficient for discriminatingtectonic settings of basalts or graywackes in the Svecofennian of southern Finland where accretion and post-accretion settings were largely obliterated by late

  20. Chaos on the conveyor belt.

    Science.gov (United States)

    Sándor, Bulcsú; Járai-Szabó, Ferenc; Tél, Tamás; Néda, Zoltán

    2013-04-01

    The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by a spring to an external static point and, due to the dragging effect of the belt, the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can be achieved only by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic, dynamics and phase transition-like behavior. Noise-induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks (around five).

  1. Geochemical evidence for subduction in the early Archaean from quartz-carbonate-fuchsite mineralization, Isua Supracrustal Belt, West Greenland

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Rosing, Minik Thorleif; Bird, Dennis K.

    systems suggest that ore-forming metasomatic fluids are derived from subduction-related devolitilization reactions, implying that orogenic Au-deposits in Archaean and Proterozoic supracrustal rock suites are related to subduction-style plate tectonics beginning early in Earth history. Justification......, are the result of seawater-derived fluids liberated from subducting lithosphere interacting with ultramafic rocks in the mantle wedge and lower crust, before migrating up crustal-scale vertical fracture zones. Thus, the presence of quartz-carbonate-fuchsite mineralization in the Isua supracrustal belt and other...

  2. Petrogenesis and tectonic implications of Late Devonian arc volcanic rocks in southern Beishan orogen, NW China: Geochemical and Nd-Sr-Hf isotopic constraints

    Science.gov (United States)

    Guo, Qian-Qian; Chung, Sun-Lin; Xiao, Wen-Jiao; Hou, Quan-Lin; Li, Shan

    2017-05-01

    Late Devonian (ca. 370 Ma) volcanic rocks provide important information about the nature of magmatism during the tectonic transition between the Early and Late Paleozoic in the Beishan orogen, southern Central Asian Orogenic Belt. They are predominantly an andesitic-dacitic-rhyolitic assemblage, characterized by alkali contents ranging from slightly calcic to slightly alkaline. The rhyolitic rocks are generally ferroan, whereas the andesitic rocks are magnesian. These volcanic rocks exhibit similar trace element characteristics to those of continental arcs. Strongly negative εNd(t) values (- 2.8 to - 3.6) and high Sr isotopic compositions (initial 87Sr/86Sr = 0.7036-0.7108) suggest that they are mainly derived from an ancient crust. However, the positive zircon εHf(t) values (+ 1.4 to + 16.4) support the role of juvenile components in their genesis, indicating the significant input of new mantle-derived magmas. These characteristics imply a hybrid derivation, from an ancient crustal source with the addition of juvenile materials during magma genesis, or perhaps heterogeneous contamination or hybridization during magma emplacement. Combined with the regional geology, our results indicate that the Late Devonian magmatism resulted from a southward retreat of the subduction zone, which records significant continental crustal growth in a transitional arc or an accretionary arc setting. The distinct geochemical compositions, especially the Nd-Hf isotope decoupling of the Dundunshan volcanic rocks, imply a significant change in the geodynamic setting in the Late Paleozoic.

  3. Changes in dip and frictional properties of the basal detachment controlling orogenic wedge propagation and frontal collapse: The external central Betics case

    Science.gov (United States)

    Jimenez-Bonilla, A.; Torvela, T.; Balanyá, J. C.; Expósito, I.; Díaz-Azpiroz, M.

    2016-12-01

    Thin-skinned fold-and-thrust belts (FTBs) have been extensively studied through both field examples and modeling. The overall dynamics of FTBs are, therefore, well understood. One less understood aspect is the combined influence of across-strike changes in the detachment properties and the basement topography on the behavior of an orogenic wedge. In this paper, we use field data together with reflection seismic interpretation from the external zones of the central Betics FTB, southern Spain, to identify a significant increase in the wedge basal dip (a basement "threshold") coinciding with the pinch-out of a weak substrate. This induced both changes to the wedge geometry and to the basal friction, which in turn influenced the wedge dynamics. The changing dynamics led to a transient "stagnation" of the FTB propagation, topographic buildup, and subsequent collapse of the FTB front. This in turn fed an important Langhian depocenter made up of mass transport deposits. Coevally with the FTB propagation, extension took place both parallel and perpendicular to the orogenic trend. This case study illustrates how across-strike changes in wedge basal properties can control the detailed behavior of a developing FTB front, but questions remain regarding the time-space interaction and relative importance of the basal parameters.

  4. Geochronology of Neoproterozoic Plutons and Sandstones in the Western Jiangnan Orogen: a Reappraisal of Amalgamation between Yangtze and Cathaysia Blocks in South China

    Science.gov (United States)

    Ma, X.; Yang, K.

    2015-12-01

    Widespread exposure of Meso-Neoproterozoic strata and abundant Neoproterozoic plutons occur along the Jiangnan orogenic belt, a tectonic suture between the composite Cathaysia and Yangtze Blocks in South China, with remarkable angular unconformities between the Xiajiang Group and the underlying Sibao. LA-ICP-MS U-Pb dating of the basement sedimentary sequences (e.g. Xiajiang Group and Sibao Group) and the relevant granitic pluton (Motianling pluton) provides new information about the pre-Cambrian evolution of the southeastern Yangtze block margin along the western Jiangnan orogen. The depositional age of Sibao Group located in the Southeast Guizhou Province can be constrained at 825-835 Ma by the youngest detrital zircon ages and crystallization age of the intrusive Motianling granitic pluton. The maximum depositional age of the Xiajiang Group is estimated to be ca. 795 Ma. Four main age populations are evident in Sibao Group: 0.83-1.0 Ga, 1.3-1.5 Ga, 1.6-1.8 Ga and 2.2-2.6 Ga. The distinguished age populations in the Xiajiang Group are identical to those in the Sibao Group but lack in ranges of 1.3-1.5 Ga. Local abundant (China Block in the breakup the Rodinia, it is more reasonable to place Yangtze and Cathaysia Blocks on the western margin rather than the center of Rodinia supercontinent during the late-Neoproterozoic time.

  5. Pilot tests of a seat belt gearshift delay on the belt use of commercial fleet drivers.

    Science.gov (United States)

    2009-12-01

    the seat belt was buckled. Participants, commercial drivers from the United States and Canada who did not consistently wear their seat belts, could avoid the delay by fastening their seat belts. Unbelted participants experienced a delay of either a c...

  6. Critical elements in Carlin, epithermal, and orogenic gold deposits

    Science.gov (United States)

    Goldfarb, Richard J.; Hofstra, Albert H.; Simmons, Stuart F.

    2016-01-01

    Carlin, epithermal, and orogenic gold deposits, today mined almost exclusively for their gold content, have similar suites of anomalous trace elements that reflect similar low-salinity ore fluids and thermal conditions of metal transport and deposition. Many of these trace elements are commonly referred to as critical or near-critical elements or metals and have been locally recovered, although typically in small amounts, by historic mining activities. These elements include As, Bi, Hg, In, Sb, Se, Te, Tl, and W. Most of these elements are now solely recovered as by-products from the milling of large-tonnage, base metal-rich ore deposits, such as porphyry and volcanogenic massive sulfide deposits.A combination of dominance of the world market by a single country for a single commodity and a growing demand for many of the critical to near-critical elements could lead to future recovery of such elements from select epithermal, orogenic, or Carlin-type gold deposits. Antimony continues to be recovered from some orogenic gold deposits and tellurium could potentially be a primary commodity from some such deposits. Tellurium and indium in sphalerite-rich ores have been recovered in the past and could be future commodities recovered from epithermal ores. Carlin-type gold deposits in Nevada are enriched in and may be a future source for As, Hg, Sb, and/or Tl. Some of the Devonian carbonaceous host rocks in the Carlin districts are sufficiently enriched in many trace elements, including Hg, Se, and V, such that they also could become resources. Thallium may be locally enriched to economic levels in Carlin-type deposits and it has been produced from Carlin-like deposits elsewhere in the world (e.g., Alsar, southern Macedonia; Lanmuchang, Guizhou province, China). Mercury continues to be recovered from shallow-level epithermal deposits, as well as a by-product of many Carlin-type deposits where refractory ore is roasted to oxidize carbon and pyrite, and mercury is then

  7. Strain histories from the eastern Central Range of Taiwan: A record of advection through a collisional orogen

    Science.gov (United States)

    Mondro, Claire A.; Fisher, Donald; Yeh, En-Chao

    2017-05-01

    In the eastern Central Range of Taiwan there is a regional variation in the orientation of maximum finite stretch across the slate belt, with down-dip maximum stretch found in the western Central Range and along-strike maximum stretch in the eastern Central Range. Incremental strain histories from syntectonic fibers in pyrite pressure shadows indicate a progressive change in extension direction from down dip to along strike during deformation, there is a corresponding temporal variation in stretching direction shown in samples from the eastern edge of the Central Range, a pattern that mimics the regional west-to-east spatial variation. These observed temporal and spatial strain distributions are used to evaluate the kinematics associated with slaty cleavage development during advection through the Taiwan orogenic system. The subduction zone beneath the island of Taiwan is influenced by two types of obliquity that have the potential to generate the observed along-strike stretching. First, the plate motion vector of the Philippine Sea plate relative to the Eurasian plate is slightly oblique to the regional strike of the mountain range, which could result in partitioning of strike slip shearing into the interior of the collision. Second, the north-south Luzon volcanic arc on the Philippine Sea Plate is obliquely oriented relative to the northeast-southwest edge of the Eurasian continental margin, which could result in lateral extrusion of the ductile core of the range. Incremental strain histories in cleavage-parallel samples represent a time-for-space equivalence where the stretching direction is fixed relative to the position within the mountain belt architecture (e.g., the topographic divide), and temporal variations in the eastern central Range reflect lateral advection through the strain field in response to accretionary and erosional fluxes. Incremental strain histories in cleavage perpendicular samples show both clockwise and counter-clockwise rotation of

  8. Variation of depositional environment during the evolution of deepwater fold-and-thrust belt in the Frontal Ridge area offshore SW Taiwan

    Science.gov (United States)

    Lin, L. F.; Liu, C. S.; Lin, C. C.; Hsu, H. H.; Chang, J. H.; Chen, S. C.; Wang, Y.; Chung, S. H.

    2014-12-01

    The area offshore SW Taiwan is an active margin where the accretionary prism of the Luzon arc-trench system has obliquely overridden the continental margin of the South China Sea (SCS). Located by the Penghu Submarine Canyon, the Frontal Ridge is the westernmost structural relief of the orogenic wedge which is separated from the SCS continental margin by a deformation front. The Penghu submarine canyon, which starts from the China continental shelf and cuts across the fold-and-thrust belt, may plays an important role for transporting orogenic sediments from on shore Taiwan to the deep sea South China Sea basin. In this study, high-resolution seismic data collected in the Frontal Ridge area have been analyzed, a significant variation of stratigraphic architectures with time were identified by detailed analyzing both structural and depositional characteristics. Seismic facies analysis shows that the older parallel strata were eroded and superimposed by a series of lobe-channel-levee complex, interpreted as the fan deposits of the paleo Penghu Submarine Canyon. These deposits were later deformed by a multi-stage frontal thrusting. We propose a model to show how tectonic processes change the depositional environment. During the evolution of fold-and-thrust belt, the slope gradient and sedimentation rate changed. The Frontal Ridge area was at the abyssal plain, and then changed to the continental rise environment. Finally, convergent tectonics changed this area to be part of the orogenic wedge, and frontal fold developed.

  9. Uplifting of the Jiamusi Block in the eastern Central Asian Orogenic Belt, NE China: evidence from basin provenance and geochronology

    Science.gov (United States)

    Liu, Yongjiang; Wen, Quanbo; Han, Guoqing; Li, Wei

    2010-05-01

    The main part of Jiamusi Block, named as Huanan-Uplift, is located in the northeastern Heilongjiang, China. The Huanan-Uplift is surrounded by many relatively small Mesozoic-Cenozoic basins, e.g. Sanjiang Basin, Hulin Basin, Boli Basin, Jixi Basin, Shuangyashan Basin and Shuanghua Basin. However previous research works were mainly focused on stratigraphy and palaeontology of the basins, therefore, the coupling relation between the uplift and the surrounding basins have not been clear. Based on the field investigations, conglomerate provenance studies of the Houshigou Formation in Boli Basin, geochronology of the Huanan-Uplift basement, we have been studied the relationships between Huanan-Uplift and the surrounding basins. The regional stratigraphic correlations indicates that the isolated basins in the area experienced the same evolution during the period of the Chengzihe and the Muling Formations (the Early Cretaceous). The paleogeography reconstructions suggest that the area had been a large-scale basin as a whole during the Early Cretaceous. The Huanan-Uplift did not exist. The paleocurrent directions, sandstone and conglomerate provenance analyses show that the Huanan-Uplift started to be the source area of the surrounding basins during the period of Houshigou Formation (early Late Cretaceous), therefore, it suggests that the Jiamusi Block commenced uplift in the early Late Cretaceous. The granitic gneisses in Huanan-Uplift give 494-415 Ma monazite U-Th-total Pb ages, 262-259 Ma biotite and 246-241 Ma K-feldspar 40Ar/39Ar ages. The cooling rates of 1-2 ℃/Ma from 500-260 Ma and 10-11 ℃/Ma from 260-240 Ma have been calculated based on the ages. This suggests that the Jiamusi Block had a rapid exhumation during late Permian, which should be related to the closure of the Paleo-Asian Ocean between the Siberian and North China continents. It is concluded that during the late Paleozoic the Jiamusi Block was stable with a very slow uplifting. With the closure of the Paleo-Asian Ocean the Jiamusi Block underwent a very rapid exhumation in the late Permian. In the early Mesozoic the area went into a basin developing stage and formed a large basin as a whole during the Early Cretaceous. In the Late Cretaceous the Jiamusi Block started uplifting and the basin was broken into isolate small basins. References: Bureau of Geology and Mineral Resources of Heilongjiang Province. Regional geology of Heilongjiang Province. Beijing: Geological Publishing House, 1993.578-581. Cao Chengrun, Zheng Qingdao. Structural evolution feature and its significance of hydrocarbon exploration in relict basin formation, Eastern Heilongjiang province. Journal of Jilin university (Earth Science Edition), 2003, 33(2):167-172. Lang Xiansheng. Biologic Assemblage features of Coal-bearing Strata in Shuangyashan-Jixian coal-field. Coal geology of China, 2002, 14(2):7-12. Piao Taiyuan , Cai Huawei , Jiang Baoyu. On the Cretaceous coal-bearing Strata in Eastern Heilongjiang. Journal Of Stratigraphy, 2005, 29:489-496. Wang Jie , He Zhonghua , Liu Zhaojun , Du Jiangfeng , Wang Weitao. Geochemical characteristics of Cretaceous detrital rocks and their constraint on provenance in Jixi Basin. Global Geology,2006, 25(4):341-348. DickinsonW R and Christopher A. Suczek. Plate Tectonics and Sandstone Composition. AAPG B. 1979,63(12 ):2164-2182. DickinsonW R, Beard L S, Brakenridge G R, et al. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Bull Geo-Soc Amer, 1983, 94: 222-235. Maruyama S, Seno T. Orogeny and relative plate motions: Example of the Japanese Islands. Tectonophysics, 1986,127(3-4):305-329. Maruyama S, Isozaki Y, Kimura Gand Terabayashi M C.Paleogeographic maps of the Japanese Islands: plate tectonic systhesis from 750 Ma to the present. Island Arc, 1997,6:121-142.

  10. The crustal structure of Ellesmere Island, Arctic Canada—teleseismic mapping across a remote intraplate orogenic belt

    DEFF Research Database (Denmark)

    Schiffer, Christian; Stephenson, Randell Alexander; Oakey, Gordon

    2016-01-01

    Bay and the consequent convergence of the Greenland plate. The details of this complex evolution and the present-day deep structure are poorly constrained in this remote area and deep geophysical data are sparse. Receiver function analysis of seven temporary broad-band seismometers of the Ellesmere...... Island Lithosphere Experiment complemented by two permanent stations provides important data on the crustal velocity structure of Ellesmere Island. The crustal expression of the northernmost tectonic block of Ellesmere Island (∼82°–83°N), Pearya, which was accreted during the Ellesmerian orogeny...

  11. Microphysical effects of Saharan dusts on an orogenic thunderstorm

    Directory of Open Access Journals (Sweden)

    T. Hashino

    2008-06-01

    Full Text Available This study investigates the microphysical sensitivity of an orogenic thunderstorm during Genoa 1992 flood event to the concentration and solubility of nucleating aerosols. Idealized 2-D simulations with a new microphysical scheme and a cloud resolving model showed the solubility of CCN can be as important as their concentration. High solubility cases of CCN led to less accumulation of precipitation on the ground and more fraction of the accumulation produced by heavy precipitation than lower solubility cases. The response of vertical motion to the solubility was different for cases with and without dust layer. The preliminary results show that the ice nucleation processes affected by solubility and dust layer may be detected by remote sensing technology.

  12. Constraining a Precambrian Wilson Cycle lifespan: An example from the ca. 1.8 Ga Nagssugtoqidian Orogen, Southeastern Greenland

    Science.gov (United States)

    Nicoli, Gautier; Thomassot, Emilie; Schannor, Mathias; Vezinet, Adrien; Jovovic, Ivan

    2018-01-01

    In the Phanerozoic, plate tectonic processes involve the fragmentation of the continental mass, extension and spreading of oceanic domains, subduction of the oceanic lithosphere and lateral shortening that culminate with continental collision (i.e. Wilson cycle). Unlike modern orogenic settings and despite the collection of evidence in the geological record, we lack information to identify such a sequence of events in the Precambrian. This is why it is particularly difficult to track plate tectonics back to 2.0 Ga and beyond. In this study, we aim to show that a multidisciplinary approach on a selected set of samples from a given orogeny can be used to place constraints on crustal evolution within a P-T-t-d-X space. We combine field geology, petrological observations, thermodynamic modelling (Theriak-Domino) and radiogenic (U-Pb, Lu-Hf) and stable isotopes (δ18O) to quantify the duration of the different steps of a Wilson cycle. For the purpose of this study, we focus on the Proterozoic Nagssugtoqidian Orogenic Belt (NOB), in the Tasiilaq area, South-East Greenland. Our study reveals that the Nagssugtoqidian Orogen was the result of a complete three stages juvenile crust production (Xjuv) - recycling/reworking sequence: (I) During the 2.60-2.95 Ga period, the Neoarchean Skjoldungen Orogen remobilised basement lithologies formed at TDM 2.91 Ga with progressive increase of the discharge of reworked material (Xjuv from 75% to 50%; δ18O: 4-8.5‰). (II) After a period of crustal stabilization (2.35-2.60 Ga), discrete juvenile material inputs (δ18O: 5-6‰) at TDM 2.35 Ga argue for the formation of an oceanic lithosphere and seafloor spreading over a period of 0.2 Ga (Xjuv from ca. 2.05 Ga with the accretion of volcanic/magmatic arcs (i.e. Ammassalik Intrusive Complex) and by subduction of small oceanic domains (M1: 520 ± 60 °C at 6.6 ± 1.4 kbar). (III) Continental collision between the North Atlantic Craton and the Rae Craton occurred at 1.84-1.89 Ga. Crustal

  13. Contamination of mantle magmas by crustal contributions: evidence from the brasiliano mobile belt in the State of Espirito Santo, Brazil

    International Nuclear Information System (INIS)

    Wiedemann, Cristina M.; mendes, Julio C.; Ludka, Isabel P.

    1995-01-01

    In the beginning of the late orogenic phase of the Pan african/Brasiliano Mobile Belt, in Espirito Santo and Rio de Janeiro States, along the Brazilian coast, tholeiitic gabbros intruded the coast Small bodies of clinopyroxene -gabbro-norites, hornblendi-gabbros and clinoorthopyroxenes -pyroxenites/hornblendites typical tholeiitic AFM-trends. The series of rocks reveal evidence of crustal contamination, but no signs of in situ mixing with granitic melts. The geochemical characteristics of the tholeiitic series and suites of magmatites,- present in the different evolutionary stages of the post-collisional magmatic arc, in the Brasiliano Coastal Mobile belt, in the States of Espirito Santo and Rio de Janeiro-, are regarded as an important tool for the recognition of a further contamination process of an already enriched mantle, at crustal levels, during Late Proterozoic/Early Paleozoic times. 33 refs., 11 figs., 2 tabs

  14. Structural analysis of the Elbow-Cranberry-Iskwasum lakes area: A multiply reactivated deformation corridor in the trans-Hudson orogen of Manitoba

    Science.gov (United States)

    Ryan, James Joseph

    The Elbow-Cranberry-Iskwasum lakes area comprises a large portion of the eastern Amisk collage in the Palaeoproterozoic Flin Flon Belt (southern Trans-Hudson Orogen) of Manitoba, Canada. Deformation episodes recorded in the Flin Flon Belt are divided into pre-, early, late and post-Hudsonian orogeny, and are distinguished by the orientation of structures and changes in metamorphic conditions. Detailed structural analysis, petrography, geochemistry and U-Pb geochronology indicate a structural history spanning 180 m.y. in the Amisk collage. Accretion of the 1.92--1.88 Ga tectonostratigraphic assemblages that constitute the Amisk collage began prior to 1.868 Ga, the age of the oldest dyke to cross-cut the earliest mylonitic fabrics. The deformational history has been discerned, in which six generations of ductile structures F1 - F6 were followed by development of brittle-ductile and brittle structures F7 . Movements along the late structures may have continued until 1.690 Ga, during exhumation of the collage. The macroscopic structural grain in the central Flin Flon Belt is steeply dipping, generally trends north to north-northeast, and is dominated by two regionally pervasive foliations ( S2 and S5 ). Its grain contrasts strongly with the shallowly-dipping, east--west-trending grain in the adjacent Kisseynew domain. Foliations of different generations have been distinguished by their age relative to regional metamorphic mineral growth. Regional metamorphism in the Flin Flon Belt is interpreted as having culminated at moderate pressure and temperature, between 1.820 and 1.805 Ga. The development of S2 between 1.868 and 1.845 Ga was associated with east--west shortening of the successor magmatic arc that overprinted the Amisk collage. S3 and S4 were associated with shear zones, and are not regionally widespread. The S5 regional-scale Elbow Lake shear zone, and a pervasive crenulation cleavage in the wall rocks, developed during an episode of sinistral transpression

  15. Origin of the Bashierxi monzogranite, Qiman Tagh, East Kunlun Orogen, NW China: A magmatic response to the evolution of the Proto-Tethys Ocean

    Science.gov (United States)

    Zheng, Zhen; Chen, Yan-Jing; Deng, Xiao-Hua; Yue, Su-Wei; Chen, Hong-Jin; Wang, Qing-Fei

    2018-01-01

    The Qiman Tagh of the East Kunlun Orogen, NW China, lies within the Tethysides and hosts a large W-Sn belt associated with the Bashierxi monzogranite. To constrain the origin of the granitic magmatism and its relationship with W-Sn mineralization and the tectonic evolution of the East Kunlun Orogen and the Tethys, we present zircon U-Pb ages and Hf isotopic data, and whole-rock compositional and Sr-Nd-Pb isotopic data of the Bashierxi monzogranite. The granite comprises quartz, K-feldspar, plagioclase, and minor muscovite, tourmaline, biotite, and garnet. It contains high concentrations of SiO2, K2O, and Al2O3, and low concentrations of TiO2 and MgO, indicating a peraluminous high-K calc-alkaline affinity. The rocks are enriched in Rb, U, Pb, and light rare earth elements, and relatively depleted in Eu, Ba, Nb, Sr, P, and Ti, and are classified as S-type granites. Twenty zircon grains yield a weighted mean 238U/206Pb age of 432 ± 2.6 Ma (mean square weighted deviation = 1.3), indicating the occurrence of a middle Silurian magmatic event in the region. Magmatic zircons yield εHf(t) values of -6.7 to 0.7 and corresponding two-stage Hf model ages of 1663-1250 Ma, suggesting that the granite was derived from Mesoproterozoic crust, as also indicated by 207Pb/206Pb ages of 1621-1609 Ma obtained from inherited zircon cores. The inherited zircon cores yield εHf(t) values of 8.3-9.6, which indicate the generation of juvenile crust in the late Paleoproterozoic. Samples of the Bashierxi granite yield high initial 87Sr/86Sr ratios and radiogenic Pb concentrations, and negative εNd(t) values. Isotopic data from the Bashierxi granite indicate that it was derived from partial melting of ancient (early Paleozoic to Mesoproterozoic) sediments, possibly representing recycled Proterozoic juvenile crust. Middle Silurian granitic magmatism resulted from continental collision following closure of the Proto-Tethys Ocean. The Qiman Tagh represents a Caledonian orogenic belt containing

  16. Detrital fission-track-compositional signature of an orogenic chain-hinterland basin system: The case of the late Neogene Quaternary Valdelsa basin (Northern Apennines, Italy)

    Science.gov (United States)

    Balestrieri, M. L.; Benvenuti, M.; Tangocci, F.

    2013-05-01

    Detrital thermochronological data collected in syn-tectonic basin deposits are a promising tool for deciphering time and processes of the evolution of orogenic belts. Our study deals with the Valdelsa basin, one of the wider basins of central Tuscany, Italy. The Valdelsa basin is located at the rear of the Northern Apennines, a collisional orogen whose late Neogene Quaternary development is alternatively attributed to extensional and compressional regimes. These contrasting interpretations mostly rely on different reconstructions of the tectono-sedimentary evolution of several basins formed at the rear of the chain since the late Tortonian. Here, we explore the detrital thermochronological-compositional signature of tectonic and surface processes during the Valdelsa basin development. For this aim, detrital apatite fission-track analysis of 21 sand samples from the latest Messinian Gelasian fluvial to shallow marine basin deposits, has been accompanied by a clast composition analysis of 7 representative outcrops of the conglomerate facies. The grain-age distributions of the sediment samples are generally characterized by two distinct components, one younger peak (P1) varying between 5.5 ± 2.8 and 9.5 ± 1.0 Ma and one older peak (P2) varying from 15.0 ± 8.0 to 41.0 ± 10 Ma. By comparison with some bedrock ages obtained from the E-NE basin shoulder, we attributed the P2 peak to the Ligurian Units and the P1 peak to the Macigno Formation (Tuscan Units). These units are arranged one upon the other in the complex nappe pile forming the Northern Apennines orogen. While the gravel composition indicates a predominant feeding from the Ligurian units all along the sedimentary succession with a subordinate occurrence of Macigno pebbles slightly increasing upsection, the P1 peak is present even in the oldest collected sandy sediments. The early P1 occurrence reveals that the Macigno was exposed in the E-NE basin shoulder since at least the latest Messinian-early Zanclean

  17. Wilson cycle passive margins: Control of orogenic inheritance on continental breakup

    DEFF Research Database (Denmark)

    Petersen, Kenni D.; Schiffer, Christian

    2016-01-01

    such tectonic inheritance is generally appreciated, causative physical mechanisms that affect the localization and evolution of rifts and passive margins are not well understood. We use thermo-mechanical modeling to assess the role of orogenic structures during rifting and continental breakup. Such inherited...... thinning in the mantle lithosphere rather than in the crust, and continental breakup is therefore preceded by magmatism. This implies that whether passive margins become magma-poor or magma-rich, respectively, is a function of pre-rift orogenic properties. The models show that structures of orogenic...

  18. Pan-African reactivation of the Lurio segment of the Kibaran Belt system: a reappraisal from recent age determinations in northern Mozambique

    Science.gov (United States)

    Sacchi, R.; Cadoppi, P.; Costa, M.

    2000-04-01

    The role of the Lurio Belt in northern Mozambique, and the geological evolution of its foreland in the Proterozoic are discussed in the light of recent, single zircon age determinations showing Pan-African age for the granulite-facies metamorphism. The following tentative conclusions are reached, and evidence for and against them is reviewed. The Lurio Belt had a two-fold history, as a crust-forming orogen during the Kibaran and as a transpressive suture in Pan-African times. Together with the Zambezi Belt and the Schlesien-Mwembeshi Lineament, it formed a 3000 km discontinuity which underwent an embryonic oceanic development before being sutured during the Pan-African collisional event. The Lurio Belt foreland had a tectonic-metamorphic evolution at ca 1000 Ma, prior to major, Pan-African overprinting and was probably continuous with the basement of Queen Maud Land (Antarctica) and Natal. In Pan-African times, clockwise transpressive movements along the Lurio Belt brought about emplacement of granulite klippen in its foreland. If there is a southward continuation of the Pan-African Mozambique Belt beyond Mozambique, it is probably to be found in Antarctica.

  19. 2010 safety belt usage survey in Kentucky.

    Science.gov (United States)

    2010-07-01

    The objective of this study was to establish 2010 safety belt and child safety seat usage rates in Kentucky. The 2010 survey continues to document the results after enactment of the original "second enforcement" statewide mandatory safety belt law in...

  20. 2009 safety belt usage survey in Kentucky.

    Science.gov (United States)

    2009-07-01

    The objective of this study was to establish 2009 safety belt and child safety seat usage rates in Kentucky. The 2009 survey continues to document the results after enactment of original "secondary enforcement" statewide mandatory safety belt law in ...

  1. 2008 safety belt usage survey in Kentucky.

    Science.gov (United States)

    2008-08-01

    The objective of this study was to establish 2008 safety belt and child safety seat usage rates in Kentucky. The 2008 survey continues to document the results after enactment of the initial "second enforcement" statewide mandatory safety belt law in ...

  2. Intelligent Belt Conveyor Monitoring and Control

    OpenAIRE

    Pang, Y.

    2010-01-01

    Belt conveyors have been used worldwide in continuous material transport for about 250 years. Traditional inspection and monitoring of large-scale belt conveyors focus on individual critical components and response to catastrophic system failures. To prevent operational problems caused by the lack of experience of maintenance personnel, the monitoring and operational control of belt conveyors can be automated. This research presents the possibilities to improve belt conveyor performance by me...

  3. Detrital zircon geochronology of pre- and syncollisional strata, Acadian orogen, Maine Appalachians

    Science.gov (United States)

    Bradley, Dwight C.; O'Sullivan, Paul B.

    2017-01-01

    The Central Maine Basin is the largest expanse of deep-marine, Upper Ordovician to Devonian metasedimentary rocks in the New England Appalachians, and is a key to the tectonics of the Acadian Orogeny. Detrital zircon ages are reported from two groups of strata: (1) the Quimby, Rangeley, Perry Mountain and Smalls Falls Formations, which were derived from inboard, northwesterly sources and are supposedly older; and (2) the Madrid, Carrabassett and Littleton Formations, which were derived from outboard, easterly sources and are supposedly younger. Deep-water deposition prevailed throughout, with the provenance shift inferred to mark the onset of foredeep deposition and orogeny. The detrital zircon age distribution of a composite of the inboard-derived units shows maxima at 988 and 429 Ma; a composite from the outboard-derived units shows maxima at 1324, 1141, 957, 628, and 437 Ma. The inboard-derived units have a greater proportion of zircons between 450 and 400 Ma. Three samples from the inboard-derived group have youngest age maxima that are significantly younger than the nominal depositional ages. The outboard-derived group does not share this problem. These results are consistent with the hypothesised provenance shift, but they signal potential problems with the established stratigraphy, structure, and (or) regional mapping. Shallow-marine deposits of the Silurian to Devonian Ripogenus Formation, from northwest of the Central Maine Basin, yielded detrital zircons featuring a single age maximum at 441 Ma. These zircons were likely derived from a nearby magmatic arc now concealed by younger strata. Detrital zircons from the Tarratine Formation, part of the Acadian foreland-basin succession in this strike belt, shows age maxima at 1615, 980 and 429 Ma. These results are consistent with three episodes of zircon recycling beginning with the deposition of inboard-derived strata of the Central Maine Basin, which were shed from post-Taconic highlands located to the

  4. 36 CFR 4.15 - Safety belts.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Safety belts. 4.15 Section 4... TRAFFIC SAFETY § 4.15 Safety belts. (a) Each operator and passenger occupying any seating position of a motor vehicle in a park area will have the safety belt or child restraint system properly fastened at...

  5. 14 CFR 31.63 - Safety belts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety belts. 31.63 Section 31.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Design Construction § 31.63 Safety belts. (a) There must be a safety belt...

  6. 14 CFR 27.1413 - Safety belts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Safety belts. 27.1413 Section 27.1413 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1413 Safety belts. Each safety belt...

  7. 46 CFR 169.723 - Safety belts.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Safety belts. 169.723 Section 169.723 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.723 Safety belts. Each vessel must carry a harness type safety belt conforming to Offshore Racing Council (ORC) standards for each person on watch or...

  8. Mountain Building in Central and Western Tien Shan Orogen: Insight from Joint Inversion of Surface Wave Phase Velocities and Body Wave Travel Times

    Science.gov (United States)

    Wu, S.; Yang, Y.; Wang, K.

    2017-12-01

    The Tien Shan orogeny, situated in central Asia about 2000 km away from the collision boundary between Indian plate and Eurasian plate, is one of the highest, youngest, and most active intracontinental mountain belts on the earth. It first formed during the Paleozoic times and became reactivated at about 20Ma. Although many studies on the dynamic processes of the Tien Shan orogeny have been carried out before, its tectonic rejuvenation and uplift mechanism are still being debated. A high-resolution model of crust and mantle beneath Tien Shan is critical to discern among competing models for the mountain building. In this study, we collect and process seismic data recorded by several seismic arrays in the central and western Tien Shan region to generate surface wave dispersion curves at 6-140 s period using ambient noise tomography (ANT) and two-plane surface wave tomography (TPWT) methods. Using these dispersion curves, we construct a high-resolution 3-D image of shear wave velocity (Vs) in the crust and upper mantle up to 300 km depth. Our current model constrained only by surface waves shows that, under the Tien Shan orogenic belt, a strong low S-wave velocity anomaly exists in the uppermost mantle down to the depth of 200km, supporting the model that the hot upper mantle is upwelling under the Tien Shan orogenic belt, which may be responsible for the mountain building. To the west of central Tien Shan across the Talas-Fergana fault, low S-wave velocity anomalies in the upper mantle become much weaker and finally disappear beneath the Fergana basin. Because surface waves are insensitive to the structures below 300 km, body wave arrival times will be included for a joint inversion with surface waves to generate S-wave velocity structure from the surface down to the mantle transition zone. The joint inversion of both body and surface waves provide complementary constraints on structures at different depths and helps to achieve a more realistic model compared with

  9. K-Ar geochronology of the Kulu-Mandi Belt, NW Himalaya, India

    International Nuclear Information System (INIS)

    Mehta, P.K.; Rex, D.C.

    1977-01-01

    The K-Ar dates of micas and whole rock amphibolites from the Kulu-Mandi Belt define two distinct groups, (1) 20 to 75 m. y., and (2) 277 to 366 m. y. Our data together with the other available K-Ar and Rb-Sr mineral and whole rock data, enable us to confirm three major events in the Himalaya, the Late Precambrian-Cambrian Assyntian (Cadomian) Orogenic cycle, the Late Palaeozoic Hercynian Magmatic-Epeirogenic cycle and the Late Cretaceous-Teritiary Himalayan Orogenic cycle. The mineral dating is significant for delineating different phases of the last i.e. the Himalayan Oregeny. The radiometric data, so far to hand, indicate that the main activity of the young, Himalayan metamorphism was probably around 50 to 70 m. y. (Late Cretaceous-Eocene) and this was followed by a major uplift during the 10 to 25 m. y. (Mid. Miocene) time, which was responsible for thrusting and formation of nappe structures in the Himalaya. (orig.) [de

  10. The Influence of Frontal and Lateral Ramps in Fold Thrust Belts on Structural Architecture and Erosion

    Science.gov (United States)

    Robinson, D. M.; McQuarrie, N.

    2016-12-01

    In fold thrust belts, horizontal and vertical motions (or flow) define the path that a particular rock or mineral takes to the surface of the Earth, which is dictated by the location of frontal and lateral ramps. Horizontal flow occurs between ramp locations while the vertical component of motion (or flow) dominates when rocks are traveling over the ramps. Frontal ramps are common features near the front (foreland) of a fold thrust belt. Foreland frontal ramps are the easiest to obtain data for, and from these data predict ramp geometry, because they are shallow and the ramp geometry is commonly expressed as changes in the dip of strata in the mapped geology. Less constrainable are the frontal ramps at depth in the hinterland of a fold thrust belt. However, these deep frontal ramps control the architecture of a fold thrust belt, influence the mapped surface geology, control active uplift and thus, are locations of focused erosion. We show kinematic models from Nepal that illustrate how the architecture (geometry of structures, dips of strata) changes in the fold thrust belt when the location of a frontal ramp is moved and how both thermochronologic data and accurate mapping limit the possibilities for the location of these hinterland frontal ramps. Lateral ramps at depth provide limits on the width of horizontal flow paths and encourage vertical flow paths that have orientations strongly oblique to the strike of the orogen. A challenge in fold thrust belts is to determine the most logical location for lateral ramps. We use examples from Nepal that highlight characteristics that can be used to define the location of lateral ramps. Both lateral and frontal ramps produce significant structural elevation and changes in topographic elevation and thus, are locations of focused erosion through time. Additionally, because material is moving both laterally and vertically in a brittle fold thrust belt, frontal and lateral ramps can control the origin of earthquakes as well

  11. Shear zones of the Verkhoyansk fold-and-thrust belt, Northeast Russia

    Science.gov (United States)

    Fridovsky, Valery; Polufuntikova, Lena

    2017-04-01

    The Verkhoyansk fold-and-thrust belt is situated on the submerged eastern margin of the North Asian craton, and is largely composed of the Ediacaran - Middle Paleozoic carbonate and the Upper Paleozoic-Mesozoic terrigenous rocks. The Upper Carboniferous - Jurassic sediments constitute the Verkhoyansk terrigenous complex containing economically viable orogenic gold deposits. The structure of the belt is mainly controlled by thrusts and associated diagonal strike slips. Linear concentric folds are common all over the area of the belt. Shear zones with associated similar folds are confined to long narrow areas. Shear zones were formed during the early stages of the Oxfordian-Kimmeridgian collisional and accretionary events prior to the emplacement of large orogenic granitoid plutons. The main ore-controlling structures are shear zones associated with slaty cleavage, shear folds, mullion- and boudinage-structures, and transposition features. The shear zones are listric-type, and represent branches of a detachment structure, which is assumed to be present at the base of the Verkhoyansk fold-and-thrust belt. A vertical zonation of shear zones is correlated with the distance to the detachment. Changes in the dip angle of the shear zones (as indicated mainly by cleavage), structural paragenesis, the degree of microdeformation of the host rocks, and the type of ore-controlling structures can be clearly observed in the direction away from the detachment. Structural zoning is evidenced, among other things, by changing morphologic types of microstructures and by strain-indicators of the degree of rock metamorphism. Four morphologic types of microstructures are identified. The first platy-shear type is characterized by aggregate cleavage and the coefficient of deformation (Cd) of single grains from 1.0 to 2.0. Irregular angular fragments of variously oriented grains can be observed in thin sections. The second shear-cataclastic morphologic type (Cd from 2.0 to 3.0) exhibits

  12. Provenance of detrital zircons from the Ribeira and Dom Feliciano Belts, comparison with African equivalents and implications on Western Gondwana amalgamation

    International Nuclear Information System (INIS)

    Basei, M.; Frimmel, H.E.; Nutman, A.P.; Preciozzi, F.

    2008-01-01

    The geologic make-up of southern Brazil has been defined by processes related to the Brasiliano orogenic cycle and, in particular, to con tractional tectonic events that led to the amalgamation of different terranes, which culminated in the formation of Western Gondwana (Campos Neto and Figueiredo, 1995; Brito Neves and Cordani, 1991; Brito Neves et al, 1999, Campos Neto, 2000). Polycyclic deformation and metamorphism that masked the characteristics, including the age records, of the protoliths were associated with the juxtaposition of these different terranes. Ophiolitic remains and magmatic arc roots signal the existence of fossil subduction and collision zones, whereas intense post-tectonic to an orogenic granitic magmatism marks the end of the orogenic cycle towards the end of the Neoproterozoic Era. U-Pb dating of domains within single zircon grains has proven to be a very powerful tool for the unraveling of the complex tecto no-thermal evolution as well as in characterizing the provenance of the original sediments. This is due to the high resistance to weathering and to high closure temperatures with respect to the U-Pb isotope system in zircon. Over the past decade, the standard technique for this analytical approach has become the analyses of U-Pb isotope ratios by SHRIMP, preceded by cathodoluminescence analysis (McClaren et al 1994). In this study, a set of 11 new SHRIMP analyses on detrital zircon grains from the major metasedimentary units of the Ribeira and Dom Feliciano Belts of the southeastern portion of South America is presented and the data are compared with available analyses for the Gariep Belt (Basei et al. 2005) and a new analysis for the Damara Belt. Combined with available Sm-Nd bulk rock isotope data, the results will form the basis for a revised tectonic model for the formation of Western Gondwana

  13. Provenance of detrital zircons from the Ribeira and Dom Feliciano Belts, comparison with African equivalents and implications on western Gondwana amalgamation. Geological Society of London-2008

    International Nuclear Information System (INIS)

    Basei, M.; Frimmel, H.E.; Nutman, A.P.; Preciozzi, F.

    2005-01-01

    The geologic make-up of southern Brazil has been defined by processes related to the Brasiliano orogenic cycle and, in particular, to con tractional tectonic events that led to the amalgamation of different terranes, which culminated in the formation of Western Gondwana (Campos Neto and Figueiredo, 1995; Brito Neves and Cordani,1991; Brito Neves et al, 1999, Campos Neto, 2000). Polycyclic deformation and metamorphism that masked the characteristics, including the age records, of the protoliths were associated with the juxtaposition of these different terranes. Ophiolitic remains and magmatic arc roots signal the existence of fossil subduction and collision zones, whereas intense post-tectonic to an orogenic granitic magmatism marks the end of the orogenic cycle towards the end of the Neoproterozoic Era. U-Pb dating of domains within single zircon grains has proven to be a very powerful tool for the unraveling of the complex tecto no-thermal evolution as well as in characterizing the provenance of the original sediments. This is due to the high resistance to weathering and to high closure temperatures with respect to the U-Pb isotope system in zircon. Over the past decade, the standard technique for this analytical approach has become the analyses of U-Pb isotope ratios by SHRIMP,preceded by cathodoluminescence analysis (McClaren et al 1994). In this study, a set of 11 new SHRIMP analyses on detrital zircon grains from the major metasedimentary units of the Ribeira and Dom Feliciano Belts of the southeastern portion of South America is presented and the data are compared with available analyses for the Gariep Belt (Basei et al. 2005) and a new analysis for the Damara Belt. Combined with available Sm-Nd bulk rock isotope data, the results will form the basis for a revised tectonic model for the formation of Western Gondwana

  14. Seat belt misuse among children transported in belt-positioning booster seats.

    Science.gov (United States)

    O'Neil, Joseph; Daniels, Dawn M; Talty, Judith L; Bull, Marilyn J

    2009-05-01

    Observe and report seat belt use among children transported in belt-positioning booster seats. We conducted a cross-sectional, observational survey of children transported in motor vehicles between 2006 and 2007. While drivers completed a survey reporting the child's age, weight and gender, and the driver's age, gender, race, income, education, and relationship to the child; a child passenger safety technician recorded vehicle seating location, restraint type, and use of the car safety seat harness or seat belt as appropriate for the child. Twenty-five fast food restaurants and discount department stores throughout Indiana. A convenience sample of drivers transporting children younger than 16 years. Seat belt use among children transported in belt-positioning booster seats. Seat belt misuse. Overall, 1446 drivers participated, 2287 children were observed with 564 children in belt-positioning booster seats. At least one seat belt misuse was observed for 64.8% of the children transported. Common misuses were the shoulder belt being placed over the booster seat armrest (35.8%); shoulder belt not at mid-shoulder position (28.5%), seat belt was too loose (24.5%), and the shoulder belt was either behind the child's back (9.1%) or under their arm (10.0%). There is a high frequency of seat belt misuses among children transported in booster seats. Advice to parents on appropriate car seat selection, and encouragement to parents to supervise seat belt use may decrease misuse.

