WorldWideScience

Sample records for als-associated mutant sod1g93acauses

  1. ALS-associated mutation SOD1G93A leads to abnormal mitochondrial dynamics in osteocytes.

    Science.gov (United States)

    Wang, Huan; Yi, Jianxun; Li, Xuejun; Xiao, Yajuan; Dhakal, Kamal; Zhou, Jingsong

    2018-01-01

    mitochondrial fission, but suppresses the fusion activity. Our data provide the first evidence that mitochondria show abnormality in osteocytes derived from an ALS mouse model. The accumulation of mutant SOD1 G93A protein inside mitochondria directly causes dysfunction in mitochondrial dynamics in cultured MLO-Y4 osteocytes. In addition, the ALS mutation SOD1 G93A -mediated dysfunction in mitochondrial dynamics is associated with an enhanced apoptosis in osteocytes, which could be a potential mechanism underlying the bone loss during ALS progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics.

    Science.gov (United States)

    Gal, Jozsef; Kuang, Lisha; Barnett, Kelly R; Zhu, Brian Z; Shissler, Susannah C; Korotkov, Konstantin V; Hayward, Lawrence J; Kasarskis, Edward J; Zhu, Haining

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.

  3. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    Science.gov (United States)

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  4. ALS-linked mutant SOD1 proteins promote Aβ aggregates in ALS through direct interaction with Aβ.

    Science.gov (United States)

    Jang, Ja-Young; Cho, Hyungmin; Park, Hye-Yoon; Rhim, Hyangshuk; Kang, Seongman

    2017-11-04

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motor neurons. Aggregation of ALS-linked mutant Cu/Zn superoxide dismutase (SOD1) is a hallmark of a subset of familial ALS (fALS). Recently, intracellular amyloid-β (Aβ) is detected in motor neurons of both sporadic and familial ALS. We have previously shown that intracellular Aβ specifically interacts with G93A, an ALS-linked SOD1 mutant. However, little is known about the pathological and biological effect of this interaction in neurons. In this study, we have demonstrated that the Aβ-binding region is exposed on the SOD1 surface through the conformational changes due to misfolding of SOD1. Interestingly, we found that the intracellular aggregation of Aβ is enhanced through the direct interaction of Aβ with the Aβ-binding region exposed to misfolded SOD1. Ultimately, increased Aβ aggregation by this interaction promotes neuronal cell death. Consistent with this result, Aβ aggregates was three-fold higher in the brains of G93A transgenic mice than those of non Tg. Our study provides the first direct evidence that Aβ, an AD-linked factor, is associated to the pathogenesis of ALS and provides molecular clues to understand common aggregation mechanisms in the pathogenesis of neurodegenerative diseases. Furthermore, it will provide new insights into the development of therapeutic approaches for ALS. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Delayed Disease Onset and Extended Survival in the SOD1G93A Rat Model of Amyotrophic Lateral Sclerosis after Suppression of Mutant SOD1 in the Motor Cortex

    Science.gov (United States)

    Thomsen, Gretchen M.; Gowing, Genevieve; Latter, Jessica; Chen, Maximus; Vit, Jean-Philippe; Staggenborg, Kevin; Avalos, Pablo; Alkaslasi, Mor; Ferraiuolo, Laura; Likhite, Shibi; Kaspar, Brian K.

    2014-01-01

    Sporadic amyotrophic lateral sclerosis (ALS) is a fatal disease with unknown etiology, characterized by a progressive loss of motor neurons leading to paralysis and death typically within 3–5 years of onset. Recently, there has been remarkable progress in understanding inherited forms of ALS in which well defined mutations are known to cause the disease. Rodent models in which the superoxide dismutase-1 (SOD1) mutation is overexpressed recapitulate hallmark signs of ALS in patients. Early anatomical changes in mouse models of fALS are seen in the neuromuscular junctions (NMJs) and lower motor neurons, and selective reduction of toxic mutant SOD1 in the spinal cord and muscle of these models has beneficial effects. Therefore, much of ALS research has focused on spinal motor neuron and NMJ aspects of the disease. Here we show that, in the SOD1G93A rat model of ALS, spinal motor neuron loss occurs presymptomatically and before degeneration of ventral root axons and denervation of NMJs. Although overt cell death of corticospinal motor neurons does not occur until disease endpoint, we wanted to establish whether the upper motor neuron might still play a critical role in disease progression. Surprisingly, the knockdown of mutant SOD1 in only the motor cortex of presymptomatic SOD1G93A rats through targeted delivery of AAV9–SOD1–shRNA resulted in a significant delay of disease onset, expansion of lifespan, enhanced survival of spinal motor neurons, and maintenance of NMJs. This datum suggests an early dysfunction and thus an important role of the upper motor neuron in this animal model of ALS and perhaps patients with the disease. PMID:25411487

  6. Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A

    Energy Technology Data Exchange (ETDEWEB)

    Galaleldeen, Ahmad; Strange, Richard W.; Whitson, Lisa J.; Antonyuk, Svetlana V.; Narayana, Narendra; Taylor, Alexander B.; Schuermann, Jonathan P.; Holloway, Stephen P.; Hasnain, S.Samar; Hart, P. John; (Texas-HSC); (Liverpool)

    2010-07-19

    Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the destruction of motor neurons in the spinal cord and brain. A subset of ALS cases are linked to dominant mutations in copper-zinc superoxide dismutase (SOD1). The pathogenic SOD1 variants A4V and G93A have been the foci of multiple studies aimed at understanding the molecular basis for SOD1-linked ALS. The A4V variant is responsible for the majority of familial ALS cases in North America, causing rapidly progressing paralysis once symptoms begin and the G93A SOD1 variant is overexpressed in often studied murine models of the disease. Here we report the three-dimensional structures of metal-free A4V and of metal-bound and metal-free G93A SOD1. In the metal-free structures, the metal-binding loop elements are observed to be severely disordered, suggesting that these variants may share mechanisms of aggregation proposed previously for other pathogenic SOD1 proteins.

  7. Knocking down metabotropic glutamate receptor 1 improves survival and disease progression in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Milanese, Marco; Giribaldi, Francesco; Melone, Marcello; Bonifacino, Tiziana; Musante, Ilaria; Carminati, Enrico; Rossi, Pia I A; Vergani, Laura; Voci, Adriana; Conti, Fiorenzo; Puliti, Aldamaria; Bonanno, Giambattista

    2014-04-01

    Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease reflecting degeneration of upper and lower motoneurons (MNs). The cause of ALS and the mechanisms of neuronal death are still largely obscure, thus impairing the establishment of efficacious therapies. Glutamate (Glu)-mediated excitotoxicity plays a major role in MN degeneration in ALS. We recently demonstrated that the activation of Group I metabotropic Glu autoreceptors, belonging to both type 1 and type 5 receptors (mGluR1 and mGluR5), at glutamatergic spinal cord nerve terminals, produces excessive Glu release in mice over-expressing human superoxide-dismutase carrying the G93A point mutation (SOD1(G93A)), a widely used animal model of human ALS. To establish whether these receptors are implicated in ALS, we generated mice expressing half dosage of mGluR1 in the SOD1(G93A) background (SOD1(G93A)Grm1(crv4/+)), by crossing the SOD1(G93A) mutant mouse with the Grm1(crv4/+) mouse, lacking mGluR1 because of a spontaneous recessive mutation. SOD1(G93A)Grm1(crv4/+) mice showed prolonged survival probability, delayed pathology onset, slower disease progression and improved motor performances compared to SOD1(G93A) mice. These effects were associated to reduction of mGluR5 expression, enhanced number of MNs, decreased astrocyte and microglia activation, normalization of metallothionein and catalase mRNA expression, reduced mitochondrial damage, and decrease of abnormal Glu release in spinal cord of SOD1(G93A)Grm1(crv4/+)compared to SOD1(G93A) mice. These results demonstrate that a lower constitutive level of mGluR1 has a significant positive impact on mice with experimental ALS, thus providing the rationale for future pharmacological approaches to ALS by selectively blocking Group I metabotropic Glu receptors. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology.

    Science.gov (United States)

    Son, Marjatta; Puttaparthi, Krishna; Kawamata, Hibiki; Rajendran, Bhagya; Boyer, Philip J; Manfredi, Giovanni; Elliott, Jeffrey L

    2007-04-03

    Cu, Zn superoxide dismutase (SOD1) has been detected within spinal cord mitochondria of mutant SOD1 transgenic mice, a model of familial ALS. The copper chaperone for SOD1 (CCS) provides SOD1 with copper, facilitates the conversion of immature apo-SOD1 to a mature holoform, and influences in yeast the cytosolic/mitochondrial partitioning of SOD1. To determine how CCS affects G93A-SOD1-induced disease, we generated transgenic mice overexpressing CCS and crossed them to G93A-SOD1 or wild-type SOD1 transgenic mice. Both CCS transgenic mice and CCS/wild-type-SOD1 dual transgenic mice are neurologically normal. In contrast, CCS/G93A-SOD1 dual transgenic mice develop accelerated neurological deficits, with a mean survival of 36 days, compared with 242 days for G93A-SOD1 mice. Immuno-EM and subcellular fractionation studies on the spinal cord show that G93A-SOD1 is enriched within mitochondria in the presence of CCS overexpression. Our results indicate that CCS overexpression in G93A-SOD1 mice produces severe mitochondrial pathology and accelerates disease course.

  9. Genetic biomarkers for ALS disease in transgenic SOD1(G93A mice.

    Directory of Open Access Journals (Sweden)

    Ana C Calvo

    Full Text Available The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1(G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1(G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10 could be considered potential genetic biomarkers of longevity in transgenic SOD1(G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.

  10. In-vivo effects of knocking-down metabotropic glutamate receptor 5 in the SOD1G93A mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Bonifacino, Tiziana; Cattaneo, Luca; Gallia, Elena; Puliti, Aldamaria; Melone, Marcello; Provenzano, Francesca; Bossi, Simone; Musante, Ilaria; Usai, Cesare; Conti, Fiorenzo; Bonanno, Giambattista; Milanese, Marco

    2017-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder due to loss of upper and lower motor neurons (MNs). The mechanisms of neuronal death are largely unknown, thus prejudicing the successful pharmacological treatment. One major cause for MN degeneration in ALS is represented by glutamate(Glu)-mediated excitotoxicity. We have previously reported that activation of Group I metabotropic Glu receptors (mGluR1 and mGluR5) at glutamatergic spinal cord nerve terminals produces abnormal Glu release in the widely studied SOD1 G93A mouse model of ALS. We also demonstrated that halving mGluR1 expression in the SOD1 G93A mouse had a positive impact on survival, disease onset, disease progression, and on a number of cellular and biochemical readouts of ALS. We generated here SOD1 G93A mice with reduced expression of mGluR5 (SOD1 G93A Grm5 -/+ ) by crossing the SOD1 G93A mutant mouse with the mGluR5 heterozigous Grm5 -/+ mouse. SOD1 G93A Grm5 -/+ mice showed prolonged survival probability and delayed pathology onset. These effects were associated to enhanced number of preserved MNs, decreased astrocyte and microglia activation, reduced cytosolic free Ca 2+ concentration, and regularization of abnormal Glu release in the spinal cord of SOD1 G93A Grm5 -/+ mice. Unexpectedly, only male SOD1 G93A Grm5 -/+ mice showed improved motor skills during disease progression vs. SOD1 G93A mice, while SOD1 G93A Grm5 -/+ females did not. These results demonstrate that a lower constitutive level of mGluR5 has a significant positive impact in mice with ALS and support the idea that blocking Group I mGluRs may represent a potentially effective pharmacological approach to the disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Gene expression changes in spinal motoneurons of the SOD1G93A transgenic model for ALS after treatment with G-CSF

    Science.gov (United States)

    Henriques, Alexandre; Kastner, Stefan; Chatzikonstantinou, Eva; Pitzer, Claudia; Plaas, Christian; Kirsch, Friederike; Wafzig, Oliver; Krüger, Carola; Spoelgen, Robert; Gonzalez De Aguilar, Jose-Luis; Gretz, Norbert; Schneider, Armin

    2015-01-01

    Background: Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3–5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Results: Motoneurons from SOD1G93A mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1G93A motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Conclusions: Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1G93A motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS. PMID:25653590

  12. Gene expression changes in spinal motoneurons of the SOD1G93A transgenic model for ALS after treatment with G-CSF.

    Directory of Open Access Journals (Sweden)

    Alexandre eHenriques

    2015-01-01

    Full Text Available ABSTRACTBackgroundAmyotrophic lateral sclerosis (ALS is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3-5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1G93A mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. ResultsMotoneurons from SOD1G93A mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age, when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age. Upon G-CSF treatment, transcriptomic deregulations of SOD1G93A motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12.ConclusionsOur data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1G93A motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS.

  13. Gene expression changes in spinal motoneurons of the SOD1(G93A) transgenic model for ALS after treatment with G-CSF.

    Science.gov (United States)

    Henriques, Alexandre; Kastner, Stefan; Chatzikonstantinou, Eva; Pitzer, Claudia; Plaas, Christian; Kirsch, Friederike; Wafzig, Oliver; Krüger, Carola; Spoelgen, Robert; Gonzalez De Aguilar, Jose-Luis; Gretz, Norbert; Schneider, Armin

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) is an incurable fatal motoneuron disease with a lifetime risk of approximately 1:400. It is characterized by progressive weakness, muscle wasting, and death ensuing 3-5 years after diagnosis. Granulocyte-colony stimulating factor (G-CSF) is a drug candidate for ALS, with evidence for efficacy from animal studies and interesting data from pilot clinical trials. To gain insight into the disease mechanisms and mode of action of G-CSF, we performed gene expression profiling on isolated lumbar motoneurons from SOD1(G93A) mice, the most frequently studied animal model for ALS, with and without G-CSF treatment. Motoneurons from SOD1(G93A) mice present a distinct gene expression profile in comparison to controls already at an early disease stage (11 weeks of age), when treatment was initiated. The degree of deregulation increases at a time where motor symptoms are obvious (15 weeks of age). Upon G-CSF treatment, transcriptomic deregulations of SOD1(G93A) motoneurons were notably restored. Discriminant analysis revealed that SOD1 mice treated with G-CSF has a transcriptom close to presymptomatic SOD1 mice or wild type mice. Some interesting genes modulated by G-CSF treatment relate to neuromuscular function such as CCR4-NOT or Prss12. Our data suggest that G-CSF is able to re-adjust gene expression in symptomatic SOD1(G93A) motoneurons. This provides further arguments for G-CSF as a promising drug candidate for ALS.

  14. The effect of amyotrophic lateral sclerosis-linked exogenous SOD1-G93A on electrophysiological properties and intracellular calcium in cultured rat astrocytes.

    Science.gov (United States)

    Milošević, Milena; Bataveljić, Danijela; Nikolić, Ljiljana; Bijelić, Dunja; Andjus, Pavle

    2016-01-01

    Over 150 mutations in the SOD1 gene that encodes Cu/Zn superoxide dismutase (SOD1) cause 20-25% of familial ALS, albeit without a known gain-of-function mechanism. ALS is also non-cell-autonomous, the interactions between motor neurons and their glial neighbours being implicated in disease progression. The aim here was to investigate the biophysical effects of the exogenous human mutant SOD1-G93A on rat astrocytes in culture. Primary cortical astrocyte cultures were treated with recombinant human apo- mSOD1-G93A vs. wild-type control (wtSOD1) and recorded by patch-clamp and calcium imaging. Results showed that exogenous mSOD1 as well as wtSOD1 induced a decrease of membrane resistance, the effect being persistent (up to 13 min) only for the mutant form. Similarly, whole-cell inward currents in astrocytes were augmented by both wt and mSOD1, but the effect was twice larger and only progressed continuously for the latter. Both forms of SOD1 also induced a rise in intracellular Ca(2+) activity, the effect being dependent on external Ca(2+) and again only persisted with mSOD1, becoming significantly different from wtSOD1 only at longer times (14 min). In conclusion, this study points to membrane permeability and Ca(2+) signalling as processes affected by SOD1-G93A that presents the humoral factor triggering the role of astrocytes in ALS pathophysiology.

  15. Mice overexpressing both non-mutated human SOD1 and mutated SOD1G93A genes: a competent experimental model for studying iron metabolism in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Anna eGajowiak

    2016-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease characterized by degeneration and loss of motor neurons in the spinal cord, brainstem and motor cortex. Up to 10% of ALS cases are inherited (familial, fALS and associated with mutations, frequently in the superoxide dismutase 1 (SOD1 gene. Rodent transgenic models of ALS are often used to elucidate a complex pathogenesis of this disease. Of importance, both ALS patients and animals carrying mutated human SOD1 gene show symptoms of oxidative stress and iron metabolism misregulation. The aim of our study was to characterize changes in iron metabolism in one of the most commonly used models of ALS – transgenic mice overexpressing human mutated SOD1G93A gene. We analyzed the expression of iron-related genes in asymptomatic, 2-month old and symptomatic, 4-month old SOD1G93A mice. In parallel, respective age-matched mice overexpressing human non-mutated SOD1 transgene and control mice were analyzed. We demonstrate that the overexpression of both SOD1 and SOD1G93A genes account for a substantial increase in SOD1 protein levels and activity in selected tissues and that not all the changes in iron metabolism genes expression are specific for the overexpression of the mutated form of SOD1.

  16. Optimised and rapid pre-clinical screening in the SOD1(G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS).

    Science.gov (United States)

    Mead, Richard J; Bennett, Ellen J; Kennerley, Aneurin J; Sharp, Paul; Sunyach, Claire; Kasher, Paul; Berwick, Jason; Pettmann, Brigitte; Battaglia, Guiseppe; Azzouz, Mimoun; Grierson, Andrew; Shaw, Pamela J

    2011-01-01

    The human SOD1(G93A) transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS). In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3-4 months) is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6) SOD1(G93A) transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved.

  17. Effect of CCS on the accumulation of FALS SOD1 mutant-containing aggregates and on mitochondrial translocation of SOD1 mutants: implication of a free radical hypothesis.

    Science.gov (United States)

    Kim, Ha Kun; Chung, Youn Wook; Chock, P Boon; Yim, Moon B

    2011-05-15

    Missense mutations of SOD1 are linked to familial amyotrophic lateral sclerosis (FALS) through a yet-to-be identified toxic-gain-of-function. One of the proposed mechanisms involves enhanced aggregate formation. However, a recent study showed that dual transgenic mice overexpressing both G93A and CCS copper chaperone (G93A/CCS) exhibit no SOD1-positive aggregates yet show accelerated FALS symptoms with enhanced mitochondrial pathology compared to G93A mice. Using a dicistronic mRNA to simultaneously generate hSOD1 mutants, G93A, A4V and G85R, and hCCS in AAV293 cells, we revealed: (i) CCS is degraded primarily via a macroautophagy pathway. It forms a stable heterodimer with inactive G85R, and via its novel copper chaperone-independent molecular chaperone activity facilitates G85R degradation via a macroautophagy-mediated pathway. For active G93A and A4V, CCS catalyzes their maturation to form active and soluble homodimers. (ii) CCS reduces, under non-oxidative conditions, yet facilitates in the presence of H(2)O(2), mitochondrial translocation of inactive SOD1 mutants. These results, together with previous reports showing FALS SOD1 mutants enhanced free radical-generating activity, provide a mechanistic explanation for the observations with G93A/CCS dual transgenic mice and suggest that free radical generation by FALS SOD1, enhanced by CCS, may, in part, be responsible for the FALS SOD1 mutant-linked aggregation, mitochondrial translocation, and degradation. Published by Elsevier Inc.

  18. Muscle Expression of SOD1G93A Triggers the Dismantlement of Neuromuscular Junction via PKC-Theta.

    Science.gov (United States)

    Dobrowolny, Gabriella; Martini, Martina; Scicchitano, Bianca Maria; Romanello, Vanina; Boncompagni, Simona; Nicoletti, Carmine; Pietrangelo, Laura; De Panfilis, Simone; Catizone, Angela; Bouchè, Marina; Sandri, Marco; Rudolf, Rüdiger; Protasi, Feliciano; Musarò, Antonio

    2018-04-20

    Neuromuscular junction (NMJ) represents the morphofunctional interface between muscle and nerve. Several chronic pathologies such as aging and neurodegenerative diseases, including muscular dystrophy and amyotrophic lateral sclerosis, display altered NMJ and functional denervation. However, the triggers and the molecular mechanisms underlying the dismantlement of NMJ remain unclear. Here we provide evidence that perturbation in redox signaling cascades, induced by muscle-specific accumulation of mutant SOD1 G93A in transgenic MLC/SOD1 G93A mice, is causally linked to morphological alterations of the neuromuscular presynaptic terminals, high turnover rate of acetylcholine receptor, and NMJ dismantlement. The analysis of potential molecular mechanisms that mediate the toxic activity of SOD1 G93A revealed a causal link between protein kinase Cθ (PKCθ) activation and NMJ disintegration. The study discloses the molecular mechanism that triggers functional denervation associated with the toxic activity of muscle SOD1 G93A expression and suggests the possibility of developing a new strategy to counteract age- and pathology-associated denervation based on pharmacological inhibition of PKCθ activity. Collectively, these data indicate that muscle-specific accumulation of oxidative damage can affect neuromuscular communication and induce NMJ dismantlement through a PKCθ-dependent mechanism. Antioxid. Redox Signal. 28, 1105-1119.

  19. A Cystine-Rich Whey Supplement (Immunocal® Delays Disease Onset and Prevents Spinal Cord Glutathione Depletion in the hSOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Erika K. Ross

    2014-12-01

    Full Text Available Depletion of the endogenous antioxidant, glutathione (GSH, underlies progression of the devastating neurodegenerative disease, amyotrophic lateral sclerosis (ALS. Thus, strategies aimed at elevating GSH may yield new therapeutics for ALS. Here, we investigated the effects of a unique non-denatured whey protein supplement, Immunocal®, in the transgenic Gly position 93 to Ala (G93A mutant hSOD1 (hSOD1G93A mouse model of ALS. Immunocal® is rich in the GSH precursor, cystine, and is therefore capable of bolstering GSH content. Transgenic hSOD1G93A mice receiving Immunocal® displayed a significant delay in disease onset compared to untreated hSOD1G93A controls. Additionally, Immunocal® treatment significantly decreased the rate of decline in grip strength and prevented disease-associated reductions in whole blood and spinal cord tissue GSH levels in end-stage hSOD1G93A mice. However, Immunocal® did not extend survival, likely due to its inability to preserve the mitochondrial GSH pool in spinal cord. Combination treatment with Immunocal® and the anti-glutamatergic compound, riluzole, delayed disease onset and extended survival in hSOD1G93A mice. These findings demonstrate that sustaining tissue GSH with Immunocal® only modestly delays disease onset and slows the loss of skeletal muscle strength in hSOD1G93A mice. Moreover, the inability of Immunocal® to rescue mitochondrial GSH in spinal cord provides a possible mechanism for its lack of effect on survival and is a limiting factor in the potential utility of this supplement as a therapeutic for ALS.

  20. The Effects of Bee Venom Acupuncture on the Central Nervous System and Muscle in an Animal hSOD1G93A Mutant

    Directory of Open Access Journals (Sweden)

    MuDan Cai

    2015-03-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is caused by the degeneration of lower and upper motor neurons, leading to muscle paralysis and respiratory failure. However, there is no effective drug or therapy to treat ALS. Complementary and alternative medicine (CAM, including acupuncture, pharmacopuncture, herbal medicine, and massage is popular due to the significant limitations of conventional therapy. Bee venom acupuncture (BVA, also known as one of pharmacopunctures, has been used in Oriental medicine to treat inflammatory diseases. The purpose of this study is to investigate the effect of BVA on the central nervous system (CNS and muscle in symptomatic hSOD1G93A transgenic mice, an animal model of ALS. Our findings show that BVA at ST36 enhanced motor function and decreased motor neuron death in the spinal cord compared to that observed in hSOD1G93A transgenic mice injected intraperitoneally (i.p. with BV. Furthermore, BV treatment at ST36 eliminated signaling downstream of inflammatory proteins such as TLR4 in the spinal cords of symptomatic hSOD1G93A transgenic mice. However, i.p. treatment with BV reduced the levels of TNF-α and Bcl-2 expression in the muscle hSOD1G93A transgenic mice. Taken together, our findings suggest that BV pharmacopuncture into certain acupoints may act as a chemical stimulant to activate those acupoints and subsequently engage the endogenous immune modulatory system in the CNS in an animal model of ALS.

  1. Optimised and rapid pre-clinical screening in the SOD1(G93A transgenic mouse model of amyotrophic lateral sclerosis (ALS.

    Directory of Open Access Journals (Sweden)

    Richard J Mead

    Full Text Available The human SOD1(G93A transgenic mouse has been used extensively since its development in 1994 as a model for amyotrophic lateral sclerosis (ALS. In that time, a great many insights into the toxicity of mutant SOD1 have been gained using this and other mutant SOD transgenic mouse models. They all demonstrate a selective toxicity towards motor neurons and in some cases features of the pathology seen in the human disease. These models have two major drawbacks. Firstly the generation of robust preclinical data in these models has been highlighted as an area for concern. Secondly, the amount of time required for a single preclinical experiment in these models (3-4 months is a hurdle to the development of new therapies. We have developed an inbred C57BL/6 mouse line from the original mixed background (SJLxC57BL/6 SOD1(G93A transgenic line and show here that the disease course is remarkably consistent and much less prone to background noise, enabling reduced numbers of mice for testing of therapeutics. Secondly we have identified very early readouts showing a large decline in motor function compared to normal mice. This loss of motor function has allowed us to develop an early, sensitive and rapid screening protocol for the initial phases of denervation of muscle fibers, observed in this model. We describe multiple, quantitative readouts of motor function that can be used to interrogate this early mechanism. Such an approach will increase throughput for reduced costs, whilst reducing the severity of the experimental procedures involved.

  2. An ALS-Associated Mutant SOD1 Rapidly Suppresses KCNT1 (Slack) Na+-Activated K+ Channels in Aplysia Neurons.

    Science.gov (United States)

    Zhang, Yalan; Ni, Weiming; Horwich, Arthur L; Kaczmarek, Leonard K

    2017-02-22

    Mutations that alter levels of Slack (KCNT1) Na + -activated K + current produce devastating effects on neuronal development and neuronal function. We now find that Slack currents are rapidly suppressed by oligomers of mutant human Cu/Zn superoxide dismutase 1 (SOD1), which are associated with motor neuron toxicity in an inherited form of amyotrophic lateral sclerosis (ALS). We recorded from bag cell neurons of Aplysia californica , a model system to study neuronal excitability. We found that injection of fluorescent wild-type SOD1 (wt SOD1YFP) or monomeric mutant G85R SOD1YFP had no effect on net ionic currents measured under voltage clamp. In contrast, outward potassium currents were significantly reduced by microinjection of mutant G85R SOD1YFP that had been preincubated at 37°C or of cross-linked dimers of G85R SOD1YFP. Reduction of potassium current was also seen with multimeric G85R SOD1YFP of ∼300 kDa or >300 kDa that had been cross-linked. In current clamp recordings, microinjection of cross-linked 300 kDa increased excitability by depolarizing the resting membrane potential, and decreasing the latency of action potentials triggered by depolarization. The effect of cross-linked 300 kDa on potassium current was reduced by removing Na + from the bath solution, or by knocking down levels of Slack using siRNA. It was also prevented by pharmacological inhibition of ASK1 (apoptosis signal-regulating kinase 1) or of c-Jun N-terminal kinase, but not by an inhibitor of p38 mitogen-activated protein kinase. These results suggest that soluble mutant SOD1 oligomers rapidly trigger a kinase pathway that regulates the activity of Na + -activated K + channels in neurons. SIGNIFICANCE STATEMENT Slack Na + -activated K + channels (KCNT1, K Na 1.1) regulate neuronal excitability but are also linked to cytoplasmic signaling pathways that control neuronal protein translation. Mutations that alter the amplitude of these currents have devastating effects on neuronal

  3. A Quick Phenotypic Neurological Scoring System for Evaluating Disease Progression in the SOD1-G93A Mouse Model of ALS.

    Science.gov (United States)

    Hatzipetros, Theo; Kidd, Joshua D; Moreno, Andy J; Thompson, Kenneth; Gill, Alan; Vieira, Fernando G

    2015-10-06

    The SOD1-G93A transgenic mouse is the most widely used animal model of amyotrophic lateral sclerosis (ALS). At ALS TDI we developed a phenotypic screening protocol, demonstrated in video herein, which reliably assesses the neuromuscular function of SOD1-G93A mice in a quick manner. This protocol encompasses a simple neurological scoring system (NeuroScore) designed to assess hindlimb function. NeuroScore is focused on hindlimb function because hindlimb deficits are the earliest reported neurological sign of disease in SOD1-G93A mice. The protocol developed by ALS TDI provides an unbiased assessment of onset of paresis (slight or partial paralysis), progression and severity of paralysis and it is sensitive enough to identify drug-induced changes in disease progression. In this report, the combination of a detailed manuscript with video minimizes scoring ambiguities and inter-experimenter variability thus allowing for the protocol to be adopted by other laboratories and enabling comparisons between studies taking place at different settings. We believe that this video protocol can serve as an excellent training tool for present and future ALS researchers.

  4. Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice.

    Science.gov (United States)

    Turner, Bradley J; Alfazema, Neza; Sheean, Rebecca K; Sleigh, James N; Davies, Kay E; Horne, Malcolm K; Talbot, Kevin

    2014-04-01

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1(G93A) mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1(G93A) mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A Novel Iron Chelator-Radical Scavenger Ameliorates Motor Dysfunction and Improves Life Span and Mitochondrial Biogenesis in SOD1G93A ALS Mice.

    Science.gov (United States)

    Golko-Perez, Sagit; Amit, Tamar; Bar-Am, Orit; Youdim, Moussa B H; Weinreb, Orly

    2017-02-01

    The aim of the present study was to evaluate the therapeutic effect of the novel neuroprotective multitarget brain permeable monoamine oxidase inhibitor/iron chelating-radical scavenging drug, VAR10303 (VAR), co-administered with high-calorie/energy-supplemented diet (ced) in SOD1 G93A transgenic amyotrophic lateral sclerosis (ALS) mice. Administration of VAR-ced was initiated after the appearance of disease symptoms (at day 88), as this regimen is comparable with the earliest time at which drug therapy could start in ALS patients. Using this rescue protocol, we demonstrated in the current study that VAR-ced treatment provided several beneficial effects in SOD1 G93A mice, including improvement in motor performance, elevation of survival time, and attenuation of iron accumulation and motoneuron loss in the spinal cord. Moreover, VAR-ced treatment attenuated neuromuscular junction denervation and exerted a significant preservation of myofibril regular morphology, associated with a reduction in the expression levels of genes related to denervation and atrophy in the gastrocnemius (GNS) muscle in SOD1 G93A mice. These effects were accompanied by upregulation of mitochondrial DNA and elevated activities of complexes I and II in the GNS muscle. We have also demonstrated that VAR-ced treatment upregulated the mitochondrial biogenesis master regulator, peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α) and increased PGC-1α-targeted metabolic genes and proteins, such as, PPARγ, UCP1/3, NRF1/2, Tfam, and ERRα in GNS muscle. These results provide evidence of therapeutic potential of VAR-ced in SOD1 G93A mice with underlying molecular mechanisms, further supporting the importance role of multitarget iron chelators in ALS treatment.

  6. Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1G93A rat.

    Science.gov (United States)

    Stamenković, Stefan; Dučić, Tanja; Stamenković, Vera; Kranz, Alexander; Andjus, Pavle R

    2017-08-15

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor and cognitive domains of the CNS. Mutations in the Cu,Zn-superoxide dismutase (SOD1) cause 20% of familial ALS and provoke formation of intracellular aggregates and copper and zinc unbinding, leading to glial activation and neurodegeneration. Therefore, we investigated glial cell morphology, intracellular SOD1 distribution, and elemental composition in the brainstem and hippocampus of the hSOD1 G93A transgenic rat model of ALS. Immunostaining for astrocytes, microglia and SOD1 revealed glial proliferation and progressive tissue accumulation of SOD1 in both brain regions of ALS rats starting already at the presymptomatic stage. Glial cell morphology analysis in the brainstem of ALS rats revealed astrocyte activation occurring before disease symptoms onset, followed by activation of microglia. Hippocampal ALS astrocytes exhibited an identical reactive profile, while microglial morphology was unchanged. Additionally, ALS brainstem astrocytes demonstrated progressive SOD1 accumulation in the cell body and processes, while microglial SOD1 levels were reduced and its distribution limited to distal cell processes. In the hippocampus both glial cell types exhibited SOD1 accumulation in the cell body. X-ray fluorescence imaging revealed decreased P and increased Ca, Cl, K, Ni, Cu and Zn in the brainstem, and higher levels of Cl, Ni and Cu, but lower levels of Zn in the hippocampus of symptomatic ALS rats. These results bring new insights into the glial response during disease development and progression in motor as well as in non-motor CNS structures, and indicate disturbed tissue elemental homeostasis as a prominent hallmark of disease pathology. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Tempol moderately extends survival in a hSOD1(G93A ALS rat model by inhibiting neuronal cell loss, oxidative damage and levels of non-native hSOD1(G93A forms.

    Directory of Open Access Journals (Sweden)

    Edlaine Linares

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease characterized by the progressive dysfunction and death of motor neurons by mechanisms that remain unclear. Evidence indicates that oxidative mechanisms contribute to ALS pathology, but classical antioxidants have not performed well in clinical trials. Cyclic nitroxides are an alternative worth exploring because they are multifunctional antioxidants that display low toxicity in vivo. Here, we examine the effects of the cyclic nitroxide tempol (4-hydroxy-2,2,6,6-tetramethyl piperidine-1-oxyl on ALS onset and progression in transgenic female rats over-expressing the mutant hSOD1(G93A . Starting at 7 weeks of age, a high dose of tempol (155 mg/day/rat in the rat´s drinking water had marginal effects on the disease onset but decelerated disease progression and extended survival by 9 days. In addition, tempol protected spinal cord tissues as monitored by the number of neuronal cells, and the reducing capability and levels of carbonylated proteins and non-native hSOD1 forms in spinal cord homogenates. Intraperitoneal tempol (26 mg/rat, 3 times/week extended survival by 17 days. This group of rats, however, diverted to a decelerated disease progression. Therefore, it was inconclusive whether the higher protective effect of the lower i.p. dose was due to higher tempol bioavailability, decelerated disease development or both. Collectively, the results show that tempol moderately extends the survival of ALS rats while protecting their cellular and molecular structures against damage. Thus, the results provide proof that cyclic nitroxides are alternatives worth to be further tested in animal models of ALS.

  8. Biological effects of CCS in the absence of SOD1 enzyme activation: implications for disease in a mouse model for ALS.

    Science.gov (United States)

    Proescher, Jody B; Son, Marjatta; Elliott, Jeffrey L; Culotta, Valeria C

    2008-06-15

    The CCS copper chaperone is critical for maturation of Cu, Zn-superoxide dismutase (SOD1) through insertion of the copper co-factor and oxidization of an intra-subunit disulfide. The disulfide helps stabilize the SOD1 polypeptide, which can be particularly important in cases of amyotrophic lateral sclerosis (ALS) linked to misfolding of mutant SOD1. Surprisingly, however, over-expressed CCS was recently shown to greatly accelerate disease in a G93A SOD1 mouse model for ALS. Herein we show that disease in these G93A/CCS mice correlates with incomplete oxidation of the SOD1 disulfide. In the brain and spinal cord, CCS over-expression failed to enhance oxidation of the G93A SOD1 disulfide and if anything, effected some accumulation of disulfide-reduced SOD1. This effect was mirrored in culture with a C244,246S mutant of CCS that has the capacity to interact with SOD1 but can neither insert copper nor oxidize the disulfide. In spite of disulfide effects, there was no evidence for increased SOD1 aggregation. If anything, CCS over-expression prevented SOD1 misfolding in culture as monitored by detergent insolubility. This protection against SOD1 misfolding does not require SOD1 enzyme activation as the same effect was obtained with the C244,246S allele of CCS. In the G93A SOD1 mouse, CCS over-expression was likewise associated with a lack of obvious SOD1 misfolding marked by detergent insolubility. CCS over-expression accelerates SOD1-linked disease without the hallmarks of misfolding and aggregation seen in other mutant SOD1 models. These studies are the first to indicate biological effects of CCS in the absence of SOD1 enzymatic activation.

  9. PGC-1 silencing compounds the perturbation of mitochondrial function caused by mutant SOD1 in skeletal muscle of ALS mouse model

    Directory of Open Access Journals (Sweden)

    Yan eQi

    2015-10-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a lethal neurodegenerative disease causing death of motor neurons. This study investigated the roles of energy metabolism in the pathogenesis of ALS in the SOD1(G93A transgenic mouse model. Control and SOD1(G93A mice were administered with shcontrol or shPGC-1α in combination with PBS or TZD for 8 weeks. Gene expression was analyzed by quantitative real-time PCR and western blot. ROS and fibrosis were assessed with a colorimetric kit and Sirius staining respectively. Inflammatory cytokines were measured using ELISA kits. The levels of tissue ROS and serum inflammatory cytokines were significantly higher in SOD1(G93A mice compared to control mice, and knocking down PGC-1α drastically increased cytokine levels in both control and SOD1(G93A mice. Muscle fibrosis was much severer in SOD1(G93A mice, and worsened by silencing PGC-1α and attenuate d by TZD. The expression levels of PGC-1α, SOD1, UCP2, and cytochrome C were substantially reduced by shPGC-1α and increased by TZD in muscle of both control and SOD1(G93A mice whereas the level of NF-B was significantly elevated in SOD1(G93A mice, which was further increased by PGC-1α silencing. These data indicated that disruption of energy homeostasis would exacerbate the pathological changes caused by SOD1 mutations to promote the pathogenesis of ALS.

  10. Phenotype of transgenic mice carrying a very low copy number of the mutant human G93A superoxide dismutase-1 gene associated with amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Deitch

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease of the motor neuron. While most cases of ALS are sporadic, 10% are familial (FALS with 20% of FALS caused by a mutation in the gene that codes for the enzyme Cu/Zn superoxide dismutase (SOD1. There is variability in sporadic ALS as well as FALS where even within the same family some siblings with the same mutation do not manifest disease. A transgenic (Tg mouse model of FALS containing 25 copies of the mutant human SOD1 gene demonstrates motor neuron pathology and progressive weakness similar to ALS patients, leading to death at approximately 130 days. The onset of symptoms and survival of these transgenic mice are directly related to the number of copies of the mutant gene. We report the phenotype of a very low expressing (VLE G93A SOD1 Tg carrying only 4 copies of the mutant G93ASOD1 gene. While weakness can start at 9 months, only 74% of mice 18 months or older demonstrate disease. The VLE mice show decreased motor neurons compared to wild-type mice as well as increased cytoplasmic translocation of TDP-43. In contrast to the standard G93A SOD1 Tg mouse which always develops motor weakness leading to death, not all VLE animals manifested clinical disease or shortened life span. In fact, approximately 20% of mice older than 24 months had no motor symptoms and only 18% of VLE mice older than 22 months reached end stage. Given the variable penetrance of clinical phenotype, prolonged survival, and protracted loss of motor neurons the VLE mouse provides a new tool that closely mimics human ALS. This tool will allow the study of pathologic events over time as well as the study of genetic and environmental modifiers that may not be causative, but can exacerbate or accelerate motor neuron disease.

  11. Mechanisms of Enhanced Phrenic Long-Term Facilitation in SOD1G93A Rats

    Science.gov (United States)

    Satriotomo, Irawan; Grebe, Ashley M.

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease, causing muscle paralysis and death from respiratory failure. Effective means to preserve/restore ventilation are necessary to increase the quality and duration of life in ALS patients. At disease end-stage in a rat ALS model (SOD1G93A), acute intermittent hypoxia (AIH) restores phrenic nerve activity to normal levels via enhanced phrenic long-term facilitation (pLTF). Mechanisms enhancing pLTF in end-stage SOD1G93A rats are not known. Moderate AIH-induced pLTF is normally elicited via cellular mechanisms that require the following: Gq-protein-coupled 5-HT2 receptor activation, new BDNF synthesis, and MEK/ERK signaling (the Q pathway). In contrast, severe AIH elicits pLTF via a distinct mechanism that requires the following: Gs-protein-coupled adenosine 2A receptor activation, new TrkB synthesis, and PI3K/Akt signaling (the S pathway). In end-stage male SOD1G93A rats and wild-type littermates, we investigated relative Q versus S pathway contributions to enhanced pLTF via intrathecal (C4) delivery of small interfering RNAs targeting BDNF or TrkB mRNA, and MEK/ERK (U0126) or PI3 kinase/Akt (PI828) inhibitors. In anesthetized, paralyzed and ventilated rats, moderate AIH-induced pLTF was abolished by siBDNF and UO126, but not siTrkB or PI828, demonstrating that enhanced pLTF occurs via the Q pathway. Although phrenic motor neuron numbers were decreased in end-stage SOD1G93A rats (∼30% survival; p phrenic motor neurons (p phrenic motor plasticity results from amplification of normal cellular mechanisms versus addition/substitution of alternative mechanisms. Greater understanding of mechanisms underlying phrenic motor plasticity in ALS may guide development of new therapies to preserve and/or restore breathing in ALS patients. PMID:28500219

  12. Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation

    Directory of Open Access Journals (Sweden)

    Qi Min

    2006-01-01

    Full Text Available Abstract Detailed study of glial inflammation has been hindered by lack of cell culture systems that spontaneously demonstrate the "neuroinflammatory phenotype". Mice expressing a glycine → alanine substitution in cytosolic Cu, Zn-superoxide dismutase (G93A-SOD1 associated with familial amyotrophic lateral sclerosis (ALS demonstrate age-dependent neuroinflammation associated with broad-spectrum cytokine, eicosanoid and oxidant production. In order to more precisely study the cellular mechanisms underlying glial activation in the G93A-SOD1 mouse, primary astrocytes were cultured from 7 day mouse neonates. At this age, G93A-SOD1 mice demonstrated no in vivo hallmarks of neuroinflammation. Nonetheless astrocytes cultured from G93A-SOD1 (but not wild-type human SOD1-expressing transgenic mouse pups demonstrated a significant elevation in either the basal or the tumor necrosis alpha (TNFα-stimulated levels of proinflammatory eicosanoids prostaglandin E2 (PGE2 and leukotriene B4 (LTB4; inducible nitric oxide synthase (iNOS and •NO (indexed by nitrite release into the culture medium; and protein carbonyl products. Specific cytokine- and TNFα death-receptor-associated components were similarly upregulated in cultured G93A-SOD1 cells as assessed by multiprobe ribonuclease protection assays (RPAs for their mRNA transcripts. Thus, endogenous glial expression of G93A-SOD1 produces a metastable condition in which glia are more prone to enter an activated neuroinflammatory state associated with broad-spectrum increased production of paracrine-acting substances. These findings support a role for active glial involvement in ALS and may provide a useful cell culture tool for the study of glial inflammation.

  13. Mechanisms of Enhanced Phrenic Long-Term Facilitation in SOD1G93A Rats.

    Science.gov (United States)

    Nichols, Nicole L; Satriotomo, Irawan; Allen, Latoya L; Grebe, Ashley M; Mitchell, Gordon S

    2017-06-14

    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease, causing muscle paralysis and death from respiratory failure. Effective means to preserve/restore ventilation are necessary to increase the quality and duration of life in ALS patients. At disease end-stage in a rat ALS model ( SOD1 G93A ), acute intermittent hypoxia (AIH) restores phrenic nerve activity to normal levels via enhanced phrenic long-term facilitation (pLTF). Mechanisms enhancing pLTF in end-stage SOD1 G93A rats are not known. Moderate AIH-induced pLTF is normally elicited via cellular mechanisms that require the following: G q -protein-coupled 5-HT 2 receptor activation, new BDNF synthesis, and MEK/ERK signaling (the Q pathway). In contrast, severe AIH elicits pLTF via a distinct mechanism that requires the following: G s -protein-coupled adenosine 2A receptor activation, new TrkB synthesis, and PI3K/Akt signaling (the S pathway). In end-stage male S OD1 G93A rats and wild-type littermates, we investigated relative Q versus S pathway contributions to enhanced pLTF via intrathecal (C4) delivery of small interfering RNAs targeting BDNF or TrkB mRNA, and MEK/ERK (U0126) or PI3 kinase/Akt (PI828) inhibitors. In anesthetized, paralyzed and ventilated rats, moderate AIH-induced pLTF was abolished by siBDNF and UO126, but not siTrkB or PI828, demonstrating that enhanced pLTF occurs via the Q pathway. Although phrenic motor neuron numbers were decreased in end-stage SOD1 G93A rats (∼30% survival; p phrenic motor neurons ( p phrenic motor plasticity results from amplification of normal cellular mechanisms versus addition/substitution of alternative mechanisms. Greater understanding of mechanisms underlying phrenic motor plasticity in ALS may guide development of new therapies to preserve and/or restore breathing in ALS patients. Copyright © 2017 the authors 0270-6474/17/375834-12$15.00/0.

  14. Absence of Nrf2 or its selective overexpression in neurons and muscle does not affect survival in ALS-linked mutant hSOD1 mouse models.

    Directory of Open Access Journals (Sweden)

    Marcelo R Vargas

    Full Text Available The nuclear factor erythroid 2-related factor 2 (Nrf2 governs the expression of antioxidant and phase II detoxifying enzymes. Nrf2 activation can prevent or reduce cellular damage associated with several types of injury in many different tissues and organs. Dominant mutations in Cu/Zn-superoxide dismutase (SOD1 cause familial forms of amyotrophic lateral sclerosis (ALS, a fatal disorder characterized by the progressive loss of motor neurons and subsequent muscular atrophy. We have previously shown that Nrf2 activation in astrocytes delays neurodegeneration in ALS mouse models. To further investigate the role of Nrf2 in ALS we determined the effect of absence of Nrf2 or its restricted overexpression in neurons or type II skeletal muscle fibers on symptoms onset and survival in mutant hSOD1 expressing mice. We did not observe any detrimental effect associated with the lack of Nrf2 in two different mutant hSOD1 animal models of ALS. However, restricted Nrf2 overexpression in neurons or type II skeletal muscle fibers delayed disease onset but failed to extend survival in hSOD1(G93A mice. These results highlight the concept that not only the pharmacological target but also the cell type targeted may be relevant when considering a Nrf2-mediated therapeutic approach for ALS.

  15. An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jiou Wang

    2009-01-01

    Full Text Available The nature of toxic effects exerted on neurons by misfolded proteins, occurring in a number of neurodegenerative diseases, is poorly understood. One approach to this problem is to measure effects when such proteins are expressed in heterologous neurons. We report on effects of an ALS-associated, misfolding-prone mutant human SOD1, G85R, when expressed in the neurons of Caenorhabditis elegans. Stable mutant transgenic animals, but not wild-type human SOD1 transgenics, exhibited a strong locomotor defect associated with the presence, specifically in mutant animals, of both soluble oligomers and insoluble aggregates of G85R protein. A whole-genome RNAi screen identified chaperones and other components whose deficiency increased aggregation and further diminished locomotion. The nature of the locomotor defect was investigated. Mutant animals were resistant to paralysis by the cholinesterase inhibitor aldicarb, while exhibiting normal sensitivity to the cholinergic agonist levamisole and normal muscle morphology. When fluorescently labeled presynaptic components were examined in the dorsal nerve cord, decreased numbers of puncta corresponding to neuromuscular junctions were observed in mutant animals and brightness was also diminished. At the EM level, mutant animals exhibited a reduced number of synaptic vesicles. Neurotoxicity in this system thus appears to be mediated by misfolded SOD1 and is exerted on synaptic vesicle biogenesis and/or trafficking.

  16. Fisetin Exerts Antioxidant and Neuroprotective Effects in Multiple Mutant hSOD1 Models of Amyotrophic Lateral Sclerosis by Activating ERK.

    Science.gov (United States)

    Wang, T H; Wang, S Y; Wang, X D; Jiang, H Q; Yang, Y Q; Wang, Y; Cheng, J L; Zhang, C T; Liang, W W; Feng, H L

    2018-05-21

    Oxidative stress exhibits a central role in the course of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease commonly found to include a copper/zinc superoxide dismutase (SOD1) gene mutation. Fisetin, a natural antioxidant, has shown benefits in varied neurodegenerative diseases. The possible effect of fisetin in ALS has not been clarified as of yet. We investigated whether fisetin affected mutant hSOD1 ALS models. Three different hSOD1-related mutant models were used: Drosophila expressing mutant hSOD1 G85R , hSOD1 G93A NSC34 cells, and transgenic mice. Fisetin treatment provided neuroprotection as demonstrated by an improved survival rate, attenuated motor impairment, reduced ROS damage and regulated redox homeostasis compared with those in controls. Furthermore, fisetin increased the expression of phosphorylated ERK and upregulated antioxidant factors, which were reversed by MEK/ERK inhibition. Finally, fisetin reduced the levels of both mutant and wild-type hSOD1 in vivo and in vitro, as well as the levels of detergent-insoluble hSOD1 proteins. The results indicate that fisetin protects cells from ROS damage and improves the pathological behaviors caused by oxidative stress in disease models related to SOD1 gene mutations probably by activating ERK, thereby providing a potential treatment for ALS. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Bee Venom Acupuncture Augments Anti-Inflammation in the Peripheral Organs of hSOD1G93A Transgenic Mice.

    Science.gov (United States)

    Lee, Sun-Hwa; Choi, Sun-Mi; Yang, Eun Jin

    2015-07-29

    Amyotrophic lateral sclerosis (ALS) includes progressively degenerated motor neurons in the brainstem, motor cortex, and spinal cord. Recent reports demonstrate the dysfunction of multiple organs, including the lungs, spleen, and liver, in ALS animals and patients. Bee venom acupuncture (BVA) has been used for treating inflammatory diseases in Oriental Medicine. In a previous study, we demonstrated that BV prevented motor neuron death and increased anti-inflammation in the spinal cord of symptomatic hSOD1G93A transgenic mice. In this study, we examined whether BVA's effects depend on acupuncture point (ST36) in the organs, including the liver, spleen and kidney, of hSOD1G93A transgenic mice. We found that BV treatment at ST36 reduces inflammation in the liver, spleen, and kidney compared with saline-treatment at ST36 and BV injected intraperitoneally in symptomatic hSOD1G93A transgenic mice. Those findings suggest that BV treatment combined with acupuncture stimulation is more effective at reducing inflammation and increasing immune responses compared with only BV treatment, at least in an ALS animal model.

  18. A mutation in the dynein heavy chain gene compensates for energy deficit of mutant SOD1 mice and increases potentially neuroprotective IGF-1

    Directory of Open Access Journals (Sweden)

    Larmet Yves

    2011-04-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. ALS patients, as well as animal models such as mice overexpressing mutant SOD1s, are characterized by increased energy expenditure. In mice, this hypermetabolism leads to energy deficit and precipitates motor neuron degeneration. Recent studies have shown that mutations in the gene encoding the dynein heavy chain protein are able to extend lifespan of mutant SOD1 mice. It remains unknown whether the protection offered by these dynein mutations relies on a compensation of energy metabolism defects. Results SOD1(G93A mice were crossbred with mice harboring the dynein mutant Cramping allele (Cra/+ mice. Dynein mutation increased adipose stores in compound transgenic mice through increasing carbohydrate oxidation and sparing lipids. Metabolic changes that occurred in double transgenic mice were accompanied by the normalization of the expression of key mRNAs in the white adipose tissue and liver. Furthermore, Dynein Cra mutation rescued decreased post-prandial plasma triglycerides and decreased non esterified fatty acids upon fasting. In SOD1(G93A mice, the dynein Cra mutation led to increased expression of IGF-1 in the liver, increased systemic IGF-1 and, most importantly, to increased spinal IGF-1 levels that are potentially neuroprotective. Conclusions These findings suggest that the protection against SOD1(G93A offered by the Cramping mutation in the dynein gene is, at least partially, mediated by a reversal in energy deficit and increased IGF-1 availability to motor neurons.

  19. Measuring Neuromuscular Junction Functionality in the SOD1(G93A) Animal Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Rizzuto, Emanuele; Pisu, Simona; Musarò, Antonio; Del Prete, Zaccaria

    2015-09-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to motor neuron degeneration, alteration in neuromuscular junctions (NMJs), muscle atrophy, and paralysis. To investigate the NMJ functionality in ALS we tested, in vitro, two innervated muscle types excised from SOD1(G93A) transgenic mice at the end-stage of the disease: the Soleus, a postural muscle almost completely paralyzed at that stage, and the diaphragm, which, on the contrary, is functional until death. To this aim we employed an experimental protocol that combined two types of electrical stimulation: the direct stimulation and the stimulation through the nerve. The technique we applied allowed us to determine the relevance of NMJ functionality separately from muscle contractile properties in SOD1(G93A) animal model. Functional measurements revealed that the muscle contractility of transgenic diaphragms is almost unaltered in comparison to control muscles, while transgenic Soleus muscles were severely compromised. In contrast, when stimulated via the nerve, both transgenic muscle types showed a strong decrease of the contraction force, a slowing down of the kinetic parameters, as well as alterations in the neurotransmission failure parameter. All together, these results confirm a severely impaired functionality in the SOD1(G93A) neuromuscular junctions.

  20. A molecular chaperone activity of CCS restores the maturation of SOD1 fALS mutants.

    Science.gov (United States)

    Luchinat, Enrico; Barbieri, Letizia; Banci, Lucia

    2017-12-12

    Superoxide dismutase 1 (SOD1) is an important metalloprotein for cellular oxidative stress defence, that is mutated in familiar variants of Amyotrophic Lateral Sclerosis (fALS). Some mutations destabilize the apo protein, leading to the formation of misfolded, toxic species. The Copper Chaperone for SOD1 (CCS) transiently interacts with SOD1 and promotes its correct maturation by transferring copper and catalyzing disulfide bond formation. By in vitro and in-cell NMR, we investigated the role of the SOD-like domain of CCS (CCS-D2). We showed that CCS-D2 forms a stable complex with zinc-bound SOD1 in human cells, that has a twofold stabilizing effect: it both prevents the accumulation of unstructured mutant SOD1 and promotes zinc binding. We further showed that CCS-D2 interacts with apo-SOD1 in vitro, suggesting that in cells CCS stabilizes mutant apo-SOD1 prior to zinc binding. Such molecular chaperone function of CCS-D2 is novel and its implications in SOD-linked fALS deserve further investigation.

  1. Presymptomatic Treatment with Acetylcholinesterase Antisense Oligonucleotides Prolongs Survival in ALS (G93A-SOD1 Mice

    Directory of Open Access Journals (Sweden)

    Gotkine Marc

    2013-01-01

    Full Text Available Objective. Previous research suggests that acetylcholinesterase (AChE may be involved in ALS pathogenesis. AChE enzyme inhibitors can upregulate AChE transcription which in certain contexts can have deleterious (noncatalytic effects, making them theoretically harmful in ALS, whilst AChE antisense-oligonucleotides (mEN101, which downregulate AChE may be beneficial. Our aim was to investigate whether downregulation of AChE using mEN101 is beneficial in an ALS mouse model. Methods. ALS (G93A-SOD1 mice received saline, mEN101, inverse-EN101, or neostigmine. Treatments were administered from 5 weeks. Disease-onset and survival were recorded. Additional mice were sacrificed for pathological analysis at 15 weeks of age. In a follow-up experiment treatment was started at the symptomatic stage at a higher dose. Results. mEN101 given at the presymptomatic (but not symptomatic stage prolonged survival and attenuated motor-neuron loss in ALS mice. In contrast, neostigmine exacerbated the clinical parameters. Conclusions. These results suggest that AChE may be involved in ALS pathogenesis. The accelerated disease course with neostigmine suggests that any beneficial effects of mEN101 occur through a non-catalytic rather than cholinergic mechanism.

  2. Seeking homeostasis: Temporal trends in respiration, oxidation, and calcium in SOD1 G93A Amyotrophic Lateral Sclerosis mice

    Directory of Open Access Journals (Sweden)

    Cameron W Irvin

    2015-07-01

    Full Text Available Impairments in mitochondria, oxidative regulation, and calcium homeostasis have been well documented in numerous amyotrophic lateral sclerosis (ALS experimental models, especially in the superoxide dismutase 1 glycine 93 to alanine (SOD1 G93A transgenic mouse. However, the timing of these deficiencies has been debatable. In a systematic review of 45 articles, we examine experimental measurements of cellular respiration, mitochondrial mechanisms, oxidative markers, and calcium regulation. We evaluate the quantitative magnitude and statistical temporal trend of these aggregated assessments in high transgene copy SOD1 G93A mice compared to wild type mice. Analysis of overall trends reveals cellular respiration, intracellular ATP, and corresponding mitochondrial elements (Cox, cytochrome c, complex I, enzyme activity are depressed for the entire lifespan of the SOD1 G93A mouse. Oxidant markers (H2O2, 8OH2’dG, MDA are initially similar to wild type but are double that of wild type by the time of symptom onset despite early post-natal elevation of protective heat shock proteins. All aspects of calcium regulation show early disturbances, although a notable and likely compensatory convergence to near wild type levels appears to occur between 40-80 days (pre-onset, followed by a post-onset elevation in intracellular calcium. The identified temporal trends and compensatory fluctuations provide evidence that the cause of ALS may lay within failed homeostatic regulation, itself, rather than any one particular perturbing event or cellular mechanism. We discuss the vulnerabilities of motoneurons to regulatory instability and possible hypotheses regarding failed regulation and its potential treatment in ALS.

  3. Neuroprotective Effect of Bexarotene in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Riancho, Javier; Ruiz-Soto, María; Berciano, María T.; Berciano, José; Lafarga, Miguel

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive weakness and muscle atrophy related to the loss of upper and lower motor neurons (MNs) without a curative treatment. There is experimental evidence suggesting that retinoids may be involved in ALS pathogenesis. Bexarotene (Bxt) is a retinoid-X receptor agonist used in the treatment of cutaneous lymphoma with a favorable safety profile whose effects have been recently investigated in other neurodegenerative diseases. In this study, we analyze the potential therapeutic effect of Bxt in the SOD1G93A mouse model of ALS. Mice were treated with Bxt or vehicle five times per week from day 60 onward. Survival, weight, and neuromuscular function studies together with histological and biochemical analyses were performed. Bxt significantly delayed motor function deterioration, ameliorated the loss of body weight, and extended mice survival up to 30% of the symptomatic period. Histological analyses of the lumbosacral spinal cord revealed that Bxt markedly delayed the early motor-neuron degeneration occurring at presymptomatic stages in ALS-transgenic mice. Bxt treatment contributed to preserve the MN homeostasis in the SOD1G93A mice. Particularly, it reduced the neuronal loss and the chromatolytic response, induced nucleolar hypertrophy, decreased the formation of ubiquitylated inclusions, and modulated the lysosomal response. As an agonist of the retinoic-X receptor (RXR) pathway, Bxt notably increased the nuclear expression of the RXRα throughout transcriptionally active euchromatin domains. Bxt also contributed to protect the MN environment by reducing reactive astrogliosis and preserving perisomatic synapsis. Overall, these neuroprotective effects suggest that treatment with Bxt could be useful in ALS, particularly in those cases related to SOD1 mutations. PMID:26190974

  4. Spinal cord homogenates from SOD1 familial amyotrophic lateral sclerosis induce SOD1 aggregation in living cells.

    Directory of Open Access Journals (Sweden)

    Edward Pokrishevsky

    Full Text Available Mutant Cu/Zn superoxide dismutase (SOD1 can confer its misfolding on wild-type SOD1 in living cells; the propagation of misfolding can also be transmitted between cells in vitro. Recent studies identified fluorescently-tagged SOD1G85R as a promiscuous substrate that is highly prone to aggregate by a variety of templates, in vitro and in vivo. Here, we utilized several SOD1-GFP reporter proteins with G37R, G85R, or G93A mutations in SOD1. We observed that human spinal cord homogenates prepared from SOD1 familial ALS (FALS can induce significantly more intracellular reporter protein aggregation than spinal cord homogenates from sporadic ALS, Alzheimer's disease, multiple system atrophy or healthy control individuals. We also determined that the induction of reporter protein aggregation by SOD1-FALS tissue homogenates can be attenuated by incubating the cells with the SOD1 misfolding-specific antibody 3H1, or the small molecule 5-fluorouridine. Our study further implicates SOD1 as the seeding particle responsible for the spread of SOD1-FALS neurodegeneration from its initial onset site(s, and demonstrates two potential therapeutic strategies for SOD1-mediated disease. This work also comprises a medium-throughput cell-based platform of screening potential therapeutics to attenuate propagated aggregation of SOD1.

  5. Histamine Regulates the Inflammatory Profile of SOD1-G93A Microglia and the Histaminergic System Is Dysregulated in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Savina Apolloni

    2017-11-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a late-onset motor neuron disease where activated glia release pro-inflammatory cytokines that trigger a vicious cycle of neurodegeneration in the absence of resolution of inflammation. Given the well-established role of histamine as a neuron-to-glia alarm signal implicated in brain disorders, the aim of this study was to investigate the expression and regulation of the histaminergic pathway in microglial activation in ALS mouse model and in humans. By examining the contribution of the histaminergic system to ALS, we found that particularly via H1 and H4 receptors, histamine promoted an anti-inflammatory profile in microglia from SOD1-G93A mice by modulating their activation state. A decrease in NF-κB and NADPH oxidase 2 with an increase in arginase 1 and P2Y12 receptor was induced by histamine only in the ALS inflammatory environment, but not in the healthy microglia, together with an increase in IL-6, IL-10, CD163, and CD206 phenotypic markers in SOD1-G93A cells. Moreover, histaminergic H1, H2, H3, and H4 receptors, and histamine metabolizing enzymes histidine decarboxylase, histamine N-methyltransferase, and diamine oxidase were found deregulated in spinal cord, cortex, and hypothalamus of SOD1-G93A mice during disease progression. Finally, by performing a meta-analysis study, we found a modulated expression of histamine-related genes in cortex and spinal cord from sporadic ALS patients. Our findings disclose that histamine acts as anti-inflammatory agent in ALS microglia and suggest a dysregulation of the histaminergic signaling in ALS.

  6. Redox susceptibility of SOD1 mutants is associated with the differential response to CCS over-expression in vivo.

    Science.gov (United States)

    Son, Marjatta; Fu, Qiao; Puttaparthi, Krishna; Matthews, Christina M; Elliott, Jeffrey L

    2009-04-01

    Over-expression of CCS in G93A SOD1 mice accelerates neurological disease and enhances mitochondrial pathology. We studied the effect of CCS over-expression in transgenic mice expressing G37R, G86R or L126Z SOD1 mutations in order to understand factors which influence mitochondrial dysfunction. Over-expression of CCS markedly decreased survival and produced mitochondrial vacuolation in G37R SOD1 mice but not in G86R or L126Z SOD1 mice. Moreover, CCS/G37R SOD1 spinal cord showed specific reductions in mitochondrial complex IV subunits consistent with an isolated COX deficiency, while no such reductions were detected in CCS/G86R or CCS/L126Z SOD1 mice. CCS over-expression increased the ratio of reduced to oxidized SOD1 monomers in the spinal cords of G37R SOD1 as well as G93A SOD1 mice, but did not influence the redox state of G86R or L126Z SOD1 monomers. The effects of CCS on disease are SOD1 mutation dependent and correlate with SOD1 redox susceptibility.

  7. Oral treatment with Cu(II)(atsm) increases mutant SOD1 in vivo but protects motor neurons and improves the phenotype of a transgenic mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Roberts, Blaine R; Lim, Nastasia K H; McAllum, Erin J; Donnelly, Paul S; Hare, Dominic J; Doble, Philip A; Turner, Bradley J; Price, Katherine A; Lim, Sin Chun; Paterson, Brett M; Hickey, James L; Rhoads, Timothy W; Williams, Jared R; Kanninen, Katja M; Hung, Lin W; Liddell, Jeffrey R; Grubman, Alexandra; Monty, Jean-Francois; Llanos, Roxana M; Kramer, David R; Mercer, Julian F B; Bush, Ashley I; Masters, Colin L; Duce, James A; Li, Qiao-Xin; Beckman, Joseph S; Barnham, Kevin J; White, Anthony R; Crouch, Peter J

    2014-06-04

    Mutations in the metallo-protein Cu/Zn-superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS) in humans and an expression level-dependent phenotype in transgenic rodents. We show that oral treatment with the therapeutic agent diacetyl-bis(4-methylthiosemicarbazonato)copper(II) [Cu(II)(atsm)] increased the concentration of mutant SOD1 (SOD1G37R) in ALS model mice, but paradoxically improved locomotor function and survival of the mice. To determine why the mice with increased levels of mutant SOD1 had an improved phenotype, we analyzed tissues by mass spectrometry. These analyses revealed most SOD1 in the spinal cord tissue of the SOD1G37R mice was Cu deficient. Treating with Cu(II)(atsm) decreased the pool of Cu-deficient SOD1 and increased the pool of fully metallated (holo) SOD1. Tracking isotopically enriched (65)Cu(II)(atsm) confirmed the increase in holo-SOD1 involved transfer of Cu from Cu(II)(atsm) to SOD1, suggesting the improved locomotor function and survival of the Cu(II)(atsm)-treated SOD1G37R mice involved, at least in part, the ability of the compound to improve the Cu content of the mutant SOD1. This was supported by improved survival of SOD1G37R mice that expressed the human gene for the Cu uptake protein CTR1. Improving the metal content of mutant SOD1 in vivo with Cu(II)(atsm) did not decrease levels of misfolded SOD1. These outcomes indicate the metal content of SOD1 may be a greater determinant of the toxicity of the protein in mutant SOD1-associated forms of ALS than the mutations themselves. Improving the metal content of SOD1 therefore represents a valid therapeutic strategy for treating ALS caused by SOD1. Copyright © 2014 the authors 0270-6474/14/348021-11$15.00/0.

  8. Single chain variable fragment antibodies block aggregation and toxicity induced by familial ALS-linked mutant forms of SOD1.

    Science.gov (United States)

    Ghadge, Ghanashyam D; Pavlovic, John D; Koduvayur, Sujatha P; Kay, Brian K; Roos, Raymond P

    2013-08-01

    Approximately 10% of amyotrophic lateral sclerosis (ALS) cases are familial (known as FALS) with an autosomal dominant inheritance pattern, and ~25% of FALS cases are caused by mutations in Cu/Zn superoxide dismutase (SOD1). There is convincing evidence that mutant SOD1 (mtSOD1) kills motor neurons (MNs) because of a gain-of-function toxicity, most likely related to aggregation of mtSOD1. A number of recent reports have suggested that antibodies can be used to treat mtSOD1-induced FALS. To follow up on the use of antibodies as potential therapeutics, we generated single chain fragments of variable region antibodies (scFvs) against SOD1, and then expressed them as 'intrabodies' within a motor neuron cell line. In the present study, we describe isolation of human scFvs that interfere with mtSOD1 in vitro aggregation and toxicity. These scFvs may have therapeutic potential in sporadic ALS, as well as FALS, given that sporadic ALS may also involve abnormalities in the SOD1 protein or activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. ZNStress: a high-throughput drug screening protocol for identification of compounds modulating neuronal stress in the transgenic mutant sod1G93R zebrafish model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    McGown, Alexander; Shaw, Dame Pamela J; Ramesh, Tennore

    2016-07-26

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease with death on average within 2-3 years of symptom onset. Mutations in superoxide dismutase 1 (SOD1) have been identified to cause ALS. Riluzole, the only neuroprotective drug for ALS provides life extension of only 3 months on average. Thishighlights the need for compound screening in disease models to identify new neuroprotective therapies for this disease. Zebrafish is an emerging model system that is well suited for the study of diseasepathophysiology and also for high throughput (HT) drug screening. The mutant sod1 zebrafish model of ALS mimics the hallmark features of ALS. Using a fluorescence based readout of neuronal stress, we developed a high throughput (HT) screen to identify neuroprotective compounds. Here we show that the zebrafish screen is a robust system that can be used to rapidly screen thousands ofcompounds and also demonstrate that riluzole is capable of reducing neuronal stress in this model system. The screen shows optimal quality control, maintaining a high sensitivity and specificity withoutcompromising throughput. Most importantly, we demonstrate that many compounds previously failed in human clinical trials, showed no stress reducing activity in the zebrafish assay. We conclude that HT drug screening using a mutant sod1 zebrafish is a reliable model system which supplemented with secondary assays would be useful in identifying drugs with potential for neuroprotective efficacy in ALS.

  10. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1G93A ALS rat model.

    Science.gov (United States)

    Stamenković, Stefan; Pavićević, Aleksandra; Mojović, Miloš; Popović-Bijelić, Ana; Selaković, Vesna; Andjus, Pavle; Bačić, Goran

    2017-07-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the motor pathways of the central nervous system. Although a number of pathophysiological mechanisms have been described in the disease, post mortem and animal model studies indicate blood-brain barrier (BBB) disruption and elevated production of reactive oxygen species as major contributors to disease pathology. In this study, the BBB permeability and the brain tissue redox status of the SOD1 G93A ALS rat model in the presymptomatic (preALS) and symptomatic (ALS) stages of the disease were investigated by in vivo EPR spectroscopy using three aminoxyl radicals with different cell membrane and BBB permeabilities, Tempol, 3-carbamoyl proxyl (3CP), and 3-carboxy proxyl (3CxP). Additionally, the redox status of the two brain regions previously implicated in disease pathology, brainstem and hippocampus, was investigated by spectrophotometric biochemical assays. The EPR results indicated that among the three spin probes, 3CP is the most suitable for reporting the intracellular redox status changes, as Tempol was reduced in vivo within minutes (t 1/2 =2.0±0.5min), thus preventing reliable kinetic modeling, whereas 3CxP reduction kinetics gave divergent conclusions, most probably due to its membrane impermeability. It was observed that the reduction kinetics of 3CP in vivo, in the head of preALS and ALS SOD1 G93A rats was altered compared to the controls. Pharmacokinetic modeling of 3CP reduction in vivo, revealed elevated tissue distribution and tissue reduction rate constants indicating an altered brain tissue redox status, and possibly BBB disruption in these animals. The preALS and ALS brain tissue homogenates also showed increased nitrilation, superoxide production, lipid peroxidation and manganese superoxide dismutase activity, and a decreased copper-zinc superoxide dismutase activity. The present study highlights in vivo EPR spectroscopy as a reliable tool for the investigation of

  11. ALS-causing profilin-1-mutant forms a non-native helical structure in membrane environments.

    Science.gov (United States)

    Lim, Liangzhong; Kang, Jian; Song, Jianxing

    2017-11-01

    Despite having physiological functions completely different from superoxide dismutase 1 (SOD1), profilin 1 (PFN1) also carries mutations causing amyotrophic lateral sclerosis (ALS) with a striking similarity to that triggered by SOD1 mutants. Very recently, the C71G-PFN1 has been demonstrated to cause ALS by a gain of toxicity and the acceleration of motor neuron degeneration preceded the accumulation of its aggregates. Here by atomic-resolution NMR determination of conformations and dynamics of WT-PFN1 and C71G-PFN1 in aqueous buffers and in membrane mimetics DMPC/DHPC bicelle and DPC micelle, we deciphered that: 1) the thermodynamic destabilization by C71G transforms PFN1 into coexistence with the unfolded state, which is lacking of any stable tertiary/secondary structures as well as restricted ps-ns backbone motions, thus fundamentally indistinguishable from ALS-causing SOD1 mutants. 2) Most strikingly, while WT-PFN1 only weakly interacts with DMPC/DHPC bicelle without altering the native structure, C71G-PFN1 acquires abnormal capacity in strongly interacting with DMPC/DHPC bicelle and DPC micelle, energetically driven by transforming the highly disordered unfolded state into a non-native helical structure, similar to what has been previously observed on ALS-causing SOD1 mutants. Our results imply that one potential mechanism for C71G-PFN1 to initiate ALS might be the abnormal interaction with membranes as recently established for SOD1 mutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice.