  15. Continental Growth and Recycling in Convergent Orogens with Large Turbidite Fans on Oceanic Crust

    Directory of Open Access Journals (Sweden)

    Ben D. Goscombe

    2013-07-01

    Full Text Available Convergent plate margins where large turbidite fans with slivers of oceanic basement are accreted to continents represent important sites of continental crustal growth and recycling. Crust accreted in these settings is dominated by an upper layer of recycled crustal and arc detritus (turbidites underlain by a layer of tectonically imbricated upper oceanic crust and/or thinned continental crust. When oceanic crust is converted to lower continental crust it represents a juvenile addition to the continental growth budget. This two-tiered accreted crust is often the same thickness as average continental crustal and is isostatically balanced near sea level. The Paleozoic Lachlan Orogen of eastern Australia is the archetypical example of a tubidite-dominated accretionary orogeny. The Neoproterozoic-Cambrian Damaran Orogen of SW Africa is similar to the Lachlan Orogen except that it was incorporated into Gondwana via a continent-continent collision. The Mesozoic Rangitatan Orogen of New Zealand illustrates the transition of convergent margin from a Lachlan-type to more typical accretionary wedge type orogen. The spatial and temporal variations in deformation, metamorphism, and magmatism across these orogens illustrate how large volumes of turbidite and their relict oceanic basement eventually become stable continental crust. The timing of deformation and metamorphism recorded in these rocks reflects the crustal thickening phase, whereas post-tectonic magmatism constrains the timing of chemical maturation and cratonization. Cratonization of continental crust is fostered because turbidites represent fertile sources for felsic magmatism. Recognition of similar orogens in the Proterozoic and Archean is important for the evaluation of crustal growth models, particularly for those based on detrital zircon age patterns, because crustal growth by accretion of upper oceanic crust or mafic underplating does not readily result in the addition of voluminous zircon

  16. Anatexis witnessed post-collisional evolution of the Dabie orogen, China

    Science.gov (United States)

    Xu, Haijin; Zhang, Junfeng

    2017-09-01

    Crustal anatexis plays a significant role in the processes of orogenic evolution. We carried out a combined study of structure, U-Pb age and trace element on zircons from leucosome-based migmatites in the North Dabie zone to provide information on crustal anatexis during the evolution of the Dabie orogen. Protoliths of the migmatites are Middle Neoproterozoic (ca. 780-710 Ma) magmatic rocks that belong to the South China Block. They underwent a relatively low-T eclogite-facies metamorphism during the Middle to Late Triassic (235-225 Ma) continental subduction and collision. An over-thickened crustal root was formed and the Dabie orogen entered into the stage of post-collisional evolution after the Triassic. The earliest anatexis occurred at ca. 185 Ma; the anatexis in the Jurassic was weak and gentle due to episodic flow of metamorphic fluids with a prolonged interval. Nevertheless, it indicates that the crustal root started to become ductile and unstable at that time. Extensive epsodic anatexis occurred between ca. 160 Ma and 110 Ma. As the anatexis became stronger, more extensive and uninterrupted, the anatectic products changed gradually from low-degree migmatites to high-degree migmatites. The beginning of extensive anatexis at ∼160 Ma marks the beginning of orogenic activation. The duration of ca. 160-145 Ma corresponds to the orogenic activation when the collision-thickened crust still remained, whereas the period of ca. 145-110 Ma is in accordance with the orogenic collapse. The peak period of anatexis (ca. 145-125 Ma) was accompanied by plutonism, high-T granulite-facies metamorphism, extensional uplift and subsequent delamination of crustal root. After that, the anatexis trailed off until ca. 110 Ma. The long lasting multistage anatexis recorded in the migmatites has witnessed the evolution of the Dabie orogen in the postcollisional stage.

  17. Conveyor belt nuclear weighing machine

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    In many industries the flow of materials on conveyor belts must be measured and controlled. Electromechanical weighing devices have high accuracy but are complicated and expensive to install and maintain. For many applications the nuclear weighing machine has sufficient accuracy but is considerably simpler, cheaper and more robust and is easier to maintain. The rating and performance of a gamma ray balance on the mar ket are detailed. (P.G.R.)

  18. Saturation of Van Allen's belts

    CERN Document Server

    Le Bel, E

    2002-01-01

    The maximum number of electrons that can be trapped in van Allen's belts has been evaluated at CEA-DAM more precisely than that commonly used in the space community. The modelization that we have developed allows to understand the disagreement (factor 50) observed between the measured and predicted electrons flux by US satellites and theory. This saturation level allows sizing-up of the protection on a satellite in case of energetic events. (authors)

  19. Thermal evolution of the central Halls Creek Orogen, northern Australia

    International Nuclear Information System (INIS)

    Bodorkos, S.; Cawood, P.A.; Oliver, N.H.S.

    1999-01-01

    The Halls Creek Orogen in northern Australia records the Palaeoproterozoic collision of the Kimberley Craton with the North Australian Craton. Integrated structural, metamorphic and geochronological studies of the Tickalara Metamorphics show that this involved a protracted episode of high temperature, low-pressure metamorphism associated with intense and prolonged mafic and felsic intrusive activity in the interval ca 1850-1820 Ma. Tectonothermal development of the region commenced with an inferred mantle perturbation event, probably at ca 1880 Ma. This resulted in the generation of mafic magmas in the upper mantle or lower crust, while upper crustal extension preceded the rapid deposition of the Tickalara sedimentary protoliths. An older age limit for these rocks is provided by a psammopelitic gneiss from the Tickalara Metamorphics, which yield a 207 Pb/ 206 Pb SHRIMP age of 1867 ± 4 Ma for the youngest detrital zircon suite. Voluminous layered mafic intrusives were emplaced in the middle crust at ca 1860-1855 Ma. prior to the attainment of lower granulite facies peak metamorphic conditions in the middle crust. Locally preserved layer-parallel D 1 foliations that were developed during prograde metamorphism were pervasively overprinted by the dominant regional S 2 gneissosity coincident with peak metamorphism. Overgrowths on zircons record a metamorphic 207 Pb/ 206 Pb age of 1845 ± 4 Ma. The S 2 fabric is folded around tight folds and cut by ductile shear zones associated with D 3 (ca 1830 Ma), and all pre-existing structures are folded around large-scale, open F 4 folds (ca 1820 Ma). Construction of a temperature-time path for the mid-crustal section exposed in the central Halls Creek Orogen, based on detailed SHRIMP zircon data, key field relationships and petrological evidence, suggests the existence of one protracted thermal event (>400-500degC for 25-30 million years) encompassing two deformation phases. Protoliths to the Tickalara Metamorphics were

  20. Geochemical and Re-Os isotope constraints on the origin and age of the Songshugou peridotite massif in the Qinling orogen, central China

    Science.gov (United States)

    Nie, Hu; Yang, Jianzhou; Zhou, Guangyan; Liu, Chuanzhou; Zheng, Jianping; Zhang, Wen-Xiang; Zhao, Yu-Jie; Wang, Hao; Wu, Yuanbao

    2017-11-01

    The Songshugou peridotite massif in the Qinling orogenic belt is one of the largest orogenic spinel peridotite bodies in central China, but its origin remains controversial and its age is poorly constrained. We have carried out an integrated study of major and trace element composition, mineral chemistry, platinum group elements (PGE), as well as Re-Os isotope systematics of 1 harzburgite and 12 dunites from the Songshugou peridotite massif. These samples contain high Mg# olivine (90.0-91.3) and Cr# spinel (83.4-96.0). The harzburgite and dunites are characterized by relatively low whole-rock Al2O3 (0.32-0.60 wt.%), CaO (0.26-1.57 wt.%), and Na2O (0.07-0.12 wt.%) concentrations. The studied samples have very low concentrations of middle and heavy rare earth elements and exhibit enrichments in iridium-group platinum-group elements (IPGE) relative to palladium-group PGE. The Songshugou peridotites exhibit variable enrichments of light rare earth elements, large ion lithophile elements, Re, Zr, and Hf, which resulted from reactions with melt after their isolation from the convecting mantle. Combined with previous results, our data suggest that the Songshugou peridotites are highly refractory mantle residues derived from a forearc mantle wedge. 187Os/188Os values of the studied samples vary from 0.12073 to 0.12390, and 187Re/188Os ratios are 0.005-0.081. The average Re-Os model ages (TMA) and maximum Re depletion model age (TRD) of the Songshugou peridotites are ca. 1.2-1.1 Ga, suggesting a tectonic affinity to the South China Block and that the peridotites formed during the assembly of the Rodinia supercontinent. The Songshugou peridotites were sourced from a mantle wedge above a subduction zone, and finally incorporated into the underlying continental lithosphere by exhumation.

  1. Late Paleozoic to Mesozoic tectonic evolution of the Chinese western Tianshan Orogen: Integrating detrital zircon provenance analysis with regional magmatic, stratigraphic, and tectonothermal evidence

    Science.gov (United States)

    Han, Yigui; Zhao, Guochun

    2017-04-01

    The convergence between the Tarim Craton and the southwestern margin of the Central Asian Orogenic Belt in the late Paleozoic resulted in the closure of the South Tianshan (STS) Ocean and a continent-continent collision that formed the western Tianshan Orogen in NW China. Recent intensive studies in this region have produced a great deal of new data, and also many competing tectonic interpretations, especially regarding the subduction polarity and closure time of the STS Ocean and the initial uplift of the western Tianshan Orogen. To address the controversy, this study presents a systematic provenance analysis of detrital zircons from Carboniferous to Mesozoic sedimentary strata distributed in the northern Tarim and STS regions. In combination with recent data of regional magmatism, sedimentation, and tectonothermal activity, we propose a tectonic model that can reconcile most of important geological events during late Paleozoic to Mesozoic time in the western Tianshan region. U-Pb dating of detrital zircons from Carboniferous and Permian strata in the northern Tarim and STS regions yielded consistent age patterns, i.e. two prominent populations at 270-305 Ma and 400-500 Ma, and some peaks clustering at 600-1200 Ma, 1.9 Ga, and 2.5 Ga. The scarcity of 310-380 Ma zircons in the two regions and contemporaneous passive margin sedimentation support a northward subduction of the STS oceanic crust. The closure of the ocean and continental collision probably occurred in the late Carboniferous, as indicated by a significant decrease of zircon ɛHf(t) values at 310 Ma and coeval (ultra-)high pressure metamorphic events. Detrital zircon age data also indicate that the foreland region (i.e. the northern Tarim and STS) had not received sediments from the upper plate throughout the late Carboniferous to Middle Triassic, implying insignificant surface uplift and erosion during and after collision. To interpret this, a plume-modified orogenic model is introduced, partially

  2. Metallogenesis of Precambrian gold deposits in the Wutai greenstone belt: Constrains on the tectonic evolution of the North China Craton

    Directory of Open Access Journals (Sweden)

    Ju-Quan Zhang

    2018-03-01

    Full Text Available The Wutai greenstone belt in central North China Craton (NCC hosts a number of Precambrian gold deposits and ore occurrences. Based on the host rock association, these can be divided into Banded Iron Formation (BIF, meta-volcano-sedimentary and meta-conglomerate types. The two former types formed during ∼2.5–2.3 Ga and the third one at ∼1.85 Ga. The characteristics of these Precambrian gold deposits are broadly similar with those of the orogenic gold deposits. Based on available geochronological data, here we reconstruct the major tectonic events and their relationship with gold mineralization in the Wutai-Hengshan-Fuping region during Neoarchean to Paleoproterozoic as follows. (1 ∼2.6–2.5 Ga: widespread intrusion of tonalite-trondhjemite-granodiorite (TTG magmas in the Hengshan terrane and Fuping continental arc, formation of the Wutai volcanic arc in the southern margin of Hengshan terrane with granitoids emplacement, and the Hengshan-Wutai intra-oceanic arc accretion to the Fuping arc at the end of Neoarchean. (2 ∼2.5–2.3 Ga: the subduction of Hengshan arc from north leading to persistent magmatism and orogenic gold mineralization. (3 ∼2.2–2.1 Ga: extension leading to the formation of graben structure in the Wutai and Fuping region, deposition of the Hutuo and Wanzi Group sediments, formation of placer gold through erosion of the orogenic gold deposits. (4 ∼2.2–2.0 Ga: widespread magmatism in the Wutai-Hengshan-Fuping region. (5 ∼1.95–1.8 Ga: regional metamorphism associated with collision of the Western and Eastern Blocks of the NCC and associated orogenic gold deposits. The multiple subduction-accretion-collision history and subsequent deep erosion has significantly affected most of the Precambrian gold deposits in the Wutai greenstone belt.

  3. Synchronous and Cogged Fan Belt Performance Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Cutler, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Acosta, Jason [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    The GSA Regional GPG Team commissioned the National Renewable Energy Laboratory (NREL) to perform monitoring of cogged V-belts and synchronous belts on both a constant volume and a variable air volume fan at the Byron G. Rodgers Federal Building and U.S. Courthouse in Denver, Colorado. These motor/fan combinations were tested with their original, standard V-belts (appropriately tensioned by an operation and maintenance professional) to obtain a baseline for standard operation. They were then switched to the cogged V-belts, and finally to synchronous belts. The power consumption by the motor was normalized for both fan speed and air density changes. This was necessary to ensure that the power readings were not influenced by a change in rotational fan speed or by the power required to push denser air. Finally, energy savings and operation and maintenance savings were compiled into an economic life-cycle cost analysis of the different belt options.

  4. Reconstruction of multiple P-T-t stages from retrogressed mafic rocks: Subduction versus collision in the Southern Brasília orogen (SE Brazil)

    Science.gov (United States)

    Tedeschi, Mahyra; Lanari, Pierre; Rubatto, Daniela; Pedrosa-Soares, Antônio; Hermann, Jörg; Dussin, Ivo; Pinheiro, Marco Aurélio P.; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2017-12-01

    The identification of markers of subduction zones in orogenic belts requires the estimation of paleo-geothermal gradients through pressure-temperature-time (P-T-t) estimates in mafic rocks that potentially derive from former oceanic units once. However, such markers are rare in supracrustal sequences specially in deeply eroded and weathered Precambrian orogens, and reconstructing their metamorphic history is challenging because they are commonly retrogressed and only preserve a few mineral relicts of high-pressure metamorphism. Metamorphosed mafic rocks from Pouso Alegre region of the Neoproterozoic Southern Brasília Orogen outcrop as rare lenses within continental gneisses. They have previously been classified as retrograde eclogites, based on the presence of garnet and the characteristic symplectitic texture replacing omphacite. These rocks were interpreted to mark the suture zone between the Paranapanema and São Francisco cratons. To test the possible record of eclogitic conditions in the Pouso Alegre mafic rocks, samples including the surrounding felsic rocks have been investigated using quantitative compositional mapping, forward thermodynamic modeling and in-situ dating of accessory minerals to refine their P-T-t history. In the metamorphosed mafic rocks, the peak pressure assemblage of garnet and omphacite (Jd20, reconstructed composition) formed at 690 ± 35 °C and 13.5 ± 3.0 kbar, whereas local retrogression into symplectite or corona occurred at 595 ± 25 °C and 4.8 ± 1.5 kbar. The two reactions were coupled and thus took place at the same time. A zircon U-Pb age of 603 ± 7 Ma was obtained for metamorphic rims and linked to the retrogression stage. Monazite and metamorphic zircon U-Th-Pb ages for the surrounding rocks are at ca. 630 Ma and linked to peak pressure conditions similar to the one recorded by the mafic rocks. The low maximal pressure of 14 kbar and the high geothermal gradient do not necessarily support subduction process

  5. Nature and source of the ore-forming fluids associated with orogenic gold deposits in the Dharwar Craton

    Directory of Open Access Journals (Sweden)

    Biswajit Mishra

    2018-05-01

    Full Text Available Neoarchean orogenic gold deposits, associated with the greenstone-granite milieus in the Dharwar Craton include (1 the famous Kolar mine and the world class Hutti deposit; (2 small mines at Hira-Buddini, Uti, Ajjanahalli, and Guddadarangavanahalli; (3 prospects at Jonnagiri; and (4 old mining camps in the Gadag and Ramagiri-Penakacherla belts. The existing diametric views on the source of ore fluid for formation of these deposits include fluids exsolved from granitic melts and extracted by metamorphic devolatilization of the greenstone sequences. Lode gold mineralization occurs in structurally controlled higher order splays in variety of host rocks such as mafic/felsic greenstones, banded iron formations, volcaniclastic rocks and granitoids. Estimated metamorphic conditions of the greenstones vary from lower greenschist facies to mid-amphibolite facies and mineralizations in all the camps are associated with distinct hydrothermal alterations. Fluid inclusion microthermometric and Raman spectroscopic studies document low salinity aqueous-gaseous (H2O + CO2 ± CH4 + NaCl ore fluids, which precipitated gold and altered the host rocks in a narrow P–T window of 0.7–2.5 kbar and 215–320 °C. While the calculated fluid O- and C-isotopic values are ambiguous, S-isotopic compositions of pyrite-precipitating fluid show distinct craton-scale uniformity in terms of its reduced nature and a suggested crustal sulfur source.Available ages on greenstone metamorphism, granitoid plutonism and mineralization in the Hutti Belt are tantamount, making a geochronology-based resolution of the existing debate on the metamorphic vs. magmatic fluid source impossible. In contrast, tourmaline geochemistry suggests involvement of single fluid in formation of gold mineralization, primarily derived by metamorphic devolatilization of mafic greenstones and interlayered sedimentary rocks, with minor magmatic contributions. Similarly, compositions of scheelite

  6. Regional setting and geochronology of the Late Cretaceous Banatitic Magmatic and Metallogenetic Belt

    Science.gov (United States)

    Ciobanu, Cristiana L.; Cook, Nigel J.; Stein, Holly

    2002-08-01

    The 1,500-km-long Banatitic Magmatic and Metallogenetic Belt (BMMB) of Romania, Serbia and Bulgaria is a complex calc-alkaline magmatic arc of Late Cretaceous age. It hosts a variety of magmatic-hydrothermal Cu, Au, Mo, Zn, Pb and Fe deposits, including Europe's only world-class porphyry-copper deposits. Regional metallogeny can be linked to subduction of the Vardar Ocean during the Late Cretaceous, as part of the closure of the Neotethys Ocean that had separated Europe and Africa in the Mesozoic. Porphyry Cu-(Au)-(Mo) and intimately associated epithermal massive sulphides dominate in the central segments of the belt in southernmost Banat (Romania), Serbia and north-west Bulgaria. These districts are the economically most important today, including major active Cu-Au mines at Moldova Nouă in Romania, Majdanpek, Veliki Krivelj and Bor in Serbia, and Elatsite, Assarel and Chelopech in Bulgaria. More numerous (and mostly mined in the past) are Fe, Cu and Zn-Pb skarns, which occur mainly at the two ends of the belt, in Eastern Bulgaria and in Romania. This paper summarises some of the deposit characteristics within the geodynamic framework of terminal Vardar subduction. Heterogeneous terranes of the belt, including the Apuseni Mountains at the western end, are aligned parallel to the Vardar front following continental collision of the Dacia and Tisza blocks. All available geochronological data (numerous K-Ar and some U-Pb and Re-Os ages) are compiled, and are complemented by a new high-precision Re-Os date for the Dognecea skarn deposit, south-west Romania (76.6±0.3 Ma). These data indicate that magmatism extended over at least 25 million years, from about 90 to 65 Ma in each segment of the belt. Within Apuseni Mountains and Banat, where magma emplacement was related to syn-collisional extension in the orogenic belt of Carpathians, ore formation seems to be restricted in time and maybe constrained by a shared tectonic event.

  7. Conveyor belt weigher using a nuclear technique

    International Nuclear Information System (INIS)

    Magal, B.S.

    1976-01-01

    Principles of operation of different types of continuous conveyor belt weighing machines developed for use in factories for bulk weighing of material on conveyor belts without interupting the material flow, are briefly mentioned. The design of nuclear weighing scale making use of the radiation absorption property of the material used is described in detail. The radiation source, choice of the source, detector and geometry of such a weighing scale are discussed. The nucleonic belt weigher is compared with the gravimetric belt weigher system. The advantages of the nuclear system are pointed out. The assembly drawing of the electronics, calibration procedure and performance evaluation are given. (A.K.)

  8. Drive alive: teen seat belt survey program.

    Science.gov (United States)

    Burkett, Katie M; Davidson, Steve; Cotton, Carol; Barlament, James; Loftin, Laurel; Stephens, James; Dunbar, Martin; Butterfield, Ryan

    2010-08-01

    To increase teen seat belt use among drivers at a rural high school by implementing the Drive Alive Pilot Program (DAPP), a theory-driven intervention built on highway safety best practices. The first component of the program was 20 observational teen seat belt surveys conducted by volunteer students in a high school parking lot over a 38-month period before and after the month-long intervention. The survey results were published in the newspaper. The second component was the use of incentives, such as gift cards, to promote teen seat belt use. The third component involved disincentives, such as increased police patrol and school policies. The fourth component was a programmatic intervention that focused on education and media coverage of the DAPP program. Eleven pre-intervention surveys and nine post-intervention surveys were conducted before and after the intervention. The pre- and post-intervention seat belt usage showed significant differences (p<0.0001). The average pre-intervention seat belt usage rate was 51.2%, while the average post-intervention rate was 74.5%. This represents a percentage point increase of 23.3 in seat belt use after the DAPP intervention. Based on seat belt observational surveys, the DAPP was effective in increasing seat belt use among rural high school teenagers. Utilizing a theory-based program that builds on existing best practices can increase the observed seat belt usage among rural high school students.

  9. Condition-Based Conveyor Belt Replacement Strategy in Lignite Mines with Random Belt Deterioration

    Science.gov (United States)

    Blazej, Ryszard; Jurdziak, Leszek

    2017-12-01

    In Polish lignite surface mines, condition-based belt replacement strategies are applied in order to assure profitable refurbishment of worn out belts performed by external firms specializing in belt maintenance. In two of three lignite mines, staff asses belt condition subjectively during visual inspections. Only one mine applies specialized diagnostic device (HRDS) allowing objective magnetic evaluation of belt core condition in order to choose the most profitable moment for the dismantling of worn out belt segments from conveyors and sending them to the maintenance firm which provides their refurbishment. This article describes the advantages of a new diagnostic device called DiagBelt. It was developed at the Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology. Economic gains from its application are calculated for the lignite mine and for the belt maintenance firm, taking into account random life (durability) of new and reconditioned belts (after the 1st and the 2nd refurbishment). Recursive calculations for following years allow the estimation of the length and costs of replaced, reconditioned and purchased belts on an annual basis, while the use of the Monte Carlo method allows the estimation of their variability caused by random deterioration of belts. Savings are obtained due to better selection of moments (times) for the replacement of belt segments and die to the possibility to qualify worn out belts for refurbishment without the need to remove their covers. In effect, increased belt durability and lowered share of waste belts (which were not qualified for reconditioning) create savings which can quickly cover expenditures on new diagnostic tools and regular belt inspections in the mine.

  10. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits?

    Directory of Open Access Journals (Sweden)

    David I. Groves

    2016-05-01

    Full Text Available Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits, with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially – associated granitic intrusions and inconsistent temporal relationships. The most plausible, and widely accepted, models involve metamorphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release, like many

  11. Brusque belt: a monocyclic evolution ?

    International Nuclear Information System (INIS)

    Basei, M.A.S.

    1990-01-01

    This paper discusses the radiometric data for the Brusque Belt (SC) where Rb-Sr isochrons, U-Pb in zircons, K-Ar in minerals and whole rock Sm-Nd model ages are available. The analysis of these results reveals two main groups, without intermediate values. The first, 500 to 800Ma., is related to magmatic and metamorphic ages and the second, 1600-2000Ma begin with the (probably) sedimentation age. A monociclic evolution is proposed, but with uncertanties in the age of the first metamorphic phase. (author)

  12. Provenances and tectonic implications of Paleozoic siliciclastic rocks from the Baishuijiang Group of the southern Qinling belt, central China

    Science.gov (United States)

    Wang, Tao; Wang, Zongqi; Ma, Zhenhui; Wang, Dongsheng

    2017-05-01

    The Paleozoic Baishuijiang Group is exposed in the southern Qinling belt and consists of turbidite sediments. The provenances of the Paleozoic sedimentary rocks is constrained by the integration of major and trace elements and detrital zircon U-Pb dating, which can help to understand the connection between the provenance and the Paleozoic tectonic evolution of the Qinling orogenic belt. The sandstones and mudstones have intermediate SiO2/Al2O3 and K2O/Na2O ratios, and high Fe2O3 + MgO contents. In comparison with average upper continental crust, they show strong negative Nb-Ta and Sr anomalies, slight depletion of Zr-Hf and Th, but moderate enrichment of Sc, Ni and Cr. These rocks show LREE enrichment, and pronounced negative Eu anomalies in chondrite-normalized REE patterns, similar to post-Archean shales. The weathering trend of the sandstones and mudstones suggests andesitic and granodioritic provenances. These sediments are geochemically similar to continental island arc sediments, and therefore were probably deposited at an active continental margin. Detrital zircon U-Pb dating of five sandstones from the Baishuijiang Group yielded ages ranging from 407 to 3000 Ma, with six peaks at ca. 425, 710, 780, 930, 1800, and 2500 Ma. The youngest age peak at 425 Ma and two zircon grains with a weighted average age of 414 Ma indicate that the maximum depositional age of the Baishuijiang Group is late Paleozoic. Our new age data thus suggest that these turbidite sediments were mainly derived from the northern Qinling belt and the northern margin of the Yangtze Block. We propose that the Paleozoic sediments were deposited in an ocean basin between the northern Qinling belt and the Yangtze Block. Combined with regional geological evidences, our results indicate that there was a paleo-ocean in the Qinling orogenic belt since Neoproterozoic era. The oceanic crust was continually subducted northward, resulting in multiple accretion events from the early Paleozoic to early

  13. Tectonic Map of the Ellesmerian and Eurekan deformation belts on Svalbard, North Greenland and the Queen Elizabeth Islands (Canadian Arctic)

    Science.gov (United States)

    Piepjohn, Karsten; von Gosen, Werner; Tessensohn, Franz; Reinhardt, Lutz; McClelland, William C.; Dallmann, Winfried; Gaedicke, Christoph; Harrison, Christopher

    2016-04-01

    The tectonic map presented here shows the distribution of the major post-Ellesmerian and pre-Eurekan sedimentary basins, parts of the Caledonian Orogen, the Ellesmerian Fold-and-Thrust Belt, structures of the Cenozoic Eurekan deformation, and areas affected by the Eurekan overprint. The present continental margin of North America towards the Arctic Ocean between the Queen Elizabeth Islands and Northeast Greenland and the present west margin of the Barents Shelf are characterized by the Paleozoic Ellesmerian Fold-and-Thrust Belt, the Cenozoic Eurekan deformation, and, in parts, the Caledonian Orogen. In many areas, the structural trends of the Ellesmerian and Eurekan deformations are more or less parallel, and often, structures of the Ellesmerian Orogeny are affected or reactivated by the Eurekan deformation. While the Ellesmerian Fold-and-Thrust Belt is dominated by orthogonal compression and the formation of wide fold-and-thrust zones on Ellesmere Island, North Greenland and Spitsbergen, the Eurekan deformation is characterized by a complex network of regional fold-and-thrust belts (Spitsbergen, central Ellesmere Island), large distinct thrust zones (Ellesmere Island, North Greenland) and a great number of strike-slip faults (Spitsbergen, Ellesmere Island). The Ellesmerian Fold-and-Thrust Belt was most probably related to the approach and docking of the Pearya Terrane (northernmost part of Ellesmere Island) and Spitsbergen against the north margin of Laurasia (Ellesmere Island/North Greenland) in the earliest Carboniferous. The Eurekan deformation was related to plate tectonic movements during the final break-up of Laurasia and the opening of Labrador Sea/Baffin Bay west, the Eurasian Basin north, and the Norwegian/Greenland seas east of Greenland. The tectonic map presented here shows the German contribution to the Tectonic Map of the Arctic 1:5,000,000 (TeMAr) as part of the international project "Atlas of geological maps of Circumpolar Arctic at 1

  14. The JET belt limiter tiles

    International Nuclear Information System (INIS)

    Deksnis, E.

    1988-09-01

    The belt limiter system, comprising two full toroidal rings of limiter tiles, was installed in JET in 1987. In consists of water-cooled fins with the limiter material in form of tile inbetween. The tiles are designed to absorb heat fluxes during irradiation without the surface temperature exceeding 2000 0 C and to radiate this heat between pulses to the water cooled sink whose temperature is lower than that of the vacuum vessel. An important feature of the design is to maximise the area of the radiating surface facing the water cooled fin. This leads to a tile depth much greater than the width of the tile facing the heat flux. Limiter tiles intercept particles flowing out of the plasma through the area between the two belt limiter rings and through remaining surface area of the plasma column. Power deposition to a limiter tile depends strongly on the shape of the plasma, the edge plasma properties as well as on the surface profile of the tiles. This paper will discuss the methodology that was followed in producing an optimized surface profile of the tiles. This shaped profile has the feature that the resulting power deposition profile is roughly similar for a wide range of plasma parameters. (author)

  15. Documenting How States Recently Upgraded to Primary Seat Belt Laws

    Science.gov (United States)

    2011-09-01

    States with primary seat belt enforcement laws consistently have higher observed daytime belt use rates than : secondary law States. Secondary belt law States, on the other hand, consistently have more occupant fatalities who : were not restrained th...

  16. Using haptic feedback to increase seat belt use : traffic tech.

    Science.gov (United States)

    2011-07-01

    The legacy of research on increasing seat belt use has : focused on enactment of seat belt legislation, public education, : high-visibility police enforcement, and seat belt : reminder systems. Several behavioral programs have : produced large, susta...

  17. The crustal structures from Wuyi-Yunkai orogen to Taiwan orogen: the onshore-offshore wide-angle seismic experiment of TAIGER and ATSEE projects

    Science.gov (United States)

    Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.

    2015-12-01

    The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.

  18. 36 CFR 1004.15 - Safety belts.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Safety belts. 1004.15 Section 1004.15 Parks, Forests, and Public Property PRESIDIO TRUST VEHICLES AND TRAFFIC SAFETY § 1004.15 Safety... administered by the Presidio Trust will have the safety belt or child restraint system properly fastened at all...

  19. Intelligent Belt Conveyor Monitoring and Control

    NARCIS (Netherlands)

    Pang, Y.

    2010-01-01

    Belt conveyors have been used worldwide in continuous material transport for about 250 years. Traditional inspection and monitoring of large-scale belt conveyors focus on individual critical components and response to catastrophic system failures. To prevent operational problems caused by the lack

  20. Seat Belts on School Buses: Some Considerations.

    Science.gov (United States)

    Soule, David

    1982-01-01

    A representative of the National Highway Traffic Safety Administration weighs advantages and discusses issues associated with installing seat belts in school buses. Federal regulations and research findings are considered. A list of guideline questions for school districts planning to install seat belts is included. (PP)

  1. Combined Radiation Belt - Plasma Sheet System Modeling

    Science.gov (United States)

    Aseev, Nikita; Shprits, Yuri; Kellerman, Adam; Drozdov, Alexander; Zhu, Hui

    2017-04-01

    Recent years have given rise to numerous mathematical models of the Earth's radiation belt dynamics. Driven by observations at geosynchronous orbit (GEO) where satellites (e.g. GOES and LANL) provide extensive in-situ measurements, radiation belt models usually take into account only diffusion processes in the energetic electron belts (100 keV and greater), leaving aside the dynamics of colder source population (tens of keV). Such models are able to reconstruct the radiation belt state, but they are not capable of predicting the electron dynamics at GEO, where many communication and navigation satellites currently operate. In this work we present combined four-dimensional electron radiation belt - plasma sheet model accounting for adiabatic advective transport, radial diffusion due to interaction with ULF waves, local acceleration of electrons, scattering into the atmosphere, magnetopause shadowing, and adiabatic effects due to contraction and expansion of the magnetic field. The developed model is applicable to energetic, relativistic and ultrarelativistic electrons as well as to source electron population. The model provides spatial particle distribution allowing us to compare and validate the model with multiple satellite measurements at different MLT sectors (e.g. Van Allen Probes, GOES, LANL, THEMIS). The model can be helpful for the prediction of crucial for satellite operators geosynchronous electron fluxes and electron radiation belt dynamics including the heart of the outer belt, slot region and inner belt.

  2. 2015 safety belt usage survey in Kentucky.

    Science.gov (United States)

    2015-08-01

    The use of safety belts and child safety seats has been shown to be an effective means of : reducing injuries to motor-vehicle occupants involved in traffic crashes. There have been various : methods used in efforts to increase safety belt and safety...

  3. Belt separation system under slat in fattening pig housing: effect of belt type and extraction frequency.

    Science.gov (United States)

    Alonso, F; Vázquez, J; Ovejero, I; Garcimartín, M A; Mateos, A; Sánchez, E

    2010-08-01

    The efficiency of manure separation by a conveyor belt under a partially slatted floor for fattening pigs was determined for two types of belts, a flat belt with an incline of up to 6 degrees transversely and a concave belt with an incline of up to 1 degrees longitudinally. A 31.20% and 23.75% dry matter content of the solid fraction was obtained for the flat and concave belt, respectively. The flat belt was more efficient at 6 degrees than other slope angles. The residence time of the manure on the two belt types influenced the separation efficiency from a live weight of 63.00 kg upwards. The quantity of residue produced with this system was reduced to 25-40% with respect to a pit system under slat. This could mean a remarkable reduction in costs of storage, transport and application of manure. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Strain distribution across a partially molten middle crust: Insights from the AMS mapping of the Carlos Chagas Anatexite, Araçuaí belt (East Brazil)

    Science.gov (United States)

    Cavalcante, Geane C. G.; Egydio-Silva, Marcos; Vauchez, Alain; Camps, Pierre; Oliveira, Eurídice

    2013-10-01

    The easternmost part of the Neoproterozoic Araçuaí belt comprises an anatectic domain that involves anatexites (the Carlos Chagas unit), leucogranites and migmatitic granulites that display a well-developed fabric. Microstructural observations support that the deformation occurred in the magmatic to submagmatic state. Structural mapping integrating field and anisotropy of magnetic susceptibility (AMS) revealed a complex, 3D structure. The northern domain displays gently dipping foliations bearing a NW-trending lineation, southward, the lineation trend progressively rotates to EW then SW and the foliation is gently folded. The eastern domain displays E-W and NE-SW trending foliations with moderate to steeply dips bearing a dominantly NS trending lineation. Magnetic mineralogy investigation suggests biotite as the main carrier of the magnetic susceptibility in the anatexites and ferromagnetic minerals in the granulites. Crystallographic preferred orientation (CPO) measurements using the electron backscatter diffraction (EBSD) technique suggest that the magnetic fabric comes from the crystalline anisotropy of biotite and feldspar grains, especially. The delineation of several structural domains with contrasted flow fabric suggests a 3D flow field involving westward thrusting orthogonal to the belt, northwestward orogen-oblique escape tectonics and NS orogen-parallel flow. This complex deformation pattern may be due to interplay of collision-driven and gravity-driven deformations.

  5. Mineral potential tracts for orogenic, Carlin-like, and epithermal gold deposits in the Islamic Republic of Mauritania, (phase V, deliverable 69): Chapter H in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    Science.gov (United States)

    Goldfarb, Richard J.; Marsh, Erin; Anderson, Eric D.; Horton, John D.; Finn, Carol A.; Beaudoin, Georges

    2015-01-01

    The gold resources of Mauritania presently include two important deposits and a series of poorly studied prospects. The Tasiast belt of deposits, which came into production in 2007, is located in the southwestern corner of the Rgueïbat Shield and defines a world-class Paleoproterozoic(?) orogenic gold ore system. The producing Guelb Moghrein deposit occurs along a shear zone in Middle Archean rocks at the bend in the Northern Mauritanides and is most commonly stated to be an iron oxide-copper-gold (IOCG) type of deposit, although it also has some important characteristics of orogenic gold and skarn deposits. Both major deposits are surrounded by numerous prospects that show similar mineralization styles. The Guelb Moghrein deposit, and IOCG deposit types in general are discussed in greater detail in a companion report by Fernette (2015). In addition, many small gold prospects, which are probably orogenic gold occurrences and are suggested to be early Paleozoic in age, occur along the length of Southern Mauritanides. Existing data indicate the gold deposits and prospects in Mauritania have a sulfide assemblage most commonly dominated by pyrrhotite and chalcopyrite, and have ore-related fluids with apparently high salinities.

  6. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units

    NARCIS (Netherlands)

    Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.C.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K.

    2008-01-01

    A correlation of tectonic units of the Alpine-Carpathian-Dinaridic system of orogens, including the substrate of the Pannonian and Transylvanian basins, is presented in the form of a map. Combined with a series of crustal-scale cross sections this correlation of tectonic units yields a clearer

  7. Magnetic fabric transposition in folded granite sills in Variscan orogenic wedge

    Czech Academy of Sciences Publication Activity Database

    Závada, Prokop; Calassou, T.; Schulmann, K.; Hrouda, F.; Štípská, P.; Hasalová, Pavlína; Míková, J.; Magna, T.; Mixa, P.

    2017-01-01

    Roč. 94, January (2017), s. 166-183 ISSN 0191-8141 R&D Projects: GA ČR GA14-15632S Institutional support: RVO:67985530 Keywords : orogenic sill * AMS fabric * folding Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.408, year: 2016

  8. Variability of orogenic magmatism during Mediterranean-style continental collisions : A numerical modelling approach

    NARCIS (Netherlands)

    Andrić, N.; Vogt, K.; Matenco, L.; Cvetković, V.; Cloetingh, S.; Gerya, T.

    The relationship between magma generation and the tectonic evolution of orogens during subduction and subsequent collision requires self-consistent numerical modelling approaches predicting volumes and compositions of the produced magmatic rocks. Here, we use a 2D magmatic-thermomechanical numerical

  9. Orogen-parallel variation in exhumation and its influence on critical taper evolution: The case of the Emilia-Romagna Apennine (Italy)

    Science.gov (United States)

    Bonini, Marco

    2018-03-01

    The Northern Apennine prowedge exposes two adjacent sectors showing a marked along-strike change in erosion intensity, namely the Emilia Apennine to the northwest and the Romagna Apennine to the southeast. This setting has resulted from Pliocene erosion (≤5 Ma) and exhumation, which have affected the whole Romagna sector and mostly the watershed ridge in Emilia. Such an evolution has conceivably influenced the equilibrium of this fold-and-thrust belt, which can be evaluated in terms of critical Coulomb wedge theory. The present state of the thrust wedge has been assessed by crosschecking wedge tapers measured along transverse profiles with fluid pressure values inferred from deep wellbores. The interpretation of available data suggests that both Emilia and Romagna are currently overcritical. This condition is compatible with the presence in both sectors of active NE-dipping normal faults, which would work to decrease the surface slope of the orogenic wedge. However, the presence of Late Miocene-Pliocene passive-roof and out-of-sequence thrusts in Romagna may reveal a past undercritical wedge state ensuing during the regional erosion phase, thereby implying that the current overcritical condition would be a recent feature. The setting of the Emilia Apennine (i.e., strong axial exhumation and limited erosion of the prowedge) suggests instead a long lasting overcritical wedge, which was probably contemporaneous with the Pliocene undercritical wedge in Romagna. The reasons for this evolution are still unclear, although they may be linked to lithosphere-scale processes that have promoted the uplift of Romagna relative to Emilia. The lessons from the Northern Apennine thus suggest that erosion and exhumation have the ability to produce marked along-strike changes in the equilibrium of a fold-and-thrust belt.

  10. SVM-based base-metal prospectivity modeling of the Aravalli Orogen, Northwestern India

    Science.gov (United States)

    Porwal, Alok; Yu, Le; Gessner, Klaus

    2010-05-01

    The Proterozoic Aravalli orogen in the state of Rajasthan, northwestern India, constitutes the most important metallogenic province for base-metal deposits in India and hosts the entire economically viable lead-zinc resource-base of the country. The orogen evolved through near-orderly Wilson cycles of repeated extensional and compressional tectonics resulting in sequential opening and closing of intracratonic rifts and amalgamation of crustal domains during a circa 1.0-Ga geological history from 2.2 Ga to 1.0 Ga. This study develops a conceptual tectonostratigraphic model of the orogen based on a synthesis of the available geological, geophysical and geochronological data followed by deep-seismic-reflectivity-constrained 2-D forward gravity modeling, and links it to the Proterozoic base-metal metallogeny in the orogen in order to identify key geological controls on the base-metal mineralization. These controls are translated into exploration criteria for base-metal deposits, validated using empirical spatial analysis, and used to derive input spatial variables for model-based base-metal prospectivity mapping of the orogen. A support vector machine (SVM) algorithm augmented by incorporating a feature selection procedure is used in a GIS environment to implement the prospectivity mapping. A comparison of the SVM-derived prospectivity map with the ones derived using other established models such as neural-networks, logistic regression, and Bayesian weights-of-evidence indicates that the SVM outperforms other models, which is attributed to the capability of the SVM to return robust classification based on small training datasets.

  11. Crustal melting beneath orogenic plateaus: Insights from 3-D thermo-mechanical modeling

    Science.gov (United States)

    Chen, L.; Song, X.; Gerya, T.; Xu, T.; Chen, Y.

    2017-12-01

    Mid-crustal melting is widely documented within orogenic plateaus. However, the mechanism for its generation and its role in the evolution of orogenic plateaus remain poorly understood. Here we use 3-D thermo-mechanical models to investigate the physical controls for mid-crustal melting beneath orogenic plateaus and its consequences in plateau evolution. The results demonstrate that: 1) lateral lithospheric strength contrast between two colliding continents facilitates an episodic growth of orogenic plateau and mid-crustal melting; 2) slower convergence favors larger amount of melt; and 3) radioactive heating during crustal thickening plays the primary role in generating mid-crustal melting. Shear heating also plays a positive role in mid-crustal melting, but its role is secondary to radioactive heating. During collisional orogeny, it is the combination of crustal self-heating (radioactive/shear heating) and the contrast in radiogenic element concentration between the upper and lower crust that makes the base of the thickened upper crust favorable for in situ crustal melting at the mid-crust. We also demonstrate that the occurrence of the mid-crustal melting layer postdates the establishment of a broad orogenic plateau, and causes mechanical decoupling between the overlying upper crust and underlying lower crust by dramatically reducing mid-crustal strength. At the later stage, the melt-weakened layer flows outward in a localized channel and manifest its potential role in the marginal dominance of mid-crustal partial melting. Our models provide a self-consistent explanation for the low S-wave velocity zones widespread in the Tibetan middle crust, which are most prominent in the periphery of Tibet.

  12. Lateral thinking: 2-D interpretation of thermochronology in convergent orogenic settings

    Science.gov (United States)

    Batt, Geoffrey E.; Brandon, Mark T.

    2002-05-01

    Lateral motion of material relative to the regional thermal and kinematic frameworks is important in the interpretation of thermochronology in convergent orogens. Although cooling ages in denuded settings are commonly linked to exhumation, such data are not related to instantaneous behavior but rather to an integration of the exhumation rates experienced between the thermochronological 'closure' at depth and subsequent exposure at the surface. The short spatial wavelength variation of thermal structure and denudation rate typical of orogenic regions thus renders thermochronometers sensitive to lateral motion during exhumation. The significance of this lateral motion varies in proportion with closure temperature, which controls the depth at which isotopic closure occurs, and hence, the range of time and length scales over which such data integrate sample histories. Different chronometers thus vary in the fundamental aspects of the orogenic character to which they are sensitive. Isotopic systems with high closure temperature are more sensitive to exhumation paths and the variation in denudation and thermal structure across a region, while those of lower closure temperature constrain shorter-term behaviour and more local conditions. Discounting lateral motion through an orogenic region and interpreting cooling ages purely in terms of vertical exhumation can produce ambiguous results because variation in the cooling rate can result from either change in kinematics over time or the translation of samples through spatially varying conditions. Resolving this ambiguity requires explicit consideration of the physical and thermal framework experienced by samples during their exhumation. This can be best achieved through numerical simulations coupling kinematic deformation to thermal evolution. Such an approach allows the thermochronological implications of different kinematic scenarios to be tested, and thus provides an important means of assessing the contribution of

  13. From hyper-extended rifts to orogens: the example of the Mauléon rift basin in the Western Pyrenees (SW France)

    Science.gov (United States)

    Masini, E.; Manatschal, G.; Tugend, J.

    2011-12-01

    An integral part of plate tectonic theory is that the fate of rifted margins is to be accreted into mountain belts. Thus, rift-related inheritance is an essential parameter controlling the evolution and architecture of collisional orogens. Although this link is well accepted, rift inheritance is often ignored. The Pyrenees, located along the Iberian and European plate boundary, can be considered as one of the best places to study the reactivation of former rift structures. In this orogen the Late Cretaceous and Tertiary convergence overprints a Late Jurassic to Lower Cretaceous complex intracontinental rift system related to the opening of the North Atlantic. During the rifting, several strongly subsiding basins developed in the axis of the Pyrenees showing evidence of extreme crustal extension and even locale mantle exhumation to the seafloor. Although the exact age and kinematics of rifting is still debated, these structures have an important impact in the subsequent orogenic overprint. In our presentation we discuss the example of the Mauléon basin, which escaped from the most pervasive deformations because of its specific location at the interface between the western termination of the chain and the Bay of Biscay oceanic realm. Detailed mapping combined with seismic reflection, gravity data and industry wells enabled to determine the 3D rift architecture of the Mauléon basin. Two major diachronous detachment systems can be mapped and followed through space. The Southern Mauléon Detachment (SMD) develops first, starts to thin the crust and floors the Southern Mauléon sub-Basin (SMB). The second, the Northern Mauléon Detachment (SMD) is younger and controls the final crustal thinning and mantle exhumation to the north. Both constitute the whole Mauléon basin. Like at the scale of the overall Pyrenees, the reactivation of the Mauléon Basin increases progressively from west to east, which enables to document the progressive reactivation of an aborted hyper

  14. Drive Alive: Teen Seat Belt Survey Program

    Directory of Open Access Journals (Sweden)

    Loftin, Laurel

    2010-08-01

    Full Text Available Objective: To increase teen seat belt use among drivers at a rural high school by implementing the Drive Alive Pilot Program (DAPP, a theory-driven intervention built on highway safety best practices.Methods: The first component of the program was 20 observational teen seat belt surveys conducted by volunteer students in a high school parking lot over a 38-month period before and after the month-long intervention. The survey results were published in the newspaper. The second component was the use of incentives, such as gift cards, to promote teen seat belt use. The third component involved disincentives, such as increased police patrol and school policies. The fourth component was a programmatic intervention that focused on education and media coverage of the DAPP program.Results: Eleven pre-intervention surveys and nine post-intervention surveys were conducted before and after the intervention. The pre- and post-intervention seat belt usage showed significant differences (p<0.0001. The average pre-intervention seat belt usage rate was 51.2%, while the average post-intervention rate was 74.5%. This represents a percentage point increase of 23.3 in seat belt use after the DAPP intervention.Conclusion: Based on seat belt observational surveys, the DAPP was effective in increasing seat belt use among rural high school teenagers. Utilizing a theory-based program that builds on existing best practices can increase the observed seat belt usage among rural high school students. [West J Emerg Med. 2010; 11(3: 280-283.

  15. The role of collisional tectonics in the metallogeny of the Central Andean tin belt [rapid communication

    Science.gov (United States)

    Mlynarczyk, Michael S. J.; Williams-Jones, Anthony E.

    2005-12-01

    The Inner Arc of the Central Andes, broadly corresponding to the Eastern Cordillera, is the location of a rich Tertiary and Triassic Sn-W-(Ag-base metal) metallogenic province, commonly referred to as the Bolivian tin belt. We propose that the Tertiary metallogeny, which generated most of the tin ores, was a direct consequence of discrete "collisions" between the South American plate and the Nazca slab and sub-slab mantle, during the ongoing Andean orogeny. Evidence supporting this proposal include: (1) the coincidence of the tin province and the Inner Arc in a marked "hump" in the Andean orogen, which may represent tectonic indentation; (2) the symmetry of the tin province with respect to the Bolivian orocline, the axis of which corresponds to the direction of highest compression; (3) the relative symmetry of the magmatism and tin mineralization with respect to this axis; (4) the concurrent timing of mineralization and compressional pulses; (5) the similar host rock geochemistry and ore lead isotope data, testifying to a common crustal reservoir; and (6) the striking similarity of the igneous suites, associated with the ore deposits to those from "typical" collisional orogens. A number of studies have called upon a persistent tin anomaly to explain the metallogeny of the region. We propose, instead, that the latter is better explained by periodic compressional interaction between the Farallon/Nazca oceanic plate and the South American continent. This led to the generation of peraluminous magmas, which during fractional crystallization exsolved the fluids responsible for the voluminous Sn-W mineralization.

  16. Distinguishing thrust sequences in gravity-driven fold and thrust belts

    Science.gov (United States)

    Alsop, G. I.; Weinberger, R.; Marco, S.

    2018-04-01

    Piggyback or foreland-propagating thrust sequences, where younger thrusts develop in the footwalls of existing thrusts, are generally assumed to be the typical order of thrust development in most orogenic settings. However, overstep or 'break-back' sequences, where later thrusts develop above and in the hangingwalls of earlier thrusts, may potentially form during cessation of movement in gravity-driven mass transport deposits (MTDs). In this study, we provide a detailed outcrop-based analysis of such an overstep thrust sequence developed in an MTD in the southern Dead Sea Basin. Evidence that may be used to discriminate overstep thrusting from piggyback thrust sequences within the gravity-driven fold and thrust belt includes upright folds and forethrusts that are cut by younger overlying thrusts. Backthrusts form ideal markers that are also clearly offset and cut by overlying younger forethrusts. Portions of the basal detachment to the thrust system are folded and locally imbricated in footwall synclines below forethrust ramps, and these geometries also support an overstep sequence. However, new 'short-cut' basal detachments develop below these synclines, indicating that movement continued on the basal detachment rather than it being abandoned as in classic overstep sequences. Further evidence for 'synchronous thrusting', where movement on more than one thrust occurs at the same time, is provided by displacement patterns on sequences of thrust ramp imbricates that systematically increases downslope towards the toe of the MTD. Older thrusts that initiate downslope in the broadly overstep sequence continue to move and therefore accrue greater displacements during synchronous thrusting. Our study provides a template to help distinguish different thrust sequences in both orogenic settings and gravity-driven surficial systems, with displacement patterns potentially being imaged in seismic sections across offshore MTDs.

  17. Triassic tectonics of the Ailaoshan Belt (SW China): Early Triassic collision between the South China and Indochina Blocks, and Middle Triassic intracontinental shearing

    Science.gov (United States)

    Faure, Michel; Lin, Wei; Chu, Yang; Lepvrier, Claude

    2016-06-01

    In SE Yunnan, the Ailaoshan Belt has been extensively studied for the ductile shearing coeval with the left-lateral Cenozoic activity of the Red River fault. However, the Late Triassic unconformity of the continental red beds upon metamorphic and ductilely deformed rocks demonstrates that the Ailaoshan Belt was already built up by Early Mesozoic tectonics. From West to East, the belt is subdivided into Western, Central, Eastern Ailaoshan, and Jinping zones. The Western Ailaoshan and Central Ailaoshan zones correspond to a Carboniferous-Permian magmatic arc, and an ophiolitic mélange, respectively. The Eastern Ailaoshan, and the Jinping zones consist of deformed Proterozoic basement and Paleozoic to Early Triassic sedimentary cover series both belonging to the South China Block. This litho-tectonic zonation indicates that the Ailaoshan Belt developed through a SW-directed subduction followed by the collision between Indochina and South China blocks. Crustal thickening triggered per-aluminous magmatism dated at ca 247-240 Ma. Field and microscope-scale top-to-the-NE ductile shearing observed only in the pre-Late Triassic formations, but never in Late Triassic or younger formations, complies with this geodynamic polarity. Furthermore, the late collisional two-mica granitoids and felsic per-aluminous volcanites record a ductile deformation that argues for a continuing crustal shearing deformation after the Early Triassic collision up to the Middle Triassic. Therefore, a two-stage tectonic evolution accounts well for the documented structural and magmatic features. The Triassic architecture of the Ailaoshan Belt, and its geodynamic evolution, correlate well to the South and North with the North Vietnam orogens and the Jinshajiang Belt, respectively.

  18. Mountain building processes in intraplate, intracontinental oblique deformation belts: Lessons from the Gobi Altai, Mongolia

    Science.gov (United States)

    Cunningham, D.

    2012-04-01

    The Gobi Altai is an intraplate, intracontinental transpressional orogen in southern Mongolia that formed in the Late Cenozoic as a distant response to the Indo-Eurasia collision. The modern range formed within crust constructed by successive terrane accretion and ocean suturing events and widespread granite plutonism throughout the Palaeozoic. Modern reactivation of the Gobi Altai crust and the kinematics of Quaternary faults are fundamentally controlled by Palaeozoic basement structural trends, the location of rigid Precambrian blocks, orientation of SHmax and possible thermal weakening of the lower crust due to an extensive history of Mesozoic-Cenozoic basaltic volcanism in the region, and the presence of thermally elevated asthenosphere under the Hangay Dome to the north. Modern mountain building processes in the Gobi Altai typically involve reactivation of NW-striking basement structures in thrust mode and development of linking E-W left-lateral strike-slip faults which crosscut basement structures within an overall left-lateral transpressional regime. Restraining bends, other transpressional ridges and thrusted basement blocks are the main range type, but are discontinuously distributed and separated by internally drained basins filling with modern alluvial deposits. Unlike a contractional thrust belt, there is no orogenic foreland or hinterland, and thrusts are both NE and SW directed with no evidence for a basal decollement. Normal faults related to widespread Cretaceous rifting in the region are locally thrust reactivated in the NE Gobi Altai, but elsewhere appear to be unfavourably oriented for Late Cenozoic reactivation despite widespread topographic inversion of Cretaceous basin sequences. The diffuse historical seismicity in the region coupled with a complex system of interacting faults showing evidence for Quaternary movements, suggests that faults may be dormant for long periods and then reactivate. Large earthquakes may be episodic and spatially

  19. Compliance with Seat Belt Use in Makurdi, Nigeria: An ...

    African Journals Online (AJOL)

    Background: Seat belts are designed to reduce injuries due to road crash among vehicle occupants. Aims: This study aims to determine the availability of seat belt in vehicles and compliance with seat belt use among vehicle occupants. Materials and methods: This was a 24‑h direct observational study of seat belt usage ...

  20. 30 CFR 57.4503 - Conveyor belt slippage.

    Science.gov (United States)

    2010-07-01

    ...) Underground belt conveyors shall be equipped with a detection system capable of automatically stopping the... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Conveyor belt slippage. 57.4503 Section 57.4503... Control Installation/construction/maintenance § 57.4503 Conveyor belt slippage. (a) Surface belt conveyors...

  1. Evolution of the Bhandara-Balaghat granulite belt along the ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The Bhandara-Balaghat granulite (BBG) belt occurs as a 190km long, detached narrow, linear,. NE–SW to ENE–WSW trending belt that is in tectonic contact on its northern margin with the. Sausar Group of rocks and is bordered by the Sakoli fold belt in the south. The Bhandara part of the BBG belt is quite restricted, ...

  2. Simulation of engine auxiliary drive V-belt slip motion. Part 1. Development of belt slip model; Engine hoki V belt slip kyodo no simulation. 1. Belt slip model no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kurisu, T. [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    V-belts are widely used for driving auxiliary components of an engine. Inadequet design of such belt system sometimes results in troubles such as belt squeak, side rubber separation and/or bottom rubber crack. However, there has been no design tools which can predict belt slip quantitatively. The author developed a motion simulation program of Auxiliary Drive V-Belt System considering belt slip. The program showed good prediction accuracy for belt slip motion. This paper describes the simulation model. 1 ref., 12 figs.

  3. Subduction and Slab Advance at Orogen Syntaxes: Predicting Exhumation Rates and Thermochronometric Ages with Numerical Modeling

    Science.gov (United States)

    Nettesheim, Matthias; Ehlers, Todd A.; Whipp, David M.

    2017-04-01

    The change in plate boundary orientation and subducting plate geometry along orogen syntaxes may have major control on the subduction and exhumation dynamics at these locations. Previous work documents that the curvature of subducting plates in 3D at orogen syntaxes forces a buckling and flexural stiffening of the downgoing plate. The geometry of this stiffened plate region, also called indenter, can be observed in various subduction zones around the world (e.g. St. Elias Range, Alaska; Cascadia, USA; Andean syntaxis, South America). The development of a subducting, flexurally stiffened indenter beneath orogen syntaxes influences deformation in the overriding plate and can lead to accelerated and focused rock uplift above its apex. Moreover, the style of deformation in the overriding plate is influenced by the amount of trench or slab advance, which is the amount of overall shortening not accommodated by underthrusting. While many subduction zones exhibit little to no slab advance, the Nazca-South America subduction and especially the early stages of the India-Eurasia collision provide end-member examples. Here, we use a transient, lithospheric-scale, thermomechanical 3D model of an orogen syntaxis to investigate the effects of subducting a flexurally stiffened plate geometry and slab advance on upper plate deformation. A visco-plastic upper-plate rheology is used, along with a buckled, rigid subducting plate. The free surface of the thermomechanical model is coupled to a landscape evolution model that accounts for erosion by fluvial and hillslope processes. The cooling histories of exhumed rocks are used to predict the evolution of low-temperature thermochronometer ages on the surface. With a constant overall shortening for all simulations, the magnitude of slab advance is varied stepwise from no advance, with all shortening accommodated by underthrusting, to full slab advance, i.e. no motion on the megathrust. We show that in models where most shortening is

  4. Handbook Timing Belts Principles, Calculations, Applications

    CERN Document Server

    Perneder, Raimund

    2012-01-01

    Timing belts offer a broad range of innovative drivetrain solutions; they allow low-backlash operation in robot systems, they are widely used in automated processes and industrial handling involving highly dynamic start-up loads, they are low-maintenance solutions for continuous operation applications, and they can guarantee exact positioning at high operating speeds. Based on his years of professional experience, the author has developed concise guidelines for the dimensioning of timing belt drives and presents proven examples from the fields of power transmission, transport and linear transfer technology. He offers definitive support for dealing with and compensating for adverse operating conditions and belt damage, as well as advice on drive optimization and guidelines for the design of drivetrain details and supporting systems. All market-standard timing belts are listed as brand neutral. Readers will discover an extensive bibliography with information on the various manufacturers and their websites. This...

  5. Radiation Belt Storm Probe (RBSP) Mission

    Science.gov (United States)

    Sibeck, D. G.; Fox, N.; Grebowsky, J. M.; Mauk, B. H.

    2009-01-01

    Scheduled to launch in May 2012, NASA's dual spacecraft Living With a Star Radiation Belt Storm Probe mission carries the field and particle instrumentation needed to determine the processes that produce enhancements in radiation belt ion and electron fluxes, the dominant mechanisms that cause the loss of relativistic electrons, and the manner by which the ring current and other geomagnetic phenomena affect radiation belt behavior. The two spacecraft will operate in low-inclination elliptical lapping orbits around the Earth, within and immediately exterior to the Van Allen radiation belts. During course of their two year primary mission, they will cover the full range of local times, measuring both AC and DC electric and magnetic fields to 10kHz, as well as ions from 50 eV to 1 GeV and electrons with energies ranging from 50 eV to 10 MeV.

  6. Dynamics Analysis and Modeling of Rubber Belt in Large Mine Belt Conveyors

    OpenAIRE

    Gao Yang

    2014-01-01

    Rubber belt not only is one of the key components of belt conveyor, but also affects the overall performance of the core part. Research on dynamics analysis of large conveyor not only helps to improve the reliability and design level, but also can guide the rational selection of conveyor safety factor, and effectively reduce the cost of the conveyor belt. Based on unique viscoelastic properties of belt conveyor, it was simplified as one-dimensional viscoelastic rod in this study, and then a d...

  7. Geochemistry and geochronology of the mafic dikes in the Taipusi area, northern margin of North China Craton: Implications for Silurian tectonic evolution of the Central Asian Orogen

    Science.gov (United States)

    Wu, Jing-Hua; Li, Huan; Xi, Xiao-Shuang; Kong, Hua; Wu, Qian-Hong; Peng, Neng-Li; Wu, Xi-Ming; Cao, Jing-Ya; Gabo-Ratio, Jillian Aira S.

    2017-07-01

    The Taipusi area in the Bainaimiao Arc Belt is located in the northern margin of the North China Craton, at the southern margin of the middle Central Asian Orogenic Belt. It is characterized by large exposures of mafic dikes. In this contribution, we present first-hand whole-rock major and trace elements, zircon U-Pb geochronology and in situ trace element geochemistry data for these mafic rocks, which reveal their petrogenesis and tectonic evolution. These mafic dikes display varied compositions of SiO2 (49.42-54.29%), TiO2 (0.63-1.08%), Al2O3 (13.94-17.60%), MgO (4.66-10.51%), Fe2O3 (1.59-3.07%), FeO (4.60-6.90%), CaO (4.57-8.91%), Na2O (1.61-4.26%), K2O (0.92-2.54%) and P2O5 (0.11-0.29%). They are mainly of high-K calc-alkaline series with indistinct Eu anomalies, enriched in large ion lithophile elements (e.g., Rb, Ba, K and Sr) but depleted in high field strength elements (e.g., Nb, P and Ti). These suggest that the crystallizing magma was derived from enriched mantle altered by metasomatic fluids in a subduction setting with imprints of active continental margin features. The high concentrations of Hf, U, Th, Pb and Y, pronounced positive Ce but slightly negative Eu anomalies in zircons indicating that the magma underwent a fractional crystallization and crustal contamination process, with medium to high fO2. Zircon LA-ICP-MS U-Pb dating yielded concordant ages of 437-442 Ma for these mafic dikes, which is consistent with the early Paleozoic volcanic arc magmatic activity in the Bainaimiao area. Hence, we conclude that the Bainaimiao Arc Belt is a continental arc formed by the southward subduction of the Paleo-Asian ocean during early Paleozoic.

  8. Seat-belt message and the law?

    Science.gov (United States)

    Sengupta, S K; Patil, N G; Law, G

    1989-09-01

    This paper attempts to draw together available information on the use of seat belts, one of the most important safety devices for a person in a car. Considering the high rate of mortality and morbidity due to road traffic accidents in Papua New Guinea the authors strongly feel that seat-belt usage should be made compulsory. When one looks at the history of the implementation of such a successful countermeasure in other countries it seems that legislation is the only answer.

  9. A revised subduction inception model to explain the Late Cretaceous, doubly vergent orogen in the pre-collisional western Tethys: evidences from the Northern Apennine

    Science.gov (United States)

    Meneghini, Francesca; Marroni, Michele; Pandolfi, Luca

    2017-04-01

    Orogenic processes are widely demonstrated to be strongly controlled by inherited structures. The paleogeography of the converging margins, and the tectonic processes responsible for their configuration, will influence the location of subduction initiation, the distribution of deformation between upper and lower plate, the shape of the accretionary prism and of the subsequent orogeny, through controlling the development of single or doubly-vergent orogens, and, as a corollary, the modality of exhumation of metamorphosed units. The "alpine age" collisional belts of the Mediterranean area are characterized by tangled architectures derived from the overlapping of several deformation events related to a multiphase, long history that comprises not only the collision of continental margins, but that can be regarded as an heritage of both the rifting-related configuration of the continental margins, and the subduction-related structures. The Northern Apennines is a segment of these collisional belts that originated by the Late Cretaceous-Middle Eocene closure of the northern branch of the western Tethys, and the subsequent Late Eocene-Early Oligocene continental collision between the Europe and Adria plates. Due to a different configuration of the paired Adria and Europe continental margins, inherited from a rifting phase dominated by asymmetric, simple-shear kinematics, the Northern Apennines expose a complex groups of units, referred to as Ligurian Units, that record the incorporation into the subduction factory of either fragments of the Ligure-Piemontese oceanic domain (i.e. Internal Ligurian Units), and various portions of the thinned Adria margin (i.e. External Ligurian Units), describable as an Ocean-Continent Transition Zone (OCTZ). The structural relationships between these groups of Units are crucial for the definition of the pre-collisional evolution of the belt and have been the subject of big debates in the literature, together with the location and

  10. The Compositional Structure of the Asteroid Belt

    Science.gov (United States)

    DeMeo, F. E.; Alexander, C. M. O'D.; Walsh, K. J.; Chapman, C. R.; Binzel, R. P.

    The past decade has brought major improvements in large-scale asteroid discovery and characterization, with over half a million known asteroids, more than 100,000 of which have some measurement of physical characterization. This explosion of data has allowed us to create a new global picture of the main asteroid belt. Put in context with meteorite measurements and dynamical models, a new and more complete picture of solar system evolution has emerged. The question has changed from "What was the original compositional gradient of the asteroid belt?" to "What was the original compositional gradient of small bodies across the entire solar system?" No longer is the leading theory that two belts of planetesimals are primordial, but instead those belts were formed and sculpted through evolutionary processes after solar system formation. This chapter reviews the advancements on the fronts of asteroid compositional characterization, meteorite measurements, and dynamical theories in the context of the heliocentric distribution of asteroid compositions seen in the main belt today. This chapter also reviews the major outstanding questions relating to asteroid compositions and distributions and summarizes the progress and current state of understanding of these questions to form the big picture of the formation and evolution of asteroids in the main belt. Finally, we briefly review the relevance of asteroids and their compositions in their greater context within our solar system and beyond.

  11. Decay rate of the second radiation belt.

    Science.gov (United States)

    Badhwar, G D; Robbins, D E

    1996-01-01

    Variations in the Earth's trapped (Van Allen) belts produced by solar flare particle events are not well understood. Few observations of increases in particle populations have been reported. This is particularly true for effects in low Earth orbit, where manned spaceflights are conducted. This paper reports the existence of a second proton belt and it's subsequent decay as measured by a tissue-equivalent proportional counter and a particle spectrometer on five Space Shuttle flights covering an eighteen-month period. The creation of this second belt is attributed to the injection of particles from a solar particle event which occurred at 2246 UT, March 22, 1991. Comparisons with observations onboard the Russian Mir space station and other unmanned satellites are made. Shuttle measurements and data from other spacecraft are used to determine that the e-folding time of the peak of the second proton belt. It was ten months. Proton populations in the second belt returned to values of quiescent times within eighteen months. The increase in absorbed dose attributed to protons in the second belt was approximately 20%. Passive dosimeter measurements were in good agreement with this value.

  12. 3.3 Ga SHRIMP U-Pb zircon age of a felsic metavolcanic rock from the Mundo Novo greenstone belt in the São Francisco craton, Bahia (NE Brazil)

    Science.gov (United States)

    Peucat, J. J.; Mascarenhas, J. F.; Barbosa, J. S. F.; de Souza, S. L.; Marinho, M. M.; Fanning, C. M.; Leite, C. M. M.

    2002-07-01

    Felsic metavolcanics associated with supracrustal rocks provide U-Pb zircon and Sm-Nd TDM ages of approximately 3.3 Ga, which establish an Archean age of the Mundo Novo greenstone belt. A granodioritic gneiss from the Mairi complex, located on the eastern boundary of the Mundo Novo greenstone belt, exhibits a zircon evaporation minimum age of 3.04 Ga and a Nd model age of 3.2 Ga. These results constrain the occurrence of at least three major geological units in this area: the Archean Mundo Novo greenstone belt, the Archean Mairi gneisses, and the adjoining Paleoproterozoic (<2.1 Ga) Jacobina sedimentary basin. The Jacobina basin follows the same trend as the Archean structure, extending southward to the Contendas-Mirante belt, in which a similar Archean-Paleoproterozoic association appears. We postulate that during the Paleoproterozoic in the eastern margin of the Gavião block, these Archean greenstone belts constituted a zone of weakness along which a late-stage orogenic sedimentary basin developed.

  13. Non-cylindrical fold growth in the Zagros fold and thrust belt (Kurdistan, NE-Iraq)

    Science.gov (United States)

    Bartl, Nikolaus; Bretis, Bernhard; Grasemann, Bernhard; Lockhart, Duncan

    2010-05-01

    The Zagros mountains extends over 1800 km from Kurdistan in N-Iraq to the Strait of Hormuz in Iran and is one of the world most promising regions for the future hydrocarbon exploration. The Zagros Mountains started to form as a result of the collision between the Eurasian and Arabian Plates, whose convergence began in the Late Cretaceous as part of the Alpine-Himalayan orogenic system. Geodetic and seismological data document that both plates are still converging and that the fold and thrust belt of the Zagros is actively growing. Extensive hydrocarbon exploration mainly focuses on the antiforms of this fold and thrust belt and therefore the growth history of the folds is of great importance. This work investigates by means of structural field work and quantitative geomorphological techniques the progressive fold growth of the Permam, Bana Bawi- and Safeen- Anticlines located in the NE of the city of Erbil in the Kurdistan region of Northern Iraq. This part of the Zagros fold and thrust belt belongs to the so-called Simply Folded Belt, which is dominated by gentle to open folding. Faults or fault related folds have only minor importance. The mechanical anisotropy of the formations consisting of a succession of relatively competent (massive dolomite and limestone) and incompetent (claystone and siltstone) sediments essentially controls the deformation pattern with open to gentle parallel folding of the competent layers and flexural flow folding of the incompetent layers. The characteristic wavelength of the fold trains is around 10 km. Due to faster erosion of the softer rock layers in the folded sequence, the more competent lithologies form sharp ridges with steeply sloping sides along the eroded flanks of the anticlines. Using an ASTER digital elevation model in combination with geological field data we quantified 250 drainage basins along the different limbs of the subcylindrical Permam, Bana Bawi- and Safeen- Anticlines. Geomorphological indices of the drainage

  14. Classification, mineralogical and geochemical variations in pegmatites of the Cape Cross-Uis pegmatite belt, Namibia

    Science.gov (United States)

    Fuchsloch, Warrick C.; Nex, Paul A. M.; Kinnaird, Judith A.

    2018-01-01

    The Pan African aged Damara Orogen in Namibia is host to the Cape Cross-Uis pegmatite belt, one of several NE-trending pegmatite belts which host Li, Nb, Ta and Sn mineralisation. Field mapping and structural analysis of thirty seven pegmatite bodies has shown that the pegmatites intrude along crustal weaknesses such as fold axes and bedding planes, predominantly following the approximate NE orientated regional structural fabric. The lack of deformation together with cross-cutting relationships mapped, suggest that pegmatites were emplaced during post-tectonic extension that resulted from end-orogeny crustal relaxation. Based on mineralogy, geochemistry and ore mineralogy, three groups of pegmatites are distinguished within the Cape Cross-Uis belt. (1) The most common are the unzoned Nb-Ta-Sn type with mineralised alteration areas in the form of greisenised and albitised zones that occur sporadically in the pegmatites in various morphologies. (2) The garnet-tourmaline, crudely zoned pegmatites are slightly less common. They are granite-hosted and differ from other pegmatite types in terms of their low Rb, Sr, Nb, Ta, Sn, Cs (< 30 ppm) but higher REE, U, Th, and Y values. (3) The zoned lithium-bearing pegmatites are rare but the most complex. They are subdivided into two groups: The Li-Nb-Ta-Sn spodumene-bearing pegmatites of the Karlowa swarm and the Li-Nb-Ta-Sn-Be petalite-bearing pegmatites of the Strathmore swarm. They are highly fractionated with typical values of Nb (206 ppm), Ta (185 ppm) and Sn (10,016 ppm). There is no spatial distribution or regional zonation of the pegmatites type relative to granite outcrops within the belt. Contrasting geochemical fractionation patterns and the lower concentrations of REE in pegmatites than in granites suggests that pegmatites resulted from varying degrees of partial melting of a muscovite-ilmenite-bearing source. The Sn, Nb and Ta in pegmatites is likely to have originated from this source rather than from assimilation

  15. Seismic anisotropies of the Songshugou peridotites (Qinling orogen, central China) and their seismic implications

    Science.gov (United States)

    Cao, Yi; Jung, Haemyeong; Song, Shuguang

    2018-01-01

    Though extensively studied, the roles of olivine crystal preferred orientations (CPOs or fabrics) in affecting the seismic anisotropies in the Earth's upper mantle are rather complicated and still not fully known. In this study, we attempted to address this issue by analyzing the seismic anisotropies [e.g., P-wave anisotropy (AVp), S-wave polarization anisotropy (AVs), radial anisotropy (ξ), and Rayleigh wave anisotropy (G)] of the Songshugou peridotites (dunite dominated) in the Qinling orogen in central China, based on our previously reported olivine CPOs. The seismic anisotropy patterns of olivine aggregates in our studied samples are well consistent with the prediction for their olivine CPO types; and the magnitude of seismic anisotropies shows a striking positive correlation with equilibrium pressure and temperature (P-T) conditions. Significant reductions of seismic anisotropies (AVp, max. AVs, and G) are observed in porphyroclastic dunite compared to coarse- and fine-grained dunites, as the results of olivine CPO transition (from A-/D-type in coarse-grained dunite, through AG-type-like in porphyroclastic dunite, to B-type-like in fine-grained dunite) and strength variation (weakening: A-/D-type → AG-type-like; strengthening: AG-type-like → B-type-like) during dynamic recrystallization. The transition of olivine CPOs from A-/D-type to B-/AG-type-like in the forearc mantle may weaken the seismic anisotropies and deviate the fast velocity direction and the fast S-wave polarization direction from trench-perpendicular to trench-oblique direction with the cooling and aging of forearc mantle. Depending on the size and distribution of the peridotite body such as the Songshugou peridotites, B- and AG-type-like olivine CPOs can be an additional (despite minor) local contributor to the orogen-parallel fast velocity direction and fast shear-wave polarization direction in the orogenic crust such as in the Songshugou area in Qinling orogen.

  16. The susceptibility of large river basins to orogenic and climatic drivers

    Science.gov (United States)

    Haedke, Hanna; Wittmann, Hella; von Blanckenburg, Friedhelm

    2017-04-01

    Large rivers are known to buffer pulses in sediment production driven by changes in climate as sediment is transported through lowlands. Our new dataset of in situ cosmogenic nuclide concentration and chemical composition of 62 sandy bedload samples from the world largest rivers integrates over 25% of Earth's terrestrial surface, distributed over a variety of climatic zones across all continents, and represents the millennial-scale denudation rate of the sediment's source area. We can show that these denudation rates do not respond to climatic forcing, but faithfully record orogenic forcing, when analyzed with respective variables representing orogeny (strain rate, relief, bouguer anomaly, free-air anomaly), and climate (runoff, temperature, precipitation) and basin properties (floodplain response time, drainage area). In contrast to this orogenic forcing of denudation rates, elemental bedload chemistry from the fine-grained portion of the same samples correlates with climate-related variables (precipitation, runoff) and floodplain response times. It is also well-known from previous compilations of river-gauged sediment loads that the short-term basin-integrated sediment export is also climatically controlled. The chemical composition of detrital sediment shows a climate control that can originate in the rivers source area, but this signal is likely overprinted during transfer through the lowlands because we also find correlation with floodplain response times. At the same time, cosmogenic nuclides robustly preserve the orogenic forcing of the source area denudation signal through of the floodplain buffer. Conversely, previous global compilations of cosmogenic nuclides in small river basins show the preservation of climate drivers in their analysis, but these are buffered in large lowland rivers. Hence, we can confirm the assumption that cosmogenic nuclides in large rivers are poorly susceptible to climate changes, but are at the same time highly suited to detect

  17. Deformation Partitioning: The Missing Link Between Outcrop-Scale Observations And Orogen-Scale Processes

    Science.gov (United States)

    Attia, S.; Paterson, S. R.; Jiang, D.; Miller, R. B.

    2017-12-01

    Structural studies of orogenic deformation fields are mostly based on small-scale structures ubiquitous in field exposures, hand samples, and under microscopes. Relating deformation histories derived from such structures to changing lithospheric-scale deformation and boundary conditions is not trivial due to vast scale separation (10-6 107 m) between characteristic lengths of small-scale structures and lithospheric plates. Rheological heterogeneity over the range of orogenic scales will lead to deformation partitioning throughout intervening scales of structural development. Spectacular examples of structures documenting deformation partitioning are widespread within hot (i.e., magma-rich) orogens such as the well-studied central Sierra Nevada and Cascades core of western North America: (1) deformation partitioned into localized, narrow, triclinic shear zones separated by broad domains of distributed pure shear at micro- to 10 km scales; (2) deformation partitioned between plutons and surrounding metamorphic host rocks as shown by pluton-wide magmatic fabrics consistently oriented differently than coeval host rock fabrics; (3) partitioning recorded by different fabric intensities, styles, and orientations established from meter-scale grid mapping to 100 km scale domainal analyses; and (4) variations in the causes of strain and kinematics within fold-dominated domains. These complex, partitioned histories require synthesized mapping, geochronology, and structural data at all scales to evaluate partitioning and in the absence of correct scaling can lead to incorrect interpretations of histories. Forward modeling capable of addressing deformation partitioning in materials containing multiple scales of rheologically heterogeneous elements of varying characteristic lengths provides the ability to upscale the large synthesized datasets described above to plate-scale tectonic processes and boundary conditions. By comparing modeling predictions from the recently developed

  18. Microfluidic magnetic bead conveyor belt.

    Science.gov (United States)

    van Pelt, Stijn; Frijns, Arjan; den Toonder, Jaap

    2017-11-07

    Magnetic beads play an important role in the miniaturization of clinical diagnostics systems. In lab-on-chip platforms, beads can be made to link to a target species and can then be used for the manipulation and detection of this species. Current bead actuation systems utilize complex on-chip coil systems that offer low field strengths and little versatility. We demonstrate a novel system based on an external rotating magnetic field and on-chip soft-magnetic structures to focus the field locally. These structures were designed and optimized using finite element simulations in order to create a number of local flux density maxima. These maxima, to which the magnetic beads are attracted, move over the chip surface in a continuous way together with the rotation of the external field, resulting in a mechanism similar to that of a conveyor belt. A prototype was fabricated using PDMS molding techniques mixed with iron powder for the magnetic structures. In the subsequent experiments, a quadrupole electromagnet was used to create the rotating external field. We observed that beads formed agglomerates that rolled over the chip surface, just above the magnetic structures. Field rotation frequencies between 0.1-50 Hz were tested resulting in magnetic bead speeds of over 1 mm s -1 for the highest frequency. With this, we have shown that our novel concept works, combining a simple design and simple operation with a powerful and versatile method for bead actuation. This makes it a promising method for further research and utilization in lab-on-chip systems.

  19. Fold superimposition in the Permian groups in the central Beishan orogenic collage (northwestern China): highlights for the late evolution of the Altaids

    Science.gov (United States)

    Zhonghua, Tian; Wenjiao, Xiao; Yehua, Shan

    2013-04-01

    The southernmost part of the Central Asian Orogenic Belt (CAOB) or Altaids (Sengör and Burtman, 1993; Xiao et al., 2009), a rare and magnificent example of mesoscopic fold superimposition, involving the Permian sandstone, slightly to mildly metamorphosed clastic rocks, is well exposed in the central Beishan Orogenic Collage (BOC). We provide a detailed description of the morphological features of this phenomenon, based on an enormous amount of structural data collected during recent twice field mapping in the study area. Two phases of folds are readily distinguishable both in satellite image (Fig.la) and our own field map (Fig.1b). Fold is tight to close, N-S-trending in the first phase (F1), and open and E-W-trending in the second phase (F2). The first phase upright folds were refolded into a smaller number of (F2), whose axial planes and axes are vertical or subvertical. They plunge gentle to moderately in the former and moderately to steeply in the latter. Their interference is in general categorized as Ramsay's (Ramsay, 1967) type 2 or Ghosh's third/fourth mode based on the value of initial tightness. However, from east to west there exists a slight variation of a zigzag to crescent to mushroom interference pattern. This subtle variation corresponds with the westward increases of the F2 interlimb angle and of the percentage of coarse-grain clastic rocks, suggesting its dependence upon the F2 deformation and the lithology. Axial slaty cleavages (S1) and associated dip-slip slickensides are more abundant in the first phase. Cleavages and strike-slip slickensides related to the seconding refolding are also occurred in the area. Finally, according to the petrological, geochemical and geochronological data, we conclude that the deformation history of the superposed folds were associated with the late evolution in the BOC. In the late Permian, the fold superimposition occurred in sedimentary rocks deposited in a Permian back-arc basin. The basin was intensely

  20. Time-space focused intrusion of genetically unrelated arc magmas in the early Paleozoic Ross-Delamerian Orogen (Morozumi Range, Antarctica)

    Science.gov (United States)

    Rocchi, S.; Di Vincenzo, G.; Dini, A.; Petrelli, M.; Vezzoni, S.

    2015-09-01

    The growth of continental crust in accretionary orogenic belts takes place through repeated cycles of subduction-accretion of rock units from continental and oceanic magmatic arcs, supra-subduction zone backarcs and forearcs loaded with continent-derived materials. An ancient example relevant to magmatic arc accretion models is represented by the remnants of the Cambrian-Ordovician Ross Orogen in the Morozumi Range, Victoria Land (Antarctica). There, late Neoproterozoic phyllites host an intrusive complex which preserves a remarkably uncommon record of genetically unrelated magma pulses emplaced under a variable stress regime in a short time span: (1) a dominant K-feldspar-phyric granite, (2) fine-grained dioritic stocks and dykes, (3) a peraluminous granite; and (4) a tonalitic-granodioritic dyke swarm. Laserprobe U-Pb zircon dates cluster at late Cambrian times for all these units, yet they carry differential cargoes of relict cores. Unique geochemical-isotopic signatures for both the less evolved magmas (diorite and dyke tonalite) and the most acidic ones (granite and peraluminous granite) indicate that each one of them originated from distinct sources at depth. Additionally, field relationships and chemical evolutionary trends testify for a variety of shallow level open-system processes, such as magma mingling/mixing between diorite and main granite magmas, as well as progressive incorporation of the host schists by the dyke tonalite magma. In summary, crustal growth in the Morozumi intrusive complex was contributed by fresh mantle magma issuing from the metasomatised mantle wedge, while the production of other melts did recycle different crustal portions/layers: the main granite derived from Grenville-age granulitic lower crust; the peraluminous granite from late Proterozoic upper crust, and the tonalite magmas derived from subduction erosion-enriched subarc mantle and evolved by ingestion of local metasedimentary rocks. Overall, the Morozumi intrusive complex

  1. Molybdenum mineralization related to the Yangtze's lower crust and differentiation in the Dabie Orogen: Evidence from the geochemical features of the Yaochong porphyry Mo deposit

    Science.gov (United States)

    Liu, Qing-Quan; Li, Bin; Shao, Yong-Jun; Lu, An-Huai; Lai, Jian-Qing; Li, Yong-Feng; Luo, Zheng-Zhuan

    2017-06-01

    The Dabie Orogen is a world-class case for large amounts of Mo mineralization in that it contains at least 10 porphyry Mo deposits with Mo metal reserves over 3 Mt from the time period of 156-110 Ma. However, the principal mechanism for the Mo mineralization remains controversial due to the lack of a precise definition of its source and shallow ore-forming process, which is essential to understand these rare large Mo deposits. Detailed geochronology, geochemistry, and isotopic data for ore-related granites and minerals were analyzed in order to place constraints on the massive Mo mineralization in the Dabie Orogen in eastern China. The Yaochong molybdenum orebodies were hosted in the transition belt and alteration zone between the granitic stocks and the Dabie Complex and were characterized as numerous veinlets with potassic, phyllic and propylitic alterations. The buried Yaochong granitic intrusions and associated molybdenum mineralization yield Early Cretaceous ages of magmatic activities at ca. 138 Ma and extremely similar Re-Os isotope ages for the corresponding Mo metallogenic event at ca. 137 Ma. The Yaochong monzogranite and granite porphyry belong to the highly fractionated I-type granites, which are believed to be derived from the dominantly Yangtze's lower crust mixed with the Northern Dabie Complex due to their geochemical and isotope features. The elemental diversity and isotopic homogeneity suggest that the formation of the Yaochong monzogranite involved the fractionation of biotite, garnet and minor feldspar and accessory minerals combined with a weak crustal assimilation process. In contrast, the granite porphyry was possibly generated by the partial melting of the same mixed lower continental crust via the differentiation process involving the fractionation of feldspar, apatite, and/or titanite. Fractional crystallization processes can significantly elevate the molybdenum concentration in the residual melts. The biotite fractional crystallization

  2. Analysis of stress distribution of timing belts by FEM; Yugen yosoho ni yoru timing belt oryoku kaiseki (belt code oryoku bunpu kaiseki hokoku)

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Y.; Tomono, K.; Takahashi, H.; Uchida, T. [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    A model of the belt analyzed by-ABAQUS (: a general nonlinear finite element program) successfully confirmed the mechanism that generates the belt cord stress. A quite good agreement between experimental and computed results for the stress distribution of the belt cord. It is found that maximum stress of the cords occurs near the root of the tooth by calculation, where the belt cords break off. 3 refs., 9 figs.