    Science.gov (United States)

    Sironi, Francesca; Vallarola, Antonio; Violatto, Martina Bruna; Talamini, Laura; Freschi, Mattia; De Gioia, Roberta; Capelli, Chiara; Agostini, Azzurra; Moscatelli, Davide; Tortarolo, Massimo; Bigini, Paolo; Introna, Martino; Bendotti, Caterina

    2017-12-01

    Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression. Copyright © 2017. Published by Elsevier B.V.

  13. Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components.

    Science.gov (United States)

    Şahin, Aslı; Held, Aaron; Bredvik, Kirsten; Major, Paxton; Achilli, Toni-Marie; Kerson, Abigail G; Wharton, Kristi; Stilwell, Geoff; Reenan, Robert

    2017-02-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies. Copyright © 2017 by the Genetics Society of America.

  14. S-acylation of SOD1, CCS, and a stable SOD1-CCS heterodimer in human spinal cords from ALS and non-ALS subjects.

    Science.gov (United States)

    Antinone, Sarah E; Ghadge, Ghanashyam D; Ostrow, Lyle W; Roos, Raymond P; Green, William N

    2017-01-25

    Previously, we found that human Cu, Zn-superoxide dismutase (SOD1) is S-acylated (palmitoylated) in vitro and in amyotrophic lateral sclerosis (ALS) mouse models, and that S-acylation increased for ALS-causing SOD1 mutants relative to wild type. Here, we use the acyl resin-assisted capture (acyl-RAC) assay to demonstrate S-acylation of SOD1 in human post-mortem spinal cord homogenates from ALS and non-ALS subjects. Acyl-RAC further revealed that endogenous copper chaperone for SOD1 (CCS) is S-acylated in both human and mouse spinal cords, and in vitro in HEK293 cells. SOD1 and CCS formed a highly stable heterodimer in human spinal cord homogenates that was resistant to dissociation by boiling, denaturants, or reducing agents and was not observed in vitro unless both SOD1 and CCS were overexpressed. Cysteine mutations that attenuate SOD1 maturation prevented the SOD1-CCS heterodimer formation. The degree of S-acylation was highest for SOD1-CCS heterodimers, intermediate for CCS monomers, and lowest for SOD1 monomers. Given that S-acylation facilitates anchoring of soluble proteins to cell membranes, our findings suggest that S-acylation and membrane localization may play an important role in CCS-mediated SOD1 maturation. Furthermore, the highly stable S-acylated SOD1-CCS heterodimer may serve as a long-lived maturation intermediate in human spinal cord.

  15. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.

    Directory of Open Access Journals (Sweden)

    Tali Gidalevitz

    2009-03-01

    Full Text Available Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.

  16. In yeast redistribution of Sod1 to the mitochondrial intermembrane space provides protection against respiration derived oxidative stress.

    Science.gov (United States)

    Klöppel, Christine; Michels, Christine; Zimmer, Julia; Herrmann, Johannes M; Riemer, Jan

    2010-12-03

    The antioxidative enzyme copper-zinc superoxide dismutase (Sod1) is an important cellular defence system against reactive oxygen species (ROS). While the majority of this enzyme is localized to the cytosol, about 1% of the cellular Sod1 is present in the intermembrane space (IMS) of mitochondria. These amounts of mitochondrial Sod1 are increased for certain Sod1 mutants that are linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). To date, only little is known about the physiological function of mitochondrial Sod1. Here, we use the model system Saccharomyces cerevisiae to generate cells in which Sod1 is exclusively localized to the IMS. We find that IMS-localized Sod1 can functionally substitute wild type Sod1 and that it even exceeds the protective capacity of wild type Sod1 under conditions of mitochondrial ROS stress. Moreover, we demonstrate that upon expression in yeast cells the common ALS-linked mutant Sod1(G93A) becomes enriched in the mitochondrial fraction and provides an increased protection of cells from mitochondrial oxidative stress. Such an effect cannot be observed for the catalytically inactive mutant Sod1(G85R). Our observations suggest that the targeting of Sod1 to the mitochondrial IMS provides an increased protection against respiration-derived ROS. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Acute intermittent hypoxia induced phrenic long-term facilitation despite increased SOD1 expression in a rat model of ALS.

    Science.gov (United States)

    Nichols, Nicole L; Satriotomo, Irawan; Harrigan, Daniel J; Mitchell, Gordon S

    2015-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease characterized by motor neuron death. Since most ALS patients succumb to ventilatory failure from loss of respiratory motor neurons, any effective ALS treatment must preserve and/or restore breathing capacity. In rats over-expressing mutated super-oxide dismutase-1 (SOD1(G93A)), the capacity to increase phrenic motor output is decreased at disease end-stage, suggesting imminent ventilatory failure. Acute intermittent hypoxia (AIH) induces phrenic long-term facilitation (pLTF), a form of spinal respiratory motor plasticity with potential to restore phrenic motor output in clinical disorders that compromise breathing. Since pLTF requires NADPH oxidase activity and reactive oxygen species (ROS) formation, it is blocked by NADPH oxidase inhibition and SOD mimetics in normal rats. Thus, we hypothesized that SOD1(G93A) (mutant; MT) rats do not express AIH-induced pLTF due to over-expression of active mutant superoxide dismutase-1. AIH-induced pLTF and hypoglossal (XII) LTF were assessed in young, pre-symptomatic and end-stage anesthetized MT rats and age-matched wild-type littermates. Contrary to predictions, pLTF and XII LTF were observed in MT rats at all ages; at end-stage, pLTF was actually enhanced. SOD1 levels were elevated in young and pre-symptomatic MT rats, yet superoxide accumulation in putative phrenic motor neurons (assessed with dihydroethidium) was unchanged; however, superoxide accumulation significantly decreased at end-stage. Thus, compensatory mechanisms appear to maintain ROS homoeostasis until late in disease progression, preserving AIH-induced respiratory plasticity. Following intrathecal injections of an NADPH oxidase inhibitor (apocynin; 600 μM; 12 μL), pLTF was abolished in pre-symptomatic, but not end-stage MT rats, demonstrating that pLTF is NADPH oxidase dependent in pre-symptomatic, but NADPH oxidase independent in end-stage MT rats. Mechanisms

  18. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Kabashi, Edor; Bercier, Valérie; Lissouba, Alexandra; Liao, Meijiang; Brustein, Edna; Rouleau, Guy A; Drapeau, Pierre

    2011-08-01

    Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). Recently, mutations in the Fused in sarcoma gene (FUS) were identified in familial (FALS) ALS cases and sporadic (SALS) patients. Similarly to TDP-43 (coded by TARDBP gene), FUS is an RNA binding protein. Using the zebrafish (Danio rerio), we examined the consequences of expressing human wild-type (WT) FUS and three ALS-related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS-related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C) and FUS (R521H) or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A). Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1.

  19. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Edor Kabashi

    2011-08-01

    Full Text Available Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS. Recently, mutations in the Fused in sarcoma gene (FUS were identified in familial (FALS ALS cases and sporadic (SALS patients. Similarly to TDP-43 (coded by TARDBP gene, FUS is an RNA binding protein. Using the zebrafish (Danio rerio, we examined the consequences of expressing human wild-type (WT FUS and three ALS-related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS-related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C and FUS (R521H or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A. Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1.

  20. Unlike physical exercise, modified environment increases the lifespan of SOD1G93A mice however both conditions induce cellular changes.

    Directory of Open Access Journals (Sweden)

    Yannick N Gerber

    Full Text Available Amyotrophic lateral sclerosis (ALS is characterized by a gradual muscular paralysis resulting from progressive motoneurons death. ALS etiology remains unknown although it has been demonstrated to be a multifactorial disease involving several cellular partners. There is currently no effective treatment. Even if the effect of exercise is under investigation for many years, whether physical exercise is beneficial or harmful is still under debate.We investigated the effect of three different intensities of running exercises on the survival of SOD1(G93A mice. At the early-symptomatic stage (P60, males were isolated and randomly assigned to 5 conditions: 2 sedentary groups ("sedentary" and "sedentary treadmill" placed on the inert treadmill, and 3 different training intensity groups (5 cm/s, 10 cm/s and 21 cm/s; 15 min/day, 5days/week. We first demonstrated that an appropriate "control" of the environment is of the utmost importance since comparison of the two sedentary groups evidenced an 11.6% increase in survival in the "sedentary treadmill" group. Moreover, we showed by immunohistochemistry that this increased lifespan is accompanied with motoneurons survival and increased glial reactivity in the spinal cord. In a second step, we showed that when compared with the proper control, all three running-based training did not modify lifespan of the animals, but result in motoneurons preservation and changes in glial cells activation.We demonstrate that increase in survival induced by a slight daily modification of the environment is associated with motoneurons preservation and strong glial modifications in the lumbar spinal cord of SOD1(G93A. Using the appropriate control, we then demonstrate that all running intensities have no effect on the survival of ALS mice but induce cellular modifications. Our results highlight the critical importance of the control of the environment in ALS studies and may explain discrepancy in the literature regarding the

  1. Systemic injection of AAV9-GDNF provides modest functional improvements in the SOD1G93A ALS rat but has adverse side effects.

    Science.gov (United States)

    Thomsen, G M; Alkaslasi, M; Vit, J-P; Lawless, G; Godoy, M; Gowing, G; Shelest, O; Svendsen, C N

    2017-04-01

    Injecting proteins into the central nervous system that stimulate neuronal growth can lead to beneficial effects in animal models of disease. In particular, glial cell line-derived neurotrophic factor (GDNF) has shown promise in animal and cell models of Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis (ALS). Here, systemic AAV9-GDNF was delivered via tail vein injections to young rats to determine whether this could be a safe and functional strategy to treat the SOD1 G93A rat model of ALS and, therefore, translated to a therapy for ALS patients. We found that GDNF administration in this manner resulted in modest functional improvement, whereby grip strength was maintained for longer and the onset of forelimb paralysis was delayed compared to non-treated rats. This did not, however, translate into an extension in survival. In addition, ALS rats receiving GDNF exhibited slower weight gain, reduced activity levels and decreased working memory. Collectively, these results confirm that caution should be applied when applying growth factors such as GDNF systemically to multiple tissues.

  2. Radio-sensitivity of the cells from amyotrophic lateral sclerosis model mice transfected with human mutant SOD1

    International Nuclear Information System (INIS)

    Wate, Reika; Ito, Hidefumi; Kusaka, Hirofumi; Takahashi, Sentaro; Kubota, Yoshihisa; Suetomi, Katsutoshi; Sato, Hiroshi; Okayasu, Ryuichi

    2005-01-01

    In order to clarify the possible involvement of oxidative damage induced by ionizing radiation in the onset and/or progression of familial amyotrophic lateral sclerosis (ALS), we studied radio-sensitivity in primary cells derived from ALS model mice expressing human mutant Cu/Zn superoxide dismutase (SOD1). The primary mouse cells expressed both mouse and the mutant human SOD1. The cell survival of the transgenic mice (with mutant SOD1), determined by counting cell numbers at a scheduled time after X-irradiation, is very similar to that of cells from wild type animals. The induction and repair of DNA damage in the transgenic cells, measured by single cell gel electrophoresis and pulsed field gel electrophoresis, are also similar to those of wild type cells. These results indicate that the human mutant SOD1 gene does not seem to contribute to the alteration of radio-sensitivity, at least in the fibroblastic cells used here. Although it is necessary to consider the difference in cell types between fibroblastic and neuronal cells, the present results may suggest that ionizing radiation is not primarily responsible for the onset of familial ALS with the SOD1 mutation, and that the excess risks are probably not a concern for radiation diagnosis and therapy in familial ALS patients. (author)

  3. Comprehensive analysis to explain reduced or increased SOD1 enzymatic activity in ALS patients and their relatives.

    Science.gov (United States)

    Keskin, Isil; Birve, Anna; Berdynski, Mariusz; Hjertkvist, Karin; Rofougaran, Reza; Nilsson, Torbjörn K; Glass, Jonathan D; Marklund, Stefan L; Andersen, Peter M

    2017-08-01

    To characterise stabilities in erythrocytes of mutant SOD1 proteins, compare SOD1 enzymatic activities between patients with different genetic causes of ALS and search for underlying causes of deviant SOD1 activities in individuals lacking SOD1 mutations. Blood samples from 4072 individuals, ALS patients with or without a SOD1 mutation, family members and controls were studied. Erythrocyte SOD1 enzymatic activities normalised to haemoglobin content were determined, and effects of haemoglobin disorders on dismutation assessed. Coding SOD1 sequences were analysed by Sanger sequencing, exon copy number variations by fragment length analysis and by TaqMan Assay. Of the 44 SOD1 mutations found, 75% caused severe destabilisation of the mutant protein but in 25% it was physically stable. Mutations producing structural changes caused halved erythrocyte SOD1 activities. There were no differences in SOD1 activities between patients without a SOD1 mutation and control individuals or carriers of TBK1 mutations and C9orf72 HRE . In the low and high SOD1 activity groups no deviations were found in exon copy numbers and intron gross structures. Thalassemias and iron deficiency were associated with increased SOD1 activity/haemoglobin ratios. Adjunct erythrocyte SOD1 activity analysis reliably signals destabilising SOD1 mutations including intronic mutations that are missed by exon sequencing.

  4. Aberrant association of misfolded SOD1 with Na(+)/K(+)ATPase-α3 impairs its activity and contributes to motor neuron vulnerability in ALS

    NARCIS (Netherlands)

    Ruegsegger, Céline; Maharjan, Niran; Goswami, Anand; Filézac de L'Etang, Audrey; Weis, Joachim; Troost, Dirk; Heller, Manfred; Gut, Heinz; Saxena, Smita

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is an adult onset progressive motor neuron disease with no cure. Transgenic mice overexpressing familial ALS associated human mutant SOD1 are a commonly used model for examining disease mechanisms. Presently, it is well accepted that alterations in motor neuron

  5. The effect of SOD1 mutation on cellular bioenergetic profile and viability in response to oxidative stress and influence of mutation-type.

    Directory of Open Access Journals (Sweden)

    Katie Richardson

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a fatal neurodegenerative disorder characterized by the progressive degeneration of motor neurons. Substantial evidence implicates oxidative stress and mitochondrial dysfunction as early events in disease progression. Our aim was to ascertain whether mutation of the SOD1 protein increases metabolic functional susceptibility to oxidative stress. Here we used a motor neuron-like cell line (NSC34 stably transfected with various human mutant SOD1 transgenes (G93A, G37R, H48Q to investigate the impact of oxidative stress on cell viability and metabolic function within intact cells. NSC34 cells expressing mutant SOD1 showed a dose dependent reduction in cell viability when exposed to oxidative stress induced by hydrogen peroxide, with variation between mutations. The G93A transfectants showed greater cell death and LDH release compared to cells transfected with the other SOD1 mutations, and H48Q showed an accelerated decline at later time points. Differences in mitochondrial bioenergetics, including mitochondrial respiration, coupling efficiency and proton leak, were identified between the mutations, consistent with the differences observed in viability. NSC34 cells expressing G93A SOD1 displayed reduced coupled respiration and mitochondrial membrane potential compared to controls. Furthermore, the G93A mutation had significantly increased metabolic susceptibility to oxidative stress, with hydrogen peroxide increasing ROS production, reducing both cellular oxygen consumption and glycolytic flux in the cell. This study highlights bioenergetic defects within a cellular model of ALS and suggests that oxidative stress is not only detrimental to oxygen consumption but also glycolytic flux, which could lead to an energy deficit in the cell.

  6. ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation

    NARCIS (Netherlands)

    Vlug, Angela S; Teuling, Eva; Haasdijk, Elize D; French, Pim; Hoogenraad, Casper C; Jaarsma, Dick

    2005-01-01

    To obtain insight into the morphological and molecular correlates of motoneuron degeneration in amyotrophic lateral sclerosis (ALS) mice that express G93A mutant superoxide dismutase (SOD)1 (G93A mice), we have mapped and characterized 'sick' motoneurons labelled by the 'stress transcription

  7. Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motoneuron disease

    Directory of Open Access Journals (Sweden)

    Zippelius Annette

    2009-06-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons (MN in the brain stem and spinal cord. Intracellular disruptions of cytosolic and mitochondrial calcium have been associated with selective MN degeneration, but the underlying mechanisms are not well understood. The present evidence supports a hypothesis that mitochondria are a target of mutant SOD1-mediated toxicity in familial amyotrophic lateral sclerosis (fALS and intracellular alterations of cytosolic and mitochondrial calcium might aggravate the course of this neurodegenerative disease. In this study, we used a fluorescence charged cool device (CCD imaging system to separate and simultaneously monitor cytosolic and mitochondrial calcium concentrations in individual cells in an established cellular model of ALS. Results To gain insights into the molecular mechanisms of SOD1G93A associated motor neuron disease, we simultaneously monitored cytosolic and mitochondrial calcium concentrations in individual cells. Voltage – dependent cytosolic Ca2+ elevations and mitochondria – controlled calcium release mechanisms were monitored after loading cells with fluorescent dyes fura-2 and rhod-2. Interestingly, comparable voltage-dependent cytosolic Ca2+ elevations in WT (SH-SY5YWT and G93A (SH-SY5YG93A expressing cells were observed. In contrast, mitochondrial intracellular Ca2+ release responses evoked by bath application of the mitochondrial toxin FCCP were significantly smaller in G93A expressing cells, suggesting impaired calcium stores. Pharmacological experiments further supported the concept that the presence of G93A severely disrupts mitochondrial Ca2+ regulation. Conclusion In this study, by fluorescence measurement of cytosolic calcium and using simultaneous [Ca2+]i and [Ca2+]mito measurements, we are able to separate and simultaneously monitor cytosolic and mitochondrial calcium concentrations

  8. Accumulation of Misfolded SOD1 in Dorsal Root Ganglion Degenerating Proprioceptive Sensory Neurons of Transgenic Mice with Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Javier Sábado

    2014-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is an adult-onset progressive neurodegenerative disease affecting upper and lower motoneurons (MNs. Although the motor phenotype is a hallmark for ALS, there is increasing evidence that systems other than the efferent MN system can be involved. Mutations of superoxide dismutase 1 (SOD1 gene cause a proportion of familial forms of this disease. Misfolding and aggregation of mutant SOD1 exert neurotoxicity in a noncell autonomous manner, as evidenced in studies using transgenic mouse models. Here, we used the SOD1G93A mouse model for ALS to detect, by means of conformational-specific anti-SOD1 antibodies, whether misfolded SOD1-mediated neurotoxicity extended to neuronal types other than MNs. We report that large dorsal root ganglion (DRG proprioceptive neurons accumulate misfolded SOD1 and suffer a degenerative process involving the inflammatory recruitment of macrophagic cells. Degenerating sensory axons were also detected in association with activated microglial cells in the spinal cord dorsal horn of diseased animals. As large proprioceptive DRG neurons project monosynaptically to ventral horn MNs, we hypothesise that a prion-like mechanism may be responsible for the transsynaptic propagation of SOD1 misfolding from ventral horn MNs to DRG sensory neurons.

  9. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis

    Directory of Open Access Journals (Sweden)

    Melissa S Rotunno

    2013-12-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disorder that targets motor neurons, leading to paralysis and death within a few years of disease onset. While several genes have been linked to the inheritable, or familial, form of ALS, much less is known about the cause(s of sporadic ALS, which accounts for approximately 90% of ALS cases. Due to the clinical similarities between familial and sporadic ALS, it is plausible that both forms of the disease converge on a common pathway and, therefore, involve common factors. Recent evidence suggests the Cu,Zn-superoxide dismutase (SOD1 protein to be one such factor that is common to both sporadic and familial ALS. In 1993, mutations were uncovered in SOD1 that represent the first known genetic cause of familial ALS. While the exact mechanism of mutant-SOD1 toxicity is still not known today, most evidence points to a gain of toxic function that stems, at least in part, from the propensity of this protein to misfold. In the wild-type SOD1 protein, non-genetic perturbations such as metal depletion, disruption of the quaternary structure, and oxidation, can also induce SOD1 to misfold. In fact, these aforementioned post-translational modifications cause wild-type SOD1 to adopt a toxic conformation that is similar to familial ALS-linked SOD1 variants. These observations, together with the detection of misfolded wild-type SOD1 within human post-mortem sporadic ALS samples, have been used to support the controversial hypothesis that misfolded forms of wild-type SOD1 contribute to sporadic ALS pathogenesis. In this review, we present data from the literature that both support and contradict this hypothesis. We also discuss SOD1 as a potential therapeutic target for both familial and sporadic ALS.

  10. Comparison of dendritic calcium transients in juvenile wild type and SOD1G93A mouse lumbar motoneurons

    Directory of Open Access Journals (Sweden)

    Katharina Ann Quinlan

    2015-04-01

    Full Text Available Previous studies of spinal motoneurons in the SOD1 mouse model of amyotrophic lateral sclerosis have shown alterations long before disease onset, including increased dendritic branching, increased persistent Na+ and Ca2+ currents, and impaired axonal transport. In this study dendritic Ca2+ entry was investigated using 2 photon excitation fluorescence microscopy and whole-cell patch-clamp of juvenile (P4-11 motoneurons. Neurons were filled with both Ca2+ Green-1 and Texas Red dextrans, and line scans performed throughout. Steps were taken to account for different sources of variability, including 1 dye filling and laser penetration, 2 dendritic anatomy, and 3 the time elapsed from the start of recording. First, Ca2+ Green-1 fluorescence was normalized by Texas Red; next, neurons were reconstructed so anatomy could be evaluated; finally, time was recorded. Customized software detected the largest Ca2+ transients (area under the curve from each line scan and matched it with parameters above. Overall, larger dendritic diameter and shorter path distance from the soma were significant predictors of larger transients, while time was not significant up to 2 hours (data thereafter was dropped. However, Ca2+ transients showed additional variability. Controlling for previous factors, significant variation was found between Ca2+ signals from different processes of the same neuron in 3/7 neurons. This could reflect differential expression of Ca2+ channels, local neuromodulation or other variations. Finally, Ca2+ transients in SOD1G93A motoneurons were significantly smaller than in non-transgenic motoneurons. In conclusion, motoneuron processes show highly variable Ca2+ transients, but these transients are smaller overall SOD1G93A motoneurons.

  11. The Overexpression of TDP-43 Protein in the Neuron and Oligodendrocyte Cells Causes the Progressive Motor Neuron Degeneration in the SOD1 G93A Transgenic Mouse Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Lu, Yi; Tang, Chunyan; Zhu, Lei; Li, Jiao; Liang, Huiting; Zhang, Jie; Xu, Renshi

    2016-01-01

    The recent investigation suggested that the TDP-43 protein was closely related to the motor neuron degeneration in amyotrophic lateral sclerosis (ALS), but the pathogenesis contributed to motor neuron degeneration largely remained unknown. Therefore, we detected the alteration of TDP-43 expression and distribution in the adult spinal cord of the SOD1 G93A transgenic mouse model for searching the possible pathogenesis of ALS. We examined the TDP-43 expression and distribution in the different anatomic regions, segments and neural cells in the adult spinal cord at the different stages of the SOD1 wild-type and G93A transgenic model by the fluorescent immunohistochemical technology. We revealed that the amount of TDP-43 positive cell was cervical>lumbar>thoracic segment, that in the ventral horn was more than that in the dorsal horn, a few of TDP-43 protein sparsely expressed and distributed in the other regions, the TDP-43 protein weren't detected in the white matter and the central canal. The TDP-43 protein was mostly expressed and distributed in the nuclear of neuron cells and the cytoplasm of oligodendrocyte cells of the gray matter surrounding the central canal of spinal cord by the granular shape in the SOD1 wild-type and G93A transgenic mice. The amount of TDP-43 positive cell significantly increased at the onset and progression stages of ALS following with the increase of neuron death in spinal cord, particularly in the ventral horn of cervical segment at the progression stage. Our results suggested that the overexpression of TDP-43 protein in the neuron and oligodendrocyte cell causes the progressive motor neuron degeneration in the ALS-like mouse model.

  12. Prognostic role of ‘prion-like propagation’ in SOD1-linked familial ALS: an alternative view

    Directory of Open Access Journals (Sweden)

    Keizo eSugaya

    2014-10-01

    Full Text Available ‘Prion-like propagation’ has recently been proposed for disease spread in Cu/Zn superoxide dismutase 1 (SOD1-linked familial amyotrophic lateral sclerosis (ALS. Pathological SOD1 conformers are presumed to propagate via cell-to-cell transmission. In this model, the risk-based kinetics of neuronal cell loss over time appears to be represented by a sigmoidal function that reflects the kinetics of intercellular transmission. Here, we describe an alternative view of prion-like propagation in SOD1-linked ALS−its relation to disease prognosis under the protective-aggregation hypothesis. Nucleation-dependent polymerization has been widely accepted as the molecular mechanism of prion propagation. If toxic species of misfolded SOD1, as soluble oligomers, are formed as on-pathway intermediates of nucleation-dependent polymerization, further fibril extension via sequential addition of monomeric mutant SOD1 would be protective against neurodegeneration. This is because the concentration of unfolded mutant SOD1 monomers, which serve as precursor of nucleation and toxic species of mutant SOD1, would decline in proportion to the extent of aggregation. The nucleation process requires that native conformers exist in an unfolded state that may result from escaping the cellular protein quality control machinery. However, prion-like propagation−SOD1 aggregated form self-propagates by imposing its altered conformation on normal SOD1−appears to antagonize the protective role of aggregate growth. The cross-seeding reaction with normal SOD1 would lead to a failure to reduce the concentration of unfolded mutant SOD1 monomers, resulting in continuous nucleation and subsequent generation of toxic species, and influence disease prognosis. In this alternative view, the kinetics of neuronal loss appears to be represented by an exponential function, with decreasing risk reflecting the protective role of aggregate and the potential for cross-seeding reactions between

  13. Misfolded SOD1 associated with motor neuron mitochondria alters mitochondrial shape and distribution prior to clinical onset.

    Directory of Open Access Journals (Sweden)

    Christine Vande Velde

    Full Text Available Mutations in superoxide dismutase (SOD1 are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.

  14. Structures of the G85R Variant of SOD1 in Familial Amyotrophic Lateral Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xiaohang; Antonyuk, Svetlana V.; Seetharaman, Sai V.; Whitson, Lisa J.; Taylor, Alexander B.; Holloway, Stephen P.; Strange, Richard W.; Doucette, Peter A.; Valentine, Joan Selverstone; Tiwari, Ashutosh; Hayward, Lawrence J.; Padua, Shelby; Cohlberg, Jeffrey A.; Hasnain, S. Samar; Hart, P. John (Texas-HSC); (Cal. State); (UMASS, MED); (UCLA); (Daresbury)

    2008-07-21

    Mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause a dominant form of the progressive neurodegenerative disease amyotrophic lateral sclerosis. Transgenic mice expressing the human G85R SOD1 variant develop paralytic symptoms concomitant with the appearance of SOD1-enriched proteinaceous inclusions in their neural tissues. The process(es) through which misfolding or aggregation of G85R SOD1 induces motor neuron toxicity is not understood. Here we present structures of the human G85R SOD1 variant determined by single crystal x-ray diffraction. Alterations in structure of the metal-binding loop elements relative to the wild type enzyme suggest a molecular basis for the metal ion deficiency of the G85R SOD1 protein observed in the central nervous system of transgenic mice and in purified recombinant G85R SOD1. These findings support the notion that metal-deficient and/or disulfide-reduced mutant SOD1 species contribute to toxicity in SOD1-linked amyotrophic lateral sclerosis.

  15. Administration of 4-(α-L-Rhamnosyloxy-benzyl Isothiocyanate Delays Disease Phenotype in SOD1G93A Rats: A Transgenic Model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Maria Galuppo

    2015-01-01

    Full Text Available 4-(α-L-Rhamnosyloxy-benzyl glucosinolate (glucomoringin, GMG is a compound found in Moringa oleifera seeds. Myrosinase-catalyzed hydrolysis at neutral pH of GMG releases the biologically active compound 4-(α-L-rhamnosyloxy-benzyl isothiocyanate (GMG-ITC. The present study was designed to test the potential therapeutic effectiveness of GMG-ITC to counteract the amyotrophic lateral sclerosis (ALS using SOD1tg rats, which physiologically develops SOD1G93A at about 16 weeks of life, and can be considered a genetic model of disease. Rats were treated once a day with GMG (10 mg/Kg bioactivated with myrosinase (20 µL/rat via intraperitoneal (i.p. injection for two weeks before disease onset and the treatment was prolonged for further two weeks before the sacrifice. Immune-inflammatory markers as well as apoptotic pathway were investigated to establish whether GMG-ITC could represent a new promising tool in clinical practice to prevent ALS. Achieved data display clear differences in molecular and biological profiles between treated and untreated SOD1tg rats leading to guessing that GMG-ITC can interfere with the pathophysiological mechanisms at the basis of ALS development. Therefore, GMG-ITC produced from myrosinase-catalyzed hydrolysis of pure GMG could be a candidate for further studies aimed to assess its possible use in clinical practice for the prevention or to slow down this disease.

  16. Male-specific differences in proliferation, neurogenesis, and sensitivity to oxidative stress in neural progenitor cells derived from a rat model of ALS.

    Directory of Open Access Journals (Sweden)

    Ruojia Li

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a fatal neurodegenerative disease characterized by progressive motor dysfunction and the loss of large motor neurons in the spinal cord and brain stem. A clear genetic link to point mutations in the superoxide dismutase 1 (SOD1 gene has been shown in a small group of familial ALS patients. The exact etiology of ALS is still uncertain, but males have consistently been shown to be at a higher risk for the disease than females. Here we present male-specific effects of the mutant SOD1 transgene on proliferation, neurogenesis, and sensitivity to oxidative stress in rat neural progenitor cells (rNPCs. E14 pups were bred using SOD1(G93A transgenic male rats and wild-type female rats. The spinal cord and cortex tissues were collected, genotyped by PCR using primers for the SOD1(G93A transgene or the male-specific Sry gene, and cultured as neurospheres. The number of dividing cells was higher in male rNPCs compared to female rNPCs. However, SOD1(G93A over-expression significantly reduced cell proliferation in male cells but not female cells. Similarly, male rNPCs produced more neurons compared to female rNPCs, but SOD1(G93A over-expression significantly reduced the number of neurons produced in male cells. Finally we asked whether sex and SOD1(G93A transgenes affected sensitivity to oxidative stress. There was no sex-based difference in cell viability after treatment with hydrogen peroxide or 3-morpholinosydnonimine, a free radical-generating agent. However, increased cytotoxicity by SOD1(G93A over-expression occurred, especially in male rNPCs. These results provide essential information on how the mutant SOD1 gene and sexual dimorphism are involved in ALS disease progression.

  17. Peripheral motor axons of SOD1(G127X) mutant mice are susceptible to activity-dependent degeneration

    DEFF Research Database (Denmark)

    Alvarez Herrero, Susana; Calin, A; Graffmo, K S

    2013-01-01

    -onset, fast-progression SOD1(G127X) mouse model of amyotrophic lateral sclerosis to long-lasting, high-frequency repetitive activity. Tibial nerves were stimulated at ankle in 7 to 8-month-old SOD1(G127X) mice when they were clinically indistinguishable from wild-type (WT) mice. The evoked compound muscle......-concentrations. It is possible that in SOD1(G127X) there is inadequate energy-dependent Na(+)/K(+) pumping, which may lead to a lethal Na(+) overload....

  18. A 50 bp deletion in the SOD1 promoter lowers enzyme expression but is not associated with ALS in Sweden.

    Science.gov (United States)

    Ingre, Caroline; Wuolikainen, Anna; Marklund, Stefan L; Birve, Anna; Press, Rayomand; Andersen, Peter M

    2016-01-01

    Mutations in the superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). A 50 base pair (bp) deletion of SOD1 has been suggested to reduce transcription and to be associated with later disease onset in ALS. This study was aimed to reveal if the 50 bp deletion influenced SOD1 enzymatic activity, occurrence and phenotype of the disease in a Swedish ALS/control cohort. Blood samples from 512 Swedish ALS patients and 354 Swedish controls without coding SOD1 mutations were analysed for the 50 bp deletion allele. The enzymatic activity of SOD1 in erythrocytes was analysed and genotype-phenotype correlations were assessed. Results demonstrated that the genotype frequencies of the 50 bp deletion were all found to be in Hardy-Weinberg equilibrium. No significant differences were found for age of onset, disease duration or site of onset. SOD1 enzymatic activity showed a statistically significant decreasing trend in the control group, in which the allele was associated with a 5% reduction in SOD1 activity. The results suggest that the 50 bp deletion has a moderate reducing effect on SOD1 synthesis. No modulating effects, however, were found on ALS onset, phenotype and survival in the Swedish population.

  19. Caloric restriction shortens lifespan through an increase in lipid peroxidation, inflammation and apoptosis in the G93A mouse, an animal model of ALS.

    Directory of Open Access Journals (Sweden)

    Barkha P Patel

    2010-02-01

    Full Text Available Caloric restriction (CR extends lifespan through a reduction in oxidative stress, delays the onset of morbidity and prolongs lifespan. We previously reported that long-term CR hastened clinical onset, disease progression and shortened lifespan, while transiently improving motor performance in G93A mice, a model of amyotrophic lateral sclerosis (ALS that shows increased free radical production. To investigate the long-term CR-induced pathology in G93A mice, we assessed the mitochondrial bioenergetic efficiency and oxidative capacity (CS--citrate synthase content and activity, cytochrome c oxidase--COX activity and protein content of COX subunit-I and IV and UCP3-uncoupling protein 3, oxidative damage (MDA--malondialdehyde and PC--protein carbonyls, antioxidant enzyme capacity (Mn-SOD, Cu/Zn-SOD and catalase, inflammation (TNF-alpha, stress response (Hsp70 and markers of apoptosis (Bax, Bcl-2, caspase 9, cleaved caspase 9 in their skeletal muscle. At age 40 days, G93A mice were divided into two groups: Ad libitum (AL; n = 14; 7 females or CR (n = 13; 6 females, with a diet equal to 60% of AL. COX/CS enzyme activity was lower in CR vs. AL male quadriceps (35%, despite a 2.3-fold higher COX-IV/CS protein content. UCP3 was higher in CR vs. AL females only. MnSOD and Cu/Zn-SOD were higher in CR vs. AL mice and CR vs. AL females. MDA was higher (83% in CR vs. AL red gastrocnemius. Conversely, PC was lower in CR vs. AL red (62% and white (30% gastrocnemius. TNF-alpha was higher (52% in CR vs. AL mice and Hsp70 was lower (62% in CR vs. AL quadriceps. Bax was higher in CR vs. AL mice (41% and CR vs. AL females (52%. Catalase, Bcl-2 and caspases did not differ. We conclude that CR increases lipid peroxidation, inflammation and apoptosis, while decreasing mitochondrial bioenergetic efficiency, protein oxidation and stress response in G93A mice.

  20. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Akshay Bhinge

    2017-04-01

    Full Text Available Summary: Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS, it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs. The AP1 complex member JUN, an ERK/JNK downstream target, was observed to be highly expressed in MNs compared with non-MNs, providing a mechanistic insight into the specific degeneration of MNs. Importantly, investigations of mutant FUS MNs identified activated p38 and ERK, indicating that network perturbations induced by ALS-causing mutations converge partly on a few specific pathways that are drug responsive and provide immense therapeutic potential. : In this article, Bhinge, Stanton, and colleagues use genome editing of patient-derived iPSCs to model ALS phenotypic defects in vitro. Transcriptomic analysis of disease MNs reveals activation of MAPK, AP1, WNT, cell-cycle, and p53 signaling in ALS MNs. Pharmacological screening uncovers activated ERK and JNK signaling as therapeutic targets in ALS. Keywords: ALS, SOD1, FUS, CRISPR-Cas9, p38, ERK, JNK, WNT, TP53, JUN

  1. Lack of TNF-alpha receptor type 2 protects motor neurons in a cellular model of amyotrophic lateral sclerosis and in mutant SOD1 mice but does not affect disease progression.

    Science.gov (United States)

    Tortarolo, Massimo; Vallarola, Antonio; Lidonnici, Dario; Battaglia, Elisa; Gensano, Francesco; Spaltro, Gabriella; Fiordaliso, Fabio; Corbelli, Alessandro; Garetto, Stefano; Martini, Elisa; Pasetto, Laura; Kallikourdis, Marinos; Bonetto, Valentina; Bendotti, Caterina

    2015-10-01

    Changes in the homeostasis of tumor necrosis factor α (TNFα) have been demonstrated in patients and experimental models of amyotrophic lateral sclerosis (ALS). However, the contribution of TNFα to the development of ALS is still debated. TNFα is expressed by glia and neurons and acts through the membrane receptors TNFR1 and TNFR2, which may have opposite effects in neurodegeneration. We investigated the role of TNFα and its receptors in the selective motor neuron death in ALS in vitro and in vivo. TNFR2 expressed by astrocytes and neurons, but not TNFR1, was implicated in motor neuron loss in primary SOD1-G93A co-cultures. Deleting TNFR2 from SOD1-G93A mice, there was partial but significant protection of spinal motor neurons, sciatic nerves, and tibialis muscles. However, no improvement of motor impairment or survival was observed. Since the sciatic nerves of SOD1-G93A/TNFR2-/- mice showed high phospho-TAR DNA-binding protein 43 (TDP-43) accumulation and low levels of acetyl-tubulin, two indices of axonal dysfunction, the lack of symptom improvement in these mice might be due to impaired function of rescued motor neurons. These results indicate the interaction between TNFR2 and membrane-bound TNFα as an innovative pathway involved in motor neuron death. Nevertheless, its inhibition is not sufficient to stop disease progression in ALS mice, underlining the complexity of this pathology. We show evidence of the involvement of neuronal and astroglial TNFR2 in the motor neuron degeneration in ALS. Both concur to cause motor neuron death in primary astrocyte/spinal neuron co-cultures. TNFR2 deletion partially protects motor neurons and sciatic nerves in SOD1-G93A mice but does not improve their symptoms and survival. However, TNFR2 could be a new target for multi-intervention therapies. © 2015 International Society for Neurochemistry.

  2. Differential effects of phytotherapic preparations in the hSOD1 Drosophila melanogaster model of ALS

    Science.gov (United States)

    De Rose, Francescaelena; Marotta, Roberto; Talani, Giuseppe; Catelani, Tiziano; Solari, Paolo; Poddighe, Simone; Borghero, Giuseppe; Marrosu, Francesco; Sanna, Enrico; Kasture, Sanjay; Acquas, Elio; Liscia, Anna

    2017-01-01

    The present study was aimed at characterizing the effects of Withania somnifera (Wse) and Mucuna pruriens (Mpe) on a Drosophila melanogaster model for Amyotrophic Lateral Sclerosis (ALS). In particular, the effects of Wse and Mpe were assessed following feeding the flies selectively overexpressing the wild human copper, zinc-superoxide dismutase (hSOD1-gain-of-function) in Drosophila motoneurons. Although ALS-hSOD1 mutants showed no impairment in life span, with respect to GAL4 controls, the results revealed impairment of climbing behaviour, muscle electrophysiological parameters (latency and amplitude of ePSPs) as well as thoracic ganglia mitochondrial functions. Interestingly, Wse treatment significantly increased lifespan of hSDO1 while Mpe had not effect. Conversely, both Wse and Mpe significantly rescued climbing impairment, and also latency and amplitude of ePSPs as well as failure responses to high frequency DLM stimulation. Finally, mitochondrial alterations were any more present in Wse- but not in Mpe-treated hSOD1 mutants. Hence, given the role of inflammation in the development of ALS, the high translational impact of the model, the known anti-inflammatory properties of these extracts, and the viability of their clinical use, these results suggest that the application of Wse and Mpe might represent a valuable pharmacological strategy to counteract the progression of ALS and related symptoms. PMID:28102336

  3. Defining SOD1 ALS natural history to guide therapeutic clinical trial design.

    Science.gov (United States)

    Bali, Taha; Self, Wade; Liu, Jingxia; Siddique, Teepu; Wang, Leo H; Bird, Thomas D; Ratti, Elena; Atassi, Nazem; Boylan, Kevin B; Glass, Jonathan D; Maragakis, Nicholas J; Caress, James B; McCluskey, Leo F; Appel, Stanley H; Wymer, James P; Gibson, Summer; Zinman, Lorne; Mozaffar, Tahseen; Callaghan, Brian; McVey, April L; Jockel-Balsarotti, Jennifer; Allred, Peggy; Fisher, Elena R; Lopate, Glenn; Pestronk, Alan; Cudkowicz, Merit E; Miller, Timothy M

    2017-02-01

    Understanding the natural history of familial amyotrophic lateral sclerosis (ALS) caused by SOD1 mutations (ALS SOD1 ) will provide key information for optimising clinical trials in this patient population. To establish an updated natural history of ALS SOD1 . Retrospective cohort study from 15 medical centres in North America evaluated records from 175 patients with ALS with genetically confirmed SOD1 mutations, cared for after the year 2000. Age of onset, survival, ALS Functional Rating Scale (ALS-FRS) scores and respiratory function were analysed. Patients with the A4V (Ala-Val) SOD1 mutation (SOD1 A4V ), the largest mutation population in North America with an aggressive disease progression, were distinguished from other SOD1 mutation patients (SOD1 non-A4V ) for analysis. Mean age of disease onset was 49.7±12.3 years (mean±SD) for all SOD1 patients, with no statistical significance between SOD1 A4V and SOD1 non-A4V (p=0.72, Kruskal-Wallis). Total SOD1 patient median survival was 2.7 years. Mean disease duration for all SOD1 was 4.6±6.0 and 1.4±0.7 years for SOD1 A4V . SOD1 A4V survival probability (median survival 1.2 years) was significantly decreased compared with SOD1 non-A4V (median survival 6.8 years; p<0.0001, log-rank). A statistically significant increase in ALS-FRS decline in SOD1 A4V compared with SOD1 non-A4V participants (p=0.02) was observed, as well as a statistically significant increase in ALS-forced vital capacity decline in SOD1 A4V compared with SOD1 non-A4V (p=0.02). SOD1 A4V is an aggressive, but relatively homogeneous form of ALS. These SOD1-specific ALS natural history data will be important for the design and implementation of clinical trials in the ALS SOD1 patient population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  4. SOD1 Transcriptional and Posttranscriptional Regulation and Its Potential Implications in ALS

    Directory of Open Access Journals (Sweden)

    Pamela Milani

    2011-01-01

    Full Text Available Copper-zinc superoxide dismutase (SOD1 is a detoxifying enzyme localized in the cytosol, nucleus, peroxisomes, and mitochondria. The discovery that mutations in SOD1 gene cause a subset of familial amyotrophic lateral sclerosis (FALS has attracted great attention, and studies to date have been mainly focused on discovering mutations in the coding region and investigation at protein level. Considering that changes in SOD1 mRNA levels have been associated with sporadic ALS (SALS, a molecular understanding of the processes involved in the regulation of SOD1 gene expression could not only unravel novel regulatory pathways that may govern cellular phenotypes and changes in diseases but also might reveal therapeutic targets and treatments. This review seeks to provide an overview of SOD1 gene structure and of the processes through which SOD1 transcription is controlled. Furthermore, we emphasize the importance to focus future researches on investigating posttranscriptional mechanisms and their relevance to ALS.

  5. Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca2+ transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Tobias eMühling

    2014-11-01

    Full Text Available Disturbances in Ca2+ homeostasis and mitochondrial dysfunction have emerged as major pathogenic features in familial and sporadic forms of Amyotrophic Lateral Sclerosis (ALS, a fatal degenerative motor neuron disease. However, the distinct molecular ALS-pathology remains unclear. Recently, an activity-dependent Ca2+ homeostasis deficit, selectively in highly vulnerable cholinergic motor neurons in the hypoglossal nucleus (hMNs from a common ALS mouse model, endstage superoxide dismutase SOD1G93A transgenic mice, was described. This functional deficit was defined by a reduced hMN mitochondrial Ca2+ uptake capacity and elevated Ca2+ extrusion across the plasma membrane. To address the underlying molecular mechanisms, here we quantified mRNA-levels of respective potential mitochondrial and plasma membrane Ca2+ transporters in individual, choline-acetyltransferase (ChAT positive hMNs from wildtype (WT and endstage SOD1G93A mice, by combining UV laser microdissection with RT-qPCR techniques, and specific data normalization. As ChAT cDNA levels as well as cDNA and genomic DNA levels of the mitochondrially encoded NADH dehydrogenase ND1 were not different between hMNs from WT and endstage SOD1G93A mice, these genes were used to normalize hMN-specific mRNA-levels of plasma membrane and mitochondrial Ca2+ transporters, respectively. We detected about 2-fold higher levels of the mitochondrial Ca2+ transporters MCU/MICU1, Letm1 and UCP2 in remaining hMNs from endstage SOD1G93A mice. These higher expression-levels of mitochondrial Ca2+ transporters in individual hMNs were not associated with a respective increase in number of mitochondrial genomes, as evident from hMN specific ND1 DNA quantification. Normalized mRNA-levels for the plasma membrane Na2+/Ca2+exchanger NCX1 was also about 2-fold higher in hMNs from SOD1G93A mice. Thus, pharmacological stimulation of Ca2+ transporters in highly vulnerable hMNs might offer a novel neuroprotective strategy for ALS.

  6. Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1G93A mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Tefera, Tesfaye W; Borges, Karin

    2018-01-01

    Although alterations in energy metabolism are known in ALS, the specific mechanisms leading to energy deficit are not understood. We measured metabolite levels derived from injected [1- 13 C]glucose and [1,2- 13 C]acetate (i.p.) in cerebral cortex and spinal cord extracts of wild type and hSOD1 G93A mice at onset and mid disease stages using high-pressure liquid chromatography, 1 H and 13 C nuclear magnetic resonance spectroscopy. Levels of spinal and cortical CNS total lactate, [3- 13 C]lactate, total alanine and [3- 13 C]alanine, but not cortical glucose and [1- 13 C]glucose, were reduced mostly at mid stage indicating impaired glycolysis. The [1- 13 C]glucose-derived [4- 13 C]glutamate, [4- 13 C]glutamine and [2- 13 C]GABA amounts were diminished at mid stage in cortex and both time points in spinal cord, suggesting decreased [3- 13 C]pyruvate entry into the TCA cycle. Lack of changes in [1,2- 13 C]acetate-derived [4,5- 13 C]glutamate, [4,5- 13 C]glutamine and [1,2- 13 C]GABA levels indicate unchanged astrocytic 13 C-acetate metabolism. Reduced levels of leucine, isoleucine and valine in CNS suggest compensatory breakdown to refill TCA cycle intermediate levels. Unlabelled, [2- 13 C] and [4- 13 C]GABA concentrations were decreased in spinal cord indicating that impaired glucose metabolism contributes to hyperexcitability and supporting the use of treatments which increase GABA amounts. In conclusion, CNS glucose metabolism is compromised, while astrocytic TCA cycling appears to be normal in the hSOD1 G93A mouse model at symptomatic disease stages.

  7. Differential autophagy power in the spinal cord and muscle of transgenic ALS mice.

    Directory of Open Access Journals (Sweden)

    Valeria eCrippa

    2013-11-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a motoneuron disease characterized by misfolded proteins aggregation in affected motoneurons. In mutant SOD1 (mutSOD1 ALS models, aggregation correlates to impaired functions of proteasome and/or autophagy, both essential for the intracellular chaperone-mediated protein quality control (PQC, and a reduced mutSOD1 clearance from motoneurons. Skeletal muscle cells are also sensitive to mutSOD1 toxicity, but no mutSOD1 aggregates are formed in these cells, that might better manage mutSOD1 than motoneurons. Thus, we analysed in spinal cord and in muscle of transgenic (tg G93A-SOD1 at presymptomatic (PS, 8 weeks and symptomatic (S, 16 weeks stages, and in age-matched control mice, whether mutSOD1 differentially modulates relevant PQC players, such as HSPB8, BAG3, and BAG1. Possible sex differences were also considered. No changes of HSPB8, BAG3 and BAG1 at PS stage (8 weeks were seen in all tissues examined in tg G93A-SOD1 and control mice. At S stage (16 weeks, HSPB8 dramatically increased in skeletal muscle of tg G93A-SOD1 mice, while a minor increase occurred in spinal cord of male, but not female tg G93A-SOD1 mice. BAG3 expression increased both in muscle and spinal cord of tg G93A-SOD1 mice at S stage, BAG1 expression increased only in muscle of the same mice. Since, HSPB8-BAG3 complex assists mutSOD1 autophagic removal, we analysed two well-known autophagic markers, LC3 and p62. Both LC3 and p62 mRNAs were significantly up-regulated in skeletal muscle of tg G93A-SOD1 mice at S stage (16 weeks. This suggests that mutSOD1 expression induces a robust autophagic response specifically in muscle. Together these results demonstrate that, in muscle mutSOD1-induced autophagic response is much higher than in spinal cords. In addition, if mutSOD1 exerts toxicity in muscle, this may not be mediated by misfolded protein accumulation. It remains unclear whether in muscle mutSOD1 toxicity is related to aberrant autophagy

  8. Compensatory Motor Neuron Response to Chromatolysis in the Murine hSOD1G93A Model of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Riancho, Javier; Ruiz-Soto, Maria; Villagrá, Nuria T.; Berciano, Jose; Berciano, Maria T.; Lafarga, Miguel

    2014-01-01

    We investigated neuronal self-defense mechanisms in a murine model of amyotrophic lateral sclerosis (ALS), the transgenic hSOD1G93A, during both the asymptomatic and symptomatic stages. This is an experimental model of endoplasmic reticulum (ER) stress with severe chromatolysis. As a compensatory response to translation inhibition, chromatolytic neurons tended to reorganize the protein synthesis machinery at the perinuclear region, preferentially at nuclear infolding domains enriched in nuclear pores. This organization could facilitate nucleo-cytoplasmic traffic of RNAs and proteins at translation sites. By electron microscopy analysis, we observed that the active euchromatin pattern and the reticulated nucleolar configuration of control motor neurons were preserved in ALS chromatolytic neurons. Moreover the 5′-fluorouridine (5′-FU) transcription assay, at the ultrastructural level, revealed high incorporation of the RNA precursor 5′-FU into nascent RNA. Immunogold particles of 5′-FU incorporation were distributed throughout the euchromatin and on the dense fibrillar component of the nucleolus in both control and ALS motor neurons. The high rate of rRNA transcription in ALS motor neurons could maintain ribosome biogenesis under conditions of severe dysfunction of proteostasis. Collectively, the perinuclear reorganization of protein synthesis machinery, the predominant euchromatin architecture, and the active nucleolar transcription could represent compensatory mechanisms in ALS motor neurons in response to the disturbance of ER proteostasis. In this scenario, epigenetic activation of chromatin and nucleolar transcription could have important therapeutic implications for neuroprotection in ALS and other neurodegenerative diseases. Although histone deacetylase inhibitors are currently used as therapeutic agents, we raise the untapped potential of the nucleolar transcription of ribosomal genes as an exciting new target for the therapy of some neurodegenerative

  9. ZNStress: a high-throughput drug screening protocol for identification of compounds modulating neuronal stress in the transgenic mutant sod1G93R zebrafish model of amyotrophic lateral sclerosis

    OpenAIRE

    McGown, Alexander; Shaw, Dame Pamela J.; Ramesh, Tennore

    2016-01-01

    Background Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease with death on average within 2?3 years of symptom onset. Mutations in superoxide dismutase 1 (SOD1) have been identified to cause ALS. Riluzole, the only neuroprotective drug for ALS provides life extension of only 3 months on average. Thishighlights the need for compound screening in disease models to identify new neuroprotective therapies for this disease. Zebrafish is an emerging model system that is well ...

  10. SOD1 aggregation in ALS mice shows simplistic test tube behavior.

    Science.gov (United States)

    Lang, Lisa; Zetterström, Per; Brännström, Thomas; Marklund, Stefan L; Danielsson, Jens; Oliveberg, Mikael

    2015-08-11

    A longstanding challenge in studies of neurodegenerative disease has been that the pathologic protein aggregates in live tissue are not amenable to structural and kinetic analysis by conventional methods. The situation is put in focus by the current progress in demarcating protein aggregation in vitro, exposing new mechanistic details that are now calling for quantitative in vivo comparison. In this study, we bridge this gap by presenting a direct comparison of the aggregation kinetics of the ALS-associated protein superoxide dismutase 1 (SOD1) in vitro and in transgenic mice. The results based on tissue sampling by quantitative antibody assays show that the SOD1 fibrillation kinetics in vitro mirror with remarkable accuracy the spinal cord aggregate buildup and disease progression in transgenic mice. This similarity between in vitro and in vivo data suggests that, despite the complexity of live tissue, SOD1 aggregation follows robust and simplistic rules, providing new mechanistic insights into the ALS pathology and organism-level manifestation of protein aggregation phenomena in general.

  11. Tryptophan 32 potentiates aggregation and cytotoxicity of a copper/zinc superoxide dismutase mutant associated with familial amyotrophic lateral sclerosis.

    Science.gov (United States)

    Taylor, David M; Gibbs, Bernard F; Kabashi, Edor; Minotti, Sandra; Durham, Heather D; Agar, Jeffrey N

    2007-06-01

    One familial form of the neurodegenerative disease, amyotrophic lateral sclerosis, is caused by gain-of-function mutations in the gene encoding copper/zinc superoxide dismutase (SOD-1). This study provides in vivo evidence that normally occurring oxidative modification to SOD-1 promotes aggregation and toxicity of mutant proteins. The oxidation of Trp-32 was identified as a normal modification being present in both wild-type enzyme and SOD-1 with the disease-causing mutation, G93A, isolated from erythrocytes. Mutating Trp-32 to a residue with a slower rate of oxidative modification, phenylalanine, decreased both the cytotoxicity of mutant SOD-1 and its propensity to form cytoplasmic inclusions in motor neurons of dissociated mouse spinal cord cultures.

  12. Gamma motor neurons survive and exacerbate alpha motor neuron degeneration in ALS.

    Science.gov (United States)

    Lalancette-Hebert, Melanie; Sharma, Aarti; Lyashchenko, Alexander K; Shneider, Neil A

    2016-12-20

    The molecular and cellular basis of selective motor neuron (MN) vulnerability in amyotrophic lateral sclerosis (ALS) is not known. In genetically distinct mouse models of familial ALS expressing mutant superoxide dismutase-1 (SOD1), TAR DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS), we demonstrate selective degeneration of alpha MNs (α-MNs) and complete sparing of gamma MNs (γ-MNs), which selectively innervate muscle spindles. Resistant γ-MNs are distinct from vulnerable α-MNs in that they lack synaptic contacts from primary afferent (I A ) fibers. Elimination of these synapses protects α-MNs in the SOD1 mutant, implicating this excitatory input in MN degeneration. Moreover, reduced I A activation by targeted reduction of γ-MNs in SOD1 G93A mutants delays symptom onset and prolongs lifespan, demonstrating a pathogenic role of surviving γ-MNs in ALS. This study establishes the resistance of γ-MNs as a general feature of ALS mouse models and demonstrates that synaptic excitation of MNs within a complex circuit is an important determinant of relative vulnerability in ALS.

  13. Elevated free nitrotyrosine levels, but not protein-bound nitrotyrosine or hydroxyl radicals, throughout amyotrophic lateral sclerosis (ALS)-like disease implicate tyrosine nitration as an aberrant in vivo property of one familial ALS-linked superoxide dismutase 1 mutant.

    Science.gov (United States)

    Bruijn, L I; Beal, M F; Becher, M W; Schulz, J B; Wong, P C; Price, D L; Cleveland, D W

    1997-07-08

    Mutations in superoxide dismutase 1 (SOD1; EC 1.15.1.1) are responsible for a proportion of familial amyotrophic lateral sclerosis (ALS) through acquisition of an as-yet-unidentified toxic property or properties. Two proposed possibilities are that toxicity may arise from imperfectly folded mutant SOD1 catalyzing the nitration of tyrosines [Beckman, J. S., Carson, M., Smith, C. D. & Koppenol, W. H. (1993) Nature (London) 364, 584] through use of peroxynitrite or from peroxidation arising from elevated production of hydroxyl radicals through use of hydrogen peroxide as a substrate [Wiedau-Pazos, M., Goto, J. J., Rabizadeh, S., Gralla, E. D., Roe, J. A., Valentine, J. S. & Bredesen, D. E. (1996) Science 271, 515-518]. To test these possibilities, levels of nitrotyrosine and markers for hydroxyl radical formation were measured in two lines of transgenic mice that develop progressive motor neuron disease from expressing human familial ALS-linked SOD1 mutation G37R. Relative to normal mice or mice expressing high levels of wild-type human SOD1, 3-nitrotyrosine levels were elevated by 2- to 3-fold in spinal cords coincident with the earliest pathological abnormalities and remained elevated in spinal cord throughout progression of disease. However, no increases in protein-bound nitrotyrosine were found during any stage of SOD1-mutant-mediated disease in mice or at end stage of sporadic or SOD1-mediated familial human ALS. When salicylate trapping of hydroxyl radicals and measurement of levels of malondialdehyde were used, there was no evidence throughout disease progression in mice for enhanced production of hydroxyl radicals or lipid peroxidation, respectively. The presence of elevated nitrotyrosine levels beginning at the earliest stages of cellular pathology and continuing throughout progression of disease demonstrates that tyrosine nitration is one in vivo aberrant property of this ALS-linked SOD1 mutant.

  14. Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS.

    Directory of Open Access Journals (Sweden)

    Svitlana Garbuzova-Davis

    2007-11-01

    Full Text Available The blood-brain barrier (BBB, blood-spinal cord barrier (BSCB, and blood-cerebrospinal fluid barrier (BCSFB control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease.Evans Blue (EB dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage.Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease.

  15. Degenerative myelopathy in German Shepherd Dog: comparison of two molecular assays for the identification of the SOD1:c.118G>A mutation.

    Science.gov (United States)

    Capucchio, Maria Teresa; Spalenza, Veronica; Biasibetti, Elena; Bottero, Maria Teresa; Rasero, Roberto; Dalmasso, Alessandra; Sacchi, Paola

    2014-02-01

    Degenerative myelopathy (DM) is a late-onset, slowly progressive degeneration of spinal cord white matter which is reported primarily in large breed dogs. The missense mutation SOD1:c.118G>A is associated with this pathology in several dog breeds, including the German Shepherd Dog (GSD). The aims of the present study were to develop a tool for the rapid screening of the SOD1 mutation site in dogs and to evaluate the association of the polymorphism with DM in the German Shepherd breed. Two different techniques were compared: a minisequencing test and a real-time pcr allelic discrimination assay. Both approaches resulted effective and efficient. A sample of 47 dogs were examined. Ten subjects presented the symptoms of the illness; for one of them the diagnosis was confirmed by postmortem investigations and it resulted to be an A/A homozygote. In another clinically suspected dog, heterozygote A/G, the histopathological examination of the medulla showed moderate axon and myelin degenerative changes. GSD shows a frequency of the mutant allele equal to 0.17, quite high being a high-risk allele. Because canine DM has a late onset in adulthood and homozygous mutant dogs are likely as fertile as other genotypes, the natural selection is mild and the mutant allele may reach high frequencies. A diagnostic test, easy to implement, may contribute to control the gene diffusion in populations. The SOD1:c.118G>A mutation could be a useful marker for breeding strategies intending to reduce the incidence of DM.

  16. ApoSOD1 lacking dismutase activity neuroprotects motor neurons exposed to beta-methylamino-L-alanine through the Ca2+/Akt/ERK1/2 prosurvival pathway

    Science.gov (United States)

    Petrozziello, Tiziana; Secondo, Agnese; Tedeschi, Valentina; Esposito, Alba; Sisalli, MariaJosè; Scorziello, Antonella; Di Renzo, Gianfranco; Annunziato, Lucio

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a severe human adult-onset neurodegenerative disease affecting lower and upper motor neurons. In >20% of cases, the familial form of ALS is caused by mutations in the gene encoding Cu,Zn-superoxide dismutase (SOD1). Interestingly, administration of wild-type SOD1 to SOD1G93A transgenic rats ameliorates motor symptoms through an unknown mechanism. Here we investigated whether the neuroprotective effects of SOD1 are due to the Ca2+-dependent activation of such prosurvival signaling pathway and not to its catalytic activity. To this aim, we also examined the mechanism of neuroprotective action of ApoSOD1, the metal-depleted state of SOD1 that lacks dismutase activity, in differentiated motor neuron-like NSC-34 cells and in primary motor neurons exposed to the cycad neurotoxin beta-methylamino-L-alanine (L-BMAA). Preincubation of ApoSOD1 and SOD1, but not of human recombinant SOD1G93A, prevented cell death in motor neurons exposed to L-BMAA. Moreover, ApoSOD1 elicited ERK1/2 and Akt phosphorylation in motor neurons through an early increase of intracellular Ca2+ concentration ([Ca2+]i). Accordingly, inhibition of ERK1/2 by siMEK1 and PD98059 counteracted ApoSOD1- and SOD1-induced neuroprotection. Similarly, transfection of the dominant-negative form of Akt in NSC-34 motor neurons and treatment with the selective PI3K inhibitor LY294002 prevented ApoSOD1- and SOD1-mediated neuroprotective effects in L-BMAA-treated motor neurons. Furthermore, ApoSOD1 and SOD1 prevented the expression of the two markers of L-BMAA-induced ER stress GRP78 and caspase-12. Collectively, our data indicate that ApoSOD1, which is devoid of any catalytic dismutase activity, exerts a neuroprotective effect through an early activation of Ca2+/Akt/ERK1/2 pro-survival pathway that, in turn, prevents ER stress in a neurotoxic model of ALS. PMID:28085149

  17. Dysregulated expression of death, stress and mitochondrion related genes in the sciatic nerve of presymptomatic SOD1G93A mouse model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Chrystian Junqueira Alves

    2015-09-01

    Full Text Available Schwann cells are the main source of paracrine support to motor neurons. Oxidative stress and mitochondrial dysfunction have been correlated to motor neuron death in Amyotrophic Lateral Sclerosis (ALS. Despite the involvement of Schwann cells in early neuromuscular disruption in ALS, detailed molecular events of a dying-back triggering are unknown. Sciatic nerves of presymptomatic (60-day-old SOD1G93A mice were submitted to a high-density oligonucleotide microarray analysis. DAVID demonstrated the deregulated genes related to death, stress and mitochondrion, which allowed the identification of Cell cycle, ErbB signaling, Tryptophan metabolism and Rig-I-like receptor signaling as the most representative KEGG pathways. The protein-protein interaction networks based upon deregulated genes have identified the top hubs (TRAF2, H2AFX, E2F1, FOXO3, MSH2, NGFR, TGFBR1 and bottlenecks (TRAF2, E2F1, CDKN1B, TWIST1, FOXO3. Schwann cells were enriched from the sciatic nerve of presymptomatic mice using flow cytometry cell sorting. qPCR showed the up regulated (Ngfr, Cdnkn1b, E2f1, Traf2 and Erbb3, H2afx, Cdkn1a, Hspa1, Prdx, Mapk10 and down-regulated (Foxo3, Mtor genes in the enriched Schwann cells. In conclusion, molecular analyses in the presymptomatic sciatic nerve demonstrated the involvement of death, oxidative stress, and mitochondrial pathways in the Schwann cell non-autonomous mechanisms in the early stages of ALS.

  18. Astrocyte-neuron co-culture on microchips based on the model of SOD mutation to mimic ALS.

    Science.gov (United States)

    Kunze, Anja; Lengacher, Sylvain; Dirren, Elisabeth; Aebischer, Patrick; Magistretti, Pierre J; Renaud, Philippe

    2013-07-24

    Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. ALS is believed to be a non-cell autonomous condition, as other cell types, including astrocytes, have been implicated in disease pathogenesis. Hence, to facilitate the development of therapeutics against ALS, it is crucial to better understand the interactions between astrocytes and neural cells. Furthermore, cell culture assays are needed that mimic the complexity of cell to cell communication at the same time as they provide control over the different microenvironmental parameters. Here, we aim to validate a previously developed microfluidic system for an astrocyte-neuron cell culture platform, in which astrocytes have been genetically modified to overexpress either a human wild-type (WT) or a mutated form of the super oxide dismutase enzyme 1 (SOD1). Cortical neural cells were co-cultured with infected astrocytes and studied for up to two weeks. Using our microfluidic device that prevents direct cell to cell contact, we could evaluate neural cell response in the vicinity of astrocytes. We showed that neuronal cell density was reduced by about 45% when neurons were co-cultured with SOD-mutant astrocytes. Moreover, we demonstrated that SOD-WT overexpressing astrocytes reduced oxidative stress on cortical neurons that were in close metabolic contact. In contrast, cortical neurons in metabolic contact with SOD-mutant astrocytes lost their synapsin protein expression after severe glutamate treatment, an indication of the toxicity potentiating effect of the SOD-mutant enzyme.

  19. Spinal cord pathology is ameliorated by P2X7 antagonism in a SOD1-mutant mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Savina Apolloni

    2014-09-01

    Full Text Available In recent years there has been an increasing awareness of the role of P2X7, a receptor for extracellular ATP, in modulating physiopathological mechanisms in the central nervous system. In particular, P2X7 has been shown to be implicated in neuropsychiatry, chronic pain, neurodegeneration and neuroinflammation. Remarkably, P2X7 has also been shown to be a ‘gene modifier’ in amyotrophic lateral sclerosis (ALS: the receptor is upregulated in spinal cord microglia in human and rat at advanced stages of the disease; in vitro, activation of P2X7 exacerbates pro-inflammatory responses in microglia that have an ALS phenotype, as well as toxicity towards neuronal cells. Despite this detrimental in vitro role of P2X7, in SOD1-G93A mice lacking P2X7, the clinical onset of ALS was significantly accelerated and disease progression worsened, thus indicating that the receptor might have some beneficial effects, at least at certain stages of disease. In order to clarify this dual action of P2X7 in ALS pathogenesis, in the present work we used the antagonist Brilliant Blue G (BBG, a blood-brain barrier permeable and safe drug that has already been proven to reduce neuroinflammation in traumatic brain injury, cerebral ischemia-reperfusion, neuropathic pain and experimental autoimmune encephalitis. We tested BBG in the SOD1-G93A ALS mouse model at asymptomatic, pre-symptomatic and late pre-symptomatic phases of disease. BBG at late pre-onset significantly enhanced motor neuron survival and reduced microgliosis in lumbar spinal cord, modulating inflammatory markers such as NF-κB, NADPH oxidase 2, interleukin-1β, interleukin-10 and brain-derived neurotrophic factor. This was accompanied by delayed onset and improved general conditions and motor performance, in both male and female mice, although survival appeared unaffected. Our results prove the twofold role of P2X7 in the course of ALS and establish that P2X7 modulation might represent a promising

  20. Association between MLH1 -93G>a polymorphism and risk of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available The -93G>A (rs1800734 polymorphism located in the promoter of mismatch repair gene, MLH1, has been identified as a low-penetrance variant for cancer risk. Many published studies have evaluated the association between the MLH1 -93G>A polymorphism and colorectal cancer (CRC risk. However, the results remain conflicting rather than conclusive.The aim of this study was to assess the association between the MLH1 -93G>A polymorphism and the risk of CRC.To derive a more precise estimation of the association, a meta-analysis of six studies (17,791 cases and 13,782 controls was performed. Odds ratios (ORs and 95% confidence intervals (CIs were used to evaluate the strength of the association. Four of these published studies were performed on subjects of known microsatellite instability (MSI status. An additional analysis including 742 cases and 10,895 controls was used to assess the association between the MLH1 -93G>A polymorphism and the risk of MSI-CRC.The overall results indicated that the variant genotypes were associated with a significantly increased risk of CRC (AG versus GG: OR = 1.06, 95% CI = 1.01-1.11; AA/AG versus GG: OR = 1.06, 95% CI = 1.01-1.11. This increased risk was also found during stratified analysis of MSI status (AA versus GG: OR = 2.52, 95% CI = 1.94-3.28; AG versus GG: OR = 1.29, 95% CI = 1.10-1.52; AA/AG versus GG: OR = 1.45, 95% CI = 1.24-1.68; AA versusOR = 2.29, 95% CI = 1.78-2.96. Egger's test did not show any evidence of publication bias.Our results suggest that the MLH1 -93G>A polymorphism may contribute to individual susceptibility to CRC and act as a risk factor for MSI-CRC.

  1. The VPAC2 agonist peptide histidine isoleucine (PHI) up-regulates glutamate transport in the corpus callosum of a rat model of amyotrophic lateral sclerosis (hSOD1G93A) by inhibiting caspase-3 mediated inactivation of GLT-1a.

    Science.gov (United States)

    Goursaud, Stéphanie; Focant, Marylène C; Berger, Julie V; Nizet, Yannick; Maloteaux, Jean-Marie; Hermans, Emmanuel

    2011-10-01

    Degeneration of corpus callosum appears in patients with amyotrophic lateral sclerosis (ALS) before clinical signs of upper motor neuron death. Considering the ALS-associated impairment of astrocytic glutamate uptake, we have characterized the expression and activity of the glutamate transporter isoforms GLT-1a and GLT-1b in the corpus callosum of transgenic rats expressing a mutated form of the human superoxide dismutase 1 (hSOD1(G93A)). We have also studied the effect of peptide histidine isoleucine (PHI), a vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptor 2 (VPAC(2)) agonist on glutamate transporters both in vivo and in callosal astrocytes. Before the onset of motor symptoms, the expression of both transporter isoforms was correlated with a constitutive activity of caspase-3. This enzyme participates in the down-regulation of GLT-1 in ALS, and here we demonstrated its involvement in the selective degradation of GLT-1a in the white matter. A single stereotactic injection of PHI into the corpus callosum of symptomatic rats decreased caspase-3 activity and promoted GLT-1a expression and uptake activity. Together, with evidence for a reduced expression of prepro-VIP/PHI mRNA in the corpus callosum of transgenic animals, these data shed light on the modulatory role of the VIP/PHI system on the glutamatergic transmission in ALS.

  2. HSPB1 mutations causing hereditary neuropathy in humans disrupt non-cell autonomous protection of motor neurons.

    Science.gov (United States)

    Heilman, Patrick L; Song, SungWon; Miranda, Carlos J; Meyer, Kathrin; Srivastava, Amit K; Knapp, Amy; Wier, Christopher G; Kaspar, Brian K; Kolb, Stephen J

    2017-11-01

    Heat shock protein beta-1 (HSPB1), is a ubiquitously expressed, multifunctional protein chaperone. Mutations in HSPB1 result in the development of a late-onset, distal hereditary motor neuropathy type II (dHMN) and axonal Charcot-Marie Tooth disease with sensory involvement (CMT2F). The functional consequences of HSPB1 mutations associated with hereditary neuropathy are unknown. HSPB1 also displays neuroprotective properties in many neuronal disease models, including the motor neuron disease amyotrophic lateral sclerosis (ALS). HSPB1 is upregulated in SOD1-ALS animal models during disease progression, predominately in glial cells. Glial cells are known to contribute to motor neuron loss in ALS through a non-cell autonomous mechanism. In this study, we examined the non-cell autonomous role of wild type and mutant HSPB1 in an astrocyte-motor neuron co-culture model system of ALS. Astrocyte-specific overexpression of wild type HSPB1 was sufficient to attenuate SOD1(G93A) astrocyte-mediated toxicity in motor neurons, whereas, overexpression of mutHSPB1 failed to ameliorate motor neuron toxicity. Expression of a phosphomimetic HSPB1 mutant in SOD1(G93A) astrocytes also reduced toxicity to motor neurons, suggesting that phosphorylation may contribute to HSPB1 mediated-neuroprotection. These data provide evidence that astrocytic HSPB1 expression may play a central role in motor neuron health and maintenance. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. An inducer of VGF protects cells against ER stress-induced cell death and prolongs survival in the mutant SOD1 animal models of familial ALS.

    Directory of Open Access Journals (Sweden)

    Masamitsu Shimazawa

    2010-12-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is the most frequent adult-onset motor neuron disease, and recent evidence has suggested that endoplasmic reticulum (ER stress signaling is involved in the pathogenesis of ALS. Here we identified a small molecule, SUN N8075, which has a marked protective effect on ER stress-induced cell death, in an in vitro cell-based screening, and its protective mechanism was mediated by an induction of VGF nerve growth factor inducible (VGF: VGF knockdown with siRNA completely abolished the protective effect of SUN N8075 against ER-induced cell death, and overexpression of VGF inhibited ER-stress-induced cell death. VGF level was lower in the spinal cords of sporadic ALS patients than in the control patients. Furthermore, SUN N8075 slowed disease progression and prolonged survival in mutant SOD1 transgenic mouse and rat models of ALS, preventing the decrease of VGF expression in the spinal cords of ALS mice. These data suggest that VGF plays a critical role in motor neuron survival and may be a potential new therapeutic target for ALS, and SUN N8075 may become a potential therapeutic candidate for treatment of ALS.

  4. Unraveling ALS due to SOD1 mutation through the combination of brain and cervical cord MRI.

    Science.gov (United States)

    Agosta, Federica; Spinelli, Edoardo Gioele; Marjanovic, Ivan V; Stevic, Zorica; Pagani, Elisabetta; Valsasina, Paola; Salak-Djokic, Biljana; Jankovic, Milena; Lavrnic, Dragana; Kostic, Vladimir S; Filippi, Massimo

    2018-02-20

    To explore structural and functional changes of the brain and cervical cord in patients with amyotrophic lateral sclerosis (ALS) due to mutation in the superoxide dismutase ( SOD1 ) gene compared with sporadic ALS. Twenty patients with SOD1 ALS, 11 with sporadic ALS, and 33 healthy controls underwent clinical evaluation and brain MRI. Cortical thickness analysis, diffusion tensor MRI of the corticospinal tracts (CST) and corpus callosum, and resting-state functional connectivity were performed. Patients with ALS also underwent cervical cord MRI to evaluate cord cross-sectional area and magnetization transfer ratio (MTR). Patients with SOD1 ALS showed longer disease duration and slower rate of functional decline relative to those with sporadic ALS. No cortical thickness abnormalities were found in patients with ALS compared with controls. Fractional anisotropy showed that sporadic ALS patients had significant CST damage relative to both healthy controls ( p = 0.001-0.02) and SOD1-related ALS ( p = 0.05), although the latter showed alterations that were intermediate between controls and sporadic ALS. Functional hyperconnectivity of the motor cortex in the sensorimotor network was observed in patients with sporadic ALS relative to controls. Conversely, patients with SOD1 ALS showed lower cord cross-sectional area along the whole cervical cord relative to those with sporadic ALS ( p ALS showed cervical cord atrophy relative to those with sporadic ALS and a relative preservation of brain motor structural and functional networks. Neurodegeneration in SOD1 ALS is likely to occur primarily in the spinal cord. An objective and accurate estimate of spinal cord damage has potential in the future assessment of preventive SOD1 ALS therapies. © 2018 American Academy of Neurology.

  5. Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space.

    Science.gov (United States)

    Kawamata, Hibiki; Manfredi, Giovanni

    2010-11-01

    Cu, Zn, superoxide dismutase (SOD1) is a ubiquitous enzyme localized in multiple cellular compartments, including mitochondria, where it concentrates in the intermembrane space (IMS). Similar to other small IMS proteins, the import and retention of SOD1 in the IMS is linked to its folding and maturation, involving the formation of critical intra- and intermolecular disulfide bonds. Therefore, the cysteine residues of SOD1 play a fundamental role in its IMS localization. IMS import of SOD1 involves its copper chaperone, CCS, whose mitochondrial distribution is regulated by the Mia40/Erv1 disulfide relay system in a redox-dependent manner: CCS promotes SOD1 maturation and retention in the IMS. The function of SOD1 in the IMS is still unknown, but it is plausible that it serves to remove superoxide released from the mitochondrial respiratory chain. Mutations in SOD1 cause familial amyotrophic lateral sclerosis (ALS), whose pathologic features include mitochondrial bioenergetic dysfunction. Mutant SOD1 localization in the IMS is not dictated by oxygen concentration and the Mia40/Erv1 system, but is primarily dependent on aberrant protein folding and aggregation. Mutant SOD1 localization and aggregation in the IMS might cause the mitochondrial abnormalities observed in familial ALS and could play a significant role in disease pathogenesis.

  6. Haplotype defined by the MLH1-93G/A polymorphism is associated with MLH1 promoter hypermethylation in sporadic colorectal cancers.

    Science.gov (United States)

    Miyakura, Yasuyuki; Tahara, Makiko; Lefor, Alan T; Yasuda, Yoshikazu; Sugano, Kokichi

    2014-11-24

    Methylation of the MLH1 promoter region has been suggested to be a major mechanism of gene inactivation in sporadic microsatellite instability-positive (MSI-H) colorectal cancers (CRCs). Recently, single-nucleotide polymorphism (SNP) in the MLH1 promoter region (MLH1-93G/A; rs1800734) has been proposed to be associated with MLH1 promoter methylation, loss of MLH1 protein expression and MSI-H tumors. We examined the association of MLH1-93G/A and six other SNPs surrounding MLH1-93G/A with the methylation status in 210 consecutive sporadic CRCs in Japanese patients. Methylation of the MLH1 promoter region was evaluated by Na-bisulfite polymerase chain reaction (PCR)/single-strand conformation polymorphism (SSCP) analysis. The genotype frequencies of SNPs located in the 54-kb region surrounding the MLH1-93G/A SNP were examined by SSCP analysis. Methylation of the MLH1 promoter region was observed in 28.6% (60/210) of sporadic CRCs. The proportions of MLH1-93G/A genotypes A/A, A/G and G/G were 26% (n=54), 51% (n=108) and 23% (n=48), respectively, and they were significantly associated with the methylation status (p=0.01). There were no significant associations between genotype frequency of the six other SNPs and methylation status. The A-allele of MLH1-93G/A was more common in cases with methylation than the G-allele (p=0.0094), especially in females (p=0.0067). In logistic regression, the A/A genotype of the MLH1-93G/A SNP was shown to be the most significant risk factor for methylation of the MLH1 promoter region (odds ratio 2.82, p=0.003). Furthermore, a haplotype of the A-allele of rs2276807 located -47 kb upstream from the MLH1-93G/A SNP and the A-allele of MLH1-93G/A SNP was significantly associated with MLH1 promoter methylation. These results indicate that individuals, and particularly females, carrying the A-allele at the MLH1-93G/A SNP, especially in association with the A-allele of rs2276807, may harbor an increased risk of methylation of the MLH1 promoter

  7. Wildtype motoneurons, ALS-Linked SOD1 mutation and glutamate profoundly modify astrocyte metabolism and lactate shuttling.

    Science.gov (United States)

    Madji Hounoum, Blandine; Mavel, Sylvie; Coque, Emmanuelle; Patin, Franck; Vourc'h, Patrick; Marouillat, Sylviane; Nadal-Desbarats, Lydie; Emond, Patrick; Corcia, Philippe; Andres, Christian R; Raoul, Cédric; Blasco, Hélène

    2017-04-01

    The selective degeneration of motoneuron that typifies amyotrophic lateral sclerosis (ALS) implicates non-cell-autonomous effects of astrocytes. However, mechanisms underlying astrocyte-mediated neurotoxicity remain largely unknown. According to the determinant role of astrocyte metabolism in supporting neuronal function, we propose to explore the metabolic status of astrocytes exposed to ALS-associated conditions. We found a significant metabolic dysregulation including purine, pyrimidine, lysine, and glycerophospholipid metabolism pathways in astrocytes expressing an ALS-causing mutated superoxide dismutase-1 (SOD1) when co-cultured with motoneurons. SOD1 astrocytes exposed to glutamate revealed a significant modification of the astrocyte metabolic fingerprint. More importantly, we observed that SOD1 mutation and glutamate impact the cellular shuttling of lactate between astrocytes and motoneurons with a decreased in extra- and intra-cellular lactate levels in astrocytes. Based on the emergent strategy of metabolomics, this work provides novel insight for understanding metabolic dysfunction of astrocytes in ALS conditions and opens the perspective of therapeutics targets through focusing on these metabolic pathways. GLIA 2017 GLIA 2017;65:592-605. © 2017 Wiley Periodicals, Inc.

  8. Enhancing mitochondrial calcium buffering capacity reduces aggregation of misfolded SOD1 and motor neuron cell death without extending survival in mouse models of inherited amyotrophic lateral sclerosis.

    Science.gov (United States)

    Parone, Philippe A; Da Cruz, Sandrine; Han, Joo Seok; McAlonis-Downes, Melissa; Vetto, Anne P; Lee, Sandra K; Tseng, Eva; Cleveland, Don W

    2013-03-13

    Mitochondria have been proposed as targets for toxicity in amyotrophic lateral sclerosis (ALS), a progressive, fatal adult-onset neurodegenerative disorder characterized by the selective loss of motor neurons. A decrease in the capacity of spinal cord mitochondria to buffer calcium (Ca(2+)) has been observed in mice expressing ALS-linked mutants of SOD1 that develop motor neuron disease with many of the key pathological hallmarks seen in ALS patients. In mice expressing three different ALS-causing SOD1 mutants, we now test the contribution of the loss of mitochondrial Ca(2+)-buffering capacity to disease mechanism(s) by eliminating ubiquitous expression of cyclophilin D, a critical regulator of Ca(2+)-mediated opening of the mitochondrial permeability transition pore that determines mitochondrial Ca(2+) content. A chronic increase in mitochondrial buffering of Ca(2+) in the absence of cyclophilin D was maintained throughout disease course and was associated with improved mitochondrial ATP synthesis, reduced mitochondrial swelling, and retention of normal morphology. This was accompanied by an attenuation of glial activation, reduction in levels of misfolded SOD1 aggregates in the spinal cord, and a significant suppression of motor neuron death throughout disease. Despite this, muscle denervation, motor axon degeneration, and disease progression and survival were unaffected, thereby eliminating mutant SOD1-mediated loss of mitochondrial Ca(2+) buffering capacity, altered mitochondrial morphology, motor neuron death, and misfolded SOD1 aggregates, as primary contributors to disease mechanism for fatal paralysis in these models of familial ALS.

  9. In vitro evidence for impaired neuroprotective capacities of adult mesenchymal stem cells derived from a rat model of familial amyotrophic lateral sclerosis (hSOD1(G93A)).

    Science.gov (United States)

    Boucherie, Cédric; Caumont, Anne-Sophie; Maloteaux, Jean-Marie; Hermans, Emmanuel

    2008-08-01

    Protection of neurons by stem cells is an attractive challenge in the development of efficient therapies of neurodegenerative diseases. When giving preference to autologous grafts, the bone marrow constitutes a valuable source of adult stem cells. Therefore, we herein studied the acquisition of neuroprotective functions by cultured mesenchymal stem cells (MSCs) exposed to growth factors known to promote the differentiation of neural stem cells into astrocytes. In these conditions, MSCs showed increased transcription and expression of the high-affinity glutamate transporter GLT-1 and functional studies revealed increased aspartate uptake activity. In addition, differentiation was shown to endow the cells with the capacity to respond to riluzole which triggers a robust up-regulation of the GDNF production. In parallel, MSCs derived from the bone marrow of a transgenic rat model of familial ALS (hSOD1(G93A)) were also characterised. Unexpectedly, cells from this rat strain submitted to the differentiation protocol showed modest capacity to take up aspartate and did not respond to the riluzole treatments. These data highlight the neuroprotective potential attributable to MSCs, supporting their use as valuable tools for the treatment of neurodegenerative disorders. However, the cells from the transgenic animal model of ALS appeared deficient in their capacity to gain the neuroprotective properties, raising questions regarding the suitability of autologous stem cell grafts in future therapies against familial forms of this disease.

  10. Effect of fluoxetine on disease progression in a mouse model of ALS

    Science.gov (United States)

    Koschnitzky, J. E.; Quinlan, K. A.; Lukas, T. J.; Kajtaz, E.; Kocevar, E. J.; Mayers, W. F.; Siddique, T.

    2014-01-01

    Selective serotonin reuptake inhibitors (SSRIs) and other antidepressants are often prescribed to amyotrophic lateral sclerosis (ALS) patients; however, the impact of these prescriptions on ALS disease progression has not been systematically tested. To determine whether SSRIs impact disease progression, fluoxetine (Prozac, 5 or 10 mg/kg) was administered to mutant superoxide dismutase 1 (SOD1) mice during one of three age ranges: neonatal [postnatal day (P)5–11], adult presymptomatic (P30 to end stage), and adult symptomatic (P70 to end stage). Long-term adult fluoxetine treatment (started at either P30 or P70 and continuing until end stage) had no significant effect on disease progression. In contrast, neonatal fluoxetine treatment (P5-11) had two effects. First, all animals (mutant SOD1G93A and control: nontransgenic and SOD1WT) receiving the highest dose (10 mg/kg) had a sustained decrease in weight from P30 onward. Second, the high-dose SOD1G93A mice reached end stage ∼8 days (∼6% decrease in life span) sooner than vehicle and low-dose animals because of an increased rate of motor impairment. Fluoxetine increases synaptic serotonin (5-HT) levels, which is known to increase spinal motoneuron excitability. We confirmed that 5-HT increases spinal motoneuron excitability during this neonatal time period and therefore hypothesized that antagonizing 5-HT receptors during the same time period would improve disease outcome. However, cyproheptadine (1 or 5 mg/kg), a 5-HT receptor antagonist, had no effect on disease progression. These results show that a brief period of antidepressant treatment during a critical time window (the transition from neonatal to juvenile states) can be detrimental in ALS mouse models. PMID:24598527

  11. Analysis of Serum Cytokines and Single-Nucleotide Polymorphisms of SOD1, SOD2, and CAT in Erysipelas Patients

    Directory of Open Access Journals (Sweden)

    Charles C. Emene

    2017-01-01

    Full Text Available Increased free radical production had been documented in group A (β-hemolytic streptococcus infection cases. Comparing 71 erysipelas patients to 55 age-matched healthy individuals, we sought for CAT, SOD1, and SOD2 single polymorphism mutation (SNPs interactions with erysipelas’ predisposition and serum cytokine levels in the acute and recovery phases of erysipelas infection. Whereas female patients had a higher predisposition to erysipelas, male patients were prone to having a facial localization of the infection. The presence of SOD1 G7958, SOD2 T2734, and CAT C262 alleles was linked to erysipelas’ predisposition. T and C alleles of SOD2 T2734C individually were linked to patients with bullous and erythematous erysipelas, respectively. G and A alleles of SOD1 G7958A individually were associated with lower limbs and higher body part localizations of the infection, respectively. Serum levels of IL-1β, CCL11, IL-2Rα, CXCL9, TRAIL, PDGF-BB, and CCL4 were associated with symptoms accompanying the infection, while IL-6, IL-9, IL-10, IL-13, IL-15, IL-17, G-CSF, and VEGF were associated with predisposition and recurrence of erysipelas. While variations of IL-1β, IL-7, IL-8, IL-17, CCL5, and HGF were associated with the SOD2 T2734C SNP, variations of PDFG-BB and CCL2 were associated with the CAT C262T SNP.

  12. Oxidation of the tryptophan 32 residue of human superoxide dismutase 1 caused by its bicarbonate-dependent peroxidase activity triggers the non-amyloid aggregation of the enzyme.

    Science.gov (United States)

    Coelho, Fernando R; Iqbal, Asif; Linares, Edlaine; Silva, Daniel F; Lima, Filipe S; Cuccovia, Iolanda M; Augusto, Ohara

    2014-10-31

    The role of oxidative post-translational modifications of human superoxide dismutase 1 (hSOD1) in the amyotrophic lateral sclerosis (ALS) pathology is an attractive hypothesis to explore based on several lines of evidence. Among them, the remarkable stability of hSOD1(WT) and several of its ALS-associated mutants suggests that hSOD1 oxidation may precede its conversion to the unfolded and aggregated forms found in ALS patients. The bicarbonate-dependent peroxidase activity of hSOD1 causes oxidation of its own solvent-exposed Trp(32) residue. The resulting products are apparently different from those produced in the absence of bicarbonate and are most likely specific for simian SOD1s, which contain the Trp(32) residue. The aims of this work were to examine whether the bicarbonate-dependent peroxidase activity of hSOD1 (hSOD1(WT) and hSOD1(G93A) mutant) triggers aggregation of the enzyme and to comprehend the role of the Trp(32) residue in the process. The results showed that Trp(32) residues of both enzymes are oxidized to a similar extent to hSOD1-derived tryptophanyl radicals. These radicals decayed to hSOD1-N-formylkynurenine and hSOD1-kynurenine or to a hSOD1 covalent dimer cross-linked by a ditryptophan bond, causing hSOD1 unfolding, oligomerization, and non-amyloid aggregation. The latter process was inhibited by tempol, which recombines with the hSOD1-derived tryptophanyl radical, and did not occur in the absence of bicarbonate or with enzymes that lack the Trp(32) residue (bovine SOD1 and hSOD1(W32F) mutant). The results support a role for the oxidation products of the hSOD1-Trp(32) residue, particularly the covalent dimer, in triggering the non-amyloid aggregation of hSOD1. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Kabashi, Edor; Agar, Jeffrey N; Taylor, David M; Minotti, Sandra; Durham, Heather D

    2004-06-01

    Mutations in the Cu/Zn-superoxide dismutase (SOD-1) gene are responsible for a familial form of amyotrophic lateral sclerosis (fALS). The present study demonstrated impaired proteasomal function in the lumbar spinal cord of transgenic mice expressing human SOD-1 with the ALS-causing mutation G93A (SOD-1(G93A)) compared to non-transgenic littermates (LM) and SOD-1(WT) transgenic mice. Chymotrypsin-like activity was decreased as early as 45 days of age. By 75 days, chymotrypsin-, trypsin-, and caspase-like activities of the proteasome were impaired, at about 50% of control activity in lumbar spinal cord, but unchanged in thoracic spinal cord and liver. Both total and specific activities of the proteasome were reduced to a similar extent, indicating that a change in proteasome function, rather than a decrease in proteasome levels, had occurred. Similar decreases of total and specific activities of the proteasome were observed in NIH 3T3 cell lines expressing fALS mutants SOD-1(G93A) and SOD-1(G41S), but not in SOD-1(WT) controls. Although overall levels of proteasome were maintained in spinal cord of SOD-1(G93A) transgenic mice, the level of 20S proteasome was substantially reduced in lumbar spinal motor neurons relative to the surrounding neuropil. It is concluded that impairment of the proteasome is an early event and contributes to ALS pathogenesis.

  14. Concurrent Increases and Decreases in Local Stability and Conformational Heterogeneity in Cu, Zn Superoxide Dismutase Variants Revealed by Temperature-Dependence of Amide Chemical Shifts.

    Science.gov (United States)

    Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M

    2016-03-08

    The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.

  15. MLH1-93 G/a polymorphism is associated with MLH1 promoter methylation and protein loss in dysplastic sessile serrated adenomas with BRAFV600E mutation.

    Science.gov (United States)

    Fennell, Lochlan J; Jamieson, Saara; McKeone, Diane; Corish, Tracie; Rohdmann, Megan; Furner, Tori; Bettington, Mark; Liu, Cheng; Kawamata, Futoshi; Bond, Catherine; Van De Pols, Jolieke; Leggett, Barbara; Whitehall, Vicki

    2018-01-05

    Sessile serrated adenomas with BRAF mutation progress rapidly to cancer following the development of dysplasia (SSAD). Approximately 75% of SSADs methylate the mismatch repair gene MLH1, develop mismatch repair deficiency and the resultant cancers have a good prognosis. The remaining SSADs and BRAF mutant traditional serrated adenomas (TSA) develop into microsatellite stable cancers with a poor prognosis. The reason for this dichotomy is unknown. In this study, we assessed the genotypic frequency of the MLH1-93 polymorphism rs1800734 in SSADs and TSAs to determine if the uncommon variant A allele predisposes to MLH1 promoter hypermethylation. We performed genotyping for the MLH1-93 polymorphism, quantitative methylation specific PCR, and MLH1 immunohistochemistry on 124 SSAD, 128 TSA, 203 BRAF mutant CRCs and 147 control subjects with normal colonoscopy. The minor A allele was significantly associated with a dose dependent increase in methylation at the MLH1 promoter in SSADs (p = 0.022). The AA genotype was only observed in SSADs with MLH1 loss. The A allele was also overrepresented in BRAF mutant cancers with MLH1 loss. Only one of the TSAs showed loss of MLH1 and the overall genotype distribution in TSAs did not differ from controls. The MLH1-93 AA genotype is significantly associated with promoter hypermethylation and MLH1 loss in the context of SSADs. BRAF mutant microsatellite stable colorectal cancers with the AA genotype most likely arise in TSAs since the A allele does not predispose to methylation in this context.

  16. Effect of MLH1 -93G>A on gene expression in patients with colorectal cancer.

    Science.gov (United States)

    Funck, Alexandre; Santos, Juliana C; Silva-Fernandes, Isabelle J L; Rabenhorst, Silvia H B; Martinez, Carlos A R; Ribeiro, Marcelo L

    2014-09-01

    The DNA repair machinery plays a key role in maintaining genomic stability by preventing the emergence of mutations. Furthermore, the -93G>A polymorphism in the MLH1 gene has been associated with an increased risk of developing colorectal cancer. Therefore, the aim of this study was to examine the expression pattern and effect of this polymorphism in normal and tumour samples from patients with colorectal cancer. The MLH1 -93G>A (rs1800734) polymorphism was detected by PCR-RFLP in 49 cases of colorectal cancer. MLH1 expression was investigated using real-time quantitative PCR. The results indicate a significant decrease in MLH1 expression in tumour samples compared to their normal counterparts. The MLH1 gene was also significantly repressed in samples from patients who had some degree of tumour invasion into other organs. Similarly, those patients who were in a more advanced tumour stage (TNM III and IV) exhibited a significant reduction in MLH1 gene expression. Finally, the mutant genotype AA of MLH1 was associated with a significant decrease in the expression of this gene. This finding suggests that this polymorphism could increase the risk of developing colorectal cancer by a defective mismatch repair system, particularly through the loss of MLH1 expression in an allele-specific manner.

  17. A technique for performing electrical impedance myography in the mouse hind limb: data in normal and ALS SOD1 G93A animals.

    Directory of Open Access Journals (Sweden)

    Jia Li

    Full Text Available To test a method for performing electrical impedance myography (EIM in the mouse hind limb for the assessment of disease status in neuromuscular disease models.An impedance measuring device consisting of a frame with electrodes embedded within an acrylic head was developed. The head was rotatable such that data longitudinal and transverse to the major muscle fiber direction could be obtained. EIM measurements were made with this device on 16 healthy mice and 14 amyotrophic lateral sclerosis (ALS animals. Repeatability was assessed in both groups.The technique was easy to perform and provided good repeatability in both healthy and ALS animals, with intra-session repeatability (mean ± SEM of 5% ± 1% and 12% ± 2%, respectively. Significant differences between healthy and ALS animals were also identified (e.g., longitudinal mean 50 kHz phase was 18 ± 0.6° for the healthy animals and 14 ± 1.0° for the ALS animals, p=0.0025.With this simple device, the EIM data obtained is highly repeatable and can differentiate healthy from ALS animals.EIM can now be applied to mouse models of neuromuscular disease to assess disease status and the effects of therapy.

  18. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1)*

    Science.gov (United States)

    Harlan, Benjamin A.; Pehar, Mariana; Sharma, Deep R.; Beeson, Gyda; Beeson, Craig C.; Vargas, Marcelo R.

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD+) participates in redox reactions and NAD+-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD+-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD+ as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1–7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD+ salvage pathway capable of resynthesizing NAD+ from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD+ levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD+ salvage pathway in astrocytes. Supplementation with the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD+ levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1–2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD+ content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD+ salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. PMID:27002158

  19. Finding Inhibitors of Mutant Superoxide Dismutase-1 for Amyotrophic Lateral Sclerosis Therapy from Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Hung-Jin Huang

    2014-01-01

    Full Text Available Superoxide dismutase type 1 (SOD1 mutations cause protein aggregation and decrease protein stability, which are linked to amyotrophic lateral sclerosis (ALS disease. This research utilizes the world’s largest traditional Chinese medicine (TCM database to search novel inhibitors of mutant SOD1, and molecular dynamics (MD simulations were used to analyze the stability of protein that interacted with docked ligands. Docking results show that hesperidin and 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucoside (THSG have high affinity to mutant SOD1 and then dopamine. For MD simulation analysis, hesperidin and THSG displayed similar value of RMSD with dopamine, and the migration analysis reveals stable fluctuation at the end of MD simulation time. Interestingly, distance between the protein and ligand has distinct difference, and hesperidin changes the position from initial binding site to the other place. In flexibility of residues analysis, the secondary structure among all complexes does not change, indicating that the structure are not affect ligand binding. The binding poses of hesperidin and THSG are similar to dopamine after molecular simulation. Our result indicated that hesperidin and THSG might be potential lead compound to design inhibitors of mutant SOD1 for ALS therapy.

  20. Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1).

    Science.gov (United States)

    Harlan, Benjamin A; Pehar, Mariana; Sharma, Deep R; Beeson, Gyda; Beeson, Craig C; Vargas, Marcelo R

    2016-05-13

    Nicotinamide adenine dinucleotide (NAD(+)) participates in redox reactions and NAD(+)-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD(+)-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD(+) as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1-7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD(+) salvage pathway capable of resynthesizing NAD(+) from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD(+) levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD(+) salvage pathway in astrocytes. Supplementation with the NAD(+) precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD(+) levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1-2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD(+) content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD(+) salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS. © 2016 by The American Society for Biochemistry and Molecular

  1. Effects of Cellular Pathway Disturbances on Misfolded Superoxide Dismutase-1 in Fibroblasts Derived from ALS Patients.

    Directory of Open Access Journals (Sweden)

    Isil Keskin

    Full Text Available Mutations in superoxide dismutase-1 (SOD1 are a common known cause of amyotrophic lateral sclerosis (ALS. The neurotoxicity of mutant SOD1s is most likely caused by misfolded molecular species, but disease pathogenesis is still not understood. Proposed mechanisms include impaired mitochondrial function, induction of endoplasmic reticulum stress, reduction in the activities of the proteasome and autophagy, and the formation of neurotoxic aggregates. Here we examined whether perturbations in these cellular pathways in turn influence levels of misfolded SOD1 species, potentially amplifying neurotoxicity. For the study we used fibroblasts, which express SOD1 at physiological levels under regulation of the native promoter. The cells were derived from ALS patients expressing 9 different SOD1 mutants of widely variable molecular characteristics, as well as from patients carrying the GGGGCC-repeat-expansion in C9orf72 and from non-disease controls. A specific ELISA was used to quantify soluble, misfolded SOD1, and aggregated SOD1 was analysed by western blotting. Misfolded SOD1 was detected in all lines. Levels were found to be much lower in non-disease control and the non-SOD1 C9orf72 ALS lines. This enabled us to validate patient fibroblasts for use in subsequent perturbation studies. Mitochondrial inhibition, endoplasmic reticulum stress or autophagy inhibition did not affect soluble misfolded SOD1 and in most cases, detergent-resistant SOD1 aggregates were not detected. However, proteasome inhibition led to uniformly large increases in misfolded SOD1 levels in all cell lines and an increase in SOD1 aggregation in some. Thus the ubiquitin-proteasome pathway is a principal determinant of misfolded SOD1 levels in cells derived both from patients and controls and a decline in activity with aging could be one of the factors behind the mid-to late-life onset of inherited ALS.

  2. ATF3 expression improves motor function in the ALS mouse model by promoting motor neuron survival and retaining muscle innervation.

    Science.gov (United States)

    Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H

    2014-01-28

    ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.

  3. Postactivation depression of the Ia EPSP in motoneurons is reduced in both the G127X SOD1 model of amyotrophic lateral sclerosis and in aged mice

    DEFF Research Database (Denmark)

    Hedegaard, Anne; Lehnhoff, Janna; Moldovan, Mihai

    2015-01-01

    Post Activation Depression (PActD) of Ia afferent EPSPs in spinal motoneurons results in a long lasting depression of the stretch reflex. PActD is of clinical interest as it has been shown to be reduced in a number of spastic disorders. Using in vivo intracellular recordings of Ia EPSPs in adult...... mice, we demonstrate that PActD in adult (100-220 days) C57BL/6J mice is both qualitatively and quantitatively similar to that which has been observed in larger animals with respect to both magnitude (approximately 20% depression of EPSPs at 0.5 ms after a stimuli train) and time course (returning...... Sclerosis (ALS). Using the G127X SOD1 mutant mouse, an ALS model with a prolonged asymptomatic phase and fulminant symptom onset, we observed that PActD is significantly reduced at both pre-symptomatic (16% depression) and symptomatic (17.3% depression) time points compared to aged-matched controls (22...

  4. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis.

    Science.gov (United States)

    Deng, Han-Xiang; Zhai, Hong; Bigio, Eileen H; Yan, Jianhua; Fecto, Faisal; Ajroud, Kaouther; Mishra, Manjari; Ajroud-Driss, Senda; Heller, Scott; Sufit, Robert; Siddique, Nailah; Mugnaini, Enrico; Siddique, Teepu

    2010-06-01

    Amyotrophic lateral sclerosis (ALS) is a fatal disorder of motor neuron degeneration. Most cases of ALS are sporadic (SALS), but about 5 to 10% of ALS cases are familial (FALS). Recent studies have shown that mutations in FUS are causal in approximately 4 to 5% of FALS and some apparent SALS cases. The pathogenic mechanism of the mutant FUS-mediated ALS and potential roles of FUS in non-FUS ALS remain to be investigated. Immunostaining was performed on postmortem spinal cords from 78 ALS cases, including SALS (n = 52), ALS with dementia (ALS/dementia, n = 10), and FALS (n = 16). In addition, postmortem brains or spinal cords from 22 cases with or without frontotemporal lobar degeneration were also studied. In total, 100 cases were studied. FUS-immunoreactive inclusions were observed in spinal anterior horn neurons in all SALS and FALS cases, except for those with SOD1 mutations. The FUS-containing inclusions were also immunoreactive with antibodies to TDP43, p62, and ubiquitin. A fraction of tested FUS antibodies recognized FUS inclusions, and specific antigen retrieval protocol appeared to be important for detection of the skein-like FUS inclusions. Although mutations in FUS account for only a small fraction of FALS and SALS, our data suggest that FUS protein may be a common component of the cellular inclusions in non-SOD1 ALS and some other neurodegenerative conditions, implying a shared pathogenic pathway underlying SALS, non-SOD1 FALS, ALS/dementia, and related disorders. Our data also indicate that SOD1-linked ALS may have a pathogenic pathway distinct from SALS and other types of FALS.

  5. Intrinsic properties of lumbar motor neurones in the adult G127insTGGG superoxide dismutase-1 mutant mouse in vivo: evidence for increased persistent inward currents

    DEFF Research Database (Denmark)

    Meehan, Claire Francesca; Moldovan, Mihai; Marklund, Stefan L.

    2010-01-01

    Aim: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a preferential loss of motoneurones. Previous publications using in vitro neonatal preparations suggest an increased excitability of motoneurones in various superoxide dismutase-1 (SOD1) mutant mice...... of an increased PIC and less spike frequency adaptation which may contribute to excitotoxity of these neurones as the disease progresses....

  6. Inhibitors of SOD1 Interaction as an Approach to Slow the Progressive Spread of ALS Symptoms

    Science.gov (United States)

    2016-07-01

    the progression of ALS caused by mutations in this protein . To accomplish this goal, we developed an assay that is based on the observation that the...force. In our assay , this force is the normal interaction that occurs when 2 individual SOD1 proteins come together to form a normal active enzyme...Using recombinant DNA, we create fusion proteins of SOD1 and each half of the luciferase enzyme. In the past year, we have characterized and optimized

  7. Relativistic covariant wave equations and acausality in external fields

    International Nuclear Information System (INIS)

    Pijlgroms, R.B.J.

    1980-01-01

    The author considers linear, finite dimensional, first order relativistic wave equations: (βsup(μ)ideltasub(μ)-β)PSI(x) = 0 with βsup(μ) and β constant matrices. Firstly , the question of the relativistic covariance conditions on these equations is considered. Then the theory of these equations with β non-singular is summarized. Theories with βsup(μ), β square matrices and β singular are also discussed. Non-square systems of covariant relativistic wave equations for arbitrary spin > 1 are then considered. Finally, the interaction with external fields and the acausality problem are discussed. (G.T.H.)

  8. Interleukin-6 Deficiency Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutation.

    Science.gov (United States)

    Han, Yongmei; Ripley, Barry; Serada, Satoshi; Naka, Tetsuji; Fujimoto, Minoru

    2016-01-01

    Amyotrophic Lateral Sclerosis (ALS) is an adult-onset, progressive, motor neuron degenerative disease. Recent evidence indicates that inflammation is associated with many neurodegenerative diseases including ALS. Previously, abnormal levels of inflammatory cytokines including IL-1β, IL-6 and TNF-α were described in ALS patients and/or in mouse ALS models. In addition, one study showed that blocking IL-1β could slow down progression of ALS-like symptoms in mice. In this study, we examined a role for IL-6 in ALS, using an animal model for familial ALS. Mice with mutant SOD1 (G93A) transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG) mice were assessed by real time PCR. Mice were then crossed with IL-6(-/-) mice to generate SOD1TG/IL-6(-/-) mice. SOD1 TG/IL-6(-/-) mice (n = 17) were compared with SOD1 TG/IL-6(+/-) mice (n = 18), SOD1 TG/IL-6(+/+) mice (n = 11), WT mice (n = 15), IL-6(+/-) mice (n = 5) and IL-6(-/-) mice (n = 8), with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups. Levels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/-) mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days), similarly to SOD1 TG /IL-6(+/+) mice (164.31±12.16 days). Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/-) mice and SOD1 TG /IL-6 (+/+) mice. These results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations.

  9. Interleukin-6 Deficiency Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutation.

    Directory of Open Access Journals (Sweden)

    Yongmei Han

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is an adult-onset, progressive, motor neuron degenerative disease. Recent evidence indicates that inflammation is associated with many neurodegenerative diseases including ALS. Previously, abnormal levels of inflammatory cytokines including IL-1β, IL-6 and TNF-α were described in ALS patients and/or in mouse ALS models. In addition, one study showed that blocking IL-1β could slow down progression of ALS-like symptoms in mice. In this study, we examined a role for IL-6 in ALS, using an animal model for familial ALS.Mice with mutant SOD1 (G93A transgene, a model for familial ALS, were used in this study. The expression of the major inflammatory cytokines, IL-6, IL-1β and TNF-α, in spinal cords of these SOD1 transgenic (TG mice were assessed by real time PCR. Mice were then crossed with IL-6(-/- mice to generate SOD1TG/IL-6(-/- mice. SOD1 TG/IL-6(-/- mice (n = 17 were compared with SOD1 TG/IL-6(+/- mice (n = 18, SOD1 TG/IL-6(+/+ mice (n = 11, WT mice (n = 15, IL-6(+/- mice (n = 5 and IL-6(-/- mice (n = 8, with respect to neurological disease severity score, body weight and the survival. We also histologically compared the motor neuron loss in lumber spinal cords and the atrophy of hamstring muscles between these mouse groups.Levels of IL-6, IL-1β and TNF-α in spinal cords of SOD1 TG mice was increased compared to WT mice. However, SOD1 TG/IL-6(-/- mice exhibited weight loss, deterioration in motor function and shortened lifespan (167.55 ± 11.52 days, similarly to SOD1 TG /IL-6(+/+ mice (164.31±12.16 days. Motor neuron numbers and IL-1β and TNF-α levels in spinal cords were not significantly different in SOD1 TG /IL-6(-/- mice and SOD1 TG /IL-6 (+/+ mice.These results provide compelling preclinical evidence indicating that IL-6 does not directly contribute to motor neuron disease caused by SOD1 mutations.

  10. Intrathecal infusion of a Ca(2+)-permeable AMPA channel blocker slows loss of both motor neurons and of the astrocyte glutamate transporter, GLT-1 in a mutant SOD1 rat model of ALS.

    Science.gov (United States)

    Yin, Hong Z; Tang, Darryl T; Weiss, John H

    2007-10-01

    Elevated extracellular glutamate, resulting from a loss of astrocytic glutamate transport capacity, may contribute to excitotoxic motor neuron (MN) damage in ALS. Accounting for their high excitotoxic vulnerability, MNs possess large numbers of unusual Ca(2+)-permeable AMPA channels (Ca-AMPA channels), the activation of which triggers mitochondrial Ca(2+) overload and strong reactive oxygen species (ROS) generation. However, the causes of the astrocytic glutamate transport loss remain unexplained. To assess the role of Ca-AMPA channels on the evolution of pathology in vivo, we have examined effects of prolonged intrathecal infusion of the Ca-AMPA channel blocker, 1-naphthyl acetylspermine (NAS), in G93A transgenic rat models of ALS. In wild-type animals, immunoreactivity for the astrocytic glutamate transporter, GLT-1, was particularly strong around ventral horn MNs. However, a marked loss of ventral horn GLT-1 was observed, along with substantial MN damage, prior to onset of symptoms (90-100 days) in the G93A rats. Conversely, labeling with the oxidative marker, nitrotyrosine, was increased in the neuropil surrounding MNs in the transgenic animals. Compared to sham-treated G93A animals, 30-day NAS infusions (starting at 67+/-2 days of age) markedly diminished the loss of both MNs and of astrocytic GLT-1 labeling. These observations are compatible with the hypothesis that activation of Ca-AMPA channels on MNs contributes, likely in part through oxidative mechanisms, to loss of glutamate transporter in surrounding astrocytes.

  11. Oxidized SOD1 alters proteasome activities in vitro and in the cortex of SOD1 overexpressing mice.

    Science.gov (United States)

    Le Pecheur, Marie; Bourdon, Emmanuel; Paly, Evelyne; Farout, Luc; Friguet, Bertrand; London, Jacqueline

    2005-07-04

    Premature ageing, one of the characteristics of Down syndrome (DS), may involve oxidative stress and impairment of proteasome activity. Transgenic mice overexpressing the human copper/zinc superoxide dismutase (SOD1) gene are one of the first murine models for DS and it has been shown that SOD1 overexpression might be either deleterious or beneficial. Here, we show a reduction in proteasome activities in the cortex of SOD1 transgenic mice and an associated increase in the content of oxidized SOD1 protein. As we demonstrate that in vitro oxidized SOD can inhibit purified proteasome peptidase activities, modified SOD1 might be partially responsible for proteasome inhibition shown in SOD1 transgenic mice.

  12. Pyrimethamine significantly lowers cerebrospinal fluid Cu/Zn superoxide dismutase in amyotrophic lateral sclerosis patients with SOD1 mutations.

    Science.gov (United States)

    Lange, Dale J; Shahbazi, Mona; Silani, Vincenzo; Ludolph, Albert C; Weishaupt, Jochen H; Ajroud-Driss, Senda; Fields, Kara G; Remanan, Rahul; Appel, Stanley H; Morelli, Claudia; Doretti, Alberto; Maderna, Luca; Messina, Stefano; Weiland, Ulrike; Marklund, Stefan L; Andersen, Peter M

    2017-06-01

    Cu/Zn superoxide dismutase (SOD1) reduction prolongs survival in SOD1-transgenic animal models. Pyrimethamine produces dose-dependent SOD1 reduction in cell culture systems. A previous phase 1 trial showed pyrimethamine lowers SOD1 levels in leukocytes in patients with SOD1 mutations. This study investigated whether pyrimethamine lowered SOD1 levels in the cerebrospinal fluid (CSF) in patients carrying SOD1 mutations linked to familial amyotrophic lateral sclerosis (fALS/SOD1). A multicenter (5 sites), open-label, 9-month-duration, dose-ranging study was undertaken to determine the safety and efficacy of pyrimethamine to lower SOD1 levels in the CSF in fALS/SOD1. All participants underwent 3 lumbar punctures, blood draw, clinical assessment of strength, motor function, quality of life, and adverse effect assessments. SOD1 levels were measured in erythrocytes and CSF. Pyrimethamine was measured in plasma and CSF. Appel ALS score, ALS Functional Rating Scale-Revised, and McGill Quality of Life Single-Item Scale were measured at screening, visit 6, and visit 9. We enrolled 32 patients; 24 completed 6 visits (18 weeks), and 21 completed all study visits. A linear mixed effects model showed a significant reduction in CSF SOD1 at visit 6 (p < 0.001) with a mean reduction of 13.5% (95% confidence interval [CI] = 8.4-18.5) and at visit 9 (p < 0.001) with a mean reduction of 10.5% (95% CI = 5.2-15.8). Pyrimethamine is safe and well tolerated in ALS. Pyrimethamine is capable of producing a significant reduction in total CSF SOD1 protein content in patients with ALS caused by different SOD1 mutations. Further long-term studies are warranted to assess clinical efficacy. Ann Neurol 2017;81:837-848. © 2017 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  13. A mouse model of familial ALS has increased CNS levels of endogenous ubiquinol9/10 and does not benefit from exogenous administration of ubiquinol10.

    Directory of Open Access Journals (Sweden)

    Jacopo Lucchetti

    Full Text Available Oxidative stress and mitochondrial impairment are the main pathogenic mechanisms of Amyotrophic Lateral Sclerosis (ALS, a severe neurodegenerative disease still lacking of effective therapy. Recently, the coenzyme-Q (CoQ complex, a key component of mitochondrial function and redox-state modulator, has raised interest for ALS treatment. However, while the oxidized form ubiquinone10 was ineffective in ALS patients and modestly effective in mouse models of ALS, no evidence was reported on the effect of the reduced form ubiquinol10, which has better bioavailability and antioxidant properties. In this study we compared the effects of ubiquinone10 and a new stabilized formulation of ubiquinol10 on the disease course of SOD1(G93A transgenic mice, an experimental model of fALS. Chronic treatments (800 mg/kg/day orally started from the onset of disease until death, to mimic the clinical trials that only include patients with definite ALS symptoms. Although the plasma levels of CoQ10 were significantly increased by both treatments (from <0.20 to 3.0-3.4 µg/mL, no effect was found on the disease progression and survival of SOD1(G93A mice. The levels of CoQ10 in the brain and spinal cord of ubiquinone10- or ubiquinol10-treated mice were only slightly higher (≤10% than the endogenous levels in vehicle-treated mice, indicating poor CNS availability after oral dosing and possibly explaining the lack of pharmacological effects. To further examine this issue, we measured the oxidized and reduced forms of CoQ9/10 in the plasma, brain and spinal cord of symptomatic SOD1(G93A mice, in comparison with age-matched SOD1(WT. Levels of ubiquinol9/10, but not ubiquinone9/10, were significantly higher in the CNS, but not in plasma, of SOD1(G93A mice, suggesting that CoQ redox system might participate in the mechanisms trying to counteract the pathology progression. Therefore, the very low increases of CoQ10 induced by oral treatments in CNS might be not sufficient to

  14. Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene

    Directory of Open Access Journals (Sweden)

    Streit Wolfgang J

    2007-02-01

    Full Text Available Abstract Background Microglial neuroinflammation is thought to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS. The purpose of this study was to provide a histopathological evaluation of the microglial neuroinflammatory response in a rodent model of ALS, the SOD1G93A transgenic rat. Methods Multiple levels of the CNS from spinal cord to cerebral cortex were studied in SOD1G93A transgenic rats during three stages of natural disease progression, including presymptomatic, early symptomatic (onset, and late symptomatic (end stage, using immuno- and lectin histochemical markers for microglia, such as OX-42, OX-6, and Griffonia simplicifolia isolectin B4. Results Our studies revealed abnormal aggregates of microglia forming in the spinal cord as early as the presymptomatic stage. During the symptomatic stages there was prominent formation of multinucleated giant cells through fusion of microglial cells in the spinal cord, brainstem, and red nucleus of the midbrain. Other brain regions, including substantia nigra, cranial nerve nuclei, hippocampus and cortex showed normal appearing microglia. In animals during end stage disease at 4–5 months of age virtually all microglia in the spinal cord gray matter showed extensive fragmentation of their cytoplasm (cytorrhexis, indicative of widespread microglial degeneration. Few microglia exhibiting nuclear fragmentation (karyorrhexis indicative of apoptosis were identified at any stage. Conclusion The current findings demonstrate the occurrence of severe abnormalities in microglia, such as cell fusions and cytorrhexis, which may be the result of expression of mutant SOD1 in these cells. The microglial changes observed are different from those that accompany normal microglial activation, and they demonstrate that aberrant activation and degeneration of microglia is part of the pathogenesis of motor neuron disease.

  15. Exendin-4 ameliorates motor neuron degeneration in cellular and animal models of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Yazhou Li

    Full Text Available Amyotrophic lateral sclerosis (ALS is a devastating neurodegenerative disease characterized by a progressive loss of lower motor neurons in the spinal cord. The incretin hormone, glucagon-like peptide-1 (GLP-1, facilitates insulin signaling, and the long acting GLP-1 receptor agonist exendin-4 (Ex-4 is currently used as an anti-diabetic drug. GLP-1 receptors are widely expressed in the brain and spinal cord, and our prior studies have shown that Ex-4 is neuroprotective in several neurodegenerative disease rodent models, including stroke, Parkinson's disease and Alzheimer's disease. Here we hypothesized that Ex-4 may provide neuroprotective activity in ALS, and hence characterized Ex-4 actions in both cell culture (NSC-19 neuroblastoma cells and in vivo (SOD1 G93A mutant mice models of ALS. Ex-4 proved to be neurotrophic in NSC-19 cells, elevating choline acetyltransferase (ChAT activity, as well as neuroprotective, protecting cells from hydrogen peroxide-induced oxidative stress and staurosporine-induced apoptosis. Additionally, in both wild-type SOD1 and mutant SOD1 (G37R stably transfected NSC-19 cell lines, Ex-4 protected against trophic factor withdrawal-induced toxicity. To assess in vivo translation, SOD1 mutant mice were administered vehicle or Ex-4 at 6-weeks of age onwards to end-stage disease via subcutaneous osmotic pump to provide steady-state infusion. ALS mice treated with Ex-4 showed improved glucose tolerance and normalization of behavior, as assessed by running wheel, compared to control ALS mice. Furthermore, Ex-4 treatment attenuated neuronal cell death in the lumbar spinal cord; immunohistochemical analysis demonstrated the rescue of neuronal markers, such as ChAT, associated with motor neurons. Together, our results suggest that GLP-1 receptor agonists warrant further evaluation to assess whether their neuroprotective potential is of therapeutic relevance in ALS.

  16. TFE-induced local unfolding and fibrillation of SOD1: bridging the experiment and simulation studies.

    Science.gov (United States)

    Kumar, Vijay; Prakash, Amresh; Pandey, Preeti; Lynn, Andrew M; Hassan, Md Imtaiyaz

    2018-05-18

    Misfolding and aggregation of Cu, Zn Superoxide dismutase (SOD1) is involved in the neurodegenerative disease, amyotrophic lateral sclerosis. Many studies have shown that metal-depleted, monomeric form of SOD1 displays substantial local unfolding dynamics and is the precursor for aggregation. Here, we have studied the structure and dynamics of different apo monomeric SOD1 variants associated with unfolding and aggregation in aqueous trifluoroethanol (TFE) through experiments and simulation. TFE induces partially unfolded β-sheet-rich extended conformations in these SOD1 variants, which subsequently develops aggregates with fibril-like characteristics. Fibrillation was achieved more easily in disulfide-reduced monomeric SOD1 when compared with wild-type and mutant monomeric SOD1. At higher concentrations of TFE, a native-like structure with the increase in α-helical content was observed. The molecular dynamics simulation results illustrate distinct structural dynamics for different regions of SOD1 variants and show uniform local unfolding of β-strands. The strands protected by the zinc-binding and electrostatic loops were found to unfold first in 20% (v/v) TFE, leading to a partial unfolding of β-strands 4, 5, and 6 which are prone to aggregation. Our results thus shed light on the role of local unfolding and conformational dynamics in SOD1 misfolding and aggregation. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease.

    Science.gov (United States)

    Zhao, Wei; Varghese, Merina; Vempati, Prashant; Dzhun, Anastasiya; Cheng, Alice; Wang, Jun; Lange, Dale; Bilski, Amanda; Faravelli, Irene; Pasinetti, Giulio Maria

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and finally death. ALS patients suffer from asthenia and their progressive weakness negatively impacts quality of life, limiting their daily activities. They have impaired energy balance linked to lower activity of mitochondrial electron transport chain enzymes in ALS spinal cord, suggesting that improving mitochondrial function may present a therapeutic approach for ALS. When fed a ketogenic diet, the G93A ALS mouse shows a significant increase in serum ketones as well as a significantly slower progression of weakness and lower mortality rate. In this study, we treated SOD1-G93A mice with caprylic triglyceride, a medium chain triglyceride that is metabolized into ketone bodies and can serve as an alternate energy substrate for neuronal metabolism. Treatment with caprylic triglyceride attenuated progression of weakness and protected spinal cord motor neuron loss in SOD1-G93A transgenic animals, significantly improving their performance even though there was no significant benefit regarding the survival of the ALS transgenic animals. We found that caprylic triglyceride significantly promoted the mitochondrial oxygen consumption rate in vivo. Our results demonstrated that caprylic triglyceride alleviates ALS-type motor impairment through restoration of energy metabolism in SOD1-G93A ALS mice, especially during the overt stage of the disease. These data indicate the feasibility of using caprylic acid as an easily administered treatment with a high impact on the quality of life of ALS patients.

  18. Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease.

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and finally death. ALS patients suffer from asthenia and their progressive weakness negatively impacts quality of life, limiting their daily activities. They have impaired energy balance linked to lower activity of mitochondrial electron transport chain enzymes in ALS spinal cord, suggesting that improving mitochondrial function may present a therapeutic approach for ALS. When fed a ketogenic diet, the G93A ALS mouse shows a significant increase in serum ketones as well as a significantly slower progression of weakness and lower mortality rate. In this study, we treated SOD1-G93A mice with caprylic triglyceride, a medium chain triglyceride that is metabolized into ketone bodies and can serve as an alternate energy substrate for neuronal metabolism. Treatment with caprylic triglyceride attenuated progression of weakness and protected spinal cord motor neuron loss in SOD1-G93A transgenic animals, significantly improving their performance even though there was no significant benefit regarding the survival of the ALS transgenic animals. We found that caprylic triglyceride significantly promoted the mitochondrial oxygen consumption rate in vivo. Our results demonstrated that caprylic triglyceride alleviates ALS-type motor impairment through restoration of energy metabolism in SOD1-G93A ALS mice, especially during the overt stage of the disease. These data indicate the feasibility of using caprylic acid as an easily administered treatment with a high impact on the quality of life of ALS patients.

  19. Improving the Delivery of SOD1 Antisense Oligonucleotides to Motor Neurons Using Calcium Phosphate-Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Liyu Chen

    2017-08-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a fatal neurodegenerative disease affecting the upper and lower motor neurons in the motor cortex and spinal cord. Abnormal accumulation of mutant superoxide dismutase I (SOD1 in motor neurons is a pathological hallmark of some forms of the disease. We have shown that the orderly progression of the disease may be explained by misfolded SOD1 cell-to-cell propagation, which is reliant upon its active endogenous synthesis. Reducing the levels of SOD1 is therefore a promising therapeutic approach. Antisense oligonucleotides (ASOs can efficiently silence proteins with gain-of-function mutations. However, naked ASOs have a short circulation half-life and are unable to cross the blood brain barrier (BBB warranting the use of a drug carrier for effective delivery. In this study, calcium phosphate lipid coated nanoparticles (CaP-lipid NPs were developed for delivery of SOD1 ASO to motor neurons. The most promising nanoparticle formulation (Ca/P ratio of 100:1, had a uniform spherical core–shell morphology with an average size of 30 nm, and surface charge (ζ-potential of −4.86 mV. The encapsulation efficiency of ASO was 48% and stability studies found the particle to be stable over a period of 20 days. In vitro experiments demonstrated that the negatively charged ASO-loaded CaP-lipid NPs could effectively deliver SOD1-targeted ASO into a mouse motor neuron-like cell line (NSC-34 through endocytosis and significantly down-regulated SOD1 expression in HEK293 cells. The CaP-lipid NPs exhibited a pH-dependant dissociation, suggesting that that the acidification of lysosomes is the likely mechanism responsible for facilitating intracellular ASO release. To demonstrate tissue specific delivery and localization of these NPs we performed in vivo microinjections into zebrafish. Successful delivery of these NPs was confirmed for the zebrafish brain, the blood stream, and the spinal cord. These results suggest that Ca

  20. SOD1 Gene +35A/C (exon3/intron3 Polymorphism in Type 2 Diabetes Mellitus among South Indian Population

    Directory of Open Access Journals (Sweden)

    K. Nithya

    2016-01-01

    Full Text Available Superoxide dismutase is an antioxidant enzyme that is involved in defence mechanisms against oxidative stress. Cu/Zn SOD is a variant that is located in exon3/intron3 boundary. The aim of the present study was to investigate whether the Cu/Zn SOD (+35A/C gene polymorphism is associated with the susceptibility to type 2 diabetes mellitus among south Indian population. The study included patients with type 2 diabetes mellitus (n=100 and healthy controls (n=75. DNA was isolated from the blood and genotyping of Cu/Zn SOD gene polymorphism was done by polymerase chain reaction based restriction fragment length polymorphism method. Occurrence of different genotypes and normal (A and mutant (C allele frequencies were determined. The frequency of the three genotypes of the total subjects was as follows: homozygous wild-type A/A (95%, heterozygous genotype A/C (3%, and homozygous mutant C/C (2%. The mutant (C allele and the mutant genotypes (AC/CC were found to be completely absent among the patients with type 2 diabetes mellitus. Absence of mutant genotype (CC shows that the Cu/Zn SOD gene polymorphism may not be associated with the susceptibility to type 2 diabetes mellitus among south Indian population.

  1. Absence of sodA Increases the Levels of Oxidation of Key Metabolic Determinants of Borrelia burgdorferi.

    Directory of Open Access Journals (Sweden)

    Maria D Esteve-Gassent

    Full Text Available Borrelia burgdorferi, the causative agent of Lyme disease, alters its gene expression in response to environmental signals unique to its tick vector or vertebrate hosts. B. burgdorferi carries one superoxide dismutase gene (sodA capable of controlling intracellular superoxide levels. Previously, sodA was shown to be essential for infection of B. burgdorferi in the C3H/HeN model of Lyme disease. We employed two-dimensional electrophoresis (2-DE and immunoblot analysis with antibodies specific to carbonylated proteins to identify targets that were differentially oxidized in the soluble fractions of the sodA mutant compared to its isogenic parental control strain following treatment with an endogenous superoxide generator, methyl viologen (MV, paraquat. HPLC-ESI-MS/MS analysis of oxidized proteins revealed that several proteins of the glycolytic pathway (BB0057, BB0020, BB0348 exhibited increased carbonylation in the sodA mutant treated with MV. Levels of ATP and NAD/NADH were reduced in the sodA mutant compared with the parental strain following treatment with MV and could be attributed to increased levels of oxidation of proteins of the glycolytic pathway. In addition, a chaperone, HtpG (BB0560, and outer surface protein A (OspA, BBA15 were also observed to be oxidized in the sodA mutant. Immunoblot analysis revealed reduced levels of Outer surface protein C (OspC, Decorin binding protein A (DbpA, fibronectin binding protein (BBK32, RpoS and BosR in the sodA mutant compared to the control strains. Viable sodA mutant spirochetes could not be recovered from both gp91/phox-⁄- and iNOS deficient mice while borrelial DNA was detected in multiple tissues samples from infected mice at significantly lower levels compared to the parental strain. Taken together, these observations indicate that the increased oxidation of select borrelial determinants and reduced levels of critical pathogenesis-associated lipoproteins contribute to the in vivo deficit of

  2. Human neural stem cell replacement therapy for amyotrophic lateral sclerosis by spinal transplantation.

    Directory of Open Access Journals (Sweden)

    Michael P Hefferan

    Full Text Available Mutation in the ubiquitously expressed cytoplasmic superoxide dismutase (SOD1 causes an inherited form of Amyotrophic Lateral Sclerosis (ALS. Mutant synthesis in motor neurons drives disease onset and early disease progression. Previous experimental studies have shown that spinal grafting of human fetal spinal neural stem cells (hNSCs into the lumbar spinal cord of SOD1(G93A rats leads to a moderate therapeutical effect as evidenced by local α-motoneuron sparing and extension of lifespan. The aim of the present study was to analyze the degree of therapeutical effect of hNSCs once grafted into the lumbar spinal ventral horn in presymptomatic immunosuppressed SOD1(G93A rats and to assess the presence and functional integrity of the descending motor system in symptomatic SOD1(G93A animals.Presymptomatic SOD1(G93A rats (60-65 days old received spinal lumbar injections of hNSCs. After cell grafting, disease onset, disease progression and lifespan were analyzed. In separate symptomatic SOD1(G93A rats, the presence and functional conductivity of descending motor tracts (corticospinal and rubrospinal was analyzed by spinal surface recording electrodes after electrical stimulation of the motor cortex. Silver impregnation of lumbar spinal cord sections and descending motor axon counting in plastic spinal cord sections were used to validate morphologically the integrity of descending motor tracts. Grafting of hNSCs into the lumbar spinal cord of SOD1(G93A rats protected α-motoneurons in the vicinity of grafted cells, provided transient functional improvement, but offered no protection to α-motoneuron pools distant from grafted lumbar segments. Analysis of motor-evoked potentials recorded from the thoracic spinal cord of symptomatic SOD1(G93A rats showed a near complete loss of descending motor tract conduction, corresponding to a significant (50-65% loss of large caliber descending motor axons.These data demonstrate that in order to achieve a more

  3. Deleterious effects of lymphocytes at the early stage of neurodegeneration in an animal model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Nakatsuji Yuji

    2011-02-01

    Full Text Available Abstract Background Non-neuronal cells, such as microglia and lymphocytes, are thought to be involved in the pathogenesis of amyotrophic lateral sclerosis (ALS. Previous studies have demonstrated neuroprotective effects of lymphocytes at the end stage of ALS, partly through induction of alternatively activated microglia (M2 microglia, which are neuroprotective. In this study, we investigated the role of lymphocytes in the early stage of the disease using an animal model of inherited ALS. Methods We established a transgenic mouse line overexpressing the familial ALS-associated G93A-SOD1 mutation (harboring a single amino acid substitution of glycine to alanine at codon 93 with depletion of the Rag2 gene (mSOD1/RAG2-/- mice, an animal model of inherited ALS lacking mature lymphocytes. Body weights, clinical scores and motor performance (hanging wire test of mSOD1/RAG2-/- mice were compared to those of mutant human SOD1 transgenic mice (mSOD1/RAG2+/+ mice. Activation of glial cells in the spinal cords of these mice was determined immunohistochemically, and the expression of mRNA for various inflammatory and anti-inflammatory molecules was evaluated. Results Clinical onset in mSOD1/RAG2-/- mice was significantly delayed, and the number of lectin-positive cells in spinal cord was increased at the early stage of disease when compared to mSOD1/RAG2+/+ mice. Quantitative RT-PCR confirmed that mRNA for Ym1, an M2 microglial-related molecule, was significantly increased in mSOD1/RAG2-/- mouse spinal cords at the early disease stage. Conclusions Compared with mSOD1/RAG2+/+ mice, mSOD1/RAG2-/- mice displayed delayed onset and increased M2 microglial activation at the early stage of disease. Thus, lymphocytes at the early pathological phase of ALS display a deleterious effect via inhibition of M2 microglial activation.

  4. A potential role for neuronal connexin 36 in the pathogenesis of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Belousov, Andrei B; Nishimune, Hiroshi; Denisova, Janna V; Fontes, Joseph D

    2018-02-14

    Neuronal gap junctional protein connexin 36 (Cx36) contributes to neuronal death following a range of acute brain insults such as ischemia, traumatic brain injury and epilepsy. Whether Cx36 contributes to neuronal death and pathological outcomes in chronic neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), is not known. We show here that the expression of Cx36 is significantly decreased in lumbar segments of the spinal cord of both human ALS subjects and SOD1 G93A mice as compared to healthy human and wild-type mouse controls, respectively. In purified neuronal cultures prepared from the spinal cord of wild-type mice, knockdown of Cx36 reduces neuronal death caused by overexpression of the mutant human SOD1-G93A protein. Taken together, these data suggest a possible contribution of Cx36 to ALS pathogenesis. A perspective for the use of blockers of Cx36 gap junction channels for ALS therapy is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Differential autophagy power in the spinal cord and muscle of transgenic ALS mice

    NARCIS (Netherlands)

    Crippa, Valeria; Boncoraglio, Alessandra; Galbiati, Mariarita; Aggarwal, Tanya; Rusmini, Paola; Giorgetti, Elisa; Cristofani, Riccardo; Carra, Serena; Pennuto, Maria; Poletti, Angelo

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is a motoneuron disease characterized by misfolded proteins aggregation in affected motoneurons. In mutant SOD1 (mutSOD1) ALS models, aggregation correlates to impaired functions of proteasome and/or autophagy, both essential for the intracellular

  6. Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Cheng Alice

    2011-07-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a devastating neurodegenerative disease that affects spinal cord and cortical motor neurons. An increasing amount of evidence suggests that mitochondrial dysfunction contributes to motor neuron death in ALS. Peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α is a principal regulator of mitochondrial biogenesis and oxidative metabolism. Results In this study, we examined whether PGC-1α plays a protective role in ALS by using a double transgenic mouse model where PGC-1α is over-expressed in an SOD1 transgenic mouse (TgSOD1-G93A/PGC-1α. Our results indicate that PGC-1α significantly improves motor function and survival of SOD1-G93A mice. The behavioral improvements were accompanied by reduced blood glucose level and by protection of motor neuron loss, restoration of mitochondrial electron transport chain activities and inhibition of stress signaling in the spinal cord. Conclusion Our results demonstrate that PGC-1α plays a beneficial role in a mouse model of ALS, suggesting that PGC-1α may be a potential therapeutic target for ALS therapy.

  7. ALS skeletal muscle shows enhanced TGF-β signaling, fibrosis and induction of fibro/adipogenic progenitor markers.

    Directory of Open Access Journals (Sweden)

    David Gonzalez

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease in which upper and lower motoneurons degenerate leading to muscle wasting, paralysis and eventually death from respiratory failure. Several studies indicate that skeletal muscle contributes to disease progression; however the molecular mechanisms remain elusive. Fibrosis is a common feature in skeletal muscle under chronic damage conditions such as those caused by muscular dystrophies or denervation. However, the exact mechanisms of fibrosis induction and the cellular bases of this pathological response are unknown. We show that extracellular matrix (ECM components are augmented in skeletal muscles of symptomatic hSOD1G93A mice, a widely used murine model of ALS. These mice also show increased TGF-β1 mRNA levels, total Smad3 protein levels and p-Smad3 positive nuclei. Furthermore, platelet-derived growth factor receptor-α (PDGFRα, Tcf4 and α-smooth muscle actin (α-SMA levels are augmented in the skeletal muscle of symptomatic hSOD1G93A mice. Additionally, the fibro/adipogenic progenitors (FAPs, which are the main producers of ECM constituents, are also increased in these pathogenic conditions. Therefore, FAPs and ECM components are more abundant in symptomatic stages of the disease than in pre-symptomatic stages. We present evidence that fibrosis observed in skeletal muscle of symptomatic hSOD1G93A mice is accompanied with an induction of TGF-β signaling, and also that FAPs might be involved in triggering a fibrotic response. Co-localization of p-Smad3 positive cells together with PDGFRα was observed in the interstitial cells of skeletal muscles from symptomatic hSOD1G93A mice. Finally, the targeting of pro-fibrotic factors such as TGF-β, CTGF/CCN2 and platelet-derived growth factor (PDGF signaling pathway might be a suitable therapeutic approach to improve muscle function in several degenerative diseases.

  8. Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis?

    Science.gov (United States)

    Kabashi, Edor; Valdmanis, Paul N; Dion, Patrick; Rouleau, Guy A

    2007-12-01

    The identification in 1993 of superoxide dismutase-1 (SOD1) mutations as the cause of 10 to 20% of familial amyotrophic lateral sclerosis cases, which represents 1 to 2% of all amyotrophic lateral sclerosis (ALS) cases, prompted a substantial amount of research into the mechanisms of SOD1-mediated toxicity. Recent experiments have demonstrated that oxidation of wild-type SOD1 leads to its misfolding, causing it to gain many of the same toxic properties as mutant SOD1. In vitro studies of oxidized/misfolded SOD1 and in vivo studies of misfolded SOD1 have indicated that these protein species are selectively toxic to motor neurons, suggesting that oxidized/misfolded SOD1 could lead to ALS even in individuals who do not carry an SOD1 mutation. It has also been reported that glial cells secrete oxidized/misfolded mutant SOD1 to the extracellular environment, where it can trigger the selective death of motor neurons, offering a possible explanation for the noncell autonomous nature of mutant SOD1 toxicity and the rapid progression of disease once the first symptoms develop. Therefore, considering that sporadic (SALS) and familial ALS (FALS) cases are clinically indistinguishable, the toxic properties of mutated SOD1 are similar to that of oxidized/misfolded wild-type SOD1 (wtSOD1), and secreted/extracellular misfolded SOD1 is selectively toxic to motor neurons, we propose that oxidized/misfolded SOD1 is the cause of most forms of classic ALS and should be a prime target for the design of ALS treatments.

  9. Riluzole does not improve lifespan or motor function in three ALS mouse models.

    Science.gov (United States)

    Hogg, Marion C; Halang, Luise; Woods, Ina; Coughlan, Karen S; Prehn, Jochen H M

    2017-12-08

    Riluzole is the most widespread therapeutic for treatment of the progressive degenerative disease amyotrophic lateral sclerosis (ALS). Riluzole gained FDA approval in 1995 before the development of ALS mouse models. We assessed riluzole in three transgenic ALS mouse models: the SOD1 G93A model, the TDP-43 A315T model, and the recently developed FUS (1-359) model. Age, sex and litter-matched mice were treated with riluzole (22 mg/kg) in drinking water or vehicle (DMSO) from symptom onset. Lifespan was assessed and motor function tests were carried out twice weekly to determine whether riluzole slowed disease progression. Riluzole treatment had no significant benefit on lifespan in any of the ALS mouse models tested. Riluzole had no significant impact on decline in motor performance in the FUS (1-359) and SOD1 G93A transgenic mice as assessed by Rotarod and stride length analysis. Riluzole is widely prescribed for ALS patients despite questions surrounding its efficacy. Our data suggest that if riluzole was identified as a therapeutic candidate today it would not progress past pre-clinical assessment. This raises questions about the standards used in pre-clinical assessment of therapeutic candidates for the treatment of ALS.

  10. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation

    Energy Technology Data Exchange (ETDEWEB)

    Takanashi, Keisuke; Yamaguchi, Atsushi, E-mail: atsyama@restaff.chiba-u.jp

    2014-09-26

    Highlights: • Aggregation of ALS-linked FUS mutant sequesters ALS-associated RNA-binding proteins (FUS wt, hnRNP A1, and hnRNP A2). • Aggregation of ALS-linked FUS mutant sequesters SMN1 in the detergent-insoluble fraction. • Aggregation of ALS-linked FUS mutant reduced the number of speckles in the nucleus. • Overproduced ALS-linked FUS mutant reduced the number of processing-bodies (PBs). - Abstract: Protein aggregate/inclusion is one of hallmarks for neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). FUS/TLS, one of causative genes for familial ALS, encodes a multifunctional DNA/RNA binding protein predominantly localized in the nucleus. C-terminal mutations in FUS/TLS cause the retention and the inclusion of FUS/TLS mutants in the cytoplasm. In the present study, we examined the effects of ALS-linked FUS mutants on ALS-associated RNA binding proteins and RNA granules. FUS C-terminal mutants were diffusely mislocalized in the cytoplasm as small granules in transiently transfected SH-SY5Y cells, whereas large aggregates were spontaneously formed in ∼10% of those cells. hnRNP A1, hnRNP A2, and SMN1 as well as FUS wild type were assembled into stress granules under stress conditions, and these were also recruited to FUS mutant-derived spontaneous aggregates in the cytoplasm. These aggregates stalled poly(A) mRNAs and sequestered SMN1 in the detergent insoluble fraction, which also reduced the number of nuclear oligo(dT)-positive foci (speckles) in FISH (fluorescence in situ hybridization) assay. In addition, the number of P-bodies was decreased in cells harboring cytoplasmic granules of FUS P525L. These findings raise the possibility that ALS-linked C-terminal FUS mutants could sequester a variety of RNA binding proteins and mRNAs in the cytoplasmic aggregates, which could disrupt various aspects of RNA equilibrium and biogenesis.

  11. Disruption of TCA Cycle and Glutamate Metabolism Identified by Metabolomics in an In Vitro Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Veyrat-Durebex, Charlotte; Corcia, Philippe; Piver, Eric; Devos, David; Dangoumau, Audrey; Gouel, Flore; Vourc'h, Patrick; Emond, Patrick; Laumonnier, Frédéric; Nadal-Desbarats, Lydie; Gordon, Paul H; Andres, Christian R; Blasco, Hélène

    2016-12-01

    This study aims to develop a cellular metabolomics model that reproduces the pathophysiological conditions found in amyotrophic lateral sclerosis in order to improve knowledge of disease physiology. We used a co-culture model combining the motor neuron-like cell line NSC-34 and the astrocyte clone C8-D1A, with each over-expressing wild-type or G93C mutant human SOD1, to examine amyotrophic lateral sclerosis (ALS) physiology. We focused on the effects of mutant human SOD1 as well as oxidative stress induced by menadione on intracellular metabolism using a metabolomics approach through gas chromatography coupled with mass spectrometry (GC-MS) analysis. Preliminary non-supervised analysis by Principal Component Analysis (PCA) revealed that cell type, genetic environment, and time of culture influenced the metabolomics profiles. Supervised analysis using orthogonal partial least squares discriminant analysis (OPLS-DA) on data from intracellular metabolomics profiles of SOD1 G93C co-cultures produced metabolites involved in glutamate metabolism and the tricarboxylic acid cycle (TCA) cycle. This study revealed the feasibility of using a metabolomics approach in a cellular model of ALS. We identified potential disruption of the TCA cycle and glutamate metabolism under oxidative stress, which is consistent with prior research in the disease. Analysis of metabolic alterations in an in vitro model is a novel approach to investigation of disease physiology.

  12. The Cu,Zn Superoxide Dismutase: not only a dismutase enzyme

    Directory of Open Access Journals (Sweden)

    Paolo Mondola

    2016-11-01

    Full Text Available The Cu,Zn superoxide dismutase (SOD1 is an ubiquitary cytosolic dimeric carbohydrate free molecule, belonging to a family of isoenzymes involved in the scavenger of superoxide anions. This effect certainly represents the main and well known function ascribed to this enzyme. Here we highlight new aspects of SOD1 physiology that point out some inedited effects of this enzyme in addition to the canonic role of oxygen radical enzymatic dismutation. In the last two decades our research group produced many data obtained in in vitro studies performed in many cellular lines, mainly neuroblastoma SK-N-BE cells, indicating that this enzyme is secreted either constitutively or after depolarization induced by high extracellular K+ concentration. In addition, we gave many experimental evidences showing that SOD1 is able to stimulate, through muscarinic M1 receptor, pathways involving ERK1/2 and AKT activation. These effects are accompanied with an intracellular calcium increase. In the last part of this review we describe researches that link deficient extracellular secretion of mutant SOD1G93A to its intracellular accumulation and toxicity in NSC-34 cells. Alternatively, SOD1G93A toxicity has been attributed to a decrease of Km for H2O2 with consequent OH. radical formation. Interestingly, this last inedited effect of SOD1G93A could represent a gain of function that could be involved in the pathogenesis of familial Amyotrophic Lateral Sclerosis (fALS.