  3. Structural model of the eastern Achara-Trialeti fold and thrust belt using seismic reflection profiles

    Science.gov (United States)

    Alania, Victor; Chabukiani, Alexander; Enukidze, Onise; Razmadze, Alexander; Sosson, Marc; Tsereteli, Nino; Varazanashvili, Otar

    2017-04-01

    Our study focused on the structural geometry at the eastern Achara-Trialeti fold and thrust belt (ATFTB) located at the retro-wedge of the Lesser Caucasus orogen (Alania et al., 2016a). Our interpretation has integrated seismic reflection profiles, several oil-wells, and the surface geology data to reveal structural characteristics of the eastern ATFTB. Fault-related folding theories were used to seismic interpretation (Shaw et al., 2004). Seismic reflection data reveal the presence of basement structural wedge, south-vergent backthrust, north-vergent forethrust and some structural wedges (or duplex). The rocks are involved in the deformation range from Paleozoic basement rocks to Tertiary strata. Building of thick-skinned structures of eastern Achara-Trialeti was formed by basement wedges propagated from south to north along detachment horizons within the cover generating thin-skinned structures. The kinematic evolution of the south-vergent backthrust zone with respect to the northward propagating structural wedge (or duplexes). The main style of deformation within the backthrust belt is a series of fault-propagation folds. Frontal part of eastern ATFTB are represent by triangle zone (Alania et al., 2016b; Sosson et al., 2016). A detailed study was done for Tbilisi area: seismic refection profiles, serial balanced cross-sections, and earthquakes reveal the presence of an active blind thrust fault beneath Tbilisi. 2 & 3-D structural models show that 2002 Mw 4.5 Tbilisi earthquake related to a north-vergent blind thrust. Empirical relations between blind fault rupture area and magnitude suggest that these fault segments could generate earthquakes of Mw 6.5. The growth fault-propagation fold has been observed near Tbilisi in the frontal part of eastern ATFTB. Seismic reflection profile through Ormoiani syncline shows that south-vergent growth fault-propagation fold related to out-of-the-syncline thrust. The outcrop of fault-propagation fold shown the geometry of the

  4. Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens

    Directory of Open Access Journals (Sweden)

    S. G. Mutz

    2018-04-01

    Full Text Available The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80  ×  80 km at the Equator palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA. Time periods and boundary conditions considered include the Pliocene (PLIO,  ∼  3 Ma, the Last Glacial Maximum (LGM,  ∼  21 ka, mid-Holocene (MH,  ∼  6 ka, and pre-industrial (PI, reference year 1850. The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last  ∼  3 Myr. Comparison

  5. Estimates of late Cenozoic climate change relevant to Earth surface processes in tectonically active orogens

    Science.gov (United States)

    Mutz, Sebastian G.; Ehlers, Todd A.; Werner, Martin; Lohmann, Gerrit; Stepanek, Christian; Li, Jingmin

    2018-04-01

    The denudation history of active orogens is often interpreted in the context of modern climate gradients. Here we address the validity of this approach and ask what are the spatial and temporal variations in palaeoclimate for a latitudinally diverse range of active orogens? We do this using high-resolution (T159, ca. 80 × 80 km at the Equator) palaeoclimate simulations from the ECHAM5 global atmospheric general circulation model and a statistical cluster analysis of climate over different orogens (Andes, Himalayas, SE Alaska, Pacific NW USA). Time periods and boundary conditions considered include the Pliocene (PLIO, ˜ 3 Ma), the Last Glacial Maximum (LGM, ˜ 21 ka), mid-Holocene (MH, ˜ 6 ka), and pre-industrial (PI, reference year 1850). The regional simulated climates of each orogen are described by means of cluster analyses based on the variability in precipitation, 2 m air temperature, the intra-annual amplitude of these values, and monsoonal wind speeds where appropriate. Results indicate the largest differences in the PI climate existed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. The LGM climate shows the largest deviation in annual precipitation from the PI climate and shows enhanced precipitation in the temperate Andes and coastal regions for both SE Alaska and the US Pacific Northwest. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas, resulting in a shift of the wettest regional climates eastward along the orogen. The cluster-analysis results also suggest more climatic variability across latitudes east of the Andes in the PLIO climate than in other time slice experiments conducted here. Taken together, these results highlight significant changes in late Cenozoic regional climatology over the last ˜ 3 Myr. Comparison of simulated climate with proxy-based reconstructions for the MH and

  6. Radiometric measurement independent of profile. Belt weighers

    International Nuclear Information System (INIS)

    Otto, J.

    1986-01-01

    Radiometric measuring techniques allow contactless determination of the material carried by belt conveyors. Data defining the material is obtained via attenuation of gamma rays passing through the material on the belt. The method applies the absorption law according to Lambert-Beer, which has to be corrected by a build-up factor because of the stray radiation induced by the Compton effect. The profile-dependent error observed with conventional radiometric belt weighers is caused by the non-linearity of the absorption law in connection with the simultaneous summation of the various partial rays in a detector. The scanning method allows separate evaluation of the partial rays' attenuation and thus yields the correct data of the material carried, regardless of the profile. The scanning method is applied on a finite number of scanning sections, and a residual error has to be taken into account. The stochastics of quantum emission and absorption leads to an error whose expectation value is to be taken into account in the scanning algorithm. As the conveyor belt is in motion during the process of measurements, only part of the material conveyed is irradiated. The resulting assessment error is investigated as a function of the autocorrelation function of the material on the belt. (orig./HP) [de

  7. IDENTIFYING COLLISIONAL FAMILIES IN THE KUIPER BELT

    International Nuclear Information System (INIS)

    Marcus, Robert A.; Ragozzine, Darin; Murray-Clay, Ruth A.; Holman, Matthew J.

    2011-01-01

    The identification and characterization of numerous collisional families-clusters of bodies with a common collisional origin-in the asteroid belt has added greatly to the understanding of asteroid belt formation and evolution. More recent study has also led to an appreciation of physical processes that had previously been neglected (e.g., the Yarkovsky effect). Collisions have certainly played an important role in the evolution of the Kuiper Belt as well, though only one collisional family has been identified in that region to date, around the dwarf planet Haumea. In this paper, we combine insights into collisional families from numerical simulations with the current observational constraints on the dynamical structure of the Kuiper Belt to investigate the ideal sizes and locations for identifying collisional families. We find that larger progenitors (r ∼ 500 km) result in more easily identifiable families, given the difficulty in identifying fragments of smaller progenitors in magnitude-limited surveys, despite their larger spread and less frequent occurrence. However, even these families do not stand out well from the background. Identifying families as statistical overdensities is much easier than characterizing families by distinguishing individual members from interlopers. Such identification seems promising, provided the background population is well known. In either case, families will also be much easier to study where the background population is small, i.e., at high inclinations. Overall, our results indicate that entirely different techniques for identifying families will be needed for the Kuiper Belt, and we provide some suggestions.

  8. Theoretical study of influence of belt tension of intermediate belt conveyor drive on value of zone of relative slip of traction and carrying belts

    Science.gov (United States)

    Goncharov, K. A.; Grishin, A. V.

    2017-10-01

    The issue of the influence of tension of the traction belt of intermediate drive of the multi-drive belt conveyor on the value of zones of relative rest and sliding of the traction and carrying belts is considered. A variety of values of proportional band of tractive effort regulation of the intermediate drive of belt conveyor while it is being controlled by the tensioning device was obtained in percentage terms. Recommendations on the control of the intermediate drive of belt conveyor by means of the tensioning device when starting and productivity changes are provided.

  9. Security Belt for Wireless Implantable Medical Devices.

    Science.gov (United States)

    Kulaç, Selman

    2017-09-19

    In this study, a new protective design compatible with existing non-secure systems was proposed, since it is focused on the secure communication of wireless IMD systems in all transmissions. This new protector is an external wearable device and appears to be a belt fitted around for the patients IMD implanted. However, in order to provide effective full duplex transmissions and physical layer security, some sophisticated transceiver antennas have been placed on the belt. In this approach, beam-focused multi-antennas in optimal positions on the belt are randomly switched when transmissions to the IMD are performed and multi-jammer switching with MRC combining or majority-rule based receiving techniques are applied when transmissions from the IMD are carried out. This approach can also reduce the power consumption of the IMDs and contribute to the prolongation of the IMD's battery life.

  10. Friction and Wear in Timing Belt Drives

    Directory of Open Access Journals (Sweden)

    B. Stojanovic

    2010-09-01

    Full Text Available Timing belt tooth goes into contact with a drive pulley, stretched to the maximum, because of the previous tension. When the contact begins the peak of the belt tooth makes the contact with the outer surface of the pulley teeth. The process of the teeth entering into the contact zone is accompanied with the relative sliding of their side surfaces and appropriate friction force. The normal force value is changing with the parabolic function, which also leads to the changes of the friction force. The biggest value of the normal force and of the friction force is at the tooth root. Hollow between teeth and the tip of the pulley teeth are also in contact. Occasionally, the face surface of the belt and the flange are also in contact. The friction occurs in those tribomechanical systems, also. Values of these friction forces are lower compared with the friction force, which occurs at the teeth root.

  11. Estimates Of Radiation Belt Remediation Requirements

    Science.gov (United States)

    Tuszewski, M.; Hoyt, R. P.; Minor, B. M.

    2004-12-01

    A low-Earth orbit nuclear detonation could produce an intense artificial radiation belt of relativistic electrons. Many satellites would be destroyed within a few weeks. We present here simple estimates of radiation belt remediation by several different techniques, including electron absorption by gas release, pitch angle scattering by steady electric and magnetic fields from tether arrays, and pitch angle scattering by wave-particle interactions from in-situ transmitters. For each technique, the mass, size, and power requirements are estimated for a one-week remediation (e-folding) timescale, assuming that a 10 kTon blast trapped 1024 fission product electrons (1 to 8 MeV) at L = 1.5 in a dipolar belt of width dL = 0.1.

  12. Current crustal deformation of the Taiwan orogen reassessed by cGPS strain-rate estimation and focal mechanism stress inversion

    Science.gov (United States)

    Chen, Sean Kuanhsiang; Wu, Yih-Min; Hsu, Ya-Ju; Chan, Yu-Chang

    2017-07-01

    We study internal deformation of the Taiwan orogen, a young arc-continental collision belt, which the spatial heterogeneity remains unclear. We aim to ascertain heterogeneity of the orogenic crust in depth when specifying general mechanisms of the Taiwan orogeny. To reach this goal, we used updated data of continuous GPS (cGPS) and earthquake focal mechanisms to reassess geodetic strain-rate and seismic stress fields of Taiwan, respectively. We updated the both data sets from 1990 to 2015 to provide large amount of constraints on surficial and internal deformation of the crust for a better understanding. We estimated strain-rate tensors by calculating gradient tensors of cGPS station velocities in horizontal 0.1°-spacing grids via Delaunay triangulation. We determined stress tensors within a given horizontal and vertical grid cell of 0.1° and 10 km, respectively, by employing the spatial and temporal stress inversion. To minimize effects of the 1999 Mw 7.6 Chi-Chi earthquake on trends of the strain and stress, we modified observational possible bias of the cGPS velocities after the earthquake and removed the first 15-month focal mechanisms within the fault rupture zone. We also calculated the Anderson fault parameter (Aϕ) based on stress ratios and rake angles to quantitatively describe tectonic regimes of Taiwan. By examining directions of seismic compressive axes and styles of faulting, our results indicate that internal deformation of the crust is presently heterogeneous in the horizontal and vertical spaces. Directions of the compressive axes are fan-shaped oriented between N10°W and N110°W in the western and mid-eastern Taiwan at the depths of 0-20 km and near parallel to orientations of geodetic compressional axes. The orientations agreed with predominantly reverse faulting in the western Taiwan at the same depth range, implying a brittle deformation regime against the Peikang Basement High. Orientations of the compressive axes most rotated counter

  13. Reassessment of the geologic evolution of selected precambrian terranes in Brazil, based on SHRIMP U-Pb data, part 2: mineiro and Aracuai orogens and Southern Sao Francisco craton; Reavaliacao da evolucao geologica em terrenos pre-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, parte 2: orogeno Aracuai, cinturao mineiro e craton Sao Francisco Meridional

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Luiz Carlos da; Pimentel, Marcio [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail: luizcarlos@aneel.gov.br; Leite, Carlos Augusto; Vieira, Valter Salino; Silva, Marcio Antonio da; Paes, Vinicius Jose de Castro; Cardoso Filho, Joao Moraes [Companhia de Pesquisas de Recursos Minerais (CPRM), Belo Horizonte, MG (Brazil); Armstrong, Richard [Australian National Univ., Canberra (Australia). Research School of Earth Sciences; Noce, Carlos Mauricio; Pedrosa-Soares, Antonio Carlos [Minas Gerais Univ., Belo Horizonte (Brazil). Inst. de Geociencias. Centro de Pesquisa Manuel Teixeira da Costa; Carneiro, Mauricio Antonio [Ouro Preto Univ., MG (Brazil). Dept. de Geologia

    2002-12-15

    This paper discusses new zircon SHRIMP (Sensitive High Resolution Ion Microprobe) U-Pb geochronological data for 19 key-exposures of several geological units exposed at the eastern border of the Southern Sao Francisco Craton and at the adjacent Proterozoic Mineiro and Aracuai orogens. Samples were collected along several E-W tran sects, aiming at tracing the precise limit of the Sao Francisco Craton Archean basement, as well as assessing the extension of the successive proterozoic orogenic collages. Due to the complex geologic history and/or high grade metamorphism which most of the rock units investigated have undergone, zircon morphology and the U-Pb analytical data exhibit very complex patterns. These are characterized by a combination of inheritance, partial resetting and new zircon growth during high-grade metamorphism. As a consequence, very careful and detailed analyses of cathodoluminescence imagery were required to allow distinction between inheritance, newly melt-precipitated zircon and partially reset zircons, as well as between the ages of magmatic and metamorphic events. In the southeastern border of the craton 5 units yielded Archean crystallization ages ranging from ca. 3000-2700 Ma, with poorly constrained metamorphic ages ranging from ca. 2850 to 550 Ma. The TTG gneissic complex exposed to the east and south of the Quadrilatero Ferrifero, formerly ascribed to the Archean basement, have crystallization ages from ca. 2210 Ma to 2050 Ma, and can now be interpreted as representing pre- to syn-collisional magmatic phases of the Mineiro Belt. Metamorphic ages of ca. 2100 Ma and 560 Ma are also well constrained in zircon populations from these gneisses. The crystallization age of ca 1740 Ma observed for an alkaline granite of the Borrachudos Suite (intrusive into the Archean basement east of the Southern Espinhaco Range) confirmed previous conventional U-Pb data for this Paleoproterozoic rift-related magmatism. One of the major basement inliers within the

  14. CALCULATION OF TENSION FORCE OF BELT CONVEYOR

    OpenAIRE

    Ismet Ibishi; Ahmet Latifi; Gzim Ibishi; Kadri Sejdiu; Melihate Shala-Galica; Bekim Latifi

    2012-01-01

    In this paper is done the explanation on tension fashion of the belt conveyor which is employed in Kosovo Energy Corporation – KEK, for coal transportation to provide electric power plant. The aim of the paper enables to recognize tension forces not to pass with deformation of belt so that this problem will damage the workingprocess. Work principle is based on initial tension and tension during working process. The fact is known that the tension starts from the carriage on the way to tension ...

  15. SMALL MAIN-BELT ASTEROID SPECTROSCOPIC SURVEY, PHASE II

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains visible-wavelength (0.435-0.925 micron) spectra for 1341 main-belt asteroids observed during the second phase of the Small Main-belt Asteroid...

  16. Evaluation of safety belt education program for employees

    Science.gov (United States)

    1980-06-01

    This research was designed to determine the effectiveness of a nine-month safety belt educational program, utilizing various informational materials developed by NHTSA, in increasing safety belt usage among corporate employees. The materials used inc...

  17. Invisible gold distribution on pyrite and ore-forming fluid process of the Huangshan orogenic-type gold deposit of Zhejiang, SE China: implications from mineralogy, trace elements, impurity and fluid inclusion studies

    Science.gov (United States)

    Sundarrajan, Vijay Anand; Li, Zilong; Hu, Yizhou; Fu, Xuheng; Zhu, Yuhuo

    2017-04-01

    The Huangshan orogenic-type gold deposit in Zhejiang of SE China occurred in quartz-pyrite veins. It is hosted by phyllonite that underwent greenschist-facies metamorphism along a large Jiangshan-Shaoxing tectonic belt with a NE-SW direction. Trace elemental characteristics, ore-forming process and invisible gold on different forms of pyrite and quartz are studied. The Au associated pyrite can be classified into two categories; recrystallized pyrite and euhedral pyrite. The precipitation of invisible Au on pyrite is mainly derived by Co and Ni with AuHS2 - complex in the mineralizing fluids in different events. The XPS results revealed that valence states of Au3+ replaced 2Fe2+ in the pyrite and Au0 replaced Si4+ in the quartz structure. The electron paramagnetic resonance and trace elemental results suggested that the element pairs of Ge-Li-Al in quartz and Mn-Co-Ni in pyrite have distinct impurities as identified. A fluid inclusion study showed that the auriferous quartz is characterized by low-saline and CO2-rich fluids. Coexistence of the type I-type III inclusions and same range of homogenization temperature with different mode are evidences of immiscible fluid process. The temperature-pressure values of ca. 250 °C/1250 bar and ca. 220 °C/780 bar for gold precipitation have been calculated by intersection of coexisting fluids during the entrapment. The Huangshan orogenic-type gold deposit may be associated with the Wuyi-Yunkai orogeny during the early Paleozoic, including an upper-mid greenschist-facies metamorphism (450-420 Ma). All the features suggest that the Huangshan gold deposit is probably a product linking with the early Paleozoic orogeny in South China.

  18. Chronological constraints on tectonic evolution of the Chinese Tianshan Orogen through detrital zircons from modern and paleo-river sands

    Science.gov (United States)

    Ren, Rong; Guan, Shuwei; Han, Baofu

    2017-04-01

    The Chinese Tianshan Orogen marked the prolonged, complicated interactions between the southwestern Paleo-Asian Ocean and surrounding blocks. Massive new and previous detrital zircon U-Pb chronological data from modern and paleo-river sands (more than 7000 ages from 102 samples) were compiled to constrain its tectonic evolution. The Chinese Tianshan Orogen is characterized by predominant Paleozoic and minor Mesozoic and Precambrian detrital zircon ages that show multimodal characteristic. The oldest Phanerozoic zircon population (peak at 475 Ma) results from subduction and closure of the Early Paleozoic Terskey Ocean. But the absence of this peak in Chinese North and southern South Tianshan suggests that the subductions of the North and South Tianshan oceans may not initiate until Late Ordovician, with subsequent 460-390 Ma and 360-320 Ma arc magmatism. Similar to magmatic suite in classic collisional orogens, the youngest massive 320-270 Ma magmatism is supposed to be post-collisional. The North and South Tianshan oceans therefore probably had their closure to form the Chinese Tianshan Orogen during Late Carboniferous. The weak Mesozoic intra-plate magmatism further argues against a Late Permian-Triassic Tianshan Orogen for the lack of extensive syn- and post-collisional magmatism. Moreover, the diverse Precambrian detrital zircon age patterns indicate that the surrounding blocks have distinct tectonic evolution and short-term amalgamation during the Neoproterozoic.

  19. Discriminating fluid source regions in orogenic gold deposits using B-isotopes

    Science.gov (United States)

    Lambert-Smith, James S.; Rocholl, Alexander; Treloar, Peter J.; Lawrence, David M.

    2016-12-01

    The genesis of orogenic gold deposits is commonly linked to hydrothermal ore fluids derived from metamorphic devolatilization reactions. However, there is considerable debate as to the ultimate source of these fluids and the metals they transport. Tourmaline is a common gangue mineral in orogenic gold deposits. It is stable over a very wide P-T range, demonstrates limited volume diffusion of major and trace elements and is the main host of B in most rock types. We have used texturally resolved B-isotope analysis by secondary ion mass spectrometry (SIMS) to identify multiple fluid sources within a single orogenic gold ore district. The Loulo Mining District in Mali, West Africa hosts several large orogenic gold ore bodies with complex fluid chemistry, associated with widespread pre-ore Na- and multi-stage B-metasomatism. The Gara deposit, as well as several smaller satellites, formed through partial mixing between a dilute aqueous-carbonic fluid and a hypersaline brine. Hydrothermal tourmaline occurs as a pre-ore phase in the matrix of tourmalinite units, which host mineralization in several ore bodies. Clasts of these tourmalinites occur in mineralized breccias. Disseminated hydrothermal and vein hosted tourmaline occur in textural sites which suggest growth during and after ore formation. Tourmalines show a large range in δ11B values from -3.5 to 19.8‰, which record a change in fluid source between paragenetic stages of tourmaline growth. Pre-mineralization tourmaline crystals show heavy δ11B values (8-19.8‰) and high X-site occupancy (Na ± Ca; 0.69-1 apfu) suggesting a marine evaporite source for hydrothermal fluids. Syn-mineralization and replacement phases show lighter δ11B values (-3.5 to 15.1‰) and lower X-site occupancy (0.62-0.88 apfu), suggesting a subsequent influx of more dilute fluids derived from devolatilization of marine carbonates and clastic metasediments. The large, overlapping range in isotopic compositions and a skew toward the

  20. A study on the vibration of the charging belt in an electrostatic accelerator

    International Nuclear Information System (INIS)

    Zhan Furu; Yuan Hongyong; Fan Weicheng; Yu Zengliang

    2001-01-01

    The vibration of the charging belt in an electrostatic accelerator has intense influences on the accelerator operation. A calculating model was set up to study the belt vibration. The results show that the belt tension, belt velocity and belt current all contribute to the belt vibration. There is an optimal relationship among the three factors by which the belt would run most smoothly. There exists a minimum value of optimal tension for various belt velocities. The vibrating frequency is generally around several Hz

  1. 14 CFR 125.211 - Seat and safety belts.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Seat and safety belts. 125.211 Section 125... Requirements § 125.211 Seat and safety belts. (a) No person may operate an airplane unless there are available... the airplane who is at least 2 years old; and (2) An approved safety belt for separate use by each...

  2. A comparison of outer electron radiation belt dropouts during solar ...

    Indian Academy of Sciences (India)

    Energetic electrons are trapped in the Earth's radiation belts which occupy a toroidal region between 3 and 7 RE above the Earth's surface. Rapid loss of electrons from the radiation belts is known as dropouts. The source and loss mechanisms regulating the radiation belts population are not yet understood entirely, ...

  3. Gravity inferred subsurface structure of Gadwal Schist belt, Andhra

    Indian Academy of Sciences (India)

    Detailed gravity data collected across the Gadwal schist belt in the state of Andhra Pradesh show an 8.4 mgal residual gravity anomaly associated with meta-sediments/volcanics of the linear NNW-SSE trending schist belt that shows metamorphism from green schist to amphibolite facies. This schist belt is flanked on either ...

  4. Gravity inferred subsurface structure of Gadwal schist belt, Andhra ...

    Indian Academy of Sciences (India)

    Detailed gravity data collected across the Gadwal schist belt in the state of Andhra Pradesh show an. 8.4 mgal residual gravity anomaly associated with meta-sediments/volcanics of the linear NNW--SSE trending schist belt that shows metamorphism from green schist to amphibolite facies. This schist belt is flanked on either ...

  5. Gravity inferred subsurface structure of Gadwal Schist belt, Andhra ...

    Indian Academy of Sciences (India)

    Detailed gravity data collected across the Gadwal schist belt in the state of Andhra Pradesh show an 8.4 mgal residual gravity anomaly associated with meta-sediments/volcanics of the linear NNW-SSE trending schist belt that shows metamorphism from green schist to amphibolite facies. This schist belt is flanked on either ...

  6. Design aspects of multiple driven belt conveyors

    NARCIS (Netherlands)

    Nuttall, A.J.G.

    2007-01-01

    Worldwide belt conveyors are used to transport a great variety of bulk solid materials. The desire to carry higher tonnages over longer distances and more diverse routes, while keeping exploitation costs as low as possible, has fuelled many technological advances. An interesting development in the

  7. Composite Microdiscs with a Magnetic Belt

    DEFF Research Database (Denmark)

    Knaapila, Matti; Høyer, Henrik; Helgesen, Geir

    2015-01-01

    , the spontaneous aggregation of composite particles is suppressed when dispersed into liquid, which is attributed to the increased particle size, reduced magnetic susceptibility, and the shape of the magnetic domain distribution within the particles (spherical versus a belt). When the composite particles...

  8. Energy efficient idler for belt conveyor systems

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, A.K.; Chattopadhyay, A. [Indian School of Mines Univ., Dhanbad (India). Dept. of Mechanical Engineering and Mining; Soni, R.; Bhattnagar, M.

    2009-07-01

    In today's economic and legal environment, energy efficiency has become more important than ever. This paper proposes a new design of idler rollers for belt conveyors that could help to them even more efficient by reducing their energy consumption and also their CO{sub 2} footprint. (orig.)

  9. Belts and Chains. FOS: Fundamentals of Service.

    Science.gov (United States)

    John Deere Co., Moline, IL.

    This manual on belts and chain drives is one of a series of power mechanics texts and visual aids on theory, of operation, diagnosis, and repair of automotive and off-the-road agricultural and construction equipment. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and…

  10. Research on an Active Seat Belt System

    Science.gov (United States)

    Kawashima, Takeshi

    In a car crash, permanent injury can be avoided if deformation of an occupant's rib cage is maintained within the allowable value. In order to realize this condition, the occupant's seat belt tension must be instantaneously adjusted by a feedback control system. In this study, a seat belt tension control system based on the active shock control system is proposed. The semi-active control law used is derived from the sliding mode control method. One advantage of this proposed system is that it does not require a large power actuator because the seat belt tension is controlled by a brake mechanism. The effectiveness is confirmed by numerical simulation using general parameters of a human thorax and a passenger car in a collision scenario with a wall at a velocity of 100 km/h. The feasibility is then confirmed with a control experiment using a scale model of about 1/10 scale. The relative displacement of the thorax model approaches the allowable value smoothly along the control reference and settles near this value. Thus, the proposed seat belt tension control system design is established.

  11. Mafic magmatism in the Bakhuis Granulite Belt

    NARCIS (Netherlands)

    Klaver, M.; de Roever, E.W.F.; Thijssen, A.C.D.; Bleeker, W.; Söderlund, U.; Chamberlain, K.; Ernst, R.; Berndt, J.; Zeh, A.

    2015-01-01

    The Bakhuis Granulite Belt (BGB) is a metamorphic terrain within the Guiana Shield that experienced ultrahigh-temperature (UHT) metamorphism at 2.07–2.05Ga. In the southwest of the BGB, the Kabalebo charnockites were emplaced at ca. 1.99Ga and thus postdate UHT metamorphism by at least 60Myr. Two

  12. 2014 safety belt usage survey in Kentucky.

    Science.gov (United States)

    2014-08-01

    The objective of the survey summarized in this report was to establish a statewide safety belt usage rate in Kentucky for 2014. This rate can be compared to those determined from previous surveys. The 2014 statewide survey continues to document the i...

  13. Bayesian inference of radiation belt loss timescales.

    Science.gov (United States)

    Camporeale, E.; Chandorkar, M.

    2017-12-01

    Electron fluxes in the Earth's radiation belts are routinely studied using the classical quasi-linear radial diffusion model. Although this simplified linear equation has proven to be an indispensable tool in understanding the dynamics of the radiation belt, it requires specification of quantities such as the diffusion coefficient and electron loss timescales that are never directly measured. Researchers have so far assumed a-priori parameterisations for radiation belt quantities and derived the best fit using satellite data. The state of the art in this domain lacks a coherent formulation of this problem in a probabilistic framework. We present some recent progress that we have made in performing Bayesian inference of radial diffusion parameters. We achieve this by making extensive use of the theory connecting Gaussian Processes and linear partial differential equations, and performing Markov Chain Monte Carlo sampling of radial diffusion parameters. These results are important for understanding the role and the propagation of uncertainties in radiation belt simulations and, eventually, for providing a probabilistic forecast of energetic electron fluxes in a Space Weather context.

  14. Green Belt Europe - borders separate, nature unites

    Science.gov (United States)

    Uwe Friedel

    2015-01-01

    During the period of the Cold War between 1945 and 1989, a "Green Belt" of valuable pristine landscapes developed along the border line between Eastern and Western Europe, the intensively fortified and guarded so called Iron Curtain. Due to the remoteness of the border areas, a high number of national parks and other large conservation areas can be found...

  15. Late Cenozoic Climate Change and its Implications on the Denudation of Orogen Syntaxes

    Science.gov (United States)

    Mutz, Sebastian; Ehlers, Todd

    2017-04-01

    The denudation history of active orogens is often interpreted in the context of modern climate gradients. Despite the influence of climatic conditions on erosion rates, information about paleoclimate evolution is often not available and thus not considered when denudation histories are interpreted. In this study, we analyze output from paleoclimate simulations conducted with ECHAM5-wiso at T159 (ca. 80x80km) resolution. Specifically, we analyze simulations of pre-industrial (PI, pre-1850), Mid-Holocene (MH, ca. 6ka), Last Glacial Maximum (LGM, ca. 21ka) and Pliocene (PLIO, ca. 3ka) climates and focus on a selection of orogen syntaxes as study regions (e.g. Himalaya, SE Alaska, Cascadia, and Central Andes). For the selected region, we carry out a cluster analysis using a hybrid of hierarchical and k-means clustering procedures using mean annual temperature (MAT), temperature amplitude, mean annual precipitation (MAP), precipitation amplitude and u-wind and v-wind in different months to provide a general overview of paleoclimates in the study regions. Additionally, we quantify differences between paleoclimates by applying two-group linear discrimination analyses to the simulation output for a similar selection of variables. Results indicate the largest differences to the PI climate are observed for the LGM and PLIO climates in the form of widespread cooling and reduced precipitation in the LGM and warming and enhanced precipitation during the PLIO. These global trends can be observed for most locations in the investigated areas, but the strength varies regionally and the trends in precipitation are less uniform than trends in temperatures. The LGM climate shows the largest deviation in annual precipitation from the PI climate, and shows enhanced precipitation in the temperate Andes, and coastal regions for both SE Alaska and the US Pacific Northwest Pacific. Furthermore, LGM precipitation is reduced in the western Himalayas and enhanced in the eastern Himalayas

  16. The pre-orogenic detrital zircon record of the Variscan orogeny: Preliminary results

    Science.gov (United States)

    Stephan, Tobias; Kroner, Uwe

    2017-04-01

    To test plate-tectonic constellations in consideration of the long-term development of sedimentary transport paths, temporally and spatially highly resolved records of provenance analysis are mandatory. The interpretation of existing studies focus on small-scale areas within an orogen thereby neglecting the differing distribution of provenance data in the entire orogenic system. This study reviews a large data set of compiled geochronological data to document the development of pre-orogenic tectonic units on the example of the Variscan orogeny. Constrained by tectonic and geological models, the temporal distribution of U-Pb detrital zircon ages, used as a proxy for sedimentary provenance, shows that some minima and maxima of zircon abundance are nearly synchronous for thousands of kilometres along the orogeny. Age spectra of Precambrian to Lower Palaeozoic samples were constructed on the basis of 38729 U-Pb ages from 685 samples that were compiled from 102 publications. The age compilation combines thermal ionization mass spectrometry (TIMS), laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS), sensitive high-resolution ion microprobe (SHRIMP), and secondary ion mass spectrometry (SIMS) analyses. The data was re-processed using a common age calculation and concordance filter to ensure comparability. The concordance of each zircon grain was calculated from 206Pb/238U and 207Pb/235U ages to guarantee that only concordant grains, i.e., with 3) is used for the maximum age of deposition. In addition to the location of >600 samples, the precise depositional ages result in a spatially and temporally high resolution. To avoid the different levels of analytical precision of the compiled TIMS, LA-ICP-MS, SHRIMP, and SIMS data, detrital zircon ages are plotted as kernel density estimates. Spatial and temporal distribution of the kernel density estimates, as well as further statistical techniques (e.g. multidimensional scaling) are used to discriminate

  17. Mineralogy and geochemistry of triassic carbonatites in the Matcha alkaline intrusive complex (Turkestan-Alai Ridge, Kyrgyz Southern Tien Shan), SW Central Asian orogenic belt

    Science.gov (United States)

    Vrublevskii, V. V.; Morova, A. A.; Bukharova, O. V.; Konovalenko, S. I.

    2018-03-01

    Postorogenic intrusions of essexites and alkaline and nepheline syenites in the Turkestan-Alai segment of the Kyrgyz Southern Tien Shan coexist with dikes and veins of carbonatites dated at ∼220 Ma by the Ar-Ar and Rb-Sr age methods. They are mainly composed of calcite and dolomite (60-85%), as well as sodic amphibole, phlogopite, clinopyroxene, microcline, albite, apatite, and magnetite, with accessory niobate, ilmenite, Nb-rutile, titanite, zircon, baddeleyite, monazite-(Ce), barite, and sulfides. The rocks share mineralogical and geochemical similarity with carbonatites that originated by liquid immiscibility at high temperatures above 500 °C. Alkaline silicate and salt-carbonate melts are derived from sources with mainly negative bulk εNd(t) ∼ from -11 to 0 and high initial 87Sr/86Sr ratios (∼0.7061-0.7095) which may be due to mixing of PREMA and EM-type mantle material. Pb isotopic ratios in accessory pyrrhotite (206Pb/204Pb = 18.38; 207Pb/204Pb = 15.64; 208Pb/204Pb = 38.41) exhibit an EM2 trend. The intrusions bear signatures of significant crustal contamination as a result of magma genesis by syntexis and hybridism. Concordant isotope composition changes of δ13C (-6.5 to -1.9‰), δ18O (9.2-23‰), δD (-58 to -41‰), and δ34S (12.6-12.8‰) in minerals and rocks indicate inputs of crustal material at the stage of melting and effect of hot fluids released during dehydration of metamorphosed oceanic basalts or sediments. The observed HFSE patterns of the oldest alkaline gabbro may be due to interaction of the primary mafic magma with IAB-type material. The isotope similarity of alkaline rocks with spatially proximal basalts of the Tarim large igneous province does not contradict the evolution of the Turkestan-Alai Triassic magmatism as the "last echo" of the Tarim mantle plume.

  18. Tracing metamorphism, exhumation and topographic evolution in orogenic belts by multiple thermochronology: a case study from the Nízke Tatry Mts., Western Carpathians

    Czech Academy of Sciences Publication Activity Database

    Danišík, M.; Kadlec, Jaroslav; Glotzbach, Ch.; Weisheit, A.; Dunkl, I.; Kohút, M.; Evans, N. J.; Orvošová, M.; McDonald, B. J.

    2011-01-01

    Roč. 104, č. 2 (2011), s. 285-298 ISSN 1661-8726 R&D Projects: GA AV ČR IAA3013201 Institutional research plan: CEZ:AV0Z30130516 Keywords : (U–Th–[Sm])/He dating * fission track dating * thermal modelling * exhumation * zircon * apatite * Nízké Tatry Mts. * Western Carpathians Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.879, year: 2011

  19. International survey of seat belt use exemptions.

    Science.gov (United States)

    Weiss, H; Sirin, H; Levine, J A; Sauber, E

    2006-08-01

    Substantial evidence of seatbelt efficacy has been shown by several studies, and it is widely recommended that motor vehicle occupants use properly fitted seat belts. However, some (but a heretofore unknown number of) countries with national seat belt laws permit various exemptions which may lower use rates. The aim of this study was to survey the variety of exemptions to national seat belt laws. This investigation relied on identifying respondents from national traffic safety agencies, other governmental and non-governmental organizations, Internet searches, personal contacts, and other sources. Questionnaires were deployed through a web based survey supplemented by email and postal versions. Responses were received from 30 countries of which 28 (93.7%) had a national seat belt law. About two thirds (63.7%) of the 28 national laws applied to both front and back seat passengers. The leading exemption types included vehicles made before a certain year (n = 13), antique vehicles (n = 12), military vehicles (n = 11), buses (n = 9), and emergency vehicles (n = 8). Most responding countries reported one or more specific categories of individuals as exempt including those with medical exemptions (n = 20), taxi drivers (n = 11), police (n = 9), emergency medical personnel (n = 8), physically disabled people (n = 6), and pregnant women (n = 6). Out of 26 responses to the question regarding current level of enforcement, 42.3% felt enforcement was "very good or good" and 57.7% characterized it as "fair or poor". This study represents one of the largest international traffic law surveys reported. Most national seatbelt laws offer perilous exemptions to a broad array of vehicle types and road user groups. These findings, coupled with concern over the level of enforcement in the majority of countries surveyed, suggest that international road safety efforts have a long way to go to improve coverage and enforcement of national seat belt laws.

  20. Uncoupled vs. coupled thrust belt-foreland deformation: a model for northern Patagonia inferred from U-Th/He and apatite fission track dating

    Science.gov (United States)

    Savignano, Elisa; Mazzoli, Stefano; Zattin, Massimiliano; Gautheron, Cécile; Franchini, Marta

    2017-04-01

    The study of the Cretaceous - Cenozoic evolution of the Patagonian Andes represents a great opportunity to investigate the effects of coupling between deep lithospheric processes and near-surface deformation. Low-temperature thermochronological systems are ideally suited for detecting events involving rocks in the uppermost part of the crust because they record time and rates of cooling related to exhumation of the top few kilometers of the crust. The Patagonia region, although characterized by a general continuity of the Andean orogen along its strike, shows an appreciable internal tectonic segmentation (marked by a variable position of the magmatic arc and of the deformation front in the retroarc area) at various latitudes. This complex structural architecture has been interpreted as the result of different processes acting since the Late Cretaceous. The present-day configuration of the southern Andes is interpreted to have been controlled by alternating stages of flat- and steep-slab subduction, which produced shortening and upper plate extension episodes,, respectively. Furthermore, the deformation in this whole retroarc sector varied not only in time (i.e. with major 'cycles' of mountain building and orogenic collapse), but also in space, due to the variable transmission of horizontal compressive stress away from the orogen, that produced an irregular unroofing pattern. In this study, we have integrated field structural observations with new apatite (U-Th)/He data (AHe) and apatite fission-track (AFT) ages in the north Patagonia region (at latitudes between 40° and 44°S) in order to analyse and compare the exhumation patterns from the frontal part of the orogen and from the adjacent foreland sector, as well as to gain new insights into the timing and modes of coupling vs. uncoupling of the deformation between the northern Patagonian fold and thrust belt and its foreland. The obtained data indicate a markedly different unroofing pattern between the 'broken

  1. Dynamics Analysis and Modeling of Rubber Belt in Large Mine Belt Conveyors

    Directory of Open Access Journals (Sweden)

    Gao Yang

    2014-10-01

    Full Text Available Rubber belt not only is one of the key components of belt conveyor, but also affects the overall performance of the core part. Research on dynamics analysis of large conveyor not only helps to improve the reliability and design level, but also can guide the rational selection of conveyor safety factor, and effectively reduce the cost of the conveyor belt. Based on unique viscoelastic properties of belt conveyor, it was simplified as one-dimensional viscoelastic rod in this study, and then a discrete element model of conveyor systems was established. The kinetic equations of each discrete unit was derived using kinetic energy, potential energy of driving segment, bearing segment and return segment and equation of energy dissipation and Lagrange equation. Based on Wilson-q algorithm, the kinetic equation of DT1307-type ST2000's conveyor belt was solved by using Matlab to write computer programs. Research on the change rule of conveyor displacement, velocity, acceleration and dynamic tension during the boot process revealed the working mechanism of nonlinear viscoelastic, which lay the theoretical foundation for dynamic performance optimization of large belt conveyor. The calculation results were used to optimize design and analysis of conveyor system, the result showed that it could reduce the driven tension peaks about 12 %, save 5 % of overall manufacturing cost, which bring considerable profits for enterprises.

  2. China belting up or down? Seat belt wearing trends in Nanjing and Zhoushan.

    Science.gov (United States)

    Routley, Virginia; Ozanne-Smith, Joan; Li, Dan; Yu, Min; Wang, Jianyue; Zhang, Junhe; Tong, Zhendong; Wu, Ming; Wang, Peihua; Qin, Yu

    2008-11-01

    National seat belt wearing legislation became effective in China May 2004 and associated provincial and city regulations followed. Despite rapid motorisation seat belt studies in China have been scarce. Patterns and trends in urban seat belt wearing were observed for all driver, front and rear seating positions over the years 2005-2007 in two eastern cities Nanjing (Jiangsu Province) and Zhoushan (Zhejiang Province). There were 35,256 vehicles observed in Nanjing, 20,939 in Zhoushan and 95,933 occupants overall. Males dominated all seating positions, especially drivers. Seat belt wearing overall was significantly higher for drivers (49.9% Nanjing, 47.4% Zhoushan) than for front seat passengers (9.1% Nanjing, 1.0% Zhoushan) and virtually nonexistent for rear passengers (0.5% Nanjing, 0.2% Zhoushan). Generally levels declined significantly from year to year (drivers Nanjing 66.7%, 47.7%, 38.6%; Zhoushan 57.4%, 57.9%, 30.6%; front passengers Nanjing 19.2%, 6.6%, 3.2%). Zhoushan wearing did not initially decline, 2006 observations coinciding with anticipation of provincial regulations (July 2006). Observations revealed an absence of child restraints. Pretend wearing/belt tampering was observed almost exclusively in taxi drivers (14.2% of Nanjing taxi drivers, 11.3% of Zhoushan's). Awareness of and attitudes to urban seat belt laws should be investigated, appropriate countermeasures developed and enforcement reassessed.

  3. VERO cells harbor a poly-ADP-ribose belt partnering their epithelial adhesion belt

    Directory of Open Access Journals (Sweden)

    Laura Lafon-Hughes

    2014-10-01

    Full Text Available Poly-ADP-ribose (PAR is a polymer of up to 400 ADP-ribose units synthesized by poly-ADP-ribose-polymerases (PARPs and degraded by poly-ADP-ribose-glycohydrolase (PARG. Nuclear PAR modulates chromatin compaction, affecting nuclear functions (gene expression, DNA repair. Diverse defined PARP cytoplasmic allocation patterns contrast with the yet still imprecise PAR distribution and still unclear functions. Based on previous evidence from other models, we hypothesized that PAR could be present in epithelial cells where cadherin-based adherens junctions are linked with the actin cytoskeleton (constituting the adhesion belt. In the present work, we have examined through immunofluorescence and confocal microscopy, the subcellular localization of PAR in an epithelial monkey kidney cell line (VERO. PAR was distinguished colocalizing with actin and vinculin in the epithelial belt, a location that has not been previously reported. Actin filaments disruption with cytochalasin D was paralleled by PAR belt disruption. Conversely, PARP inhibitors 3-aminobenzamide, PJ34 or XAV 939, affected PAR belt synthesis, actin distribution, cell shape and adhesion. Extracellular calcium chelation displayed similar effects. Our results demonstrate the existence of PAR in a novel subcellular localization. An initial interpretation of all the available evidence points towards TNKS-1 as the most probable PAR belt architect, although TNKS-2 involvement cannot be discarded. Forthcoming research will test this hypothesis as well as explore the existence of the PAR belt in other epithelial cells and deepen into its functional implications.

  4. Sr-Nd-Pb isotope systematics of the Permian volcanic rocks in the northern margin of the Alxa Block (the Shalazhashan Belt) and comparisons with the nearby regions: Implications for a Permian rift setting?

    Science.gov (United States)

    Shi, Guanzhong; Wang, Hua; Liu, Entao; Huang, Chuanyan; Zhao, Jianxin; Song, Guangzeng; Liang, Chao

    2018-04-01

    The petrogenesis of the Permian magmatic rocks in the Shalazhashan Belt is helpful for us to understand the tectonic evolution of the Central Asian Orogenic Belt (CAOB) in the northern margin of the Alxa Block. The Permian volcanic rocks in the Shalazhashan Belt include basalts, trachyandesites and trachydacites. Our study shows that two basalt samples have negative εNd(t) values (-5.4 to -1.5) and higher radiogenic Pb values, which are relevant to the ancient subcontinental lithospheric mantle. One basalt sample has positive εNd(t) value (+10) representing mafic juvenile crust and is derived from depleted asthenosphere. The trachyandesites are dated at 284 ± 3 Ma with εNd(t) = +2.7 to +8.0; ISr = 0.7052 to 0.7057, and they are generated by different degrees of mixing between mafic magmas and crustal melts. The trachydacites have high εNd(t) values and slightly higher ISr contents, suggesting the derivation from juvenile sources with crustal contamination. The isotopic comparisons of the Permian magmatic rocks of the Shalazhashan Belt, the Nuru-Langshan Belt (representing the northern margin of the Alxa Block), the Solonker Belt (Mandula area) and the northern margin of the North China Craton (Bayan Obo area) indicate that the radiogenic isotopic compositions have an increasingly evolved trend from the south (the northern margins of the Alxa Block and the North China Craton) to the north (the Shalazhashan Belt and the Solonker Belt). Three end-member components are involved to generate the Permian magmatic rocks: the ancient subcontinental lithospheric mantle, the mafic juvenile crust or newly underplated mafic rocks that were originated from depleted asthenosphere, and the ancient crust. The rocks correlative with the mafic juvenile crust or newly underplated mafic rocks are predominantly distributed along the Shalazhashan Belt and the Solonker Belt, and the rocks derived from ancient, enriched subcontinental lithospheric mantle are mainly distributed along

  5. Determination of relative immobile and sliding areas between carrying and tractive belts in using of belt conveyor intermediate drives

    Directory of Open Access Journals (Sweden)

    Goncharov K.A.