  13. Radioimmunoassay of serum SOD-1 in the elderly

    International Nuclear Information System (INIS)

    Ren Yu'an; Lin Baoyuan

    1995-01-01

    A RIA for serum SOD-1 was performed in 168 aged subjects including 47 aged healthy subjects and 121 aged patients as well as in 35 healthy young and adult cases serving as control. The measuring results are as follows: serum SOD-1 value of 47 aged healthy subjects are 279.42 +- 89.38 μg/l, 121 aged patients are 405.10 +- 181.29 μg/l, and 35 young and adult cases are 185.80 +- 56.44 μg/l. It shows the obvious difference between the aged group and control group. It also shows the obvious difference between the aged healthy subjects and aged patients. In addition, the clinical evaluation is also discussed

  14. Hyperoxia exposure induced hormesis decreases mitochondrial superoxide radical levels via Ins/IGF-1 signaling pathway in a long-lived age-1 mutant of Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Yanase, Sumino; Ishii, Naoaki

    2008-01-01

    The hormetic effect, which extends the lifespan by various stressors, has been confirmed in Caenorhabditis elegans (C. elegans). We have previously reported that oxidative stress resistance in a long-lived mutant age-1 is associated with the hormesis. In the age-1 allele, which activates an insulin/insulin-like growth factor-1 (Ins/IGF-1) signaling pathway, the superoxide dismutase (SOD) and catalase activities increased during normal aging. We now demonstrate changes in the mitochondrial superoxide radical (O 2 - ) levels of the hormetic conditioned age-related strains. The O 2 - levels in age-1 strain significantly decreased after intermittent hyperoxia exposure. On the other hand, this phenomenon was not observed in a daf-16 null mutant. This hormesis-dependent reduction of the O 2 - levels was observed even if the mitochondrial Mn-SOD was experimentally reduced. Therefore, it is indicated that the hormesis is mediated by events that suppress the mitochondrial O 2 - production. Moreover, some SOD gene expressions in the hormetic conditioned age-1 mutant were induced over steady state messenger ribonucleic acid (mRNA) levels. These data suggest that oxidative stress-inducible hormesis is associated with a reduction of the mitochondrial O 2 - production by activation of the antioxidant system via the Ins/IGF-1 signaling pathway. (author)

  15. eGFP expression under the Uchl1 promoter labels corticospinal motor neurons and a subpopulation of degeneration resistant spinal motor neurons in ALS mouse models

    Science.gov (United States)

    Yasvoina, Marina V.

    Current understanding of basic cellular and molecular mechanisms for motor neuron vulnerability during motor neuron disease initiation and progression is incomplete. The complex cytoarchitecture and cellular heterogeneity of the cortex and spinal cord greatly impedes our ability to visualize, isolate, and study specific neuron populations in both healthy and diseased states. We generated a novel reporter line, the Uchl1-eGFP mouse, in which cortical and spinal components of motor neuron circuitry are genetically labeled with eGFP under the Uchl1 promoter. A series of cellular and anatomical analyses combined with retrograde labeling, molecular marker expression, and electrophysiology were employed to determine identity of eGFP expressing cells in the motor cortex and the spinal cord of novel Uchl1-eGFP reporter mice. We conclude that eGFP is expressed in corticospinal motor neurons (CSMN) in the motor cortex and a subset of S-type alpha and gamma spinal motor neurons (SMN) in the spinal cord. hSOD1G93A and Alsin-/- mice, mouse models for amyotrophic lateral sclerosis (ALS), were bred to Uchl1-eGFP reporter mouse line to investigate the pathophysiology and underlying mechanisms of CSMN degeneration in vivo. Evidence suggests early and progressive degeneration of CSMN and SMN in the hSOD1G93A transgenic mice. We show an early increase of autophagosome formation in the apical dendrites of vulnerable CSMN in hSOD1G93A-UeGFP mice, which is localized to the apical dendrites. In addition, labeling S-type alpha and gamma SMN in the hSOD1G93A-UeGFP mice provide a unique opportunity to study basis of their resistance to degeneration. Mice lacking alsin show moderate clinical phenotype and mild CSMN axon degeneration in the spinal cord, which suggests vulnerability of CSMN. Therefore, we investigated the CSMN cellular and axon defects in aged Alsin-/- mice bred to Uchl1-eGFP reporter mouse line. We show that while CSMN are preserved and lack signs of degeneration, CSMN axons

  16. UNC93B1 mediates host resistance to infection with Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Mariane B Melo

    2010-08-01

    Full Text Available UNC93B1 associates with Toll-Like Receptor (TLR 3, TLR7 and TLR9, mediating their translocation from the endoplasmic reticulum to the endolysosome, hence allowing proper activation by nucleic acid ligands. We found that the triple deficient '3d' mice, which lack functional UNC93B1, are hyper-susceptible to infection with Toxoplasma gondii. We established that while mounting a normal systemic pro-inflammatory response, i.e. producing abundant MCP-1, IL-6, TNFα and IFNγ, the 3d mice were unable to control parasite replication. Nevertheless, infection of reciprocal bone marrow chimeras between wild-type and 3d mice with T. gondii demonstrated a primary role of hemopoietic cell lineages in the enhanced susceptibility of UNC93B1 mutant mice. The protective role mediated by UNC93B1 to T. gondii infection was associated with impaired IL-12 responses and delayed IFNγ by spleen cells. Notably, in macrophages infected with T. gondii, UNC93B1 accumulates on the parasitophorous vacuole. Furthermore, upon in vitro infection the rate of tachyzoite replication was enhanced in non-activated macrophages carrying mutant UNC93B1 as compared to wild type gene. Strikingly, the role of UNC93B1 on intracellular parasite growth appears to be independent of TLR function. Altogether, our results reveal a critical role for UNC93B1 on induction of IL-12/IFNγ production as well as autonomous control of Toxoplasma replication by macrophages.

  17. Evidence for an early innate immune response in the motor cortex of ALS.

    Science.gov (United States)

    Jara, Javier H; Genç, Barış; Stanford, Macdonell J; Pytel, Peter; Roos, Raymond P; Weintraub, Sandra; Mesulam, M Marsel; Bigio, Eileen H; Miller, Richard J; Özdinler, P Hande

    2017-06-26

    Recent evidence indicates the importance of innate immunity and neuroinflammation with microgliosis in amyotrophic lateral sclerosis (ALS) pathology. The MCP1 (monocyte chemoattractant protein-1) and CCR2 (CC chemokine receptor 2) signaling system has been strongly associated with the innate immune responses observed in ALS patients, but the motor cortex has not been studied in detail. After revealing the presence of MCP1 and CCR2 in the motor cortex of ALS patients, to elucidate, visualize, and define the timing, location and the extent of immune response in relation to upper motor neuron vulnerability and progressive degeneration in ALS, we developed MCP1-CCR2-hSOD1 G93A mice, an ALS reporter line, in which cells expressing MCP1 and CCR2 are genetically labeled by monomeric red fluorescent protein-1 and enhanced green fluorescent protein, respectively. In the motor cortex of MCP1-CCR2-hSOD1 G93A mice, unlike in the spinal cord, there was an early increase in the numbers of MCP1+ cells, which displayed microglial morphology and selectively expressed microglia markers. Even though fewer CCR2+ cells were present throughout the motor cortex, they were mainly infiltrating monocytes. Interestingly, MCP1+ cells were found in close proximity to the apical dendrites and cell bodies of corticospinal motor neurons (CSMN), further implicating the importance of their cellular interaction to neuronal pathology. Similar findings were observed in the motor cortex of ALS patients, where MCP1+ microglia were especially in close proximity to the degenerating apical dendrites of Betz cells. Our findings reveal that the intricate cellular interplay between immune cells and upper motor neurons observed in the motor cortex of ALS mice is indeed recapitulated in ALS patients. We generated and characterized a novel model system, to study the cellular and molecular basis of this close cellular interaction and how that relates to motor neuron vulnerability and progressive degeneration in

  18. TDP-43 or FUS-induced misfolded human wild-type SOD1 can propagate intercellularly in a prion-like fashion.

    Science.gov (United States)

    Pokrishevsky, Edward; Grad, Leslie I; Cashman, Neil R

    2016-03-01

    Amyotrophic lateral sclerosis (ALS), which appears to spread through the neuroaxis in a spatiotemporally restricted manner, is linked to heritable mutations in genes encoding SOD1, TDP-43, FUS, C9ORF72, or can occur sporadically without recognized genetic mutations. Misfolded human wild-type (HuWt) SOD1 has been detected in both familial and sporadic ALS patients, despite mutations in SOD1 accounting for only 2% of total cases. We previously showed that accumulation of pathological TDP-43 or FUS coexist with misfolded HuWtSOD1 in patient motor neurons, and can trigger its misfolding in cultured cells. Here, we used immunocytochemistry and immunoprecipitation to demonstrate that TDP-43 or FUS-induced misfolded HuWtSOD1 can propagate from cell-to-cell via conditioned media, and seed cytotoxic misfolding of endogenous HuWtSOD1 in the recipient cells in a prion-like fashion. Knockdown of SOD1 using siRNA in recipient cells, or incubation of conditioned media with misfolded SOD1-specific antibodies, inhibits intercellular transmission, indicating that HuWtSOD1 is an obligate seed and substrate of propagated misfolding. In this system, intercellular spread of SOD1 misfolding is not accompanied by transmission of TDP-43 or FUS pathology. Our findings argue that pathological TDP-43 and FUS may exert motor neuron pathology in ALS through the initiation of propagated misfolding of SOD1.

  19. ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function.

    Science.gov (United States)

    Sharma, Aarti; Lyashchenko, Alexander K; Lu, Lei; Nasrabady, Sara Ebrahimi; Elmaleh, Margot; Mendelsohn, Monica; Nemes, Adriana; Tapia, Juan Carlos; Mentis, George Z; Shneider, Neil A

    2016-02-04

    Mutations in FUS cause amyotrophic lateral sclerosis (ALS), including some of the most aggressive, juvenile-onset forms of the disease. FUS loss-of-function and toxic gain-of-function mechanisms have been proposed to explain how mutant FUS leads to motor neuron degeneration, but neither has been firmly established in the pathogenesis of ALS. Here we characterize a series of transgenic FUS mouse lines that manifest progressive, mutant-dependent motor neuron degeneration preceded by early, structural and functional abnormalities at the neuromuscular junction. A novel, conditional FUS knockout mutant reveals that postnatal elimination of FUS has no effect on motor neuron survival or function. Moreover, endogenous FUS does not contribute to the onset of the ALS phenotype induced by mutant FUS. These findings demonstrate that FUS-dependent motor degeneration is not due to loss of FUS function, but to the gain of toxic properties conferred by ALS mutations.

  20. Sod1 deficiency reduces incubation time in mouse models of prion disease.

    Directory of Open Access Journals (Sweden)

    Shaheen Akhtar

    Full Text Available Prion infections, causing neurodegenerative conditions such as Creutzfeldt-Jakob disease and kuru in humans, scrapie in sheep and BSE in cattle are characterised by prolonged and variable incubation periods that are faithfully reproduced in mouse models. Incubation time is partly determined by genetic factors including polymorphisms in the prion protein gene. Quantitative trait loci studies in mice and human genome-wide association studies have confirmed that multiple genes are involved. Candidate gene approaches have also been used and identified App, Il1-r1 and Sod1 as affecting incubation times. In this study we looked for an association between App, Il1-r1 and Sod1 representative SNPs and prion disease incubation time in the Northport heterogeneous stock of mice inoculated with the Chandler/RML prion strain. No association was seen with App, however, significant associations were seen with Il1-r1 (P = 0.02 and Sod1 (P<0.0001 suggesting that polymorphisms at these loci contribute to the natural variation observed in incubation time. Furthermore, following challenge with Chandler/RML, ME7 and MRC2 prion strains, Sod1 deficient mice showed highly significant reductions in incubation time of 20, 13 and 24%, respectively. No differences were detected in Sod1 expression or activity. Our data confirm the protective role of endogenous Sod1 in prion disease.

  1. Uncoupling of Protein Aggregation and Neurodegeneration in a Mouse Amyotrophic Lateral Sclerosis Model.

    Science.gov (United States)

    Lee, Joo-Yong; Kawaguchi, Yoshiharu; Li, Ming; Kapur, Meghan; Choi, Su Jin; Kim, Hak-June; Park, Song-Yi; Zhu, Haining; Yao, Tso-Pang

    2015-01-01

    Aberrant accumulation of protein aggregates is a pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although a buildup of protein aggregates frequently leads to cell death, whether it is the key pathogenic factor in driving neurodegenerative disease remains controversial. HDAC6, a cytosolic ubiquitin-binding deacetylase, has emerged as an important regulator of ubiquitin-dependent quality control autophagy, a lysosome-dependent degradative system responsible for the disposal of misfolded protein aggregates and damaged organelles. Here, we show that in cell models HDAC6 plays a protective role against multiple disease-associated and aggregation-prone cytosolic proteins by facilitating their degradation. We further show that HDAC6 is required for efficient localization of lysosomes to protein aggregates, indicating that lysosome targeting to autophagic substrates is regulated. Supporting a critical role of HDAC6 in protein aggregate disposal in vivo, genetic ablation of HDAC6 in a transgenic SOD1G93A mouse, a model of ALS, leads to dramatic accumulation of ubiquitinated SOD1G93A protein aggregates. Surprisingly, despite a robust buildup of SOD1G93A aggregates, deletion of HDAC6 only moderately modified the motor phenotypes. These findings indicate that SOD1G93A aggregation is not the only determining factor to drive neurodegeneration in ALS, and that HDAC6 likely modulates neurodegeneration through additional mechanisms beyond protein aggregate clearance. © 2015 S. Karger AG, Basel.

  2. Oxidative Stress Induced Age Dependent Meibomian Gland Dysfunction in Cu, Zn-Superoxide Dismutase-1 (Sod1) Knockout Mice

    Science.gov (United States)

    Ibrahim, Osama M. A.; Dogru, Murat; Matsumoto, Yukihiro; Igarashi, Ayako; Kojima, Takashi; Wakamatsu, Tais Hitomi; Inaba, Takaaki; Shimizu, Takahiko; Shimazaki, Jun; Tsubota, Kazuo

    2014-01-01

    Purpose The purpose of our study was to investigate alterations in the meibomian gland (MG) in Cu, Zn-Superoxide Dismutase-1 knockout (Sod1 −/−) mouse. Methods Tear function tests [Break up time (BUT) and cotton thread] and ocular vital staining test were performed on Sod1 −/− male mice (n = 24) aged 10 and 50 weeks, and age and sex matched wild–type (+/+) mice (n = 25). Tear and serum samples were collected at sacrifice for inflammatory cytokine assays. MG specimens underwent Hematoxylin and Eosin staining, Mallory staining for fibrosis, Oil Red O lipid staining, TUNEL staining, immunohistochemistry stainings for 4HNE, 8-OHdG and CD45. Transmission electron microscopic examination (TEM) was also performed. Results Corneal vital staining scores in the Sod1 −/− mice were significantly higher compared with the wild type mice throughout the follow-up. Tear and serum IL-6 and TNF-α levels also showed significant elevations in the 10 to 50 week Sod1 −/− mice. Oil Red O staining showed an accumulation of large lipid droplets in the Sod1 −/− mice at 50 weeks. Immunohistochemistry revealed both increased TUNEL and oxidative stress marker stainings of the MG acinar epithelium in the Sod1 −/− mice compared to the wild type mice. Immunohistochemistry staining for CD45 showed increasing inflammatory cell infiltrates from 10 to 50 weeks in the Sod1 −/− mice compared to the wild type mice. TEM revealed prominent mitochondrial changes in 50 week Sod1 −/− mice. Conclusions Our results suggest that reactive oxygen species might play a vital role in the pathogensis of meibomian gland dysfunction. The Sod1 −/− mouse appears to be a promising model for the study of reactive oxygen species associated MG alterations. PMID:25036096

  3. Blood-CNS Barrier Impairment in ALS Patients versus an Animal Model

    Directory of Open Access Journals (Sweden)

    Svitlana eGarbuzova-Davis

    2014-02-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a severe neurodegenerative disease with a compli-cated and poorly understood pathogenesis. Recently, alterations in the blood-Central Nervous System barrier (B-CNS-B have been recognized as a key factor possibly aggravating motor neuron damage. The majority of findings on ALS microvascular pathology have been deter-mined in mutant SOD1 rodent models, identifying barrier damage during disease develop-ment which might similarly occur in familial ALS patients carrying the SOD1 mutation. However, our knowledge of B-CNS-B competence in sporadic ALS (SALS has been limited. We recently showed structural and functional impairment in postmortem gray and white mat-ter microvessels of medulla and spinal cord tissue from SALS patients, suggesting pervasive barrier damage. Although numerous signs of barrier impairment (endothelial cell degenera-tion, capillary leakage, perivascular edema, downregulation of tight junction proteins, and microhemorrhages are indicated in both mutant SOD1 animal models of ALS and SALS pa-tients, other pathogenic barrier alterations have as yet only been identified in SALS patients. Pericyte degeneration, perivascular collagen IV expansion, and white matter capillary abnor-malities in SALS patients are significant barrier related pathologies yet to be noted in ALS SOD1 animal models. In the current review, these important differences in blood-CNS barrier damage between ALS patients and animal models, which may signify altered barrier transport mechanisms, are discussed. Understanding discrepancies in barrier condition between ALS patients and animal models may be crucial for developing effective therapies.

  4. Loss of metal ions, disulfide reduction and mutations related to familial ALS promote formation of amyloid-like aggregates from superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Zeynep A Oztug Durer

    Full Text Available Mutations in the gene encoding Cu-Zn superoxide dismutase (SOD1 are one of the causes of familial amyotrophic lateral sclerosis (FALS. Fibrillar inclusions containing SOD1 and SOD1 inclusions that bind the amyloid-specific dye thioflavin S have been found in neurons of transgenic mice expressing mutant SOD1. Therefore, the formation of amyloid fibrils from human SOD1 was investigated. When agitated at acidic pH in the presence of low concentrations of guanidine or acetonitrile, metalated SOD1 formed fibrillar material which bound both thioflavin T and Congo red and had circular dichroism and infrared spectra characteristic of amyloid. While metalated SOD1 did not form amyloid-like aggregates at neutral pH, either removing metals from SOD1 with its intramolecular disulfide bond intact or reducing the intramolecular disulfide bond of metalated SOD1 was sufficient to promote formation of these aggregates. SOD1 formed amyloid-like aggregates both with and without intermolecular disulfide bonds, depending on the incubation conditions, and a mutant SOD1 lacking free sulfhydryl groups (AS-SOD1 formed amyloid-like aggregates at neutral pH under reducing conditions. ALS mutations enhanced the ability of disulfide-reduced SOD1 to form amyloid-like aggregates, and apo-AS-SOD1 formed amyloid-like aggregates at pH 7 only when an ALS mutation was also present. These results indicate that some mutations related to ALS promote formation of amyloid-like aggregates by facilitating the loss of metals and/or by making the intramolecular disulfide bond more susceptible to reduction, thus allowing the conversion of SOD1 to a form that aggregates to form resembling amyloid. Furthermore, the occurrence of amyloid-like aggregates per se does not depend on forming intermolecular disulfide bonds, and multiple forms of such aggregates can be produced from SOD1.

  5. Association of the SOD2 polymorphism (Val6Ala and SOD activity with vaso-occlusive crisis and acute splenic sequestration in children with sickle cell anemia

    Directory of Open Access Journals (Sweden)

    Isabela Cristina Cordeiro Farias

    2018-02-01

    Full Text Available The SOD2 polymorphism Val16Ala TàC influences the antioxidative response. This study investigated the association of the SOD2 polymorphism and superoxide dismutase (SOD activity with vaso-occlusive crisis (VOC and acute splenic sequestration (ASS in children with sickle cell anemia (SCA. One hundred ninety-five children aged 1-9 years old were analyzed. The TC and CC genotypes were associated with lower SOD activity compared with the TT genotype (p=0.0321; p=0.0253, respectively. Furthermore, TC/CC were more frequent in patients with VOC or ASS (p=0.0285; p=0.0090, respectively. These results suggest that the SOD2 polymorphism associated with low SOD activity could be involved in SCA physiopathology.

  6. EGFR inhibitor erlotinib delays disease progression but does not extend survival in the SOD1 mouse model of ALS.

    Directory of Open Access Journals (Sweden)

    Claire E Le Pichon

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease that causes progressive paralysis due to motor neuron death. Several lines of published evidence suggested that inhibition of epidermal growth factor receptor (EGFR signaling might protect neurons from degeneration. To test this hypothesis in vivo, we treated the SOD1 transgenic mouse model of ALS with erlotinib, an EGFR inhibitor clinically approved for oncology indications. Although erlotinib failed to extend ALS mouse survival it did provide a modest but significant delay in the onset of multiple behavioral measures of disease progression. However, given the lack of protection of motor neuron synapses and the lack of survival extension, the small benefits observed after erlotinib treatment appear purely symptomatic, with no modification of disease course.

  7. Canine degenerative myelopathy: biochemical characterization of superoxide dismutase 1 in the first naturally occurring non-human amyotrophic lateral sclerosis model.

    Science.gov (United States)

    Crisp, Matthew J; Beckett, Jeffrey; Coates, Joan R; Miller, Timothy M

    2013-10-01

    Mutations in canine superoxide dismutase 1 (SOD1) have recently been shown to cause canine degenerative myelopathy, a disabling neurodegenerative disorder affecting specific breeds of dogs characterized by progressive motor neuron loss and paralysis until death, or more common, euthanasia. This discovery makes canine degenerative myelopathy the first and only naturally occurring non-human model of amyotrophic lateral sclerosis (ALS), closely paralleling the clinical, pathological, and genetic presentation of its human counterpart, SOD1-mediated familial ALS. To further understand the biochemical role that canine SOD1 plays in this disease and how it may be similar to human SOD1, we characterized the only two SOD1 mutations described in affected dogs to date, E40K and T18S. We show that a detergent-insoluble species of mutant SOD1 is present in spinal cords of affected dogs that increases with disease progression. Our in vitro results indicate that both canine SOD1 mutants form enzymatically active dimers, arguing against a loss of function in affected homozygous animals. Further studies show that these mutants, like most human SOD1 mutants, have an increased propensity to form aggregates in cell culture, with 10-20% of cells possessing visible aggregates. Creation of the E40K mutation in human SOD1 recapitulates the normal enzymatic activity but not the aggregation propensity seen with the canine mutant. Our findings lend strong biochemical support to the toxic role of SOD1 in canine degenerative myelopathy and establish close parallels for the role mutant SOD1 plays in both canine and human disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. An Acausal Li-Ion Battery Pack Model for Automotive Applications

    Directory of Open Access Journals (Sweden)

    Kotub Uddin

    2014-08-01

    Full Text Available In this work, a novel acausal and reconfigurable battery pack model is presented. The model structure adopted for the battery cell is based on an equivalent circuit representation. The circuit elements are modified to take account of both hysteresis and diffusion limitation. The latter is known to be a nonlinear function of large operating currents or long operating times. It is shown that the integration of a current dependent time constant within the cell model better emulates the solid diffusional dynamics of lithium intercalation into the active material under large electrical loads. The advantages of an acausal modeling approach, when scaling-up individual cell models into a complete battery system are also presented. Particular consideration is given to emulating the impact of cell to cell variations on pack performance. Using statistical analysis of battery tests, cell model parameter variations are characterized and quantified. The cell and scaled-up pack model are parameterized for a number of commercially available cell formats, energy capacities and chemistries. The new models are validated using transient, real-world, electrical data measured from an electric vehicle (EV operating within an urban environment.

  9. Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice

    Science.gov (United States)

    Koval, Erica D.; Shaner, Carey; Zhang, Peter; du Maine, Xavier; Fischer, Kimberlee; Tay, Jia; Chau, B. Nelson; Wu, Gregory F.; Miller, Timothy M.

    2013-01-01

    microRNAs (miRNAs) are dysregulated in a variety of disease states, suggesting that this newly discovered class of gene expression repressors may be viable therapeutic targets. A microarray of miRNA changes in ALS-model superoxide dismutase 1 (SOD1)G93A rodents identified 12 miRNAs as significantly changed. Six miRNAs tested in human ALS tissues were confirmed increased. Specifically, miR-155 was increased 5-fold in mice and 2-fold in human spinal cords. To test miRNA inhibition in the central nervous system (CNS) as a potential novel therapeutic, we developed oligonucleotide-based miRNA inhibitors (anti-miRs) that could inhibit miRNAs throughout the CNS and in the periphery. Anti-miR-155 caused global derepression of targets in peritoneal macrophages and, following intraventricular delivery, demonstrated widespread functional distribution in the brain and spinal cord. After treating SOD1G93A mice with anti-miR-155, we significantly extended survival by 10 days and disease duration by 15 days (38%) while a scrambled control anti-miR did not significantly improve survival or disease duration. Therefore, antisense oligonucleotides may be used to successfully inhibit miRNAs throughout the brain and spinal cord, and miR-155 is a promising new therapeutic target for human ALS. PMID:23740943

  10. Data set for phylogenetic tree and RAMPAGE Ramachandran plot analysis of SODs in Gossypium raimondii and G. arboreum.

    Science.gov (United States)

    Wang, Wei; Xia, Minxuan; Chen, Jie; Deng, Fenni; Yuan, Rui; Zhang, Xiaopei; Shen, Fafu

    2016-12-01

    The data presented in this paper is supporting the research article "Genome-Wide Analysis of Superoxide Dismutase Gene Family in Gossypium raimondii and G. arboreum" [1]. In this data article, we present phylogenetic tree showing dichotomy with two different clusters of SODs inferred by the Bayesian method of MrBayes (version 3.2.4), "Bayesian phylogenetic inference under mixed models" [2], Ramachandran plots of G. raimondii and G. arboreum SODs, the protein sequence used to generate 3D sructure of proteins and the template accession via SWISS-MODEL server, "SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information." [3] and motif sequences of SODs identified by InterProScan (version 4.8) with the Pfam database, "Pfam: the protein families database" [4].

  11. Determining the Effect of Catechins on SOD1 Conformation and Aggregation by Ion Mobility Mass Spectrometry Combined with Optical Spectroscopy

    Science.gov (United States)

    Zhao, Bing; Zhuang, Xiaoyu; Pi, Zifeng; Liu, Shu; Liu, Zhiqiang; Song, Fengrui

    2018-02-01

    The aggregation of Cu,Zn-superoxide dismutase (SOD1) plays an important role in the etiology of amyotrophic lateral sclerosis (ALS). For the disruption of ALS progression, discovering new drugs or compounds that can prevent SOD1 aggregation is important. In this study, ESI-MS was used to investigate the interaction of catechins and SOD1. The noncovalent complex of catechins that interact with SOD1 was found and retained in the gas phase under native ESI-MS condition. The conformation changes of SOD1 after binding with catechins were also explored via traveling wave ion mobility (IM) spectrometry. Epigallocatechin gallate (EGCG) can stabilize SOD1 conformation against unfolding in three catechins. To further evaluate the efficacy of EGCG, we monitored the fluorescence changes of dimer E2,E2,-SOD1(apo-SOD1, E:empty) with and without ligands under denaturation conditions, and found that EGCG can inhibit apo-SOD1 aggregation. In addition, the circular dichroism spectra of the samples showed that EGCG can decrease the β-sheet content of SOD1, which can produce aggregates. These results indicated that orthogonal separation dimension in the gas-phase IM coupled with ESI-MS (ESI-IM-MS) can potentially provide insight into the interaction between SOD1 and small molecules. The advantage is that it dramatically decreases the analysis time. Meantime, optical spectroscopy techniques can be used to confirm ESI-IM-MS results. [Figure not available: see fulltext.

  12. Association Analysis Suggests SOD2 as a Newly Identified Candidate Gene Associated With Leprosy Susceptibility.

    Science.gov (United States)

    Ramos, Geovana Brotto; Salomão, Heloisa; Francio, Angela Schneider; Fava, Vinícius Medeiros; Werneck, Renata Iani; Mira, Marcelo Távora

    2016-08-01

    Genetic studies have identified several genes and genomic regions contributing to the control of host susceptibility to leprosy. Here, we test variants of the positional and functional candidate gene SOD2 for association with leprosy in 2 independent population samples. Family-based analysis revealed an association between leprosy and allele G of marker rs295340 (P = .042) and borderline evidence of an association between leprosy and alleles C and A of markers rs4880 (P = .077) and rs5746136 (P = .071), respectively. Findings were validated in an independent case-control sample for markers rs295340 (P = .049) and rs4880 (P = .038). These results suggest SOD2 as a newly identified gene conferring susceptibility to leprosy. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. Dihydrotestosterone ameliorates degeneration in muscle, axons and motoneurons and improves motor function in amyotrophic lateral sclerosis model mice.

    Directory of Open Access Journals (Sweden)

    Young-Eun Yoo

    Full Text Available Amyotrophic lateral sclerosis (ALS is a lethal disease characterized by a progressive loss of motoneurons. The clinical symptoms include skeletal muscle weakness and atrophy, which impairs motor performance and eventually leads to respiratory failure. We tested whether dihydrotestosterone (DHT, which has both anabolic effects on muscle and neuroprotective effects on axons and motoneurons, can ameliorate clinical symptoms in ALS. A silastic tube containing DHT crystals was implanted subcutaneously in SOD1-G93A mice at early symptomatic age when decreases in body weight and grip-strength were observed as compared to wild-type mice. DHT-treated SOD1-G93A mice demonstrated ameliorated muscle atrophy and increased body weight, which was associated with stronger grip-strength. DHT treatment increased the expression of insulin-like growth factor-1 in muscle, which can exert myotrophic as well as neurotrophic effects through retrograde transport. DHT treatment attenuated neuromuscular junction denervation, and axonal and motoneuron loss. DHT-treated SOD1-G93A mice demonstrated improvement in motor behavior as assessed by rota-rod and gait analyses, and an increased lifespan. Application of DHT is a relatively simple and non-invasive procedure, which may be translated into therapy to improve the quality of life for ALS patients.

  14. Differential motor neuron impairment and axonal regeneration in sporadic and familiar amyotrophic lateral sclerosis with SOD-1 mutations: lessons from neurophysiology.

    Science.gov (United States)

    Bocci, Tommaso; Pecori, Chiara; Giorli, Elisa; Briscese, Lucia; Tognazzi, Silvia; Caleo, Matteo; Sartucci, Ferdinando

    2011-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1) gene. SOD-1 catalyses the superoxide radical (O(-2)) into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS patients (34 males; 26 females) were enrolled in the study and examined basally (T0) and every 4 months (T1, T2, and T3). Fifteen of these patients are SOD-1 symptomatic mutation carriers (nine males, six females). We used Macro-EMG and Motor Unit Number Estimation (MUNE) in order to evaluate the neuronal loss and the re-innervation process at the onset of disease and during follow-up period. SOD-1 mutation carriers have a higher number of motor units at the moment of diagnosis when compared with the sporadic form, despite a more dramatic drop in later stages. Moreover, in familiar SOD-1 ALS there is not a specific time interval in which the axonal regeneration can balance the neuronal damage. Taken together, these results strengthen the idea of a different pathogenetic mechanism at the base of sALS and fALS.

  15. Differential Motor Neuron Impairment and Axonal Regeneration in Sporadic and Familiar Amyotrophic Lateral Sclerosis with SOD-1 Mutations: Lessons from Neurophysiology

    Directory of Open Access Journals (Sweden)

    Tommaso Bocci

    2011-12-01

    Full Text Available Amyotrophic Lateral Sclerosis (ALS is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1 gene. SOD-1 catalyses the superoxide radical (O−2 into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS patients (34 males; 26 females were enrolled in the study and examined basally (T0 and every 4 months (T1, T2, and T3. Fifteen of these patients are SOD-1 symptomatic mutation carriers (nine males, six females. We used Macro-EMG and Motor Unit Number Estimation (MUNE in order to evaluate the neuronal loss and the re-innervation process at the onset of disease and during follow-up period. Results and Discussion: SOD-1 mutation carriers have a higher number of motor units at the moment of diagnosis when compared with the sporadic form, despite a more dramatic drop in later stages. Moreover, in familiar SOD-1 ALS there is not a specific time interval in which the axonal regeneration can balance the neuronal damage. Taken together, these results strengthen the idea of a different pathogenetic mechanism at the base of sALS and fALS.

  16. Effect of NaN3 on oxygen-dependent lethality of UV-A in Escherichia coli mutants lacking active oxygen-defence and DNA-repair systems

    International Nuclear Information System (INIS)

    Yamada, Kazumasa; Ono, Tetsuyoshi; Nishioka, Hajime

    1996-01-01

    Escherichia coli mutants which lack defence systems against such active oxygen forms as OxyR (ΔoxyR), superoxide dismutase (SOD) (sodA and sodB) and catalase (katE and katG) are sensitive to UV-A lethality under aerobic conditions, whereas OxyR- and SOD-mutants have resistance under anaerobic conditions and in the presence of sodium azide (NaN 3 ) during irradiation. UV-A induces lipid peroxidation in the ΔoxyR mutant, which is suppressed by NaN 3 . These results suggest that UV-A generates 1 O 2 or the hydroxyl radical to produce lipid peroxides intracellularly in the ΔoxyR mutant and that O 2 - stress may be generated in the sodAB mutant after 8 hr of exposure to UV-A. The sensitivities of such DNA repair-deficient mutants as recA ind- and uvrA to UV-A also were examined and compared. These mutants are sensitive to UV-A lethality under aerobic conditions but show only slight resistance under anaerobic conditions or in the presence of NaN 3 during irradiation. We conclude that NaN 3 protects these mutant cells from oxygen-dependent UV-A lethality. (author)

  17. X-ray induction of 6-thioguanine-resistant mutants in division arrested, G0/G1 phase Chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, J.P.; Flint, K.B.

    The cytotoxic and mutagenic effect of X-irradiation was determined with Chinese hamster ovary cells arrested in the G0/G1 phase of the cell cycle through 9 days incubation in serum-free medium. In comparison with exponential phase cultures, the arrested cells showed increased cytotoxicity and mutation induction over the dose range of 50-800 rad. Exponential cultures showed a linear mutant frequency-survival relationship while the arrested cells showed a biphasic linear relationship. A post irradiation holding period 24 h does not result in any change in the mutant frequency. The increased sensitivity of the arrested cells to the mutagenic effects of X-rays appears to be a cell-cycle phase phenomenon. Upon readdition of serum, the arrested cells re-enter the cell cycle in a synchronous manner, reaching S phase at 10-12 h. Cells irradiated at 5 h after serum addition, i.e. in G1, show a similar dose response for mutant frequency, while those irradiated at 10 h or later, i.e. in late G1, S or G2, show lower mutation induction. These observations are consistent with a chromosome interchange mechanism of mutation induction by X-rays, possibly through interactions between repairing regions of the DNA. Irradiation of cells in the G0/G1 phase allow more time for such interactions in the absence of semiconservative DNA replication. (orig.).

  18. Interference-free determination of sub ng kg-1 levels of long-lived 93Zr in the presence of high concentrations (μg kg-1) of 93Mo and 93Nb using ICP-MS/MS.

    Science.gov (United States)

    Petrov, Panayot; Russell, Ben; Douglas, David N; Goenaga-Infante, Heidi

    2018-01-01

    Long-lived high abundance radionuclides are of increasing interest with regard to decommissioning of nuclear sites and longer term nuclear waste storage and disposal. In many cases, no routine technique is available for their measurement in nuclear waste and low-level (ng kg -1 ) environmental samples. Recent advances in ICP-MS technology offer attractive features for the selective and sensitive determination of a wide range of long-lived radionuclides. In this work, inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS)-based methodology, suitable for accurate routine determinations of 93 Zr at very low (ng kg -1 ) levels in the presence of high levels (μg kg -1 ) of the isobaric interferents 93 Nb and 93 Mo (often present in nuclear waste samples), is reported for the first time. Additionally, a novel and systematic strategy for method development based on the use of non-radioactive isotopes is proposed. It relies on gas-phase chemical reactions for different molecular ion formation to achieve isobaric interference removal. Using cell gas mixtures of NH 3 /He/H 2 or H 2 /O 2 , and suitable mass shifts, the signal from the 93 Nb and 93 Mo isobaric interferences on 93 Zr were suppressed by up to 5 orders of magnitude. The achieved limit of detection for 93 Zr was 1.3 × 10 -5  Bq g -1 (equivalent to 0.14 ng kg -1 ). The sample analysis time is 2 min, which represents a significant improvement in terms of sample throughput, compared to liquid scintillation counting methods. The method described here can be used for routine measurements of 93 Zr at environmentally relevant levels. It can also be combined with radiometric techniques for use towards the standardisation of 93 Zr measurements. Graphical abstract Interference-free determination of 93 Zr in the presence of high concentrations of isobaric 93 Mo and 93 Nb by ICP-MS/MS.

  19. Additive Neuroprotective Effects of the Multifunctional Iron Chelator M30 with Enriched Diet in a Mouse Model of Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Golko-Perez, Sagit; Mandel, Silvia; Amit, Tamar; Kupershmidt, Lana; Youdim, Moussa B H; Weinreb, Orly

    2016-02-01

    Amyotrophic lateral sclerosis (ALS) is the most common degenerative disease of the motoneuron system, involving various abnormalities, such as mitochondrial dysfunction, oxidative stress, transitional metal accumulation, neuroinflammation, glutamate excitotoxicity, apoptosis, decreased supply of trophic factors, cytoskeletal abnormalities, and extracellular superoxide dismutase (SOD)-1 toxicity. These multiple disease etiologies implicated in ALS gave rise to the perception that future therapeutic approaches for the disease should be aimed at targeting multiple pathological pathways. In line with this view, we have evaluated in the current study the therapeutic effects of low doses of the novel multifunctional monoamine oxidase (MAO) inhibitor/iron-chelating compound, M30 in combination with high Calorie Energy supplemented Diet (CED) in the SOD1-G93A transgenic mouse model of ALS. Our results demonstrated that the combined administration of M30 with CED produced additive neuroprotective effects on motor performance and increased survival of SOD1-G93A mice. We also found that both M30 and M30/CED regimens caused a significant inhibition of MAO-A and -B activities and decreased the turnover of dopamine in the brain of SOD1-G93A mice. In addition, M30/CED combined treatment resulted in a significant increase in mRNA expression levels of various mitochondrial biogenesis and metabolism regulators, such as peroxisome proliferator-activated receptor-γ (PPARγ)-co activator 1 alpha (PGC-1α), PPARγ, uncoupling protein 1, and insulin receptor in the gastrocnemius muscle of SOD1-G93A mice. These results suggest that a combination of drug/agents with different, but complementary mechanisms may be beneficial in the treatment of ALS.

  20. Production of Human Cu,Zn SOD with Higher Activity and Lower Toxicity in E. coli via Mutation of Free Cysteine Residues

    Directory of Open Access Journals (Sweden)

    Kun Zhang

    2017-01-01

    Full Text Available Although, as an antioxidant enzyme, human Cu,Zn superoxide dismutase 1 (hSOD1 can mitigate damage to cell components caused by free radicals generated by aerobic metabolism, large-scale manufacturing and clinical use of hSOD1 are still limited by the challenge of rapid and inexpensive production of high-quality eukaryotic hSOD1 in recombinant forms. We have demonstrated previously that it is a promising strategy to increase the expression levels of soluble hSOD1 so as to increase hSOD1 yields in E. coli. In this study, a wild-type hSOD1 (wtSOD1 and three mutant SOD1s (mhSOD1s, in which free cysteines were substituted with serine, were constructed and their expression in soluble form was measured. Results show that the substitution of Cys111 (mhSOD1/C111S increased the expression of soluble hSOD1 in E. coli whereas substitution of the internal Cys6 (mhSOD1/C6S decreased it. Besides, raised levels of soluble expression led to an increase in hSOD1 yields. In addition, mhSOD1/C111S expressed at a higher soluble level showed lower toxicity and stronger whitening and antiradiation activities than those of wtSOD1. Taken together, our data demonstrate that C111S mutation in hSOD1 is an effective strategy to develop new SOD1-associated reagents and that mhSOD1/C111S is a satisfactory candidate for large-scale production.

  1. Genetic disruption of SOD1 gene causes glucose intolerance and impairs β-cell function.

    Science.gov (United States)

    Muscogiuri, Giovanna; Salmon, Adam B; Aguayo-Mazzucato, Cristina; Li, Mengyao; Balas, Bogdan; Guardado-Mendoza, Rodolfo; Giaccari, Andrea; Reddick, Robert L; Reyna, Sara M; Weir, Gordon; Defronzo, Ralph A; Van Remmen, Holly; Musi, Nicolas

    2013-12-01

    Oxidative stress has been associated with insulin resistance and type 2 diabetes. However, it is not clear whether oxidative damage is a cause or a consequence of the metabolic abnormalities present in diabetic subjects. The goal of this study was to determine whether inducing oxidative damage through genetic ablation of superoxide dismutase 1 (SOD1) leads to abnormalities in glucose homeostasis. We studied SOD1-null mice and wild-type (WT) littermates. Glucose tolerance was evaluated with intraperitoneal glucose tolerance tests. Peripheral and hepatic insulin sensitivity was quantitated with the euglycemic-hyperinsulinemic clamp. β-Cell function was determined with the hyperglycemic clamp and morphometric analysis of pancreatic islets. Genetic ablation of SOD1 caused glucose intolerance, which was associated with reduced in vivo β-cell insulin secretion and decreased β-cell volume. Peripheral and hepatic insulin sensitivity were not significantly altered in SOD1-null mice. High-fat diet caused glucose intolerance in WT mice but did not further worsen the glucose intolerance observed in standard chow-fed SOD1-null mice. Our findings suggest that oxidative stress per se does not play a major role in the pathogenesis of insulin resistance and demonstrate that oxidative stress caused by SOD1 ablation leads to glucose intolerance secondary to β-cell dysfunction.

  2. Differential Motor Neuron Impairment and Axonal Regeneration in Sporadic and Familiar Amyotrophic Lateral Sclerosis with SOD-1 Mutations: Lessons from Neurophysiology

    OpenAIRE

    Bocci, Tommaso; Pecori, Chiara; Giorli, Elisa; Briscese, Lucia; Tognazzi, Silvia; Caleo, Matteo; Sartucci, Ferdinando

    2011-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a degenerative disorder of the motor system. About 10% of cases are familial and 20% of these families have point mutations in the Cu/Zn superoxide dismutase 1 (SOD-1) gene. SOD-1 catalyses the superoxide radical (O−2) into hydrogen peroxide and molecular oxygen. The clinical neurophysiology in ALS plays a fundamental role in differential diagnosis between the familial and sporadic forms and in the assessment of its severity and progression. Sixty ALS pa...

  3. Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Giniatullina Raisa

    2011-06-01

    Full Text Available Abstract Background Granulocyte colony stimulating factor (GCSF is protective in animal models of various neurodegenerative diseases. We investigated whether pegfilgrastim, GCSF with sustained action, is protective in a mouse model of amyotrophic lateral sclerosis (ALS. ALS is a fatal neurodegenerative disease with manifestations of upper and lower motoneuron death and muscle atrophy accompanied by inflammation in the CNS and periphery. Methods Human mutant G93A superoxide dismutase (SOD1 ALS mice were treated with pegfilgrastim starting at the presymptomatic stage and continued until the end stage. After long-term pegfilgrastim treatment, the inflammation status was defined in the spinal cord and peripheral tissues including hematopoietic organs and muscle. The effect of GCSF on spinal cord neuron survival and microglia, bone marrow and spleen monocyte activation was assessed in vitro. Results Long-term pegfilgrastim treatment prolonged mutant SOD1 mice survival and attenuated both astro- and microgliosis in the spinal cord. Pegfilgrastim in SOD1 mice modulated the inflammatory cell populations in the bone marrow and spleen and reduced the production of pro-inflammatory cytokine in monocytes and microglia. The mobilization of hematopoietic stem cells into the circulation was restored back to basal level after long-term pegfilgrastim treatment in SOD1 mice while the storage of Ly6C expressing monocytes in the bone marrow and spleen remained elevated. After pegfilgrastim treatment, an increased proportion of these cells in the degenerative muscle was detected at the end stage of ALS. Conclusions GCSF attenuated inflammation in the CNS and the periphery in a mouse model of ALS and thereby delayed the progression of the disease. This mechanism of action targeting inflammation provides a new perspective of the usage of GCSF in the treatment of ALS.

  4. Metabolic therapy with Deanna Protocol supplementation delays disease progression and extends survival in amyotrophic lateral sclerosis (ALS mouse model.

    Directory of Open Access Journals (Sweden)

    Csilla Ari

    Full Text Available Amyotrophic Lateral Sclerosis (ALS, also known as Lou Gehrig's disease, is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and eventual death from respiratory failure. There is currently no cure or effective treatment for ALS. Besides motor neuron degeneration, ALS is associated with impaired energy metabolism, which is pathophysiologically linked to mitochondrial dysfunction and glutamate excitotoxicity. The Deanna Protocol (DP is a metabolic therapy that has been reported to alleviate symptoms in patients with ALS. In this study we hypothesized that alternative fuels in the form of TCA cycle intermediates, specifically arginine-alpha-ketoglutarate (AAKG, the main ingredient of the DP, and the ketogenic diet (KD, would increase motor function and survival in a mouse model of ALS (SOD1-G93A. ALS mice were fed standard rodent diet (SD, KD, or either diets containing a metabolic therapy of the primary ingredients of the DP consisting of AAKG, gamma-aminobutyric acid, Coenzyme Q10, and medium chain triglyceride high in caprylic triglyceride. Assessment of ALS-like pathology was performed using a pre-defined criteria for neurological score, accelerated rotarod test, paw grip endurance test, and grip strength test. Blood glucose, blood beta-hydroxybutyrate, and body weight were also monitored. SD+DP-fed mice exhibited improved neurological score from age 116 to 136 days compared to control mice. KD-fed mice exhibited better motor performance on all motor function tests at 15 and 16 weeks of age compared to controls. SD+DP and KD+DP therapies significantly extended survival time of SOD1-G93A mice by 7.5% (p = 0.001 and 4.2% (p = 0.006, respectively. Sixty-three percent of mice in the KD+DP and 72.7% of the SD+DP group lived past 125 days, while only 9% of the control animals survived past that point. Targeting energy metabolism with metabolic therapy produces a therapeutic effect in ALS mice which

  5. Metabolic therapy with Deanna Protocol supplementation delays disease progression and extends survival in amyotrophic lateral sclerosis (ALS) mouse model.

    Science.gov (United States)

    Ari, Csilla; Poff, Angela M; Held, Heather E; Landon, Carol S; Goldhagen, Craig R; Mavromates, Nicholas; D'Agostino, Dominic P

    2014-01-01

    Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig's disease, is a neurodegenerative disorder of motor neurons causing progressive muscle weakness, paralysis, and eventual death from respiratory failure. There is currently no cure or effective treatment for ALS. Besides motor neuron degeneration, ALS is associated with impaired energy metabolism, which is pathophysiologically linked to mitochondrial dysfunction and glutamate excitotoxicity. The Deanna Protocol (DP) is a metabolic therapy that has been reported to alleviate symptoms in patients with ALS. In this study we hypothesized that alternative fuels in the form of TCA cycle intermediates, specifically arginine-alpha-ketoglutarate (AAKG), the main ingredient of the DP, and the ketogenic diet (KD), would increase motor function and survival in a mouse model of ALS (SOD1-G93A). ALS mice were fed standard rodent diet (SD), KD, or either diets containing a metabolic therapy of the primary ingredients of the DP consisting of AAKG, gamma-aminobutyric acid, Coenzyme Q10, and medium chain triglyceride high in caprylic triglyceride. Assessment of ALS-like pathology was performed using a pre-defined criteria for neurological score, accelerated rotarod test, paw grip endurance test, and grip strength test. Blood glucose, blood beta-hydroxybutyrate, and body weight were also monitored. SD+DP-fed mice exhibited improved neurological score from age 116 to 136 days compared to control mice. KD-fed mice exhibited better motor performance on all motor function tests at 15 and 16 weeks of age compared to controls. SD+DP and KD+DP therapies significantly extended survival time of SOD1-G93A mice by 7.5% (p = 0.001) and 4.2% (p = 0.006), respectively. Sixty-three percent of mice in the KD+DP and 72.7% of the SD+DP group lived past 125 days, while only 9% of the control animals survived past that point. Targeting energy metabolism with metabolic therapy produces a therapeutic effect in ALS mice which may prolong

  6. Association SOD2 Polymorphism(-9C/T and Senile Cataract

    Directory of Open Access Journals (Sweden)

    A.R. Nakhaee

    2017-01-01

    Full Text Available Introduction: One of the most common causes of blindness around the world is cataract, which is a multifactorial eye disease and a major cause the loss lens transparency in the aging population. Oxidative stress is a major factor that often leads to cataract formation. Oxidative stress is defined as a disturbance in the balance of reactive oxygen species (ROS production  and antioxidant defenses, including enzymatic and non-enzymatic systems. One of the defense systems against free radicals is superoxide dismutase II (Mn SOD enzyme. SOD enzyme catalyses the dismutation of superoxide anion to O2 and H2O2. Several polymorphism  have been found associated with SOD2 gene. Present study has been done to evaluaet effects of genetic polymorphism, including SOD2 C/T polymorphism in the -9 position in senile cataract patiens and normal individuals. Material and methods: in this case- control study, there are 120 patients with senile cataract and 104 healthy people. We collected 2ml of whole blood in tubes containing EDTA, and then DNA extraction was performed. Polymorphisms were detected by PCR–RFLP technique. Findings: The distribution of CC, CT, TT genotypes of SOD2 gene were 28.3%, 43.3% and 28.3% in the patient group and 24%, 48.1% and 27.9% in the healthy group, respectively. Conclusion: No significant difference in the distribution SOD2 C/T polymorphism was observed between cases and controls. 

  7. Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans.

    Science.gov (United States)

    Dues, Dylan J; Schaar, Claire E; Johnson, Benjamin K; Bowman, Megan J; Winn, Mary E; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2017-07-01

    Mutations affecting components of the mitochondrial electron transport chain have been shown to increase lifespan in multiple species including the worm Caenorhabditis elegans. While it was originally proposed that decreased generation of reactive oxygen species (ROS) resulting from lower rates of electron transport could account for the observed increase in lifespan, recent evidence indicates that ROS levels are increased in at least some of these long-lived mitochondrial mutants. Here, we show that the long-lived mitochondrial mutant isp-1 worms have increased resistance to oxidative stress. Our results suggest that elevated ROS levels in isp-1 worms cause the activation of multiple stress-response pathways including the mitochondrial unfolded protein response, the SKN-1-mediated stress response, and the hypoxia response. In addition, these worms have increased expression of specific antioxidant enzymes, including a marked upregulation of the inducible superoxide dismutase genes sod-3 and sod-5. Examining the contribution of sod-3 and sod-5 to the oxidative stress resistance in isp-1 worms revealed that loss of either of these genes increased resistance to oxidative stress, but not other forms of stress. Deletion of sod-3 or sod-5 decreased the lifespan of isp-1 worms and further exacerbated their slow physiologic rates. Thus, while deletion of sod-3 and sod-5 genes has little impact on stress resistance, physiologic rates or lifespan in wild-type worms, these genes are required for the longevity of isp-1 worms. Overall, this work shows that the increased resistance to oxidative stress in isp-1 worms does not account for their longevity, and that resistance to oxidative stress can be experimentally dissociated from lifespan. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy.

    Directory of Open Access Journals (Sweden)

    Angela S Laird

    Full Text Available Mislocalization, aberrant processing and aggregation of TAR DNA-binding protein 43 (TDP-43 is found in the neurons affected by two related diseases, amyotrophic lateral sclerosis (ALS and frontotemporal lobe dementia (FTLD. These TDP-43 abnormalities are seen when TDP-43 is mutated, such as in familial ALS, but also in FTLD, caused by null mutations in the progranulin gene. They are also found in many patients with sporadic ALS and FTLD, conditions in which only wild type TDP-43 is present. The common pathological hallmarks and symptomatic cross over between the two diseases suggest that TDP-43 and progranulin may be mechanistically linked. In this study we aimed to address this link by establishing whether overexpression of mutant TDP-43 or knock-down of progranulin in zebrafish embryos results in motor neuron phenotypes and whether human progranulin is neuroprotective against such phenotypes. Mutant TDP-43 (A315T mutation induced a motor axonopathy characterized by short axonal outgrowth and aberrant branching, similar, but more severe, than that induced by mutant SOD1. Knockdown of the two zebrafish progranulin genes, grna and grnb, produced a substantial decrease in axonal length, with knockdown of grna alone producing a greater decrease in axonal length than grnb. Progranulin overexpression rescued the axonopathy induced by progranulin knockdown. Interestingly, progranulin also rescued the mutant TDP-43 induced axonopathy, whilst it failed to affect the mutant SOD1-induced phenotype. TDP-43 was found to be nuclear in all conditions described. The findings described here demonstrate that progranulin is neuroprotective in vivo and may have therapeutic potential for at least some forms of motor neuron degeneration.

  9. Genetic Polymorphisms in SOD (rs2070424, rs7880) and CAT (rs7943316, rs1001179) Enzymes Are Associated with Increased Body Fat Percentage and Visceral Fat in an Obese Population from Central Mexico.

    Science.gov (United States)

    Hernández-Guerrero, César; Hernández-Chávez, Paulina; Romo-Palafox, Inés; Blanco-Melo, Grecia; Parra-Carriedo, Alicia; Pérez-Lizaur, Ana

    2016-07-01

    Oxidative disturbance is an important factor involved in the etiology of comorbidities associated with obesity. Genetic polymorphisms such as SOD1 -251A>G, SOD2 47 C>T, CAT -21A>T and CAT -262 C>T have been described to alter the activity of antioxidant enzymes. The aim of the present work was to analyze the association of the mentioned SNPs with obesity and their relationship with anthropometric and clinical variables in this group. The study included 416 Mexican women (208 normal weight, NW and 208 subjects with obesity, OB). Dietary intake, anthropometric, biochemical and clinical features were evaluated and then analyzed in function of the genotypes. The mutated carriers (GA+GG) of SOD -251 were significantly higher in the OB group (0.24) compared to the NW group (0.08). The other SNPs showed no differences compared with control group. When comparing carrier mutated subjects with obesity vs. wild-type obese participants with the SNPs SOD1 -251, SOD2 47 and CAT -262, the carriers showed a significantly (p G is associated with obesity independent of the presence of diabetes or dyslipidemia. Mutated obese carries of SOD1 -251, SOD2 47 and CAT -262 are associated with a higher distribution of fat in comparison with obese wild-type carriers. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  10. Comparative proteomic analyses reveal that FlbA down-regulates gliT expression and SOD activity in Aspergillus fumigatus.

    Science.gov (United States)

    Shin, Kwang-Soo; Park, Hee-Soo; Kim, Young-Hwan; Yu, Jae-Hyuk

    2013-07-11

    FlbA is a regulator of G-protein signaling protein that plays a central role in attenuating heterotrimeric G-protein mediated vegetative growth signaling in Aspergillus. The deletion of flbA (∆flbA) in the opportunistic human pathogen Aspergillus fumigatus results in accelerated cell death and autolysis in submerged culture. To further investigate the effects of ∆flbA on intracellular protein levels we carried out 2-D proteome analyses of 2-day old submerged cultures of ∆flbA and wild type (WT) strains and observed 160 differentially expressed proteins. Via nano-LC-ESI-MS/MS analyses, we revealed the identity of 10 and 2 proteins exhibiting high and low level accumulation, respectively, in ∆flbA strain. Notably, the GliT protein is accumulated at about 1800-fold higher levels in ∆flbA than WT. Moreover, GliT is secreted at high levels from ∆flbA strain, whereas Sod1 (superoxide dismutase) is secreted at a higher level in WT. Northern blot analyses reveal that ∆flbA results in elevated accumulation of gliT mRNA. Consequently, ∆flbA strain exhibits enhanced tolerance to gliotoxin toxicity. Finally, ∆flbA strain displayed enhanced SOD activity and elevated resistance to menadione and paraquat. In summary, FlbA-mediated signaling control negatively affects cellular responses associated with detoxification of reactive oxygen species and of exogenous gliotoxin in A. fumigatus. Regulator of G protein Signaling (RGS) proteins play crucial roles in fundamental biological processes in filamentous fungi. FlbA is the first studied filamentous fungal RGS protein, yet much remains to be understood about its roles in the opportunistic human pathogen Aspergillus fumigatus. In the present study, we examined the effects of the deletion of flbA using comprehensive analyses of the intra- and extracellular proteomes of A. fumigatus wild type and the flbA deletion mutant. Via MS analyses, we identified 10 proteins exhibiting high level accumulation in the flbA deletion

  11. Additive contributions of two manganese-cored superoxide dismutases (MnSODs to antioxidation, UV tolerance and virulence of Beauveria bassiana.

    Directory of Open Access Journals (Sweden)

    Xue-Qin Xie

    Full Text Available The biocontrol potential of entomopathogenic fungi against arthropod pests depends on not only their virulence to target pests but tolerance to outdoor high temperature and solar UV irradiation. Two Beauveria bassiana superoxide dismutases (SODs, BbSod2 and BbSod3, were characterized as cytosolic and mitochondrial manganese-cored isoenzymes (MnSODs dominating the total SOD activity of the fungal entomopathogen under normal growth conditions. To probe their effects on the biocontrol potential of B. bassiana, ΔBbSod2, ΔBbSod3, and three hairpin RNA-interfered (RNAi mutants with the transcripts of both BbSod2 and BbSod3 being suppressed by 91-97% were constructed and assayed for various phenotypic parameters in conjunction with ΔBbSod2/BbSod2, ΔBbSod3/BbSod3 and wild-type (control strains. In normal cultures, the knockout and RNAi mutants showed significant phenotypic alterations, including delayed sporulation, reduced conidial yields, and impaired conidial quality, but little change in colony morphology. Their mycelia or conidia became much more sensitive to menadione or H(2O(2-induced oxidative stress but had little change in sensitivity to the hyperosmolarity of NaCl and the high temperature of 45°C. Accompanied with the decreased antioxidative capability, conidial tolerances to UV-A and UV-B irradiations were reduced by 16.8% and 45.4% for ΔBbSod2, 18.7% and 44.7% for ΔBbSod3, and ∼33.7% and ∼63.8% for the RNAi mutants, respectively. Their median lethal times (LT(50s against Myzus persicae apterae, which were topically inoculated under a standardized spray, were delayed by 18.8%, 14.5% and 37.1%, respectively. Remarkably, the effects of cytosolic BbSod2 and mitochondrial BbSod3 on the phenotypic parameters important for the fungal bioncontrol potential were additive, well in accordance with the decreased SOD activities and the increased superoxide levels in the knockout and RNAi mutants. Our findings highlight for the first time that

  12. Excess circulating alternatively activated myeloid (M2 cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis.

    Directory of Open Access Journals (Sweden)

    Ilan Vaknin

    Full Text Available Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs, representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.We tested this working hypothesis in amyotrophic lateral sclerosis (ALS and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2 cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1 mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE, which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS, revealed a two-fold increase in the percentage of circulating MDSCs (LIN(-/LowHLA-DR(-CD33(+ compared to controls.Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might

  13. Ectopic Lignification in the Flax lignified bast fiber1 Mutant Stem Is Associated with Tissue-Specific Modifications in Gene Expression and Cell Wall Composition[C][W

    Science.gov (United States)

    Chantreau, Maxime; Portelette, Antoine; Dauwe, Rebecca; Kiyoto, Shingo; Crônier, David; Morreel, Kris; Arribat, Sandrine; Neutelings, Godfrey; Chabi, Malika; Boerjan, Wout; Yoshinaga, Arata; Mesnard, François; Grec, Sebastien; Chabbert, Brigitte; Hawkins, Simon

    2014-01-01

    Histochemical screening of a flax ethyl methanesulfonate population led to the identification of 93 independent M2 mutant families showing ectopic lignification in the secondary cell wall of stem bast fibers. We named this core collection the Linum usitatissimum (flax) lbf mutants for lignified bast fibers and believe that this population represents a novel biological resource for investigating how bast fiber plants regulate lignin biosynthesis. As a proof of concept, we characterized the lbf1 mutant and showed that the lignin content increased by 350% in outer stem tissues containing bast fibers but was unchanged in inner stem tissues containing xylem. Chemical and NMR analyses indicated that bast fiber ectopic lignin was highly condensed and rich in G-units. Liquid chromatography-mass spectrometry profiling showed large modifications in the oligolignol pool of lbf1 inner- and outer-stem tissues that could be related to ectopic lignification. Immunological and chemical analyses revealed that lbf1 mutants also showed changes to other cell wall polymers. Whole-genome transcriptomics suggested that ectopic lignification of flax bast fibers could be caused by increased transcript accumulation of (1) the cinnamoyl-CoA reductase, cinnamyl alcohol dehydrogenase, and caffeic acid O-methyltransferase monolignol biosynthesis genes, (2) several lignin-associated peroxidase genes, and (3) genes coding for respiratory burst oxidase homolog NADPH-oxidases necessary to increase H2O2 supply. PMID:25381351

  14. Data supporting mitochondrial morphological changes by SPG13-associated HSPD1 mutants

    Directory of Open Access Journals (Sweden)

    Yuki Miyamoto

    2016-03-01

    Full Text Available The data is related to the research article entitled “Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics” [1]. In addition to hypomyelinating leukodystrophy (HLD 4 (OMIM no. 612233, it is known that spastic paraplegia (SPG 13 (OMIM no. 605280 is caused by HSPD1’s amino acid mutation. Two amino acid mutations Val-98-to-Ile (V98I and Gln-461-to-Glu (Q461E are associated with SPG13 [2]. In order to investigate the effects of HSPD1’s V98I or Q461E mutant on mitochondrial morphological changes, we transfected each of the respective mutant-encoding genes into Cos-7 cells. Either of V98I or Q461E mutant exhibited increased number of mitochondria and short length mitochondrial morphologies. Using MitoTracker dye-incorporating assay, decreased mitochondrial membrane potential was also observed in both cases. The data described here supports that SPG13-associated HSPD1 mutant participates in causing aberrant mitochondrial morphological changes with decreased activities. Keywords: SPG13, HSPD1, Mitochondrion, Morphological change

  15. Imaging of brain TSPO expression in a mouse model of amyotrophic lateral sclerosis with 18F-DPA-714 and micro-PET/CT

    International Nuclear Information System (INIS)

    Gargiulo, S.; Gramanzini, M.; Anzilotti, S.; Salvatore, M.; Coda, A.R.D.; Panico, M.; Zannetti, A.; Vicidomini, C.; Quarantelli, M.; Pappata, S.; Greco, A.; Brunetti, A.; Vinciguerra, A.; Pignataro, G.; Dolle, F.; Annunziato, L.

    2016-01-01

    To evaluate the feasibility and sensitivity of 18 F-DPA-714 for the study of microglial activation in the brain and spinal cord of transgenic SOD1 G93A mice using high-resolution PET/CT and to evaluate the Iba1 and TSPO expression with immunohistochemistry. Nine symptomatic SOD1 G93A mice (aged 117 ± 12.7 days, clinical score range 1 - 4) and five WT SOD1 control mice (aged 108 ± 28.5 days) underwent 18 F-DPA-714 PET/CT. SUV ratios were calculated by normalizing the cerebellar (rCRB), brainstem (rBS), motor cortex (rMCX) and cervical spinal cord (rCSC) activities to that of the frontal association cortex. Two WT SOD1 and six symptomatic SOD1 G93A mice were studied by immunohistochemistry. In the symptomatic SOD1 G93A mice, rCRB, rBS and rCSC were increased as compared to the values in WT SOD1 mice, with a statistically significantly difference in rBS (2.340 ± 0.784 vs 1.576 ± 0.287, p = 0.014). Immunofluorescence studies showed that TSPO expression was increased in the trigeminal, facial, ambiguus and hypoglossal nuclei, as well as in the spinal cord, of symptomatic SOD1 G93A mice and was colocalized with increased Iba1 staining. Increased 18 F-DPA-714 uptake can be detected with high-resolution PET/CT in the brainstem of transgenic SOD1 G93A mice, a region known to be a site of degeneration and increased microglial activation in amyotrophic lateral sclerosis, in agreement with increased TSPO expression in the brainstem nuclei shown by immunostaining. Therefore, 18 F-DPA-714 PET/CT might be a suitable tool to evaluate microglial activation in the SOD1 G93A mouse model. (orig.)

  16. Evolution of Soybean mosaic virus-G7 molecularly cloned genome in Rsv1-genotype soybean results in emergence of a mutant capable of evading Rsv1-mediated recognition

    International Nuclear Information System (INIS)

    Hajimorad, M.R.; Eggenberger, A.L.; Hill, J.H.

    2003-01-01

    Plant resistance (R) genes direct recognition of pathogens harboring matching avirluent signals leading to activation of defense responses. It has long been hypothesized that under selection pressure the infidelity of RNA virus replication together with large population size and short generation times results in emergence of mutants capable of evading R-mediated recognition. In this study, the Rsv1/Soybean mosaic virus (SMV) pathosystem was used to investigate this hypothesis. In soybean line PI 96983 (Rsv1), the progeny of molecularly cloned SMV strain G7 (pSMV-G7) provokes a lethal systemic hypersensitive response (LSHR) with up regulation of a defense-associated gene transcript (PR-1). Serial passages of a large population of the progeny in PI 96983 resulted in emergence of a mutant population (vSMV-G7d), incapable of provoking either Rsv1-mediated LSHR or PR-1 protein gene transcript up regulation. An infectious clone of the mutant (pSMV-G7d) was synthesized whose sequences were very similar but not identical to the vSMV-G7d population; however, it displayed a similar phenotype. The genome of pSMV-G7d differs from parental pSMV-G7 by 17 substitutions, of which 10 are translationally silent. The seven amino acid substitutions in deduced sequences of pSMV-G7d differ from that of pSMV-G7 by one each in P1 proteinase, helper component-proteinase, and coat protein, respectively, and by four in P3. To the best of our knowledge, this is the first demonstration in which experimental evolution of a molecularly cloned plant RNA virus resulted in emergence of a mutant capable of evading an R-mediated recognition

  17. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Tesla, Rachel; Wolf, Hamilton Parker; Xu, Pin; Drawbridge, Jordan; Estill, Sandi Jo; Huntington, Paula; McDaniel, Latisha; Knobbe, Whitney; Burket, Aaron; Tran, Stephanie; Starwalt, Ruth; Morlock, Lorraine; Naidoo, Jacinth; Williams, Noelle S; Ready, Joseph M; McKnight, Steven L; Pieper, Andrew A

    2012-10-16

    We previously reported the discovery of P7C3, an aminopropyl carbazole having proneurogenic and neuroprotective properties in newborn neural precursor cells of the hippocampal dentate gyrus. We have further found that chemicals having efficacy in this in vivo screening assay also protect dopaminergic neurons of the substantia nigra following exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a mouse model of Parkinson disease. Here, we provide evidence that an active analog of P7C3, known as P7C3A20, protects ventral horn spinal cord motor neurons from cell death in the G93A-SOD1 mutant mouse model of amyotrophic lateral sclerosis (ALS). P7C3A20 is efficacious in this model when administered at disease onset, and protection from cell death correlates with preservation of motor function in assays of walking gait and in the accelerating rotarod test. The prototypical member of this series, P7C3, delays disease progression in G93A-SOD1 mice when administration is initiated substantially earlier than the expected time of symptom onset. Dimebon, an antihistaminergic drug with significantly weaker proneurogenic and neuroprotective efficacy than P7C3, confers no protection in this ALS model. We propose that the chemical scaffold represented by P7C3 and P7C3A20 may provide a basis for the discovery and optimization of pharmacologic agents for the treatment of ALS.

  18. Reactive oxygen species on bone mineral density and mechanics in Cu,Zn superoxide dismutase (Sod1) knockout mice

    International Nuclear Information System (INIS)

    Smietana, Michael J.; Arruda, Ellen M.; Faulkner, John A.; Brooks, Susan V.; Larkin, Lisa M.

    2010-01-01

    Research highlights: → Reactive oxygen species (ROS) are considered to be a factor in the onset of a number of age-associated conditions, including loss of BMD. → Cu,Zn-superoxide dismutase (Sod1) deficient mice have increased ROS, reduced bone mineral density, decreased bending stiffness, and decreased strength compared to WT controls. → Increased ROS caused by the deficiency of Sod1, may be responsible for the changes in BMD and bone mechanics and therefore represent an appropriate model for studying mechanisms of age-associated bone loss. -- Abstract: Reactive oxygen species (ROS) play a role in a number of degenerative conditions including osteoporosis. Mice deficient in Cu,Zn-superoxide dismutase (Sod1) (Sod1 -/- mice) have elevated oxidative stress and decreased muscle mass and strength compared to wild-type mice (WT) and appear to have an accelerated muscular aging phenotype. Thus, Sod1 -/- mice may be a good model for evaluating the effects of free radical generation on diseases associated with aging. In this experiment, we tested the hypothesis that the structural integrity of bone as measured by bending stiffness (EI; N/mm 2 ) and strength (MPa) is diminished in Sod1 -/- compared to WT mice. Femurs were obtained from male and female WT and Sod1 -/- mice at 8 months of age and three-point bending tests were used to determine bending stiffness and strength. Bones were also analyzed for bone mineral density (BMD; mg/cc) using micro-computed tomography. Femurs were approximately equal in length across all groups, and there were no significant differences in BMD or EI with respect to gender in either genotype. Although male and female mice demonstrated similar properties within each genotype, Sod1 -/- mice exhibited lower BMD and EI of femurs from both males and females compared with gender matched WT mice. Strength of femurs was also lower in Sod1 -/- mice compared to WT as well as between genders. These data indicate that increased oxidative stress

  19. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene

    Directory of Open Access Journals (Sweden)

    Sônia C. Melo

    2015-06-01

    Full Text Available Heterologous expression of a putative manganese superoxide dismutase gene (SOD2 of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sodmutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs located the protein of M. perniciosa (MpSod2p in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet–C (UVC radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sodmutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sodmutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.

  20. Identification and Map-Based Cloning of the Light-Induced Lesion Mimic Mutant 1 (LIL1) Gene in Rice.

    Science.gov (United States)

    Zhou, Qian; Zhang, Zhifei; Liu, Tiantian; Gao, Bida; Xiong, Xingyao

    2017-01-01

    The hypersensitive response (HR) is a mechanism by which plants prevent the spread of pathogen. Despite extensive study, the molecular mechanisms underlying HR remain poorly understood. Lesion mimic mutants (LMMs), such as LIL1 that was identified in an ethylmethane sulfonate mutagenized population of Indica rice ( Oryza sativa L. ssp. Indica ) 93-11, can be used to study the HR. Under natural field conditions, the leaves of LIL1 mutant plants exhibited light-induced, small, rust-red lesions that first appeared at the leaf tips and subsequently expanded throughout the entire leaf blade to the leaf sheath. Histochemical staining indicated that LIL1 lesions displayed an abnormal accumulation of reactive oxygen species (ROS) and resulted from programmed cell death (PCD). The LIL1 mutants also displayed increased expression of defense-related genes and enhanced resistance to rice blast fungus ( Magnaporthe grisea ). Genetic analysis showed that mutation of LIL1 created a semi-dominant allele. Using 1,758 individuals in the F 2 population, LIL1 was mapped in a 222.3 kb region on the long arm of chromosome 7. That contains 12 predicted open reading frames (ORFs). Sequence analysis of these 12 candidate genes revealed a G to A base substitution in the fourth exon of LOC_Os07g30510, a putative cysteine-rich receptor-like kinase (CRK), which led to an amino acid change (Val 429 to Ile) in the LIL1 protein. Comparison of the transcript accumulation of the 12 candidate genes between LIL1 and 93-11 revealed that LOC_Os07g30510 was up-regulated significantly in LIL1 . Overexpression of the LOC_Os07g30510 gene from LIL1 induced a LIL1 -like lesion phenotype in Nipponbare. Thus, LIL1 is a novel LMM in rice that will facilitate the further study of the molecular mechanisms of HR and the rice blast resistance.