    2015-12-01

    Full Text Available Method of determination of relative immobile and sliding areas between carrying and tractive belts in places of mount-ing of belt conveyor intermediate drives made in the form of tractive contours is proposed. The example shows potential of this method in multidrive belt conveyor design process.

  6. Strain partitioning at orogenic contacts during rotation, strike–slip and oblique convergence: Paleogene–Early Miocene evolution of the contact between the South Carpathians and Moesia

    NARCIS (Netherlands)

    Krézsek, Cs.; Lăpădat, A.; Matenco, L.C.; Arnberger, K.; Barbu, V.; Olaru, R.

    2013-01-01

    Oblique convergence accompanied by large-scale strike–slip deformation taking place between orogenic units is an inherent feature of highly bended mountain chains. Strain partitioning during subduction and collision takes place between differently oriented orogenic segments and creates contrasting

  7. Method of monitoring, inspecting or testing conveyor belts

    International Nuclear Information System (INIS)

    Van der Walt, A.J.

    1985-01-01

    An invention is discussed which provides a method, installation and kit for monitoring, inspecting or testing a conveyor belt. Provision is made to transmit penetrating rays such as X-rays through a moving conveyor belt, forming a visible moving image from rays transmitted through the belt, and visually inspecting such moving image, after recording it if desired, to ascertain the condition of the interior of the belt. Typically an X-ray tube head is used to transmit the rays through the belt to a fluorescent screen which forms the image. The moving image can be recorded by means of a video camera

  8. GOLD MINERAL PROSPECTING USING PHASED ARRAY TYPE L-BAND SYNTHETIC APERTURE RADAR (PALSAR SATELLITE REMOTE SENSING DATA, CENTRAL GOLD BELT, MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2016-06-01

    Full Text Available The Bentong-Raub Suture Zone (BRSZ of Peninsular Malaysia is one of the significant structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana-derived Sibumasu terrane in the west and Sukhothai arc in the east. The BRSZ is also genetically related to the sediment-hosted/orogenic gold deposits associated with the major lineaments and form-lines in the central gold belt Central Gold Belt of Peninsular Malaysia. In tropical environments, heavy tropical rainforest and intense weathering makes it impossible to map geological structures over long distances. Advances in remote sensing technology allow the application of Synthetic Aperture Radar (SAR data in geological structural analysis for tropical environments. In this investigation, the Phased Array type L-band Synthetic Aperture Radar (PALSAR satellite remote sensing data were used to analyse major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and form-lines in the BRSZ, as well as its implication for sediment-hosted/orogenic gold exploration in tropical environments. The major geological structure directions of the BRSZ are N-S, NNE-SSW, NE-SW and NW-SE, which derived from directional filtering analysis to PALSAR data. The pervasive array of N-S faults in the study area and surrounding terrain is mainly linked to the N-S trending of the Suture Zone. N-S striking lineaments are often cut by younger NE-SW and NW-SE-trending lineaments. Gold mineralized trends lineaments are associated with the intersection of N-S, NE-SW, NNW-SSE and ESE-WNW faults and curvilinear features in shearing and alteration zones. Lineament analysis on PALSAR satellite remote sensing data is a useful tool for detecting the boundary between the Gondwana-derived terranes and major geological features associated with suture zone especially for large inaccessible regions in tropical environments.

  9. Phanerozoic polyphase orogenies recorded in the northeastern Okcheon Belt, Korea from SHRIMP U-Pb detrital zircon and K-Ar illite geochronologies

    Science.gov (United States)

    Jang, Yirang; Kwon, Sanghoon; Song, Yungoo; Kim, Sung Won; Kwon, Yi Kyun; Yi, Keewook

    2018-05-01

    We present the SHRIMP U-Pb detrital zircon and K-Ar illite 1Md/1M and 2M1 ages, suggesting new insight into the Phanerozoic polyphase orogenies preserved in the northeastern Okcheon Belt, Korea since the initial basin formation during Neoproterozoic rifting through several successive contractional orogens. The U-Pb detrital zircon ages from the Early Paleozoic strata of the Taebaeksan Zone suggest a Cambrian maximum deposition age, and are supported by trilobite and conodont biostratigraphy. Although the age spectra from two sedimentary groups, the Yeongwol and Taebaek Groups, show similar continuous distributions from the Late Paleoproterozoic to Early Paleozoic ages, a Grenville-age hiatus (1.3-0.9 Ga) in the continuous stratigraphic sequence from the Taebaek Group suggests the existence of different peripheral clastic sources along rifted continental margin(s). In addition, we present the K-Ar illite 1Md/1M ages of the fault gouges, which confirm fault formation/reactivation during the Late Cretaceous to Early Paleogene (ca. 82-62 Ma) and the Early Miocene (ca. 20-18 Ma). The 2M1 illite ages, at least those younger than the host rock ages, provide episodes of deformation, metamorphism and hydrothermal effects related to the tectonic events during the Devonian (ca.410 Ma) and Permo-Triassic (ca. 285-240 Ma). These results indicate that the northeastern Okcheon Belt experienced polyphase orogenic events, namely the Okcheon (Middle Paleozoic), Songrim (Late Paleozoic to Early Mesozoic), Daebo (Middle Mesozoic) and Bulguksa (Late Mesozoic to Early Cenozoic) Orogenies, reflecting the Phanerozoic tectonic evolution of the Korean Peninsula along the East Asian continental margin.

  10. Mesozoic Crustal Thickening of the Longmenshan Belt (NE Tibet, China) by Imbrication of Basement Slices: Insights From Structural Analysis, Petrofabric and Magnetic Fabric Studies, and Gravity Modeling

    Science.gov (United States)

    Xue, Zhenhua; Martelet, Guillaume; Lin, Wei; Faure, Michel; Chen, Yan; Wei, Wei; Li, Shuangjian; Wang, Qingchen

    2017-12-01

    This work first presents field structural analysis, anisotropy of magnetic susceptibility (AMS) measurements, and kinematic and microstructural studies on the Neoproterozoic Pengguan complex located in the middle segment of the Longmenshan thrust belt (LMTB), NE Tibet. These investigations indicate that the Pengguan complex is a heterogeneous unit with a ductilely deformed NW domain and an undeformed SE domain, rather than a single homogeneous body as previously thought. The NW part of the Pengguan complex is constrained by top-to-the-NW shearing along its NW boundary and top-to-the-SE shearing along its SE boundary, where it imbricates and overrides the SE domain. Two orogen-perpendicular gravity models not only support the imbricated shape of the Pengguan complex but also reveal an imbrication of high-density material hidden below the Paleozoic rocks on the west of the LMTB. Regionally, this suggests a basement-slice-imbricated structure that developed along the margin of the Yangtze Block, as shown by the regional gravity anomaly map, together with the published nearby seismic profile and the distribution of orogen-parallel Neoproterozoic complexes. Integrating the previously published ages of the NW normal faulting and of the SE directed thrusting, the locally fast exhumation rate, and the lithological characteristics of the sediments in the LMTB front, we interpret the basement-slice-imbricated structure as the result of southeastward thrusting of the basement slices during the Late Jurassic-Early Cretaceous. This architecture makes a significant contribution to the crustal thickening of the LMTB during the Mesozoic, and therefore, the Cenozoic thickening of the Longmenshan belt might be less important than often suggested.

  11. Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China.

    Science.gov (United States)

    Song, Wenlei; Xu, Cheng; Smith, Martin P; Kynicky, Jindrich; Huang, Kangjun; Wei, Chunwan; Zhou, Li; Shu, Qihai

    2016-11-18

    Carbonatites, usually occurring within intra-continental rift-related settings, have strong light rare earth element (LREE) enrichment; they rarely contain economic heavy REE (HREE). Here, we report the identification of Late Triassic HREE-Mo-rich carbonatites in the northernmost Qinling orogen. The rocks contain abundant primary HREE minerals and molybdenite. Calcite-hosted fluid inclusions, inferred to represent a magmatic-derived aqueous fluid phase, contain significant concentrations of Mo (~17 ppm), reinforcing the inference that these carbonatitic magmas had high Mo concentrations. By contrast, Late Triassic carbonatites in southernmost Qinling have economic LREE concentrations, but are depleted in HREE and Mo. Both of these carbonatite types have low δ 26 Mg values (-1.89 to -1.07‰), similar to sedimentary carbonates, suggesting a recycled sediment contribution for REE enrichment in their mantle sources. We propose that the carbonatites in the Qinling orogen were formed, at least in part, by the melting of a subducted carbonate-bearing slab, and that 10 Ma younger carbonatite magmas in the northernmost Qinling metasomatized the thickened eclogitic lower crust to produce high levels of HREE and Mo.

  12. Magnetotelluric Imaging of the Lithosphere Across the Variscan Orogen (Iberian Autochthonous Domain, NW Iberia)

    Science.gov (United States)

    Alves Ribeiro, J.; Monteiro-Santos, F. A.; Pereira, M. F.; Díez Fernández, R.; Dias da Silva, Í.; Nascimento, C.; Silva, J. B.

    2017-12-01

    A new magnetotelluric (MT) survey comprising 17 MT soundings throughout a 30 km long N30°W transect in the Iberian autochthons domain of NW Iberia (Central Iberian Zone) is presented. The 2-D inversion model shows the resistivity structure of the continental crust up to 10 km depth, heretofore unavailable for this region of the Variscan Orogen. The MT model reveals a wavy structure separating a conductive upper layer underlain by a resistive layer, thus picturing the two main tectonic blocks of a large-scale D2 extensional shear zone (i.e., Pinhel shear zone). The upper layer represents a lower grade metamorphic domain that includes graphite-rich rocks. The lower layer consists of high-grade metamorphic rocks that experienced partial melting and are associated with granites (more resistive) emplaced during crustal thinning. The wavy structure is the result of superimposed crustal shortening responsible for the development of large-scale D3 folds (e.g., Marofa synform), later deflected and refolded by a D4 strike-slip shear zone (i.e., Juzbado-Penalva do Castelo shear zone). The later contribution to the final structure of the crust is marked by the intrusion of postkinematic granitic rocks and the propagation of steeply dipping brittle fault zones. Our study demonstrates that MT imaging is a powerful tool to understand complex crustal structures of ancient orogens in order to design future prospecting surveys for mineral deposits of economic interest.

  13. Cenozoic landforms and post-orogenic landscape evolution of the Balkanide orogen: Evidence for alternatives to the tectonic denudation narrative in southern Bulgaria

    Science.gov (United States)

    Gunnell, Y.; Calvet, M.; Meyer, B.; Pinna-Jamme, R.; Bour, I.; Gautheron, C.; Carter, A.; Dimitrov, D.

    2017-01-01

    Continental denudation is the mass transfer of rock from source areas to sedimentary depocentres, and is typically the result of Earth surface processes. However, a process known as tectonic denudation is also understood to expose deep-seated rocks in short periods of geological time by displacing large masses of continental crust along shallow-angle faults, and without requiring major contributions from surface erosion. Some parts of the world, such as the Basin and Range in the USA or the Aegean province in Europe, have been showcased for their Cenozoic tectonic denudation features, commonly described as metamorphic core-complexes or as supradetachment faults. Based on 22 new apatite fission-track (AFT) and 21 helium (AHe) cooling ages among rock samples collected widely from plateau summits and their adjacent valley floors, and elaborating on inconsistencies between the regional stratigraphic, topographic and denudational records, this study frames a revised perspective on the prevailing tectonic denudation narrative for southern Bulgaria. We conclude that conspicuous landforms in this region, such as erosion surfaces on basement-cored mountain ranges, are not primarily the result of Paleogene to Neogene core-complex formation. They result instead from "ordinary" erosion-driven, subaerial denudation. Rock cooling, each time suggesting at least 2 km of crustal denudation, has exposed shallow Paleogene granitic plutons and documents a 3-stage wave of erosional denudation which progressed from north to south during the Middle Eocene, Oligocene, Early to Middle Miocene, and Late Miocene. Denudation initially prevailed during the Paleogene under a syn-orogenic compressional regime involving piggyback extensional basins (Phase 1), but subsequently migrated southward in response to post-orogenic upper-plate extension driven by trench rollback of the Hellenic subduction slab (Phase 2). Rare insight given by the denudation pattern indicates that trench rollback

  14. Exhumation history of the West Kunlun Mountains, northwestern Tibet: Evidence for a long-lived, rejuvenated orogen

    Science.gov (United States)

    Cao, Kai; Wang, Guo-Can; Bernet, Matthias; van der Beek, Peter; Zhang, Ke-Xin

    2015-12-01

    How and when the northwestern Tibetan Plateau originated and developed upon pre-existing crustal and topographic features is not well understood. To address this question, we present an integrated analysis of detrital zircon U-Pb and fission-track double dating of Cenozoic synorogenic sediments from the Kekeya and Sanju sections in the southwestern Tarim Basin. These data help establishing a new chronostratigraphic framework for the Sanju section and confirm a recent revision of the chronostratigraphy at Kekeya. Detrital zircon fission-track ages present prominent Triassic-Early Jurassic (∼250-170 Ma) and Early Cretaceous (∼130-100 Ma) static age peaks, and Paleocene-Early Miocene (∼60-21 Ma) to Eocene-Late Miocene (∼39-7 Ma) moving age peaks, representing source exhumation. Triassic-Early Jurassic static peak ages document unroofing of the Kunlun terrane, probably related to the subduction of Paleotethys oceanic lithosphere. In combination with the occurrence of synorogenic sediments on both flanks of the Kunlun terrane, these data suggest that an ancient West Kunlun range had emerged above sea level by Triassic-Early Jurassic times. Early Cretaceous fission-track peak ages are interpreted to document exhumation related to thrusting along the Tam Karaul fault, kinematically correlated to the Main Pamir thrust further west. Widespread Middle-Late Mesozoic crustal shortening and thickening likely enhanced the Early Mesozoic topography. Paleocene-Early Eocene fission-track peak ages are presumably partially reset. Limited regional exhumation indicates that the Early Cenozoic topographic and crustal pattern of the West Kunlun may be largely preserved from the Middle-Late Mesozoic. The Main Pamir-Tam Karaul thrust belt could be a first-order tectonic feature bounding the northwestern margin of the Middle-Late Mesozoic to Early Cenozoic Tibetan Plateau. Toward the Tarim basin, Late Oligocene-Early Miocene steady exhumation at a rate of ∼0.9 km/Myr is likely

  15. Evolution of the Chos Malal and Agrio fold and thrust belts, Andes of Neuquén: Insights from structural analysis and apatite fission track dating

    Science.gov (United States)

    Rojas Vera, E. A.; Mescua, J.; Folguera, A.; Becker, T. P.; Sagripanti, L.; Fennell, L.; Orts, D.; Ramos, V. A.

    2015-12-01

    The Chos Malal and Agrio fold and thrust belts are located in the western part of the Neuquén basin, an Andean retroarc basin of central-western Argentina. Both belts show evidence of tectonic inversion at the western part during Late Cretaceous times. The eastern part is dominated by late Miocene deformation which also partially reactivated the western structures. This work focuses on the study of the regional structure and the deformational event that shaped the relief of this part of the Andes. Based on new field work and structural data and previously published works a detailed map of the central part of the Neuquén basin is presented. Three regional structural cross sections were surveyed and balanced using the 2d Move™ software. In order to define a more accurate uplift history, new apatite fission track analyses were carried on selected structures. These data was used for new thermal history modeling of the inner part of the Agrio and Chos Malal fold and thrust belts. The results of the fission track analyses improve the knowledge of how these fold and thrust belts have grown trough time. Two main deformational events are defined in Late Cretaceous to Paleocene and Late Miocene times. Based on this regional structural analysis and the fission track data the precise location of the orogenic front for the Late Cretaceous-Paleocene times is reconstructed and it is proposed a structural evolution of this segment of the Andes. This new exhumation data show how the Late Cretaceous to Paleocene event was a continuous and uninterrupted deformational event.

  16. Dynamics of a belt-drive system using a linear complementarity problem for the belt pulley contact description

    Science.gov (United States)

    Čepon, Gregor; Boltežar, Miha

    2009-01-01

    The aim of this study was to develop an efficient and realistic numerical model in order to predict the dynamic response of belt drives. The belt was modeled as a planar beam element based on an absolute nodal coordinate formulation. A viscoelastic material was adopted for the belt and the corresponding damping and stiffness matrices were determined. The belt-pulley contact was formulated as a linear complementarity problem together with a penalty method. This made it possible for us to accurately predict the contact forces, including the stick and slip zones between the belt and the pulley. The belt-drive model was verified by comparing it with the available analytical solutions. A good agreement was found. Finally, the applicability of the method was demonstrated by considering non-steady belt-drive operating conditions.

  17. Alien Asteroid Belt Compared to our Own

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Band of Light Comparison This artist's concept illustrates what the night sky might look like from a hypothetical alien planet in a star system with an asteroid belt 25 times as massive as the one in our own solar system (alien system above, ours below; see Figure 1). NASA's Spitzer Space Telescope found evidence for such a belt around the nearby star called HD 69830, when its infrared eyes spotted dust, presumably from asteroids banging together. The telescope did not find any evidence for a planet in the system, but astronomers speculate one or more may be present. The movie begins at dusk on the imaginary world, when HD 69830, like our Sun, has begun to set over the horizon. Time is sped up to show the onset of night and the appearance of a brilliant band of light. This light comes from dust in a massive asteroid belt, which scatters sunlight. In our solar system, anybody observing the skies on a moonless night far from city lights can see the sunlight that is scattered by dust in our asteroid belt. Called zodiacal light and sometimes the 'false dawn,' this light appears as a dim band stretching up from the horizon when the Sun is about to rise or set. The light is faint enough that the disk of our Milky Way galaxy remains the most prominent feature in the sky. (The Milky Way disk is shown perpendicular to the zodiacal light in both pictures.) In contrast, the zodiacal light in the HD 69830 system would be 1,000 times brighter than our own, outshining even the Milky Way.

  18. Numerical simulation of the gould belt dynamics

    Science.gov (United States)

    Vasilkova, O. O.

    2014-01-01

    The results of numerical simulations of the Gould Belt motion for the 2D (a ring in the Galactic plane) and 3D (a spherical shell outside the Galactic plane) cases are presented. Particles of the expanding shell interact with each other within the framework of the N-body problem. The Galactic potential has been borrowed from Flynn et al. (1996). The total mass of the shell is 1.5 × 106 M⊙ in accordance with the estimate from Bobylev (2006). The initial mutual distances and velocities of the shell components are chosen in such a way that the shell reaches the present-day sizes of the Gould Belt in 30-60 Myr. In the 2D case, the ring is shown to be stretched with time into a rotating ellipse, which is consistent with the results from Blaauw (1952) obtained by other methods. In the 3D case, the projections of the initially spherical shell onto the Galactic plane are also rotating ellipses. A vertical oscillation of the Gould Belt components relative to the Galactic plane, a flattening of the spherical shell, and its inclination to the Galactic plane after a certain time interval have been revealed.

  19. Understanding quaternions and the Dirac belt trick

    Energy Technology Data Exchange (ETDEWEB)

    Staley, Mark [University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario (Canada)], E-mail: staleymd@gmail.com

    2010-05-15

    The Dirac belt trick is often employed in physics classrooms to show that a 2{pi} rotation is not topologically equivalent to the absence of rotation whereas a 4{pi} rotation is, mirroring a key property of quaternions and their isomorphic cousins, spinors. The belt trick can leave the student wondering if a real understanding of quaternions and spinors has been achieved, or if the trick is just an amusing analogy. The goal of this paper is to demystify the belt trick and to show that it suggests an underlying four-dimensional parameter space for rotations that is simply connected. An investigation into the geometry of this four-dimensional space leads directly to the system of quaternions, and to an interpretation of three-dimensional vectors as the generators of rotations in this larger four-dimensional world. The paper also shows why quaternions are the natural extension of complex numbers to four dimensions. The level of the paper is suitable for undergraduate students of physics.

  20. Araguaia fold belt, new geochronological data

    International Nuclear Information System (INIS)

    Lafon, J.M.; Macambira, J.B.; Macambira, M.J.B.; Moura, C.A.V.; Souza, A.C.C.

    1990-01-01

    The northern part of the Araguaia Fold Belt (AFB) outcrops in a N-S direction for about 400 km in the state of Tocantins. Dome-like structures occur in this fold belt also in a N-S direction. Both deformation and metamorphism increase from the West to the East. The basement of the AFB consist of Colmeia complex and Cantao gneiss, which crop out mainly in the core of the dome-like structures. The supracrustals rocks of the fold belt belongs to the Baixo Araguaia supergroup which is divided into the lower Estrondo group and the upper Tocantins group. Preliminary Sm-Nd data from the Colmeia complex (Grota Rica dome) gave Archean model ages of 2.8 Ga (TNd sub(DM)) while Rb-Sr data in the same rocks give an age of 2530 ± 200 Ma. In the others dome-like structures, the Rb-Sr systematics gave ages for the Colmeia a complex of 2239 ± 47 Ma (Colmeia structure) and 1972 ± 46 Ma (Lontra structure). These younger ages are believed to represent partial to total isotopic resetting of the Rb-Sr system during the Transamazonian Event. The Rb-Sr studies of the Cantao gneiss gave an age of 1774 ± 31 Ma. (author)

  1. Transformation from Paleo-Asian Ocean closure to Paleo-Pacific subduction: New constraints from granitoids in the eastern Jilin-Heilongjiang Belt, NE China

    Science.gov (United States)

    Ma, Xing-Hua; Zhu, Wen-Ping; Zhou, Zhen-Hua; Qiao, Shi-Lei

    2017-08-01

    The eastern Jilin-Heilongjiang Belt (EJHB) of NE China is a unique orogen that underwent two stages of evolution within the tectonic regimes of the Paleo-Asian and Paleo-Pacific oceans. 158 available zircon U-Pb ages, including 26 ages obtained during the present study and 132 ages from the literature, were compiled and analyzed for the Mesozoic and Cenozoic granitoids from the EJHB and the adjacent Russian Sikhote-Alin Orogenic Belt (SAOB), to examine the temporal-spatial distribution of the granitoids and to constrain the tectonic evolution of the East Asian continental margin. Five stages of granitic magmatism can be identified: Early Triassic (251-240 Ma), Late Triassic (228-215 Ma), latest Triassic to Middle Jurassic (213-158 Ma), Early Cretaceous (131-105 Ma), and Late Cretaceous to Paleocene (95-56 Ma). The Early Triassic granitoids are restricted to the Yanbian region along the Changchun-Yanji Suture, and show geochemical characteristics of magmas from a thickened lower crust source, probably due to the final collision of the combined NE China blocks with the North China Craton. The Late Triassic granitoids, with features of A-type granites, represent post-collisional magmatic activities that were related to post-orogenic extension, marking the end of the tectonic evolution of the Paleo-Asian Ocean. The latest Triassic to Paleocene granitoids with calc-alkaline characteristics were NE-trending emplaced along the EJHB and SAOB and young towards the coastal region, and represent continental marginal arc magmas that were associated with the northwestwards subduction of the Paleo-Pacific Plate. Two periods of magmatic quiescence (158-131 and 105-95 Ma) correspond to changes in the subduction direction of the Paleo-Pacific Plate from oblique relative to the continental margin to subparallel. Taking all this into account, we conclude that: (1) the final closure of the Paleo-Asian Ocean occurred along the Changchun-Yanji Suture during the Early Triassic; (2) the

  2. Devonian post-orogenic extension-related volcano-sedimentary rocks in the northern margin of the Tibetan Plateau, NW China: Implications for the Paleozoic tectonic transition in the North Qaidam Orogen

    Science.gov (United States)

    Qin, Yu; Feng, Qiao; Chen, Gang; Chen, Yan; Zou, Kaizhen; Liu, Qian; Jiao, Qianqian; Zhou, Dingwu; Pan, Lihui; Gao, Jindong

    2018-05-01

    The Maoniushan Formation in the northern part of the North Qaidam Orogen (NQO), NW China, contains key information on a Paleozoic change in tectonic setting of the NQO from compression to extension. Here, new zircon U-Pb, petrological, and sedimentological data for the lower molasse sequence of the Maoniushan Formation are used to constrain the timing of this tectonic transition. Detrital zircons yield U-Pb ages of 3.3-0.4 Ga with major populations at 0.53-0.4, 1.0-0.56, 2.5-1.0, and 3.3-2.5 Ga. The maximum depositional age of the Maoniushan Formation is well constrained by a youngest detrital zircon age of ∼409 Ma. Comparing these dates with geochronological data for the region indicates that Proterozoic-Paleozoic zircons were derived mainly from the NQO as well as the Oulongbuluk and Qaidam blocks, whereas Archean zircons were probably derived from the Oulongbuluk Block and the Tarim Craton. The ∼924, ∼463, and ∼439 Ma tectonothermal events recorded in this region indicate that the NQO was involved in the early Neoproterozoic assembly of Rodinia and early Paleozoic microcontinental convergence. A regional angular unconformity between Devonian and pre-Devonian strata within the NQO suggests a period of strong mountain building between the Oulongbuluk and Qaidam blocks during the Silurian, whereas an Early Devonian post-orogenic molasse, evidence of extensional collapse, and Middle to Late Devonian bimodal volcanic rocks and Carboniferous marine carbonate rocks clearly reflect long-lived tectonic extension. Based on these results and the regional geology, we suggest that the Devonian volcano-sedimentary rocks within the NQO were formed in a post-orogenic extensional setting similar to that of the East Kunlun Orogen, indicating that a major tectonic transition from compression to extension in these two orogens probably commenced in the Early Devonian.

  3. Wrench tectonics control on Neogene-Quaternary sedimentation along the Mid-Hungarian Mobile Belt

    Science.gov (United States)

    Pogacsas, Gyorgy; Juhász, Györgyi; Mádl-Szőnyi, Judit; Simon, Szilvia; Lukács, Szilveszter; Csizmeg, János

    2010-05-01

    The Neogene Pannonian basin is underlain by a large orogenic collage which is built up by several tectonostratigraphic terrains. The basement of the Pannonian Basin became imbricate nappes during the Cretaceous Alpine collision. Nappes of Late Cretaceous in age have been proven below the Great Hungarian Plain (Grow et al 1994). The boundary of the two main terrains, the northwestern ALCAPA (Alpine-Carpathian-Pannonian) and the southeastern TISZA, is the Mid-Hungarian Mobile Belt. It is the most significant neotectonic zone of the Pannonian Basin. The structural analysis of the middle section of the Mid-Hungarian Mobile Belt was carried out on a 120km x 50km area, between the Danube and the Tisza river, on the basis of interpretation of seismic data. The structural analysis of the Neogene-Quaternary sediments was supported by sequence stratigraphic interpretation of seismic, well log and core-sample data. Regional seismic profiles were both oriented in the dip direction, which highlights sediment supply routes into the basin, and strike-oriented. The studied segment of the Mid-Hungarian Mobile Belt consists of several long (some ten kilometres long) strike slip fault zones. The offset lengths of the individual strike slipe faults varies between a few and a dozens of kilometres. Activity along the Mid-Hungarian Mobile Belt can be characterised by four periods, the size and shape of facies zones of each development period were controlled by tectonics: 1. During the early Miocene, the ALPACA moved eastward, bounded by sinistral strike-slipe system along its northern side and dextral strike-slipe fault system along its contact with the Southern Alps and the TISZA terrain. The largest movement took part during the Ottnangian-Karpatian (19-16.5 Ma). The TISZA unit moved northeastward over the remnant Carpathian Flysch Basin (Nemcok et al 2006). These terrains movements resulted in right lateral, convergent wide wrench along the Mid-Hungarian Mobile Belt. The ALPACA

  4. Taxi driver seat belt wearing in Nanjing, China.

    Science.gov (United States)

    Routley, Virginia; Ozanne-Smith, Joan; Qin, Yu; Wu, Ming

    2009-01-01

    To determine and validate patterns of seat belt use and attitudes of taxi drivers on wearing a seat belt following national and provincial seat belt legislation in 2004-2005. Roadside daylight seat belt observation and interview survey methods were used, as well as observations from inside taxis during routine trips and a taxi driver focus group. The setting was Nanjing, Jiangsu Province, PR China in April of 2006 and 2007. Prevalence of seat belt use and attitudes to wearing a seat belt were determined, as were vehicle and driver characteristics, and comparisons with other motor-vehicle driver's seat belt use and attitudes. Taxi drivers interviewed were predominantly male and aged 30-39 years. They spent more hours per week in their vehicles and had more driving experience than other drivers. Over half (56.2%) of taxi drivers interviewed reported that they always wore seat belts, while observation of taxi drivers showed lower wearing rates (i.e., roadside observation was 43.8%, and observation from inside taxis was 36.2%). Belt tampering was a practice of 12-15% of taxi drivers. "Fine avoidance, safety, high speed and long trips" were given as important reasons for wearing and "feeling trapped and uncomfortable" for not wearing. Seat belt reminder signs in taxis were common (82.6% of taxis), but did not appear to impact on driver seat belt use. The four research methods found taxi drivers to have consistently low "correct wearing" rates. As in several other countries, taxi drivers are particularly resistant to seat belt use. Innovative strategies, including occupational health and safety approaches, may be required to achieve increased levels of seat belt use.

  5. Tectonothermal evolution of the Triassic flysch in the Bayan Har Orogen, Tibetan plateau

    Science.gov (United States)

    Wang, Hejing; Rahn, Meinert; Zhou, Jian

    2018-01-01

    The Bayan Har Orogen comprises a major part of the "Qingzang-Dianxi fold region" in western China. It preserves important information of the tectono-thermal evolution covering the time span from the closure of the Paleo-Tethys Ocean up to the formation of the Himalayas. Low temperature metamorphic indicators, such as mineral assemblages, illite "crystallinity" (IC), chlorite "crystallinity" (CC), illite polytype, b-cell dimension of K-white micas, geothermometry of selected minerals were analyzed. The values of Kübler index (KI) of the Triassic flysch in the Bayan Har Orogen range from 0.23-1.63°Δ2θ while Árkai index (ÁI) in a range of 0.21-0.60°Δ2θ. Iso-thermal zones mapped with KI describe a pair of anchizones and an anchiregion within the Bayan Har Orogen: the "Giant Yushu Anchizone" in the southwest (extending > 750 km long and 100 km wide), the "Zaling-Eling-Lakes Anchizone" in the center (about 150 km long and 40 km wide) and the "Xing-Tong-Zhe Anchiregion" in the northeast (covering an area of roughly 60,000 km2). They are separated by diagenetic zones. Peak metamorphic conditions are estimated around 280-330 °C and a low to intermediate (N. New Hampshire) pressure type. A slight change with increasing then decreasing pressure was observed from SW to NE. The relationship between anchimetamorphic pattern of Triassic flysch and large-scale folds and faults indicates syn- to post structural metamorphism. Compression at the end of the Triassic, induced by the interaction of the Tarim, North China and Indian blocks caused the closure of the Paleo-Tethys Ocean and led to the folding of the Triassic flysch within the Paleo-Tethys Ocean basin. Anchimetamorphism may have been caused by crustal thickening of > 10 km due to an accretionary wedge setting and a temperature increase in those rocks due to burial. Such a regional metamorphic pattern would provide important information for reconstruction of palaeotectonic-palaeogeograph and the evolutionary history

  6. Tectonic processes during oblique collision: Insights from the St. Elias orogen, northern North American Cordillera

    Science.gov (United States)

    Pavlis, T.L.; Picornell, C.; Serpa, L.; Bruhn, R.L.; Plafker, G.

    2004-01-01

    Oblique convergence in the St. Elias orogen of southern Alaska and northwestern Canada has constructed the world's highest coastal mountain range and is the principal driver constructing all of the high topography in northern North America. The orogen originated when the Yakutat terrane was excised from the Cordilleran margin and was transported along margin-parallel strike-slip faults into the subduction-transform transition at the eastern end of the Aleutian trench. We examine the last 3 m.y. of this collision through an analysis of Euler poles for motion of the Yakutat microplate with respect to North America and the Pacific. This analysis indicates a Yakutat-Pacific pole near the present southern triple junction of the microplate and' predicts convergence to dextral-oblique convergence across the offshore Transition fault, onland structures adjacent to the Yakutat foreland, or both, with plate speeds increasing from 10 to 30 mm/yr from southeast to northwest. Reconstructions based on these poles show that NNW transport of the collided block into the NE trending subduction zone forced contraction of EW line elements as the collided block was driven into the subduction-transform transition. This suggests the collided block was constricted as it was driven into the transition. Constriction provides an explanation for observed vertical axis refolding of both earlier formed fold-thrust systems and the collisional suture at the top of the fold-thrust stack. We also suggest that this motion was partially accommodated by lateral extrusion of the western portion of the orogen toward the Aleutian trench. Important questions remain regarding which structures accommodated parts of this motion. The Transition fault may have accommodated much of the Yakutat-Pacific convergence on the basis of our analysis and previous interpretations of GPS-based geodetic data. Nonetheless, it is locally overlapped by up to 800 m of undeformed sediment, yet elsewhere shows evidence of young

  7. Aortic ruptures in seat belt wearers.

    Science.gov (United States)

    Arajärvi, E; Santavirta, S; Tolonen, J

    1989-09-01

    Several investigations have indicated that rupture of the thoracic aorta is one of the leading causes of immediate death in victims of road traffic accidents. In Finland in 1983, 92% of front-seat passengers were seat belt wearers on highways and 82% in build-up areas. The mechanisms of rupture of the aorta have been intensively investigated, but the relationship between seat belt wearing and injury mechanisms leading to aortic rupture is still largely unknown. This study comprises 4169 fatally injured victims investigated by the Boards of Traffic Accident Investigation of Insurance Companies during the period 1972 to 1985. Chest injuries were recorded as the main cause of death in 1121 (26.9%) victims, 207 (5.0%) of those victims having worn a seat belt. Aortic ruptures were found at autopsy in 98 victims and the exact information of the location of the aortic tears was available in 68. For a control group, we analyzed 72 randomly chosen unbelted victims who had a fatal aortic rupture in similar accidents. The location of the aortic rupture in unbelted victims was more often in the ascending aorta, especially in drivers, whereas in seat belt wearers the distal descending aorta was statistically more often ruptured, especially in right-front passengers (p less than 0.05). The steering wheel predominated statistically as the part of the car estimated to have caused the injury in unbelted victims (37/72), and some interior part of the car was the most common cause of fatal thoracic impacts in seat belt wearers (48/68) (p less than 0.001). The mechanism of rupture of the aorta in the classic site just distal to the subclavian artery seems to be rapid deceleration, although complex body movements are also responsible in side impact collisions. The main mechanism leading to rupture of the ascending aorta seems to be severe blow to the bony thorax. This also often causes associated thoracic injuries, such as heart rupture and sternal fracture. Injuries in the ascending

  8. Radiation Belts of Antiparticles in Planetary Magnetospheres

    Science.gov (United States)

    Pugacheva, G. I.; Gusev, A. A.; Jayanthi, U. B.; Martin, I. M.; Spjeldvik, W. N.

    2007-05-01

    The Earth's radiation belts could be populated, besides with electrons and protons, also by antiparticles, such as positrons (Basilova et al., 1982) and antiprotons (pbar). Positrons are born in the decay of pions that are directly produced in nuclear reactions of trapped relativistic inner zone protons with the residual atmosphere at altitudes in the range of about 500 to 3000 km over the Earth's surface. Antiprotons are born by high energy (E > 6 GeV) cosmic rays in p+p - p+p+p+ pbar and in p+p - p+p+n+nbar reactions. The trapping and storage of these charged anti-particles in the magnetosphere result in radiation belts similar to the classical Van Allen belts of protons and electrons. We describe the mathematical techniques used for numerical simulation of the trapped positron and antiproton belt fluxes. The pion and antiproton yields were simulated on the basis of the Russian nuclear reaction computer code MSDM, a Multy Stage Dynamical Model, Monte Carlo code, (i.e., Dementyev and Sobolevsky, 1999). For estimates of positron flux there we have accounted for ionisation, bremsstrahlung, and synchrotron energy losses. The resulting numerical estimates show that the positron flux with energy >100 MeV trapped into the radiation belt at L=1.2 is of the order ~1000 m-2 s-1 sr-1, and that it is very sensitive to the shape of the trapped proton spectrum. This confined positron flux is found to be greater than that albedo, not trapped, mixed electron/positron flux of about 50 m-2 s-1 sr-1 produced by CR in the same region at the top of the geomagnetic field line at L=1.2. As we show in report, this albedo flux also consists mostly of positrons. The trapped antiproton fluxes produced by CR in the Earth's upper rarified atmosphere were calculated in the energy range from 10 MeV to several GeV. In the simulations we included a mathematic consideration of the radial diffusion process, both an inner and an outer antiproton source, losses of particles due to ionization process

  9. Genesis of Ultra-High Pressure Garnet Pyroxenite in Orogenic Peridotites and its bearing on the Isotopic Chemical Heterogeneity in the Mantle Source of Oceanic Basalts

    Science.gov (United States)

    Varas Reus, María Isabel; Garrido, Carlos J.; Marchesi, Claudio; Bosch, Delphine; Hidas, Károly

    2017-04-01

    The genesis of ultra-high pressure (UHP) garnet pyroxenites in orogenic peridotite massifs and its implications on the formation of chemical heterogeneities in the mantle and on basalt petrogenesis are still not fully understood. Some UHP (diamond-bearing) garnet pyroxenites have isotopic, and major and trace element compositions similar to the recycled oceanic crustal component observed in oceanic basalts [1-6]. These pyroxenites hence provide an exceptional opportunity to investigate in situ the nature and scale of the Earth's mantle chemical heterogeneities. Here, we present an integrated geochemical study of UHP garnet pyroxenites from the Ronda (Betic Belt, S. Spain) and Beni Bousera (Rif Belt, N. Morocco) peridotite massifs. This investigation encompasses, in the same sample, bulk rock major and trace elements, as well as Sr-Nd-Pb-Hf isotopic analyses. According to their Al2O3 content, we classify UHP garnet pyroxenites into three groups that have distinct trace elements and Sr-Nd-Pb-Hf isotopic signatures. Group A pyroxenites (Al2O3: 15 - 17.5 wt. %) are characterized by low initial 87Sr/86Sr, relatively high 143Nd/144Nd, 206Pb/204Pb and 176Hf/177Hf ratios, and highly variable 207Pb/204Pb and 208Pb/204Pb ratios. Group B pyroxenites (Al2O3 element, and isotopic compositions of the studied Ronda and Beni Bousera UHP garnet pyroxenites lend support to the "Marble Cake Mantle" model [7] for the genesis of these pyroxenites. This model envisions the mantle source of oceanic basalts as a mélange of subducted, ancient oceanic crust —-represented by garnet pyroxenites in orogenic peridotites—- intimately mixed with peridotites by mantle convection. The present study reveals, however, that besides this exotic component of ancient recycled oceanic crust, the genesis of these pyroxenites requires a previously unnoticed component of recycled lower continental crust akin to the lower crustal section of the lithosphere where these UHP garnet pyroxenites now reside in

  10. Toward a new tectonic model for the Late Proterozoic Araçuaí (SE Brazil)-West Congolian (SW Africa) Belt

    Science.gov (United States)

    Pedrosa-Soares, A. C.; Noce, C. M.; Vidal, Ph; Monteiro, R. L. B. P.; Leonardos, O. H.

    1992-08-01

    The Araçuaí Belt is a Late Proterozoic (Brasiliano Cycle) geotectonic unit which was developed along the southeastern margin of the São Francisco Craton (SE Brazil) and was formerly considered as being an ensialic orogen. It is correlated with the Pan-African West Congolian Belt (SW Africa) in many reports. In the western domain of the belt, the Macaúbas Group—the most important supracrustal sequence related to the evolution of the Araçuaí Belt —comprises the Terra Branca and Carbonita Formations, which consist of littoral glacial sediments to shelf turbidites. These formations grade upward and eastward to the Salinas Formation, consisting of distal turbidites related to submarine fans, pelagic sediments, and a rock association (the Ribeirão da Folha Facies) typical of an ocean-floor environment. Banded iron formations, metacherts, diopsidites, massive sulfides, graphite schists, hyperaluminous schists, and ortho-amphibolites, intercalated with quartz-mica schists and impure quartzites, characterize the most distinctive and restricted volcano-sedimentary facies yet found within the Salinas Formation. Ultramafic slabs were tectonically emplaced within the Ribeirão da Folha Facies. Eight whole rock samples of meta-ultramafic rocks and ortho-amphibolites yielded a SmNd isochronic age of 793 ± 90 Ma ( ɛNd(T) = +4.1 ± 0.6. MSWD = 1.76 ). The structures of the northern Araçuaí Belt are marked by a doen-dip stretching lineation (western domain) related to frontal thrusts which controlled tectonic transport from east to west; stretching lineation rakes decrease in the eastern tectonic domain, indicating dominant oblique to transcurrent motion; the northern arch of the belt is characterized by major high-dip transcurrent shear zones. Our tectonic model starts with marked fracturing, followed by rifting that took place in the São Francisco-Congo Craton around 1000 ± 100 Ma (ages of basic intrusions and alkaline anorogenic granites). A sinistral transfer

  11. Linkages Between Critical Wedges and Crustal Channels Using 2-D Coupled Thermomechanical Finite Element Models: Implications for Himalayan Orogenic Evolution

    Science.gov (United States)

    Sparks, S. A.; Thigpen, J. R.

    2017-12-01

    In continental tectonics, questions remain regarding the dominant mechanisms of shortening accommodation during orogen evolution. Two quantitatively-supported models, critical wedge and channel flow, have been applied to the Himalaya and proposed for other large collisional systems. These two models represent fundamentally distinct mechanisms for accommodating shortening in collisional systems and until recently have been viewed as mutually exclusive. While there remains support for these mechanisms being incompatible end-members, in more recent studies it has been proposed that either: (1) both geodynamic mechanisms may operate simultaneously yet in spatially distinct parts of the larger composite orogenic system or (2) both mechanisms are present yet they operate at temporally distinct intervals, wherein the orogen progressively develops through stages dominated by mid-crustal channel flow followed by shallow thrust stacking and duplex development. In both scenarios, the mechanism active at each stage in orogen evolution is presumably dependent upon local to regional scale rheological conditions (as a function of orogen dynamic and thermal evolution) that are likely to be transient in both space and time. However, questions regarding the dynamic, mechanical, and thermal-kinematic relationships of such a system remain. Also, while field observations and deformation records derived from analyses of transects within the Himalaya can be interpreted in such a way to be consistent with a unified model, numerical models that predict the behavior of interactions between the end-member models have - until now - not existed. Here, we present results from 2-D coupled thermomechanical finite-element numerical experiments that examine the necessary conditions for mechanical compatibility between the channel and critical wedge by focusing on the role of rheology. These model results will eventually allow us to make preliminary comparisons between model-derived stress

  12. Random Deterioration Process of Conveyor Belt Evaluated by Statistical Analysis of Core Failures Detected Along Belt Axis and Elapsed Time

    Science.gov (United States)

    Blazej, Ryszard; Jurdziak, Leszek; Kirjanów, Agata; Kozlowski, Tomasz

    2017-12-01

    Magnetic diagnostic methods are used for steel cord belt condition evaluation since the beginning of 1970s. Initially they generated an analogue signal for several tens of centimetres of conveyor belts scanned sequentially with one measuring head in several cycles or the whole width of the belt at one time thanks to the installation of many measuring heads across the entire cross section. This did not allow identification of single centimetre failures, but rather an aggregate assessment of the state of quite wide waist. Modern diagnostic devices, thanks to miniaturization, allow up to 200 heads per belt width to identify damage of individual cords. Instead of analogue signals, they generate a zero-one digital signal corresponding to a change in the magnetic field sign, which can illustrate damage on 2D images. This makes it easier to identify the location and size of the damage in the belt image. Statistical analysis of digital signals summed up for consecutive sections along the belt axis allows to present both the source signal and its aggregation for band of a given width to form aggregate measures of belt damage such as the damage density per 1 meter of belt. Observation of changes in these measurements at different times allows on evaluation of its rate of change over time, which can be used to forecast future belt condition and to select the proper moment of preventive belt replacement to another one to avoid emergency downtimes (egg in underground mines) or to recondition of belts (egg. in lignite surface mines). The paper presents the results of investigations of the damage condition of a core of a single belt segment working in one of the copper ore underground mines. Scanning of the belt condition was performed few times at intervals of several months. The paper presents the results of the analysis of the changes in core condition, showing the random character of the damage process along the axis and its change over time.

  13. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway.

    Science.gov (United States)

    Spengler, Dirk; van Roermund, Herman L M; Drury, Martyn R; Ottolini, Luisa; Mason, Paul R D; Davies, Gareth R

    2006-04-13

    The buoyancy and strength of sub-continental lithospheric mantle is thought to protect the oldest continental crust (cratons) from destruction by plate tectonic processes. The exact origin of the lithosphere below cratons is controversial, but seems clearly to be a residue remaining after the extraction of large amounts of melt. Models to explain highly melt-depleted but garnet-bearing rock compositions require multi-stage processes with garnet and clinopyroxene possibly of secondary origin. Here we report on orogenic peridotites (fragments of cratonic mantle incorporated into the crust during continent-continent plate collision) from Otrøy, western Norway. We show that the peridotites underwent extensive melting during upwelling from depths of 350 kilometres or more, forming a garnet-bearing cratonic root in a single melting event. These peridotites appear to be the residue after Archaean aluminium depleted komatiite magmatism.

  14. 40Ar-39Ar method for age estimation: principles, technique and application in orogenic regions

    International Nuclear Information System (INIS)

    Dalmejer, R.

    1984-01-01

    A variety of the K-Ar method for age estimation by 40 Ar/ 39 Ar recently developed is described. This method doesn't require direct analysis of potassium, its content is calculated as a function of 39 Ar, which is formed from 39 K under neutron activation. Errors resulted from interactions between potassium and calcium nuclei with neutrons are considered. The attention is paid to the technique of gradual heating, used in 40 Ar- 39 Ar method, and of obtaining age spectrum. Aplicabilities of isochronous diagram is discussed for the case of presence of excessive argon in a sample. Examples of 40 Ar- 39 Ar method application for dating events in orogenic regions are presented

  15. U-Pb SHRIMP and Sm-Nd geochronology of the paleoproterozoic Silvania magmatic arc in the neoproproterozoic Brasilia Belt, Goias, Central Brazil

    International Nuclear Information System (INIS)

    Fischel, D.P.; Pimentel, M.M.; Fuck, R.A; Armstrong, R

    2001-01-01

    The Brasilia Belt is a large Neoproterozoic orogen formed along the western margin of the Sao Francisco/Congo Craton in central Brazil. It comprises: (i) a thick Meso-Neoproterozoic metasedimentary/sedimentary pile with eastward tectonic vergence; (ii) a large Neoproterozoic juvenile arc in the west (Goias Magmatic Arc); and (iii) a micro-continent (or exotic sialic terrain) formed by Archean rock units (the Crixas -Goias granitegreenstones) and associated Proterozoic formations (Almeida et al. 1981, Fuck et al. 1993,1994, Pimentel et al. 2000a, b). The sialic basement on which the Brasilia Belt sediments were deposited is poorly understood, despite being well exposed in some areas of Goias and Tocantins. Gneiss and volcano-sedimentary units form most of this basement. Early studies have suggested that these rock units are dominantly Archean ( Danni et al. 1982, Marini et al. 1984). However, recent Sm- Nd isotopic studies have indicated that most of them are Paleoproterozoic (Sato 1998, Pimentel et al. 1999a, 2000b). Granite gneiss to the south and east of the Barro Alto mafic-ultramafic layered complex has been dated at 2128+/- 15 Ma (Correia et al. 1997). Calc-alkaline granite gneiss from Almas-Dianopolis is dated at ca. 2.2-2.45 Ga old (U-Pb SHRIMP on zircon and titanite, Cruz et al. 2000). The latter is probably the western extension of Paleoproterozoic rocks which underlie the San Francisco Craton to the east of the northern part of the Brasilia Belt. In central Goias, a large part of the Brasilia Belt is underlain by high-grade metamorphic rocks known as the Anapolis-Itaucu Complex, together with surrounding greenschist to amphibolite facies Mesoto Neoproterozoic cover metasediments of the Araxa group. These rocks represent the main constituent of the internal zone of the Brasilia Belt (Fuck et al. 1994, Pimentel et al. 2000b). Between the Araxa Group, and the easternmost part of the Anapolis-Itaucu Complex a volcano-sedimentary association known as Silvania

  16. The Pan-African Damara Orogen of South West Africa/Namibia

    International Nuclear Information System (INIS)

    Miller, R.McG.

    1983-01-01

    The structural grain of the Damara orogen points to a reversal of spreading and to north-westward subduction of the African cratons below a South American craton and of the Kalahari Craton below the Congo Craton. D 1 recumbent folding was followed by intrusion of 650 m.y.-old granitic rocks, uplift and erosion and deposition of a northern molasse. D 2 deformation in the coastal arm marked the continental collision phase in this region. The final, large-scale deformational event in this region caused westward-vergent back folding which was followed by intrusion of 570 m.y.-old post-tectonic granites. In the Central Zone, widespread intrusion of 550 m.y.-old, syntectonic granites and extrusion of their volcanic equivalents in a 150 km-wide, high-temperature-low-pressure zone along the leading edge of the Congo Craton was accompanied by uplift, erosion and the deposition of K-rich greywackes as a fore-arc sequence above the earlier, spreading-phase deposits in the closing Southern Zone ocean. Sedimentological aspects of the Damara along the southern margin of the orogen suggest that the lower Nama Group, which contains a unique Ediacara fauna and was derived from easterly sources, was deposited between about 650 and 550 m.y. ago during deformation north of the Southern Zone ocean. During the final major deformation event in the Central Zone (D 3 doming), the fore-arc deposits and the underlying passive-margin sediments to the south were deformed. The Damaran granitic rocks are Hercynotype; granites make up 96 per cent of the more than 200 plutons. Average compositions have a slightly less calc-alkaline character than typical compressional margin granitic suites. Early granites have I-type chemistries and appear to have been derived from deep crustal sources, whereas most of the young granites have intermediate to S-type compositions and were generated at various crustal levels

  17. Isolating active orogenic wedge deformation in the southern Subandes of Bolivia

    Science.gov (United States)

    Weiss, Jonathan R.; Brooks, Benjamin A.; Foster, James H.; Bevis, Michael; Echalar, Arturo; Caccamise, Dana; Heck, Jacob; Kendrick, Eric; Ahlgren, Kevin; Raleigh, David; Smalley, Robert; Vergani, Gustavo

    2016-08-01

    A new GPS-derived surface velocity field for the central Andean backarc permits an assessment of orogenic wedge deformation across the southern Subandes of Bolivia, where recent studies suggest that great earthquakes (>Mw 8) are possible. We find that the backarc is not isolated from the main plate boundary seismic cycle. Rather, signals from subduction zone earthquakes contaminate the velocity field at distances greater than 800 km from the Chile trench. Two new wedge-crossing velocity profiles, corrected for seasonal and earthquake affects, reveal distinct regions that reflect (1) locking of the main plate boundary across the high Andes, (2) the location of and loading rate at the back of orogenic wedge, and (3) an east flank velocity gradient indicative of décollement locking beneath the Subandes. Modeling of the Subandean portions of the profiles indicates along-strike variations in the décollement locked width (WL) and wedge loading rate; the northern wedge décollement has a WL of ~100 km while accumulating slip at a rate of ~14 mm/yr, whereas the southern wedge has a WL of ~61 km and a slip rate of ~7 mm/yr. When compared to Quaternary estimates of geologic shortening and evidence for Holocene internal wedge deformation, the new GPS-derived wedge loading rates may indicate that the southern wedge is experiencing a phase of thickening via reactivation of preexisting internal structures. In contrast, we suspect that the northern wedge is undergoing an accretion or widening phase primarily via slip on relatively young thrust-front faults.

  18. Physical properties of rocks from the Trans-Hudson orogen, Canada

    Science.gov (United States)

    Fowler, C. R.; Stead, D.; Pandit, B. I.; Janser, B. W.; Nisbet, E. G.

    2004-12-01

    A physical properties database of rock types from the Trans Hudson orogen is presented. Measurements have been made on 320 samples representing metamorphosed Archaean and juvenile Proterozoic orogenic rocks. Water saturated densities were generally between 2600 and 3100 kg m-3. In most cases the porosity was less than 1 percent. Except for a few samples, magnetic susceptibility ranged from 20 to 4000 x 10 exp-6 SI units. P-wave velocities and S-wave velocities were made under maximum uniaxial stress and triaxial stresses equivalent to depths of ca 4 km. P-wave and S-wave velocities measured were in the range 5-7 km s-1 and 3-4 km s-1 respectively. The velocity data show a wide variation in impedance between neighbouring domains and within domains: seismic reflection coefficients greater than 0.1 would appear to be routinely possible. Thermal conductivity measurements made using a `divided-bar' apparatus, yielded values between 1 and 5 W m-1 K-1. Electrical resistivity measurements were made at room temperature from 5 Hz to 10 kHz after samples were oven dried and after saturation in solutions with salinity up to 1.0 M. The porosity - resistivity data is in reasonable overall agreement with Archie's Law for all rock types. A minimum value for the resistivity of those samples not containing significant sulphide minerals or graphite, was 50 ohm-m. For sulphide and graphite-bearing samples, resistivity was as low as 1 ohm-m. The resistivity data are consistent with the hypothesis that North American Central Plains(NACP) conductivity anomaly is due to the presence in the crust of graphite- and/or sulphide-rich bodies or saline pore fluids.

  19. Speed Controlled Belt Conveyors: Drives and Mechanical Considerations

    OpenAIRE

    BEBIC, M. Z.; RISTIC, L. B.

    2018-01-01

    The paper presents variable speed belt conveyor system where the reference speed is changed in order to achieve improved energy efficiency of operation. The recorded measurements show that belt tension varies within the same limits as under constant speed operation. These results introduce a new insight of the present state of the art in variable speed belt conveyor drives. The system is realized with remote control from the control center on an open pit mine. The structure of...

  20. Nondestructive testing of belt-cable conveyor quality

    International Nuclear Information System (INIS)

    Bochenin, V.I.

    1984-01-01

    The express technique for testing belt-cable conveyors, widely used in mining metallurgy and machine industry is suggested in the paper. The technique consists in irradiation of the surface layer of belt-cable medium by low-energy gamma radiation of 109 Cd radioisotope and registening characteristic K-series of iron in reflection geometry. Industrial tests of presented technique showed that it enables to reveal defects rather accurately and prevent rapture of transport belts

  1. Orogenic gold: Common or evolving fluid and metal sources through time

    Science.gov (United States)

    Goldfarb, Richard J.; Groves, David I.

    2015-09-01

    Orogenic gold deposits of all ages, from Paleoarchean to Tertiary, show consistency in chemical composition. They are the products of aqueous-carbonic fluids, with typically 5-20 mol% CO2, although unmixing during extreme pressure fluctuation can lead to entrapment of much more CO2-rich fluid inclusions in some cases. Ore fluids are typically characterized by significant concentrations of CH4 and/or N2, common estimates of 0.01-0.36 mol% H2S, a near-neutral pH of 5.5, and salinities of 3-7 wt.% NaCl equiv., with Na > K > > Ca,Mg. This fluid composition consistency favors an ore fluid produced from a single source area and rules out mixing of fluids from multiple sources as significant in orogenic gold formation. Nevertheless, there are broad ranges in more robust fluid-inclusion trapping temperatures and pressures between deposits that support a model where this specific fluid may deposit ore over a broad window of upper to middle crustal depths. Much of the reported isotopic and noble gas data is inconsistent between deposits, leading to the common equivocal interpretations from studies that have attempted to define fluid and metal source areas for various orogenic gold provinces. Fluid stable isotope values are commonly characterized by the following ranges: (1) δ18O for Precambrian ores of + 6 to + 11‰ and for Phanerozoic ores of + 7 to + 13‰; (2) δD and δ34S values that are extremely variable; (3) δ13C values that range from - 11 to - 2‰; and (4) δ15N of + 10 to + 24‰ for the Neoarchean, + 6.5 to + 12‰ for the Paleoproterozoic, and + 1.5 to + 10‰ for the Phanerozoic. Secular variations in large-scale Earth processes appear to best explain some of the broad ranges in the O, S, and N data. Fluid:rock interaction, particularly in ore trap areas, may cause important local shifts in the O, S, and C ratios. The extreme variations in δD mainly reflect measurements of hydrogen isotopes by bulk extraction of waters from numerous fluid inclusion

  2. Car safety belts: a study of two models adapted for people with arthritis.

    Science.gov (United States)

    Arie, E

    1986-05-01

    People with arthritis find car seat belts difficult to use. Sixteen arthritic patients and 19 healthy volunteers completed a comparative study of one standard inertia-reel belt and two adapted inertia-reel belts with reduced retraction forces. Those with arthritis were strong enough to use the standard belt but both adapted belts had features making them easier to use.

  3. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    Science.gov (United States)

    Barclay, John A.; Stewart, Walter F.; Henke, Michael D.; Kalash, Kenneth E.

    1987-01-01

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  4. Colors of Inner Disk Classical Kuiper Belt Objects

    Science.gov (United States)

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J.

    2010-07-01

    We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten inner belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.

  5. Depositional belts in Nevada during the Famennian

    Energy Technology Data Exchange (ETDEWEB)

    Coles, K.S. (Purdue Univ., West Lafayette, IN (United States))

    1991-02-01

    Deformed upper Famennian strata near the base of the Roberts Mountains allochthon in Nevada add detail to the paleogeography of the region at the time it was undergoing the transition from the shelf-slope setting of the early Paleozoic to the foreland basin and highland of the Antler orogeny. The uppermost Devonian part of the Pinecone sequence and correlative rocks in central and northeastern Nevada consists of black chert and argillite, commonly with nodular phosphate. Deposition took place in a detritus-starved, oxygen-poor slope or foredeep setting east of the advancing, but still submerged, Roberts Mountains allochthon. The Pinecone is less far-traveled than much of the allochthon as the time interval from deposition to the end of thrust movement and deformation was shorter. The late Famennian saw at least three contrasting belts of deposition in the vicinity of Nevada. First, black shale and micrite of the Leatham member of the Pilot Shale in eastern Nevada and western Utah formed in the deep subtidal/dysaerobic belt described by Sandberg and coworkers. Second, a bathyal belt, in central Nevada to the west of the Pilot, contained black chert and phosphate in a zone of high surface productivity. Also present, but rare, were beds of carbonate detritus with a probable provenance to the east, and olistoliths( ) of quartz sandstone like that known in the approaching Roberts Mountains allochthon to the west. Third, greenstones and chert of the Schoonover sequence, described by E. Miller and co-workers, were being deposited somewhere beyond the allochthon in an oxygenated, oceanic setting.

  6. Prospectivity analysis of gold and iron oxide copper-gold-(silver mineralizations from the Faina Greenstone Belt, Brazil, using multiple data sets

    Directory of Open Access Journals (Sweden)

    Daniela Schievano de Campos

    Full Text Available ABSTRACT: The Faina Greenstone Belt is located in the southern sector of the Goiás Archean Block and has been investigated since the 18th century because of its gold deposits. Recent studies have revealed the polymetallic potential of the belt, which is indicated by anomalous levels of Ag, Cu, Fe and Co in addition to Mn, Ba, Li, Ni, Cr and Zn. This study was developed based on a detailed analysis of two selected target sites, Cascavel and Tinteiro, and multiple data sets, such as airborne geophysics, geochemistry and geological information. These datasets were used to create a final prospectivity map using the fuzzy logic technique. The gold mineralization of Cascavel target is inserted in an orogenic system and occurs in two overlapping quartz veins systems, called Mestre-Cascavel and Cuca, embedded in quartzite with an average thickness 50 cm and guidance N45º-60ºW/25ºSW with free coarse gold in grains 2-3 mm to 3 cm. The prospectivity map created for this prospect generated four first-order favorable areas for mineralization and new medium-favorability foci. The Tinteiro area, derived from studies conducted by Orinoco do Brasil Mineração Ltda., shows polymetallic mineralization associated with an iron oxide-copper-gold ore deposit (IOCG system posterior to Cascavel target mineralization. Its prospectivity map generated 19 new target sites with the potential for Au, Cu and Ag mineralization, suggesting new directions for future prospecting programs.

  7. Interdisciplinary approach to exploit the tectonic memory in the continental crust of collisional belts.

    Science.gov (United States)

    Gosso, G.; Marotta, A. M.; Rebay, G.; Regorda, A.; Roda, M.; Spalla, M. I.; Zanoni, D.; Zucali, M.

    2015-12-01

    Collisional belts result by thoroughly competing thermo-mechanical disaggregation and coupling within both continental and oceanic lithospheric slices, during construction of tectono-metamorphic architectures. In multiply reworked metamorphics, tectonic units may be contoured nowadays on the base of coherent thermo-baric and structural time-sequences rather than simply relying on lithologic affinities. Sequences of equilibrium assemblages and related fabric imprints are an approach that appears as a more reliable procedure, that enables to define tectonic units as the volume of crustal slices that underwent corresponding variations during the dynamics of an active margin and takes into account a history of physical imprints. The dimensions of these tectonic units may have varied over time and must be reconstructed combining the tracers of structural and metamorphic changes of basement rocks, since such kind of tectono-metamorphic units (TMUs) is a realistic configuration of the discrete portions of orogenic crust that experienced a coherent sequence of metamorphic and textural variations. Their translational trajectories, and bulk shape changes during deformation, cannot simply be derived from the analysis of the geometries and kinematics of tectonic units, but are to be obtained by adding the reconstruction of quantitative P-T-d-t paths making full use of fossil mineral equilibria. The joint TMU field-and-laboratory definition is an investigation procedure that bears a distinct thermo-tectonic connotation, that, through modelling, offers the opportunity to test the physical compatibilities of plate-scale interconnected variables, such as density, viscosity, and heat transfer, with respect to what current interpretative geologic histories may imply. Comparison between predictions from numerical modelling and natural data obtained by this analytical approach can help to solve ambiguities on geodynamic significance of structural and thermal signatures, also as a

  8. The Valle de Bravo Volcanic Field. A monogenetic field in the central front of the Mexican Volcanic Belt

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Jaimes-Viera, M. D.; Nieto-Obreg¢n, J.; Lozano-Santacruz, R.

    2003-12-01

    The Valle de Bravo volcanic field, VBVF, is located in the central-southern front of the Mexican Volcanic Belt just to the southwest of Nevado de Toluca volcano. The VBVF covers 3,703 square Km and includes at least 122 cinder cones, 1 shield volcano, several domes, and the 2 volcanic complexes of Zitacuaro and Villa de Allende. Morphometric parameters calibrated with isotopic ages of the volcanic products indicate four groups or units for the VBVF, Pliocene domes and lava flows, undifferentiated Pleistocene lava flows,> 40 Ka cones and lavas, 40 to 25 Ka cones and lavas, 25 to 10 Ka cones and lavas, and < 10 Ka cones and lavas. Whole-rock chemistry shows that all products of the VBVF range from basaltic andesites to dacites. No basalts were found, in spite of many units are olivine-rich and large some with large weight percent contents of MgO, 1 to 9. There is the possibility that some or all of the olivines in some samples could be xenocrysts. Some andesites are high in Sr, 1000 to 1800 ppm, that correlates with relatively high values of Ba, Cr, Ni, Cu, CaO and MgO. Y and Nb have the typical low values for orogenic rocks. The only shield volcano of the VBVF has a base of 9 Km, and its composition is practically the average composition of the whole field. Stratigraphycally, it is one of the earlier events of the VBVF. Compared with other volcanic fields of the Mexican Volcanic Belt, it lacks basalts and alkalic rocks. All volcanism of this field is calcalkaline

  9. Do mesoscale faults in a young fold belt indicate regional or local stress?

    Science.gov (United States)

    Kokado, Akihiro; Yamaji, Atsushi; Sato, Katsushi

    2017-04-01

    that we should pay attention not only to regional but also to local stresses to interpret the results of paleostress analysis in the shallow levels of young orogenic belts.

  10. Linear Motor for Drive of Belt Conveyor

    Directory of Open Access Journals (Sweden)

    Milan Krasl

    2006-01-01

    Full Text Available This paper introduces a novel approach on the design of a linear motor for drive of belt conveyor (LMBC. The motor is a simple combination of asynchronous motor in plane. The electromagnetic forces is one of the most important parameters of electrical machines. This parameter is necessary for the checking of the design. This paper describes several variants: linear motor with slots in platens, slots in one half of platens and optimization of slots. The electromagnetic force can be found with the help of a Finite Elements Method – based program. For solution was used QuickField program.

  11. The Fort Smith radioactive belt, Northwest Territories

    International Nuclear Information System (INIS)

    Charbonneau, B.W.

    1980-01-01

    The Fort Smith Belt is an elongate zone, about 200 km x 50 km, extending from the East Arm of Great Slave Lake southerly into northeastern Alberta. The major feature of the belt is that it is one of the most radioactive regions so far recognized in the Canadian Shield. Potassium, uranium, and thorium are all enriched but the greatest increase is in thorium. The dominant rock type underlying the area is a foliated porphyritic granite. This rock contains an average of about 80 ppm thorium (with areas of tens of square kilometres containing up to 200 ppm) and approximately 11 ppm uranium. In places, dark elongate zones rich in biotite, apatite, and opaque minerals within the porphyritic granite may contain an order of magnitude more uranium and thorium than the porphyry. Radioactive minerals within both the porphyry and the dark zones are principally monazite (containing up to 16% ThO 2 ) and isolated grains of uraninite. This foliated porphyritic granite is interpreted as being pre- or syntectonic with respect to the Hudsonian event because its foliation parallels that of the surrounding rocks. There has been subsequent deformation. The second characteristic feature of the Fort Smith Belt is the development of a peripheral zone where eU is enriched relative to eTh correlating mainly with granitoid rocks which surround the thorium-rich area and wherein ratios of eU/eTh exceed 1:2 (compared to the crustal average of 1:4). Uranium may have moved laterally into this marginal area from the thorium-rich porphyry, possibly in a vapour phase. There is a possibility that concentrations of uranium as well as other metals such as Cu, Mo, Zn, Sn, and W could exist in the porphyry and its margin in appropriate chemical and/or structural traps. The radioactive granite rocks of the Fort Smith Belt are adjacent to uranium-thorium occurrences in the nearby Proterozoic Nonacho sediments but whether or not a genetic relationship exists between the two situations is uncertain. (auth)

  12. Dust bands in the asteroid belt

    International Nuclear Information System (INIS)

    Sykes, M.V.; Greenberg, R.; Dermott, S.F.; Nicholson, P.D.; Burns, J.A.

    1989-01-01

    This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations. 32 refs

  13. Late Paleozoic low-angle southward-dipping thrust in the Züünharaa area, Mongolia: tectonic implications for the geological structures in the Sayan-Baikal and Hangai-Daur belts

    Science.gov (United States)

    Onon, Gantumur; Tsukada, Kazuhiro

    2017-10-01

    The Central Asian Orogenic Belt (CAOB) is key to understanding the Paleozoic-Mesozoic geodynamics of Eurasian continent. The geological structure of the Middle-to-Late Paleozoic rock units in the North Mongolia-West Transbaikal region is critical in revealing development process of CAOB. The region is largely comprised of rocks from the continental affinity and accretionary complexes which form the Sayan-Baikal (SB) and Hangai-Daur (HD) belts. This paper describes the lithology, stratigraphy, geological structure, and U-Pb age of the rocks in the Züünharaa area, which is located within the Haraa terrane of the HD belt in Mongolia. We identified a regional low-angle southward-dipping thrust in this area. The tectonic implication of the low-angle south-dipping thrust is discussed within the North Mongolia-West Transbaikal region. The study area exposes metamorphosed clastic rocks of the Haraa Group intruded by Ordovician-Silurian granitic rocks, Devonian felsic volcanic rocks of the Ulaan Öndör Formation, and Visean clastic rocks of the Örmögtei Formation in ascending order. The Haraa Group, granitic rock, and Ulaan Öndör Formation are cut by the low-angle southward-dipping thrust throughout this area. The rocks along the thrust are fractured to form cataclasite zone up to 40 m wide. The thrust includes granite-rhyolite clast of 450-420 Ma, and is unconformably covered by Visean Örmögtei Formation. Therefore, thrusting occurred after Ordovician-Silurian and before Visean. Late Paleozoic low-angle southward-dipping thrusts, similar to the present study, are widely distributed in the Haraa terrane of the Hangai-Daur belt and in terranes of the Sayan-Baikal belt. Whereas, the contemporaneous southeast-verging composite folds and northward-dipping thrusts are developed in the accretionary complexes, which are exposed at south of the Haraa terrane. These contrasting structures suggest a couple of "landward-verging" and "oceanward-verging" structures and may

  14. Numerical modeling of fold-and-thrust belts: Applications to Kuqa foreland fold belt, China

    Science.gov (United States)

    Yin, H.; Morgan, J. K.; Zhang, J.; Wang, Z.

    2009-12-01

    We constructed discrete element models to simulate the evolution of fold-and-thrust belts. The impact of rock competence and decollement strength on the geometric pattern and deformation mechanics of fold-and-thrust belts has been investigated. The models reproduced some characteristic features of fold-and-thrust belts, such as faulted detachment folds, pop-ups, far-traveled thrust sheets, passive-roof duplexes, and back thrusts. In general, deformation propagates farther above a weak decollement than above a strong decollement. Our model results confirm that fold-and-thrust belts with strong frictional decollements develop relatively steep and narrow wedges formed by closely spaced imbricate thrust slices, whereas fold belts with weak decollements form wide low-taper wedges composed of faulted detachment folds, pop-ups, and back thrusts. Far-traveled thrust sheets and passive-roof duplexes are observed in the model with a strong lower decollement and a weak upper detachment. Model results also indicate that the thickness of the weak layer is critical. If it is thick enough, it acts as a ductile layer that is able to flow under differential stress, which helps to partition deformation above and below it. The discrete element modeling results were used to interpret the evolution of Kuqa Cenozoic fold-and-thrust belt along northern Tarim basin, China. Seismic and well data show that the widely distributed Paleogene rock salt has a significant impact on the deformation in this area. Structures beneath salt are closely spaced imbricate thrust and passive-roof duplex systems. Deformation above salt propagates much farther than below the salt. Faults above salt are relatively wide spaced. A huge controversy over the Kuqa fold-and-thrust belt is whether it is thin-skinned or thick-skinned. With the insights from DEM results, we suggest that Kuqa structures are mostly thin-skinned with Paleogene salt as decollement, except for the rear part near the backstop, where the

  15. Evolution of the stress fields in the Zagros Foreland Folded Belt using focal mechanisms and kinematic analyses: the case of the Fars salient, Iran

    Science.gov (United States)

    Sarkarinejad, Khalil; Zafarmand, Bahareh; Oveisi, Behnam

    2018-03-01

    The NW-SE trending Zagros orogenic belt was initiated during the convergence of the Afro-Arabian continent and the Iranian microcontinent in the Late Cretaceous. Ongoing convergence is confirmed by intense seismicity related to compressional stresses collision-related in the Zagros orogenic belt by reactivation of an early extensional faulting to latter compressional segmented strike-slip and dip-slip faulting. These activities are strongly related either to the deep-seated basement fault activities (deep-seated earthquakes) underlies the sedimentary cover or gently dipping shallow-seated décollement horizon of the rheological weak rocks of the infra-Cambrian Hormuz salt. The compressional stress regimes in the different units play an important role in controlling the stress conditions between the different units within the sedimentary cover and basement. A significant set of nearly N-S trending right-lateral strike-slip faults exists throughout the study area in the Fars area in the Zagros Foreland Folded Belt. Fault-slip and focal mechanism data were analyzed using the stress inversion method to reconstruct the paleo and recent stress conditions. The results suggest that the current direction of maximum principal stress averages N19°E, with N38°E that for the past from Cretaceous to Tertiary (although a few sites on the Kar-e-Bass fault yield a different direction). The results are consistent with the collision of the Afro-Arabian continent and the Iranian microcontinent. The difference between the current and paleo-stress directions indicates an anticlockwise rotation in the maximum principle stress direction over time. This difference resulted from changes in the continental convergence path, but was also influenced by the local structural evolution, including the lateral propagation of folds and the presence of several local décollement horizons that facilitated decoupling of the deformation between the basement and the sedimentary cover. The obliquity of

  16. HERSCHEL -RESOLVED OUTER BELTS OF TWO-BELT DEBRIS DISKS—EVIDENCE OF ICY GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Morales, F. Y.; Bryden, G.; Werner, M. W.; Stapelfeldt, K. R., E-mail: Farisa@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-11-01

    We present dual-band Herschel /PACS imaging for 59 main-sequence stars with known warm dust ( T {sub warm} ∼ 200 K), characterized by Spitzer . Of 57 debris disks detected at Herschel wavelengths (70 and/or 100 and 160 μ m), about half have spectral energy distributions (SEDs) that suggest two-ring disk architectures mirroring that of the asteroid–Kuiper Belt geometry; the rest are consistent with single belts of warm, asteroidal material. Herschel observations spatially resolve the outer/cold dust component around 14 A-type and 4 solar-type stars with two-belt systems, 15 of which for the first time. Resolved disks are typically observed with radii >100 AU, larger than expected from a simple blackbody fit. Despite the absence of narrow spectral features for ice, we find that the shape of the continuum, combined with resolved outer/cold dust locations, can help constrain the grain size distribution and hint at the dust’s composition for each resolved system. Based on the combined Spitzer /IRS+Multiband Imaging Photometer (5-to-70 μ m) and Herschel /PACS (70-to-160 μ m) data set, and under the assumption of idealized spherical grains, we find that over half of resolved outer/cold belts are best fit with a mixed ice/rock composition. Minimum grain sizes are most often equal to the expected radiative blowout limit, regardless of composition. Three of four resolved systems around the solar-type stars, however, tend to have larger minimum grains compared to expectation from blowout ( f {sub MB} = a {sub min}/ a {sub BOS} ∼ 5). We also probe the disk architecture of 39 Herschel -unresolved systems by modeling their SEDs uniformly, and find them to be consistent with 31 single- and 8 two-belt debris systems.

  17. Effects of driver characteristics on seat belt fit.

    Science.gov (United States)

    Reed, Matthew P; Ebert, Sheila M; Hallman, Jason J

    2013-11-01

    A laboratory study of posture and belt fit was conducted with 46 men and 51 women, 61% of whom were age 60 years or older and 32% age 70 years or older. In addition, 28% of the 97 participants were obese, defined as body mass index ≥ 30 kg/m^2. A mockup of a passenger vehicle driver's station was created and five belt anchorage configurations were produced by moving the buckle, outboard-upper (D-ring), and outboard-lower anchorages. An investigator recorded the three-dimensional locations of landmarks on the belt and the participant's body using a coordinate measurement machine. The location of the belt with respect to the underlying skeletal structures was analyzed, along with the length of belt webbing. Using linear regression models, an increase in age from 20 to 80 years resulted in the lap belt positioned 18 mm further forward relative to the pelvis, 26 mm greater lap belt webbing length, and 19 mm greater shoulder belt length. An increase in stature of 350 mm (approximately the range from 5th-percentile female to 95th-percentile male in the U.S. population) was associated with the lap belt 14 mm further forward relative to the pelvis, the shoulder belt 37 mm more outboard relative to the body centerline, and 38 mm less shoulder belt webbing length. Among the driver factors considered, body mass index had the greatest effects. An increase of BMI in 20 kg/m^2, which spans approximately the central 90% of U.S. adults, was associated with the lap belt being placed 102 mm further forward and 94 mm higher, relative to the pelvis, and increases in lap and shoulder belt webbing length of 276 and 258 mm, respectively. Gender did not have important effects on the analyzed belt fit measures after taking into account stature and body mass index. These results offer important considerations for future crash safety assessments and suggest that further research is needed to consider belt fit for older and obese occupants.

  18. Hissar-Alai and the Pamirs: Junction and Position in the System of Mobile Belts of Central Asia

    Science.gov (United States)

    Leonov, M. G.; Rybin, A. K.; Batalev, V. Yu.; Matyukov, V. E.; Shchelochkov, G. G.

    2018-01-01

    The position of the Pamirs and the Hissar-Alai mountainous system in the structure of Central Asia and features of their junction are considered. It is shown that their outer contours and tectonic infrastructure are significantly distinct in the planar pattern: latitudinally linear and arched for the Hissar-Alai and the Pamirs, respectively. These structures logically match those of the Central Asian and Alpine-Himalayan belts, respectively. The Pamir orogen is a relatively autonomous structural element of the crust, which is located discordantly relative to the country lithospheric blocks. Most of the Pamirs (at least, the Northern and Central) probably form a giant allochthon on the ancient basement of the Tarim and Afghan-Tajik blocks. The junction zone of these two "hard" crustal segments is reflected in the transverse Transpamir threshold, which is expressed in the relief, deep structure, and seismicity. The specific geological structure of the junction zone of the Pamirs and Hissar-Alai (systems of the Tarim, Alai, and Afghan-Tajik troughs) is shown. It suggested that this zone is a damper, which significantly neutralizes the dynamic influence of the Pamir and the southernmost elements of the Pamir-Punjab syntax on Hissar-Alai structures.

  19. Orbital Alignment of Main-belt Comets

    Science.gov (United States)

    Kim, Yoonyoung; JeongAhn, Youngmin; Hsieh, Henry H.

    2018-03-01

    We examine the orbital element distribution of main-belt comets (MBCs), which are objects that exhibit cometary activity yet orbit in the main asteroid belt and may be potentially useful as tracers of ice in the inner solar system. We find that the currently known and currently active MBCs have remarkably similar longitudes of perihelion, which are also aligned with that of Jupiter. The clustered objects have significantly higher current osculating eccentricities relative to their proper eccentricities, consistent with their orbits being currently, though only temporarily, secularly excited in osculating eccentricity due to Jupiter’s influence. At the moment, most MBCs seem to have current osculating elements that may be particularly favorable for the object becoming active (e.g., maybe because of higher perihelion temperatures or higher impact velocities causing an effective increase in the size of the potential triggering impactor population). At other times, other icy asteroids will have those favorable conditions and might become MBCs at those times as well.

  20. Seat belt utilisation and awareness in UAE.

    Science.gov (United States)

    Bendak, S; Al-Saleh, K

    2013-01-01

    Seat belts (SBs) are effective devices for reducing injury risk due to traffic accidents. Seat belt wearing was made compulsory in the United Arab Emirates (UAE) in January 1999 for drivers and front seat passengers (FSPs). No comprehensive study has ever assessed SB wearing rates across the country. Also, little is known on drivers' awareness of the importance of wearing seatbelts and how human factors affect wearing habits. This study aims to determine SB wearing rates for drivers and FSPs in UAE through an observational field study. It also aims to investigate perceptions and behaviour of drivers on this issue as well as human factors that affect wearing rate through a randomly distributed questionnaire. The results of the field study show that the overall SB wearing rate across the country was 61% for drivers and 43.4% for FSPs and that there were significant differences between the seven emirates that constitute the country. The questionnaire results show that age, education level, gender, marital status and nationality of drivers affect wearing habits and perceptions. Future implications in terms of improving traffic safety awareness are discussed.

  1. Fading of Jupiter's South Equatorial Belt

    Science.gov (United States)

    Sola, Michael A.; Orton, Glenn; Baines, Kevin; Yanamandra-Fisher, Padma

    2011-01-01

    One of Jupiter's most dominant features, the South Equatorial Belt, has historically gone through a "fading" cycle. The usual dark, brownish clouds turn white, and after a period of time, the region returns to its normal color. Understanding this phenomenon, the latest occurring in 2010, will increase our knowledge of planetary atmospheres. Using the near infrared camera, NSFCAM2, at NASA's Infrared Telescope Facility in Hawaii, images were taken of Jupiter accompanied by data describing the circumstances of each observation. These images are then processed and reduced through an IDL program. By scanning the central meridian of the planet, graphs were produced plotting the average values across the central meridian, which are used to find variations in the region of interest. Calculations using Albert4, a FORTRAN program that calculates the upwelling reflected sunlight from a designated cloud model, can be used to determine the effects of a model atmosphere due to various absorption, scattering, and emission processes. Spectra that were produced show ammonia bands in the South Equatorial Belt. So far, we can deduce from this information that an upwelling of ammonia particles caused a cloud layer to cover up the region. Further investigations using Albert4 and other models will help us to constrain better the chemical make up of the cloud and its location in the atmosphere.

  2. Coordinates for Representing Radiation Belt Particle Flux

    Science.gov (United States)

    Roederer, Juan G.; Lejosne, Solène

    2018-02-01

    Fifty years have passed since the parameter "L-star" was introduced in geomagnetically trapped particle dynamics. It is thus timely to review the use of adiabatic theory in present-day studies of the radiation belts, with the intention of helping to prevent common misinterpretations and the frequent confusion between concepts like "distance to the equatorial point of a field line," McIlwain's L-value, and the trapped particle's adiabatic L* parameter. And too often do we miss in the recent literature a proper discussion of the extent to which some observed time and space signatures of particle flux could simply be due to changes in magnetospheric field, especially insofar as off-equatorial particles are concerned. We present a brief review on the history of radiation belt parameterization, some "recipes" on how to compute adiabatic parameters, and we illustrate our points with a real event in which magnetospheric disturbance is shown to adiabatically affect the particle fluxes measured onboard the Van Allen Probes.

  3. WATER ICE IN THE KUIPER BELT

    International Nuclear Information System (INIS)

    Brown, M. E.; Fraser, W. C.; Schaller, E. L.

    2012-01-01

    We examine a large collection of low-resolution near-infrared spectra of Kuiper Belt objects (KBOs) and centaurs in an attempt to understand the presence of water ice in the Kuiper Belt. We find that water ice on the surface of these objects occurs in three separate manners: (1) Haumea family members uniquely show surfaces of nearly pure water ice, presumably a consequence of the fragmentation of the icy mantle of a larger differentiated proto-Haumea; (2) large objects with absolute magnitudes of H < 3 (and a limited number to H = 4.5) have surface coverings of water ice—perhaps mixed with ammonia—that appears to be related to possibly ancient cryovolcanism on these large objects; and (3) smaller KBOs and centaurs which are neither Haumea family members nor cold-classical KBOs appear to divide into two families (which we refer to as 'neutral' and 'red'), each of which is a mixture of a common nearly neutral component and either a slightly red or very red component that also includes water ice. A model suggesting that the difference between neutral and red objects due to formation in an early compact solar system either inside or outside, respectively, of the ∼20 AU methanol evaporation line is supported by the observation that methanol is only detected on the reddest objects, which are those which would be expected to have the most of the methanol containing mixture.

  4. Modulation of forelimb and hindlimb muscle activity during quadrupedal tied-belt and split-belt locomotion in intact cats.

    Science.gov (United States)

    Frigon, A; Thibaudier, Y; Hurteau, M-F

    2015-04-02

    The modulation of the neural output to forelimb and hindlimb muscles when the left and right sides step at different speeds from one another in quadrupeds was assessed by obtaining electromyography (EMG) in seven intact adult cats during split-belt locomotion. To determine if changes in EMG during split-belt locomotion were modulated according to the speed of the belt the limb was stepping on, values were compared to those obtained during tied-belt locomotion (equal left-right speeds) at matched speeds. Cats were chronically implanted for EMG, which was obtained from six muscles: biceps brachii, triceps brachii, flexor carpi ulnaris, sartorius, vastus lateralis and medial gastrocnemius. During tied-belt locomotion, cats stepped from 0.4 to 1.0m/s in 0.1m/s increments whereas during split-belt locomotion, cats stepped with left-right speed differences of 0.1 to 0.4m/s in 0.1m/s increments. During tied-belt locomotion, EMG burst durations and mean EMG amplitudes of all muscles respectively decreased and increased with increasing speed. During split-belt locomotion, there was a clear differential modulation of the EMG patterns between flexors and extensors and between the slow and fast sides. Changes in the EMG pattern of some muscles could be explained by the speed of the belt the limb was stepping on, while in other muscles there were clear dissociations from tied-belt values at matched speeds. Therefore, results show that EMG patterns during split-belt locomotion are modulated to meet task requirements partly via signals related to the stepping speed of the homonymous limb and from the other limbs. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Respiratory Belt Transducer Constructed Using a Singing Greeting Card Beeper

    Science.gov (United States)

    Bhaskar, Anand; Subramani, Selvam; Ojha, Rajdeep

    2013-01-01

    An article by Belusic and Zupancic described the construction of a finger pulse sensor using a singing greeting card beeper. These authors felt that this beeper made of piezoelectric material could be easily modified to function as a respiratory belt transducer to monitor respiratory movements. Commercially available respiratory belt transducers,…

  6. Anorthosite belts, continental drift, and the anorthosite event.

    Science.gov (United States)

    Herz, N

    1969-05-23

    Most anorthosites lie in two principal belts when plotted on a predrift continental reconstruction. Anorthosite ages in the belts cluster around 1300 +/- 200 million years and range from 1100 to 1700 million years. This suggests that anorthosites are the product of a unique cataclysmic event or a thermal event that was normal only during the earth's early history.

  7. The Social Construction of the Great Belt Fixed Link

    DEFF Research Database (Denmark)

    Munch, Birgitte

    1994-01-01

    Working paper in Technology Management. Actor Network theory (ANT) used upon the process of negotiating legislation and constructing the Great Belt fixed link.......Working paper in Technology Management. Actor Network theory (ANT) used upon the process of negotiating legislation and constructing the Great Belt fixed link....

  8. Increasing of horizontal velocity of particles leaving a belt conveyor

    Directory of Open Access Journals (Sweden)

    Tavares Abraão

    2017-01-01

    Full Text Available We investigate the transport of granular materials by a conveyor belt via numerical simulations. We report an unusual increasing of particles horizontal velocity when they leave the belt and initiate free-fall. Using Discrete Elements Method, the mechanism underlying this phenomenon were investigated, and a study on how particle and system properties influences this effect were conducted.

  9. Increasing of horizontal velocity of particles leaving a belt conveyor

    Science.gov (United States)

    Tavares, Abraão; Faria, Allbens

    2017-06-01

    We investigate the transport of granular materials by a conveyor belt via numerical simulations. We report an unusual increasing of particles horizontal velocity when they leave the belt and initiate free-fall. Using Discrete Elements Method, the mechanism underlying this phenomenon were investigated, and a study on how particle and system properties influences this effect were conducted.

  10. Performance approximation of pick-to-belt orderpicking systems

    NARCIS (Netherlands)

    M.B.M. de Koster (René)

    1994-01-01

    textabstractIn this paper, an approximation method is discussed for the analysis of pick-to-belt orderpicking systems. The aim of the approximation method is to provide an instrument for obtaining rapid insight in the performance of designs of pick-to-belt orderpicking systems. It can be used to

  11. Crustal Deformation around Zhangjiakou-Bohai Seismically Active Belt

    Science.gov (United States)

    Jin, H.; Fu, G.; Kato, T.