  1. A Metadata Analysis of Oxidative Stress Etiology in Preclinical Amyotrophic Lateral Sclerosis: Benefits of Antioxidant Therapy

    Directory of Open Access Journals (Sweden)

    Leila Bond

    2018-01-01

    Full Text Available Oxidative stress, induced by an imbalance of free radicals, incites neurodegeneration in Amyotrophic Lateral Sclerosis (ALS. In fact, a mutation in antioxidant enzyme superoxide dismutase 1 (SOD1 accounts for 20% of familial ALS cases. However, the variance among individual studies examining ALS oxidative stress clouds corresponding conclusions. Therefore, we construct a comprehensive, temporal view of oxidative stress and corresponding antioxidant therapy in preclinical ALS by mining published quantitative experimental data and performing metadata analysis of 41 studies. In vitro aggregate analysis of innate oxidative stress inducers, glutamate and hydrogen peroxide, revealed 70–90% of cell death coincides to inducer exposure equivalent to 30–50% peak concentration (p < 0.05. A correlative plateau in cell death suggests oxidative stress impact is greatest in early-stage neurodegeneration. In vivo SOD1-G93A transgenic ALS mouse aggregate analysis of heat shock proteins (HSPs revealed HSP levels are 30% lower in muscle than spine (p < 0.1. Overall spine HSP levels, including HSP70, are mildly upregulated in SOD1-G93A mice compared to wild type, but not significantly (p > 0.05. Thus, innate HSP compensatory responses to oxidative stress are simply insufficient, a result supportive of homeostatic system instability as central to ALS etiology. In vivo aggregate analysis of antioxidant therapy finds SOD1-G93A ALS mouse survival duration significantly increases by 11.2% (p << 0.001 but insignificantly decreases onset age by 2%. Thus, the aggregate antioxidant treatment effect on survival in preclinical ALS is not sufficient to overcome clinical heterogeneity, which explains the literature disparity between preclinical and clinical antioxidant survival benefit. The aggregate effect sizes on preclinical ALS survival and onset illustrate that present antioxidants, alone, are not sufficient to halt ALS, which underscores its multi-factorial nature

  2. Imaging of brain TSPO expression in a mouse model of amyotrophic lateral sclerosis with {sup 18}F-DPA-714 and micro-PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, S.; Gramanzini, M. [National Research Council, Institute of Biostructure and Bioimaging, Naples (Italy); Ceinge Biotecnologie Avanzate s.c. a r.l., Naples (Italy); Anzilotti, S.; Salvatore, M. [IRCCS SDN, Naples (Italy); Coda, A.R.D.; Panico, M.; Zannetti, A.; Vicidomini, C.; Quarantelli, M.; Pappata, S. [National Research Council, Institute of Biostructure and Bioimaging, Naples (Italy); Greco, A.; Brunetti, A. [University ' ' Federico II' ' , Department of Advanced Biomedical Sciences, Naples (Italy); Ceinge Biotecnologie Avanzate s.c. a r.l., Naples (Italy); Vinciguerra, A.; Pignataro, G. [University ' ' Federico II' ' , Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Naples (Italy); Dolle, F. [CEA, Institute for Biomedical Imaging, Orsay (France); Annunziato, L. [University ' ' Federico II' ' , Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Naples (Italy); IRCCS SDN, Naples (Italy)

    2016-07-15

    To evaluate the feasibility and sensitivity of {sup 18}F-DPA-714 for the study of microglial activation in the brain and spinal cord of transgenic SOD1{sup G93A} mice using high-resolution PET/CT and to evaluate the Iba1 and TSPO expression with immunohistochemistry. Nine symptomatic SOD1{sup G93A} mice (aged 117 ± 12.7 days, clinical score range 1 - 4) and five WT SOD1 control mice (aged 108 ± 28.5 days) underwent {sup 18}F-DPA-714 PET/CT. SUV ratios were calculated by normalizing the cerebellar (rCRB), brainstem (rBS), motor cortex (rMCX) and cervical spinal cord (rCSC) activities to that of the frontal association cortex. Two WT SOD1 and six symptomatic SOD1{sup G93A} mice were studied by immunohistochemistry. In the symptomatic SOD1{sup G93A} mice, rCRB, rBS and rCSC were increased as compared to the values in WT SOD1 mice, with a statistically significantly difference in rBS (2.340 ± 0.784 vs 1.576 ± 0.287, p = 0.014). Immunofluorescence studies showed that TSPO expression was increased in the trigeminal, facial, ambiguus and hypoglossal nuclei, as well as in the spinal cord, of symptomatic SOD1{sup G93A} mice and was colocalized with increased Iba1 staining. Increased {sup 18}F-DPA-714 uptake can be detected with high-resolution PET/CT in the brainstem of transgenic SOD1{sup G93A} mice, a region known to be a site of degeneration and increased microglial activation in amyotrophic lateral sclerosis, in agreement with increased TSPO expression in the brainstem nuclei shown by immunostaining. Therefore, {sup 18}F-DPA-714 PET/CT might be a suitable tool to evaluate microglial activation in the SOD1{sup G93A} mouse model. (orig.)

  3. Resveratrol Derivative-Rich Melinjo Seed Extract Attenuates Skin Atrophy in Sod1-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Kenji Watanabe

    2015-01-01

    Full Text Available The oxidative damages induced by a redox imbalance cause age-related changes in cells and tissues. Superoxide dismutase (SOD enzymes play a pivotal role in the antioxidant system and they also catalyze superoxide radicals. Since the loss of cytoplasmic SOD (SOD1 resulted in aging-like phenotypes in several types of murine tissue, SOD1 is essential for the maintenance of tissue homeostasis. Melinjo (Gnetum gnemon Linn seed extract (MSE contains trans-resveratrol (RSV and resveratrol derivatives, including gnetin C, gnemonoside A, and gnemonoside D. MSE intake also exerts no adverse events in human study. In the present studies, we investigated protective effects of MSE on age-related skin pathologies in mice. Orally MSE and RSV treatment reversed the skin thinning associated with increased oxidative damage in the Sod1−/− mice. Furthermore, MSE and RSV normalized gene expression of Col1a1 and p53 and upregulated gene expression of Sirt1 in skin tissues. In vitro experiments revealed that RSV significantly promoted the viability of Sod1−/− fibroblasts. These finding demonstrated that RSV in MSE stably suppressed an intrinsic superoxide generation in vivo and in vitro leading to protecting skin damages. RSV derivative-rich MSE may be a powerful food of treatment for age-related skin diseases caused by oxidative damages.

  4. Nuclear quadrupole resonance of 93Nb in ternary phases on the bases of Nb3Al compound

    International Nuclear Information System (INIS)

    Matukhin, V.L.; Safin, I.A.; Shamraj, V.F.

    1980-01-01

    Results of investigations into concentration dependences of 93 Nb spectrum parameters of nuclear quadrupole resonance (n.g.r.) (frequencies of n.g.r. transitions, rates of nuclear spin - lattice relaxation R) in triple phases which appear as a result of Nb 3 Al compound alloying with Zr, Ga, Sn, are presented. Nb 3 Al alloying with gallium does not considerably change the R value (R-rate of nuclear spin - lattice relaxation, while alloying with zirconium decreases it to a noticeable extent. It is 30% less in the triple phase than in the Nb 3 Al compound. R alterations, frequency reduction in the 93 Nb n.q.r. spectrum and the decrease of constant of the quadrupole bond point to the alteration of the spatial electron distribution around a niobium atom during alloying [ru

  5. Metal-free ALS variants of dimeric human Cu,Zn-superoxide dismutase have enhanced populations of monomeric species.

    Directory of Open Access Journals (Sweden)

    Anna-Karin E Svensson

    2010-04-01

    Full Text Available Amino acid replacements at dozens of positions in the dimeric protein human, Cu,Zn superoxide dismutase (SOD1 can cause amyotrophic lateral sclerosis (ALS. Although it has long been hypothesized that these mutations might enhance the populations of marginally-stable aggregation-prone species responsible for cellular toxicity, there has been little quantitative evidence to support this notion. Perturbations of the folding free energy landscapes of metal-free versions of five ALS-inducing variants, A4V, L38V, G93A, L106V and S134N SOD1, were determined with a global analysis of kinetic and thermodynamic folding data for dimeric and stable monomeric versions of these variants. Utilizing this global analysis approach, the perturbations on the global stability in response to mutation can be partitioned between the monomer folding and association steps, and the effects of mutation on the populations of the folded and unfolded monomeric states can be determined. The 2- to 10-fold increase in the population of the folded monomeric state for A4V, L38V and L106V and the 80- to 480-fold increase in the population of the unfolded monomeric states for all but S134N would dramatically increase their propensity for aggregation through high-order nucleation reactions. The wild-type-like populations of these states for the metal-binding region S134N variant suggest that even wild-type SOD1 may also be prone to aggregation in the absence of metals.

  6. The R213G polymorphism in SOD3 protects against allergic airway inflammation

    DEFF Research Database (Denmark)

    Gaurav, Rohit; Varasteh, Jason T; Weaver, Michael R

    2017-01-01

    ) in bronchoalveolar lavage fluid and reduced type II innate lymphoid cells (ILC2s) in lungs. SOD mimetic (Mn (III) tetrakis (N-ethylpyridinium-2-yl) porphyrin) attenuated Alternaria-induced expression of IL-33 and IL-8 release in BEAS-2B cells. These results suggest that R213G SNP potentially benefits its carriers...... by resulting in high EC-SOD in airway-lining fluid, which ameliorates allergic airway inflammation by dampening the innate immune response, including IL-33/ST2-mediated changes in ILC2s....

  7. Voronoi-based spatial analysis reveals selective interneuron changes in the cortex of FALS mice.

    Science.gov (United States)

    Minciacchi, Diego; Kassa, Roman M; Del Tongo, Claudia; Mariotti, Raffaella; Bentivoglio, Marina

    2009-01-01

    The neurodegenerative disease amyotrophic lateral sclerosis affects lower motoneurons and corticospinal cells. Mice expressing human mutant superoxide dismutase (SOD)1 provide widely investigated models of the familial form of disease, but information on cortical changes in these mice is still limited. We here analyzed the spatial organization of interneurons characterized by parvalbumin immunoreactivity in the motor, somatosensory, and visual cortical areas of SOD1(G93A) mice. Cell number and sociological spatial behavior were assessed by digital charts of cell location in cortical samples, cell counts, and generation of two-dimensional Voronoi diagrams. In end-stage SOD1-mutant mice, an increase of parvalbumin-containing cortical interneurons was found in the motor and somatosensory areas (about 35% and 20%, respectively) with respect to wild-type littermates. Changes in cell spatial distribution, as documented by Voronoi-derived coefficients of variation, indicated increased tendency of parvalbumin cells to aggregate into clusters in the same areas of the SOD1-mutant cortex. Counts and coefficients of variation of parvalbumin cells in the visual cortex gave instead similar results in SOD1-mutant and wild-type mice. Analyses of motor and somatosensory areas in presymptomatic SOD1-mutant mice provided findings very similar to those obtained at end-stage, indicating early changes of interneurons in these cortical areas during the pathology. Altogether the data reveal in the SOD1-mutant mouse cortex an altered architectonic pattern of interneurons, which selectively affects areas involved in motor control. The findings, which can be interpreted as pathogenic factors or early disease-related adaptations, point to changes in the cortical regulation and modulation of the motor circuit during motoneuron disease.

  8. Transcriptional mechanisms associated with seed dormancy and dormancy loss in the gibberellin-insensitive sly1-2 mutant of Arabidopsis thaliana

    Science.gov (United States)

    While widespread transcriptome changes have been previously observed with seed dormancy loss, this study specifically characterized transcriptional changes associated with the increased seed dormancy and dormancy loss of the gibberellin (GA) hormone-insensitive sleepy1-2 (sly1-2) mutant. The SLY1 g...

  9. Construction of brewing-wine Aspergillus oryzae pyrG- mutant by pyrG gene deletion and its application in homology transformation.

    Science.gov (United States)

    Du, Yu; Xie, Guizhen; Yang, Chunfa; Fang, Baishan; Chen, Hongwen

    2014-06-01

    pyrG(-) host cells are indispensable for pyrG(-) based transformation system. Isolations of pyrG(-) host cells by random mutations are limited by time-consuming, unclear genetic background and potential interferences of homogenous recombination. The purpose of this study was to construct brewing-wine Aspergillus oryzae pyrG(-) mutant by site-directed mutation of pyrG gene deletion which would be used as a host for further transformation. pMD-pyrGAB, a vector carrying pyrG deletion cassette, was used to construct pyrG(-) mutant of A. oryzae. Three stable pyrG deletion mutants of A. oryzae were isolated by resistant to 5-fluoroorotic acid and confirmed by polymerase chain reaction analysis, indicating that pyrG was completely excised. The ΔpyrG mutants were applied as pyrG(-) host cells to disrupt xdh gene encoding xylitol dehydrogenase, which involves in xylitol production of A. oryzae. The xdh disruption mutants were efficiently constructed by transforming a pMD-pyrG-xdh disruption plasmid carrying pyrG, and the produced xylitol concentration of the Δxdh mutant was three times as much as that of the ΔpyrG recipient. Site-directed pyrG gene deletion is thus an effective way for the isolation of pyrG(-) host cells, and the established host-vector system could be applied in further functional genomics analysis and molecular breeding of A. oryzae. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  10. Intermittent Hypoxia and Stem Cell Implants Preserve Breathing Capacity in a Rodent Model of Amyotrophic Lateral Sclerosis

    Science.gov (United States)

    Nichols, Nicole L.; Gowing, Genevieve; Satriotomo, Irawan; Nashold, Lisa J.; Dale, Erica A.; Suzuki, Masatoshi; Avalos, Pablo; Mulcrone, Patrick L.; McHugh, Jacalyn

    2013-01-01

    Rationale: Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease causing paralysis and death from respiratory failure. Strategies to preserve and/or restore respiratory function are critical for successful treatment. Although breathing capacity is maintained until late in disease progression in rodent models of familial ALS (SOD1G93A rats and mice), reduced numbers of phrenic motor neurons and decreased phrenic nerve activity are observed. Decreased phrenic motor output suggests imminent respiratory failure. Objectives: To preserve or restore phrenic nerve activity in SOD1G93A rats at disease end stage. Methods: SOD1G93A rats were injected with human neural progenitor cells (hNPCs) bracketing the phrenic motor nucleus before disease onset, or exposed to acute intermittent hypoxia (AIH) at disease end stage. Measurements and Main Results: The capacity to generate phrenic motor output in anesthetized rats at disease end stage was: (1) transiently restored by a single presentation of AIH; and (2) preserved ipsilateral to hNPC transplants made before disease onset. hNPC transplants improved ipsilateral phrenic motor neuron survival. Conclusions: AIH-induced respiratory plasticity and stem cell therapy have complementary translational potential to treat breathing deficits in patients with ALS. PMID:23220913

  11. A novel acylaminoimidazole derivative, WN1316, alleviates disease progression via suppression of glial inflammation in ALS mouse model.

    Directory of Open Access Journals (Sweden)

    Kazunori Tanaka

    Full Text Available Amyotrophic lateral sclerosis (ALS is an adult-onset motor neuron degenerative disease. Given that oxidative stress and resulting chronic neuronal inflammation are thought to be central pathogenic, anti-oxidative agents and modulators of neuronal inflammation could be potential therapies for ALS. We report here that the novel small molecular compound, 2-[mesityl(methylamino]-N-[4-(pyridin-2-yl-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316 selectively suppresses oxidative stress-induced cell death and neuronal inflammation in the late-stage ALS mice. WN1316 has high blood-brain-barrier permeability and water solubility, and boosts both neuronal apoptosis inhibitory protein (NAIP and NF-E2-related factor 2 (Nrf2 which governed glutathione (GSH-related anti-oxidation pathway protecting motor neurons against oxidative injuries. Post-onset oral administration of low dose (1-100 µg/kg/day WN1316 in ALS(SOD1(H46R and ALS(SOD1(G93A mice resulted in sustained improved motor function and post onset survival rate. Immunohistochemical analysis revealed less DNA oxidative damage and motor neuronal inflammation as well as repression of both microgliosis and astrocytosis, concomitant down regulation of interleukin-1β and inducible nitric oxide synthase, and preservation of the motoneurons in anterior horn of lumbar spinal cord and skeletal muscle (quadriceps femoris. Thus, WN1316 would be a novel therapeutic agent for ALS.

  12. Responses of Soybean Mutant Lines to Aluminium under In Vitro and In Vivo Condition

    International Nuclear Information System (INIS)

    Yuliasti; Sudarsono

    2011-01-01

    The main limited factors of soybean plants expansion in acid soil are Aluminium (Al) toxicity and low pH. The best approach to solve this problem is by using Al tolerance variety. In vitro or in vivo selections using selective media containing AlCl 3 and induced callus embryonic of mutant lines are reliable methods to develop a new variety. The objectives of this research are to evaluate response of soybean genotypes against AlCl 3 under in vitro and in vivo condition. Addition of 15 part per million (ppm) AlCl 3 into in vitro and in vivo media severely affected plant growth. G3 soybean mutant line was identified as more tolerant than the control soybean cultivar Tanggamus. This mutant line was able to survive under more severe AlCl 3 concentrations (15 ppm) under in vitro conditions. Under in vivo conditions, G1 and G4 mutants were also identified as more tolerant than Tanggamus since they produced more pods and higher dry seed weigh per plant. Moreover, G4 mutant line also produced more dry seed weight per plant than Tanggamus when they were grown on soil containing high Al concentration 8.1 me/100 gr = 81 ppm Al +3 . (author)

  13. The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity.

    Directory of Open Access Journals (Sweden)

    Fabio Carrilho Galvão

    Full Text Available The putative eukaryotic translation initiation factor 5A (eIF5A is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1 and deoxyhypusine hydroxylase (Lia1 catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1 and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of m

  14. A single nucleotide change affects fur-dependent regulation of sodB in H. pylori.

    Directory of Open Access Journals (Sweden)

    Beth M Carpenter

    Full Text Available Helicobacter pylori is a significant human pathogen that has adapted to survive the many stresses found within the gastric environment. Superoxide Dismutase (SodB is an important factor that helps H. pylori combat oxidative stress. sodB was previously shown to be repressed by the Ferric Uptake Regulator (Fur in the absence of iron (apo-Fur regulation [1]. Herein, we show that apo regulation is not fully conserved among all strains of H. pylori. apo-Fur dependent changes in sodB expression are not observed under iron deplete conditions in H. pylori strains G27, HPAG1, or J99. However, Fur regulation of pfr and amiE occurs as expected. Comparative analysis of the Fur coding sequence between G27 and 26695 revealed a single amino acid difference, which was not responsible for the altered sodB regulation. Comparison of the sodB promoters from G27 and 26695 also revealed a single nucleotide difference within the predicted Fur binding site. Alteration of this nucleotide in G27 to that of 26695 restored apo-Fur dependent sodB regulation, indicating that a single base difference is at least partially responsible for the difference in sodB regulation observed among these H. pylori strains. Fur binding studies revealed that alteration of this single nucleotide in G27 increased the affinity of Fur for the sodB promoter. Additionally, the single base change in G27 enabled the sodB promoter to bind to apo-Fur with affinities similar to the 26695 sodB promoter. Taken together these data indicate that this nucleotide residue is important for direct apo-Fur binding to the sodB promoter.

  15. Oxidant production and SOD1 protein expression in single skeletal myofibers from Down syndrome mice

    Directory of Open Access Journals (Sweden)

    Patrick M. Cowley

    2017-10-01

    Full Text Available Down syndrome (DS is a genetic condition caused by the triplication of chromosome 21. Persons with DS exhibit pronounced muscle weakness, which also occurs in the Ts65Dn mouse model of DS. Oxidative stress is thought to be an underlying factor in the development of DS-related pathologies including muscle dysfunction. High-levels of oxidative stress have been attributed to triplication and elevated expression of superoxide dismutase 1 (SOD1; a gene located on chromosome 21. The elevated expression of SOD1 is postulated to increase production of hydrogen peroxide and cause oxidative injury and cell death. However, it is unknown whether SOD1 protein expression is associated with greater oxidant production in skeletal muscle from Ts65Dn mice. Thus, our objective was to assess levels of SOD1 expression and oxidant production in skeletal myofibers from the flexor digitorum brevis obtained from Ts65Dn and control mice. Measurements of oxidant production were obtained from myofibers loaded with 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA in the basal state and following 15 min of stimulated unloaded contraction. Ts65Dn myofibers exhibited a significant decrease in basal DCF emissions (p 0.05. Myofibers from Ts65Dn mice tended to be smaller and myonuclear domain was lower (p < 0.05. In summary, myofibers from Ts65Dn mice exhibited decreased basal DCF emissions that were coupled with elevated protein expression of SOD1. Stimulated contraction in isolated myofibers did not affect DCF emissions in either group. These findings suggest the skeletal muscle dysfunction in the adult Ts65Dn mouse is not associated with skeletal muscle oxidative stress.

  16. Gaharu Leaf Extract Water Reduce MDA and 8-OHdG Levels and Increase Activities SOD and Catalase in Wistar Rats Provided Maximum Physical Activity

    Directory of Open Access Journals (Sweden)

    I Made Oka Adi Parwata

    2016-09-01

    Full Text Available Background: Oxidative stress occurs due to an imbalance of the number of free radicals by the number of endogenous antioxidant produced by the body i.e. Superoxide Dismutase (SOD, Gluthathione Peroxidase (GPx, and Catalase. The imbalance between the number of free radicals and antioxidants can be overcome with the endogenous antioxidant intake that exogenous oxidative stress can be reduced. One of exogenous antioxidants is natural Gaharu leaf water extract. Objective: This research focus on the effect of Gaharu leaf water extract in reducing MDA and 8-OHdG and increase the activity of SOD and Catalase. Methods: This study was an experimental with post only controls group design. Experiment was divided  into 5 groups of wistar rats, each consisting of 5 animals, i.e. negative control group without extract [K (-], treatment 1 treated 50 mg/kg BW/day of the extract (T1, treatment 2 treated 100 mg/kg BW/day of the extract (T2, treatment 3 treated 200 mg/ kg BW/day of the extract (T3, and positive control group [K (+] treated with vitamin Cat a dose 50 mg/kg BW/day. All groups treated for 10 weeks. Every day, before treatment, each group was given a maximum swimming activity for 1.5 hours for 10 weeks. ELISA was used to measure MDA, 8-OHdG, SOD, and Catalase activities. Result: The research results showed that treatment of extract of  leaves of Gaharu with an higher dose from 50 mg/kg BW up to 200 mg/ kg BW significantly decline (p <0.05 levels of MDA with the average ranging from 6.37±0.23, 5,56±0.27 and 4.32±0.27, 8-OHdG with a mean of 1.64±0.11, 1.26±0.46, and 1.09±0.17. On the other hand the treatment also increase SOD activity with less ranging from 12.15±1.04, 15.70±2.02, and 18.84±1.51, and Catalase ranging from 6,68±0.63, 8.20±1.14 and 9.29±0,79 in the blood of Wistar rats were given a maximum activity compared to the negative control group. This is probably higher phenol compounds (bioflavonoids quantity content of the extract

  17. Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    International Nuclear Information System (INIS)

    Chen, Yanchun; Guan, Yingjun; Liu, Huancai; Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei; Wang, Xin

    2012-01-01

    Highlights: ► Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. ► β-catenin translocated from the cell membrane to the nucleus in the ALS mice. ► Wnt3a, β-catenin and Cyclin D1 co-localized for astrocytes were all increased. ► BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. ► BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, β-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/β-catenin signaling pathway. We determined the expression of Wnt3a, β-catenin, and Cyclin D1 in the adult spinal cord of SOD1 G93A ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, β-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, β-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, β-catenin or Cyclin D1 in mature GFAP + astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that neurodegeneration activates the Wnt/β-catenin signaling pathway, which is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. This

  18. Biochemical Analysis of Two Single Mutants that Give Rise to a Polymorphic G6PD A-Double Mutant

    Directory of Open Access Journals (Sweden)

    Edson Jiovany Ramírez-Nava

    2017-10-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PD is a key regulatory enzyme that plays a crucial role in the regulation of cellular energy and redox balance. Mutations in the gene encoding G6PD cause the most common enzymopathy that drives hereditary nonspherocytic hemolytic anemia. To gain insights into the effects of mutations in G6PD enzyme efficiency, we have investigated the biochemical, kinetic, and structural changes of three clinical G6PD variants, the single mutations G6PD A+ (Asn126AspD and G6PD Nefza (Leu323Pro, and the double mutant G6PD A− (Asn126Asp + Leu323Pro. The mutants showed lower residual activity (≤50% of WT G6PD and displayed important kinetic changes. Although all Class III mutants were located in different regions of the three-dimensional structure of the enzyme and were not close to the active site, these mutants had a deleterious effect over catalytic activity and structural stability. The results indicated that the G6PD Nefza mutation was mainly responsible for the functional and structural alterations observed in the double mutant G6PD A−. Moreover, our study suggests that the G6PD Nefza and G6PD A− mutations affect enzyme functions in a similar fashion to those reported for Class I mutations.

  19. Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis rsmG mutants

    DEFF Research Database (Denmark)

    Nishimura, Kenji; Johansen, Shanna K; Inaoka, Takashi

    2007-01-01

    The methyltransferase RsmG methylates the N7 position of nucleotide G535 in 16S rRNA of Bacillus subtilis (corresponding to G527 in Escherichia coli). Disruption of rsmG resulted in low-level resistance to streptomycin. A growth competition assay revealed that there are no differences in fitness...... between the rsmG mutant and parent strains under the various culture conditions examined. B. subtilis rsmG mutants emerged spontaneously at a relatively high frequency, 10(-6). Importantly, in the rsmG mutant background, high-level-streptomycin-resistant rpsL (encoding ribosomal protein S12) mutants...

  20. Enhanced tethered-flight duration and locomotor activity by overexpression of the human gene SOD1 in Drosophila motorneurons

    Directory of Open Access Journals (Sweden)

    Agavni Petrosyan

    2015-03-01

    Full Text Available Mutation of the human gene superoxide dismutase (hSOD1 is associated with the fatal neurodegenerative disease familial amyotrophic lateral sclerosis (Lou Gehrig’s disease. Selective overexpression of hSOD1 in Drosophila motorneurons increases lifespan to 140% of normal. The current study was designed to determine resistance to lifespan decline and failure of sensorimotor functions by overexpressing hSOD1 in Drosophila‘s motorneurons. First, we measured the ability to maintain continuous flight and wingbeat frequency (WBF as a function of age (5 to 50 days. Flies overexpressing hSOD1 under the D42-GAL4 activator were able to sustain flight significantly longer than controls, with the largest effect observed in the middle stages of life. The hSOD1-expressed line also had, on average, slower wingbeat frequencies in late, but not early life relative to age-matched controls. Second, we examined locomotor (exploratory walking behavior in late life when flies had lost the ability to fly (age ≥ 60 d. hSOD1-expressed flies showed significantly more robust walking activity relative to controls. Findings show patterns of functional decline dissimilar to those reported for other life-extended lines, and suggest that the hSOD1 gene not only delays death but enhances sensorimotor abilities critical to survival even in late life.

  1. Could Sirtuin Activities Modify ALS Onset and Progression?

    Science.gov (United States)

    Tang, Bor Luen

    2017-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a complex etiology. Sirtuins have been implicated as disease-modifying factors in several neurological disorders, and in the past decade, attempts have been made to check if manipulating Sirtuin activities and levels could confer benefit in terms of neuroprotection and survival in ALS models. The efforts have largely focused on mutant SOD1, and while limited in scope, the results were largely positive. Here, the body of work linking Sirtuins with ALS is reviewed, with discussions on how Sirtuins and their activities may impact on the major etiological mechanisms of ALS. Moving forward, it is important that the potentially beneficial effect of Sirtuins in ALS disease onset and progression are assessed in ALS models with TDP-43, FUS, and C9orf72 mutations.

  2. APP/SOD1 overexpressing mice present reduced neuropathic pain sensitivity.

    Science.gov (United States)

    Kotulska, Katarzyna; Larysz-Brysz, Magdalena; LePecheur, Marie; Marcol, Wiesław; Olakowska, Edyta; Lewin-Kowalik, Joanna; London, Jacqueline

    2011-07-15

    There are controversies regarding pain expression in mentally disabled people, including Down syndrome patients. The aim of this study was to examine neuropathic pain-related behavior and peripheral nerve regeneration in mouse model of Down syndrome. Sciatic nerves of double transgenic mice, overexpressing both amyloid precursor protein (APP) and Cu/Zn superoxide dismutase (SOD1) genes, and FVB/N wild type mice were transected and immediately resutured. Evaluation of autotomy and functional recovery was carried out during 4-week follow-up. We found markedly less severe autotomy in transgenic animals, although the onset of autotomy was significantly delayed in control mice. Interestingly, neuroma formation at the injury site was significantly more prominent in transgenic animals. Sciatic function index outcome was better in transgenic mice than in wild-type group. Histological evaluation revealed no statistically significant differences in the number of GAP-43-positive growth cones and macrophages in the distal stump of the transected nerve between groups. However, in transgenic animals, the regenerating axons were arranged more chaotically. The number of Schwann cells in the distal stump of the transected nerves was significantly lower in transgenic mice. The number of surviving motoneurons was markedly decreased in transgenic group. We measured also the atrophy of denervated muscles and found it decreased in APP/SOD1 overexpressing mice. Taken together, in this model of Down syndrome, we observed increased neuroma formation and decreased autotomy after peripheral nerve injury. Our findings suggest that APP/SOD1 overexpressing mice are less sensitive for neuropathic pain associated with neuroma. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. The V16A polymorphism in SOD2 is associated with increased risk of diabetic nephropathy and cardiovascular disease in type 1 diabetes

    DEFF Research Database (Denmark)

    Möllsten, A; Jorsal, Anders; Lajer, Maria Stenkil

    2009-01-01

    on the development of cardiovascular disease. METHODS: Type 1 diabetes patients attending the Steno Diabetes Center, Gentofte, Denmark, between 1993 and 2001 were enrolled in this study. A total of 441 cases with diabetic nephropathy (albumin excretion > or =300 mg/24 h) and 314 controls with persistent....... The hazard ratio was 1.6 (95% CI 1.0-2.5). CONCLUSIONS/INTERPRETATION: The MnSOD V16A polymorphism is involved in the development of nephropathy caused by type 1 diabetes and seems to predict cardiovascular disease during follow-up....... affects the localisation of MnSOD and therefore its ability to scavenge superoxide radicals. In a Danish cohort of type 1 diabetes patients, we sought to confirm previous findings of association between the V allele and the risk of diabetic nephropathy and to investigate the influence of this polymorphism...

  4. The dynamic DNA methylation landscape of the mutL homolog 1 shore is altered by MLH1-93G>A polymorphism in normal tissues and colorectal cancer.

    Science.gov (United States)

    Savio, Andrea J; Mrkonjic, Miralem; Lemire, Mathieu; Gallinger, Steven; Knight, Julia A; Bapat, Bharat

    2017-01-01

    Colorectal cancers (CRCs) undergo distinct genetic and epigenetic alterations. Expression of mutL homolog 1 ( MLH1 ), a mismatch repair gene that corrects DNA replication errors, is lost in up to 15% of sporadic tumours due to mutation or, more commonly, due to DNA methylation of its promoter CpG island. A single nucleotide polymorphism (SNP) in the CpG island of MLH1 ( MLH1 -93G>A or rs1800734) is associated with CpG island hypermethylation and decreased MLH1 expression in CRC tumours. Further, in peripheral blood mononuclear cell (PBMC) DNA of both CRC cases and non-cancer controls, the variant allele of rs1800734 is associated with hypomethylation at the MLH1 shore, a region upstream of its CpG island that is less dense in CpG sites . To determine whether this genotype-epigenotype association is present in other tissue types, including colorectal tumours, we assessed DNA methylation in matched normal colorectal tissue, tumour, and PBMC DNA from 349 population-based CRC cases recruited from the Ontario Familial Colorectal Cancer Registry. Using the semi-quantitative real-time PCR-based MethyLight assay, MLH1 shore methylation was significantly higher in tumour tissue than normal colon or PBMCs ( P  MLH1 was not associated with MSI status or promoter CpG island hypermethylation, regardless of genotype. To confirm these results, bisulfite sequencing was performed in matched tumour and normal colorectal specimens from six CRC cases, including two cases per genotype (wildtype, heterozygous, and homozygous variant). Bisulfite sequencing results corroborated the methylation patterns found by MethyLight, with significant hypomethylation in normal colorectal tissue of variant SNP allele carriers. These results indicate that the normal tissue types tested (colorectum and PBMC) experience dynamic genotype-associated epigenetic alterations at the MLH1 shore, whereas tumour DNA incurs aberrant hypermethylation compared to normal DNA.

  5. Screening of drugs inhibiting in vitro oligomerization of Cu/Zn-superoxide dismutase with a mutation causing amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Itsuki Anzai

    2016-08-01

    Full Text Available Dominant mutations in Cu/Zn-superoxide dismutase (SOD1 gene have been shown to cause a familial form of amyotrophic lateral sclerosis (SOD1-ALS. A major pathological hallmark of this disease is abnormal accumulation of mutant SOD1 oligomers in the affected spinal motor neurons. While no effective therapeutics for SOD1-ALS is currently available, SOD1 oligomerization will be a good target for developing cures of this disease. Recently, we have reproduced the formation of SOD1 oligomers abnormally cross-linked via disulfide bonds in a test tube. Using our in vitro model of SOD1 oligomerization, therefore, we screened 640 FDA-approved drugs for inhibiting the oligomerization of SOD1 proteins, and three effective classes of chemical compounds were identified. Those hit compounds will provide valuable information on the chemical structures for developing a novel drug candidate suppressing the abnormal oligomerization of mutant SOD1 and possibly curing the disease.

  6. Comparison of the clinical and cognitive features of genetically positive ALS patients from the largest tertiary center in Serbia.

    Science.gov (United States)

    Marjanović, Ivan V; Selak-Djokić, Biljana; Perić, Stojan; Janković, Milena; Arsenijević, Vladimir; Basta, Ivana; Lavrnić, Dragana; Stefanova, Elka; Stević, Zorica

    2017-06-01

    Discovering novel mutations in C9orf72, FUS, ANG, and TDP-43 genes in ALS patients arises necessities for better clinical characterizations of these subjects. The aim is to determine clinical and cognitive profile of genetically positive Serbian ALS patients. 241 ALS patients were included in the study (17 familiar and 224 apparently sporadic). The following genes were analyzed: SOD1, C9orf72, ANG, FUS, and TDP-43. An extensive battery of classic neuropsychological tests was used in 27 ALS patients (22 SOD1 positive and 5 SOD1 negative) and 82 healthy controls (HCs). Overall 37 (15.4%) of 241 ALS patients carried mutations in tested genes-among 17 familiar ALS patients 16 (94.1%) were positive and among 224 apparently sporadic 21 (9.4%) had causative mutation. Mutations in SOD1 gene were the most common, representing 27 (73.0%) of all genetically positive ALS patients. The main clinical characteristics of SOD1 positive patients were: spinal onset in lower extremities, common sphincter and sensitive disturbances, and dysexecutive syndrome. Within SOD1 positive patients, we noticed somewhat earlier onset in patients with A145G, sensory and sphincter disturbances were dominant in patients with L144F, while D90A patients had significant sensory involvement. SOD1 negative group consisted of ten (27.0%) patients (six C9orf72, two ANG, one TDP-43, and one patient baring triple FUS, C9orf72 expansion, and ANG variants). Bulbar involvement and more extensive neuropsychological impairment (including executive, visuospatial, and memory difficulties) were the main features of SOD1 negative cohort. Our results suggest that meaningful clinical suspicion of certain ALS genotype might be made based on thorough clinical evaluation of patients.

  7. A natural human IgM that binds to gangliosides is therapeutic in murine models of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Xiaohua Xu

    2015-08-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a devastating, fatal neurological disease that primarily affects spinal cord anterior horn cells and their axons for which there is no treatment. Here we report the use of a recombinant natural human IgM that binds to the surface of neurons and supports neurite extension, rHIgM12, as a therapeutic strategy in murine models of human ALS. A single 200 µg intraperitoneal dose of rHIgM12 increases survival in two independent genetic-based mutant SOD1 mouse strains (SOD1G86R and SOD1G93A by 8 and 10 days, delays the onset of neurological deficits by 16 days, delays the onset of weight loss by 5 days, and preserves spinal cord axons and anterior horn neurons. Immuno-overlay of thin layer chromatography and surface plasmon resonance show that rHIgM12 binds with high affinity to the complex gangliosides GD1a and GT1b. Addition of rHIgM12 to neurons in culture increases α-tubulin tyrosination levels, suggesting an alteration of microtubule dynamics. We previously reported that a single peripheral dose of rHIgM12 preserved neurological function in a murine model of demyelination with axon loss. Because rHIgM12 improves three different models of neurological disease, we propose that the IgM might act late in the cascade of neuronal stress and/or death by a broad mechanism.

  8. Overexpression of human SOD1 improves survival of mice susceptible to endotoxic shock

    Directory of Open Access Journals (Sweden)

    Charchaflieh J

    2012-07-01

    Full Text Available Jean Charchaflieh,1,2 Georges I Labaze,1 Pulsar Li,1 Holly Van Remmen,3 Haekyung Lee,1 Helen Stutz,1 Arlan Richardson,3 Asher Emanuel,1 Ming Zhang1,41Department of Anesthesiology, State University of New York (SUNY Downstate Medical Center, New York, NY, USA; 2Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA; 3Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; 4Department of Cell Biology, State University of New York (SUNY Downstate Medical Center, New York, NY, USABackground: Protective effects of the antioxidant enzyme Cu-Zn superoxide dismutase (SOD1 against endotoxic shock have not been demonstrated in animal models. We used a murine model to investigate whether overexpression of SOD1 protects against endotoxic shock, and whether the genetic background of SOD1 affects its effective protective effects and susceptibility to endotoxic shock.Methods: Transgenic (tg mice overexpressing human SOD1 and control mice were divided into four groups based on their genetic background: (1 tg mice with mixed genetic background (tg-JAX; (2 wild-type (WT littermates of tg-JAX strain (WT-JAX; (3 tg mice with C57BL/6J background (tg-TX; (4 WT littermates of tg-TX strain (WT-TX. Activity of SOD1 in the intestine, heart, and liver of tg and control mice was confirmed using a polyacrylamide activity gel. Endotoxic shock was induced by intraperitoneal injection of lipopolysaccharide. Survival rates over 120 hours (mean, 95% confidence interval were analyzed using Kaplan–Meier survival curves.Results: Human SOD1 enzymatic activities were significantly higher in the intestine, heart, and liver of both tg strains (tg-JAX and tg-TX compared with their WT littermates (WT-JAX and WT-TX, respectively. Interestingly, the endogenous SOD1 activities in tg-JAX mice were decreased compared with their WT littermates (WT-JAX, but such aberrant changes were not

  9. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanchun [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Guan, Yingjun, E-mail: guanyj@wfmc.edu.cn [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Liu, Huancai [Department of Orthopedic, Affiliated Hospital, Weifang Medical University, Weifang, Shandong (China); Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Wang, Xin, E-mail: xwang@rics.bwh.harvard.edu [Department of Neurosurgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  10. Influence of genetic variations in the SOD1 gene on the development of ascites and spontaneous bacterial peritonitis in decompensated liver cirrhosis

    DEFF Research Database (Denmark)

    Schwab, Sebastian; Lehmann, Jennifer; Lutz, Philipp

    2017-01-01

    BACKGROUND: The balance between generation and elimination of reactive oxygen species by superoxide dismutase (SOD) is crucially involved in the pathophysiology of liver cirrhosis. Reactive oxygen species damage cells and induce inflammation/fibrosis, but also play a critical role in immune defense...... in carriers of rs1041740. In this cohort, rs1041740 was not associated with survival. CONCLUSION: These data suggest a complex role of SOD1 in different processes leading to complications of liver cirrhosis. rs1041740 might be associated with the development of ascites and possibly plays a role in SBP once...... from pathogens. As both processes are involved in the development of liver cirrhosis and its complications, genetic variation of the SOD1 gene was investigated. PATIENTS AND METHODS: Two SOD1 single nucleotide polymorphisms (rs1041740 and rs3844942) were analyzed in 49 cirrhotic patients undergoing...

  11. Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Liu, Kevin X; Edwards, Benjamin; Lee, Sheena; Finelli, Mattéa J; Davies, Ben; Davies, Kay E; Oliver, Peter L

    2015-05-01

    Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder characterized by the progressive loss of spinal motor neurons. While the aetiological mechanisms underlying the disease remain poorly understood, oxidative stress is a central component of amyotrophic lateral sclerosis and contributes to motor neuron injury. Recently, oxidation resistance 1 (OXR1) has emerged as a critical regulator of neuronal survival in response to oxidative stress, and is upregulated in the spinal cord of patients with amyotrophic lateral sclerosis. Here, we tested the hypothesis that OXR1 is a key neuroprotective factor during amyotrophic lateral sclerosis pathogenesis by crossing a new transgenic mouse line that overexpresses OXR1 in neurons with the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Interestingly, we report that overexpression of OXR1 significantly extends survival, improves motor deficits, and delays pathology in the spinal cord and in muscles of SOD1(G93A) mice. Furthermore, we find that overexpression of OXR1 in neurons significantly delays non-cell-autonomous neuroinflammatory response, classic complement system activation, and STAT3 activation through transcriptomic analysis of spinal cords of SOD1(G93A) mice. Taken together, these data identify OXR1 as the first neuron-specific antioxidant modulator of pathogenesis and disease progression in SOD1-mediated amyotrophic lateral sclerosis, and suggest that OXR1 may serve as a novel target for future therapeutic strategies. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  12. Intraspinal cell transplantation for targeting cervical ventral horn in amyotrophic lateral sclerosis and traumatic spinal cord injury.

    Science.gov (United States)

    Lepore, Angelo C

    2011-09-18

    Respiratory compromise due to phrenic motor neuron loss is a debilitating consequence of a large proportion of human traumatic spinal cord injury (SCI) cases (1) and is the ultimate cause of death in patients with the motor neuron disorder, amyotrophic laterals sclerosis (ALS) (2). ALS is a devastating neurological disorder that is characterized by relatively rapid degeneration of upper and lower motor neurons. Patients ultimately succumb to the disease on average 2-5 years following diagnosis because of respiratory paralysis due to loss of phrenic motor neuron innnervation of the diaphragm (3). The vast majority of cases are sporadic, while 10% are of the familial form. Approximately twenty percent of familial cases are linked to various point mutations in the Cu/Zn superoxide dismutase 1 (SOD1) gene on chromosome 21 (4). Transgenic mice (4,5) and rats (6) carrying mutant human SOD1 genes ((G93A, G37R, G86R, G85R)) have been generated, and, despite the existence of other animal models of motor neuron loss, are currently the most highly used models of the disease. Spinal cord injury (SCI) is a heterogeneous set of conditions resulting from physical trauma to the spinal cord, with functional outcome varying according to the type, location and severity of the injury (7). Nevertheless, approximately half of human SCI cases affect cervical regions, resulting in debilitating respiratory dysfunction due to phrenic motor neuron loss and injury to descending bulbospinal respiratory axons (1). A number of animal models of SCI have been developed, with the most commonly used and clinically-relevant being the contusion (8). Transplantation of various classes of neural precursor cells (NPCs) is a promising therapeutic strategy for treatment of traumatic CNS injuries and neurodegeneration, including ALS and SCI, because of the ability to replace lost or dysfunctional CNS cell types, provide neuroprotection, and deliver gene factors of interest (9). Animal models of both ALS and

  13. Molecular Cloning and Expression Analysis of Cu/Zn SOD Gene from Gynura bicolor DC.

    Directory of Open Access Journals (Sweden)

    Xin Xu

    2017-01-01

    Full Text Available Superoxide dismutase is an important antioxidant enzyme extensively existing in eukaryote, which scavenges reactive oxygen species (ROS and plays an essential role in stress tolerance of higher plants. A full-length cDNA encoding Cu/Zn SOD was cloned from leaves of Gynura bicolor DC. by rapid amplification of cDNA ends (RACE. The full-length cDNA of Cu/Zn SOD is 924 bp and has a 681 bp open reading frame encoding 227 amino acids. Bioinformatics analysis revealed that belonged to the plant SOD super family. Cu/Zn SODs of the Helianthus annuus, Mikania micrantha, and Solidago canadensis var. scabra all have 86% similarity to the G. bicolor Cu/Zn SOD. Analysis of the expression of Cu/Zn SOD under different treatments revealed that Cu/Zn SOD was a stress-responsive gene, especially to 1-MCP. It indicates that the Cu/Zn SOD gene would be an important gene in the resistance to stresses and will be helpful in providing evidence for future research on underlying molecular mechanism and choosing proper postharvest treatments for G. bicolor.

  14. A high constitutive catalase activity confers resistance to methyl viologen-promoted oxidative stress in a mutant of the cyanobacterium Nostoc punctiforme ATCC 29133.

    Science.gov (United States)

    Moirangthem, Lakshmipyari Devi; Bhattacharya, Sudeshna; Stensjö, Karin; Lindblad, Peter; Bhattacharya, Jyotirmoy

    2014-04-01

    A spontaneous methyl viologen (MV)-resistant mutant of the nitrogen-fixing cyanobacterium Nostoc punctiforme ATCC 29133 was isolated and the major enzymatic antioxidants involved in combating MV-induced oxidative stress were evaluated. The mutant displayed a high constitutive catalase activity as a consequence of which, the intracellular level of reactive oxygen species in the mutant was lower than the wild type (N. punctiforme) in the presence of MV. The superoxide dismutase (SOD) activity that consisted of a SodA (manganese-SOD) and a SodB (iron-SOD) was not suppressed in the mutant following MV treatment. The mutant was, however, characterised by a lower peroxidase activity compared with its wild type, and its improved tolerance to externally added H₂O₂ could only be attributed to enhanced catalase activity. Furthermore, MV-induced toxic effects on the wild type such as (1) loss of photosynthetic performance assessed as maximal quantum yield of photosystem II, (2) nitrogenase inactivation, and (3) filament fragmentation and cell lysis were not observed in the mutant. These findings highlight the importance of catalase in preventing MV-promoted oxidative damage and cell death in the cyanobacterium N. punctiforme. Such oxidative stress resistant mutants of cyanobacteria are likely to be a better source of biofertilisers, as they can grow and fix nitrogen in an unhindered manner in agricultural fields that are often contaminated with the herbicide MV, also commonly known as paraquat.

  15. Characterization and fine mapping of a light-dependent leaf lesion mimic mutant 1 in rice.

    Science.gov (United States)

    Wang, Jing; Ye, Bangquan; Yin, Junjie; Yuan, Can; Zhou, Xiaogang; Li, Weitao; He, Min; Wang, Jichun; Chen, Weilan; Qin, Peng; Ma, Bintian; Wang, Yuping; Li, Shigui; Chen, Xuewei

    2015-12-01

    Plants that spontaneously produce lesion mimics or spots, without any signs of obvious adversity, such as pesticide and mechanical damage, or pathogen infection, are so-called lesion mimic mutants (lmms). In rice, many lmms exhibit enhanced resistance to pathogens, which provides a unique opportunity to uncover the molecular mechanism underlying lmms. We isolated a rice light-dependent leaf lesion mimic mutant 1 (llm1). Lesion spots appeared in the leaves of the llm1 mutant at the tillering stage. Furthermore, the mutant llm1 had similar agronomic traits to wild type rice. Trypan blue and diamiobenzidine staining analyses revealed that the lesion spot formation on the llm1 mutant was due to programmed cell death and reactive oxygen species. The chloroplasts were severely damaged in the llm1 mutant, suggesting that chloroplast damage was associated with the formation of lesion spots in llm1. More importantly, llm1 exhibited enhanced resistance to bacterial blight pathogens within increased expression of pathogenesis related genes (PRs). Using a map-based cloning approach, we delimited the LLM1 locus to a 121-kb interval between two simple sequence repeat markers, RM17470 and RM17473, on chromosome 4. We sequenced the candidate genes on the interval and found that a base mutation had substituted adenine phosphate for thymine in the last exon of LOC_Os04g52130, which led to an amino acid change (Asp(388) to Val) in the llm1 mutant. Our investigation showed that the putative coproporphyrinogen III oxidase (CPOX) encoded by LOC_Os04g52130 was produced by LLM1 and that amino acid Asp(388) was essential for CPOX function. Our study provides the basis for further investigations into the mechanism underlying lesion mimic initiation associated with LLM1. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Cen; Zhao, Yuhan; Liu, Juan; Lin, Alan W; Tan, Victor M; Drake, Justin M; Liu, Lianxin; Boateng, Michael N; Li, Jun; Feng, Zhaohui; Hu, Wenwei

    2017-08-15

    Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53. © 2017 Yue et al.; Published by Cold Spring Harbor Laboratory Press.

  17. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard [Laboratoire de Chimie Nucleaire Analytique et Bioenvironnementale, CNRS UMR5084, Universite Bordeaux 1, Chemin du Solarium, F-33175 Gradignan cedex (France); Solari, Pier Lorenzo [Synchrotron SOLEIL, L' Orme des Merisiers, BP 48, F-91192 Gif-sur-Yvette cedex, Saint-Aubin (France); Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis, E-mail: ortega@cenbg.in2p3.f [FAME, ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble cedex (France)

    2009-11-15

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  18. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    Science.gov (United States)

    Chevreux, Sylviane; Solari, Pier Lorenzo; Roudeau, Stéphane; Deves, Guillaume; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis; Ortega, Richard

    2009-11-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  19. EXAFS analysis of a human Cu,Zn SOD isoform focused using non-denaturing gel electrophoresis

    International Nuclear Information System (INIS)

    Chevreux, Sylviane; Roudeau, Stephane; Deves, Guillaume; Ortega, Richard; Solari, Pier Lorenzo; Alliot, Isabelle; Testemale, Denis; Hazemann, Jean Louis

    2009-01-01

    Isoelectric point isoforms of a metalloprotein, copper-zinc superoxide dismutase (CuZnSOD), separated on electrophoresis gels were analyzed using X-ray Absorption Spectroscopy. Mutations of this protein are involved in familial cases of amyotrophic lateral sclerosis. The toxicity of mutants could be relied to defects in the metallation state. Our purpose is to establish analytical protocols to study metallation state of protein isoforms such as those from CuZnSOD. We previously highlighted differences in the copper oxidation state between CuZnSOD isoforms using XANES. Here, we present the first results for EXAFS analyses performed at Cu and Zn K-edge on the majoritary expressed isoform of human CuZnSOD separated on electrophoresis gels.

  20. Anomalous phonon stiffening associated with the (1 1 1) antiphase boundary in L12 Ni3Al

    International Nuclear Information System (INIS)

    Manga, Venkateswara Rao; Shang, Shun-Li; Wang, William Yi; Wang, Yi; Liang, Jiang; Crespi, Vincent H.; Liu, Zi-Kui

    2015-01-01

    Antiphase boundaries (APBs) play a crucial role in the anomalous yield behavior exhibited by Ni 3 Al with L1 2 structure. We investigated the changes in the vibrational properties associated with the formation of (0 0 1) and (1 1 1) APBs in Ni 3 Al by employing first-principles calculations. The phonon density of states of Ni 3 Al with and without (0 0 1) and (1 1 1) APBs revealed an interesting result: the (0 0 1) APB softens the phonons in its vicinity, while the (1 1 1) stiffens them. We also calculated the finite-temperature (0 0 1) and (1 1 1) APB Gibbs free energies from the first-principles quasi-harmonic approximation. The vibrational entropy of formation is positive (e.g. 0.053 mJ K −1 m −2 at 300 K) for the (0 0 1) APB and is negative (e.g. −0.0157 mJ K −1 m −2 at 300 K) for the (1 1 1) APB over the entire temperature range. We also find a significant change in the thermal electronic free energy due to the creation of the (0 0 1) or (1 1 1) APB. The anisotropy ratio of the APB energies, i.e. the ratio of the (1 1 1) APB free energy to the (0 0 1) APB free energy, changes from 2.9 at 300 K to 15.9 at 1000 K

  1. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans

    Directory of Open Access Journals (Sweden)

    Vandesompele Jo

    2008-01-01

    Full Text Available Abstract Background In the nematode Caenorhabditis elegans the conserved Ins/IGF-1 signaling pathway regulates many biological processes including life span, stress response, dauer diapause and metabolism. Detection of differentially expressed genes may contribute to a better understanding of the mechanism by which the Ins/IGF-1 signaling pathway regulates these processes. Appropriate normalization is an essential prerequisite for obtaining accurate and reproducible quantification of gene expression levels. The aim of this study was to establish a reliable set of reference genes for gene expression analysis in C. elegans. Results Real-time quantitative PCR was used to evaluate the expression stability of 12 candidate reference genes (act-1, ama-1, cdc-42, csq-1, eif-3.C, mdh-1, gpd-2, pmp-3, tba-1, Y45F10D.4, rgs-6 and unc-16 in wild-type, three Ins/IGF-1 pathway mutants, dauers and L3 stage larvae. After geNorm analysis, cdc-42, pmp-3 and Y45F10D.4 showed the most stable expression pattern and were used to normalize 5 sod expression levels. Significant differences in mRNA levels were observed for sod-1 and sod-3 in daf-2 relative to wild-type animals, whereas in dauers sod-1, sod-3, sod-4 and sod-5 are differentially expressed relative to third stage larvae. Conclusion Our findings emphasize the importance of accurate normalization using stably expressed reference genes. The methodology used in this study is generally applicable to reliably quantify gene expression levels in the nematode C. elegans using quantitative PCR.

  2. Ex Vivo Gene Therapy Using Human Mesenchymal Stem Cells to Deliver Growth Factors in the Skeletal Muscle of a Familial ALS Rat Model.

    Science.gov (United States)

    Suzuki, Masatoshi; Svendsen, Clive N

    2016-01-01

    Therapeutic protein and molecule delivery to target sites by transplanted human stem cells holds great promise for ex vivo gene therapy. Our group has demonstrated the therapeutic benefits of ex vivo gene therapy targeting the skeletal muscles in a transgenic rat model of familial amyotrophic lateral sclerosis (ALS). We used human mesenchymal stem cells (hMSCs) and genetically modified them to release neuroprotective growth factors such as glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF). Intramuscular growth factor delivery via hMSCs can enhance neuromuscular innervation and motor neuron survival in a rat model of ALS (SOD1(G93A) transgenic rats). Here, we describe the protocol of ex vivo delivery of growth factors via lentiviral vector-mediated genetic modification of hMSCs and hMSC transplantation into the skeletal muscle of a familial ALS rat model.

  3. Increased Zn/Glutathione Levels and Higher Superoxide Dismutase-1 Activity as Biomarkers of Oxidative Stress in Women with Long-Term Dental Amalgam Fillings: Correlation between Mercury/Aluminium Levels (in Hair) and Antioxidant Systems in Plasma

    Science.gov (United States)

    Cabaña-Muñoz, María Eugenia; Parmigiani-Izquierdo, José María; Bravo-González, Luis Alberto; Kyung, Hee-Moon; Merino, José Joaquín

    2015-01-01

    Background The induction of oxidative stress by Hg can affect antioxidant enzymes. However, epidemiological studies have failed to establish clear association between dental fillings presence and health problems. Objectives To determine whether heavy metals (in hair), antioxidant enzymes (SOD-1) and glutathione levels could be affected by the chronic presence of heavy metals in women who had dental amalgam fillings. Materials and Methods 55 hair samples (42 females with amalgam fillings and 13 female control subjects) were obtained. All subjects (mean age 44 years) who had dental amalgam filling for more than 10 years (average 15 years). Certain metals were quantified by ICP-MS (Mass Spectrophotometry) in hair (μg/g: Al, Hg, Ba, Ag, Sb, As, Be, Bi, Cd, Pb, Pt, Tl, Th, U, Ni, Sn, Ti) and SOD-1 and Glutathione (reduced form) levels in plasma. Data were compared with controls without amalgams, and analyzed to identify any significant relation between metals and the total number of amalgam fillings, comparing those with four or less (n = 27) with those with more than four (n = 15). As no significant differences were detected, the two groups were pooled (Amlgam; n = 42). Findings Hg, Ag, Al and Ba were higher in the amalgam group but without significant differences for most of the heavy metals analyzed. Increased SOD-1 activity and glutathione levels (reduced form) were observed in the amalgam group. Aluminum (Al) correlated with glutathione levels while Hg levels correlated with SOD-1. The observed Al/glutathione and Hg/SOD-1 correlation could be adaptive responses against the chronic presence of mercury. Conclusions Hg, Ag, Al and Ba levels increased in women who had dental amalgam fillings for long periods. Al correlated with glutathione, and Hg with SOD-1. SOD-1 may be a possible biomarker for assessing chronic Hg toxicity. PMID:26076368

  4. Genetic polymorphisms of superoxide dismutase-1 A251G and catalase C-262T with the risk of colorectal cancer.

    Science.gov (United States)

    Jamhiri, Iman; Saadat, Iraj; Omidvari, Shahpour

    2017-06-01

    Oxidative stress is significant in numerous types of disease including cancer. To protect cells and organs against reactive oxygen species (ROS), the body has evolved an antioxidant protection system that involved in the detoxification of ROS. Single nucleotide polymorphisms (SNP) of anti-oxidative enzymes may dramatically change the activity of the encoded proteins; therefore, certain alleles can be established as risk factors for some kind of multi-factorial diseases including cancer. In present study we investigate the possible association between polymorphisms of superoxide dismutase 1 ( SOD1 , OMIM: 147450) and catalase ( CAT , OMIM: 115500) genes and the risk of colorectal cancer (CRC). The study included 204 colorectal cancer patients and 239 healthy control group matched for gender and age. Genotyping of SOD1 A251G and CAT C-262T were done by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) method. There was no significant association between CAT C-262T polymorphism and susceptibility to CRC (P>0.05). The carries of the G allele of SOD1 significantly showed higher prevalence in CRC patients compared with the control group (OR=1.84, 95% CI=1.13-2.98, P=0.013). We assessed the effect of combination of genotypes of the study polymorphisms on the risk of CRC. We found that the combination of AG+GG ( SOD1 ) and CC ( CAT ) increases the risk of developing CRC (OR=2.38, 95% CI=1.25-4.52, P=0.008).

  5. The effect of the spaceship carrying on the biological characters and sod activity of eggplant

    International Nuclear Information System (INIS)

    Wang Shiheng; Zhang Ya; Zhu Shuijin; Wang Yanfan

    2004-01-01

    The effects of the space shuttle carrying on the growth and biological characters of eggplant SP 1 population were studied. The results showed that the effect of space shuttle carrying on the growth and development of eggplant SP 1 were very significant on the characters such as the plant height, reproductive development, leaf size, fruit length, fruit quality and fruiting rate etc, especially on the plant development and the fruit size, and it is hopeful to select some good eggplant germplasm or cultivars from the population. The SOD activity showed that the SOD level in the mutant-1 plant was one time more than that in control plant, indicating that the space shuttle carrying may increase the expression of some genes and lead to the great change in morphological characters

  6. Effect Of G2706A and G1051A polymorphisms of the ABCA1 gene on the lipid, oxidative stress and homocystein levels in Turkish patients with polycystıc ovary syndrome.

    Science.gov (United States)

    Karadeniz, Muammer; Erdoğan, Mehmet; Ayhan, Zengi; Yalcin, Murat; Olukman, Murat; Cetinkalp, Sevki; Alper, Gulinnaz E; Eroglu, Zuhal; Tetik, Asli; Cetintas, Vildan; Ozgen, Ahmet G; Saygili, Fusun; Yilmaz, Candeger

    2011-10-28

    Obesity, insulin resistance and hyperandrogenism, crucial parameters of Polycystic ovary syndrome (PCOS) play significant pathophysiological roles in lipidemic aberrations associated within the syndrome. Parts of the metabolic syndrome (low HDL and insulin resistance) appeared to facilitate the association between PCOS and coronary artery disease, independently of obesity. ABCA1 gene polymorphism may be altered this components in PCOS patients.In this study, we studied 98 PCOS patients and 93 healthy controls. All subjects underwent venous blood drawing for complete hormonal assays, lipid profile, glucose, insulin, malondialdehyde, nitric oxide, disulfide levels and ABCA genetic study. In PCOS group fasting glucose, DHEAS, 17-OHP, free testosterone, total-cholesterol, triglyceride, LDL-cholesterol and fibrinogen were significantly different compare to controls. The genotype ABCA G2706A distribution differed between the control group (GG 60.7%, GA 32.1%, AA 7.1%) and the PCOS patients (GG 8.7%, GA 8.7%, AA 76.8%). The frequency of the A allele (ABCAG2706A) was higher in PCOS patients than control group with 13,0% and 23,2%, respectively. In this study, the homocystein and insulin levels were significantly higher in PCOS patients with ABCA G1051A mutant genotype than those with heterozygote and wild genotypes. We found higher percentage of AA genotype and A allele of ABCA G2706A in PCOS patients compare to controls. The fasting insulin and homocystein levels were significantly higher in PCOS patients with ABCA G1051A mutant genotype than those with heterozygote and wild genotypes.

  7. Effect Of G2706A and G1051A polymorphisms of the ABCA1 gene on the lipid, oxidative stress and homocystein levels in Turkish patients with polycystıc ovary syndrome

    Directory of Open Access Journals (Sweden)

    Tetik Asli

    2011-10-01

    Full Text Available Abstract Background Obesity, insulin resistance and hyperandrogenism, crucial parameters of Polycystic ovary syndrome (PCOS play significant pathophysiological roles in lipidemic aberrations associated within the syndrome. Parts of the metabolic syndrome (low HDL and insulin resistance appeared to facilitate the association between PCOS and coronary artery disease, independently of obesity. ABCA1 gene polymorphism may be altered this components in PCOS patients. In this study, we studied 98 PCOS patients and 93 healthy controls. All subjects underwent venous blood drawing for complete hormonal assays, lipid profile, glucose, insulin, malondialdehyde, nitric oxide, disulfide levels and ABCA genetic study. Results In PCOS group fasting glucose, DHEAS, 17-OHP, free testosterone, total-cholesterol, triglyceride, LDL-cholesterol and fibrinogen were significantly different compare to controls. The genotype ABCA G2706A distribution differed between the control group (GG 60.7%, GA 32.1%, AA 7.1% and the PCOS patients (GG 8.7%, GA 8.7%, AA 76.8%. The frequency of the A allele (ABCAG2706A was higher in PCOS patients than control group with 13,0% and 23,2%, respectively. In this study, the homocystein and insulin levels were significantly higher in PCOS patients with ABCA G1051A mutant genotype than those with heterozygote and wild genotypes. Conclusions We found higher percentage of AA genotype and A allele of ABCA G2706A in PCOS patients compare to controls. The fasting insulin and homocystein levels were significantly higher in PCOS patients with ABCA G1051A mutant genotype than those with heterozygote and wild genotypes.

  8. Focal Transplantation of Human iPSC-Derived Glial-Rich Neural Progenitors Improves Lifespan of ALS Mice

    Directory of Open Access Journals (Sweden)

    Takayuki Kondo

    2014-08-01

    Full Text Available Transplantation of glial-rich neural progenitors has been demonstrated to attenuate motor neuron degeneration and disease progression in rodent models of mutant superoxide dismutase 1 (SOD1-mediated amyotrophic lateral sclerosis (ALS. However, translation of these results into a clinical setting requires a renewable human cell source. Here, we derived glial-rich neural progenitors from human iPSCs and transplanted them into the lumbar spinal cord of ALS mouse models. The transplanted cells differentiated into astrocytes, and the treated mouse group showed prolonged lifespan. Our data suggest a potential therapeutic mechanism via activation of AKT signal. The results demonstrated the efficacy of cell therapy for ALS by the use of human iPSCs as cell source.

  9. Transduced human copper chaperone for Cu,Zn-SOD (PEP-1-CCS) protects against neuronal cell death.

    Science.gov (United States)

    Choi, Soo Hyun; Kim, Dae Won; Kim, So Young; An, Jae Jin; Lee, Sun Hwa; Choi, Hee Soon; Sohn, Eun Jung; Hwang, Seok-Il; Won, Moo Ho; Kang, Tae-Cheon; Kwon, Hyung Joo; Kang, Jung Hoon; Cho, Sung-Woo; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2005-12-31

    Reactive oxygen species (ROS) contribute to the development of various human diseases. Cu,Zn-superoxide dismutase (SOD) is one of the major means by which cells counteract the deleterious effects of ROS. SOD activity is dependent upon bound copper ions supplied by its partner metallochaperone protein, copper chaperone for SOD (CCS). In the present study, we investigated the protective effects of PEP-1-CCS against neuronal cell death and ischemic insults. When PEP-1-CCS was added to the culture medium of neuronal cells, it rapidly entered the cells and protected them against paraquat-induced cell death. Moreover, transduced PEP-1-CCS markedly increased endogenous SOD activity in the cells. Immunohistochemical analysis revealed that it prevented neuronal cell death in the hippocampus in response to transient forebrain ischemia. These results suggest that CCS is essential to activate SOD, and that transduction of PEP-1-CCS provides a potential strategy for therapeutic delivery in various human diseases including stroke related to SOD or ROS.

  10. Investigation of the function of the putative self-association site of Epstein-Barr virus (EBV) glycoprotein 42 (gp42)

    International Nuclear Information System (INIS)

    Rowe, Cynthia L.; Matsuura, Hisae; Jardetzky, Theodore S.; Longnecker, Richard

    2011-01-01

    The Epstein-Barr virus (EBV) glycoprotein 42 (gp42) is a type II membrane protein essential for entry into B cells but inhibits entry into epithelial cells. X-ray crystallography suggests that gp42 may form dimers when bound to human leukocyte antigen (HLA) class II receptor (Mullen et al., 2002) or multimerize when not bound to HLA class II (Kirschner et al., 2009). We investigated this self-association of gp42 using several different approaches. We generated soluble mutants of gp42 containing mutations within the self-association site and found that these mutants have a defect in fusion. The gp42 mutants bound to gH/gL and HLA class II, but were unable to bind wild-type gp42 or a cleavage mutant of gp42. Using purified gp42, gH/gL, and HLA, we found these proteins associate 1:1:1 by gel filtration suggesting that gp42 dimerization or multimerization does not occur or is a transient event undetectable by our methods.

  11. A quantitative ELISA procedure for the measurement of membrane-bound platelet-associated IgG (PAIgG).

    Science.gov (United States)

    Lynch, D M; Lynch, J M; Howe, S E

    1985-03-01

    A quantitative ELISA assay for the measurement of in vivo bound platelet-associated IgG (PAIgG) using intact patient platelets is presented. The assay requires quantitation and standardization of the number of platelets bound to microtiter plate wells and an absorbance curve using quantitated IgG standards. Platelet-bound IgG was measured using an F(ab')2 peroxidase labeled anti-human IgG and o-phenylenediamine dihydrochloride (OPD) as the substrate. Using this assay, PAIgG for normal individuals was 2.8 +/- 1.6 fg/platelet (mean +/- 1 SD; n = 30). Increased levels were found in 28 of 30 patients with clinical autoimmune thrombocytopenia (ATP) with a range of 7.0-80 fg/platelet. Normal PAIgG levels were found in 26 of 30 patients with nonimmune thrombocytopenia. In the sample population studied, the PAIgG assay showed a sensitivity of 93%, specificity of 90%, a positive predictive value of 0.90, and a negative predictive value of 0.93. The procedure is highly reproducible (CV = 6.8%) and useful in evaluating patients with suspected immune mediated thrombocytopenia.

  12. Analysis of STAT1 activation by six FGFR3 mutants associated with skeletal dysplasia undermines dominant role of STAT1 in FGFR3 signaling in cartilage.

    Directory of Open Access Journals (Sweden)

    Pavel Krejci

    Full Text Available Activating mutations in FGFR3 tyrosine kinase cause several forms of human skeletal dysplasia. Although the mechanisms of FGFR3 action in cartilage are not completely understood, it is believed that the STAT1 transcription factor plays a central role in pathogenic FGFR3 signaling. Here, we analyzed STAT1 activation by the N540K, G380R, R248C, Y373C, K650M and K650E-FGFR3 mutants associated with skeletal dysplasias. In a cell-free kinase assay, only K650M and K650E-FGFR3 caused activatory STAT1(Y701 phosphorylation. Similarly, in RCS chondrocytes, HeLa, and 293T cellular environments, only K650M and K650E-FGFR3 caused strong STAT1 activation. Other FGFR3 mutants caused weak (HeLa or no activation (293T and RCS. This contrasted with ERK MAP kinase activation, which was strongly induced by all six mutants and correlated with the inhibition of proliferation in RCS chondrocytes. Thus the ability to activate STAT1 appears restricted to the K650M and K650E-FGFR3 mutants, which however account for only a small minority of the FGFR3-related skeletal dysplasia cases. Other pathways such as ERK should therefore be considered as central to pathological FGFR3 signaling in cartilage.

  13. High frequency of a single nucleotide substitution (c.-6-180T>G) of the canine MDR1/ABCB1 gene associated with phenobarbital-resistant idiopathic epilepsy in Border Collie dogs.

    Science.gov (United States)

    Mizukami, Keijiro; Yabuki, Akira; Chang, Hye-Sook; Uddin, Mohammad Mejbah; Rahman, Mohammad Mahbubur; Kushida, Kazuya; Kohyama, Moeko; Yamato, Osamu

    2013-01-01

    A single nucleotide substitution (c.-6-180T>G) associated with resistance to phenobarbital therapy has been found in the canine MDR1/ABCB1 gene in Border Collies with idiopathic epilepsy. In the present study, a PCR-restriction fragment length polymorphism assay was developed for genotyping this mutation, and a genotyping survey was carried out in a population of 472 Border Collies in Japan to determine the current allele frequency. The survey demonstrated the frequencies of the T/T wild type, T/G heterozygote, and G/G mutant homozygote to be 60.0%, 30.3%, and 9.8%, respectively, indicating that the frequency of the mutant G allele is extremely high (24.9%) in Border Collies. The results suggest that this high mutation frequency of the mutation is likely to cause a high prevalence of phenobarbital-resistant epilepsy in Border Collies.