    2011-12-01

    Zhangjiakou-Bohai belt is a seismically active belt located in Northern China around Beijing, the capital of China. Near such a belt many great earthquakes occurred in the past centuries (e.g. the 1976 Tanshan Ms7.8 earthquake, the 1998 Zhangbei Ms6.2 earthquake, etc). Chinese Government established dense permanent and regional Global Positioning System (GPS) stations in and near the area. We collected and analyzed all the GPS observation data between 1999 and 2009 around Zhangjiakou-Bohai seismic belt, and obtained velocities at 143 stations. At the same time we investigated Zhangjiakou-Bohai belt slip rate for three profiles from northwest to southeast, and constructed a regional strain field on the Zhangjiakou-Bohai seismic belt region by least-square collocation. Based on the study we found that: 1) Nowadays the Zhangjiakou-Bohai seismic belt is creeping with left-lateral slip rate of 2.0mm~2.4mm/a, with coupling depth of 35~50km; 2) In total, the slip and coupling depth of the northwestern seismic belt is less than the one of southeast side; 3) The maximum shear strain is about 3×10-8 at Beijing-Tianjin-Tangshan area.

  12. Canadian seat belt wearing rates, promotion programs, and future directions.

    NARCIS (Netherlands)

    Grant, B.A.

    1992-01-01

    On the basis of a national driver seat belt survey conducted in Canada each year, the most important results are presented. A number of programmes for increasing seat belt use has been evaluated in Canada. Finally, a description is given of some of the current and planned activities within Canada

  13. A comparison of outer electron radiation belt dropouts during solar ...

    Indian Academy of Sciences (India)

    O Ogunjobi

    2017-06-06

    Jun 6, 2017 ... during solar wind stream interface and magnetic cloud driven storms. O Ogunjobi1,2,* ... Keywords. Stream interfaces; magnetic clouds; magnetosphere; Earth's radiation belts; L-shell. 1. Introduction. The Earth's ...... storage ring embedded in earth's outer Van Allen belt;. Science 340 186–190. Behera J K ...

  14. Loss Prevention through Safety Belt Use: A Handbook for Managers.

    Science.gov (United States)

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This handbook is designed to help managers address safety belt usage issues through a cost-effective and direct approach--establishing an employee safety belt program. The handbook offers a hands-on guide for conducting the program and provides for implementation at all levels. The handbook contains cost information, a program overview, policy and…

  15. Structural appraisal of the Gadag schist belt from gravity investigations

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    its east by the NW-SE trending Chitradurga thrust fault and on its west by another major NNW-. SSE trending fault, the NW-SE extension is ... the schist belt is a major thrust contact marked by a strong mylonitic zone believed to .... for the chlorite phyllite schists and gold bearing quartz veins in the Hutti-Muski schist belt area.

  16. 30 CFR 75.350 - Belt air course ventilation.

    Science.gov (United States)

    2010-07-01

    ... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.350 Belt air course ventilation... areas where mechanized mining equipment is being installed or removed. (1) The belt air course must be... mechanized mining equipment is being installed or removed, shall be permitted only when evaluated and...

  17. Experimental Measurements of Belt Gears in Newly Developed Device

    Directory of Open Access Journals (Sweden)

    Jozef Mascenik

    2016-05-01

    Full Text Available The paper deals with the alternative of determination of state of the belt gear. To realize themeasurements a newly developed device was designed for measurement and diagnostics of the belt gears. The main task is to detect the V-belt slip expressed by the coefficient of elastic creep and of specific slip with a measuring device. The measurements regarding can be performed if input revolutions of the electric motor and torque of the belt gear are constant whereas the tensioning force of the belt gear changes. It is also possible to perform the measurement if the input revolutions of the electric motor and the tensioning forces are constant and the torque changes.

  18. Optimal control of operation efficiency of belt conveyor systems

    International Nuclear Information System (INIS)

    Zhang, Shirong; Xia, Xiaohua

    2010-01-01

    The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment or operation levels. Switching control and variable speed control are proposed in literature to improve energy efficiency of belt conveyors. The current implementations mostly focus on lower level control loops or an individual belt conveyor without operational considerations at the system level. In this paper, an optimal switching control and a variable speed drive (VSD) based optimal control are proposed to improve the energy efficiency of belt conveyor systems at the operational level, where time-of-use (TOU) tariff, ramp rate of belt speed and other system constraints are considered. A coal conveying system in a coal-fired power plant is taken as a case study, where great saving of energy cost is achieved by the two optimal control strategies. Moreover, considerable energy saving resulting from VSD based optimal control is also proved by the case study.

  19. The occurrence and origin of celestite in the Abolfares region, Iran: Implications for Sr-mineralization in Zagros fold belt (ZFB)

    Science.gov (United States)

    Pourkaseb, Houshang; Zarasvandi, Alireza; Rezaei, Mohsen; Mahdavi, Reyhaneh; Ghanavati, Fatemeh

    2017-10-01

    The major celestite deposits in Zagros Fold belt are associated with coastal marine carbonate and evaporate sediments of Oligo-Miocene Asmari and Lower Miocene Ghachsaran Formations. In the Abolfares region, celestite mineralization is extended in the western limb of Bangestan anticline in the carbonates of Early Miocene (middle part of Asmari Formation), underlying by dolomitic carbonates of Burdigalian. From bottom to top three main types of mineralization can be distinguished in the study area: (1) layer texture resulting from replacement of algal limestone by celestite minerals with some parts showing idiomorphic crystals (geodes) along the walls of the cavities, (2) celestite occurrence as irregular massive shape interconnected small crystals and nodules, and (3) celestite mineralization associated with steeply dipping veins and open space fracture fillings, resulting from late-stage epigenetic processes. Highlightly, the ore-hosting carbonate rocks were deposited in an intertidal - supratidal protected setting with hypersaline conditions, in accordance with other celestite deposits of the Zagros Fold belt. The abundance of diagenetic crystallization rhythmites, carbonate and anhydrite inclusions as confirmed by Laser Raman spectroscopy analysis, high Sr/Ba values (average; 8726.1) and strong negative correlations between SO3 vs CaO (R2 = 0.98), SrO vs CaO (R2 = 0.96) with positive correlations between Ba vs SrO (R2 = 0.54) and SO3 vs SrO (R2 = 0.98) highlight the role of high Sr late-diagenetic brines in replacement of carbonates with celestite minerals. It seems that the inception of compressional folding during or soon after the deposition of the Asmari Formation in the carbonate platform at the margin of NW-trending basin in the foreland of the Zagros orogenic belt lead to the upward refluxing of penetrated high-Sr diagenetic brines and celestite mineralization.

  20. Micro-analysis by U-Pb method using LAM-ICPMS and its applications for the evolution of sedimentary basins: the example from Brasilia Belt; Micro-analise pelo metodo U-Pb usando LAM-CIPMS e suas aplicacoes para a evolucao de bacias sedimentares: o exemplo da faixa Brasilia

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Marcio Martins; Matteini, Massimo; Junges, Sergio Luiz; Giustina, Maria Emilia Schutesky Della; Dantas, Elton Luiz; Buhn, Bernhard, E-mail: marcio@unb.br [Universidade de Brasilia (UnB), DF (Brazil). Instituto de Geociencias; Rodrigues, Joseneusa Brilhante [Servico Geologico do Brasil (CPRM), Brasilia, DF (Brazil)

    2015-07-01

    The U-Pb geochronological method using LAM-MC-ICPMS represents an important tool to investigate the geological evolution of sedimentary basins, as well as its geochronology, through the determination of upper limits for the depositional ages of detrital sedimentary rocks. The method has been applied in the Geochronology Laboratory of the Universidade de Brasilia, and in this study, a brief review of the provenance data for the sediments of the Neoproterozoic Brasilia Belt is presented and their significance for the evolution of the orogen is discussed. The results indicate that the Paranoa and Canastra Groups represent passive margin sequences formed along the western margin of the Sao Francisco-Congo continent. The Vazante Group presents similar provenance patterns, although Sm-Nd isotopic results suggest that its upper portions had contributions from younger (Neoproterozoic) sources, possibly from the Neoproterozoic Goias Magmatic Arc. On the other hand, metasediments of the Araxa and Ibia groups contain an important proportion of material derived from Neoproterozoic sources, demonstrating that they represent syn-orogenic basins. The provenance pattern of the Bambui Group is marked by an important Neoproterozoic component, showing that it constitutes a sedimentary sequence which is younger than 600 Ma, representing a foreland basin to the Brasilia Belt. (author)

  1. Complete moment tensor retrieval for weak events: application to orogenic and volcanic areas

    Science.gov (United States)

    Campus, P.; Suhadolc, P.; Panza, G. F.; Sileny, J.

    1996-08-01

    Aiming to study the mechanism and time history of weak local events we invert the dominant part of high-frequency seismograms (S and surface waves) by using two methods which implement moment tensor description of the focus. The point-source approximation is applied since we assume that the size of the focus with respect to the minimum wavelength of the analyzed signals is relatively small. Various constraints of the moment tensor are applied to cover local events of different origin - both the tectonic earthquakes and seismic events induced by volcanic activity. In the former case the double-couple constraint is applied, in the latter one a full moment tensor is decomposed into a volumetric part (V), representing volume changes, a compensated linear vector-dipole part (CLVD), describing opening of a fluid-filled lenticular crack, and a double couple part (DC), representing a shear slip. In the full moment tensor inversion the hypocentral depth and structural model may vary within pre-defined intervals. In the orogenic area of Friuli, Northern Italy, both the method looking for a DC only and the procedure implying the complete moment tensor arrive produce a DC mechanism, the orientation of which is consistent with the polarity readings. In the volcanic area of Phlegrean Fields, Southern Italy, the possible existence of fluid motion, which can be associated to volume changes and crack openings has to be taken into account, therefore, we used only the full moment tensor description to analyze several events in the magnitude range from 1.3 to 3. The obtained source durations vary from a few tenths of a second to about two seconds, suggesting that even small events may be characterized by relatively complex rupture history, although some of the retrieved complexities may be an artifact due to lateral inhomogeneities and other unmodelled structural effects. The percentage of the V component was found to be as large as 30% here, while it was negligible in the orogenic

  2. Prolonged high relief in the northern Cordilleran orogenic front during middle and late Eocene extension based on stable isotope paleoaltimetry

    Science.gov (United States)

    Fan, Majie; Constenius, Kurt N.; Dettman, David L.

    2017-01-01

    The paleoelevation and size of the North America Cordilleran orogen during the late Cretaceous-Paleogene contractional and subsequent extensional tectonics remain enigmatic. We present new estimates of paleorelief of the northern Cordilleran orogenic front during the middle and late Eocene using oxygen isotope compositions of unaltered molluscan fossils and paleosol carbonates in the Kishenehn basin. Bounded by several mountains ranges to the east, the Kishenehn basin was a half graben developed during middle Eocene to early Miocene collapse of the Cordilleran orogen. These mollusk taxa include three sympatric groups with affinities to wet tropical, semi-arid subtropical, and temperate environments. Our reconstructed surface water δ18O values vary between -19.8‰ and -6.3‰ (VSMOW) during the middle and late Eocene. The large differences in paleoenvironments and surface water δ18O values suggest that the catchment of the Kishenehn basin was at variable elevation. The estimated paleorelief between the basin and the surrounding mountains, based on both Rayleigh condensation model and predictions of Eocene precipitation isotope values using an isotope-enabled global climate model, is ∼4 km, and the basin floor was <1.5 km high. This high topography and high relief paleogeography suggest that the Cordilleran orogenic front reached an elevation of at least 4 km, and the crust thickness may have reached more than 55 km before Eocene gravitational collapse. We attribute the maintenance of high Eocene topography to the combination of an inherited thick crust, thermal uplift caused by mantle upwelling, and isostatic uplift caused by removing lower lithosphere or oceanic slab.

  3. Mass elevation and lee effects markedly lift the elevational distribution of ground beetles in the Himalaya-Tibet orogen.

    Science.gov (United States)

    Schmidt, Joachim; Böhner, Jürgen; Brandl, Roland; Opgenoorth, Lars

    2017-01-01

    Mass elevation and lee effects markedly influence snow lines and tree lines in high mountain systems. However, their impact on other phenomena or groups of organisms has not yet been quantified. Here we quantitatively studied their influence in the Himalaya-Tibet orogen on the distribution of ground beetles as model organisms, specifically whether the ground beetle distribution increases from the outer to the inner parts of the orogen, against latitudinal effects. We also tested whether July temperature and solar radiation are predictors of the beetle's elevational distribution ranges. Finally, we discussed the general importance of these effects for the distributional and evolutionary history of the biota of High Asia. We modelled spatially explicit estimates of variables characterizing temperature and solar radiation and correlated the variables with the respective lower elevational range of 118 species of ground beetles from 76 high-alpine locations. Both July temperature and solar radiation significantly positively correlated with the elevational ranges of high-alpine beetles. Against the latitudinal trend, the median elevation of the respective species distributions increased by 800 m from the Himalayan south face north to the Transhimalaya. Our results indicate that an increase in seasonal temperature due to mass elevation and lee effects substantially impact the regional distribution patterns of alpine ground beetles of the Himalaya-Tibet orogen and are likely to affect also other soil biota there and in mountain ranges worldwide. Since these effects must have changed during orogenesis, their potential impact must be considered when biogeographic scenarios based on geological models are derived. As this has not been the practice, we believe that large biases likely exist in many paleoecological and evolutionary studies dealing with the biota from the Himalaya-Tibet orogen and mountain ranges worldwide.

  4. Effect of a weightlifting belt on spinal shrinkage.

    Science.gov (United States)

    Bourne, N D; Reilly, T

    1991-01-01

    Spinal loading during weightlifting results in a loss of stature which has been attributed to a decrease in height of the intervertebral discs--so-called 'spinal shrinkage'. Belts are often used during the lifting of heavy weights, purportedly to support, stabilize and thereby attenuate the load on the spine. The purpose of this study was to examine the effects of a standard weightlifting belt in attenuating spinal shrinkage. Eight male subjects with a mean age of 24.8 years performed two sequences of circuit weight-training, one without a belt and on a separate occasion with a belt. The circuit training regimen consisted of six common weight-training exercises. These were performed in three sets of ten with a change of exercise after each set of ten repetitions. A stadiometer sensitive to within 0.01 mm was used to record alterations in stature. Measurements of stature were taken before and after completion of the circuit. The absolute visual analogue scale (AVAS) was used to measure the discomfort and pain intensity resulting from each of the two conditions. The circuit weight-training caused stature losses of 3.59mm without the belt and 2.87 mm with the belt (P greater than 0.05). The subjects complained of significantly less discomfort when the belt was worn (P less than 0.05). The degree of shrinkage was significantly correlated (r = 0.752, P less than 0.05) with perceived discomfort but only when the belt was not worn. These results suggest the potential benefits of wearing a weightlifting belt and support the hypothesis that the belt can help in stabilizing the trunk. Images Figure 1 PMID:1810615

  5. The Ocean-Atmosphere Hydrothermohaline Conveyor Belt

    Science.gov (United States)

    Döös, Kristofer; Kjellsson, Joakim; Zika, Jan; Laliberté, Frédéric; Brodeau, Laurent

    2015-04-01

    The ocean thermohaline circulation is linked to the hydrothermal circulation of the atmosphere. The ocean thermohaline circulation is expressed in potential temperature-salinity space and comprises a tropical upper-ocean circulation, a global conveyor belt cell and an Antarctic Bottom Water cell. The atmospheric hydrothermal circulation in a potential temperature-specific humidity space unifies the tropical Hadley and Walker cells as well as the midlatitude eddies into a single, global circulation. Superimposed, these thermohaline and hydrothermal stream functions reveal the possibility of a close connection between some parts of the water and air mass conversions. The exchange of heat and fresh water through the sea surface (precipiation-evaporation) and incoming solar radiation act to make near-surface air warm and moist while making surface water warmer and saltier as both air and water travel towards the Equator. In the tropics, air masses can undergo moist convection releasing latent heat by forming precipitation, thus acting to make warm surface water fresher. We propose that the Clausius-Clapeyron relationship for moist near-surface air acts like a lower bound for the atmospheric hydrothermal cell and an upper bound for the ocean thermohaline Conveyor-Belt cell. The analysis is made by combining and merging the overturning circulation of the ocean and atmosphere by relating the salinity of the ocean to the humidity of the atmosphere, where we set the heat and freshwater transports equal in the two stream functions By using simulations integrated with our Climate-Earth system model EC-Earth, we intend to produce the "hydrothermohaline" stream function of the coupled ocean-atmosphere overturning circulation in one single picture. We explore how the oceanic thermohaline Conveyor Belt can be linked to the global atmospheric hydrothermal circulation and if the water and air mass conversions in humidity-temperature-salinity space can be related and linked to each

  6. Equilibria and Free Vibration of a Two-Pulley Belt-Driven System with Belt Bending Stiffness

    Directory of Open Access Journals (Sweden)

    Jieyu Ding

    2014-01-01

    Full Text Available Nonlinear equilibrium curvatures and free vibration characteristics of a two-pulley belt-driven system with belt bending stiffness and a one-way clutch are investigated. With nonlinear dynamical tension, the transverse vibrations of the translating belt spans and the rotation motions of the pulleys and the accessory shaft are coupled. Therefore, nonlinear piecewise discrete-continuous governing equations are established. Considering the bending stiffness of the translating belt spans, the belt spans are modeled as axially moving beams. The pattern of equilibria is a nontrivial solution. Furthermore, the nontrivial equilibriums of the dynamical system are numerically determined by using two different approaches. The governing equations of the vibration near the equilibrium solutions are derived by introducing a coordinate transform. The natural frequencies of the dynamical systems are studied by using the Galerkin method with various truncations and the differential and integral quadrature methods. Moreover, the convergence of the Galerkin truncation is investigated. Numerical results reveal that the study needs 16 terms after truncation in order to determine the free vibration characteristics of the pulley-belt system with the belt bending stiffness. Furthermore, the first five natural frequencies are very sensitive to the bending stiffness of the translating belt.

  7. Magnitude of crustal shortening and structural framework of the easternmost Himalayan orogen, northern Indo-Burma Ranges of northeastern India

    Science.gov (United States)

    Haproff, P. J.; Yin, A.

    2016-12-01

    Along-strike variation in crustal shortening throughout the Himalayan orogen has been attributed to (1) diachronous, eastward-increasing convergence, or (2) localized controls including pre-collisional stratigraphic configuration and climate. In this study, we present new geologic maps and balanced cross-sections across the easternmost segment of the Himalayan orogen, the N-S-trending N. Indo-Burma Ranges of northeastern India. First order structures are NE-dipping, km-wide ductile thrust shear zones with mylonitic fabrics indicating top-to-the SW motion. Major structures include the Mayodia klippe and Hunli window, generated during folding of the SW-directed Tidding thrust and duplexing of Lesser Himalayan rocks (LHS) at depth. Reconstruction of two balanced cross-sections yields minimum shortening estimates of 70% (48 km) and 71% (133 km), respectively. The widths of the orogen for each transect are 21 km and 54 km, respectively. Our percent strain values are comparable to that of western Arunachal Himalaya, reflecting eastward-increasing strain due to counterclockwise rotation of India during convergence or along-strike variation in India's subduction angle. However, shortening magnitudes much less than that of the Sikkim (641 km), Bhutan (414-615 km), and western Arunachal Himalaya (515-775 km) could signal eastward increasing shortening of a unique Himalayan stratigraphic framework, evidenced by few GHC rocks, absence of Tethyan strata, and an extensive subduction mélange and forearc complex.

  8. The JCMT Gould Belt Survey: Understanding the influence of outflows on Gould Belt clouds

    Science.gov (United States)

    Drabek-Maunder, E.; Hatchell, J.; Buckle, J. V.; Di Francesco, J.; Richer, J.

    2016-03-01

    Using James Clerk Maxwell Telescope (JCMT) Gould Belt Survey data from CO J = 3 → 2 isotopologues, we present a meta-analysis of the outflows and energetics of star-forming regions in several Gould Belt clouds. The majority of the regions are strongly gravitationally bound. There is evidence that molecular outflows transport large quantities of momentum and energy. Outflow energies are at least 20 per cent of the total turbulent kinetic energies in all of the regions studied and greater than the turbulent energy in half of the regions. However, we find no evidence that outflows increase levels of turbulence, and there is no correlation between the outflow and turbulent energies. Even though outflows in some regions contribute significantly to maintaining turbulence levels against dissipation, this relies on outflows efficiently coupling to bulk motions. Other mechanisms (e.g. supernovae) must be the main drivers of turbulence in most if not all of these regions.

  9. NASA's Radiation Belt Storm Probe Mission

    Science.gov (United States)

    Sibeck, David G.

    2011-01-01

    NASA's Radiation Belt Storm Probe (RBSP) mission, comprising two identically-instrumented spacecraft, is scheduled for launch in May 2012. In addition to identifying and quantifying the processes responsible for energizing, transporting, and removing energetic particles from the Earth's Van Allen radiation, the mission will determine the characteristics of the ring current and its effect upon the magnetosphere as a whole. The distances separating the two RBSP spacecraft will vary as they move along their 1000 km altitude x 5.8 RE geocentric orbits in order to enable the spacecraft to separate spatial from temporal effects, measure gradients that help identify particle sources, and determine the spatial extent of a wide array of phenomena. This talk explores the scientific objectives of the mission and the manner by which the mission has been tailored to achieve them.

  10. Crustal structure and evolution of the Pyrenean-Cantabrian belt: A review and new interpretations from recent concepts and data

    Science.gov (United States)

    Teixell, A.; Labaume, P.; Ayarza, P.; Espurt, N.; de Saint Blanquat, M.; Lagabrielle, Y.

    2018-01-01

    This paper provides a synthesis of current data and interpretations on the crustal structure of the Pyrenean-Cantabrian orogenic belt, and presents new tectonic models for representative transects. The Pyrenean orogeny lasted from Santonian ( 84 Ma) to early Miocene times ( 20 Ma), and consisted of a spatial and temporal succession of oceanic crust/exhumed mantle subduction, rift inversion and continental collision processes at the Iberia-Eurasia plate boundary. A good coverage by active-source (vertical-incidence and wide-angle reflection) and passive-source (receiver functions) seismic studies, coupled with surface data have led to a reasonable knowledge of the present-day crustal architecture of the Pyrenean-Cantabrian belt, although questions remain. Seismic imaging reveals a persistent structure, from the central Pyrenees to the central Cantabrian Mountains, consisting of a wedge of Eurasian lithosphere indented into the thicker Iberian plate, whose lower crust is detached and plunges northwards into the mantle. For the Pyrenees, a new scheme of relationships between the southern upper crustal thrust sheets and the Axial Zone is here proposed. For the Cantabrian belt, the depth reached by the N-dipping Iberian crust and the structure of the margin are also revised. The common occurrence of lherzolite bodies in the northern Pyrenees and the seismic velocity and potential field record of the Bay of Biscay indicate that the precursor of the Pyrenees was a hyperextended and strongly segmented rift system, where narrow domains of exhumed mantle separated the thinned Iberian and Eurasian continental margins since the Albian-Cenomanian. The exhumed mantle in the Pyrenean rift was largely covered by a Mesozoic sedimentary lid that had locally glided along detachments in Triassic evaporites. Continental margin collision in the Pyrenees was preceded by subduction of the exhumed mantle, accompanied by the pop-up thrust expulsion of the off-scraped sedimentary lid above

  11. Partial melting of deeply subducted eclogite from the Sulu orogen in China.

    Science.gov (United States)

    Wang, Lu; Kusky, Timothy M; Polat, Ali; Wang, Songjie; Jiang, Xingfu; Zong, Keqing; Wang, Junpeng; Deng, Hao; Fu, Jianmin

    2014-12-17

    We report partial melting of an ultrahigh pressure eclogite in the Mesozoic Sulu orogen, China. Eclogitic migmatite shows successive stages of initial intragranular and grain boundary melt droplets, which grow into a three-dimensional interconnected intergranular network, then segregate and accumulate in pressure shadow areas and then merge to form melt channels and dikes that transport magma to higher in the lithosphere. Here we show, using zircon U-Pb dating and petrological analyses, that partial melting occurred at 228-219 Myr ago, shortly after peak metamorphism at 230 Myr ago. The melts and residues are complimentarily enriched and depleted in light rare earth element (LREE) compared with the original rock. Partial melting of deeply subducted eclogite is an important process in determining the rheological structure and mechanical behaviour of subducted lithosphere and its rapid exhumation, controlling the flow of deep lithospheric material, and for generation of melts from the upper mantle, potentially contributing to arc magmatism and growth of continental crust.

  12. An evaporite-bearing accretionary complex in the northern front of the Betic-Rif orogen

    Science.gov (United States)

    Pérez-Valera, Fernando; Sánchez-Gómez, Mario; Pérez-López, Alberto; Pérez-Valera, Luis Alfonso

    2017-06-01

    The Guadalquivir Accretionary Complex forms a largely oblique prism at the northern edge of the Betic-Rif orogen, where Miocene sediments plus allochthonous evaporite-bearing units were accreted during the displacement of the Alborán Domain toward the west. Traditional interpretations end the tectonic structuring of the Betic Cordillera at the present topographic front, beyond which gravitational and/or diapiric processes would predominate. However, this study shows pervasive tectonic deformation in the outer prism with coherent oblique shortening kinematics, which is achieved through an alternation of roughly N-S arcuate thrust systems connected by E-W transfer fault zones. These structures accord well with the geophysical models that propose westward rollback subduction. The main stage of tectonic activity occurred in the early-middle Miocene, but deformation lasted until the Quaternary with the same kinematics. Evaporite rocks played a leading role in the deformation as evidenced by the suite of ductile structures in gypsum distributed throughout the area. S- and L- gypsum tectonites, scaly clay fabrics, and brittle fabrics coexist and consistently indicate westward motion (top to 290°), with subordinate N-S contraction almost perpendicular to the transfer zones. This work reveals ductile tectonic fabrics in gypsum as a valuable tool to elucidate the structure and deformational history of complex tectonic mélanges involving evaporites above the décollement level of accretionary wedges.

  13. Active shortening within the Himalayan orogenic wedge implied by the 2015 Gorkha earthquake

    Science.gov (United States)

    Whipple, Kelin X.; Shirzaei, Manoochehr; Hodges, Kip V.; Ramon Arrowsmith, J.

    2016-09-01

    Models of Himalayan neotectonics generally attribute active mountain building to slip on the Himalayan Sole Thrust, also termed the Main Himalayan Thrust, which accommodates underthrusting of the Indian Plate beneath Tibet. However, the geometry of the Himalayan Sole Thrust and thus how slip along it causes uplift of the High Himalaya are unclear. We show that the geodetic record of the 2015 Gorkha earthquake sequence significantly clarifies the architecture of the Himalayan Sole Thrust and suggests the need for revision of the canonical view of how the Himalaya grow. Inversion of Gorkha surface deformation reveals that the Himalayan Sole Thrust extends as a planar gently dipping fault surface at least 20-30 km north of the topographic front of the High Himalaya. This geometry implies that building of the high range cannot be attributed solely to slip along the Himalayan Sole Thrust over a steep ramp; instead, shortening within the Himalayan wedge is required to support the topography and maintain rapid rock uplift. Indeed, the earthquake sequence may have included a moderate rupture (Mw 6.9) on an out-of-sequence thrust fault at the foot of the High Himalaya. Such internal deformation is an expected response to sustained, focused rapid erosion, and may be common to most compressional orogens.

  14. Organic molecular paleohypsometry: A new approach to reconstructing the paleoelevation history of an orogen

    Science.gov (United States)

    Hren, M. T.; Ouimet, W. B.

    2017-12-01

    Paleoelevation data is critical to understanding the links and feedbacks between rock-uplift and erosion yet few approaches have proved successful in quantifying changes in paleoelevation rapidly eroding, tropical landscapes. In addition, quantitative methods of reconstructing paleoelevation from marine sedimentary archives are lacking. Here we present a new approach to quantifying changes in paleoelevation that is based on the geochemical signature of organic matter exported via the main river networks of an orogen. This new approach builds on fundamentals of stable isotope paleoaltimetry and is akin to the theory behind cosmogenic isotope records of catchment-integrated erosion. Specifically, we utilize predictable patterns of precipitation and organic molecular biomarker stable isotopes to relate the hypsometry of organic matter in a catchment to the geochemical signal in exported organic carbon. We present data from two sites (the cold temperate White Mountains of New Hampshire, USA and the tropical, rapidly eroding landscape of Taiwan) to demonstrate this relationship between exported carbon geochemistry and catchment hypsometry and the validity of this approach.

  15. Controlling factors of spatial and temporal preservation of the geochronological signal in sediments during an orogenic cycle

    Science.gov (United States)

    Rat, Juliette; Mouthereau, Frédéric; Bernet, Matthias; Brichau, Stéphanie; Balvay, Mélanie; Garzanti, Eduardo; Ando, Sergio

    2017-04-01

    Detrital content of sediments preserved in basins provide constraints on the nature of source rocks, dynamics of sediment transport, and potentially on tectonics and climate changes. U-Pb dating method on detrital zircon is ideally suited for provenance studies due to the ability of U-Pb age data to resist several orogenic cycles. However, with the aim to track sediment source evolution over a single orogenic cycle and determine characteristic time and parameters controlling the geochronological signal preservation throughout the cycle from rifting, mountain building to post-collision evolution, low-temperature thermochronology combined with sediment petrography are more appropriate than the U-Pb dating approach taken alone. To better understanding processes at play in the long-term geochronological signal preservation we focus on the sediment record associated with the Iberia plate tectonic evolution, which is part of the OROGEN research project, co-financed by BRGM, TOTAL & CNRS. The Iberian plate recorded a period of extension in the Late Jurassic, followed during the Early Cretaceous (Aptian-Albian) by a major thinning event documented by thick syn-rift sediments in intraplate basins and plate-scale heating/cooling of the Iberia crust, as argued by published fission track ages. Paleogeographic reconstructions that are based on stratigraphic and lithofacies analyses in northern Iberia (Iberian Range, Pyrenees and Basque-Cantabrians Range), describe a large domain of continental/fluvial and shallow-marine siliciclastic deposition. The related detrital content was then recycled during the subsequent Pyrenean orogenic phase in the Ebro foreland basin, and eventually transfer to the Mediterranean realm during post-orogenic re-excavation of the Ebro basin. In this study, we complete the published time-temperature paths in the mesozoic syn-rift basins by providing new thermo-chronological analyses of well-dated syn-collision and post-collision stratigraphic sections

  16. Oscillations control of a transmission belt by Excitation Clipping using Clutch Clamping Control (E4C)

    Science.gov (United States)

    Temporelli, Robin; Micheau, Philippe

    2017-04-01

    A transmission belt deals with non-linear phenomena such as parametric excitations that can bring the belt in an instability region resulting in large transverse oscillations. These oscillations can cause belt life deflection, noise and unexpected vibration on its environment. The present study proposes a new strategy to control oscillations of a transmission belt subject to periodic tension fluctuations. Indeed, for a transmission belt, periodic torque fluctuations cause periodic belt tension fluctuations which can be a source of excitation for the belt and resulting in belt oscillations under certain conditions. The presence of a clutch between the belt end-point and the source of torque fluctuations offers a means to clip torque fluctuations and thus to clip belt excitation. In keeping with this notion, belt oscillations can be controlled by an Excitation Clipping using Clutch Clamping Control (E4C) strategy. Through an example of a transmission belt subject to periodic tension fluctuations, the E4C strategy is presented and a new analytical model of belt behavior with its E4C strategy is constructed. Free belt oscillations (E4C is not activated) and controlled belt oscillations (E4C is activated) are observed through an experimental setup and predicted owing to the new analytical model. Finally, the E4C strategy leads to frequency unlocking that successfully removes belt oscillations. This new analytical model furthermore provides an accurate prediction of belt behavior with its E4C strategy.

  17. Speed Controlled Belt Conveyors: Drives and Mechanical Considerations

    Directory of Open Access Journals (Sweden)

    BEBIC, M. Z.

    2018-02-01

    Full Text Available The paper presents variable speed belt conveyor system where the reference speed is changed in order to achieve improved energy efficiency of operation. The recorded measurements show that belt tension varies within the same limits as under constant speed operation. These results introduce a new insight of the present state of the art in variable speed belt conveyor drives. The system is realized with remote control from the control center on an open pit mine. The structure of the multi-motor drive system of a single conveyor, as well as of the network-based control system distributed among belt conveyor stations and the control center are shown. Speed control of a belt conveyor system is organized to provide better utilization of the available material cross section on the belt and reduced electrical energy consumption of the drive. The experimental results obtained on the system prove that, under existing constraints, the applied algorithm has not introduced additional stress to the belt or mechanical assemblies during acceleration and deceleration processes, while providing higher energy efficiency of operation.

  18. Space Weather Effects in the Earth's Radiation Belts

    Science.gov (United States)

    Baker, D. N.; Erickson, P. J.; Fennell, J. F.; Foster, J. C.; Jaynes, A. N.; Verronen, P. T.

    2018-02-01

    The first major scientific discovery of the Space Age was that the Earth is enshrouded in toroids, or belts, of very high-energy magnetically trapped charged particles. Early observations of the radiation environment clearly indicated that the Van Allen belts could be delineated into an inner zone dominated by high-energy protons and an outer zone dominated by high-energy electrons. The energy distribution, spatial extent and particle species makeup of the Van Allen belts has been subsequently explored by several space missions. Recent observations by the NASA dual-spacecraft Van Allen Probes mission have revealed many novel properties of the radiation belts, especially for electrons at highly relativistic and ultra-relativistic kinetic energies. In this review we summarize the space weather impacts of the radiation belts. We demonstrate that many remarkable features of energetic particle changes are driven by strong solar and solar wind forcings. Recent comprehensive data show broadly and in many ways how high energy particles are accelerated, transported, and lost in the magnetosphere due to interplanetary shock wave interactions, coronal mass ejection impacts, and high-speed solar wind streams. We also discuss how radiation belt particles are intimately tied to other parts of the geospace system through atmosphere, ionosphere, and plasmasphere coupling. The new data have in many ways rewritten the textbooks about the radiation belts as a key space weather threat to human technological systems.

  19. Timing belt in power transmission and conveying system

    Directory of Open Access Journals (Sweden)

    Domek Grzegorz

    2018-01-01

    Full Text Available This paper presents the problem of phenomena occurring at the contact of a timing belt and a pulley. Depending on a belt size range these phenomena differ significantly. There is no indication as to what solutions are optimal for drive belts. The analysis of the coupling process and performance tests have shown that the drive belt should have a cord of very good mechanical properties and its raceway side should be made from the material of a low friction coefficient against the pulley material. A flat belt in power transmission and conveying systems cooperates with several elements consisting of timing pulleys, tensioners or guiding rails. In gear with timing belts they depend strongly on characteristics of the process as well as the type of friction. In recent constructions, producers of timing belts are very much concerned about achieving as much slippery surface as possible. The work describes the problem of friction on different surfaces as well as its influence on gear lifetime. Research results confirm that on many surfaces bigger coefficient of friction is expected.

  20. Generation of post-collisional normal calc-alkaline and adakitic granites in the Tongbai orogen, central China

    Science.gov (United States)

    Zhang, Wen-Xiang; Zhu, Liu-Qin; Wang, Hao; Wu, Yuan-Bao

    2018-01-01

    Post-collisional granites are generally generated by partial melting of continental crust during orogenic extension. The occurrence of normal calc-alkaline granites following adakitic granites in a collisional orogen is frequently supposed as a sign of tectonic regime transition from compression to extension, which has been debated yet. In this paper, we present a comprehensive study of zircon U-Pb ages, Hf-O isotopes, as well as whole-rock major and trace elements and Sr-Nd isotopes, for Tongbai and Jigongshan post-collisional granitic plutons in the Tongbai orogen. Zircon U-Pb dating yields intrusion ages of ca. 140 and 135 Ma for the Tongbai and Jigongshan plutons, respectively, suggesting they are post-collisional granites. These granites are high-K calc-alkaline series, metaluminous to weakly peraluminous with A/CNK ratios of 0.85-1.08. The Tongbai gneissic granites are normal calc-alkaline granite, having variable SiO2 (61.93-76.74 wt%) and Sr/Y (2.9-38.9) and (La/Yb)N (1.7-30.1) ratios with variably negative Eu anomalies (0.41-0.92). They have relatively high initial Sr isotope ratios of 0.707571 to 0.710317, and low εNd(t) (- 15.74 to - 11.09) and εHf(t) (- 17.6 to - 16.9) values. Their Nd and Hf model ages range from 2.2 to 1.8 Ga and 2.3 to 2.2 Ga. On the contrary, the Jigongshan granites show higher SiO2 (66.56-72.11 wt%) and Sr/Y (30.1-182.0) and (La/Yb)N (27.4-91.4) ratios with insignificant Eu anomalies (0.73-1.00), belonging to adakitic granite. They have Isr = 0.707843-0.708366, εNd(t) = - 19.83 to - 17.59, and εHf(t) = - 26.0 to - 23.5. Their Nd and Hf model ages vary from ca. 2.5 to 2.4 Ga and ca. 2.8 to 2.6 Ga. The Tongbai and Jigongshan granites are characterized by mantle-like zircon δ18O values (5.17-5.46‰). These geochemical features suggest that the Tongbai and Jigongshan granites were derived from partial melting of Paleoproterozoic and Archean continental crust, respectively. Fractional crystallization affected the geochemical

  1. An Effective Belt Conveyor for Underground Ore Transportation Systems

    Science.gov (United States)

    Krol, Robert; Kawalec, Witold; Gladysiewicz, Lech

    2017-12-01

    Raw material transportation generates a substantial share of costs in the mining industry. Mining companies are therefore determined to improve the effectiveness of their transportation system, focusing on solutions that increase both its energy efficiency and reliability while keeping maintenance costs low. In the underground copper ore operations in Poland’s KGHM mines vast and complex belt conveyor systems have been used for horizontal haulage of the run-of-mine ore from mining departments to shafts. Basing upon a long-time experience in the field of analysing, testing, designing and computing of belt conveyor equipment with regard to specific operational conditions, the improvements to the standard design of an underground belt conveyor for ore transportation have been proposed. As the key elements of a belt conveyor, the energy-efficient conveyor belt and optimised carrying idlers have been developed for the new generation of underground conveyors. The proposed solutions were tested individually on the specially constructed test stands in the laboratory and in the experimental belt conveyor that was built up with the use of prototype parts and commissioned for the regular ore haulage in a mining department in the KGHM underground mine “Lubin”. Its work was monitored and the recorded operational parameters (loadings, stresses and strains, energy dissipation, belt tracking) were compared with those previously collected on a reference (standard) conveyor. These in-situ measurements have proved that the proposed solutions will return with significant energy savings and lower maintenance costs. Calculations made on the basis of measurement results in the specialized belt conveyor designing software allow to estimate the possible savings if the modernized conveyors supersede the standard ones in a large belt conveying system.

  2. Review of GEM Radiation Belt Dropout and Buildup Challenges

    Science.gov (United States)

    Tu, Weichao; Li, Wen; Morley, Steve; Albert, Jay

    2017-04-01

    In Summer 2015 the US NSF GEM (Geospace Environment Modeling) focus group named "Quantitative Assessment of Radiation Belt Modeling" started the "RB dropout" and "RB buildup" challenges, focused on quantitative modeling of the radiation belt buildups and dropouts. This is a community effort which includes selecting challenge events, gathering model inputs that are required to model the radiation belt dynamics during these events (e.g., various magnetospheric waves, plasmapause and density models, electron phase space density data), simulating the challenge events using different types of radiation belt models, and validating the model results by comparison to in situ observations of radiation belt electrons (from Van Allen Probes, THEMIS, GOES, LANL/GEO, etc). The goal is to quantitatively assess the relative importance of various acceleration, transport, and loss processes in the observed radiation belt dropouts and buildups. Since 2015, the community has selected four "challenge" events under four different categories: "storm-time enhancements", "non-storm enhancements", "storm-time dropouts", and "non-storm dropouts". Model inputs and data for each selected event have been coordinated and shared within the community to establish a common basis for simulations and testing. Modelers within and outside US with different types of radiation belt models (diffusion-type, diffusion-convection-type, test particle codes, etc.) have participated in our challenge and shared their simulation results and comparison with spacecraft measurements. Significant progress has been made in quantitative modeling of the radiation belt buildups and dropouts as well as accessing the modeling with new measures of model performance. In this presentation, I will review the activities from our "RB dropout" and "RB buildup" challenges and the progresses achieved in understanding radiation belt physics and improving model validation and verification.

  3. Tectono-stratigraphic evolution of salt-controlled minibasins in a fold and thrust belt, the Oligo-Miocene central Sivas Basin

    Science.gov (United States)

    Kergaravat, Charlie; Ribes, Charlotte; Callot, Jean-Paul; Ringenbach, Jean-Claude

    2017-09-01

    The Central Sivas Basin (Turkey) provides an outcrop example of a minibasin province developed above a salt canopy within a foreland-fold and thrust belt. Several minibasins are examined to assess the influence of regional Oligo-Miocene shortening during the development of a minibasin province. The results are based on extensive field work, including regional and detailed outcrop mapping of at least 15 minibasin margins and analysis of the structural elements at all scales. This reveals a progressive increase in shortening and a decrease in salt tectonics during evolution of the province. The initiation of minibasins is driven mostly by the salt-induced accommodation forming a polygonal network of salt structures with mainly local halokinetic sequences (i.e. hooks and wedges). The initiation of shortening is marked by an abrupt increase in sedimentation rate within the flexural foreland basin causing burial of the preexisting salt structures. Subsequently, orogenic compression encourages the rejuvenation of linear salt structures oriented at right angle to the regional shortening direction. The influence of orogenic shortening during the last steps of the minibasin province evolution is clearly shown by: (i) the squeezing of salt structures to form welds which are developed both at right angle and oblique to the regional shortening direction, (ii) the emergence of thrust faults, (iii) the tilting and rotation of minibasins about vertical axis associated with the formation of strike-slip fault zones, and (iv) the extrusion of salt sheets. The pre-shortening geometry of the salt structures pattern, polygonal network of walls and diapirs versus linear and sub-parallel walls, influence the resultant structural style of the minibasin province subjected to shortening. Preexisting linear depocenter limited by sub-parallel walls accommodate preferentially the shortening compare to the preexisting sub-circular depocenter limited by polygonal network of salt walls and

  4. Radiation Belt Storm Probes: Resolving Fundamental Physics with Practical Consequences

    Science.gov (United States)

    Ukhorskiy, Aleksandr Y.; Mauk, Barry H.; Fox, Nicola J.; Sibeck, David G.; Grebowsky, Joseph M.

    2011-01-01

    The fundamental processes that energize, transport, and cause the loss of charged particles operate throughout the universe at locations as diverse as magnetized planets, the solar wind, our Sun, and other stars. The same processes operate within our immediate environment, the Earth's radiation belts. The Radiation Belt Storm Probes (RBSP) mission will provide coordinated two-spacecraft observations to obtain understanding of these fundamental processes controlling the dynamic variability of the near-Earth radiation environment. In this paper we discuss some of the profound mysteries of the radiation belt physics that will be addressed by RBSP and briefly describe the mission and its goals.

  5. Effect of one-way clutch on the nonlinear vibration of belt-drive systems with a continuous belt model

    Science.gov (United States)

    Ding, Hu; Zu, Jean W.

    2013-11-01

    This study focuses on the nonlinear steady-state response of a belt-drive system with a one-way clutch. A dynamic model is established to describe the rotations of the driving pulley, the driven pulley, and the accessory shaft. Moreover, the model considers the transverse vibration of the translating belt spans for the first time in belt-drive systems coupled with a one-way clutch. The excitation of the belt-drive system is derived from periodic fluctuation of the driving pulley. In automotive systems, this kind of fluctuation is induced by the engine firing harmonic pulsations. The derived coupled discrete-continuous nonlinear equations consist of integro-partial-differential equations and piece-wise ordinary differential equations. Using the Galerkin truncation, a set of nonlinear ordinary differential equations is obtained from the integro-partial-differential equations. Applying the Runge-Kutta time discretization, the time histories of the dynamic response are numerically solved for the driven pulley and the accessory shaft and the translating belt spans. The resonance areas of the coupled belt-drive system are determined using the frequency sweep. The effects of the one-way clutch on the belt-drive system are studied by comparing the frequency-response curves of the translating belt with and without one-way clutch device. Furthermore, the results of 2-term and 4-term Galerkin truncation are compared to determine the numerical convergence. Moreover, parametric studies are conducted to understand the effects of the system parameters on the nonlinear steady-state response. It is concluded that one-way clutch not only decreases the resonance amplitude of the driven pulley and shaft's rotational vibration, but also reduces the resonance region of the belt's transverse vibration.

  6. MACRO MODEL OF SEAT BELT USE BY CAR DRIVERS AND PASSENGERS

    Directory of Open Access Journals (Sweden)

    Kazimierz JAMROZ

    2013-12-01

    Full Text Available The article presents some problems of seat belt use by car drivers and passengers. It looks in particular at seat belt use and effectiveness in selected countries. Next, factors of seat belt use are presented and methodology of model development. A macro model of seat belt use is presented based on data from around fifty countries from different continents.

  7. Evolution of Hutti-Maski greenstone belt of the Eastern Dharwar ...

    Indian Academy of Sciences (India)

    53

    evolution of the Hutti greenstone belt and the gold mineralization in it. 77. 78. 2. Geological setting. 79. The Hutti-Maski greenstone belt is a 74 km long N-S trending volcano-sedimentary. 80 belt with metamorphosed mafic volcanic rocks being the predominant lithology (Fig.1). 81. Towards the northern part, the belt takes an ...

  8. Late-Cainozoic climate change, erosion, and relief of mountain belts: 20 years of chickens and eggs (Ralph Alger Bagnold Medal Lecture)

    Science.gov (United States)

    van der Beek, Peter

    2014-05-01

    , suggests locally decreasing erosion rates during that time, while detrital thermochronology from the basins surrounding the Alps suggests little change in erosion rates on the orogen scale. Thus, the imprint of Pliocene climatic variations on mountain-belt erosion and tectonic development may have been overstated and the sediment-flux data that suggested a strong link may require re-examination. In contrast, the new data imply a significant increase in relief through focussed valley incision since mid-Pleistocene times (~1 Ma), which can be related to efficient but highly localised glacial erosion, due to extensive glaciation of the Alps triggered by the mid-Pleistocene climate transition. The isostatic response to a significant increase in Alpine relief due to glacial valley carving may explain part of the surprisingly high geodetic uplift rates measured in the western Alps and may also contribute to the current extensional deformation regime observed within the core of the mountain belt. Thus, it appears that this recent climatic change had a significant impact on mountain belts by enabling more focussed and efficient glacial erosion of topography. Confirmation of this hypothesis awaits more detailed analyses of the recent erosion, relief and tectonic history of glaciated mountain belts worldwide.

  9. REDDY MAIN BELT ASTEROID SPECTRA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains low-resolution (R~150) near-infrared (0.7-2.5 microns) spectra of 90 main belt asteroids observed with the SpeX instrument on the NASA...

  10. The constitutionality of mandatory seat belt use legislation.

    Science.gov (United States)

    1972-12-01

    A number of trends indicate that mandatory seat belt use legislation is to be expected within the near future. The constitutionality of such self-protective legislation has been the subject of recent speculation. Constitutional challenges may be expe...

  11. "Abomination"--life as a Bible belt gay.

    Science.gov (United States)

    Barton, Bernadette

    2010-01-01

    Drawing on observation, autoethnography, and audio-taped interviews, this article explores the religious backgrounds and experiences of Bible Belt gays. In the Bible Belt, Christianity is not confined to Sunday worship. Christian crosses, messages, paraphernalia, music, news, and attitudes permeate everyday settings. Consequently, Christian fundamentalist dogma about homosexuality-that homosexuals are bad, diseased, perverse, sinful, other, and inferior-is cumulatively bolstered within a variety of other social institutions and environments in the Bible Belt. Of the 46 lesbians and gay men interviewed for this study (age 18-74 years), most describe living through spirit-crushing experiences of isolation, abuse, and self-loathing. This article argues that the geographic region of the Bible Belt intersects with religious-based homophobia. Informants explained that negative social attitudes about homosexuality caused a range of harmful consequences in their lives including the fear of going to hell, depression, low self-esteem, and feelings of worthlessness.

  12. CRED REA Fish Team Belt Transect Survey at Guam, 2003

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Belt transects along 3 consecutively-placed, 25m transect lines were surveyed as part of Rapid Ecological Assessments conducted at 9 sites at Guam in the...

  13. 30 CFR 56.4503 - Conveyor belt slippage.

    Science.gov (United States)

    2010-07-01

    ... shall be equipped with a detection system capable of automatically stopping the drive pulley. A person shall attend the belt at the drive pulley when it is necessary to operate the conveyor while temporarily...

  14. Continuing scearch for a new type charging belt

    International Nuclear Information System (INIS)

    Jones, N.L.

    1995-01-01

    The EN Tandem accelerator at Oak Ridge National Laboratory (ORNL) operates to support a varied program of atomic physics research. As such, the demands on the accelerator often require a range of operation from ∼0.38 to 7.0 MV on the terminal, with low ripple and long term steady state operation. The standard charging belts obtained from the manufacture have generally given acceptable performance, but it is reasonable that modem manufacturing techniques and materials could increase belt lifetimes and improve accelerator performance, particularly voltage ripple. A new belt of significantly different construction from that of the conventional belts was specified, purchased, and installed in 1993. After 2800 hours of use at voltages from 0.38 to 5.8 MV, it was removed from the accelerator in early August 1995

  15. Calculated limits for particle fluxes in Jupiter's Van Allen belts

    Science.gov (United States)

    Haffner, J.

    1972-01-01

    Electron and proton fluxes in Jupiter's radiation belts are calculated, along with the envelopes of dose rates. The following assumptions are made: the particles in the Jupiter belts are influenced only by the magnetic field of the planet; the particles act correspondingly to the particles in the Earth's belts and the Earth's belts can be used as a model; the magnetic field of Jupiter is essentially a dipole; the radiation of a decimetric nature received from Jupiter is synchrotron radiation due to the electrons, and to a first approximation it is emitted isotropically; and the strength of the emission in the decimetric wavelength range gives an upper bound considering how strong the field can be and how many electrons there are. The point dose rates for tissue and 0.1 gram/cm aluminum shielding at about 3 Jupiter radii are 10000 rads/hr for electrons and 1000 rads/hr for protons.

  16. Crustal evolution in the East African Orogen: a neodymium isotopic perspective

    Science.gov (United States)

    Stern, Robert J.

    2002-05-01

    The East African Orogen (EAO) is one of Earth's great collision zones, where East and West Gondwana collided to form the supercontinent `Greater Gondwana' or `Pannotia' at the end of Neoproterozoic time. There is now sufficient Nd isotopic data for basement rocks of the EAO to yield a useful summary. A total of 449 samples were gleaned from the literature, recalculated to a common value for the La Jolla Nd standard, and entered in Excel spreadsheets. This data set was filtered to exclude samples with 147Sm/ 144Nd> 0.165, considered to yield unreliable model ages, leaving 413 suitable data. The crust of the Arabian-Nubian Shield, including Egypt east of the Nile, Sudan east of the Keraf suture, Sinai, Israel, Jordan, most of Arabia, Eritrea, and northern Ethiopia yields overwhelmingly Neoproterozoic model ages. Crust to the east, in the Afif terrane of Arabia, Yemen, Somalia, and Eastern Ethiopia yields much older model ages, averaging 2.1 Ga, demonstrating an abundance of reworked ancient crust. This provides an isotopic link with Madagascar (mean age of 2.4 Ga), which in pre-Jurassic reconstructions lies on the southern extension of this older, remobilized tract. Crust in the far southern extreme of the EAO in Tanzania also yields ancient model ages, averaging 2.3 Ga. The central EAO, in southern Ethiopia and Kenya, yields intermediate ages (mean 1.1-1.2 Ga), interpreted to indicate extensive mixing between Neoproterozoic mantle-derived melts and ancient crust. The Nd isotope data indicate that the northern EAO is composed of juvenile Neoproterozoic crust sandwiched between reworked older crust, whereas the EAO farther south is progressively dominated by ancient crust reworked during Neoproterozoic time. The distribution of juvenile and reworked ancient crust suggests that the most intense collision between East and West Gondwana occurred in the southern part of the EAO.

  17. Post-orogenic exhumation history of a Variscan mid-crustal basement in Galicia (NW Spain)

    Science.gov (United States)

    Grobe, Rene; Alvarez-Marrón, Joaquina; Glasmacher, Ulrich A.; Stuart, Finlay; Castañeda-Zarauz, A.

    2010-05-01

    The present study aims to quantify the complex post-orogenic history of cooling, denudation, and long-term landscape evolution of a mid-crustal section of Variscan basement in Galicia (NW Spain). We use apatite fission-track and apatite (U-Th)/He thermochronological techniques combined with time-temperature (t-T) path modelling using the software code HeFTy©. The topography is characterized by an extensive, low relief area at ~500 m elevation in central Galicia, and a WNW-ESE ridge that reaches up to 1000 m to the North. The area experienced two major tectonic events since the end of the Variscan orogeny in the Late Palaeozoic: 1) continental break-up and Mesozoic rifting leading to the opening of the Atlantic Ocean and the Bay of Biscay, and 2) limited convergence between Iberia and Eurasia since Middle Eocene times. Apatite fission-track ages range from 68.1 ± 5.0 Ma to 174.5 ± 7.7 Ma and apatite (U-Th)/He ages range from 73.6 ± 5.4 to 147.1 ± 16.6 Ma. Age-elevation plots and t-T path modelling suggest a tectonothermal evolution with faster exhumation associated to faulting during Mesozoic rifting. In particular, two major fault systems trending WNW-ESE and NNE-SSW, the As Pontes and the Lugo faults respectively separate areas with the fastest exhumation around 115 Ma from areas with overall slow exhumation since 200-150 Ma. A landscape of subdued topography in central Galicia was acquired prior to Eocene convergence. The higher elevation areas along the northern ridge formed since Middle Eocene times due to fault reactivation and minor exhumation occurred along the fault escarpment.

  18. Observer-based fault diagnosis for trucks belt tensioner

    OpenAIRE

    Dubuc , Donatien; Sename , Olivier; Bresch-Pietri , Delphine; Gauthier , Christophe

    2017-01-01

    International audience; This paper deals with the monitoring of a serpentine belt tensioner performance, a critical automotive engine component guaranteeing the cooling system efficiency. A belt tensioner fault will affect the transmission, deteriorate the water pump efficiency, and eventually, lead the engine to stall. Monitoring this component is thus a key to design predictive or corrective maintenance. In this paper, we propose to estimate a parameter which is shown to be characteristic o...

  19. Dark nebulae, dark lanes, and dust belts

    CERN Document Server

    Cooke, Antony

    2012-01-01

    As probably the only book of its type, this work is aimed at the observer who wants to spend time with something less conventional than the usual fare. Because we usually see objects in space by means of illumination of one kind or another, it has become routine to see them only in these terms. However, part of almost everything that we see is the defining dimension of dark shading, or even the complete obscuration of entire regions in space. Thus this book is focused on everything dark in space: those dark voids in the stellar fabric that mystified astronomers of old; the dark lanes reported in many star clusters; the magical dust belts or dusty regions that have given so many galaxies their identities; the great swirling 'folds' that we associate with bright nebulae; the small dark feature detectable even in some planetary nebulae; and more. Many observers pay scant attention to dark objects and details. Perhaps they are insufficiently aware of them or of the viewing potential they hold, but also it may be...

  20. Dynamical Classifications of the Kuiper Belt

    Science.gov (United States)

    Maggard, Steven; Ragozzine, Darin

    2018-04-01

    The Minor Planet Center (MPC) contains a plethora of observational data on thousands of Kuiper Belt Objects (KBOs). Understanding their orbital properties refines our understanding of the formation of the solar system. My analysis pipeline, BUNSHIN, uses Bayesian methods to take the MPC observations and generate 30 statistically weighted orbital clones for each KBO that are propagated backwards along their orbits until the beginning of the solar system. These orbital integrations are saved as REBOUND SimulationArchive files (Rein & Tamayo 2017) which we will make publicly available, allowing many others to perform statistically-robust dynamical classification or complex dynamical investigations of outer solar system small bodies.This database has been used to expand the known collisional family members of the dwarf planet Haumea. Detailed orbital integrations are required to determine the dynamical distances between family members, in the form of "Delta v" as measured from conserved proper orbital elements (Ragozzine & Brown 2007). Our preliminary results have already ~tripled the number of known Haumea family members, allowing us to show that the Haumea family can be identified purely through dynamical clustering.We will discuss the methods associated with BUNSHIN and the database it generates, the refinement of the updated Haumea family, a brief search for other possible clusterings in the outer solar system, and the potential of our research to aid other dynamicists.

  1. Selection of Belt Conveyors Drive Units Number by Technical –Economical Analysis

    OpenAIRE

    Despodov, Zoran; Mijalkovski, Stojance; Adjiski, Vancho; Panov, Zoran

    2014-01-01

    In this paper is presented a methodology for selection of belt conveyor drive units number by technical - economical analysis of their parameters. Belt Conveyors with follow drive arrangement will be considered: one, two, three and four drive units. In the technical - economical analysis are including: Tension forces, Power of belt conveyor, Costs for belt, Costs for power and reducers, Total cost for belt conveyor system.

  2. Seismotectonics of the Zagros (Iran) from orogen-wide earthquake relocations

    Science.gov (United States)

    Karasozen, E.; Nissen, E.; Bergman, E. A.; Ghods, A.

    2017-12-01

    We have developed a new two-tiered multiple-event relocation procedure to improve hypocenters of the entire, 50 year back-catalog of teleseismically-recorded seismicity in the Zagros fold-and-thrust belt of southern Iran, which includes >200 earthquakes of Mw 5-7 as well as more than 5,000 smaller events. We exploit these refined locations to investigate buried reverse faulting in the Zagros fold-and-thrust belt of southern Iran, and to characterize its relationship with surface structural geology. This is the most seismically active continental mountain belt in the world, but its faulting is rarely exposed at the surface, with most seismicity occurring on blind reverse faults buried beneath or within a thick sedimentary cover. Therefore, the distribution of earthquakes provides the most accessible information about the location of active faulting at depth. The first step of this procedure calculates absolute locations for discrete clusters of earthquakes using local seismic data or `ground truth' events mapped with InSAR for calibration. This stage uses MLOC, an implementation of the Hypocentroidal Decomposition relocation technique that, with carefully selected datasets, minimizes epicentral location bias of clusters to less than 2 km and typically provides epicentral uncertainties in the range 2-5 km for individual events. For many events focal depth (and therefore, origin time) is often constrained to better than 5 km as well. These locations are considered to be "calibrated". The second stage of our analysis uses the calibrated locations as prior constraints in BayesLoc, a Bayesian relocation algorithm that can handle larger datasets, to produce region-wide earthquake catalogs that are less vulnerable to systematic bias and have realistic estimates of location uncertainty. Here we present results from the first step of our relocation analysis, which yielded 2000 calibrated earthquakes with epicentral uncertainty less than 5 km. The previously distributed

  3. Records of near-isothermal decompression and clockwise P-T history from the Paleoproterozoic Mahakoshal Belt, Central Indian Tectonic Zone: Constraints from pseudosection modelling and monazite geochronology

    Science.gov (United States)

    Deshmukh, Tanzil; Naraga, Prabhakar; Bhattacharya, Abhijit; Kaliappan, Madhavan

    2017-04-01

    The Mahakoshal Belt (MB) is regarded as the oldest subunit along the northern collar of the Central Indian Tectonic Zone (CITZ) arguably representing the zone of accretion between the North India Block and the South India Block. The following study focuses on deciphering the structural and metamorphic P-T-t history of the schists/phyllites from the eastern part of the belt, and provides insights into the Paleoproterozoic tectonic development in the CITZ. The schists comprise phengite, quartz, andalusite, biotite, muscovite and margarite, and are associated with veins of rare andalusite + corundum + quartz assemblage. The field relations combined with deformation microtextures in the MB schists suggests three episodes of metamorphism, M1, M2 and M3, corresponding with D1, D2 and D3 deformation events respectively. Inclusion trails (S1) of phengite + biotite + quartz ± chlorite in syn/post-S2 andalusite porphyroblasts constrain the M1 metamorphic event in pelitic schists. The application of pseudosection modelling estimated peak metamorphic conditions at ˜8 kbar and 520 ˚ C. Near isothermal decompression (populations at 1.8-1.9 Ga, and rim populations at 1.7-1.8 Ga and 1.5-1.6 Ga. Thus, the peak metamorphism in MB schists was Paleoproterozoic in age, 1.8-1.9 Ga, and the clockwise P-T path was recorded at 1.7-1.8 Ga, which overlaps with the emplacement of blastoporphyritic granitoids along southern margin of the MB. The results obtained in this study combined with the existing structural-metamorphic-chronological information demonstrate the CITZ to be a composite of desperately-evolved crustal domains. With some major omissions, the tectono-thermal events identified in the CITZ partly overlap with those observed in the Capricorn Orogen (Western Australia) and the Trans North China Orogen. Therefore, these global correlations possibly corroborate new configurations on the assembly and fragmentation of Columbia Supercontinent, but await further studies and robust age

  4. Further evidence of 777 Ma subduction-related continental arc magmatism in Eastern Dom Feliciano Belt, southern Brazil: The Chácara das Pedras Orthogneiss

    Science.gov (United States)

    Koester, E.; Porcher, C. C.; Pimentel, M. M.; Fernandes, L. A. D.; Vignol-Lelarge, M. L.; Oliveira, L. D.; Ramos, R. C.

    2016-07-01

    In this study new SHRIMP U-Pb zircon data for the Chácara das Pedras Gneiss in Porto Alegre, southern Brazil are presented. They represent a small exposure of the crust which was intruded by a large volume of orogenic to anorogenic granitoids at ca. 618-562 m.y. in the Eastern Domain of the Dom Feliciano Belt. The Chácara das Pedras tonalitic orthogneiss has geochemical similarities with subduction-related magmatic rocks of continental arcs. They present high Sr initial ratios (∼0.712), negative ɛNd(t = 777) values (∼-6), TDM varying from 1.8 to 2.0 Ga. The igneous protoliths of these orthogneisses were previously considered to be Paleoproterozoic based on an upper intercept age of discordant zircon analyses. In the present study these orthogneisses were re-sampled and re-analyzed in an attempt to obtain more concordant analytical data. The U-Pb zircon analyses were carried out using the SHRIMP IIe at the Laboratório de Geocronologia de Alta Resolução of the Universidade de São Paulo. The U-Pb concordia age obtained for igneous textural domains of the zircon grains is 777 ± 4 Ma. A few analyses on zircon overgrowths give poorly defined late Cryogenian ages of ca. 650 Ma. Older ages, mostly discordant, were obtained in a few zircon cores, showing an upper intercept age of ca. 1.9 Ga. One sample of the Três Figueiras Granodiorite, which crosscut the orthogneiss in the same outcrop, was also investigated. The zircons of this granodiorite are, however, mostly metamitic, preventing the determination of a reliable age. Some concordant analyses from a few grains define ages ranging in the interval between ca. 603 and 1022 Ma. The youngest (ca. 603 Ma) may represent a maximum age for the granodiorite crystallization. Older ages, with discordance Porto Alegre region, although records of similar ages (780-800 Ma) are recognized within the Eastern Domain of the Dom Feliciano Belt. Examples are the Piratini Gneisses (Piratini region) and in the Cerro Bori

  5. Modeling and energy efficiency optimization of belt conveyors

    International Nuclear Information System (INIS)

    Zhang, Shirong; Xia, Xiaohua

    2011-01-01

    Highlights: → We take optimization approach to improve operation efficiency of belt conveyors. → An analytical energy model, originating from ISO 5048, is proposed. → Then an off-line and an on-line parameter estimation schemes are investigated. → In a case study, six optimization problems are formulated with solutions in simulation. - Abstract: The improvement of the energy efficiency of belt conveyor systems can be achieved at equipment and operation levels. Specifically, variable speed control, an equipment level intervention, is recommended to improve operation efficiency of belt conveyors. However, the current implementations mostly focus on lower level control loops without operational considerations at the system level. This paper intends to take a model based optimization approach to improve the efficiency of belt conveyors at the operational level. An analytical energy model, originating from ISO 5048, is firstly proposed, which lumps all the parameters into four coefficients. Subsequently, both an off-line and an on-line parameter estimation schemes are applied to identify the new energy model, respectively. Simulation results are presented for the estimates of the four coefficients. Finally, optimization is done to achieve the best operation efficiency of belt conveyors under various constraints. Six optimization problems of a typical belt conveyor system are formulated, respectively, with solutions in simulation for a case study.

  6. Zero-relative-velocity belt skimmer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ayres, R.R.; Bickham, K.L.; Fraser, J.P.; Titus, P.E.

    1975-04-01

    In the approach to high speed (4 to 10 knots) oil recovery discussed here, oil is collected from the water's surface due to a zero relative velocity (ZRV) between a moving belt and the oil layer. A loosely tensioned sorbent belt floats like a blanket on the water imbibing oil for a 40-foot contact length before the belt is withdrawn and oil is squeezed out. The composite belt of Astroturf and Fuetron felt readily sorbs oils having viscosities ranging from light diesel oil to No. 6 fuel oil. Full scale simulations of the belt and wringer show maximum oil recovery rates between 1016 gpm and 2152 gpm for an eight-foot-wide belt at a speed of 6.8 knots. An 11 mm slick of Navy Special fuel oil (270 cs vicosity at 75 F) can be collected at 1296 gpm with only 10% additional water. At 10 knots we project oil recovery rates from 840 gpm for No. 6 fuel oil (2300 cs at 75F) to 2080 gpm and 1680 gpm for diesel oil (4.8 cs at 75F) and Navy Special oil respectively. The analytical and experimental feasibility studies indicate that further development of the hardware is warranted by the projected oil collection performance. (Author) (GRA)

  7. On-conveyor belt determination of ash in coal

    International Nuclear Information System (INIS)

    Sowerby, B.; Lim, C.S.; Abernethy, D.A.; Liu, Y.; Maguire, P.A.

    1997-01-01

    A laboratory feasibility study has been carried out on new and advanced neutron and gamma-ray analysis systems for the direct on-conveyor belt analysis of ash in coal without the need for sample by-lines. Such an analysis system could deliver the combined advantages of a direct on-conveyor configuration with new and accurate analysis techniques. An industry survey of 18 coal companies carried out in early 1996 indicated that accurate on-belt ash analysis is of the highest priority. Subsequent laboratory work has focussed on the investigation of methods with the potential for improving the accuracy of ash content measurement relative to existing on-belt ash analysers, the most widely-used of which are based on dual energy gamma-ray transmission (DUET), which is sensitive to variations in ash composition. The current work indicates that on-belt neutron/gamma-ray techniques combined with advanced spectral analysis techniques show promise for development into an on-belt ash analysis system which is significantly less sensitive to composition changes than DUET and which analyses a much larger proportion of coal on the belt, thus eliminating some key sources of analysis error

  8. Pseudo- and real-inverted metamorphism caused by the superposition and extrusion of a stack of nappes: a case study of the Southern Brasília Orogen, Brazil

    Science.gov (United States)

    da Motta, Rafael Gonçalves; Moraes, Renato

    2017-10-01

    The Southern Brasília Orogen is a Neoproterozoic belt that occurs along the southernmost border of the São Francisco Craton where the Andrelândia Nappe System represents the subducted sedimentary domain and is divided into three allochthonous groups, of which the ages and P-T conditions of metamorphism are studied here. The basal unit, the Andrelândia Nappe, exhibits an inverted metamorphic pattern. The base of the structure, composed of staurolite, garnet, biotite, kyanite, quartz, and muscovite, marks the metamorphic peak, whereas at the top, the association of the metamorphic peak does not contain staurolite. The Liberdade Nappe, the middle unit, presents a normal metamorphic pattern; its base, close to the Andrelândia Nappe, shows paragneiss with evidence of in situ partial melting, and towards the top, coarse-grained staurolite schist is found. The staurolite-out and melt-in isograds are coincident and parallel to the main foliation. Thus, the shear zone that limits the nappes is syn-metamorphic, reheating the underlying Andrelândia Nappe and influencing the establishment of metamorphic inversion. This suggestion is supported by the monazite chemical ages, which indicates that the Andrelândia Nappe metamorphic peak (586 ± 15 Ma) is younger than that of the Liberdade Nappe (622.3 ± 7.6 Ma). The upper unit, the Serra da Natureza Klippe, bears a typical high-pressure granulite mineral assemblage that is composed of kyanite, garnet, K-feldspar, rutile, and leucosome, as well as a metamorphic peak at 604.5 ± 6.1 Ma. This tectonic assembly, with inverted and non-inverted metamorphic patterns and generation of klippen structures, is consistent with exhumation models and a strong indentor located in the lower continental crust.

  9. Detrital zircon U-Pb geochronology and whole-rock Nd-isotope constraints on sediment provenance in the Neoproterozoic Sergipano orogen, Brazil: From early passive margins to late foreland basins

    Science.gov (United States)

    Oliveira, E. P.; McNaughton, N. J.; Windley, B. F.; Carvalho, M. J.; Nascimento, R. S.

    2015-11-01

    SHRIMP U-Pb detrital zircon geochronology and depleted-mantle Nd-model ages of clastic rocks were combined to understand the sediment provenance in the Neoproterozoic Sergipano Belt. The Sergipano is the main orogenic belt between the Borborema province and the São Francisco Craton, eastern South America; it is divisible into several lithostratigraphic domains from North to South: Canindé, Poço Redondo-Marancó, Macururé, Vaza Barris, and Estância. Nd model ages (TDM) and detrital zircon U-Pb SHRIMP geochronology indicate that the protoliths of clastic metasedimentary rocks from the Marancó and Macururé domains were mostly derived from eroded late Mesoproterozoic to early Neoproterozoic rocks (1000-900 Ma), whereas detritus of similar rocks from the Canindé domain came from a younger source (ca. 700 Ma and 1000 Ma). Samples from the Vaza Barris domain show the greatest scatter of both TDM and zircon ages amongst all domains, but with important contributions from Proterozoic sources (690-1050 Ma and ca. 2100 Ma) and less from Archaean sources. The Estância domain samples have zircon population peaks at 570 Ma, 600 Ma, and 920-980 Ma, with a few older grains; one diamictite contains only ca. 2150 Ma zircon grains. Our preliminary results support a model in which sediments of the Marancó and Macururé domains were deposited on a continental margin of the ancient Borborema plate before its collision with the São Francisco Craton; the Canindé domain is likely to be an aborted Neoproterozoic rift assemblage within the southern part of the Borborema plate (Pernambuco-Alagoas massif). The basal units of the Vaza Barris and Estância domains have clast sources from the São Francisco Craton and are best interpreted as passive margin sediments. However, the uppermost units of the Estância and Vaza Barris domains come from foreland basins formed during collision of Borborema plate with the São Francisco Craton.

  10. Meningococcal carriage in the African meningitis belt

    Science.gov (United States)

    2013-01-01

    A meningococcal serogroup A polysaccharide/tetanus toxoid conjugate vaccine (PsA-TT) (MenAfriVac#x2122;) is being deployed in countries of the African meningitis belt. Experience with other polysaccharide/protein conjugate vaccines has shown that an important part of their success has been their ability to prevent the acquisition of pharyngeal carriage and hence to stop transmission and induce herd immunity. If PsA-TT is to achieve the goal of preventing epidemics, it must be able to prevent the acquisition of pharyngeal carriage as well as invasive meningococcal disease and whether PsA-TT can prevent pharyngeal carriage needs to be determined. To address this issue, a consortium (the African Meningococcal Carriage (MenAfriCar) consortium) was established in 2009 to investigate the pattern of meningococcal carriage in countries of the African meningitis belt prior to and after the introduction of PsA-TT. This article describes how the consortium was established, its objectives and the standardised field and laboratory methods that were used to achieve these objectives. The experience of the MenAfriCar consortium will help in planning future studies on the epidemiology of meningococcal carriage in countries of the African meningitis belt and elsewhere. Un vaccin conjugué contenant un polysaccharide du sérogroupe A méningococcique et une anatoxine du tétanos (PsA-TT) (MenAfriVac™) est en cours de déploiement dans les pays de la ceinture africaine de la méningite. L’ expérience avec d’ autres vaccins conjugués polysaccharide/protéine a montré qu’ une partie importante de leur succès a été leur capacité à empêcher l’ acquisition du portage pharyngé et donc à arrêter la transmission et à induire une immunité de group. Si PsA-TT doit d’ atteindre l’ objectif de prévenir les épidémies, il devrait être en mesure d’ empêcher l’ acquisition du portage pharyngé ainsi que la méningococcie invasive et le fait que PsA-TT puisse emp

  11. Extension of the Mid- to Lower Crust with Orogenic Inheritance: Examples from the Death Valley Region (Western US), and the Mauleon Basin (Southwestern France).

    Science.gov (United States)

    Lima, R. D.; Hayman, N. W.; Kelly, E. D.; Lavier, L. L.

    2015-12-01

    Continental margins exhibit a range of widths and symmetries defined by the strain patterns that arise during extension and rifting. An important pattern in this respect is the early localization of extension into necking zones. The rheology of the lower crust plays a large role in this localization, and can be affected by inherited orogenic structures, fabrics, and mineral assemblages. Here, we further evaluate the role of orogenic fabrics in continental extension using microstructural observations and thermodynamic modeling of geological sections exposed in the Funeral and Black Mountains of the Death Valley region, California, and from the Mauleon Basin, France. The Death Valley region sits within the Basin-and-Range region of broadly distributed Cenozoic extension, over a relatively flat and deep moho. In contrast, in the Mauleon basin, Cretaceous extension accommodated mantle exhumation, and was strongly localized in older Hercynian orogenic crust. In both areas, mid- to lower crustal rocks are characterized by inherited migmatitic fabrics overprinted by zones of localized, extensional fabrics. Mineral assemblages that formed over a P-T cooling path define the fabrics in each field area. The high-temperature fabrics record decompression-melting due to late- to post-orogenic collapse. Yet, the two field areas show contrasting retrograde assemblages, which are hypothesized to have resulted from changes in the local effective bulk composition produced by differences in melt segregation. At subsequent extensional stages, mid- to lower crustal deformation resulted in the transposition of the inherited post-orogenic fabrics, documented with quartz fabric analysis (including EBSD). The two contrasting regions show how the rheology of inherited orogenic lower crust responds to differences in melt-segregation and metamorphic histories, potentially controlling margin structural evolution.

  12. Geochemical modeling of orogenic gold deposit using PCANN hybrid method in the Alut, Kurdistan province, Iran

    Science.gov (United States)

    Mohammadzadeh, Mohammadjafar; Nasseri, Aynur

    2018-03-01

    In this paper stream sediments based geochemical exploration program with the aim of delineating potentially promising areas by a comprehensive stepwise optimization approach from univariate statistics, PCA, ANN, and fusion method PCANN were under taken for an orogenic gold deposit located in the Alut, Kurdistan province, NW of Iran. At first the data were preprocessed and then PCA were applied to determine the maximum variability directions of elements in the area. Subsequently the artificial neural network (ANN) was used for quick estimation of elemental concentration, as well as discriminating anomalous populations and intelligent determination of internal structure among the data. However, both the methods revealed constraints for modeling. To overcome the deficiency and shortcoming of each individual method a new methodology is presented by integration of both "PCA & ANN" referred as PCANN method. For integrating purpose, the detected PCs pertinent to ore mineralization selected and intruded to neural network structure, as a result different MLPs with various algorithms and structures were produced. The resulting PCANN maps suggest that the gold mineralization and its pathfinder elements (Au, Mo, W, Bi, Sb, Cu, Pb, Ag & As) are associated with metamorphic host rocks intruded by granite bodies in the Alut area. In addition, more concealed and distinct Au anomalies with higher intensity were detected, confirming the privileges of the method in evaluating susceptibility of the area in delineating new hidden potential zones. The proposed method demonstrates simpler network architecture, easy computational implementation, faster training speed, as well as no need to consider any primary assumption about the behavior of data and their probability distribution type, with more satisfactory predicting performance for generating gold potential map of the area. Comparing the results of three methods (PCA, ANN and PCANN), representing the higher efficiency and more

  13. Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit

    Science.gov (United States)

    LaFlamme, Crystal; Sugiono, Dennis; Thébaud, Nicolas; Caruso, Stefano; Fiorentini, Marco; Selvaraja, Vikraman; Jeon, Heejin; Voute, François; Martin, Laure

    2018-02-01

    The evolution of a gold-bearing hydrothermal fluid from its source to the locus of gold deposition is complex as it experiences rapid changes in thermochemical conditions during ascent through the crust. Although it is well established that orogenic gold deposits are generated during time periods of abundant crustal growth and/or reworking, the source of fluid and the thermochemical processes that control gold precipitation remain poorly understood. In situ analyses of multiple sulfur isotopes offer a new window into the relationship between source reservoirs of Au-bearing fluids and the thermochemical processes that occur along their pathway to the final site of mineralisation. Whereas δ34S is able to track changes in the evolution of the thermodynamic conditions of ore-forming fluids, Δ33S is virtually indelible and can uniquely fingerprint an Archean sedimentary reservoir that has undergone mass independent fractionation of sulfur (MIF-S). We combine these two tracers (δ34S and Δ33S) to characterise a gold-bearing laminated quartz breccia ore zone and its sulfide-bearing alteration halo in the (+6 Moz Au) structurally-controlled Archean Waroonga deposit located in the Eastern Goldfields Superterrane of the Yilgarn Craton, Western Australia. Over 250 analyses of gold-associated sulfides yield a δ34S shift from what is interpreted as an early pre-mineralisation phase, with chalcopyrite-pyrrhotite (δ34S = +0.7‰ to +2.9‰) and arsenopyrite cores (δ34S = ∼-0.5‰), to a syn-mineralisation stage, reflected in Au-bearing arsenopyrite rims (δ34S = -7.6‰ to +1.5‰). This shift coincides with an unchanging Δ33S value (Δ33S = +0.3‰), both temporally throughout the Au-hosting hydrothermal sulfide paragenesis and spatially across the Au ore zone. These results indicate that sulfur is at least partially recycled from MIF-S-bearing Archean sediments. Further, the invariant nature of the observed MIF-S signature demonstrates that sulfur is derived from a

  14. PRESENTDAY STRESS STATE OF THE SHANXI TECTONIC BELT

    Directory of Open Access Journals (Sweden)

    Wang Kaiying

    2012-01-01

    Full Text Available The Shanxi tectonic belt is a historically earthquakeabundant area. For the majority of strong earthquakes in this area, the distribution of earthquake foci was controlled by the N–S oriented local structures on the tectonic belt. Studies of the present stress state of the Shanxi tectonic belt can contribute to the understanding of the relationship between strong earthquakes’ occurrence and their structural distribution and also facilitate assessments of regional seismic danger and determination of the regions wherein strong earthquakes may occur in future. Using the Cataclastic Analysis Method (CAM, we performed stress inversion based on the focal mechanism data of earthquakes which took place in the Shanxi tectonic belt from 1967 to 2010. Our results show that orientations of the maximum principal compressive stress axis of the Shanxi tectonic belt might have been variable before and after the 2001 Kunlun MS=8.1 strong earthquake, with two different superior trends of the NW–SE and NE–SW orientation in different periods. When the maximum principal compressive stress axis is oriented in the NE–SW direction, the pattern of the space distribution of the seismic events in the Shanxi tectonic belt shows a trend of their concentration in the N–S oriented tectonic segments. At the same time, the stress state is registered as horizontal shearing and horizontal extension in the N–S and NE–SW oriented local segments in turn. When the maximum principal compressive stress axis is NW–SE oriented, the stress state of the N–S and NE–SW oriented tectonic segments is primarily registered as horizontal shearing. Estimations of plunges of stress axes show that seismicity in the Shanxi belt  corresponds primarily to the activity of lowangle faults, and highangle stress sites are located in the NE–SW oriented extensional tectonic segments of the Shanxi belt. This indicates that the stress change of the Shanxi belt is

  15. Exhumation of the Deylaman fault trend and its effects on the deformation style of the western Alborz belt in Iran

    Science.gov (United States)

    Hakimi Asiabar, Saeid; Bagheriyan, Siyamak

    2017-07-01

    The Alborz range in northern Iran stretches along the southern coast of the Caspian Sea and finally runs northeast and merges into the Pamir mountains in Afghanistan. Alborz mountain belt is a doubly vergent orogen formed along the northern edge of the Iranian plateau in response to the closure of the Neo-Tethys ocean and continental collision between Arabia and Eurasia. The south Caspian depression—the Alborz basin of Mesozoic age (with W-E trend) in northern Iran—inverted in response to the Arabia-Eurasia collision. Pre-existing extensional faults of the south Caspian-Alborz system preferentially reactivated as contractional faults because of tectonic inversion. These contractional structures tend to run parallel to the trends of pre-existing extensional faults and acquire W and WNW-ESE orientations across the previous accommodation zones that were imposed by the reactivation of adjacent extensional faults with different directions. The NNE to N dipping faults show evidences of reactivation. The Deylaman fault is one of the important faults of western Alborz in Iran and is an example of inversion tectonic style of deformation in the western Alborz mountain range. The Deylaman fault, with an E-W trend, contains three discontinuous fault segments in the area under investigation. These fault segments have evidence of oblique right-lateral reverse motion and links eastward to the dextral Kandavan thrust. The importance of this fault is due to its effect on sedimentation of several rock units from the Jurassic to Neogene in western Alborz; the rock facies on each side of this fault are very different and illustrate different parts of tectonic history.

  16. Metasomatized granulites of the Mozambique belt: consequences for lithospheric U, Th, REE fertilisation and metallogenesis in the ancient Gondwanaland supercontinent

    International Nuclear Information System (INIS)

    Andreoli, M.A.G.; Hart, R.J.

    1988-02-01

    The 1,0 Ga old Lurio belt extends for ca. 1 000 km from Nsanje (S Malawi) through NE Mozambique to the Indian ocean. Lower crustal levels are locally exposed along its southern tectonic front. In this article mineralogical and geochemical data for an andesinite-mafic-ultramafic suite from Nsanje were reported.The results indicate that this complex terrane equilibrated first at P ∼ 13 kbr and T ∼ 900 0 C and subsequently cooled under an eclogite-garnet granulite georem. During a later event (P ∼ 7-10 kbar, T ∼ 650 - 800 0 C) distinctive metasomatic mica, amphibole, scapolite, apatite, diopsidic pyroxene (MASAD)-bearing assemblages and pegmatoids were formed by CO 2 , Cl, H 2 O, S and F rich fluids with higher REE, U, Th and Zr concentrations than the high-grade precursors. MASAD and older high-pressure granulite parageneses underwent subsequent dehydratation and reequilibration under medium-pressure granulite facies conditions perhaps during the Lurio orogenic event. MASAD-like assemblages are relatively common within the late Proterozoic medium- and high-pressure granulite terranes of Central Gondwana, especially in the newly defined Lurio-Zambezi Eclogite Province. The data provide indicate that the metasomatizing, MASAD-forming fluids had crypto-carbonatitic affinities and were introduced into the crust from the upper mantle during protorifting episodes between ca. 1,1 and 0,5 Ga ago. The MASAD assemblages may therefore represent the crustal equivalent of the metasomatic and MARID suites discovered in mantle xenoliths

  17. Pre-folding fracture development in the Lurestan region of the Zagros Fold and Thrust Belt: constraints from early fracture sets in the Shabazan and Asmari Formations

    Science.gov (United States)

    Corradetti, Amerigo; Tavani, Stefano; D'Assisi Tramparulo, Francesco; Prinzi, Ernesto Paolo; Vitale, Stefano; Parente, Mariano; Morsalnejad, Davoud; Mazzoli, Stefano

    2017-04-01

    In the Zagros Fold and Thrust Belt (FTB), the timing of fracture development with respect to folding is debated. Multiple fracture systems occur in the area. These include "typical" fracture systems that are oriented parallel and orthogonal to the NW-SE strike of the belt, as well as sets oriented N-S and E-W. The interpretation of the N-S and E-W sets is controversial. Despite the general consensus about the first-order relationship between these fractures and inherited N-S striking basement faults, their timing and kinematic significance is not yet fully understood. The ambiguous crosscutting/abutting relationships with the NE-SW and NW-SE sets, together with the difficulty of framing them into the classical scenario of fracturing in foreland basin systems, has led to the development of different hypotheses about the timing of N-S and E-W sets. For the generation of these structures, both pre- and syn-thrusting interpretations have been proposed. In this work, we report on the occurrence of bed-perpendicular fracture sets in the upper part of the Shabazan (Eocene) and in the Asmari (Oligo-Miocene) Formations of the Zagros FTB. These fractures have the peculiarity of being filled with karst material. Such filled fractures are preserved in beds showing variable angles of dip, ranging from horizontal to vertical. Their homogeneous distribution in variably dipping beds around folds undoubtedly point to an origin of these fracture sets predating the tilting of the strata in which they are contained. Therefore, fracture development and related infilling occurred at an early stage, in still flat lying strata, following the deposition of the top Shabazan and Asmari Formations. Such a deposition took place within the general framework of ongoing shortening in the Zagros. This process, occurring since the Late Cretaceous, progressively led to folding of the syn-orogenic Shabazan and Asmari Formations subsequently to the development of the studied filled fractures.

  18. Neogene shortening and exhumation of the Zagros fold-thrust belt and foreland basin in the Kurdistan region of northern Iraq

    Science.gov (United States)

    Koshnaw, Renas I.; Horton, Brian K.; Stockli, Daniel F.; Barber, Douglas E.; Tamar-Agha, Mazin Y.; Kendall, Jerome J.

    2017-01-01

    The Zagros fold-thrust belt in the Kurdistan region of Iraq encroached southward toward a rapidly subsiding Neogene foreland basin and was later partitioned by out-of-sequence shortening focused along the Mountain Front Flexure (MFF), as defined by new low-temperature thermochronologic, stratigraphic, and provenance results. Apatite (U-Th)/He ages document rapid deformation advance from the Main Zagros Fault to southern frontal structures (Kirkuk, Shakal, and Qamar thrusts) at 10-8 Ma, followed by potential basement-involved out-of-sequence development of the MFF (Qaradagh anticline) by 5 Ma. Distinct shifts in detrital zircon U-Pb provenance signatures for Neogene foreland basin fill provide evidence for drainage reorganization during fold-thrust belt advance. U-Pb age spectra and petrologic data from the Injana (Upper Fars) Formation indicate derivation from a variety of Eurasian, Pan-African, ophiolitic and Mesozoic-Cenozoic volcanic terranes, whereas the Mukdadiya (Lower Bakhtiari) and Bai-Hasan (Upper Bakhtiari) Formations show nearly exclusive derivation from the Paleogene Walash-Naopurdan volcanic complex near the Iraq-Iran border. Such a sharp cutoff in Eurasian, Pan-African, and ophiolitic sources is likely associated with drainage reorganization and tectonic development of the geomorphic barrier formed by the MFF. As a result of Zagros crustal shortening, thickening and loading, the Neogene foreland basin developed and accommodated an abrupt influx of fluvial clastic sediment that contains growth stratal evidence of synkinematic accumulation. The apparent out-of-sequence pattern of upper crustal shortening in the hinterland to foreland zone of Iraqi Kurdistan suggests that structural inheritance and the effects of synorogenic erosion and accumulation are important factors influencing the irregular and episodic nature of orogenic growth in the Zagros.

  19. Results of a paleomagnetic survey undertaken in t