  14. miR-140-5p regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and differentiation by targeting Dnmt1 and promoting SOD2 expression

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwei; Xu, Jing, E-mail: xujingdoc@163.com

    2016-04-22

    miR-140-5p is down-regulated in patients with pulmonary arterial hypertension (PAH) and experimental models of PAH, and inhibits hypoxia-mediated pulmonary artery smooth muscle cell (PASMC) proliferation in vitro. Delivery of synthetic miR-140-5p prevents and treats established, experimental PAH. DNA methyltransferase 1 (Dnmt1) is up-regulated in PAH associated human PASMCs (HPASMCs), which promotes the development of PAH by hypermethylation of CpG islands within the promoter for superoxide dismutase 2 (SOD2) and down-regulating SOD2 expression. We searched for miR-140-5p targets using TargetScan, PicTar and MiRanda tools, and found that Dnmt1 is a potential target of miR-140-5p. Based on these findings, we speculated that miR-140-5p might target Dnmt1 and regulate SOD2 expression to regulate hypoxia-mediated HPASMC proliferation, apoptosis and differentiation. We detected the expression of miR-140-5p, Dnmt1 and SOD2 by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot assays, respectively, and found down-regulation of miR-140-5p and SOD2 and up-regulation of Dnmt1 exist in PAH tissues and hypoxia-mediated HPASMCs. Cell proliferation, apoptosis and differentiation detection showed that miR-140-5p inhibits proliferation and promotes apoptosis and differentiation of HPASMCs in hypoxia, while the effect of Dnmt1 on hypoxia-mediated HPASMCs is reversed. Luciferase assay confirmed that miR-140-5p targets Dnmt1 directly. An inverse correlation is also found between miR-140-5p and Dnmt1 in HPASMCs. In addition, we further investigated whether miR-140-5p and Dnmt1 regulate HPASMC proliferation, apoptosis and differentiation by regulating SOD2 expression, and the results confirmed our speculation. Taken together, these results indicated that miR-140-5p at least partly targets Dnmt1 and regulates SOD2 expression to inhibit proliferation and promote apoptosis and differentiation of HPASMCs in hypoxia. - Highlights: • miR-140-5p and SOD2 are down

  15. Neural induction with neurogenin 1 enhances the therapeutic potential of mesenchymal stem cells in an amyotrophic lateral sclerosis mouse model.

    Science.gov (United States)

    Chan-Il, Choi; Young-Don, Lee; Heejaung, Kim; Kim, Seung Hyun; Suh-Kim, Haeyoung; Kim, Sung-Soo

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by progressive dysfunction and degeneration of motor neurons in the central nervous system (CNS). In the absence of effective drug treatments for ALS, stem cell treatment has emerged as a candidate therapy for this disease. To date, however, there is no consensus protocol that stipulates stem cell types, transplantation timing, or frequency. Using an ALS mouse model carrying a high copy number of a mutant human superoxide dismutase-1 (SOD1)(G93A) transgene, we investigated the effect of neural induction on the innate therapeutic potential of mesenchymal stem cells (MSCs) in relation to preclinical transplantation parameters. In our study, the expression of monocyte chemoattractant protein-1 (MCP-1) was elevated in the ALS mouse spinal cord. Neural induction of MSCs with neurogenin 1 (Ngn1) upregulated the expression level of the MCP-1 receptor, CCR2, and enhanced the migration activity toward MCP-1 in vitro. Ngn1-expressing MSCs (MSCs-Ngn1) showed a corresponding increase in tropism to the CNS after systemic transplantation in ALS mice. Notably, MSCs-Ngn1 delayed disease onset if transplanted during preonset ages,whereas unprocessed MSCs failed to do so. If transplanted near the onset ages, a single treatment with MSCs-Ngn1 was sufficient to enhance motor functions during the symptomatic period (15–17 weeks), whereas unprocessed MSCs required repeated transplantation to achieve similar levels of motor function improvement. Our data indicate that systemically transplanted MSCs-Ngn1 can migrate to the CNS and exert beneficial effects on host neural cells for an extended period of time through paracrine functions, suggesting a potential benefit of neural induction of transplanted MSCs in long-term treatment of ALS.

  16. Hepatitis B surface gene 145 mutant as a minor population in hepatitis B virus carriers

    Directory of Open Access Journals (Sweden)

    Komatsu Haruki

    2012-01-01

    Full Text Available Abstract Background Hepatitis B virus (HBV can have mutations that include the a determinant, which causes breakthrough infection. In particular, a single mutation at amino acid 145 of the surface protein (G145 is frequently reported in the failure of prophylactic treatment. The aim of this study was to evaluate the frequency of the a determinant mutants, especially the G145 variant, in Japan, where universal vaccination has not been adopted. Methods The present study was a retrospective study. The study cohorts were defined as follows: group 1, children with failure to prevent mother-to-child transmission despite immunoprophylaxis (n = 18, male/female = 8/10, age 1-14 years; median 6 years; group 2, HBV carriers who had not received vaccination or hepatitis B immunoglobulin (n = 107, male/female = 107, age 1-52 years; median 16 years. To detect the G145R and G145A mutants in patients, we designed 3 probes for real-time PCR. We also performed direct sequencing and cloning of PCR products. Results By mutant-specific real-time PCR, one subject (5.6% was positive for the G145R mutant in group 1, while the G145 mutant was undetectable in group 2. The a determinant mutants were detected in one (5.6% of the group 1 subjects and 10 (9.3% of the group 2 subjects using direct sequencing, but direct sequencing did not reveal the G145 mutant as a predominant strain in the two groups. However, the subject who was positive according to the mutant-specific real-time PCR in group 1 had overlapped peaks at nt 587 in the electropherogram. In group 2, 11 patients had overlapped peaks at nt 587 in the electropherogram. Cloning of PCR products allowed detection of the G145R mutant as a minor strain in 7 (group 1: 1 subject, group 2: 6 subjects of 12 subjects who had overlapped peaks at nt 587 in the electropherogram. Conclusions The frequency of the a determinant mutants was not high in Japan. However, the G145R mutant was often present as a minor population in

  17. Evaluation of CLSI M44-A2 Disk Diffusion and Associated Breakpoint Testing of Caspofungin and Micafungin Using a Well-Characterized Panel of Wild-Type and fks Hot Spot Mutant Candida Isolates▿

    Science.gov (United States)

    Arendrup, Maiken Cavling; Park, Steven; Brown, Steven; Pfaller, Michael; Perlin, David S.

    2011-01-01

    Disk diffusion testing has recently been standardized by the CLSI, and susceptibility breakpoints have been established for several antifungal compounds. For caspofungin, 5-μg disks are approved, and for micafungin, 10-μg disks are under evaluation. We evaluated the performances of caspofungin and micafungin disk testing using a panel of Candida isolates with and without known FKS echinocandin resistance mechanisms. Disk diffusion and microdilution assays were performed strictly according to CLSI documents M44-A2 and M27-A3. Eighty-nine clinical Candida isolates were included: Candida albicans (20 isolates/10 mutants), C. glabrata (19 isolates/10 mutants), C. dubliniensis (2 isolates/1 mutant), C. krusei (16 isolates/3 mutants), C. parapsilosis (14 isolates/0 mutants), and C. tropicalis (18 isolates/4 mutants). Quality control strains were C. parapsilosis ATCC 22019 and C. krusei ATCC 6258. The correlations between zone diameters and MIC results were good for both compounds, with identical susceptibility classifications for 93.3% of the isolates by applying the current CLSI breakpoints. However, the numbers of fks hot spot mutant isolates misclassified as being susceptible (S) (very major errors [VMEs]) were high (61% for caspofungin [S, ≥11 mm] and 93% for micafungin [S, ≥14 mm]). Changing the disk diffusion breakpoint to S at ≥22 mm significantly improved the discrimination. For caspofungin, 1 VME was detected (a C. tropicalis isolate with an F76S substitution) (3.5%), and for micafungin, 10 VMEs were detected, the majority of which were for C. glabrata (8/10). The broadest separation between zone diameter ranges for wild-type (WT) and mutant isolates was seen for caspofungin (6 to 12 mm versus −4 to 7 mm). In conclusion, caspofungin disk diffusion testing with a modified breakpoint led to excellent separation between WT and mutant isolates for all Candida species. PMID:21357293

  18. Structural Stability of Human Fibroblast Growth Factor-1 Is Essential for Protective Effects Against Radiation-Induced Intestinal Damage

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Fumiaki, E-mail: f_naka@nirs.go.jp [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Umeda, Sachiko [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan); Yasuda, Takeshi [Department of Radiation Emergency Medicine, Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Chiba (Japan); Asada, Masahiro; Motomura, Kaori; Suzuki, Masashi [Signaling Molecules Research Laboratory, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan); Zakrzewska, Malgorzata [Faculty of Biotechnology, University of Wroclaw (Poland); Imamura, Toru [Signaling Molecules Research Laboratory, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki (Japan); Imai, Takashi [Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba (Japan)

    2013-02-01

    Purpose: Human fibroblast growth factor-1 (FGF1) has radioprotective effects on the intestine, although its structural instability limits its potential for practical use. Several stable FGF1 mutants were created increasing stability in the order, wild-type FGF1, single mutants (Q40P, S47I, and H93G), Q40P/S47I, and Q40P/S47I/H93G. This study evaluated the contribution of the structural stability of FGF1 to its radioprotective effect. Methods and Materials: Each FGF1 mutant was administered intraperitoneally to BALB/c mice in the absence of heparin 24 h before or after total body irradiation (TBI) with {gamma}-rays at 8-12 Gy. Several radioprotective effects were examined in the jejunum. Results: Q40P/S47I/H93G could activate all subtypes of FGF receptors in vitro much more strongly than the wild-type without endogenous or exogenous heparin. Preirradiation treatment with Q40P/S47I/H93G significantly increased crypt survival more than wild-type FGF1 after TBI at 10 or 12 Gy, and postirradiation treatment with Q40P/S47I/H93G was effective in promoting crypt survival after TBI at 10, 11, or 12 Gy. In addition, crypt cell proliferation, crypt depth, and epithelial differentiation were significantly promoted by postirradiation treatment with Q40P/S47I/H93G. The level of stability of FGF1 mutants correlated with their mitogenic activities in vitro in the absence of heparin; however, preirradiation treatment with the mutants increased the crypt number to almost the same level as Q40P/S47I/H93G. When given 24 h after TBI at 10 Gy, all FGF1 mutants increased crypt survival more than wild-type FGF1, and Q40P/S47I/H93G had the strongest mitogenic effects in intestinal epithelial cells after radiation damage. Moreover, Q40P/S47I/H93G prolonged mouse survival after TBI because of the repair of intestinal damage. Conclusion: These findings suggest that the structural stability of FGF1 can contribute to the enhancement of protective effects against radiation-induced intestinal

  19. Riluzole increases the rate of glucose transport in L6 myotubes and NSC-34 motor neuron-like cells via AMPK pathway activation.

    Science.gov (United States)

    Daniel, Bareket; Green, Omer; Viskind, Olga; Gruzman, Arie

    2013-09-01

    Riluzole is the only approved ALS drug. Riluzole influences several cellular pathways, but its exact mechanism of action remains unclear. Our goal was to study the drug's influence on the glucose transport rate in two ALS relevant cell types, neurons and myotubes. Stably transfected wild-type or mutant G93A human SOD1 NSC-34 motor neuron-like cells and rat L6 myotubes were exposed to riluzole. The rate of glucose uptake, translocation of glucose transporters to the cell's plasma membrane and the main glucose transport regulatory proteins' phosphorylation levels were measured. We found that riluzole increases the glucose transport rate and up-regulates the translocation of glucose transporters to plasma membrane in both types of cells. Riluzole leads to AMPK phosphorylation and to the phosphorylation of its downstream target, AS-160. In conclusion, increasing the glucose transport rate in ALS affected cells might be one of the mechanisms of riluzole's therapeutic effect. These findings can be used to rationally design and synthesize novel anti-ALS drugs that modulate glucose transport in neurons and skeletal muscles.

  20. Functional defect of truncated hepatocyte nuclear factor-1{alpha} (G554fsX556) associated with maturity-onset diabetes of the young

    Energy Technology Data Exchange (ETDEWEB)

    Kooptiwut, Suwattanee, E-mail: S_kooptiwut@hotmail.com [Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Sujjitjoon, Jatuporn [Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Plengvidhya, Nattachet [Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Boonyasrisawat, Watip; Chongjaroen, Nalinee; Jungtrakoon, Prapapron [Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Semprasert, Namoiy [Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Furuta, Hiroto; Nanjo, Kishio [The First Department, Wakayama Medical University (Japan); Banchuin, Napatawn [Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Yenchitsomanus, Pa-thai [Division of Medical Molecular Biology, Medicine Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700 (Thailand); Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Bangkok (Thailand)

    2009-05-22

    A novel frameshift mutation attributable to 14-nucleotide insertion in hepatocyte nuclear factor-1{alpha} (HNF-1{alpha}) encoding a truncated HNF-1{alpha} (G554fsX556) with 76-amino acid deletion at its carboxyl terminus was identified in a Thai family with maturity-onset diabetes of the young (MODY). The wild-type and mutant HNF-1{alpha} proteins were expressed by in vitro transcription and translation (TNT) assay and by transfection in HeLa cells. The wild-type and mutant HNF-1{alpha} could similarly bind to human glucose-transporter 2 (GLUT2) promoter examined by electrophoretic mobility shift assay (EMSA). However, the transactivation activities of mutant HNF-1{alpha} on human GLUT2 and rat L-type pyruvate kinase (L-PK) promoters in HeLa cells determined by luciferase reporter assay were reduced to approximately 55-60% of the wild-type protein. These results suggested that the functional defect of novel truncated HNF-1{alpha} (G554fsX556) on the transactivation of its target-gene promoters would account for the {beta}-cell dysfunction associated with the pathogenesis of MODY.

  1. Functional defect of truncated hepatocyte nuclear factor-1α (G554fsX556) associated with maturity-onset diabetes of the young

    International Nuclear Information System (INIS)

    Kooptiwut, Suwattanee; Sujjitjoon, Jatuporn; Plengvidhya, Nattachet; Boonyasrisawat, Watip; Chongjaroen, Nalinee; Jungtrakoon, Prapapron; Semprasert, Namoiy; Furuta, Hiroto; Nanjo, Kishio; Banchuin, Napatawn; Yenchitsomanus, Pa-thai

    2009-01-01

    A novel frameshift mutation attributable to 14-nucleotide insertion in hepatocyte nuclear factor-1α (HNF-1α) encoding a truncated HNF-1α (G554fsX556) with 76-amino acid deletion at its carboxyl terminus was identified in a Thai family with maturity-onset diabetes of the young (MODY). The wild-type and mutant HNF-1α proteins were expressed by in vitro transcription and translation (TNT) assay and by transfection in HeLa cells. The wild-type and mutant HNF-1α could similarly bind to human glucose-transporter 2 (GLUT2) promoter examined by electrophoretic mobility shift assay (EMSA). However, the transactivation activities of mutant HNF-1α on human GLUT2 and rat L-type pyruvate kinase (L-PK) promoters in HeLa cells determined by luciferase reporter assay were reduced to approximately 55-60% of the wild-type protein. These results suggested that the functional defect of novel truncated HNF-1α (G554fsX556) on the transactivation of its target-gene promoters would account for the β-cell dysfunction associated with the pathogenesis of MODY.

  2. State of the art and the dark side of amyotrophic lateral sclerosis

    Institute of Scientific and Technical Information of China (English)

    Antonio; Musarò

    2010-01-01

    Amyotrophic lateral sclerosis(ALS) is a disorder that involves the degeneration of motor neurons,muscle atrophy,and paralysis.In a few familiar forms of ALS,mutations in the superoxide dismutase-1(SOD1) gene have been held responsible for the degeneration of motor neurons.Nevertheless,after the discovery of the SOD1 mutations no consensus has emerged as to which cells,tissues and pathways are primarily implicated in the pathogenic events that lead to ALS.Ubiquitous overexpression of mutant SOD1 in transgenic animals recapitulates the pathological features of ALS.However,the toxicity of mutant SOD1 is not necessarily limited to the central nervous system.Views about ALS pathogenesis are now enriched by the recent discovery of mutations in a pair of DNA/RNA-binding proteins called TDP-43 and FUS/TLS as causes of familial and sporadic forms of ALS.Although the steps that lead to the pathological state are well defined,several fundamental issues are still controversial:are the motor neurons the first direct targets of ALS;and what is the contribution of non-neuronal cells,if any,to the pathogenesis of ALS?The state of the art of ALS pathogenesis and the open questions are discussed in this review.

  3. Lipid-mediated interactions tune the association of glycophorin A helix and its disruptive mutants in membranes

    NARCIS (Netherlands)

    Sengupta, Durba; Marrink, Siewert J.

    2010-01-01

    The specific and non-specific driving forces of helix association within membranes are still poorly understood. Here, we use coarse-grain molecular dynamics simulations to study the association behavior of glycophorin A and two disruptive mutants, T87F and a triple mutant of the GxxxG motif

  4. High Frequency of a Single Nucleotide Substitution (c.-6-180T>G of the Canine MDR1/ABCB1 Gene Associated with Phenobarbital-Resistant Idiopathic Epilepsy in Border Collie Dogs

    Directory of Open Access Journals (Sweden)

    Keijiro Mizukami

    2013-01-01

    Full Text Available A single nucleotide substitution (c.-6-180T>G associated with resistance to phenobarbital therapy has been found in the canine MDR1/ABCB1 gene in Border Collies with idiopathic epilepsy. In the present study, a PCR-restriction fragment length polymorphism assay was developed for genotyping this mutation, and a genotyping survey was carried out in a population of 472 Border Collies in Japan to determine the current allele frequency. The survey demonstrated the frequencies of the T/T wild type, T/G heterozygote, and G/G mutant homozygote to be 60.0%, 30.3%, and 9.8%, respectively, indicating that the frequency of the mutant G allele is extremely high (24.9% in Border Collies. The results suggest that this high mutation frequency of the mutation is likely to cause a high prevalence of phenobarbital-resistant epilepsy in Border Collies.

  5. A Model of Oxidative Stress Management: Moderation of Carbohydrate Metabolizing Enzymes in SOD1-Null Drosophila melanogaster

    Science.gov (United States)

    Bernard, Kristine E.; Parkes, Tony L.; Merritt, Thomas J. S.

    2011-01-01

    The response to oxidative stress involves numerous genes and mutations in these genes often manifest in pleiotropic ways that presumably reflect perturbations in ROS-mediated physiology. The Drosophila melanogaster SOD1-null allele (cSODn108) is proposed to result in oxidative stress by preventing superoxide breakdown. In SOD1-null flies, oxidative stress management is thought to be reliant on the glutathione-dependent antioxidants that utilize NADPH to cycle between reduced and oxidized form. Previous studies suggest that SOD1-null Drosophila rely on lipid catabolism for energy rather than carbohydrate metabolism. We tested these connections by comparing the activity of carbohydrate metabolizing enzymes, lipid and triglyceride concentration, and steady state NADPH:NADP+ in SOD1-null and control transgenic rescue flies. We find a negative shift in the activity of carbohydrate metabolizing enzymes in SOD1-nulls and the NADP+-reducing enzymes were found to have significantly lower activity than the other enzymes assayed. Little evidence for the catabolism of lipids as preferential energy source was found, as the concentration of lipids and triglycerides were not significantly lower in SOD1-nulls compared with controls. Using a starvation assay to impact lipids and triglycerides, we found that lipids were indeed depleted in both genotypes when under starvation stress, suggesting that oxidative damage was not preventing the catabolism of lipids in SOD1-null flies. Remarkably, SOD1-nulls were also found to be relatively resistant to starvation. Age profiles of enzyme activity, triglyceride and lipid concentration indicates that the trends observed are consistent over the average lifespan of the SOD1-nulls. Based on our results, we propose a model of physiological response in which organisms under oxidative stress limit the production of ROS through the down-regulation of carbohydrate metabolism in order to moderate the products exiting the electron transport chain. PMID

  6. REGENERASI DAN PERBANYAKAN RUMPUT LAUT Kappaphycus alvarezii HASIL TRANSFORMASI GEN SUPEROKSIDA DISMUTASE (MaSOD

    Directory of Open Access Journals (Sweden)

    Emma Suryati

    2017-01-01

    Full Text Available Transformasi gen superoxide dismutase (MaSOD pada rumput laut Kappaphycus alvarezii menggunakan Agrobacterium tumefacient telah dilakukan secara in vitro. Transformasi gen MaSOD ke dalam genom rumput laut diharapkan dapat mengurangi cekaman oksidatif terutama yang disebabkan oleh perubahan suhu, salinitas, dan cemaran logam di perairan. Penelitian ini bertujuan untuk regenerasi rumput laut hasil introduksi gen MaSOD dan non-transgenik pada labu kultur. Regenerasi dan perbanyakan rumput laut hasil transformasi gen MaSOD dilakukan di laboratorium pada labu kultur yang diletakkan dalam “culture chamber” yang dilengkapi dengan aerasi menggunakan media kultur yang diperkaya dengan pupuk PES, Grund, Conwy, dan SSW sebagai kontrol, salinitas 20, 25, 30, 35, dan 40 g/L, pH 4, 5, 6, 7, dan 8. Intensitas cahaya antara 500-2.000 lux dengan fotoperiode terang dan gelap 8:16; 12:12; dan 16:8. Untuk merangsang pertumbuhan eksplan dilakukan pemeliharaan dengan penambahan hormon tumbuh IAA dan BAP dengan perbandingan 1:1, 1:2, dan 2:1. Penelitian dilakukan secara bertahap. Evaluasi transgenik dilakukan menggunakan teknik PCR. Hasil penelitian memperlihatkan bahwa sintasan yang paling tinggi diperoleh menggunakan media PES (94%, salinitas 30 g/L (90%, pH 7 (96%, intensitas cahaya pada 1.500 lux (80%, fotoperiode 12:12 (84%, komposisi ZPT dengan campuran IAA dan BAP dengan perbandingan 2:1. Hasil analisis PCR memperlihatkan K. alvarezii transgenik putatif mengandung transgen MaSOD sebanyak 78% dari hasil transformasi. Superoxide dismutase transformation (MaSOD gene of seaweed Kappaphycus alvarezii mediated by Agrobacterium tumefacient has been successfully done in vitro. MaSOD genes introduced into the seaweed genome is expected to reduce oxidative stress caused by environmental conditions such as changes in temperature, salinity and metal contamination of the water. This study aimed to regenerate both the MaSOD transformed seaweed and non-transgenic in a

  7. 17-AAG increases autophagic removal of mutant androgen receptor in spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Rusmini, Paola; Simonini, Francesca; Crippa, Valeria; Bolzoni, Elena; Onesto, Elisa; Cagnin, Monica; Sau, Daniela; Ferri, Nicola; Poletti, Angelo

    2011-01-01

    Several types of motorneuron diseases are linked to neurotoxic mutant proteins. These acquire aberrant conformations (misfolding) that trigger deleterious downstream events responsible for neuronal dysfunction and degeneration. The pharmacological removal of misfolded proteins might thus be useful in these diseases. We utilized a peculiar motorneuronal disease model, spinobulbar muscular atrophy (SBMA), in which the neurotoxicity of the protein involved, the mutant androgen receptor (ARpolyQ), can be modulated by its ligand testosterone (T). 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) has already been proven to exert beneficial action in SBMA. Here we demonstrated that 17-AAG exerts its pro-degradative activity on mutant ARpolyQ without impacting on proteasome functions. 17-AAG removes ARpolyQ misfolded species and aggregates by activating the autophagic system. We next analyzed the 17-AAG effects on two proteins (SOD1 and TDP-43) involved in related motorneuronal diseases, such as amyotrophic lateral sclerosis (ALS). In these models 17-AAG was unable to counteract protein aggregation. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Association of paraoxonase gene cluster polymorphisms with ALS in France, Quebec, and Sweden.

    Science.gov (United States)

    Valdmanis, P N; Kabashi, E; Dyck, A; Hince, P; Lee, J; Dion, P; D'Amour, M; Souchon, F; Bouchard, J-P; Salachas, F; Meininger, V; Andersen, P M; Camu, W; Dupré, N; Rouleau, G A

    2008-08-12

    The paraoxonase gene cluster on chromosome 7 comprising the PON1-3 genes is an attractive candidate for association in amyotrophic lateral sclerosis (ALS) given the role of paraoxonase genes during the response to oxidative stress and their contribution to the enzymatic break down of nerve toxins. Oxidative stress is considered one of the mechanisms involved in ALS pathogenesis. Evidence for this includes the fact that mutations of SOD1, which normally reduce the production of toxic superoxide anion, account for 12% to 23% of familial cases in ALS. In addition, PON variants were shown to be associated with susceptibility to ALS in several North American and European populations. We extended this analysis to examine 20 single nucleotide polymorphisms (SNPs) across the PON gene cluster in a set of patients from France (480 cases, 475 controls), Quebec (159 cases, 95 controls), and Sweden (558 cases, 506 controls). Although individual SNPs were not considered associated on their own, a haplotype of SNPs at the C-terminal portion of PON2 that includes the PON2 C311S amino acid change was significant in the French (p value 0.0075) and Quebec (p value 0.026) populations as well as all three populations combined (p value 1.69 x 10(-6)). Stratification of the samples showed that this variation was pertinent to ALS susceptibility as a whole, and not to a particular subset of patients. These findings contribute to the increasing weight of evidence that genetic variants in the paraoxonase gene cluster are associated with amyotrophic lateral sclerosis.

  9. 4G/5G Polymorphism of the plasminogen activator inhibitor-1 gene is associated with multiple organ dysfunction in critically ill patients.

    Science.gov (United States)

    Huq, Muhammad Aminul; Takeyama, Naoshi; Harada, Makoto; Miki, Yasuo; Takeuchi, Akinori; Inoue, Sousuke; Nakagawa, Takashi; Kanou, Hideki; Hirakawa, Akihiko; Noguchi, Hiroshi

    2012-01-01

    Impaired fibrinolysis is associated with a higher incidence of both multiple organ dysfunction and mortality in the intensive care unit (ICU). Plasminogen activator inhibitor (PAI)-1 is the chief inhibitor of fibrinolysis. We investigated the influence of the 4G/5G polymorphism (rs1799768) of the PAI-1 gene on the plasma PAI-1 level and the outcome of critically ill patients. In 41 consecutive patients admitted to the ICU, PAI-1 gene polymorphism was assessed, plasma PAI-1 and arterial lactate concentrations were measured and clinical severity scores were recorded. Homozygotes for the 4G allele had higher plasma levels of PAI-1 antigen. The mean ± SD PAI-1 antigen level was 193.31 ± 167.93 ng/ml for the 4G/4G genotype, 100.67 ± 114.16 ng/ml for the 4G/5G genotype and 0.43 ± 0.53 ng/ml for the 5G/5G genotype. There was a significant correlation between plasma PAI-1 and arterial lactate concentrations, as well as between PAI-1 and severity scores. The mortality rate was 63, 33 and 0% for patients with the 4G/4G, 4G/5G and 5G/5G genotypes, respectively. These results demonstrate that the 4G/5G polymorphism of the PAI-1 gene affects the plasma PAI-1 concentration, which could impair fibrinolysis and cause organ failure, and thus the presence of the 4G allele increases the risk of death. Copyright © 2011 S. Karger AG, Basel.

  10. Cadmium Accumulation and Its Toxicity in Brittle Culm 1 (bc1, a Fragile Rice Mutant

    Directory of Open Access Journals (Sweden)

    Guo-sheng SHAO

    2007-09-01

    Full Text Available Cadmium (Cd accumulation and toxicity in rice plants were characterized and identified by using brittle culm 1 (bc1, a fragile rice mutant and its wild type (Shuangkezao, an indica rice as materials by hydroponics. The low Cd level didn't obviously affect the growth parameters in both rice genotypes, but under high Cd levels (1.0 and 5.0 μmol/L, the growth of both rice plants were substantially inhibited. Moreover, bc1 tended to suffer more seriously from Cd toxicity than Shuangkezao. Cd accumulation in both rice plants increased with the increase of Cd levels. There was a significant difference in Cd accumulation between the two rice genotypes with constantly higher Cd concentration in bc1, which also accumulated more Cd at 0, 0.1, and 1.0 μmol/L Cd levels. The same case was found in the two rice plants grown on Cd-contaminated soil. This suggested that cell wall might play an important role in Cd accumulation in rice plants by the physiological mechanisms. The malondialdehyde (MDA content, superoxide dismutase (SOD and peroxidase (POD activities in rice plants were affected differently under Cd treatments, and which implied that POD might play the main role in detoxifying active oxygen free radical. A significant difference in antioxidative system between the two rice genotypes was found with constantly higher MDA content, SOD and POD activities in bc1. In summary, bc1 accumulated more Cd and appeared to be more sensitive to Cd stress compared with its wild type.

  11. Inclusions of amyotrophic lateral sclerosis-linked superoxide dismutase in ventral horns, liver, and kidney

    DEFF Research Database (Denmark)

    Jonsson, P.A.; Bergemalm, D.; Andersen, P.M.

    2008-01-01

    Mutant superoxide dismutases type 1 (SOD1s) cause amyotrophic lateral sclerosis by an unidentified toxic property. In a patient carrying the G127X truncation mutation, minute amounts of SOD1 were found in ventral horns using a mutant-specific antibody. Still, both absolute levels and ratios versus...

  12. Manganese superoxide dismutase (MnSOD catalyzes NO-dependent tyrosine residue nitration

    Directory of Open Access Journals (Sweden)

    SRDJAN STOJANOVIC

    2005-04-01

    Full Text Available The peroxynitrite-induced nitration of manganese superoxide dismutase (MnSOD tyrosine residue, which causes enzyme inactivation, is well established. This led to suggestions that MnSOD nitration and inactivation in vivo, detected in various diseases associated with oxidative stress and overproduction of nitric monoxide (NO, conditions which favor peroxynitrite formation, is also caused by peroxynitrite. However, our previous in vitro study demonstrated that exposure of MnSOD to NO led to NO conversion into nitrosonium (NO+ and nitroxyl (NO– species, which caused enzyme modifications and inactivation. Here it is reported that MnSOD is tyrosine nitrated upon exposure to NO, as well as that MnSOD nitration contributes to inactivation of the enzyme. Collectively, these observations provide a compelling argument supporting the generation of nitrating species in MnSOD exposed to NO and shed a new light on MnSOD tyrosine nitration and inactivation in vivo. This may represent a novel mechanism by which MnSOD protects cell from deleterious effects associated with overproduction of NO. However, extensive MnSOD modification and inactivation associated with prolonged exposure to NO will amplify the toxic effects caused by increased cell superoxide and NO levels.

  13. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway.

    Science.gov (United States)

    Hsieh, Wei-Yu; Liao, Jo-Chien; Wang, Hsin-Tzu; Hung, Tzu-Huan; Tseng, Ching-Chih; Chung, Tsui-Yun; Hsieh, Ming-Hsiun

    2017-07-01

    Thiamin diphosphate (TPP, vitamin B 1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  14. Interaction of a non-peptide agonist with angiotensin II AT1 receptor mutants

    DEFF Research Database (Denmark)

    Costa-Neto, Claudio M; Miyakawa, Ayumi A; Pesquero, João B

    2002-01-01

    and inositol phosphate turnover assays in COS-7 cells transiently transfected with the wild-type and mutant forms of the receptor. Mutant receptors bore modifications in the extracellular region: T88H, Y92H, G1961, G196W, and D278E. Compound L-162,313 displaced [125I]-Sar1,Leu8-AngII from the mutants G196I...... and G196W with IC50 values similar to that of the wild-type. The affinity was, however, slightly affected by the D278E mutation and more significantly by the T88H and Y92H mutations. In inositol phosphate turnover assays, the ability of L-162,313 to trigger the activation cascade was compared...... with that of angiotensin II. These assays showed that the G196W mutant reached a relative maximum activation exceeding that of the wild-type receptor; the efficacy was slightly reduced in the G1961 mutant and further reduced in the T88H, Y92H, and D278E mutants. Our data suggest that residues of the extracellular domain...

  15. Proteasomes remain intact, but show early focal alteration in their composition in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Kabashi, Edor; Agar, Jeffrey N; Hong, Yu; Taylor, David M; Minotti, Sandra; Figlewicz, Denise A; Durham, Heather D

    2008-06-01

    In amyotrophic lateral sclerosis caused by mutations in Cu/Zn-superoxide dismutase (SOD1), altered solubility and aggregation of the mutant protein implicates failure of pathways for detecting and catabolizing misfolded proteins. Our previous studies demonstrated early reduction of proteasome-mediated proteolytic activity in lumbar spinal cord of SOD1(G93A) transgenic mice, tissue particularly vulnerable to disease. The purpose of this study was to identify any underlying abnormalities in proteasomal structure. In lumbar spinal cord of pre-symptomatic mice [postnatal day 45 (P45) and P75], normal levels of structural 20S alpha subunits were incorporated into 20S/26S proteasomes; however, proteasomal complexes separated by native gel electrophoresis showed decreased immunoreactivity with antibodies to beta3, a structural subunit of the 20S proteasome core, and beta5, the subunit with chymotrypsin-like activity. This occurred prior to increase in beta5i immunoproteasomal subunit. mRNA levels were maintained and no association of mutant SOD1 with proteasomes was identified, implicating post-transcriptional mechanisms. mRNAs also were maintained in laser captured motor neurons at a later stage of disease (P100) in which multiple 20S proteins are reduced relative to the surrounding neuropil. Increase in detergent-insoluble, ubiquitinated proteins at P75 provided further evidence of stress on mechanisms of protein quality control in multiple cell types prior to significant motor neuron death.

  16. Altered nucleocytoplasmic proteome and transcriptome distributions in an in vitro model of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Jee-Eun Kim

    Full Text Available Aberrant nucleocytoplasmic localization of proteins has been implicated in many neurodegenerative diseases. Evidence suggests that cytoplasmic mislocalization of nuclear proteins such as transactive response DNA-binding protein 43 (TDP-43 and fused in sarcoma (FUS may be associated with neurotoxicity in amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration. This study investigated the changes in nucleocytoplasmic distributions of the proteome and transcriptome in an in vitro model of ALS. After subcellular fractionation of motor neuron-like cell lines expressing wild-type or G93A mutant hSOD1, quantitative mass spectrometry and next-generation RNA sequencing (RNA-seq were performed for the nuclear and cytoplasmic compartments. A subset of the results was validated via immunoblotting. A total of 1,925 proteins were identified in either the nuclear or cytoplasmic fractions, and 32% of these proteins were quantified in both fractions. The nucleocytoplasmic distribution of 37 proteins was significantly changed in mutant cells with nuclear and cytoplasmic shifts in 13 and 24 proteins, respectively (p<0.05. The proteins shifted towards the nucleus were enriched regarding pathways of RNA transport and processing (Dhx9, Fmr1, Srsf3, Srsf6, Tra2b, whereas protein folding (Cct5, Cct7, Cct8, aminoacyl-tRNA biosynthesis (Farsb, Nars, Txnrd1, synaptic vesicle cycle (Cltc, Nsf, Wnt signalling (Cltc, Plcb3, Plec, Psmd3, Ruvbl1 and Hippo signalling (Camk2d, Plcb3, Ruvbl1 pathways were over-represented in the proteins shifted to the cytoplasm. A weak correlation between the changes in protein and mRNA levels was found only in the nucleus, where mRNA was relatively abundant in mutant cells. This study provides a comprehensive dataset of the nucleocytoplasmic distribution of the proteome and transcriptome in an in vitro model of ALS. An integrated analysis of the nucleocytoplasmic distribution of the proteome and transcriptome demonstrated

  17. Molecular dynamics characterization of five pathogenic factor X mutants associated with decreased catalytic activity

    KAUST Repository

    Abdel-Azeim, Safwat; Oliva, Romina M.; Chermak, Edrisse; De Cristofaro, Raimondo; Cavallo, Luigi

    2014-01-01

    Factor X (FX) is one of the major players in the blood coagulation cascade. Upon activation to FXa, it converts prothrombin to thrombin, which in turn converts fibrinogen into fibrin (blood clots). FXa deficiency causes hemostasis defects, such as intracranial bleeding, hemathrosis, and gastrointestinal blood loss. Herein, we have analyzed a pool of pathogenic mutations, located in the FXa catalytic domain and directly associated with defects in enzyme catalytic activity. Using chymotrypsinogen numbering, they correspond to D102N, T135M, V160A, G184S, and G197D. Molecular dynamics simulations were performed for 1.68 μs on the wild-type and mutated forms of FXa. Overall, our analysis shows that four of the five mutants considered, D102N, T135M, V160A, and G184S, have rigidities higher than those of the wild type, in terms of both overall protein motion and, specifically, subpocket S4 flexibility, while S1 is rather insensitive to the mutation. This acquired rigidity can clearly impact the substrate recognition of the mutants.

  18. Molecular dynamics characterization of five pathogenic factor X mutants associated with decreased catalytic activity

    KAUST Repository

    Abdel-Azeim, Safwat

    2014-11-11

    Factor X (FX) is one of the major players in the blood coagulation cascade. Upon activation to FXa, it converts prothrombin to thrombin, which in turn converts fibrinogen into fibrin (blood clots). FXa deficiency causes hemostasis defects, such as intracranial bleeding, hemathrosis, and gastrointestinal blood loss. Herein, we have analyzed a pool of pathogenic mutations, located in the FXa catalytic domain and directly associated with defects in enzyme catalytic activity. Using chymotrypsinogen numbering, they correspond to D102N, T135M, V160A, G184S, and G197D. Molecular dynamics simulations were performed for 1.68 μs on the wild-type and mutated forms of FXa. Overall, our analysis shows that four of the five mutants considered, D102N, T135M, V160A, and G184S, have rigidities higher than those of the wild type, in terms of both overall protein motion and, specifically, subpocket S4 flexibility, while S1 is rather insensitive to the mutation. This acquired rigidity can clearly impact the substrate recognition of the mutants.

  19. Increased BRAF Heterodimerization Is the Common Pathogenic Mechanism for Noonan Syndrome-Associated RAF1 Mutants

    Science.gov (United States)

    Wu, Xue; Yin, Jiani; Simpson, Jeremy; Kim, Kyoung-Han; Gu, Shengqing; Hong, Jenny H.; Bayliss, Peter; Backx, Peter H.

    2012-01-01

    Noonan syndrome (NS) is a relatively common autosomal dominant disorder characterized by congenital heart defects, short stature, and facial dysmorphia. NS is caused by germ line mutations in several components of the RAS–RAF–MEK–extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway, including both kinase-activating and kinase-impaired alleles of RAF1 (∼3 to 5%), which encodes a serine-threonine kinase for MEK1/2. To investigate how kinase-impaired RAF1 mutants cause NS, we generated knock-in mice expressing Raf1D486N. Raf1D486N/+ (here D486N/+) female mice exhibited a mild growth defect. Male and female D486N/D486N mice developed concentric cardiac hypertrophy and incompletely penetrant, but severe, growth defects. Remarkably, Mek/Erk activation was enhanced in Raf1D486N-expressing cells compared with controls. RAF1D486N, as well as other kinase-impaired RAF1 mutants, showed increased heterodimerization with BRAF, which was necessary and sufficient to promote increased MEK/ERK activation. Furthermore, kinase-activating RAF1 mutants also required heterodimerization to enhance MEK/ERK activation. Our results suggest that an increased heterodimerization ability is the common pathogenic mechanism for NS-associated RAF1 mutations. PMID:22826437

  20. Properties of slow- and fast-twitch muscle fibres in a mouse model of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Atkin, Julie D; Scott, Rachel L; West, Jan M; Lopes, Elizabeth; Quah, Alvin K J; Cheema, Surindar S

    2005-05-01

    This investigation was undertaken to determine if there are altered histological, pathological and contractile properties in presymptomatic or endstage diseased muscle fibres from representative slow-twitch and fast-twitch muscles of SOD1 G93A mice in comparison to wildtype mice. In presymptomatic SOD1 G93A mice, there was no detectable peripheral dysfunction, providing evidence that muscle pathology is secondary to motor neuronal dysfunction. At disease endstage however, single muscle fibre contractile analysis demonstrated that fast-twitch muscle fibres and neuromuscular junctions are preferentially affected by amyotrophic lateral sclerosis-induced denervation, being unable to produce the same levels of force when activated by calcium as muscle fibres from their age-matched controls. The levels of transgenic SOD1 expression, aggregation state and activity were also examined in these muscles but there no was no preference for muscle fibre type. Hence, there is no simple correlation between SOD1 protein expression/activity, and muscle fibre type vulnerability in SOD1 G93A mice.

  1. 28 CFR 93.1 - Purpose.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Purpose. 93.1 Section 93.1 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROVISIONS IMPLEMENTING THE VIOLENT CRIME CONTROL AND LAW ENFORCEMENT ACT OF 1994 Drug Courts § 93.1 Purpose. This part sets forth requirements and procedures to ensure...

  2. Pathogenic mutation in the ALS/FTD gene, CCNF, causes elevated Lys48-linked ubiquitylation and defective autophagy.

    Science.gov (United States)

    Lee, Albert; Rayner, Stephanie L; Gwee, Serene S L; De Luca, Alana; Shahheydari, Hamideh; Sundaramoorthy, Vinod; Ragagnin, Audrey; Morsch, Marco; Radford, Rowan; Galper, Jasmin; Freckleton, Sarah; Shi, Bingyang; Walker, Adam K; Don, Emily K; Cole, Nicholas J; Yang, Shu; Williams, Kelly L; Yerbury, Justin J; Blair, Ian P; Atkin, Julie D; Molloy, Mark P; Chung, Roger S

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders that have common molecular and pathogenic characteristics, such as aberrant accumulation and ubiquitylation of TDP-43; however, the mechanisms that drive this process remain poorly understood. We have recently identified CCNF mutations in familial and sporadic ALS and FTD patients. CCNF encodes cyclin F, a component of an E3 ubiquitin-protein ligase (SCF cyclin F ) complex that is responsible for ubiquitylating proteins for degradation by the ubiquitin-proteasome system. In this study, we examined the ALS/FTD-causing p.Ser621Gly (p.S621G) mutation in cyclin F and its effect upon downstream Lys48-specific ubiquitylation in transfected Neuro-2A and SH-SY5Y cells. Expression of mutant cyclin F S621G caused increased Lys48-specific ubiquitylation of proteins in neuronal cells compared to cyclin F WT . Proteomic analysis of immunoprecipitated Lys48-ubiquitylated proteins from mutant cyclin F S621G -expressing cells identified proteins that clustered within the autophagy pathway, including sequestosome-1 (p62/SQSTM1), heat shock proteins, and chaperonin complex components. Examination of autophagy markers p62, LC3, and lysosome-associated membrane protein 2 (Lamp2) in cells expressing mutant cyclin F S621G revealed defects in the autophagy pathway specifically resulting in impairment in autophagosomal-lysosome fusion. This finding highlights a potential mechanism by which cyclin F interacts with p62, the receptor responsible for transporting ubiquitylated substrates for autophagic degradation. These findings demonstrate that ALS/FTD-causing mutant cyclin F S621G disrupts Lys48-specific ubiquitylation, leading to accumulation of substrates and defects in the autophagic machinery. This study also demonstrates that a single missense mutation in cyclin F causes hyper-ubiquitylation of proteins that can indirectly impair the autophagy degradation pathway, which is

  3. The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants.

    Directory of Open Access Journals (Sweden)

    Sven Vilain

    2012-01-01

    Full Text Available Pink1 is a mitochondrial kinase involved in Parkinson's disease, and loss of Pink1 function affects mitochondrial morphology via a pathway involving Parkin and components of the mitochondrial remodeling machinery. Pink1 loss also affects the enzymatic activity of isolated Complex I of the electron transport chain (ETC; however, the primary defect in pink1 mutants is unclear. We tested the hypothesis that ETC deficiency is upstream of other pink1-associated phenotypes. We expressed Saccaromyces cerevisiae Ndi1p, an enzyme that bypasses ETC Complex I, or sea squirt Ciona intestinalis AOX, an enzyme that bypasses ETC Complex III and IV, in pink1 mutant Drosophila and find that expression of Ndi1p, but not of AOX, rescues pink1-associated defects. Likewise, loss of function of subunits that encode for Complex I-associated proteins displays many of the pink1-associated phenotypes, and these defects are rescued by Ndi1p expression. Conversely, expression of Ndi1p fails to rescue any of the parkin mutant phenotypes. Additionally, unlike pink1 mutants, fly parkin mutants do not show reduced enzymatic activity of Complex I, indicating that Ndi1p acts downstream or parallel to Pink1, but upstream or independent of Parkin. Furthermore, while increasing mitochondrial fission or decreasing mitochondrial fusion rescues mitochondrial morphological defects in pink1 mutants, these manipulations fail to significantly rescue the reduced enzymatic activity of Complex I, indicating that functional defects observed at the level of Complex I enzymatic activity in pink1 mutant mitochondria do not arise from morphological defects. Our data indicate a central role for Complex I dysfunction in pink1-associated defects, and our genetic analyses with heterologous ETC enzymes suggest that Ndi1p-dependent NADH dehydrogenase activity largely acts downstream of, or in parallel to, Pink1 but upstream of Parkin and mitochondrial remodeling.

  4. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death.

    Science.gov (United States)

    Nagahara, Yuki; Shimazawa, Masamitsu; Ohuchi, Kazuki; Ito, Junko; Takahashi, Hitoshi; Tsuruma, Kazuhiro; Kakita, Akiyoshi; Hara, Hideaki

    2017-08-01

    Glycoprotein nonmetastatic melanoma protein B (GPNMB) aggregates are observed in the spinal cord of amyotrophic lateral sclerosis (ALS) patients, but the detailed localization is still unclear. Mutations of transactive response DNA binding protein 43kDa (TDP-43) are associated with neurodegenerative diseases including ALS. In this study, we evaluated the localization of GPNMB aggregates in the spinal cord of ALS patients and the effect of GPNMB against mutant TDP-43 induced motor neuron cell death. GPNMB aggregates were not localized in the glial fibrillary acidic protein (GFAP)-positive astrocyte and ionized calcium binding adaptor molecule-1 (Iba1)-positive microglia. GPNMB aggregates were localized in the microtubule-associated protein 2 (MAP-2)-positive neuron and neurofilament H non-phosphorylated (SMI-32)-positive neuron, and these were co-localized with TDP-43 aggregates in the spinal cord of ALS patients. Mock or TDP-43 (WT, M337V, and A315T) plasmids were transfected into mouse motor neuron cells (NSC34). The expression level of GPNMB was increased by transfection of mutant TDP-43 plasmids. Recombinant GPNMB ameliorated motor neuron cell death induced by transfection of mutant TDP-43 plasmids and serum-free stress. Furthermore, the expression of phosphorylated ERK1/2 and phosphorylated Akt were decreased by this stress, and these expressions were increased by recombinant GPNMB. These results indicate that GPNMB has protective effects against mutant TDP-43 stress via activating the ERK1/2 and Akt pathways, and GPNMB may be a therapeutic target for TDP-43 proteinopathy in familial and sporadic ALS. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Advanced age-related denervation and fiber-type grouping in skeletal muscle of SOD1 knockout mice.

    Science.gov (United States)

    Kostrominova, Tatiana Y

    2010-11-30

    In this study skeletal muscles from 1.5- and 10-month-old Cu/Zn superoxide dismutase (SOD1) homozygous knockout (JLSod1(-/-)) mice obtained from The Jackson Laboratory (C57Bl6/129SvEv background) were compared with muscles from age- and sex-matched heterozygous (JLSod1(+/-)) littermates. The results of this study were compared with previously published data on two different strains of Sod1(-/-) mice: one from Dr. Epstein's laboratory (ELSod1(-/-); C57Bl6 background) and the other from Cephalon, Inc. (CSod1(-/-); 129/CD-1 background). Grouping of succinate dehydrogenase-positive fibers characterized muscles of Sod1(-/-) mice from all three strains. The 10-month-old Sod1(-/-)C and JL mice displayed pronounced denervation of the gastrocnemius muscle, whereas the ELSod1(-/-) mice displayed a small degree of denervation at this age, but developed accelerated age-related denervation later on. Denervation markers were up-regulated in skeletal muscle of 10-month-old JLSod1(-/-) mice. This study is the first to show that metallothionein mRNA and protein expression was up-regulated in the skeletal muscle of 10-month-old JLSod1(-/-) mice and was mostly localized to the small atrophic muscle fibers. In conclusion, all three strains of Sod1(-/-) mice develop accelerated age-related muscle denervation, but the genetic background has significant influence on the progress of denervation. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Copper phytoextraction in tandem with oilseed production using commercial cultivars and mutant lines of sunflower.

    Science.gov (United States)

    Kolbas, A; Mench, M; Herzig, R; Nehnevajova, E; Bes, C M

    2011-01-01

    Use of sunflower (Helianthus annuus L.) for Cu phytoextraction and oilseed production on Cu-contaminated topsoils was investigated in afield trial at a former wood preservation site. Six commercial cultivars and two mutant lines were cultivated in plots with and without the addition of compost (5% w/w) and dolomitic limestone (0.2% w/w). Total soil Cu ranged from 163 to 1170 mg kg(-1). In soil solutions, Cu concentration varied between 0.16-0.93 mg L(-1). The amendment increased soil pH, reduced Cu exposure and promoted sunflower growth. Stem length, shoot and capitulum biomasses, seed yield, and shoot and leaf Cu concentrations were measured. At low total soil Cu, shoot Cu mineralomass was higher in commercial cultivars, Le., Salut, Energic, and Countri, whereas competition and shading affected morphological traits of mutants. Based on shoot yield (7 Mg DW ha(-1)) and Cu concentration, the highest removal was 59 g Cu ha(-1). At high total soil Cu, shoot Cu mineralomass peaked for mutants (e.g., 52 g Cu ha(-1) for Mutant 1 line) and cultivars Energic and Countri. Energic seed yield (3.9 Mg air-DW ha(-1)) would be sufficient to produce oil Phenotype traits and shoot Cu removal depended on sunflower types and Cu exposure.

  7. Overexpression of Cu-Zn SOD in Brucella abortus suppresses bacterial intracellular replication via down-regulation of Sar1 activity

    Science.gov (United States)

    Liu, Xiaofeng; Zhou, Mi; Yang, Yanling; Wu, Jing; Peng, Qisheng

    2018-01-01

    Brucella Cu-Zn superoxide dismutase (Cu-Zn SOD) is a periplasmic protein, and immunization of mice with recombinant Cu-Zn SOD protein confers protection against Brucella abortus infection. However, the role of Cu-Zn SOD during the process of Brucella infection remains unknown. Here, we report that Cu-Zn SOD is secreted into culture medium and is translocated into host cells independent of type IV secretion systems (T4SS). Furthermore, co-immunoprecipitation and immunofluorescence studies reveal that Brucella abortus Cu-Zn SOD interacts with the small GTPase Sar1. Overexpression of Cu-Zn SOD in Brucella abortus inhibits bacterial intracellular growth by abolishing Sar1 activity in a manner independent of reactive oxygen species (ROS) production. PMID:29515756

  8. Phenotypic and genotypic studies of ALS cases in ALS-SMA families.

    Science.gov (United States)

    Corcia, Philippe; Vourc'h, Patrick; Blasco, Helene; Couratier, Philippe; Dangoumau, Audrey; Bellance, Remi; Desnuelle, Claude; Viader, Fausto; Pautot, Vivien; Millecamps, Stephanie; Bakkouche, Salah; Salachas, FranÇois; Andres, Christian R; Meininger, Vincent; Camu, William

    2018-03-01

    Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are the most frequent motor neuron disorders in adulthood and infancy, respectively. There is a growing literature supporting common pathophysiological patterns between those disorders. One important clinical issue for that is the co-occurrence of both diseases within a family. To collect families in which ALS and SMA patients co-exist and describe the phenotype and the genotype of ALS patients. Nine families with co-occurrence of SMA and ALS have been gathered over the last 15 years. Epidemiological, phenotype and genetic status were collected. Out of the nine families, six corresponded to the criteria of familial ALS (FALS). Clinical data were available for 11 patients out of the 15 ALS cases. Mean age of onset was 58.5 years, site of onset was lower limbs in nine cases (81.8%), median duration was 22 months. Four ALS patients carried a mutation: three mutations in SOD1 gene (G147N in two cases and one with E121G) and one repeat expansion in the C9ORF72 gene. Three patients had abnormal SMN1 copy numbers. While the high proportion of familial history of ALS cases in these ALS-SMA pedigrees could have suggested that these familial clusters of the two most frequent MND rely on a genetic background, we failed to exclude that this occurred by chance.

  9. Study on the mechanism of wheat mutants resistance to bi-polaris sorokiniana

    International Nuclear Information System (INIS)

    Sun Guangzu; Wang Guangjin; Tang Fenglan; Liu Lijun; Li Zhongjie

    1992-01-01

    The activities and band number of peroxidase (POD), superoxide dismutase (SOD) and phenylalanine aminolyase (PAL) in plant tissue have been studied after treatment with phytotoxin produced from Bi polaris sorokiniana. The results showed that the activity and band number of these enzymes have been changed markedly. The change in degree of activity for mutants was more than that of the parent, and coincident with the ability of resistance to disease. The authors considered that the toxin tolerance ability and inducibility of SOD and POD by toxin might be one of resistance mechanism of wheat mutant against Bipolaris sorokiniana

  10. The Association of PSR B1757-24 and the SNR G5.4-1.2

    Science.gov (United States)

    Gvaramadze, V. V.

    The association of PSR B1757-24 and the supernova remnant (SNR) G5.4-1.2 was recently questioned by Thorsett et al. (2002) on the basis of proper motion measurements of the pulsar and the "incorrect" orientation of the vector of pulsar transverse velocity (inferred from the orientation of the cometary-shaped pulsar wind nebula). We show, however, that the association could be real if both objects are the remnants of an off-centered cavity supernova explosion.

  11. Abdullah G M Al-Sehemi

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Abdullah G M Al-Sehemi. Articles written in Journal of Chemical Sciences. Volume 121 Issue 6 November 2009 pp 983-987. Multifunctional switches based on bis-imidazole derivative · Abdullah M A Asiri Gameel A Baghaffar Khadija O Badahdah Abdullah G M Al-Sehemi ...

  12. Stathmin 1/2-triggered microtubule loss mediates Golgi fragmentation in mutant SOD1 motor neurons

    NARCIS (Netherlands)

    Bellouze, Sarah; Baillat, Gilbert; Buttigieg, Dorothée; de la Grange, Pierre; Rabouille, Catherine; Haase, Georg

    2016-01-01

    BACKGROUND: Pathological Golgi fragmentation represents a constant pre-clinical feature of many neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) but its molecular mechanisms remain hitherto unclear. RESULTS: Here, we show that the severe Golgi fragmentation in transgenic

  13. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality.

    Science.gov (United States)

    Albrecht, Verónica; Ingenfeld, Anke; Apel, Klaus

    2006-03-01

    During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.

  14. The association between PAI-1 -675 4G/5G polymorphism and type 2 diabetes mellitus.

    Science.gov (United States)

    Chen, L; Li, S-Y; Liu, M

    2017-08-15

    In this study, we aimed to analyze the association between plasminogen activator inhibitor 1 (PAI-1) -675 4G/5G polymorphism and type 2 diabetes mellitus (T2DM) risk. We included in 187 T2DM patients and 186 heathy controls between 2014 and 2017 from Tianjin Gong An Hospital, China. All patients and controls were ethnically Chinese Han population. The primers and polymerase chain reaction (PCR) conditions were performed. Results from this case-control study suggested that PAI-1 -675 4G/5G polymorphism was not associated with T2DM risk in four genetic models. Additionally, PAI-1 -675 4G/5G polymorphism was not associated with clinical and laboratory characteristics, such as age, gender, body mass index, systolic blood pressure, diastolic blood pressure, total cholesterol, triglycerides, and HbA1c. In conclusion, this case-control study suggested that PAI-1 -675 4G/5G polymorphism was not associated with T2DM risk in this population.

  15. Plasminogen activator inhibitor-1 4G/5G polymorphism is associated with type 2 diabetes risk

    Science.gov (United States)

    Zhao, Luqian; Huang, Ping

    2013-01-01

    A number of studies were performed to assess the association between plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism and susceptibility to type 2 diabetes (T2DM). However, the results were inconsistent and inconclusive. In the present study, the possible association was investigated by a meta-analysis. Eligible articles were identified for the period up to June 2013. Pooled odds ratios (OR) with 95% confidence intervals (CI) were appropriately derived from random-effects models or fixed-effects models. Fourteen case-control studies with a total of 2487 cases and 3538 controls were eligible. In recessive model, PAI-1 4G/5G polymorphism was associated with T2DM risk (OR = 1.23; 95% CI 1.07-1.41; P = 0.004). In the subgroup analysis by ethnicity, a significant association was found among Asians (OR = 1.27; 95% CI 1.08-1.51; P = 0.005). This meta-analysis suggested that PAI-1 4G/5G polymorphism may be associated with T2DM development. PMID:24040470

  16. Patient-derived olfactory mucosa for study of the non-neuronal contribution to amyotrophic lateral sclerosis pathology

    OpenAIRE

    García-Escudero, V.; Rosales, M.; Muñoz, J.L.; Scola, E.; Medina, J.; Khalique, H.; Garaulet, G.; Rodriguez, A.; Lim, F.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease which currently has no cure. Research using rodent ALS models transgenic for mutant superoxide dismutase 1 (SOD1) has implicated that glial-neuronal interactions play a major role in the destruction of motor neurons, but the generality of this mechanism is not clear as SOD1 mutations only account for less than 2% of all ALS cases. Recently, this hypothesis was backed up by observation of similar effects using astrocyte...

  17. Therapeutic Targeting of Spliceosomal-Mutant Acquired Bone Marrow Failure Disorders

    Science.gov (United States)

    2017-05-01

    spliceosomal mutant cells . This effort has also highlighted a requirement for innate immune signaling in SF3B1-mutant MDS and has implicated a few specific...relative to single-mutant cells (Figure 5A). As innate immune signaling has been implicated in MDS pathogenesis (Basiorka et al., 2016; Fang et al...Sato et al., 2005; Tang et al., 2008; Vink et al., 2013; Xin et al., 2017). Here, we observed that SF3B1K700E/+ human lymphoid leukemia cells (NALM-6

  18. ANXA11 mutations prevail in Chinese ALS patients with and without cognitive dementia.

    Science.gov (United States)

    Zhang, Kang; Liu, Qing; Liu, Keqiang; Shen, Dongchao; Tai, Hongfei; Shu, Shi; Ding, Qingyun; Fu, Hanhui; Liu, Shuangwu; Wang, Zhili; Li, Xiaoguang; Liu, Mingsheng; Zhang, Xue; Cui, Liying

    2018-06-01

    To investigate the genetic contribution of ANXA11 , a gene associated with amyotrophic lateral sclerosis (ALS), in Chinese ALS patients with and without cognitive dementia. Sequencing all the coding exons of ANXA11 and intron-exon boundaries in 18 familial amyotrophic lateral sclerosis (FALS), 353 unrelated sporadic amyotrophic lateral sclerosis (SALS), and 12 Chinese patients with ALS-frontotemporal lobar dementia (ALS-FTD). The transcripts in peripheral blood generated from a splicing mutation were examined by reverse transcriptase PCR. We identified 6 nonsynonymous heterozygous mutations (5 novel and 1 recurrent), 1 splice site mutation, and 1 deletion of 10 amino acids (not accounted in the mutant frequency) in 11 unrelated patients, accounting for a mutant frequency of 5.6% (1/18) in FALS, 2.3% (8/353) in SALS, and 8.3% (1/12) in ALS-FTD. The deletion of 10 amino acids was detected in 1 clinically undetermined male with an ALS family history who had atrophy in hand muscles and myotonic discharges revealed by EMG. The novel p. P36R mutation was identified in 1 FALS index, 1 patient with SALS, and 1 ALS-FTD. The splicing mutation (c.174-2A>G) caused in-frame skipping of the entire exon 6. The rest missense mutations including p.D40G, p.V128M, p.S229R, p.R302C and p.G491R were found in 6 unrelated patients with SALS. The ANXA11 gene is one of the most frequently mutated genes in Chinese patients with SALS. A canonical splice site mutation leading to skipping of the entire exon 6 further supports the loss-of-function mechanism. In addition, the study findings further expand the ANXA11 phenotype, first highlighting its pathogenic role in ALS-FTD.

  19. Failure of protein quality control in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Kabashi, Edor; Durham, Heather D

    2006-01-01

    The protein chaperoning and ubiquitin-proteasome systems perform many homeostatic functions within cells involving protein folding, transport and degradation. Of paramount importance is ridding cells of mutant or post-translationally modified proteins that otherwise tend to aggregate into insoluble complexes and form inclusions. Such inclusions are characteristic of many neurodegenerative diseases and implicate protein misfolding and aggregation as common aspects of pathogenesis. In the most common familial form of ALS, mutations in SOD1 promote misfolding of the protein and target it for degradation by proteasomes. Although proteasomes can degrade the mutant proteins efficiently, altered solubility and aggregation of mutant SOD1 are features of the disease and occur most prominently in the most vulnerable cells and tissues. Indeed, lumbar spinal cord of mutant SOD1 transgenic mice show early reduction in their capacity for protein chaperoning and proteasome-mediated hydrolysis of substrates, and motor neurons are particularly vulnerable to aggregation of mutant SOD1. A high threshold for upregulating key pathways in response to the stress of added substrate load may contribute to this vulnerability. The broad spectrum neuroprotective capability and efficacy of some chaperone-based therapies in preclinical models makes these pathways attractive as targets for therapy in ALS, as well as other neurodegenerative diseases. A better understanding of the mechanisms governing the regulation of protein chaperones and UPS components would facilitate development of treatments that upregulate these pathways in a coordinated manner in neural tissue without long term toxicity.

  20. Disturbed secretion of mutant adiponectin associated with the metabolic syndrome.

    Science.gov (United States)

    Kishida, Ken; Nagaretani, Hiroyuki; Kondo, Hidehiko; Kobayashi, Hideki; Tanaka, Sachiyo; Maeda, Norikazu; Nagasawa, Azumi; Hibuse, Toshiyuki; Ohashi, Koji; Kumada, Masahiro; Nishizawa, Hitoshi; Okamoto, Yoshihisa; Ouchi, Noriyuki; Maeda, Kazuhisa; Kihara, Shinji; Funahashi, Tohru; Matsuzawa, Yuji

    2003-06-20

    Adiponectin, an adipocyte-derived protein, consists of collagen-like fibrous and complement C1q-like globular domains, and circulates in human plasma in a multimeric form. The protein exhibits anti-diabetic and anti-atherogenic activities. However, adiponectin plasma concentrations are low in obese subjects, and hypoadiponectinemia is associated with the metabolic syndrome, which is a cluster of insulin resistance, type 2 diabetes mellitus, hypertension, and dyslipidemia. We have recently reported a missense mutation in the adiponectin gene, in which isoleucine at position 164 in the globular domain is substituted with threonine (I164T). Subjects with this mutation showed markedly low level of plasma adiponectin and clinical features of the metabolic syndrome. Here, we examined the molecular characteristics of the mutant protein associated with a genetic cause of hypoadiponectinemia. The current study revealed (1) the mutant protein showed an oligomerization state similar to the wild-type as determined by gel filtration chromatography and, (2) the mutant protein exhibited normal insulin-sensitizing activity, but (3) pulse-chase study showed abnormal secretion of the mutant protein from adipose tissues. Our results suggest that I164T mutation is associated with hypoadiponectinemia through disturbed secretion into plasma, which may contribute to the development of the metabolic syndrome.

  1. Als and Ftd: Insights into the disease mechanisms and therapeutic targets.

    Science.gov (United States)

    Liscic, Rajka M

    2017-12-15

    Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders, related by signs of deteriorating motor and cognitive functions, and short survival. The causes are still largely unknown and no effective treatment currently exists. It has been shown that FTLD may coexist with ALS. The overlap between ALS and frontotemporal dementia (FTD), the clinical syndrome associated with FTLD, occurs at clinical, genetic, and pathological levels. The hallmark proteins of the pathognomonic inclusions are SOD-1, TDP-43 or FUS, rarely the disease is caused by mutations in the respective genes. Frontotemporal lobar degenerations (FTLD) is genetically, neuropathologically and clinically heterogeneous and may present with behavioural, language and occasionally motor disorder, respectively. Almost all cases of ALS, as well as tau-negative FTLD share a common neuropathology, neuronal and glial inclusion bodies containing abnormal TDP-43 protein, collectively called TDP-43 proteinopathy. Recent discoveries in genetics (e.g. C9orf72 hexanucleotide expansion) and the subsequent neuropathological characterization have revealed remarkable overlap between ALS and FTLD-TDP indicating common pathways in pathogenesis. For ALS, an anti-glutamate agent riluzole may be offered to slow disease progression (Level A), and a promising molecule, arimoclomol, is currently in clinical trials. Other compounds, however, are being trailed and some have shown encouraging results. As new therapeutic approaches continue to emerge by targeting SOD1, TDP-43, or GRN, we present some advances that are being made in our understanding of the molecular mechanisms of these diseases, which together with gene and stem cell therapies may translate into new treatment options. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. ALS Patient Stem Cells for Unveiling Disease Signatures of Motoneuron Susceptibility: Perspectives on the Deadly Mitochondria, ER Stress and Calcium Triad

    Science.gov (United States)

    Kaus, Anjoscha; Sareen, Dhruv

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a largely sporadic progressive neurodegenerative disease affecting upper and lower motoneurons (MNs) whose specific etiology is incompletely understood. Mutations in superoxide dismutase-1 (SOD1), TAR DNA-binding protein 43 (TARDBP/TDP-43) and C9orf72, have been identified in subsets of familial and sporadic patients. Key associated molecular and neuropathological features include ubiquitinated TDP-43 inclusions, stress granules, aggregated dipeptide proteins from mutant C9orf72 transcripts, altered mitochondrial ultrastructure, dysregulated calcium homeostasis, oxidative and endoplasmic reticulum (ER) stress, and an unfolded protein response (UPR). Such impairments have been documented in ALS animal models; however, whether these mechanisms are initiating factors or later consequential events leading to MN vulnerability in ALS patients is debatable. Human induced pluripotent stem cells (iPSCs) are a valuable tool that could resolve this “chicken or egg” causality dilemma. Relevant systems for probing pathophysiologically affected cells from large numbers of ALS patients and discovering phenotypic disease signatures of early MN susceptibility are described. Performing unbiased ‘OMICS and high-throughput screening in relevant neural cells from a cohort of ALS patient iPSCs, and rescuing mitochondrial and ER stress impairments, can identify targeted therapeutics for increasing MN longevity in ALS. PMID:26635528

  3. Comparative Analysis of Light-Harvesting Antennae and State Transition in chlorina and cpSRP Mutants1[OPEN

    Science.gov (United States)

    Wang, Peng

    2016-01-01

    State transitions in photosynthesis provide for the dynamic allocation of a mobile fraction of light-harvesting complex II (LHCII) to photosystem II (PSII) in state I and to photosystem I (PSI) in state II. In the state I-to-state II transition, LHCII is phosphorylated by STN7 and associates with PSI to favor absorption cross-section of PSI. Here, we used Arabidopsis (Arabidopsis thaliana) mutants with defects in chlorophyll (Chl) b biosynthesis or in the chloroplast signal recognition particle (cpSRP) machinery to study the flexible formation of PS-LHC supercomplexes. Intriguingly, we found that impaired Chl b biosynthesis in chlorina1-2 (ch1-2) led to preferentially stabilized LHCI rather than LHCII, while the contents of both LHCI and LHCII were equally depressed in the cpSRP43-deficient mutant (chaos). In view of recent findings on the modified state transitions in LHCI-deficient mutants (Benson et al., 2015), the ch1-2 and chaos mutants were used to assess the influence of varying LHCI/LHCII antenna size on state transitions. Under state II conditions, LHCII-PSI supercomplexes were not formed in both ch1-2 and chaos plants. LHCII phosphorylation was drastically reduced in ch1-2, and the inactivation of STN7 correlates with the lack of state transitions. In contrast, phosphorylated LHCII in chaos was observed to be exclusively associated with PSII complexes, indicating a lack of mobile LHCII in chaos. Thus, the comparative analysis of ch1-2 and chaos mutants provides new evidence for the flexible organization of LHCs and enhances our understanding of the reversible allocation of LHCII to the two photosystems. PMID:27663408

  4. Allosteric Mutant IDH1 Inhibitors Reveal Mechanisms for IDH1 Mutant and Isoform Selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Xiaoling; Baird, Daniel; Bowen, Kimberly; Capka, Vladimir; Chen, Jinyun; Chenail, Gregg; Cho, YoungShin; Dooley, Julia; Farsidjani, Ali; Fortin, Pascal; Kohls, Darcy; Kulathila, Raviraj; Lin, Fallon; McKay, Daniel; Rodrigues, Lindsey; Sage, David; Touré, B. Barry; van der Plas, Simon; Wright, Kirk; Xu, Ming; Yin, Hong; Levell, Julian; Pagliarini, Raymond A. (Novartis)

    2017-03-01

    Oncogenic IDH1 and IDH2 mutations contribute to cancer via production of R-2-hydroxyglutarate (2-HG). Here, we characterize two structurally distinct mutant- and isoform-selective IDH1 inhibitors that inhibit 2-HG production. Both bind to an allosteric pocket on IDH1, yet shape it differently, highlighting the plasticity of this site. Oncogenic IDH1R132H mutation destabilizes an IDH1 “regulatory segment,” which otherwise restricts compound access to the allosteric pocket. Regulatory segment destabilization in wild-type IDH1 promotes inhibitor binding, suggesting that destabilization is critical for mutant selectivity. We also report crystal structures of oncogenic IDH2 mutant isoforms, highlighting the fact that the analogous segment of IDH2 is not similarly destabilized. This intrinsic stability of IDH2 may contribute to observed inhibitor IDH1 isoform selectivity. Moreover, discrete residues in the IDH1 allosteric pocket that differ from IDH2 may also guide IDH1 isoform selectivity. These data provide a deeper understanding of how IDH1 inhibitors achieve mutant and isoform selectivity.

  5. Aleaciones cuasicristalinas Al93Fe3Cr2Ti2

    Directory of Open Access Journals (Sweden)

    García-Escorial, Asunción

    2015-12-01

    Full Text Available Aluminium alloy powder having a nominal composition of Al93Fe3Cr2Ti2 (at% has been prepared using gas atomisation. The atomised powder present a microstructure of an aluminium matrix reinforced with a spherical quasicrystalline icosahedral phase, in the range of nanometre in size. The powder was consolidated into bars using warm extrusion. The microstructure of the extruded bars retains the quasicrystalline microstructure and the bars present outstanding mechanical properties, i.e. proof stress of 280 MPa at 300 °C. Upon heating the microstructure evolves towards the equilibrium. The thermal evolution was investigated by means of x-ray diffraction, differential scanning calorimeter, scanning electron microscopy and transmission electron microscopy. According to these observations a transformation in two steps is proposed. A first step consists in the decomposition of the supersaturated solid solution of the matrix and the quasicrystals, and a second step in the transformation of the quasicrystals into the equilibrium phases.Se ha obtenido por atomización por gas polvo de la aleación Al93Fe3Cr2Ti2 (at%. Este polvo presenta una microestructura de una matriz de aluminio reforzada por precipitados icosaédricos de tamaño nanométrico. El polvo fue consolidado por extrusión en forma de barras cilíndricas. La microestructura de las barras retiene la microestructura cuasicristalina de las partículas de polvo. El material consolidado presenta propiedades mecánicas prometedoras, como un límite elástico de 280 MPA a 300 °C. Con los tratamientos térmicos, la microestructura evoluciona hacia el equilibrio. Esta evolución se estudia por difracción de rayos x, calorimetría diferencial de barrido, microscopías electrónicas de barrido y de transmisión. A la luz de los resultados obtenidos se propone que la transformación de las fases con el tiempo de tratamiento térmico ocurre en dos pasos. Primeramente, tiene lugar la descomposición de la

  6. Intrinsic Membrane Hyperexcitability of Amyotrophic Lateral Sclerosis Patient-Derived Motor Neurons

    Directory of Open Access Journals (Sweden)

    Brian J. Wainger

    2014-04-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease of the motor nervous system. We show using multielectrode array and patch-clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 (SOD1, C9orf72, and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected but otherwise isogenic SOD1+/+ stem cell line do not display the hyperexcitability phenotype. SOD1A4V/+ ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates.

  7. Shallow Boomerang-shaped Influenza Hemagglutinin G13A Mutant Structure Promotes Leaky Membrane Fusion*

    Science.gov (United States)

    Lai, Alex L.; Tamm, Lukas K.

    2010-01-01

    Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation. PMID:20826788

  8. Control of G1 in the developing Drosophila eye: rca1 regulates Cyclin A.

    Science.gov (United States)

    Dong, X; Zavitz, K H; Thomas, B J; Lin, M; Campbell, S; Zipursky, S L

    1997-01-01

    In the developing eye of Drosophila melanogaster, cells become synchronized in the G1 phase of the cell cycle just prior to the onset of cellular differentiation and morphogenesis. In roughex (rux) mutants, cells enter S phase precociously because of ectopic activation of a Cyclin A/Cdk complex in early G1. This leads to defects in cell fate and pattern formation, and results in abnormalities in the morphology of the adult eye. A screen for dominant suppressors of the rux eye phenotype led to the identification of mutations in cyclin A, string (cdc25), and new cell cycle genes. One of these genes, regulator of cyclin A (rca1), encodes a novel protein required for both mitotic and meiotic cell cycle progression. rca1 mutants arrest in G2 of embryonic cell cycle 16 with a phenotype very similar to cyclin A loss of function mutants. Expression of rca1 transgenes in G1 or in postmitotic neurons promotes Cyclin A protein accumulation and drives cells into S phase in a Cyclin A-dependent fashion.

  9. Upregulation of CB2 receptors in reactive astrocytes in canine degenerative myelopathy, a disease model of amyotrophic lateral sclerosis

    Science.gov (United States)

    Fernández-Trapero, María; Espejo-Porras, Francisco; Rodríguez-Cueto, Carmen; Coates, Joan R.; Pérez-Díaz, Carmen; de Lago, Eva; Fernández-Ruiz, Javier

    2017-01-01

    ABSTRACT Targeting of the CB2 receptor results in neuroprotection in the SOD1G93A mutant mouse model of amyotrophic lateral sclerosis (ALS). The neuroprotective effects of CB2 receptors are facilitated by their upregulation in the spinal cord of the mutant mice. Here, we investigated whether similar CB2 receptor upregulation, as well as parallel changes in other endocannabinoid elements, is evident in the spinal cord of dogs with degenerative myelopathy (DM), caused by mutations in the superoxide dismutase 1 gene (SOD1). We used well-characterized post-mortem spinal cords from unaffected and DM-affected dogs. Tissues were used first to confirm the loss of motor neurons using Nissl staining, which was accompanied by glial reactivity (elevated GFAP and Iba-1 immunoreactivity). Next, we investigated possible differences in the expression of endocannabinoid genes measured by qPCR between DM-affected and control dogs. We found no changes in expression of the CB1 receptor (confirmed with CB1 receptor immunostaining) or NAPE-PLD, DAGL, FAAH and MAGL enzymes. In contrast, CB2 receptor levels were significantly elevated in DM-affected dogs determined by qPCR and western blotting, which was confirmed in the grey matter using CB2 receptor immunostaining. Using double-labelling immunofluorescence, CB2 receptor immunolabelling colocalized with GFAP but not Iba-1, indicating upregulation of CB2 receptors on astrocytes in DM-affected dogs. Our results demonstrate a marked upregulation of CB2 receptors in the spinal cord in canine DM, which is concentrated in activated astrocytes. Such receptors could be used as a potential target to enhance the neuroprotective effects exerted by these glial cells. PMID:28069688

  10. Upregulation of CB2 receptors in reactive astrocytes in canine degenerative myelopathy, a disease model of amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    María Fernández-Trapero

    2017-05-01

    Full Text Available Targeting of the CB2 receptor results in neuroprotection in the SOD1G93A mutant mouse model of amyotrophic lateral sclerosis (ALS. The neuroprotective effects of CB2 receptors are facilitated by their upregulation in the spinal cord of the mutant mice. Here, we investigated whether similar CB2 receptor upregulation, as well as parallel changes in other endocannabinoid elements, is evident in the spinal cord of dogs with degenerative myelopathy (DM, caused by mutations in the superoxide dismutase 1 gene (SOD1. We used well-characterized post-mortem spinal cords from unaffected and DM-affected dogs. Tissues were used first to confirm the loss of motor neurons using Nissl staining, which was accompanied by glial reactivity (elevated GFAP and Iba-1 immunoreactivity. Next, we investigated possible differences in the expression of endocannabinoid genes measured by qPCR between DM-affected and control dogs. We found no changes in expression of the CB1 receptor (confirmed with CB1 receptor immunostaining or NAPE-PLD, DAGL, FAAH and MAGL enzymes. In contrast, CB2 receptor levels were significantly elevated in DM-affected dogs determined by qPCR and western blotting, which was confirmed in the grey matter using CB2 receptor immunostaining. Using double-labelling immunofluorescence, CB2 receptor immunolabelling colocalized with GFAP but not Iba-1, indicating upregulation of CB2 receptors on astrocytes in DM-affected dogs. Our results demonstrate a marked upregulation of CB2 receptors in the spinal cord in canine DM, which is concentrated in activated astrocytes. Such receptors could be used as a potential target to enhance the neuroprotective effects exerted by these glial cells.

  11. PAI-1 4G/5G polymorphism and plasma levels association in patients with coronary artery disease.

    Science.gov (United States)

    Lima, Luciana Moreira; Carvalho, Maria das Graças; Fonseca Neto, Cirilo Pereira; Garcia, José Carlos Faria; Sousa, Marinez Oliveira

    2011-12-01

    Type-1 plasminogen activator inhibitor (PAI-1) 4G/5G polymorphism may influence the PAI-1 expression. High plasma levels of PAI-1 are associated with coronary artery disease (CAD). This study investigated the influence of PAI-1 4G/5G polymorphism on plasma PAI-1 levels and its association with CAD assessed by coronary angiography. Blood sample of 35 individuals with angiographically normal coronary arteries, 31 individuals presenting mild/moderate atheromatosis, 57 individuals presenting severe atheromatosis and 38 healthy individuals (controls) were evaluated. In patients and controls, the PAI-1 4G/5G polymorphism was determined by PCR amplification using allele-specific primers. Plasma PAI-1 levels were quantified by ELISA assay (American Diagnostica). No difference was found between groups regarding age, gender and body mass index. Plasma PAI-1 levels and 4G/4G genotype frequency were significantly higher in the severe atheromatosis group compared to the other groups (p5G/5G genotype (r=0.02, p=0.4511). In addition, in a multiple logistic regression model, adjusted for all the other variables, PAI-1 was observed to be independently associated with CAD > 70% (p<0.001). The most important finding of this study was the association between 4G/4G genotype, high plasma PAI-1 levels and coronary stenosis higher than 70% in Brazilian individuals. Whether high plasma PAI-1 levels are a decisive factor for atherosclerosis worsening or it is a consequence remains to be established.

  12. Carbon dioxide adsorption over zeolite-like metal organic frameworks (ZMOFs) having a sod topology: Structure and ion-exchange effect

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Kim, J.; Yang, D.A.; Ahn, W.S. [Inha University, Inchon (Republic of Korea). Dept. of Chemical Engineering

    2011-04-15

    Zeolite-like metal organic framework (ZMOF) materials having rho and sod topologies were experimentally investigated as CO{sub 2} adsorbents for the first time. As-prepared ZMOF materials showed reasonably high CO{sub 2} adsorption capacities (ca. 51 and 53 mg/g(adsorbent) for rho- and sod-ZMOF, respectively) and high CO{sub 2}/N{sub 2} selectivity (> 20) at 298 K and 1 bar. The latter showed a higher heat of adsorption (27-45 kJ/mol). These ZMOFs exhibited better CO{sub 2} adsorption than ZIF-8, a commonly investigated zeolitic imidazolate framework (ZIF) material having the same sod topology but in a neutral framework. Partially ion-exchanged sod-ZMOFs by alkali-metals resulted in improved CO{sub 2} adsorption performance compared with the as-prepared ZMOF. The highest CO{sub 2} adsorption was obtained with K{sup +}-exchanged sod-ZMOF (61 mg/g(adsorbent)), representing a ca. 15% increase in adsorption capacity. Complete desorption of CO{sub 2} in the K{sup +}-sod-ZMOF was attained at mild conditions (40{sup o}C, He purging), and reversible and sustainable CO{sub 2} adsorption performance was demonstrated in 5 sets of recycling runs.

  13. Low Ascorbic Acid in the vtc-1 Mutant of Arabidopsis Is Associated with Decreased Growth and Intracellular Redistribution of the Antioxidant System1

    Science.gov (United States)

    Veljovic-Jovanovic, Sonja D.; Pignocchi, Cristina; Noctor, Graham; Foyer, Christine H.

    2001-01-01

    Ascorbic acid has numerous and diverse roles in plant metabolism. We have used the vtc-1 mutant of Arabidopsis, which is deficient in ascorbate biosynthesis, to investigate the role of ascorbate concentration in growth, regulation of photosynthesis, and control of the partitioning of antioxidative enyzmes. The mutant possessed 70% less ascorbate in the leaves compared with the wild type. This lesion was associated with a slight increase in total glutathione but no change in the redox state of either ascorbate or glutathione. In vtc-1, total ascorbate in the apoplast was decreased to 23% of the wild-type value. The mutant displayed much slower shoot growth than the wild type when grown in air or at high CO2 (3 mL L−1), where oxidative stress is diminished. Leaves were smaller, and shoot fresh weight and dry weight were lower in the mutant. No significant differences in the light saturation curves for CO2 assimilation were found in air or at high CO2, suggesting that the effect on growth was not due to decreased photosynthetic capacity in the mutant. Analysis of chlorophyll a fluorescence quenching revealed only a slight effect on non-photochemical energy dissipation. Hydrogen peroxide contents were similar in the leaves of the vtc-1 mutant and the wild type. Total leaf peroxidase activity was increased in the mutant and compartment-specific differences in ascorbate peroxidase (APX) activity were observed. In agreement with the measurements of enzyme activity, the expression of cytosolic APX was increased, whereas that for chloroplast APX isoforms was either unchanged or slightly decreased. These data implicate ascorbate concentration in the regulation of the compartmentalization of the antioxidant system in Arabidopsis. PMID:11598218

  14. In vitro antioxidant activity, enzyme kinetics, biostability and cellular SOD mimicking ability of 1:1 curcumin-copper (II) complex

    International Nuclear Information System (INIS)

    Kunwar, A.; Mishra, B.; Barik, A.; Priyadarsini, K.I.; Narang, H.; Krishna, M.

    2008-01-01

    In vitro antioxidant activity of 1:1 curcumin copper (II) complex was evaluated by following the inhibition of γ-radiation induced lipid peroxidation and protein oxidation in model systems. The SOD enzyme kinetic parameters K m and V max values and the turn over number of the complex were determined. The complex is stable in bio-fluids and prevents oxidation of lipid and protein solution in presence of H 2 O 2 and showed reduction in MnSOD level in spleen cells without having any effect on cell viability. (author)

  15. In vitro antioxidant activity, enzyme kinetics, biostability and cellular SOD mimicking ability of 1:1 curcumin-copper (II) complex

    Energy Technology Data Exchange (ETDEWEB)

    Kunwar, A; Mishra, B; Barik, A; Priyadarsini, K I [Radiation and Photochemistry Div., Bhabha Atomic Research Centre, Mumbai (India); Narang, H; Krishna, M [Radiation Biology and Health Sciences Div., Bhabha Atomic Research Centre, Mumbai (India)

    2008-01-15

    In vitro antioxidant activity of 1:1 curcumin copper (II) complex was evaluated by following the inhibition of {gamma}-radiation induced lipid peroxidation and protein oxidation in model systems. The SOD enzyme kinetic parameters K{sub m} and V{sub max} values and the turn over number of the complex were determined. The complex is stable in bio-fluids and prevents oxidation of lipid and protein solution in presence of H{sub 2}O{sub 2} and showed reduction in MnSOD level in spleen cells without having any effect on cell viability. (author)

  16. CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs.

    Science.gov (United States)

    Wang, Lixia; Yi, Fei; Fu, Lina; Yang, Jiping; Wang, Si; Wang, Zhaoxia; Suzuki, Keiichiro; Sun, Liang; Xu, Xiuling; Yu, Yang; Qiao, Jie; Belmonte, Juan Carlos Izpisua; Yang, Ze; Yuan, Yun; Qu, Jing; Liu, Guang-Hui

    2017-05-01

    Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1 +/A272C and FUS +/G1566A mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis of motor neurons derived from SOD1 +/A272C and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.

  17. Three Herpes Simplex Virus Type 1 Latency-Associated Transcript Mutants with Distinct and Asymmetric Effects on Virulence in Mice Compared with Rabbits

    Science.gov (United States)

    Perng, Guey-Chuen; Esmaili, Daniel; Slanina, Susan M.; Yukht, Ada; Ghiasi, Homayon; Osorio, Nelson; Mott, Kevin R.; Maguen, Barak; Jin, Ling; Nesburn, Anthony B.; Wechsler, Steven L.

    2001-01-01

    Herpes simplex virus type 1 latency-associated transcript (LAT)-null mutants have decreased reactivation but normal virulence in rabbits and mice. We report here on dLAT1.5, a mutant with LAT nucleotides 76 to 1667 deleted. Following ocular infection of rabbits, dLAT1.5 reactivated at a lower rate than its wild-type parent McKrae (6.1 versus 11.8%; P = 0.0025 [chi-square test]). Reactivation was restored in the marker-rescued virus dLAT1.5R (12.6%; P = 0.53 versus wild type), confirming the importance of the deleted region in spontaneous reactivation. Compared with wild-type or marker-rescued virus, dLAT1.5 had similar or slightly reduced virulence in rabbits (based on survival following ocular infection). In contrast, in mice, dLAT1.5 had increased virulence (P Wechsler, J. Virol. 73:920–929, 1999), had decreased virulence in mice (P = 0.03). In addition, we also found that dLAT371, a LAT mutant that we previously reported to have wild-type virulence in rabbits (G. C. Perng, S. M. Slanina, H. Ghiasi, A. B. Nesburn, and S. L. Wechsler, J. Virol. 70:2014–2018, 1996), had decreased virulence in mice (P < 0.05). Thus, these three mutants, each of which encodes a different LAT RNA, have different virulence phenotypes. dLAT1.5 had wild-type virulence in rabbits but increased virulence in mice. In contrast, LAT2.9A had increased virulence in rabbits but decreased virulence in mice, and dLAT371 had wild-type virulence in rabbits but decreased virulence in mice. Taken together, these results suggest that (i) the 5′ end of LAT and/or a gene that overlaps part of this region is involved in viral virulence, (ii) this virulence appears to have species-specific effects, and (iii) regulation of this virulence may be complex. PMID:11533165

  18. Meta-analysis of the association between plasminogen activator inhibitor-1 4G/5G polymorphism and recurrent pregnancy loss.

    Science.gov (United States)

    Li, Xuejiao; Liu, Yukun; Zhang, Rui; Tan, Jianping; Chen, Libin; Liu, Yinglin

    2015-04-11

    The association between plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism and recurrent pregnancy loss (RPL) risk is still contradictory. We thus performed a meta-analysis. Relevant studies were searched for in PubMed, Web of Science, Embase, and Cochrane Library. An odds ratio (OR) with a 95% confidence interval (CI) was used to assess the association between PAI-1 4G/5G polymorphism and RPL risk. A total of 22 studies with 4306 cases and 3076 controls were included in this meta-analysis. We found that PAI-1 4G/5G polymorphism was significantly associated with an increased RPL risk (OR=1.89; 95% CI 1.34-2.67; P=0.0003). In the subgroup analysis by race, PAI-1 4G/5G polymorphism was significantly associated with an increased RPL risk in Caucasians (OR=2.23; 95% CI 1.44-3.46; P=0.0003). However, no significant association was observed in Asians (OR=1.47; 95% CI 0.84-2.59; P=0.18). In conclusion, this meta-analysis suggests that PAI-1 4G/5G polymorphism might be associated with RPL development in Caucasians.

  19. Immunoreactive Cu-SOD and Mn-SOD in lymphocytes sub-populations from normal and trisomy 21 subjects according to age

    International Nuclear Information System (INIS)

    Baeteman, M.A.; Baret, A.; Courtiere, A.; Rebuffel, P.; Mattei, J.F.

    1983-01-01

    Copper and manganese superoxide dismutases (Cu-SOD and Mn-SOD) were measured by radioimmunoassay in B and T lymphocytes and macrophages, in patients with trisomy 21 and in matched controls. In the controls, Cu-SOD was present in greater amounts than Mn-SOD and there were quantitative differences in the distribution in the three cellular sub-populations. In trisomy 21, levels of Cu-SOD were raised, with no change in levels of Mn-SOD, supporting the theory of a gene dosage effect. There were significant positive and negative correlations between age and Cu-SOD levels in controls, and a correlation approaching significance for Mn-SOD. In trisomy 21, there was no correlation between age and Cu-SOD levels, and the only significant correlation for Mn-SOD was for B lymphocytes

  20. PAI-1 4G/5G polymorphism and coronary artery disease risk: a meta-analysis.

    Science.gov (United States)

    Liang, Zhongshu; Jiang, Weihong; Ouyang, Mao; Yang, Kan

    2015-01-01

    Many epidemiologic studies have investigated the plasminogen activator inhibitor-1 (PAI-1) gene 4G/5G polymorphism and this association with coronary artery disease (CAD). But definite conclusions can not be drawn. Related studies were identified from PubMed, Springer Link, Ovid, Chinese Wanfang Data Knowledge Service Platform, Chinese National Knowledge Infrastructure (CNKI), and Chinese Biology Medicine (CBM) till 10 August 2014. Pooled ORs and 95% CIs were used to assess the strength of the associations. A total of 53 studies including 20921 CAD cases and 18434 controls were included. Significantly elevated CAD risk was found in overall analysis (OR = 1.13, 95% CI: 1.05-1.21, P = 0.0009). In the subgroup analysis by races, significantly increased risk was found in Caucasians (OR = 1.11, 95% CI: 1.03-1.20, P = 0.005) and Asians (OR = 1.20, 95% CI: 1.01-1.42, P = 0.04). In the subgroup analysis by gender, significant association was found in males (OR = 1.15, 95% CI: 1.06-1.25, P = 0.0008), but was not found in females (OR = 1.05, 95% CI: 0.92-1.20, P = 0.47). In the subgroup analysis by age, young populations showed increased CAD risk (OR = 1.19, 95% CI: 1.02-1.37, P = 0.02), but old populations did not show this association (OR = 1.01, 95% CI: 0.82-1.24, P = 0.93). This meta-analysis provides the evidence that PAI-1 4G/5G polymorphism may contribute to the CAD development.

  1. PAI-1 4G/5G polymorphism and coronary artery disease risk: a meta-analysis

    Science.gov (United States)

    Liang, Zhongshu; Jiang, Weihong; Ouyang, Mao; Yang, Kan

    2015-01-01

    Many epidemiologic studies have investigated the plasminogen activator inhibitor-1 (PAI-1) gene 4G/5G polymorphism and this association with coronary artery disease (CAD). But definite conclusions can not be drawn. Related studies were identified from PubMed, Springer Link, Ovid, Chinese Wanfang Data Knowledge Service Platform, Chinese National Knowledge Infrastructure (CNKI), and Chinese Biology Medicine (CBM) till 10 August 2014. Pooled ORs and 95% CIs were used to assess the strength of the associations. A total of 53 studies including 20921 CAD cases and 18434 controls were included. Significantly elevated CAD risk was found in overall analysis (OR = 1.13, 95% CI: 1.05-1.21, P = 0.0009). In the subgroup analysis by races, significantly increased risk was found in Caucasians (OR = 1.11, 95% CI: 1.03-1.20, P = 0.005) and Asians (OR = 1.20, 95% CI: 1.01-1.42, P = 0.04). In the subgroup analysis by gender, significant association was found in males (OR = 1.15, 95% CI: 1.06-1.25, P = 0.0008), but was not found in females (OR = 1.05, 95% CI: 0.92-1.20, P = 0.47). In the subgroup analysis by age, young populations showed increased CAD risk (OR = 1.19, 95% CI: 1.02-1.37, P = 0.02), but old populations did not show this association (OR = 1.01, 95% CI: 0.82-1.24, P = 0.93). This meta-analysis provides the evidence that PAI-1 4G/5G polymorphism may contribute to the CAD development. PMID:25932140

  2. Multiplex Sequence Analysis Demonstrates the Competitive Growth Advantage of the A-to-G Mutants of Clarithromycin-Resistant Helicobacter pylori

    OpenAIRE

    Wang, Ge; Rahman, M. Sayeedur; Humayun, M. Zafri; Taylor, Diane E.

    1999-01-01

    Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates.

  3. Multiplex sequence analysis demonstrates the competitive growth advantage of the A-to-G mutants of clarithromycin-resistant Helicobacter pylori.

    Science.gov (United States)

    Wang, G; Rahman, M S; Humayun, M Z; Taylor, D E

    1999-03-01

    Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates.

  4. Characterization of recombinant B. abortus strain RB51SOD towards understanding the uncorrelated innate and adaptive immune responses induced by RB51SOD compared to its parent vaccine strain RB51

    Directory of Open Access Journals (Sweden)

    Jianguo eZhu

    2011-11-01

    Full Text Available Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD in a recombinant strain of RB51 (strain RB51SOD significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte (CTL activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS. Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release.

  5. [Lessons from Guam ALS/PDC study].

    Science.gov (United States)

    Asao, Hirano

    2007-11-01

    An extraordinarily high incidence of amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia complex (PDC) affecting the native population was discovered on the island of Guam a half century ago. Guam ALS is identical to classic ALS clinically and pathologically while PDC is marked by progressive parkinsonism and dementia. The unusual histological finding in these fetal neurodegenerative diseases is the presence of numerous neurofibrillary tangles in a selective topographic distribution unassociated with senile plaques. There have been remarkable advances in field of age-associated neurodegenerative disease after our initial study of Guam cases. Four noteworthy topics are presented in this communication. 1) Clinically, the coexistence of parkinsonism and dementia was frequently recognized in Parkinson disease and Alzheimer disease. Some other new disease entities characterized by coexistence of parkinsonism and dementia have been reported. These include progressive supranuclear palsy, frontotemporal dementia and parkinsonism linked to chromosome 17. 2) Neuropathologically, abundant neurofibrillary tangles unassociated with senile plaques were demonstrated in many diseases such as aftermath of boxing and tangle-only dementia. Furthermore, tau-positive structures were recognized not only in neurons but in glial cells in certain diseases. Tauopathy is one of the current hot research subjects. 3) Familial aggregation of Guam ALS patients provoked investigation of familial ALS elsewhere. Familial motor neuron disease with SOD1 mutation is the target of worldwide intense investigation at the present time. SOD1 gene mutation is, however, not found in Guam ALS. 4) The most striking findings of the Guam study is the gradual decline in the incidence of ALS on Guam during a quarter century and virtual disappearance of new patients. This may be linked to a remarkable change in environment and life style of the Chamorro population. The etiology of ALS is still unknown and

  6. Calcioferrite with composition (Ca3.94Sr0.06Mg1.01(Fe2.93Al1.07(PO46(OH4·12H2O

    Directory of Open Access Journals (Sweden)

    Barbara Lafuente

    2014-03-01

    Full Text Available Calcioferrite, ideally Ca4MgFe3+4(PO46(OH4·12H2O (tetracalcium magnesium tetrairon(III hexakis-phosphate tetrahydroxide dodecahydrate, is a member of the calcioferrite group of hydrated calcium phosphate minerals with the general formula Ca4AB4(PO46(OH4·12H2O, where A = Mg, Fe2+, Mn2+ and B = Al, Fe3+. Calcioferrite and the other three known members of the group, montgomeryite (A = Mg, B = Al, kingsmountite (A = Fe2+, B = Al, and zodacite (A = Mn2+, B = Fe3+, usually occur as very small crystals, making their structure refinements by conventional single-crystal X-ray diffraction challenging. This study presents the first structure determination of calcioferrite with composition (Ca3.94Sr0.06Mg1.01(Fe2.93Al1.07(PO46(OH4·12H2O based on single-crystal X-ray diffraction data collected from a natural sample from the Moculta quarry in Angaston, Australia. Calcioferrite is isostructural with montgomeryite, the only member of the group with a reported structure. The calcioferrite structure is characterized by (Fe/AlO6 octahedra (site symmetries 2 and -1 sharing corners (OH to form chains running parallel to [101]. These chains are linked together by PO4 tetrahedra (site symmetries 2 and 1, forming [(Fe/Al3(PO43(OH2] layers stacking along [010], which are connected by (Ca/Sr2+ cations (site symmetry 2 and Mg2+ cations (site symmetry 2; half-occupation. Hydrogen-bonding interactions involving the water molecules (one of which is equally disordered over two positions and OH function are also present between these layers. The relatively weaker bonds between the layers account for the cleavage of the mineral parallel to (010.

  7. Evaluation of the G145R Mutant of the Hepatitis B Virus as a Minor Strain in Mother-to-Child Transmission.

    Directory of Open Access Journals (Sweden)

    Haruki Komatsu

    Full Text Available The role of the hepatitis B virus (HBV mutant G145R, with a single change in amino acid 145 of the surface protein, as a minor population remains unknown in mother-to-child transmission. The minor strain as well as the major strain of the G145R mutant were evaluated in three cohorts using a locked nucleic acid probe-based real-time PCR. The breakthrough cohort consisted of children who were born to HBV carrier mothers and became HBV carriers despite immnoprophylaxis (n = 25. The control cohort consisted of HBV carriers who had no history of receiving the hepatitis B vaccine, hepatitis B immunoglobulin or antiviral treatment (n = 126. The pregnant cohort comprised pregnant women with chronic HBV infection (n = 31. In the breakthrough cohort, 6 showed positive PCR results (major, 2; minor, 4. In the control cohort, 13 showed positive PCR results (major, 0; minor, 13. HBeAg-positive patients were prone to have the G145R mutant as a minor population. Deep sequencing was performed in a total of 32 children (PCR positive, n = 13; negative, n = 19. In the breakthrough cohort, the frequency of the G145R mutant ranged from 0.54% to 6.58%. In the control cohort, the frequency of the G145R mutant ranged from 0.42% to 4.1%. Of the 31 pregnant women, 4 showed positive PCR results (major, n = 0; minor, n = 4. All of the pregnant women were positive for HBeAg and showed a high viral load. Three babies born to 3 pregnant women with the G145R mutant were evaluated. After the completion of immunoprophylaxis, 2 infants became negative for HBsAg. The remaining infant became negative for HBsAg after the first dose of HB vaccine. G145R was detected in one-fourth of the children with immunoprophylaxis failure. However, the pre-existence of the G145R mutant as a minor population in pregnant women does not always cause breakthrough infection in infants.

  8. Lack of a synergistic effect of a non-viral ALS gene therapy based on BDNF and a TTC fusion molecule

    Directory of Open Access Journals (Sweden)

    Navarro Xavier

    2011-03-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is one of the most devastating neurodegenerative diseases. Neurotrophic factors have been widely tested to counteract neurodegenerative conditions, despite their unspecific neuronal access. The non-toxic C-terminal fragment of the tetanus toxin (TTC heavy chain has been studied not only as a carrier molecule to the CNS but also as a neuroprotective agent. Because the neurotrophic effects of BDNF have been demonstrated in vitro and in vivo, the question addressed in this work is whether a fusion molecule of BDNF-TTC may have a synergistic effect and enhance the neuroprotective properties of TTC alone in a mouse model of ALS. Methods Recombinant plasmid constructs (pCMV-TTC and pCMV-BDNF-TTC were injected into the quadriceps femoris and triceps brachialis muscles of SOD1G93A transgenic mice at 8 weeks of age. The hanging wire and rotarod tests were performed to assess motor coordination, strength and balance. Electrophysiological tests, morphological assays of spinal cord sections of L2 and L4 segments, and gene and protein expression analyses were performed. The Kaplan-Meier survival analysis test was used for comparisons of survival. Multiple comparisons of data were analyzed using a one-way analysis of variance (ANOVA. Results Treatment with the fusion-molecule BDNF-TTC and with TTC alone significantly delayed the onset of symptoms and functional deficits of SOD1G93A mice. Muscle innervation was partially preserved with these treatments, and the number of surviving motoneurons in L2 spinal cord segment was increased particularly by the fusion protein induction. Inhibition of pro-apoptotic protein targets (caspase-3 and Bax and significant phosphorylation of Akt and ERK were also found in the spinal cord of treated mice. Conclusions Significant improvements in behavioral and electrophysiological results, motoneuron survival and anti-apoptotic/survival-activated pathways were observed with

  9. The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span

    Science.gov (United States)

    Wang, Ji-Wu; Brent, Jonathan R.; Tomlinson, Andrew; Shneider, Neil A.; McCabe, Brian D.

    2011-01-01

    The fatal adult motor neuron disease amyotrophic lateral sclerosis (ALS) shares some clinical and pathological overlap with frontotemporal dementia (FTD), an early-onset neurodegenerative disorder. The RNA/DNA-binding proteins fused in sarcoma (FUS; also known as TLS) and TAR DNA binding protein-43 (TDP-43) have recently been shown to be genetically and pathologically associated with familial forms of ALS and FTD. It is currently unknown whether perturbation of these proteins results in disease through mechanisms that are independent of normal protein function or via the pathophysiological disruption of molecular processes in which they are both critical. Here, we report that Drosophila mutants in which the homolog of FUS is disrupted exhibit decreased adult viability, diminished locomotor speed, and reduced life span compared with controls. These phenotypes were fully rescued by wild-type human FUS, but not ALS-associated mutant FUS proteins. A mutant of the Drosophila homolog of TDP-43 had similar, but more severe, deficits. Through cross-rescue analysis, we demonstrated that FUS acted together with and downstream of TDP-43 in a common genetic pathway in neurons. Furthermore, we found that these proteins associated with each other in an RNA-dependent complex. Our results establish that FUS and TDP-43 function together in vivo and suggest that molecular pathways requiring the combined activities of both of these proteins may be disrupted in ALS and FTD. PMID:21881207

  10. Plasma extracellular superoxide dismutase concentration, allelic variations in the SOD3 gene and risk of myocardial infarction and all-cause mortality in people with type 1 and type 2 diabetes.

    Science.gov (United States)

    Mohammedi, Kamel; Bellili-Muñoz, Naïma; Marklund, Stefan L; Driss, Fathi; Le Nagard, Hervé; Patente, Thiago A; Fumeron, Frédéric; Roussel, Ronan; Hadjadj, Samy; Marre, Michel; Velho, Gilberto

    2015-01-15

    Oxidative stress is involved in development of diabetes complications. Extracellular superoxide dismutase (EC-SOD, SOD3) is a major extracellular antioxidant enzyme and is highly expressed in arterial walls. Advanced oxidation protein products (AOPP) and 8-iso-prostaglandin (isoprostane) are markers of oxidative stress. We investigated association of SOD3 gene variants, plasma concentrations of EC-SOD, AOPP and isoprostane with myocardial infarction and mortality in diabetic patients. We studied three cohorts designed to evaluate the vascular complications of diabetes: the GENEDIAB study (469 participants with type 1 diabetes at baseline; follow-up data for 259 participants), the GENESIS study (603 participants with type 1 diabetes at baseline; follow-up data for 525 participants) and the DIABHYCAR study (3137 participants with type 2 diabetes at baseline and follow-up). Duration of follow-up was 9, 5, and 5 years, respectively. Main outcome measures were incidence of myocardial infarction, and cardiovascular and total mortality during follow-up. Six single nucleotide polymorphisms in the SOD3 locus were genotyped in the three cohorts. Plasma concentrations of EC-SOD, AOPP, and isoprostane were measured in baseline samples of GENEDIAB participants. In GENEDIAB/GENESIS pooled cohorts, the minor T-allele of rs2284659 variant was inversely associated with the prevalence at baseline (Odds Ratio 0.48, 95% CI 0.29-0.78, p = 0.004) and the incidence during follow-up of myocardial infarction (Hazard Ratio 0.58, 95% CI 0.40-0.83, p = 0.003) and with cardiovascular (HR 0.33, 95% CI 0.08-0.74, p = 0.004) and all-cause mortality (HR 0.44, 95% CI 0.21-0.73, p = 0.0006). The protective allele was associated with higher plasma EC-SOD and lower plasma AOPP concentrations in GENEDIAB. It was also inversely associated with incidence of myocardial infarction (HR 0.75, 95% CI 0.59-0.94, p = 0.01) and all-cause mortality (HR 0.87, 95% CI 0.79-0.97, p = 0

  11. The Cu-Zn superoxide dismutase (SOD1) inhibits ERK phosphorylation by muscarinic receptor modulation in rat pituitary GH3 cells

    International Nuclear Information System (INIS)

    Secondo, Agnese; De Mizio, Mariarosaria; Zirpoli, Laura; Santillo, Mariarosaria; Mondola, Paolo

    2008-01-01

    The Cu-Zn superoxide dismutase (SOD1) belongs to a family of isoenzymes that are able to dismutate the oxygen superoxide in hydrogen peroxide and molecular oxygen. This enzyme is secreted by many cellular lines and it is also released trough a calcium-dependent depolarization mechanism involving SNARE protein SNAP 25. Using rat pituitary GH3 cells that express muscarinic receptors we found that SOD1 inhibits P-ERK1/2 pathway trough an interaction with muscarinic M1 receptor. This effect is strengthened by oxotremorine, a muscarinic M agonist and partially reverted by pyrenzepine, an antagonist of M1 receptor; moreover this effect is independent from increased intracellular calcium concentration induced by SOD1. Finally, P-ERK1/2 inhibition was accompanied by the reduction of GH3 cell proliferation. These data indicate that SOD1 beside the well studied antioxidant properties can be considered as a neuromodulator able to affect mitogen-activated protein kinase in rat pituitary cells trough a M1 muscarinic receptor

  12. Transporter TAP1-637G and Immunoproteasome PSMB9-60H Variants Influence the Risk of Developing Vitiligo in the Saudi Population

    Science.gov (United States)

    Elhawary, Nasser Attia; Bogari, Neda; Jiffri, Essam Hussien; Rashad, Mona; Fatani, Abdulhamid; Tayeb, Mohammed

    2014-01-01

    We evaluated whether TAP1-rs1135216 (p.637D>G) and PSMB9-rs17587 (p.60R>H) were significantly associated with the risk and severity of vitiligo among Saudi patients. One hundred seventy-two subjects were genotyped for the TAP1-rs1135216 and PSMB9-rs17587 variants using endonuclease digestions of amplified genomic DNA. The TAP1-rs1135216 and PSMB9-rs17587 mutant alleles were strongly associated with vitiligo, with odds ratios showing five fold and two fold risks (P Vitiligo vulgaris was the most common type of disease, associated with the DG (55%) and GG (46%) genotypes for rs1135216 and with the RH genotype (59%) for rs17587. The heterozygous 637DG and 60RH genotypes were each linked with active phenotypes in 64% of cases. In conclusion, the TAP1-rs1135216 and PSMB9-rs17587 variants are significantly associated with vitiligo, and even one copy of these mutant alleles can influence the risk among Saudis. Vitiligo vulgaris is associated with genotypes containing the mutant G and H alleles. PMID:25548428

  13. Mutant IDH1 Promotes Glioma Formation In Vivo

    Directory of Open Access Journals (Sweden)

    Beatrice Philip

    2018-05-01

    Full Text Available Summary: Isocitrate dehydrogenase 1 (IDH1 is the most commonly mutated gene in grade II–III glioma and secondary glioblastoma (GBM. A causal role for IDH1R132H in gliomagenesis has been proposed, but functional validation in vivo has not been demonstrated. In this study, we assessed the role of IDH1R132H in glioma development in the context of clinically relevant cooperating genetic alterations in vitro and in vivo. Immortal astrocytes expressing IDH1R132H exhibited elevated (R-2-hydroxyglutarate levels, reduced NADPH, increased proliferation, and anchorage-independent growth. Although not sufficient on its own, IDH1R132H cooperated with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote glioma development in vivo. These tumors resembled proneural human mutant IDH1 GBM genetically, histologically, and functionally. Our findings support the hypothesis that IDH1R132H promotes glioma development. This model enhances our understanding of the biology of IDH1R132H-driven gliomas and facilitates testing of therapeutic strategies designed to combat this deadly disease. : Philip et al. show that mutant IDH1 cooperates with PDGFA and loss of Cdkn2a, Atrx, and Pten to promote gliomagenesis in vivo in a mouse model of glioma. These tumors resemble proneural human mutant IDH1 glioblastoma and exhibit enhanced sensitivity to PARP inhibition in combination with chemotherapy. Keywords: IDH1, Cdkn2a, Atrx, Pten, glioma, mouse model, RCAS/TVA

  14. CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs

    Directory of Open Access Journals (Sweden)

    Lixia Wang

    2017-04-01

    Full Text Available Abstract Amyotrophic lateral sclerosis (ALS is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs from fibroblasts of familial ALS patients bearing SOD1 +/A272C and FUS +/G1566A mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq analysis of motor neurons derived from SOD1 +/A272C and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.

  15. Possible association of 3' UTR +357 A>G, IVS11-nt 93 T>C, c.1311 C>T polymorphism with G6PD deficiency.

    Science.gov (United States)

    Sirdah, Mahmoud M; Shubair, Mohammad E; Al-Kahlout, Mustafa S; Al-Tayeb, Jamal M; Prchal, Josef T; Reading, N Scott

    2017-07-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked inherited enzymopathic disorder affecting more than 500 million people worldwide. It has so far been linked to 217 distinct genetic variants in the exons and exon-intron boundaries of the G6PD gene, giving rise to a wide range of biochemical heterogeneity and clinical manifestations. Reports from different settings suggested the association of intronic and other mutations outside the reading frame of the G6PD gene with reduced enzyme activity and presenting clinical symptoms. The present study aimed to investigate any association of other variations apart of the exonic or exonic intronic boundaries in the development of G6PD deficiency. Sixty-seven unrelated Palestinian children admitted to the pediatric hospital with hemolytic crises due to G6PD deficiency were studied. In our Palestinian cohort of 67 [59 males (M) and 8 females (F)] G6PD-deficient children, previously hospitalized for acute hemolytic anemia due to favism, molecular sequencing of the G6PD gene revealed four cases (3M and 1F) that did not have any of the variants known to cause G6PD deficiency, but the 3' UTR c.*+357A>G (rs1050757) polymorphism in association with IVS 11 (c.1365-13T>C; rs2071429), and c.1311C>T (rs2230037). We now provide an additional evidence form Palestinian G6PD-deficient subjects for a possible role of 3' UTR c.*+357 A>G, c.1365-13T>C, and/or c.1311C>T polymorphism for G6PD deficiency, suggesting that not only a single variation in the exonic or exonic intronic boundaries, but also a haplotype of G6PD should considered as a cause for G6PD deficiency.

  16. Association Between Free Fatty Acid (FFA and Insulin Resistance: The Role of Inflammation (Adiponectin and high sensivity C-reactive Protein/hs-CRP and Stress Oxidative (Superoxide Dismutase/SOD in Obese Non-Diabetic Individual

    Directory of Open Access Journals (Sweden)

    Indriyanti Rafi Sukmawati

    2009-12-01

    Full Text Available BACKGROUND: Obesity is highly related to insulin resistance, therefore, the increased number of obesity is followed by the increased prevalence of type 2 Diabetes Melitus. Obesity is associated with increased of reactive oxygen species (ROS in muscle, liver and endothelial cells. The increase of ROS would lead to insulin resistance (IR and increased pro-inflammatory protein. FFA plays an important role in IR by inhibiting muscle glucose transport and oxidation via effects on serine/threonine phosphorylation of IRS-1. The aim of this study was discover the existence of SOD, hs-CRP and and adiponectin levels towards the occurrence of insulin resistance which was caused by elevated level of FFA and to discover the interaction between SOD, hs-CRP and adiponectin in non diabetic obese adult male. METHODS: This was observational study with cross sectional design. There were 65 obese male non diabetic subjects and 45 non obese male non diabetic subjects who met the criteria. In this study, measurements were done on body mass index (BMI, fasting glucose, insulin, adiponectin, hs-CRP and SOD. Obese was defined as BMI >25 kg/m2, normal weight was defined as BMI 18.5-23 kh/m2 and Insulin Resistance was defined as HOMA-IR >1. RESULTS: This study showed that Hypoadiponectinemia condition, decreased SOD level and high level of hs-CRP is associated with insulin resistance in obese non diabetic subject. Adiponectin and SOD were correlated negatively with insulin resistance in obese non diabetic (Adiponectin, r=-0.455, p<0.001; SOD, r=-0.262, p=0.003, hs-CRP was positively correlated with insulin resistance in obese non diabetic (r=0.592, p<0.001. FFA levels was increased in obese insulin resistance compared with non obese non insulin resistance. The Odds Ratio of Adiponectin, hs-CRP and SOD in this study was analyzed by logistic binary. The OR for SOD 3.6 (p=0.001, hs-CRP 9.1 (p<0.001 and Adiponectin 7.2 (p<0.001. CONCLUSIONS: This study suggested that FFA

  17. DREAM-Dependent Activation of Astrocytes in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Larrodé, Pilar; Calvo, Ana Cristina; Moreno-Martínez, Laura; de la Torre, Miriam; Moreno-García, Leticia; Molina, Nora; Castiella, Tomás; Iñiguez, Cristina; Pascual, Luis Fernando; Mena, Francisco Javier Miana; Zaragoza, Pilar; Y Cajal, Santiago Ramón; Osta, Rosario

    2018-01-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of unknown origin and characterized by a relentless loss of motor neurons that causes a progressive muscle weakness until death. Among the several pathogenic mechanisms that have been related to ALS, a dysregulation of calcium-buffering proteins in motor neurons of the brain and spinal cord can make these neurons more vulnerable to disease progression. Downstream regulatory element antagonist modulator (DREAM) is a neuronal calcium-binding protein that plays multiple roles in the nucleus and cytosol. The main aim of this study was focused on the characterization of DREAM and glial fibrillary acid protein (GFAP) in the brain and spinal cord tissues from transgenic SOD1 G93A mice and ALS patients to unravel its potential role under neurodegenerative conditions. The DREAM and GFAP levels in the spinal cord and different brain areas from transgenic SOD1 G93A mice and ALS patients were analyzed by Western blot and immunohistochemistry. Our findings suggest that the calcium-dependent excitotoxicity progressively enhanced in the CNS in ALS could modulate the multifunctional nature of DREAM, strengthening its apoptotic way of action in both motor neurons and astrocytes, which could act as an additional factor to increase neuronal damage. The direct crosstalk between astrocytes and motor neurons can become vulnerable under neurodegenerative conditions, and DREAM could act as an additional switch to enhance motor neuron loss. Together, these findings could pave the way to further study the molecular targets of DREAM to find novel therapeutic strategies to fight ALS.

  18. A botanical containing freeze dried açai pulp promotes healthy aging and reduces oxidative damage in sod1 knockdown flies

    OpenAIRE

    Laslo, Mara; Sun, Xiaoping; Hsiao, Cheng-Te; Wu, Wells W.; Shen, Rong-Fong; Zou, Sige

    2012-01-01

    Superoxide dismutase 1 (SOD1), a critical enzyme against oxidative stress, is implicated in aging and degenerative diseases. We previously showed that a nutraceutical containing freeze-dried açai pulp promotes survival of flies fed a high-fat diet or sod1 knockdown flies fed a standard diet. Here, we investigated the effect of açai supplementation initiated at the early or late young adulthood on lifespan, physiological function, and oxidative damage in sod1 knockdown flies. We found that Aça...

  19. Peroxisome Proliferator-Activated Receptor-γ in Amyotrophic Lateral Sclerosis and Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Mahmoud Kiaei

    2008-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a debilitating and one of the most common adult-onset neurodegenerative diseases with the prevalence of about 5 per 100 000 individuals. It results in the progressive loss of upper and lower motor neurons and leads to gradual muscle weakening ultimately causing paralysis and death. ALS has an obscure cause and currently no effective treatment exists. In this review, a potentially important pathway is described that can be activated by peroxisome proliferator-activated receptor-γ (PPAR-γ agonists and has the ability to block the neuropathological damage caused by inflammation in ALS and possibly in other neudegenerative diseases like Huntington's disease (HD. Neuroinflammation is a common pathological feature in neurodegenerative diseases. Therefore, PPAR-γ agonists are thought to be neuroprotective in ALS and HD. We and others have tested the neuroprotective effect of pioglitazone (Actos, a PPAR-γ agonist, in G93A SOD1 transgenic mouse model of ALS and found significant increase in survival of G93A SOD1 mice. These findings suggest that PPAR-γ may be an important regulator of neuroinflammation and possibly a new target for the development of therapeutic strategies for ALS. The involvement of PPAR-γ in HD is currently under investigation, one study finds that the treatment with rosiglitazone had no protection in R6/2 transgenic mouse model of HD. PPAR-γ coactivator-1α (PGC-1α is a transcriptional coactivator that works together with combination of other transcription factors like PPAR-γ in the regulation of mitochondrial biogenesis. Therefore, PPAR-γ is a possible target for ALS and HD as it functions as transcription factor that interacts with PGC-1α. In this review, the role of PPAR-γ in ALS and HD is discussed based on the current literature and hypotheses.

  20. Decreased serum Ou/Zn sOD in children with Autism

    Directory of Open Access Journals (Sweden)

    A.J. Russo

    2009-01-01

    Full Text Available Aim To assess serum Cu/Zn SOD (Superoxide Dismutase concentration in autistic children and evaluate its possible relationship to GI Symptoms. Subjects and Methods Serum from 50 autistic children (31 with chronic digestive disease (most with ileo-colonic lymphoid nodular hyperplasia (LNH and inflammation of the colorectal, small bowel and/or stomach and 19 autistic children without GI disease, and 29 non autistic controls (20 age matched non autistic children with no GI disease and 9 age matched non autistic children with GI disease were tested for Cu/Zn SOD using ELISAs. Results Serum Cu/Zn SOD levels of autistic children were significantly lower than all non autistic controls (p < 0.0001. Serum Cu/Zn SOD of autistic children with severe GI disease was significantly lower than autistic children with no GI disease (p < 0.0001, non autistic children without GI disease (<0.0001 and non autistic children with GI disease (p = 0.0003. Discussion These results suggest an association between Cu/Zn SOD serum levels and autism, particularly autistic children with GI disease, and that the concentration of serum Cu/Zn SOD may be a useful biomarker for autistic children with severe GI disease.

  1. Bermudagrass sod growth and metal uptake in coal combustion by-product-amended media

    Energy Technology Data Exchange (ETDEWEB)

    Schlossberg, M.J.; Vanags, C.P.; Miller, W.P. [University of Georgia, Athens, GA (USA). Dept. of Crop & Soil Science

    2004-04-01

    Coal combustion by-products (CCB) include fly ash and bottom ash and are generated nationally at rates of 10{sup 8} Mg yr{sup -1}. Land applications of CCB have improved physicochemical properties of soil, yet inherent bulkiness and trace metal content of CCB often limit their use. Likewise, utilization of biosolids and manure as fertilizer can be problematic due to unfavorable nutrient ratios. A 2-yr field study evaluated environmental and technical parameters associated with CCB-organic waste utilization as growth media in turfgrass sod production. Experimental growth media formulated with CCB and organic waste and a sand-compost control mixture were uniformly spread at rates from 200 to 400 m{sup 3} ha{sup -1} and sprigged with hybrid bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy). Leaf clippings were collected and analyzed for total elemental content each year. In Year 2, growth media samples were collected during establishment 47 and 84 days after planting (DAP) and viable Escherichia coli organisms were quantified. At harvest (99 or 114 DAP), sod biomass and physicochemical properties of the growth media were measured. During sod propagation, micronutrient and metal content in leaf clippings varied by growth media and time. After 47 d of typical sod field management, viable E. coli pathogens were detected in only one biosolids-amended plot. No viable E. coli were measured at 84 DAP. In both years, sod biomass was greatest in media containing biosolids and fly ash. Following installation of sod, evaluations did not reveal differences by media type or application volume. Using CCB-organic waste mixes at the rates described herein is a rapid and environmentally safe method of bermudagrass sod production.

  2. Brief report on development of indigofera pseudotinctoria mats high flavonoid mutant and anti-oxidation of its exacts

    International Nuclear Information System (INIS)

    Shen Xiaoxia; Mei Shufang; Shu Xiaoli; Wu Dianxing

    2010-01-01

    Mutant high in flavonoid was successfully developed after the dry seeds of Indigofera pseudotinctoria Mats were irradiated by 300 Gy 60 Co gamma rays. The contents of flavonoid in different tissues of mutant line MJ-HF1 were all higher than that of the wild type, especially in the seeds and leaves, which was 5.89 and 1.46 times of the wild type. Anti-oxidation testing showed that the flavonoid exacts from MJ-HF1 could decrease the contents of malondialdehyde(MDA) and increase the activities of superoxide dismutase (SOD) in the aged white mice in a 30-day feeding test. (authors)

  3. Modeling of short-term mechanism of arterial pressure control in the cardiovascular system: object-oriented and acausal approach.

    Science.gov (United States)

    Kulhánek, Tomáš; Kofránek, Jiří; Mateják, Marek

    2014-11-01

    This letter introduces an alternative approach to modeling the cardiovascular system with a short-term control mechanism published in Computers in Biology and Medicine, Vol. 47 (2014), pp. 104-112. We recommend using abstract components on a distinct physical level, separating the model into hydraulic components, subsystems of the cardiovascular system and individual subsystems of the control mechanism and scenario. We recommend utilizing an acausal modeling feature of Modelica language, which allows model variables to be expressed declaratively. Furthermore, the Modelica tool identifies which are the dependent and independent variables upon compilation. An example of our approach is introduced on several elementary components representing the hydraulic resistance to fluid flow and the elastic response of the vessel, among others. The introduced model implementation can be more reusable and understandable for the general scientific community. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Expression of ALS/FTD-linked mutant CCNF in zebrafish leads to increased cell death in the spinal cord and an aberrant motor phenotype.

    Science.gov (United States)

    Hogan, Alison L; Don, Emily K; Rayner, Stephanie L; Lee, Albert; Laird, Angela S; Watchon, Maxinne; Winnick, Claire; Tarr, Ingrid S; Morsch, Marco; Fifita, Jennifer A; Gwee, Serene S L; Formella, Isabel; Hortle, Elinor; Yuan, Kristy C; Molloy, Mark P; Williams, Kelly L; Nicholson, Garth A; Chung, Roger S; Blair, Ian P; Cole, Nicholas J

    2017-07-15

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, fatal neurodegenerative disease characterised by the death of upper and lower motor neurons. Approximately 10% of cases have a known family history of ALS and disease-linked mutations in multiple genes have been identified. ALS-linked mutations in CCNF were recently reported, however the pathogenic mechanisms associated with these mutations are yet to be established. To investigate possible disease mechanisms, we developed in vitro and in vivo models based on an ALS-linked missense mutation in CCNF. Proteomic analysis of the in vitro models identified the disruption of several cellular pathways in the mutant model, including caspase-3 mediated cell death. Transient overexpression of human CCNF in zebrafish embryos supported this finding, with fish expressing the mutant protein found to have increased levels of cleaved (activated) caspase-3 and increased cell death in the spinal cord. The mutant CCNF fish also developed a motor neuron axonopathy consisting of shortened primary motor axons and increased frequency of aberrant axonal branching. Importantly, we demonstrated a significant correlation between the severity of the CCNF-induced axonopathy and a reduced motor response to a light stimulus (photomotor response). This is the first report of an ALS-linked CCNF mutation in vivo and taken together with the in vitro model identifies the disruption of cell death pathways as a significant consequence of this mutation. Additionally, this study presents a valuable new tool for use in ongoing studies investigating the pathobiology of ALS-linked CCNF mutations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Double-strand break repair and G2 block in Chinese hamster ovary cells and their radiosensitive mutants

    International Nuclear Information System (INIS)

    Weibezahn, K.F.; Lohrer, H.; Herrlich, P.

    1985-01-01

    Two X-ray-sensitive mutants of the CHO K1 cell line were examined for their cell-cycle progression after irradiation with γ-rays, and for their ability to rejoin double-strand breaks (DSBs) as detected by neutral filter elution. Both mutants were impaired in DSB rejoining and both were irreversibly blocked in the G 2 phase of the cell cycle as determined by cytofluorometry. From one mutant the authors have isolated several revertants. The revertants stem from genomic DNA transfection experiments and may have been caused by gene uptake. All revertants survived γ-irradiation as did the wild-type CHO line. One of them has been examined for its ability to rejoin DSBs and was found to be similar to the wild type. (Auth.)

  6. Beta1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis

    DEFF Research Database (Denmark)

    Aszodi, Attila; Hunziker, Ernst B; Brakebusch, Cord

    2003-01-01

    Beta1 integrins are highly expressed on chondrocytes, where they mediate adhesion to cartilage matrix proteins. To assess the functions of beta1 integrin during skeletogenesis, we inactivated the beta1 integrin gene in chondrocytes. We show here that these mutant mice develop a chondrodysplasia...... of various severity. beta1-deficient chondrocytes had an abnormal shape and failed to arrange into columns in the growth plate. This is caused by a lack of motility, which is in turn caused by a loss of adhesion to collagen type II, reduced binding to and impaired spreading on fibronectin, and an abnormal F......-actin organization. In addition, mutant chondrocytes show decreased proliferation caused by a defect in G1/S transition and cytokinesis. The G1/S defect is, at least partially, caused by overexpression of Fgfr3, nuclear translocation of Stat1/Stat5a, and up-regulation of the cell cycle inhibitors p16 and p21...

  7. Abscisic Acid–Responsive Guard Cell Metabolomes of Arabidopsis Wild-Type and gpa1 G-Protein Mutants[C][W

    Science.gov (United States)

    Jin, Xiaofen; Wang, Rui-Sheng; Zhu, Mengmeng; Jeon, Byeong Wook; Albert, Reka; Chen, Sixue; Assmann, Sarah M.

    2013-01-01

    Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography–multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼350 million guard cell protoplasts from ∼30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca2+-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1. PMID:24368793

  8. Influence of plasminogen activator inhibitor-1 (SERPINE1) 4G/5G polymorphism on circulating SERPINE-1 antigen expression in HCC associated with viral infection.

    Science.gov (United States)

    Divella, Rosa; Mazzocca, Antonio; Gadaleta, Cosimo; Simone, Giovanni; Paradiso, Angelo; Quaranta, Michele; Daniele, Antonella

    2012-01-01

    Hepatocarcinogenesis is heavily influenced by chronic hepatitis B (HBV) and C (HCV) infection. Elevated levels of plasminogen activator inhibitor-1 (SERPINE1/PAI-1) have been reported in patients with hepatocellular carcinoma (HCC) associated with viral infection. The gene encoding SERPINE1 is highly polymorphic and the frequently associated 4/5 guanosine (4G/5G) polymorphism in the gene promoter may influence its expression. Here, we investigated the distribution of genotypes and the frequency of alleles of the 4G/5G polymorphism in patients with HCC, the influence of the 4G/5G polymorphism on plasma SERPINE1 levels and its association with viral infection. A total of 75 patients with HCC were enrolled: 32 (42.6%) were HBV(+)/HCV(+), 11 (14.6%) were only HCV(+), and 32 (42.6%) were negative for both viruses. A control group of healthy donors was also enrolled (n=50). SERPINE1 plasma concentrations were determined by ELISA and the detection of the promoter 4G/5G polymorphism was performed by an allele-specific PCR analysis. We found that the frequency of both the 4G/4G genotype (p=0.02) and the 4G allele (p=0.006) were significantly higher in patients with HCC compared to the control group, and particularly higher in patients with HCC co-infected with HBV(+)/HCV(+) than in those with no viral infection. We also found that patients with the 4G/4G genotype had significantly higher plasma SERPINE1 protein levels when compared with patients with the 4G/5G or 5G/5G genotype (p5G SERPINE1 polymorphism with a higher level of SERPINE1 protein in patients with HCC with HBV(+)/HCV(+) than those without infection, suggest the presence of two distinct pathogenic mechanisms in hepatocarcinogenesis, depending on the etiology.

  9. Melatonin protects against maternal obesity-associated oxidative stress and meiotic defects in oocytes via the SIRT3-SOD2-dependent pathway.

    Science.gov (United States)

    Han, Longsen; Wang, Haichao; Li, Ling; Li, Xiaoyan; Ge, Juan; Reiter, Russel J; Wang, Qiang

    2017-10-01

    Maternal obesity in humans is associated with poor outcomes across the reproductive spectrum. Emerging evidence indicates that these defects are likely attributed to factors within the oocyte. Although various molecules and pathways may contribute to impaired oocyte quality, prevention of fertility issues associated with maternal obesity is a challenge. Using mice fed a high-fat diet (HFD) as an obesity model, we document spindle disorganization, chromosome misalignment, and elevated reactive oxygen species (ROS) levels in oocytes from obese mice. Oral administration of melatonin to HFD mice not only reduces ROS generation, but also prevents spindle/chromosome anomalies in oocytes, consequently promoting the developmental potential of early embryos. Consistent with this finding, we find that melatonin supplement during in vitro maturation also markedly attenuates oxidative stress and meiotic defects in HFD oocytes. Finally, by performing morpholino knockdown and acetylation-mimetic mutant overexpression assays, we reveal that melatonin ameliorates maternal obesity-induced defective phenotypes in oocytes through the SIRT3-SOD2-dependent mechanism. In sum, our data uncover the marked beneficial effects of melatonin on oocyte quality from obese females; this opens a new area for optimizing culture system as well as fertility management. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Mutant DD genotype of NFKB1 gene is associated with the susceptibility and severity of coronary artery disease.

    Science.gov (United States)

    Luo, Jun-Yi; Li, Xiao-Mei; Zhou, Yun; Zhao, Qiang; Chen, Bang-Dang; Liu, Fen; Chen, Xiao-Cui; Zheng, Hong; Ma, Yi-Tong; Gao, Xiao-Ming; Yang, Yi-Ning

    2017-02-01

    Nuclear factor κappa B (NF-κB) is an important transcription factor in the development and progression of coronary artery disease (CAD). Recent evidence suggests that -94 ATTG ins/del mutant in the promoter of NFKB1 gene is an essential functional mutant. The present study demonstrated the frequencies of the del/del (DD) genotype and del (D) allele were significantly higher in CAD patients than in controls. CAD patients carrying mutant DD genotype had worse stenosis of diseased coronary arteries compared to those carrying ins/ins (II) or ins/del (ID) genotype. Plasma levels of endothelial nitric oxide synthase (eNOS) were lower, while inflammatory cytokine incnterlukin-6 (IL-6) was higher in CAD patients with DD genotype than those with II or ID genotype (both PDD genotype HUVECs) were more susceptible to H 2 O 2 -induced apoptosis, which was accompanied with a decreased Bcl-2 expression. Further, mutant HUVECs had lower eNOS but higher IL-6 mRNA levels and decreased phosphorylation of eNOS under H 2 O 2 -stimulation (both PDD genotype of NFKB1 gene is associated with the risk and severity of CAD. Dwonregulation of NF-κB p50 subunit leads to exacerbated endothelial dysfunction and apoptosis and enhanced inflammatory response that is the potential underlying mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Burden of rare variants in ALS genes influences survival in familial and sporadic ALS.

    Science.gov (United States)

    Pang, Shirley Yin-Yu; Hsu, Jacob Shujui; Teo, Kay-Cheong; Li, Yan; Kung, Michelle H W; Cheah, Kathryn S E; Chan, Danny; Cheung, Kenneth M C; Li, Miaoxin; Sham, Pak-Chung; Ho, Shu-Leong

    2017-10-01

    Genetic variants are implicated in the development of amyotrophic lateral sclerosis (ALS), but it is unclear whether the burden of rare variants in ALS genes has an effect on survival. We performed whole genome sequencing on 8 familial ALS (FALS) patients with superoxide dismutase 1 (SOD1) mutation and whole exome sequencing on 46 sporadic ALS (SALS) patients living in Hong Kong and found that 67% had at least 1 rare variant in the exons of 40 ALS genes; 22% had 2 or more. Patients with 2 or more rare variants had lower probability of survival than patients with 0 or 1 variant (p = 0.001). After adjusting for other factors, each additional rare variant increased the risk of respiratory failure or death by 60% (p = 0.0098). The presence of the rare variant was associated with the risk of ALS (Odds ratio 1.91, 95% confidence interval 1.03-3.61, p = 0.03), and ALS patients had higher rare variant burden than controls (MB, p = 0.004). Our findings support an oligogenic basis with the burden of rare variants affecting the development and survival of ALS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. An Adaptation to Low Copper in Candida albicans Involving SOD Enzymes and the Alternative Oxidase.

    Directory of Open Access Journals (Sweden)

    Chynna N Broxton

    Full Text Available In eukaryotes, the Cu/Zn superoxide dismutase (SOD1 is a major cytosolic cuproprotein with a small fraction residing in the mitochondrial intermembrane space (IMS to protect against respiratory superoxide. Curiously, the opportunistic human fungal pathogen Candida albicans is predicted to express two cytosolic SODs including Cu/Zn containing SOD1 and manganese containing SOD3. As part of a copper starvation response, C. albicans represses SOD1 and induces the non-copper alternative SOD3. While both SOD1 and SOD3 are predicted to exist in the same cytosolic compartment, their potential role in mitochondrial oxidative stress had yet to be investigated. We show here that under copper replete conditions, a fraction of the Cu/Zn containing SOD1 localizes to the mitochondrial IMS to guard against mitochondrial superoxide. However in copper starved cells, localization of the manganese containing SOD3 is restricted to the cytosol leaving the mitochondrial IMS devoid of SOD. We observe that during copper starvation, an alternative oxidase (AOX form of respiration is induced that is not coupled to ATP synthesis but maintains mitochondrial superoxide at low levels even in the absence of IMS SOD. Surprisingly, the copper-dependent cytochrome c oxidase (COX form of respiration remains high with copper starvation. We provide evidence that repression of SOD1 during copper limitation serves to spare copper for COX and maintain COX respiration. Overall, the complex copper starvation response of C. albicans involving SOD1, SOD3 and AOX minimizes mitochondrial oxidative damage whilst maximizing COX respiration essential for fungal pathogenesis.

  13. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    Science.gov (United States)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  14. Early functional deficit and microglial disturbances in a mouse model of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Yannick Nicolas Gerber

    Full Text Available BACKGROUND: Amyotrophic lateral sclerosis (ALS is a neurodegenerative disorder characterized by selective motoneurons degeneration. There is today no clear-cut pathogenesis sequence nor any treatment. However growing evidences are in favor of the involvement, besides neurons, of several partners such as glia and muscles. To better characterize the time course of pathological events in an animal model that recapitulates human ALS symptoms, we investigated functional and cellular characteristics of hSOD1(G93A mice. METHODS AND FINDINGS: We have evaluated locomotor function of hSOD1(G93A mice through dynamic walking patterns and spontaneous motor activity analysis. We detected early functional deficits that redefine symptoms onset at 60 days of age, i.e. 20 days earlier than previously described. Moreover, sequential combination of these approaches allows monitoring of motor activity up to disease end stage. To tentatively correlate early functional deficit with cellular alterations we have used flow cytometry and immunohistochemistry approaches to characterize neuromuscular junctions, astrocytes and microglia. We show that (1 decrease in neuromuscular junction's number correlates with motor impairment, (2 astrocytes number is not altered at pre- and early-symptomatic ages but intraspinal repartition is modified at symptoms onset, and (3 microglia modifications precede disease onset. At pre-symptomatic age, we show a decrease in microglia number whereas at onset of the disease two distinct microglia sub-populations emerge. CONCLUSIONS: In conclusion, precise motor analysis updates the onset of the disease in hSOD1(G93A mice and allows locomotor monitoring until the end stage of the disease. Early functional deficits coincide with alterations of neuromuscular junctions. Importantly, we identify different sets of changes in microglia before disease onset as well as at early-symptomatic stage. This finding not only brings a new sequence of cellular

  15. Phrenic long-term facilitation following intrapleural CTB-SAP-induced respiratory motor neuron death.

    Science.gov (United States)

    Nichols, Nicole L; Craig, Taylor A; Tanner, Miles A

    2017-08-16

    Amyotrophic lateral sclerosis (ALS) is a devastating disease leading to progressive motor neuron degeneration and death by ventilatory failure. In a rat model of ALS (SOD1 G93A ), phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) is enhanced greater than expected at disease end-stage but the mechanism is unknown. We suggest that one trigger for this enhancement is motor neuron death itself. Intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) selectively kill respiratory motor neurons and mimic motor neuron death observed in SOD1 G93A rats. This CTB-SAP model allows us to study the impact of respiratory motor neuron death on breathing without many complications attendant to ALS. Here, we tested the hypothesis that phrenic motor neuron death is sufficient to enhance pLTF. pLTF was assessed in anesthetized, paralyzed and ventilated Sprague Dawley rats 7 and 28days following bilateral intrapleural injections of: 1) CTB-SAP (25μg), or 2) un-conjugated CTB and SAP (control). CTB-SAP enhanced pLTF at 7 (CTB-SAP: 162±18%, n=8 vs. 63±3%; n=8; pSAP: 64±10%, n=10 vs. 60±13; n=8; p>0.05). Thus, pLTF at 7 (not 28) days post-CTB-SAP closely resembles pLTF in end-stage ALS rats, suggesting that processes unique to the early period of motor neuron death enhance pLTF. This project increases our understanding of respiratory plasticity and its implications for breathing in motor neuron disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Plasminogen activator inhibitor-1 4G/5G polymorphism is associated with coronary artery disease risk: a meta-analysis.

    Science.gov (United States)

    Zhang, Huifeng; Dong, Pingshuan; Yang, Xuming; Liu, Zhenghao

    2014-01-01

    The aim of the current study was to evaluate the association of PAI-1 4G/5G polymorphism with coronary artery disease (CAD) risk using a meta-analysis. All eligible studies were identified through a search of PubMed, EMBASE, China National Knowledge Infrastructure (CNKI), Database of Chinese Scientific and Technical Periodicals, and China Biology Medical literature database (CBM) before June 2014. The association between the PAI-1 4G/5G polymorphism and CAD risk was estimated by odds ratio (OR) and 95% confidence interval (CI). A total of 72 studies including 23557 cases and 21526 controls were eventually collected. The PAI-1 4G/5G polymorphism was significant associated with CAD risk in overall population (OR=1.19, 95% CI 1.10-1.28, P 5G polymorphism was a risk factor for CAD.

  17. Human stefin B normal and patho-physiological role: molecular and cellular aspects of amyloid-type aggregation of certain EPM1 mutants.

    Directory of Open Access Journals (Sweden)

    Mira ePolajnar

    2012-08-01

    Full Text Available Epilepsies are characterised by abnormal electrophysiological activity of the brain. Among various types of inherited epilepsies different epilepsy syndromes, among them progressive myoclonus epilepsies with features of ataxia and neurodegeneration, are counted. The progressive myoclonus epilepsy of type 1 (EPM1, also known as Unverricht-Lundborg disease presents with features of cerebellar atrophy and increased oxidative stress. It has been found that EPM1 is caused by mutations in human cystatin B gene (human stefin B. We first describe the role of protein aggregation in other neurodegenerative conditions. Protein aggregates appear intraneurally but are also excreted, such as is the case with senile plaques of amyloid- β (Aβ that accumulate in the brain parenchyma and vessel walls. A common characteristic of such diseases is the change of the protein conformation towards β secondary structure that accounts for the strong tendency of such proteins to aggregate and form amyloid fibrils. Second, we describe the patho-physiology of EPM1 and the normal and aberrant roles of stefin B in a mouse model of the disease. Furthermore, we discuss how the increased protein aggregation observed with some of the mutants of human stefin B may relate to the neurodegeneration that occurs in rare EPM1 patients. Our hypothesis (Ceru et al., 2005 states that some of the EPM1 mutants of human stefin B may undergo aggregation in neural cells, thus gaining additional toxic function (apart from loss of normal function. Our in vitro experiments thus far have confirmed that 4 mutants undergo increased aggregation relative to the wild-type protein. It has been shown that the R68X mutant forms amyloid-fibrils very rapidly, even at neutral pH and forms perinuclear inclusions, whereas the G4R mutant exhibits a prolonged lag phase, during which the toxic prefibrillar aggregates accumulate and are scattered more diffusely over the cytoplasm. Initial experiments on the G50E

  18. Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, Narayanasami [NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439 (United States); Dewanti, Asteriani [Department of Chemistry and Physics, Western Carolina University, Cullowhee, NC 28723 (United States); Merli, Angelo; Rossi, Gian Luigi [Department of Biochemistry and Molecular Biology, University of Parma, Parma (Italy); Mitra, Bharati [Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201 (United States); Mathews, F. Scott, E-mail: mathews@biochem.wustl.edu [Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110 (United States); NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2009-06-01

    The crystal structure of the G81A mutant form of the chimera of (S)-mandelate dehydrogenase and of its complexes with two of its substrates reveal productive and non-productive modes of binding for the catalytic reaction. The structure also indicates the role of G81A in lowering the redox potential of the flavin co-factor leading to an ∼200-fold slower catalytic rate of substrate oxidation. (S)-Mandelate dehydrogenase (MDH) from Pseudomonas putida, a membrane-associated flavoenzyme, catalyzes the oxidation of (S)-mandelate to benzoylformate. Previously, the structure of a catalytically similar chimera, MDH-GOX2, rendered soluble by the replacement of its membrane-binding segment with the corresponding segment of glycolate oxidase (GOX), was determined and found to be highly similar to that of GOX except within the substituted segments. Subsequent attempts to cocrystallize MDH-GOX2 with substrate proved unsuccessful. However, the G81A mutants of MDH and of MDH-GOX2 displayed ∼100-fold lower reactivity with substrate and a modestly higher reactivity towards molecular oxygen. In order to understand the effect of the mutation and to identify the mode of substrate binding in MDH-GOX2, a crystallographic investigation of the G81A mutant of the MDH-GOX2 enzyme was initiated. The structures of ligand-free G81A mutant MDH-GOX2 and of its complexes with the substrates 2-hydroxyoctanoate and 2-hydroxy-3-indolelactate were determined at 1.6, 2.5 and 2.2 Å resolution, respectively. In the ligand-free G81A mutant protein, a sulfate anion previously found at the active site is displaced by the alanine side chain introduced by the mutation. 2-Hydroxyoctanoate binds in an apparently productive mode for subsequent reaction, while 2-hydroxy-3-indolelactate is bound to the enzyme in an apparently unproductive mode. The results of this investigation suggest that a lowering of the polarity of the flavin environment resulting from the displacement of nearby water molecules caused by

  19. Pu-Erh Tea Extract Induces the Degradation of FET Family Proteins Involved in the Pathogenesis of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2014-01-01

    Full Text Available FET family proteins consist of fused in sarcoma/translocated in liposarcoma (FUS/TLS, Ewing's sarcoma (EWS, and TATA-binding protein-associated factor 15 (TAF15. Mutations in the copper/zinc superoxide dismutase (SOD1, TAR DNA-binding protein 43 (TDP-43, and FET family proteins are associated with the development of amyotrophic lateral sclerosis (ALS, a fatal neurodegenerative disease. There is currently no cure for this disease and few effective treatments are available. Epidemiological studies indicate that the consumption of tea is associated with a reduced risk of developing neurodegenerative diseases. The results of this study revealed that components of a pu-erh tea extract (PTE interacted with FET family proteins but not with TDP-43 or SOD1. PTE induced the degradation of FET family proteins but had no effects on TDP-43 or SOD1. The most frequently occurring ALS-linked FUS/TLS mutant protein, R521C FUS/TLS, was also degraded in the presence of PTE. Furthermore, ammonium chloride, a lysosome inhibitor, but not lactacystin, a proteasome inhibitor, reduced the degradation of FUS/TLS protein by PTE. PTE significantly reduced the incorporation of R521C FUS/TLS into stress granules under stress conditions. These findings suggest that PTE may have beneficial health effects, including preventing the onset of FET family protein-associated neurodegenerative diseases and delaying the progression of ALS by inhibiting the cytoplasmic aggregation of FET family proteins.

  20. Single nucleotide polymorphisms at erythropoietin, superoxide dismutase 1, splicing factor, arginine/serin-rich 15 and plasmacytoma variant translocation genes association with diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Maisaa Alwohhaib

    2014-01-01

    Full Text Available A number of genes have been identified in diabetic nephropathy. Association between diabetes-associated nephropathy and polymorphisms in the erythropoietin (EPO gene, variants in the superoxide dismutase 1 (SOD1 gene and plasmacytoma variant translocation 1 (PVT1 gene have been identified. The EPO, SOD1:SFRS15 and PVT1 genes were genotyped using the single nucleotide polymorphism (SNP technique in 38 diabetic nephropathy patients (Group 1 compared with 64 diabetic type 2 subjects without nephropathy (Group 2 at the Mubarak Alkabeer Hospital, Kuwait. The frequency of the risk allele T of the EPO (rs1617640 gene was high in both groups (0.96 in Group 1 and 0.92 in Group 2. Similarly, SNPs of the PVT1 (rs2720709 gene showed a higher frequency of the risk allele G in both groups (0.70 in the Group 1 and 0.68 in Group 2. Although the frequency of the risk allele A was higher than the frequency of the non-risk allele C of the SOD1:SFRS15 gene in both groups, the lowest probability value was observed in those gene SNPs (P = 0.05. We observed that the A allele of the SOD1:SFRS15 gene (rs17880135 was more frequently present in Group 1 (0.75 compared with Group 2 (0.62. Susceptibility to diabetes-associated nephropathy is partially mediated by genetic predisposition, and screening tests may open the gate for new therapeutic approaches.

  1. Disulfide scrambling in superoxide dismutase 1 reduces its cytotoxic effect in cultured cells and promotes protein aggregation.

    Directory of Open Access Journals (Sweden)

    Lina Leinartaitė

    Full Text Available Mutations in the gene coding for superoxide dismutase 1 (SOD1 are associated with familiar forms of the neurodegenerative disease amyotrophic lateral sclerosis (ALS. These mutations are believed to result in a "gain of toxic function", leading to neuronal degeneration. The exact mechanism is still unknown, but misfolding/aggregation events are generally acknowledged as important pathological events in this process. Recently, we observed that demetallated apoSOD1, with cysteine 6 and 111 substituted for alanine, is toxic to cultured neuroblastoma cells. This toxicity depended on an intact, high affinity Zn(2+ site. It was therefor contradictory to discover that wild-type apoSOD1 was not toxic, despite of its high affinity for Zn(2+. This inconsistency was hypothesized to originate from erroneous disulfide formation involving C6 and C111. Using high resolution non-reducing SDS-PAGE, we have in this study demonstrated that the inability of wild-type apoSOD1 to cause cell death stems from formation of non-native intra-molecular disulfides. Moreover, monomeric apoSOD1 variants capable of such disulfide scrambling aggregated into ThT positive oligomers under physiological conditions without agitation. The oligomers were stabilized by inter-molecular disulfides and morphologically resembled what has in other neurodegenerative diseases been termed protofibrils. Disulfide scrambling thus appears to be an important event for misfolding and aggregation of SOD1, but may also be significant for protein function involving cysteines, e.g. mitochondrial import and copper loading.

  2. In vitro and in silico cloning of Xenopus laevis SOD2 cDNA and its phylogenetic analysis.

    Science.gov (United States)

    Purrello, Michele; Di Pietro, Cinzia; Ragusa, Marco; Pulvirenti, Alfredo; Giugno, Rosalba; Di Pietro, Valentina; Emmanuele, Giovanni; Travali, Salvo; Scalia, Marina; Shasha, Dennis; Ferro, Alfredo

    2005-02-01

    By using the methodology of both wet and dry biology (i.e., RT-PCR and cycle sequencing, and biocomputational technology, respectively) and the data obtained through the Genome Projects, we have cloned Xenopus laevis SOD2 (MnSOD) cDNA and determined its nucleotide sequence. These data and the deduced protein primary structure were compared with all the other SOD2 nucleotide and amino acid sequences from eukaryotes and prokaryotes, published in public databases. The analysis was performed by using both Clustal W, a well known and widely used program for sequence analysis, and AntiClustAl, a new algorithm recently created and implemented by our group. Our results demonstrate a very high conservation of the enzyme amino acid sequence during evolution, which proves a close structure-function relationship. This is to be expected for very ancient molecules endowed with critical biological functions, performed through a specific structural organization. The nucleotide sequence conservation is less pronounced: this too was foreseeable, due to neutral mutations and to the species-specific codon usage. The data obtained by using AntiClustAl are comparable with those produced with Clustal W, which validates this algorithm as an important new tool for biocomputational analysis. Finally, it is noteworthy that evolutionary trees, drawn by using all the available data on SOD2 nucleotide sequences and amino acid and either Clustal W or AntiClustAl, are comparable to those obtained through phylogenetic analysis based on fossil records.

  3. Double-strand break repair and G/sub 2/ block in Chinese hamster ovary cells and their radiosensitive mutants

    Energy Technology Data Exchange (ETDEWEB)

    Weibezahn, K F; Lohrer, H; Herrlich, P [Kernforschungszentrum Karlsruhe G.m.b.H. (Germany, F.R.). Inst. fuer Genetik und Toxikologie

    1985-05-01

    Two X-ray-sensitive mutants of the CHO K1 cell line were examined for their cell-cycle progression after irradiation with ..gamma..-rays, and for their ability to rejoin double-strand breaks (DSBs) as detected by neutral filter elution. Both mutants were impaired in DSB rejoining and both were irreversibly blocked in the G/sub 2/ phase of the cell cycle as determined by cytofluorometry. From one mutant the authors have isolated several revertants. The revertants stem from genomic DNA transfection experiments and may have been caused by gene uptake. All revertants survived ..gamma..-irradiation as did the wild-type CHO line. One of them has been examined for its ability to rejoin DSBs and was found to be similar to the wild type.

  4. Whole-exome sequencing in amyotrophic lateral sclerosis suggests NEK1 is a risk gene in Chinese.

    Science.gov (United States)

    Gratten, Jacob; Zhao, Qiongyi; Benyamin, Beben; Garton, Fleur; He, Ji; Leo, Paul J; Mangelsdorf, Marie; Anderson, Lisa; Zhang, Zong-Hong; Chen, Lu; Chen, Xiang-Ding; Cremin, Katie; Deng, Hong-Weng; Edson, Janette; Han, Ying-Ying; Harris, Jessica; Henders, Anjali K; Jin, Zi-Bing; Li, Zhongshan; Lin, Yong; Liu, Xiaolu; Marshall, Mhairi; Mowry, Bryan J; Ran, Shu; Reutens, David C; Song, Sharon; Tan, Li-Jun; Tang, Lu; Wallace, Robyn H; Wheeler, Lawrie; Wu, Jinyu; Yang, Jian; Xu, Huji; Visscher, Peter M; Bartlett, Perry F; Brown, Matthew A; Wray, Naomi R; Fan, Dongsheng

    2017-11-17

    Amyotrophic lateral sclerosis (ALS) is a progressive neurological disease characterised by the degeneration of motor neurons, which are responsible for voluntary movement. There remains limited understanding of disease aetiology, with median survival of ALS of three years and no effective treatment. Identifying genes that contribute to ALS susceptibility is an important step towards understanding aetiology. The vast majority of published human genetic studies, including for ALS, have used samples of European ancestry. The importance of trans-ethnic studies in human genetic studies is widely recognised, yet a dearth of studies of non-European ancestries remains. Here, we report analyses of novel whole-exome sequencing (WES) data from Chinese ALS and control individuals. WES data were generated for 610 ALS cases and 460 controls drawn from Chinese populations. We assessed evidence for an excess of rare damaging mutations at the gene level and the gene set level, considering only singleton variants filtered to have allele frequency less than 5 × 10 -5 in reference databases. To meta-analyse our results with a published study of European ancestry, we used a Cochran-Mantel-Haenszel test to compare gene-level variant counts in cases vs controls. No gene passed the genome-wide significance threshold with ALS in Chinese samples alone. Combining rare variant counts in Chinese with those from the largest WES study of European ancestry resulted in three genes surpassing genome-wide significance: TBK1 (p = 8.3 × 10 -12 ), SOD1 (p = 8.9 × 10 -9 ) and NEK1 (p = 1.1 × 10 -9 ). In the Chinese data alone, SOD1 and NEK1 were nominally significantly associated with ALS (p = 0.04 and p = 7 × 10 -3 , respectively) and the case/control frequencies of rare coding variants in these genes were similar in Chinese and Europeans (SOD1: 1.5%/0.2% vs 0.9%/0.1%, NEK1 1.8%/0.4% vs 1.9%/0.8%). This was also true for TBK1 (1.2%/0.2% vs 1.4%/0.4%), but

  5. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice.

    Science.gov (United States)

    Liu, Yuan; Cao, Aiping; Li, Yawen; Li, Xun; Cong, Hua; He, Shenyi; Zhou, Huaiyu

    2017-06-07

    Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects all warm-blooded animals including humans and causes toxoplasmosis. An effective vaccine could be an ideal choice for preventing and controlling toxoplasmosis. T. gondii Superoxide dismutase (TgSOD) might participate in affecting the intracellular growth of both bradyzoite and tachyzoite forms. In the present study, the TgSOD gene was used to construct a DNA vaccine (pEGFP-SOD). TgSOD gene was amplified and inserted into eukaryotic vector pEGFP-C1 and formed the DNA vaccine pEGFP-SOD. Then the BALB/c mice were immunized intramuscularly with the DNA vaccine and those injected with pEGFP-C1, PBS or nothing were treated as controls. Four weeks after the last immunization, all mouse groups followed by challenging intraperitoneally with tachyzoites of T. gondii ME49 strain. Results showed higher levels of total IgG, IgG2α in the sera and interferon gamma (IFN-γ) in the splenocytes from pEGFP-SOD inoculated mice than those unvaccinated, or inoculated with either empty plasmid vector or PBS. The proportions of CD4 + T cells and CD8 + T cells in the spleen from pEGFP-SOD inoculated mice were significantly (p < 0.05) increased compared to control groups. In addition, the survival time of mice immunized with pEGFP-SOD was significantly prolonged as compared to the controls (p < 0.05) although all the mice died. The present study revealed that the DNA vaccine triggered strong humoral and cellular immune responses, and aroused partial protective immunity against acute T. gondii infection in BALB/c mice. The collective data suggests the SOD may be a potential vaccine candidate for further development.

  6. A proteome analysis of the response of a Pseudomonas aeruginosa oxyR mutant to iron limitation.

    Science.gov (United States)

    Vinckx, Tiffany; Wei, Qing; Matthijs, Sandra; Noben, Jean-Paul; Daniels, Ruth; Cornelis, Pierre

    2011-06-01

    In Pseudomonas aeruginosa the response to oxidative stress is orchestrated by the LysR regulator OxyR by activation of the transcription of two catalase genes (katA and katB), of the alkyl-hydroxyperoxidases ahpCF and ahpB. Next to the expected high sensitivity to oxidative stress generated by reactive oxygen species (ROS: H(2)O(2), O(2)(-)), the oxyR mutant shows a defective growth under conditions of iron limitation (Vinckx et al. 2008). Although production and uptake of the siderophore pyoverdine is not affected by the absence of oxyR, the mutant is unable to satisfy its need for iron when grown under iron limiting conditions. In order to get a better insight into the effects caused by iron limitation on the physiological response of the oxyR mutant we decided to compare the proteomes of the wild type and the mutant grown in the iron-poor casamino acids medium (CAA), in CAA plus H(2)O(2), and in CAA plus the strong iron chelator ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (EDDHA). Especially in the presence of hydrogen peroxide the oxyR cells increase the production of stress proteins (Dps and IbpA). The superoxide dismutase SodM is produced in higher amounts in the oxyR mutant grown in CAA plus H(2)O(2). The PchB protein, a isochorismate-pyruvate lyase involved in the siderophore pyochelin biosynthesis is not detectable in the extracts from the oxyR mutant grown in the presence of hydrogen peroxide. When cells were grown in the presence of EDDHA, we observed a reduction of the ferric uptake regulator (Fur), and an increase in the two subunits of the succinyl-CoA synthetase and the fumarase FumC1.

  7. Cu/Zn superoxide dismutase and the proton ATPase Pma1p of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Baron, J. Allen; Chen, Janice S.; Culotta, Valeria C., E-mail: vculott1@jhu.edu

    2015-07-03

    In eukaryotes, the Cu/Zn containing superoxide dismutase (SOD1) plays a critical role in oxidative stress protection as well as in signaling. We recently demonstrated a function for Saccharomyces cerevisiae Sod1p in signaling through CK1γ casein kinases and identified the essential proton ATPase Pma1p as one likely target. The connection between Sod1p and Pma1p was explored further by testing the impact of sod1Δ mutations on cells expressing mutant alleles of Pma1p that alter activity and/or post-translational regulation of this ATPase. We report here that sod1Δ mutations are lethal when combined with the T912D allele of Pma1p in the C-terminal regulatory domain. This “synthetic lethality” was reversed by intragenic suppressor mutations in Pma1p, including an A906G substitution that lies within the C-terminal regulatory domain and hyper-activates Pma1p. Surprisingly the effect of sod1Δ mutations on Pma1-T912D is not mediated through the Sod1p signaling pathway involving the CK1γ casein kinases. Rather, Sod1p sustains life of cells expressing Pma1-T912D through oxidative stress protection. The synthetic lethality of sod1Δ Pma1-T912D cells is suppressed by growing cells under low oxygen conditions or by treatments with manganese-based antioxidants. We now propose a model in which Sod1p maximizes Pma1p activity in two ways: one involving signaling through CK1γ casein kinases and an independent role for Sod1p in oxidative stress protection. - Highlights: • In yeast, the anti-oxidant enzyme SOD1 promotes activity of the proton ATPase Pma1p. • Cells expressing a T912D variant of Pma1p are not viable without SOD1. • SOD1 is needed to protect Pma1-T912D expressing cells from severe oxidative damage. • SOD1 activates Pma1p through casein kinase signaling and oxidative stress protection.

  8. Cu/Zn superoxide dismutase and the proton ATPase Pma1p of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Baron, J. Allen; Chen, Janice S.; Culotta, Valeria C.

    2015-01-01

    In eukaryotes, the Cu/Zn containing superoxide dismutase (SOD1) plays a critical role in oxidative stress protection as well as in signaling. We recently demonstrated a function for Saccharomyces cerevisiae Sod1p in signaling through CK1γ casein kinases and identified the essential proton ATPase Pma1p as one likely target. The connection between Sod1p and Pma1p was explored further by testing the impact of sod1Δ mutations on cells expressing mutant alleles of Pma1p that alter activity and/or post-translational regulation of this ATPase. We report here that sod1Δ mutations are lethal when combined with the T912D allele of Pma1p in the C-terminal regulatory domain. This “synthetic lethality” was reversed by intragenic suppressor mutations in Pma1p, including an A906G substitution that lies within the C-terminal regulatory domain and hyper-activates Pma1p. Surprisingly the effect of sod1Δ mutations on Pma1-T912D is not mediated through the Sod1p signaling pathway involving the CK1γ casein kinases. Rather, Sod1p sustains life of cells expressing Pma1-T912D through oxidative stress protection. The synthetic lethality of sod1Δ Pma1-T912D cells is suppressed by growing cells under low oxygen conditions or by treatments with manganese-based antioxidants. We now propose a model in which Sod1p maximizes Pma1p activity in two ways: one involving signaling through CK1γ casein kinases and an independent role for Sod1p in oxidative stress protection. - Highlights: • In yeast, the anti-oxidant enzyme SOD1 promotes activity of the proton ATPase Pma1p. • Cells expressing a T912D variant of Pma1p are not viable without SOD1. • SOD1 is needed to protect Pma1-T912D expressing cells from severe oxidative damage. • SOD1 activates Pma1p through casein kinase signaling and oxidative stress protection

  9. Searching for multifragmentation in light asymmetric systems 93Nb+24Mg and 93Nb+27Al at 30 A.MeV

    International Nuclear Information System (INIS)

    Manduci, Loredana

    2004-01-01

    The present work analyses the inverse kinematics reactions 93 Nb+ 27 Al and 93 Nb+ 24 Mg at 30 A.MeV. The reaction events are sorted as a function of the violence of the collision and experimental sources are reconstructed. Their decay is studied by two statistical model simulations: Gemini, for binary sequential decay and SMM for prompt multifragmentation. Both models show a reasonable agreement with the experimental observables starting from a backtracking simulated source decay which has charge and excitation energy distributions comparable to the experimental ones. This result was expected because we are still under the multifragmentation onset. However both models disagree in the fragments production rate. This states the question on the different starting point for the fragment decay probability widths calculations altogether to the idea that taking into account the nuclear dynamics between the saddle-point and the scission point would improve our results. (author) [fr

  10. 4G/5G and A-844G Polymorphisms of Plasminogen Activator Inhibitor-1 Associated with Glioblastoma in Iran--a Case-Control Study.

    Science.gov (United States)

    Pooyan, Honari; Ahmad, Ebrahimi; Azadeh, Rakhshan

    2015-01-01

    Glioblastoma is a highly aggressive and malignant brain tumor. Risk factors are largely unknown however, although several biomarkers have been identified which may support development, angiogenesis and invasion of tumor cells. One of these biomarkers is PAI-1. 4G/5G and A-844G are two common polymorphisms in the gene promotor of PAI 1 that may be related to high transcription and expression of this gene. Studies have shown that the prevalence of the 4G and 844G allele is significantly higher in patients with some cancers and genetic disorders. We here assessed the association of 4G/5G and A-844G polymorphisms with glioblastoma cancer risk in Iranians in a case-control study. All 71 patients with clinically confirmed and 140 volunteers with no history and symptoms of glioblastoma as control group were screened for 4G/5G and A-844G polymorphisms of PAI-1, using ARMS-PCR. Genotype and allele frequencies of case and control groups were analyzed using the DeFinetti program. Our results showed significant associations between 4G/5G (p=0.01824) and A-844G (p=0.02012) polymorphisms of the PAI-1 gene with glioblastoma cancer risk in our Iranian population. The results of this study supporting an association of the PAI-1 4G/5G (p=0.01824) and A-844G (p=0.02012) polymorphisms with increasing glioblastoma cancer risk in Iranian patients.

  11. Computing Stability Effects of Mutations in Human Superoxide Dismutase 1

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2014-01-01

    Protein stability is affected in several diseases and is of substantial interest in efforts to correlate genotypes to phenotypes. Superoxide dismutase 1 (SOD1) is a suitable test case for such correlations due to its abundance, stability, available crystal structures and thermochemical data......, and physiological importance. In this work, stability changes of SOD1 mutations were computed with five methods, CUPSAT, I-Mutant2.0, I-Mutant3.0, PoPMuSiC, and SDM, with emphasis on structural sensitivity as a potential issue in structure-based protein calculation. The large correlation between experimental...... literature data of SOD1 dimers and monomers (r = 0.82) suggests that mutations in separate protein monomers are mostly additive. PoPMuSiC was most accurate (typical MAE ∼ 1 kcal/mol, r ∼ 0.5). The relative performance of the methods was not very structure-dependent, and the more accurate methods also...

  12. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Humala Nelson

    2006-04-01

    Full Text Available Abstract Background The cause of neuronal death in amyotrophic lateral sclerosis (ALS is uncertain but mitochondrial dysfunction may play an important role. Ketones promote mitochondrial energy production and membrane stabilization. Results SOD1-G93A transgenic ALS mice were fed a ketogenic diet (KD based on known formulations for humans. Motor performance, longevity, and motor neuron counts were measured in treated and disease controls. Because mitochondrial dysfunction plays a central role in neuronal cell death in ALS, we also studied the effect that the principal ketone body, D-β-3 hydroxybutyrate (DBH, has on mitochondrial ATP generation and neuroprotection. Blood ketones were > 3.5 times higher in KD fed animals compared to controls. KD fed mice lost 50% of baseline motor performance 25 days later than disease controls. KD animals weighed 4.6 g more than disease control animals at study endpoint; the interaction between diet and change in weight was significant (p = 0.047. In spinal cord sections obtained at the study endpoint, there were more motor neurons in KD fed animals (p = 0.030. DBH prevented rotenone mediated inhibition of mitochondrial complex I but not malonate inhibition of complex II. Rotenone neurotoxicity in SMI-32 immunopositive motor neurons was also inhibited by DBH. Conclusion This is the first study showing that diet, specifically a KD, alters the progression of the clinical and biological manifestations of the G93A SOD1 transgenic mouse model of ALS. These effects may be due to the ability of ketone bodies to promote ATP synthesis and bypass inhibition of complex I in the mitochondrial respiratory chain.

  13. HFE p.H63D polymorphism does not influence ALS phenotype and survival.

    Science.gov (United States)

    Chiò, Adriano; Mora, Gabriele; Sabatelli, Mario; Caponnetto, Claudia; Lunetta, Christian; Traynor, Bryan J; Johnson, Janel O; Nalls, Mike A; Calvo, Andrea; Moglia, Cristina; Borghero, Giuseppe; Monsurrò, Maria Rosaria; La Bella, Vincenzo; Volanti, Paolo; Simone, Isabella; Salvi, Fabrizio; Logullo, Francesco O; Nilo, Riva; Giannini, Fabio; Mandrioli, Jessica; Tanel, Raffaella; Murru, Maria Rita; Mandich, Paola; Zollino, Marcella; Conforti, Francesca L; Penco, Silvana; Brunetti, Maura; Barberis, Marco; Restagno, Gabriella

    2015-10-01

    It has been recently reported that the p.His63Asp polymorphism of the HFE gene accelerates disease progression both in the SOD1 transgenic mouse and in amyotrophic lateral sclerosis (ALS) patients. We have evaluated the effect of HFE p.His63Asp polymorphism on the phenotype in 1351 Italian ALS patients (232 of Sardinian ancestry). Patients were genotyped for the HFE p.His63Asp polymorphism (CC, GC, and GG). All patients were also assessed for C9ORF72, TARDBP, SOD1, and FUS mutations. Of the 1351 ALS patients, 363 (29.2%) were heterozygous (GC) for the p.His63Asp polymorphism and 30 (2.2%) were homozygous for the minor allele (GG). Patients with CC, GC, and GG polymorphisms did not significantly differ by age at onset, site of onset of symptoms, and survival; however, in SOD1 patients with CG or GG polymorphism had a significantly longer survival than those with a CC polymorphism. Differently from what observed in the mouse model of ALS, the HFE p.His63Asp polymorphism has no effect on ALS phenotype in this large series of Italian ALS patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Assemblies of amyloid-β30-36 hexamer and its G33V/L34T mutants by replica-exchange molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Zhenyu Qian

    Full Text Available The aggregation of amyloid-β peptides is associated with the pathogenesis of Alzheimer's disease, in which the 30-36 fragments play an important part as a fiber-forming hydrophobic region. The fibrillar structure of Aβ30-36 has been detected by means of X-ray diffraction, but its oligomeric structural determination, biophysical characterization, and pathological mechanism remain elusive. In this study, we have investigated the structures of Aβ30-36 hexamer as well as its G33V and L34T mutants in explicit water environment using replica-exchange molecular dynamics (REMD simulations. Our results show that the wild-type (WT Aβ30-36 hexamer has a preference to form β-barrel and bilayer β-sheet conformations, while the G33V or L34T mutation disrupts the β-barrel structures: the G33V mutant is homogenized to adopt β-sheet-rich bilayers, and the structures of L34T mutant on the contrary get more diverse. The hydrophobic interaction plays a critical role in the formation and stability of oligomeric assemblies among all the three systems. In addition, the substitution of G33 by V reduces the β-sheet content in the most populated conformations of Aβ30-36 oligomers through a steric effect. The L34T mutation disturbs the interpeptide hydrogen bonding network, and results in the increased coil content and morphological diversity. Our REMD runs provide structural details of WT and G33V/L34T mutant Aβ30-36 oligomers, and molecular insight into the aggregation mechanism, which will be helpful for designing novel inhibitors or amyloid-based materials.

  15. Transformation of apple (Malus × domestica) using mutants of apple acetolactate synthase as a selectable marker and analysis of the T-DNA integration sites.

    Science.gov (United States)

    Yao, Jia-Long; Tomes, Sumathi; Gleave, Andrew P

    2013-05-01

    Apple acetolactate synthase mutants were generated by site-specific mutagenesis and successfully used as selection marker in tobacco and apple transformation. T-DNA/Apple genome junctions were analysed using genome-walking PCR and sequencing. An Agrobacterium-mediated genetic transformation system was developed for apple (Malus × domestica), using mutants of apple acetolactate synthase (ALS) as a selectable marker. Four apple ALS mutants were generated by site-specific mutagenesis and subsequently cloned under the transcriptional control of the CaMV 35S promoter and ocs 3' terminator, in a pART27-derived plant transformation vector. Three of the four mutations were found to confer resistance to the herbicide Glean(®), containing the active agent chlorsulfuron, in tobacco (Nicotiana tabacum) transformation. In apple transformation, leaf explants infected with Agrobacterium tumefaciens EHA105 containing one of the three ALS mutants resulted in the production of shoots on medium containing 2-8 μg L(-1) Glean(®), whilst uninfected wild-type explants failed to regenerate shoots or survive on medium containing 1 and 3 μg L(-1) Glean(®), respectively. Glean(®)-resistant, regenerated shoots were further multiplied and rooted on medium containing 10 μg L(-1) Glean(®). The T-DNA and apple genome-DNA junctions from eight rooted transgenic apple plants were analysed using genome-walking PCR amplification and sequencing. This analysis confirmed T-DNA integration into the apple genome, identified the genome integration sites and revealed the extent of any vector backbone integration, T-DNA rearrangements and deletions of apple genome DNA at the sites of integration.

  16. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans.

    Science.gov (United States)

    Gleason, Julie E; Li, Cissy X; Odeh, Hana M; Culotta, Valeria C

    2014-06-01

    Candida albicans is a pathogenic yeast of important public health relevance. Virulence of C. albicans requires a copper and zinc containing superoxide dismutase (SOD1), but the biology of C. albicans SOD1 is poorly understood. To this end, C. albicans SOD1 activation was examined in baker's yeast (Saccharomyces cerevisiae), a eukaryotic expression system that has proven fruitful for the study of SOD1 enzymes from invertebrates, plants, and mammals. In spite of the 80% similarity between S. cerevisiae and C. albicans SOD1 molecules, C. albicans SOD1 is not active in S. cerevisiae. The SOD1 appears incapable of productive interactions with the copper chaperone for SOD1 (CCS1) of S. cerevisiae. C. albicans SOD1 contains a proline at position 144 predicted to dictate dependence on CCS1. By mutation of this proline, C. albicans SOD1 gained activity in S. cerevisiae, and this activity was independent of CCS1. We identified a putative CCS1 gene in C. albicans and created heterozygous and homozygous gene deletions at this locus. Loss of CCS1 resulted in loss of SOD1 activity, consistent with its role as a copper chaperone. C. albicans CCS1 also restored activity to C. albicans SOD1 expressed in S. cerevisiae. C. albicans CCS1 is well adapted for activating its partner SOD1 from C. albicans, but not SOD1 from S. cerevisiae. In spite of the high degree of homology between the SOD1 and CCS1 molecules in these two fungal species, there exists a species-specific barrier in CCS-SOD interactions which may reflect the vastly different lifestyles of the pathogenic versus the noninfectious yeast.

  17. Association of single nucleotide polymorphisms in the genes ATM, GSTP1, SOD2, TGFB1, XPD and XRCC1 with risk of severe erythema after breast conserving radiotherapy

    International Nuclear Information System (INIS)

    Raabe, Annette; Derda, Katharina; Reuther, Sebastian; Szymczak, Silke; Borgmann, Kerstin; Hoeller, Ulrike; Ziegler, Andreas; Petersen, Cordula; Dikomey, Ekkehard

    2012-01-01

    To examine the association of polymorphisms in ATM (codon 158), GSTP1 (codon 105), SOD2 (codon 16), TGFB1 (position −509), XPD (codon 751), and XRCC1 (codon 399) with the risk of severe erythema after breast conserving radiotherapy. Retrospective analysis of 83 breast cancer patients treated with breast conserving radiotherapy. A total dose of 50.4 Gy was administered, applying 1.8 Gy/fraction within 42 days. Erythema was evaluated according to the Radiation Therapy Oncology Group (RTOG) score. DNA was extracted from blood samples and polymorphisms were determined using either the Polymerase Chain Reaction based Restriction-Fragment-Length-Polymorphism (PCR-RFL) technique or Matrix-Assisted-Laser-Desorption/Ionization –Time-Of-Flight-Mass-Spectrometry (MALDI-TOF). Relative excess heterozygosity (REH) was investigated to check compatibility of genotype frequencies with Hardy-Weinberg equilibrium (HWE). In addition, p-values from the standard exact HWE lack of fit test were calculated using 100,000 permutations. HWE analyses were performed using R. Fifty-six percent (46/83) of all patients developed erythema of grade 2 or 3, with this risk being higher for patients with large breast volume (odds ratio, OR = 2.55, 95% confidence interval, CI: 1.03–6.31, p = 0.041). No significant association between SNPs and risk of erythema was found when all patients were considered. However, in patients with small breast volume the TGFB1 SNP was associated with erythema (p = 0.028), whereas the SNP in XPD showed an association in patients with large breast volume (p = 0.046). A risk score based on all risk alleles was neither significant in all patients nor in patients with small or large breast volume. Risk alleles of most SNPs were different compared to a previously identified risk profile for fibrosis. The genetic risk profile for erythema appears to be different for patients with small and larger breast volume. This risk profile seems to be specific for erythema as

  18. Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection.

    Science.gov (United States)

    Fenlon, Luke A; Slauch, James M

    2017-12-15

    Salmonella enterica serovar Typhimurium is a leading cause of foodborne disease worldwide. Severe infections result from the ability of S Typhimurium to survive within host immune cells, despite being exposed to various host antimicrobial factors. SodCI, a copper-zinc-cofactored superoxide dismutase, is required to defend against phagocytic superoxide. SodCII, an additional periplasmic superoxide dismutase, although produced during infection, does not function in the host. Previous studies suggested that CueP, a periplasmic copper binding protein, facilitates acquisition of copper by SodCII. CopA and GolT, both inner membrane ATPases that pump copper from the cytoplasm to the periplasm, are a source of copper for CueP. Using in vitro SOD assays, we found that SodCI can also utilize CueP to acquire copper. However, both SodCI and SodCII have a significant fraction of activity independent of CueP and cytoplasmic copper export. We utilized a series of mouse competition assays to address the in vivo role of CueP-mediated SodC activation. A copA golT cueP triple mutant was equally as competitive as the wild type, suggesting that sufficient SodCI is active to defend against phagocytic superoxide independent of CueP and cytoplasmic copper export. We also confirmed that a strain containing a modified SodCII, which is capable of complementing a sodCI deletion, was fully virulent in a copA golT cueP background competed against the wild type. These competitions also address the potential impact of cytoplasmic copper toxicity within the phagosome. Our data suggest that Salmonella does not encounter inhibitory concentrations of copper during systemic infection. IMPORTANCE Salmonella is a leading cause of gastrointestinal disease worldwide. In severe cases, Salmonella can cause life-threatening systemic infections, particularly in very young children, the elderly, or people who are immunocompromised. To cause disease, Salmonella must survive the hostile environment inside host

  19. Neurobehavioral performances and brain regional metabolism in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Jacquelin, C; Lalonde, R; Jantzen-Ossola, C; Strazielle, C

    2013-09-01

    As disabled-1 (DAB1) protein acts downstream in the reelin signaling pathway modulating neuronal migration, glutamate neurotransmission, and cytoskeletal function, the disabled-1 gene mutation (scrambler or Dab1(scm) mutation) results in ataxic mice displaying dramatic neuroanatomical defects similar to those observed in the reeler gene (Reln) mutation. By comparison to non-ataxic controls, Dab1(scm) mutants showed severe motor coordination impairments on stationary beam, coat-hanger, and rotorod tests but were more active in the open-field. Dab1(scm) mutants were also less anxious in the elevated plus-maze but with higher latencies in the emergence test. In mutants versus controls, changes in regional brain metabolism as measured by cytochrome oxidase (COX) activity occurred mainly in structures intimately connected with the cerebellum, in basal ganglia, in limbic regions, particularly hippocampus, as well as in visual and parietal sensory cortices. Although behavioral results characterized a major cerebellar disorder in the Dab1(scm) mutants, motor activity impairments in the open-field were associated with COX activity changes in efferent basal ganglia structures such as the substantia nigra, pars reticulata. Metabolic changes in this structure were also associated with the anxiety changes observed in the elevated plus-maze and emergence test. These results indicate a crucial participation of the basal ganglia in the functional phenotype of ataxic Dab1(scm) mutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Deregulation of manganese superoxide dismutase (SOD2) expression and lymph node metastasis in tongue squamous cell carcinoma

    International Nuclear Information System (INIS)

    Liu, Xiqiang; Crowe, David L; Zhou, Xiaofeng; Wang, Anxun; Muzio, Lorenzo Lo; Kolokythas, Antonia; Sheng, Shihu; Rubini, Corrado; Ye, Hui; Shi, Fei; Yu, Tianwei

    2010-01-01

    Lymph node metastasis is a critical event in the progression of tongue squamous cell carcinoma (TSCC). The identification of biomarkers associated with the metastatic process would provide critical prognostic information to facilitate clinical decision making. Previous studies showed that deregulation of manganese superoxide dismutase (SOD2) expression is a frequent event in TSCC and may be associated with enhanced cell invasion. The purpose of this study is to further evaluate whether the expression level of SOD2 is correlated with the metastatic status in TSCC patients. We first examined the SOD2 expression at mRNA level on 53 TSCC and 22 normal control samples based on pooled-analysis of existing microarray datasets. To confirm our observations, we examined the expression of SOD2 at protein level on an additional TSCC patient cohort (n = 100), as well as 31 premalignant dysplasias, 15 normal tongue mucosa, and 32 lymph node metastatic diseases by immunohistochemistry (IHC). The SOD2 mRNA level in primary TSCC tissue is reversely correlated with lymph node metastasis in the first TSCC patient cohort. The SOD2 protein level in primary TSCC tissue is also reversely correlated with lymph node metastasis in the second TSCC patient cohort. Deregulation of SOD2 expression is a common event in TSCC and appears to be associated with disease progression. Statistical analysis revealed that the reduced SOD2 expression in primary tumor tissue is associated with lymph node metastasis in both TSCC patient cohorts examined. Our study suggested that the deregulation of SOD2 in TSCC has potential predictive values for lymph node metastasis, and may serve as a therapeutic target for patients at risk of metastasis

  1. Genetic analysis of rice semidwarf mutant Tad-M-1

    International Nuclear Information System (INIS)

    Wang Naiyuan; Yang Rencui

    1995-01-01

    This paper dealed with the inheritance of the rice semidwarf of Tad-M-,a mutant line bred from traditional indica rice Variety Tadukan by radiation. The results indicated that semidwarf of Tad-M-1 was controlled by one pair of recessive gene, which was nonallelic to sd-1 gene of variety Aijiaonante and sd-g gene of variety Xinguiai and allelic to the semidwarf gene of Yunnan japonica variety Xueheaizao and Sichuan indica variety Yizila.The possible uses of Tad-M-1 in rice breeding was also discussed

  2. Oncogenic Signaling by Leukemia-Associated Mutant Cbl Proteins

    Science.gov (United States)

    Nadeau, Scott; An, Wei; Palermo, Nick; Feng, Dan; Ahmad, Gulzar; Dong, Lin; Borgstahl, Gloria E. O.; Natarajan, Amarnath; Naramura, Mayumi; Band, Vimla; Band, Hamid

    2013-01-01

    Members of the Cbl protein family (Cbl, Cbl-b, and Cbl-c) are E3 ubiquitin ligases that have emerged as critical negative regulators of protein tyrosine kinase (PTK) signaling. This function reflects their ability to directly interact with activated PTKs and to target them as well as their associated signaling components for ubiquitination. Given the critical roles of PTK signaling in driving oncogenesis, recent studies in animal models and genetic analyses in human cancer have firmly established that Cbl proteins function as tumor suppressors. Missense mutations or small in-frame deletions within the regions of Cbl protein that are essential for its E3 activity have been identified in nearly 5% of leukemia patients with myelodysplastic/myeloproliferative disorders. Based on evidence from cell culture studies, in vivo models and clinical data, we discuss the potential signaling mechanisms of mutant Cbl-driven oncogenesis. Mechanistic insights into oncogenic Cbl mutants and associated animal models are likely to enhance our understanding of normal hematopoietic stem cell homeostasis and provide avenues for targeted therapy of mutant Cbl-driven cancers. PMID:23997989

  3. Successful treatment of radiation-induced fibrosis using Cu/Zn-SOD and Mn-SOD: an experimental study.

    Science.gov (United States)

    Lefaix, J L; Delanian, S; Leplat, J J; Tricaud, Y; Martin, M; Nimrod, A; Baillet, F; Daburon, F

    1996-05-01

    To establish how far liposomal copper/zinc superoxide dismutase (Cu/Zn-SOD) and manganese superoxide dismutase (Mn-SOD), respectively, reduce radiation-induced fibrosis (RIF), using a well-characterized pig model of RIF permitting the design of a controlled laboratory experiment. In this model of acute localized gamma irradiation simulating accidental overexposure in humans, three groups of five large white pigs were irradiated using a collimated 192Ir source to deliver a single dose of 160 Gy onto the skin surface (100%) of the outer side of the thigh. A well-defined block of subcutaneous fibrosis involving skin and skeletal muscle developed 6 months after irradiation. One experimental group of five pigs was then injected i.m. with 10 mg/10 kg b.wt. of Cu/Zn-SOD, twice a week for 3 weeks, and another experimental group of five was injected with 10 mg/10 kg b.wt. of Mn-SOD, three times a week for 3 weeks. Five irradiated control pigs were injected with physiological serum. Animals were assessed for changes in the density of the palpated fibrotic block and in the dimensions of the projected cutaneous surface. Block depth was determined by ultrasound. Physical and sonographic findings were confirmed by autopsy 12-14 weeks after completing SOD injections. The density, length, width, and depth of the fibrotic block, and the areas and volume of its projected cutaneous surface were compared before treatment, 1, 3, and 6 weeks thereafter, and at autopsy, 12-14 weeks after treatment ended. The experimental animals exhibited no change in behavior and no abnormal clinical or anatomic signs. Whether they were given Cu/Zn- or Mn-SOD, significant and roughly equivalent softening and shrinking of the fibrotic block were noted in all treated animals between the first week after treatment ended and autopsy, when mean regression was 45% for length and width, 30% for depth, and 70% for area and volume. Histologic examination showed completely normal muscle and subcutaneous tissue

  4. Molecular Cloning, Characterization and Predicted Structure of a Putative Copper-Zinc SOD from the Camel, Camelus dromedarius

    Directory of Open Access Journals (Sweden)

    Ajamaluddin Malik

    2012-01-01

    Full Text Available Superoxide dismutase (SOD is the first line of defense against oxidative stress induced by endogenous and/or exogenous factors and thus helps in maintaining the cellular integrity. Its activity is related to many diseases; so, it is of importance to study the structure and expression of SOD gene in an animal naturally exposed most of its life to the direct sunlight as a cause of oxidative stress. Arabian camel (one humped camel, Camelus dromedarius is adapted to the widely varying desert climatic conditions that extremely changes during daily life in the Arabian Gulf. Studying the cSOD1 in C. dromedarius could help understand the impact of exposure to direct sunlight and desert life on the health status of such mammal. The full coding region of a putative CuZnSOD gene of C. dromedarius (cSOD1 was amplified by reverse transcription PCR and cloned for the first time (gene bank accession number for nucleotides and amino acids are JF758876 and AEF32527, respectively. The cDNA sequencing revealed an open reading frame of 459 nucleotides encoding a protein of 153 amino acids which is equal to the coding region of SOD1 gene and protein from many organisms. The calculated molecular weight and isoelectric point of cSOD1 was 15.7 kDa and 6.2, respectively. The level of expression of cSOD1 in different camel tissues (liver, kidney, spleen, lung and testis was examined using Real Time-PCR. The highest level of cSOD1 transcript was found in the camel liver (represented as 100% followed by testis (45%, kidney (13%, lung (11% and spleen (10%, using 18S ribosomal subunit as endogenous control. The deduced amino acid sequence exhibited high similarity with Cebus apella (90%, Sus scrofa (88%, Cavia porcellus (88%, Mus musculus (88%, Macaca mulatta (87%, Pan troglodytes (87%, Homo sapiens (87%, Canis familiaris (86%, Bos taurus (86%, Pongo abelii (85% and Equus caballus (82%. Phylogenetic analysis revealed that cSOD1 is grouped together with S. scrofa. The

  5. Molecular cloning, characterization and predicted structure of a putative copper-zinc SOD from the camel, Camelus dromedarius.

    Science.gov (United States)

    Ataya, Farid S; Fouad, Dalia; Al-Olayan, Ebtsam; Malik, Ajamaluddin

    2012-01-01

    Superoxide dismutase (SOD) is the first line of defense against oxidative stress induced by endogenous and/or exogenous factors and thus helps in maintaining the cellular integrity. Its activity is related to many diseases; so, it is of importance to study the structure and expression of SOD gene in an animal naturally exposed most of its life to the direct sunlight as a cause of oxidative stress. Arabian camel (one humped camel, Camelus dromedarius) is adapted to the widely varying desert climatic conditions that extremely changes during daily life in the Arabian Gulf. Studying the cSOD1 in C. dromedarius could help understand the impact of exposure to direct sunlight and desert life on the health status of such mammal. The full coding region of a putative CuZnSOD gene of C. dromedarius (cSOD1) was amplified by reverse transcription PCR and cloned for the first time (gene bank accession number for nucleotides and amino acids are JF758876 and AEF32527, respectively). The cDNA sequencing revealed an open reading frame of 459 nucleotides encoding a protein of 153 amino acids which is equal to the coding region of SOD1 gene and protein from many organisms. The calculated molecular weight and isoelectric point of cSOD1 was 15.7 kDa and 6.2, respectively. The level of expression of cSOD1 in different camel tissues (liver, kidney, spleen, lung and testis) was examined using Real Time-PCR. The highest level of cSOD1 transcript was found in the camel liver (represented as 100%) followed by testis (45%), kidney (13%), lung (11%) and spleen (10%), using 18S ribosomal subunit as endogenous control. The deduced amino acid sequence exhibited high similarity with Cebus apella (90%), Sus scrofa (88%), Cavia porcellus (88%), Mus musculus (88%), Macaca mulatta (87%), Pan troglodytes (87%), Homo sapiens (87%), Canis familiaris (86%), Bos taurus (86%), Pongo abelii (85%) and Equus caballus (82%). Phylogenetic analysis revealed that cSOD1 is grouped together with S. scrofa. The

  6. Studies on the Effect of 99Tc in colloid on enzyme activity(G.p.x ,G.S.T,SOD) before and after used diadzain

    International Nuclear Information System (INIS)

    Ahmood, A. M.; Alwan, I. F.; Abd Al-Kream, H. M.

    2012-12-01

    This study was conducted to determine the effect of Tin -colloid labeled with Technetium -99m on some enzyme activities of treated mice. it was noticed that an increase in the level of Glutathione-S- transferase (GST) glutathione peroxidase (Gpx), super oxide dismutase (SOD) and malonaldehyde (MDA) levels for treated (20) mice compared to the level of control mice Group (20). After That, the use diadzein extracted from soy been and linseed with concentrate of (0.250 mg/Kg), (0.500/Kg) on mice Group (20). It was found decreased activities GST, Gpx , SOD and MDA compared with 9 9mT c Tin-colloid Group without diadzein. (Author)

  7. 26 CFR 1.501(c)(9)-3 - Voluntary employees' beneficiary associations; life, sick, accident, or other benefits.

    Science.gov (United States)

    2010-04-01

    ... recreational activities such as athletic leagues are considered other benefits. The provision of child-care...; life, sick, accident, or other benefits. 1.501(c)(9)-3 Section 1.501(c)(9)-3 Internal Revenue INTERNAL..., or other benefits. (a) In general. The life, sick, accident, or other benefits provided by a...

  8. Mitochondrial oxidative stress and nitrate tolerance – comparison of nitroglycerin and pentaerithrityl tetranitrate in Mn-SOD+/- mice

    Directory of Open Access Journals (Sweden)

    Stalleicken Dirk

    2006-11-01

    Full Text Available Abstract Background Chronic therapy with nitroglycerin (GTN results in a rapid development of nitrate tolerance which is associated with an increased production of reactive oxygen species (ROS. According to recent studies, mitochondrial ROS formation and oxidative inactivation of the organic nitrate bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2 play an important role for the development of nitrate and cross-tolerance. Methods Tolerance was induced by infusion of wild type (WT and heterozygous manganese superoxide dismutase mice (Mn-SOD+/- with ethanolic solution of GTN (12.5 μg/min/kg for 4 d. For comparison, the tolerance-free pentaerithrityl tetranitrate (PETN, 17.5 μg/min/kg for 4 d was infused in DMSO. Vascular reactivity was measured by isometric tension studies of isolated aortic rings. ROS formation and aldehyde dehydrogenase (ALDH-2 activity was measured in isolated heart mitochondria. Results Chronic GTN infusion lead to impaired vascular responses to GTN and acetylcholine (ACh, increased the ROS formation in mitochondria and decreased ALDH-2 activity in Mn-SOD+/- mice. In contrast, PETN infusion did not increase mitochondrial ROS formation, did not decrease ALDH-2 activity and accordingly did not lead to tolerance and cross-tolerance in Mn-SOD+/- mice. PETN but not GTN increased heme oxygenase-1 mRNA in EA.hy 926 cells and bilirubin efficiently scavenged GTN-derived ROS. Conclusion Chronic GTN infusion stimulates mitochondrial ROS production which is an important mechanism leading to tolerance and cross-tolerance. The tetranitrate PETN is devoid of mitochondrial oxidative stress induction and according to the present animal study as well as numerous previous clinical studies can be used without limitations due to tolerance and cross-tolerance.

  9. The -675 4G/5G polymorphism in plasminogen activator inhibitor-1 gene is associated with risk of asthma: a meta-analysis.

    Science.gov (United States)

    Nie, Wei; Li, Bing; Xiu, Qing-Yu

    2012-01-01

    A number of studies assessed the association of -675 4G/5G polymorphism in the promoter region of plasminogen activator inhibitor (PAI)-1 gene with asthma in different populations. However, most studies reported inconclusive results. A meta-analysis was conducted to investigate the association between polymorphism in the PAI-1 gene and asthma susceptibility. Databases including Pubmed, EMBASE, HuGE Literature Finder, Wanfang Database, China National Knowledge Infrastructure (CNKI) and Weipu Database were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association in the dominant model, recessive model, codominant model, and additive model. Eight studies involving 1817 cases and 2327 controls were included. Overall, significant association between 4G/5G polymorphism and asthma susceptibility was observed for 4G4G+4G5G vs. 5G5G (OR = 1.56, 95% CI 1.12-2.18, P = 0.008), 4G/4G vs. 4G/5G+5G/5G (OR = 1.38, 95% CI 1.06-1.80, P = 0.02), 4G/4G vs. 5G/5G (OR = 1.80, 95% CI 1.17-2.76, P = 0.007), 4G/5G vs. 5G/5G (OR = 1.40, 95% CI 1.07-1.84, P = 0.02), and 4G vs. 5G (OR = 1.35, 95% CI 1.08-1.68, P = 0.008). This meta-analysis suggested that the -675 4G/5G polymorphism of PAI-1 gene was a risk factor of asthma.

  10. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration.

    Science.gov (United States)

    Kaplan, Artem; Spiller, Krista J; Towne, Christopher; Kanning, Kevin C; Choe, Ginn T; Geber, Adam; Akay, Turgay; Aebischer, Patrick; Henderson, Christopher E

    2014-01-22

    Selective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter, and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons. One of these, matrix metalloproteinase-9 (MMP-9), is expressed only by fast motor neurons, which are selectively vulnerable. In ALS model mice expressing mutant superoxide dismutase (SOD1), reduction of MMP-9 function using gene ablation, viral gene therapy, or pharmacological inhibition significantly delayed muscle denervation. In the presence of mutant SOD1, MMP-9 expressed by fast motor neurons themselves enhances activation of ER stress and is sufficient to trigger axonal die-back. These findings define MMP-9 as a candidate therapeutic target for ALS. The molecular basis of neuronal diversity thus provides significant insights into mechanisms of selective vulnerability to neurodegeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Disease-associated extracellular loop mutations in the adhesion G protein-coupled receptor G1 (ADGRG1; GPR56) differentially regulate downstream signaling.

    Science.gov (United States)

    Kishore, Ayush; Hall, Randy A

    2017-06-09

    Mutations to the adhesion G protein-coupled receptor ADGRG1 (G1; also known as GPR56) underlie the neurological disorder bilateral frontoparietal polymicrogyria. Disease-associated mutations in G1 studied to date are believed to induce complete loss of receptor function through disruption of either receptor trafficking or signaling activity. Given that N-terminal truncation of G1 and other adhesion G protein-coupled receptors has been shown to significantly increase the receptors' constitutive signaling, we examined two different bilateral frontoparietal polymicrogyria-inducing extracellular loop mutations (R565W and L640R) in the context of both full-length and N-terminally truncated (ΔNT) G1. Interestingly, we found that these mutations reduced surface expression of full-length G1 but not G1-ΔNT in HEK-293 cells. Moreover, the mutations ablated receptor-mediated activation of serum response factor luciferase, a classic measure of Gα 12/13 -mediated signaling, but had no effect on G1-mediated signaling to nuclear factor of activated T cells (NFAT) luciferase. Given these differential signaling results, we sought to further elucidate the pathway by which G1 can activate NFAT luciferase. We found no evidence that ΔNT activation of NFAT is dependent on Gα q/11 -mediated or β-arrestin-mediated signaling but rather involves liberation of Gβγ subunits and activation of calcium channels. These findings reveal that disease-associated mutations to the extracellular loops of G1 differentially alter receptor trafficking, depending on the presence of the N terminus, and differentially alter signaling to distinct downstream pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Cyclophilin A Levels Dictate Infection Efficiency of Human Immunodeficiency Virus Type 1 Capsid Escape Mutants A92E and G94D ▿

    Science.gov (United States)

    Ylinen, Laura M. J.; Schaller, Torsten; Price, Amanda; Fletcher, Adam J.; Noursadeghi, Mahdad; James, Leo C.; Towers, Greg J.

    2009-01-01

    Cyclophilin A (CypA) is an important human immunodeficiency virus type 1 (HIV-1) cofactor in human cells. HIV-1 A92E and G94D capsid escape mutants arise during CypA inhibition and in certain cell lines are dependent on CypA inhibition. Here we show that dependence on CypA inhibition is due to high CypA levels. Restricted HIV-1 is stable, and remarkably, restriction is augmented by arresting cell division. Nuclear entry is not inhibited. We propose that high CypA levels and capsid mutations combine to disturb uncoating, leading to poor infectivity, particularly in arrested cells. Our data suggest a role for CypA in uncoating the core of HIV-1 to facilitate integration. PMID:19073742

  13. Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis

    Science.gov (United States)

    Casas, Caty; Herrando-Grabulosa, Mireia; Manzano, Raquel; Mancuso, Renzo; Osta, Rosario; Navarro, Xavier

    2013-01-01

    Sporadic and familiar amyotrophic lateral sclerosis (ALS) cases presented lower cholinergic activity than in healthy individuals in their still preserved spinal motoneurons (MNs) suggesting that cholinergic reduction might occur before MN death. To unravel how and when cholinergic function is compromised, we have analyzed the spatiotemporal expression of choline acetyltransferase (ChAT) from early presymptomatic stages of the SOD1G93A ALS mouse model by confocal immunohistochemistry. The analysis showed an early reduction in ChAT content in soma and presynaptic boutons apposed onto MNs (to 76%) as well as in cholinergic interneurons in the lumbar spinal cord of the 30-day-old SOD1G93A mice. Cholinergic synaptic stripping occurred simultaneously to the presence of abundant surrounding major histocompatibility complex II (MHC-II)-positive microglia and the accumulation of nuclear Tdp-43 and the appearance of mild oxidative stress within MNs. Besides, there was a loss of neuronal MHC-I expression, which is necessary for balanced synaptic stripping after axotomy. These events occurred before the selective raise of markers of denervation such as ATF3. By the same time, alterations in postsynaptic cholinergic-related structures were also revealed with a loss of the presence of sigma-1 receptor, a Ca2+ buffering chaperone in the postsynaptic cisternae. By 2 months of age, ChAT seemed to accumulate in the soma of MNs, and thus efferences toward Renshaw interneurons were drastically diminished. In conclusion, cholinergic dysfunction in the local circuitry of the spinal cord may be one of the earliest events in ALS etiopathogenesis. PMID:23531559

  14. Quercetin Protects Primary Human Osteoblasts Exposed to Cigarette Smoke through Activation of the Antioxidative Enzymes HO-1 and SOD-1

    Directory of Open Access Journals (Sweden)

    Karl F. Braun

    2011-01-01

    Full Text Available Smokers frequently suffer from impaired fracture healing often due to poor bone quality and stability. Cigarette smoking harms bone cells and their homeostasis by increased formation of reactive oxygen species (ROS. The aim of this study was to investigate whether Quercetin, a naturally occurring antioxidant, can protect osteoblasts from the toxic effects of smoking. Human osteoblasts exposed to cigarette smoke medium (CSM rapidly produced ROS and their viability decreased concentration- and time-dependently. Co-, pre- and postincubation with Quercetin dose-dependently improved their viability. Quercetin increased the expression of the anti-oxidative enzymes heme-oxygenase- (HO- 1 and superoxide-dismutase- (SOD- 1. Inhibiting HO-1 activity abolished the protective effect of Quercetin. Our results demonstrate that CSM damages human osteoblasts by accumulation of ROS. Quercetin can diminish this damage by scavenging the radicals and by upregulating the expression of HO-1 and SOD-1. Thus, a dietary supplementation with Quercetin could improve bone matter, stability and even fracture healing in smokers.

  15. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1 Mutant Zebrafish.

    Directory of Open Access Journals (Sweden)

    Brian P Grone

    Full Text Available Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1, are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing "dark-flash" visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations.

  16. The -675 4G/5G polymorphism in plasminogen activator inhibitor-1 gene is associated with risk of asthma: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Wei Nie

    Full Text Available BACKGROUND: A number of studies assessed the association of -675 4G/5G polymorphism in the promoter region of plasminogen activator inhibitor (PAI-1 gene with asthma in different populations. However, most studies reported inconclusive results. A meta-analysis was conducted to investigate the association between polymorphism in the PAI-1 gene and asthma susceptibility. METHODS: Databases including Pubmed, EMBASE, HuGE Literature Finder, Wanfang Database, China National Knowledge Infrastructure (CNKI and Weipu Database were searched to find relevant studies. Odds ratios (ORs with 95% confidence intervals (CIs were used to assess the strength of association in the dominant model, recessive model, codominant model, and additive model. RESULTS: Eight studies involving 1817 cases and 2327 controls were included. Overall, significant association between 4G/5G polymorphism and asthma susceptibility was observed for 4G4G+4G5G vs. 5G5G (OR = 1.56, 95% CI 1.12-2.18, P = 0.008, 4G/4G vs. 4G/5G+5G/5G (OR = 1.38, 95% CI 1.06-1.80, P = 0.02, 4G/4G vs. 5G/5G (OR = 1.80, 95% CI 1.17-2.76, P = 0.007, 4G/5G vs. 5G/5G (OR = 1.40, 95% CI 1.07-1.84, P = 0.02, and 4G vs. 5G (OR = 1.35, 95% CI 1.08-1.68, P = 0.008. CONCLUSIONS: This meta-analysis suggested that the -675 4G/5G polymorphism of PAI-1 gene was a risk factor of asthma.

  17. Improving enzymatic activities and thermostability of a tri-functional enzyme with SOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Isarankura Na Ayudhya, Chartchalerm; Prachayasittikul, Virapong; Yainoy, Sakda

    2017-04-10

    Synergistic action of major antioxidant enzymes, e.g., superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) is known to be more effective than the action of any single enzyme. Recently, we have engineered a tri-functional enzyme, 6His-MnSOD-TAT/CAT-MnSOD (M-TAT/CM), with SOD, CAT and cell-permeable activities. The protein actively internalized into the cells and showed superior protection against oxidative stress-induced cell death over native enzymes fused with TAT. To improve its molecular size, enzymatic activity and stability, in this study, MnSOD portions of the engineered protein were replaced by CuZnSOD, which is the smallest and the most heat resistant SOD isoform. The newly engineered protein, CAT-CuZnSOD/6His-CuZnSOD-TAT (CS/S-TAT), had a 42% reduction in molecular size and an increase in SOD and CAT activities by 22% and 99%, respectively. After incubation at 70°C for 10min, the CS/S-TAT retained residual SOD activity up to 54% while SOD activity of the M-TAT/CM was completely abolished. Moreover, the protein exhibited a 5-fold improvement in half-life at 70°C. Thus, this work provides insights into the design and synthesis of a smaller but much more stable multifunctional antioxidant enzyme with ability to enter mammalian cells for further application as protective/therapeutic agent against oxidative stress-related conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. RFC-1 80G>A polymorphism in case-mother/control-mother dyads is associated with risk of nephroblastoma and neuroblastoma.

    Science.gov (United States)

    Montalvão-de-Azevedo, Rafaela; Vasconcelos, Gisele M; Vargas, Fernando R; Thuler, Luiz Claudio; Pombo-de-Oliveira, Maria S; de Camargo, Beatriz

    2015-02-01

    Embryonic tumors are associated with an interruption during normal organ development; they may be related to disturbances in the folate pathway involved in DNA synthesis, methylation, and repair. Prenatal supplementation with folic acid is associated with a decreased risk of neuroblastoma, brain tumors, retinoblastoma, and nephroblastoma. The aim of this study was to investigate the association between MTHFR rs1801133 (C677T) and RFC-1 rs1051266 (G80A) genotypes with the risk of developing nephroblastoma and neuroblastoma. Case-mother/control-mother dyad study. Samples from Brazilian children with nephroblastoma (n=80), neuroblastoma (n=66), healthy controls (n=453), and their mothers (case n=93; control n=75) were analyzed. Genomic DNA was isolated from peripheral blood cells and/or buccal cells and genotyped to identify MTHFR C677T and RFC-1 G80A polymorphisms. Differences in genotype distribution between patients and controls were tested by multiple logistic regression analysis. Risk for nephroblastoma and neuroblastoma was two- to fourfold increased among children with RFC-1 polymorphisms. An increased four- to eightfold risk for neuroblastoma and nephroblastoma was seen when the child and maternal genotypes were combined. Our results suggest that mother and child RFC-1 G80A genotypes play a role on the risk of neuroblastoma and nephroblastoma since this polymorphism may impair the intracellular levels of folate, through carrying fewer folate molecules to the cell interior, and thus, the intracellular concentration is not enough to maintain regular DNA synthesis and methylation pathways.

  19. Whole-exome sequencing in amyotrophic lateral sclerosis suggests NEK1 is a risk gene in Chinese

    Directory of Open Access Journals (Sweden)

    Jacob Gratten

    2017-11-01

    Full Text Available Abstract Background Amyotrophic lateral sclerosis (ALS is a progressive neurological disease characterised by the degeneration of motor neurons, which are responsible for voluntary movement. There remains limited understanding of disease aetiology, with median survival of ALS of three years and no effective treatment. Identifying genes that contribute to ALS susceptibility is an important step towards understanding aetiology. The vast majority of published human genetic studies, including for ALS, have used samples of European ancestry. The importance of trans-ethnic studies in human genetic studies is widely recognised, yet a dearth of studies of non-European ancestries remains. Here, we report analyses of novel whole-exome sequencing (WES data from Chinese ALS and control individuals. Methods WES data were generated for 610 ALS cases and 460 controls drawn from Chinese populations. We assessed evidence for an excess of rare damaging mutations at the gene level and the gene set level, considering only singleton variants filtered to have allele frequency less than 5 × 10–5 in reference databases. To meta-analyse our results with a published study of European ancestry, we used a Cochran–Mantel–Haenszel test to compare gene-level variant counts in cases vs controls. Results No gene passed the genome-wide significance threshold with ALS in Chinese samples alone. Combining rare variant counts in Chinese with those from the largest WES study of European ancestry resulted in three genes surpassing genome-wide significance: TBK1 (p = 8.3 × 10–12, SOD1 (p = 8.9 × 10–9 and NEK1 (p = 1.1 × 10–9. In the Chinese data alone, SOD1 and NEK1 were nominally significantly associated with ALS (p = 0.04 and p = 7 × 10–3, respectively and the case/control frequencies of rare coding variants in these genes were similar in Chinese and Europeans (SOD1: 1.5%/0.2% vs 0.9%/0.1%, NEK1 1.8%/0.4% vs 1.9%/0.8%. This

  20. Association between the SERPINE1 (PAI-1) 4G/5G insertion/deletion promoter polymorphism (rs1799889) and pre-eclampsia: a systematic review and meta-analysis.

    Science.gov (United States)

    Zhao, Linlu; Bracken, Michael B; Dewan, Andrew T; Chen, Suzan

    2013-03-01

    The SERPINE1 -675 4G/5G promoter region insertion/deletion polymorphism (rs1799889) has been implicated in the pathogenesis of pre-eclampsia (PE), but the genetic association has been inconsistently replicated. To derive a more precise estimate of the association, a systematic review and meta-analysis was conducted. This study conformed to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed (MEDLINE), Scopus and HuGE Literature Finder literature databases were systematically searched for relevant studies. Summary odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for the allelic comparison (4G versus 5G) and genotypic comparisons following the co-dominant (4G/4G versus 5G/5G and 4G/5G versus 5G/5G), dominant (4G/4G+4G/5G versus 5G/5G) and recessive (4G/4G versus 4G/5G+5G/5G) genetic models. Between-study heterogeneity was quantified by I(2) statistics and publication bias was appraised with funnel plots. Sensitivity analysis was conducted to evaluate the robustness of meta-analysis findings. Meta-analysis of 11 studies involving 1297 PE cases and 1791 controls found a significant association between the SERPINE1 -675 4G/5G polymorphism and PE for the recessive genetic model (OR = 1.36, 95% CI: 1.13-1.64, P = 0.001), a robust finding according to sensitivity analysis. A low level of between-study heterogeneity was detected (I(2) = 20%) in this comparison, which may be explained by ethnic differences. Funnel plot inspection did not reveal evidence of publication bias. In conclusion, this study provides a comprehensive examination of the available literature on the association between SERPINE1 -675 4G/5G and PE. Meta-analysis results support this polymorphism as a likely susceptibility variant for PE.

  1. Roles of G1359A polymorphism of the cannabinoid receptor gene (CNR1) on weight loss and adipocytokines after a hypocaloric diet.

    Science.gov (United States)

    De Luis, D A; González Sagrado, M; Aller, R; Conde, R; Izaola, O; de la Fuente, B; Primo, D

    2011-01-01

    A intragenic biallelic polymorphism (1359 G/A) of the CB1 gene resulting in the substitution of the G to A at nucleotide position 1359 in codon 435 (Thr), was reported as a common polymorphism in Caucasian populations. Intervention studies with this polymorphism have not been realized. We decided to investigate the role of the polymorphism (G1359A) of CB1 receptor gene on adipocytokines response and weight loss secondary to a lifestyle modification (Mediterranean hypocaloric diet and exercise) in obese patients. A population of 94 patients with obesity was analyzed. Before and after 3 months on a hypocaloric diet, an anthropometric evaluation, an assessment of nutritional intake and a biochemical analysis were performed. The statistical analysis was performed for the combined G1359A and A1359A as a group and wild type G1359G as second group, with a dominant model. Forty seven patients (50%) had the genotype G1359G (wild type group) and 47 (50%) patients G1359A (41 patients, 43.6%) or A1359A (6 patients, 6.4%) (mutant type group) had the genotype. In wild and mutant type groups, weight, body mass index, fat mass, waist circumference and systolic blood pressure decreased. In mutant type group, resistin (4.15 ± 1.7 ng/ml vs. 3.90 ± 2.1 ng/ml: P < 0.05), leptin (78.4 ± 69 ng/ml vs 66.2 ± 32 ng/ml: P < 0.05) and IL-6 (1.40 ± 1.9 pg/ml vs 0.81 ± 1.5 pg/ml: P < 0.05) levels decreased after dietary treatment. The novel finding of this study is the association of the mutant allele (A1359) with a decrease of resistin, leptin and interleukin-6 secondary to weight loss.

  2. A systematic comparison of all mutations in hereditary sensory neuropathy type I (HSAN I) reveals that the G387A mutation is not disease associated.

    Science.gov (United States)

    Hornemann, Thorsten; Penno, Anke; Richard, Stephane; Nicholson, Garth; van Dijk, Fleur S; Rotthier, Annelies; Timmerman, Vincent; von Eckardstein, Arnold

    2009-04-01

    Hereditary sensory neuropathy type 1 (HSAN I) is an autosomal dominant inherited neurodegenerative disorder of the peripheral nervous system associated with mutations in the SPTLC1 subunit of the serine palmitoyltransferase (SPT). Four missense mutations (C133W, C133Y, V144D and G387A) in SPTLC1 were reported to cause HSAN I. SPT catalyses the condensation of Serine and Palmitoyl-CoA, which is the first and rate-limiting step in the de novo synthesis of ceramides. Earlier studies showed that C133W and C133Y mutants have a reduced activity, whereas the impact of the V144D and G387A mutations on the human enzyme was not tested yet. In this paper, we show that none of the HSAN I mutations interferes with SPT complex formation. We demonstrate that also V144D has a reduced SPT activity, however to a lower extent than C133W and C133Y. In contrast, the G387A mutation showed no influence on SPT activity. Furthermore, the growth phenotype of LY-B cells--a SPTLC1 deficient CHO cell line--could be reversed by expressing either the wild-type SPTLC1 or the G387A mutant, but not the C133W mutant. This indicates that the G387A mutation is most likely not directly associated with HSAN I. These findings were genetically confirmed by the identification of a nuclear HSAN family which showed segregation of the G387A variant as a non-synonymous SNP.

  3. Predominance of HA-222D/G polymorphism in influenza A(H1N1pdm09 viruses associated with fatal and severe outcomes recently circulating in Germany.

    Directory of Open Access Journals (Sweden)

    Marianne Wedde

    Full Text Available Influenza A(H1N1pdm09 viruses cause sporadically very severe disease including fatal clinical outcomes associated with pneumonia, viremia and myocarditis. A mutation characterized by the substitution of aspartic acid (wild-type to glycine at position 222 within the haemagglutinin gene (HA-D222G was recorded during the 2009 H1N1 pandemic in Germany and other countries with significant frequency in fatal and severe cases. Additionally, A(H1N1pdm09 viruses exhibiting the polymorphism HA-222D/G/N were detected both in the respiratory tract and in blood. Specimens from mild, fatal and severe cases were collected to study the heterogeneity of HA-222 in A(H1N1pdm09 viruses circulating in Germany between 2009 and 2011. In order to enable rapid and large scale analysis we designed a pyrosequencing (PSQ assay. In 2009/2010, the 222D wild-type of A(H1N1pdm09 viruses predominated in fatal and severe outcomes. Moreover, co-circulating virus mutants exhibiting a D222G or D222E substitution (8/6% as well as HA-222 quasispecies were identified (10%. Both the 222D/G and the 222D/G/N/V/Y polymorphisms were confirmed by TA cloning. PSQ analyses of viruses associated with mild outcomes revealed mainly the wild-type 222D and no D222G change in both seasons. However, an increase of variants with 222D/G polymorphism (60% was characteristic for A(H1N1pdm09 viruses causing fatal and severe cases in the season 2010/2011. Pure 222G viruses were not observed. Our results support the hypothesis that the D222G change may result from adaptation of viral receptor specificity to the lower respiratory tract. This could explain why transmission of the 222G variant is less frequent among humans. Thus, amino acid changes at HA position 222 may be the result of viral intra-host evolution leading to the generation of variants with an altered viral tropism.

  4. Association of the plasminogen activator inhibitor-1 (PAI-1) Gene -675 4G/5G and -844 A/G promoter polymorphism with risk of keloid in a Chinese Han population.

    Science.gov (United States)

    Wang, Yongjie; Long, Jianhong; Wang, Xiaoyan; Sun, Yang

    2014-10-28

    A keloid is pathological scar caused by aberrant response to skin injuries, characterized by excessive accumulation of histological extracellular matrix, and occurs in genetically susceptible individuals. Plasminogen activator inhibitor-1 (PAI-1) has been implicated in the pathogenesis of keloid. We investigated the association between PAI-1 polymorphisms and plasma PAI-1 level with keloid risk. A total of 242 Chinese keloid patients and 207 controls were enrolled in this study. Polymerase chain reaction-restriction technique was used to determine PAI-1 promoter polymorphism (-675 4G/5G and -844 A/G) distribution. Plasma PAI-1 levels were detected using enzyme-linked immunosorbent assay (ELISA). There was a statistically significant difference in the distribution of PAI-1 -675 4G/5G polymorphism between keloid patients and healthy controls. 4G/4G carriers were more likely to develop keloid. In contrast, the -844 A/G polymorphism distribution did not vary significantly between keloid patients and controls. The keloid patients group had a significantly higher plasma PAI-1 level than the control group. In the -675 4G/4G carrier population, the plasma PAI-1 levels were significant higher in keloid patients compared with controls. Our study provides evidence that PAI-1 promoter polymorphism -675 4G/5G and plasma PAI-1 level are associated with keloid risk. PAI-1 -675 4G/5G polymorphism may be an important hereditary factor responsible for keloid development in the Chinese Han population.

  5. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1 show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1, nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogeneous expression of NAL1 in fission yeast (Schizosaccharomyces pombe further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division.

  6. Engineering of a novel tri-functional enzyme with MnSOD, catalase and cell-permeable activities.

    Science.gov (United States)

    Luangwattananun, Piriya; Yainoy, Sakda; Eiamphungporn, Warawan; Songtawee, Napat; Bülow, Leif; Ayudhya, Chartchalerm Isarankura Na; Prachayasittikul, Virapong

    2016-04-01

    Cooperative function of superoxide dismutase (SOD) and catalase (CAT), in protection against oxidative stress, is known to be more effective than the action of either single enzyme. Chemical conjugation of the two enzymes resulted in molecules with higher antioxidant activity and therapeutic efficacy. However, chemical methods holds several drawbacks; e.g., loss of enzymatic activity, low homogeneity, time-consuming, and the need of chemical residues removal. Yet, the conjugated enzymes have never been proven to internalize into target cells. In this study, by employing genetic and protein engineering technologies, we reported designing and production of a bi-functional protein with SOD and CAT activities for the first time. To enable cellular internalization, cell penetrating peptide from HIV-1 Tat (TAT) was incorporated. Co-expression of CAT-MnSOD and MnSOD-TAT fusion genes allowed simultaneous self-assembly of the protein sequences into a large protein complex, which is expected to contained one tetrameric structure of CAT, four tetrameric structures of MnSOD and twelve units of TAT. The protein showed cellular internalization and superior protection against paraquat-induced cell death as compared to either complex bi-functional protein without TAT or to native enzymes fused with TAT. This study not only provided an alternative strategy to produce multifunctional protein complex, but also gained an insight into the development of therapeutic agent against oxidative stress-related conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Comparison of Sirtuin 3 Levels in ALS and Huntington’s Disease—Differential Effects in Human Tissue Samples vs. Transgenic Mouse Models

    Directory of Open Access Journals (Sweden)

    Eva Buck

    2017-05-01

    Full Text Available Neurodegenerative diseases are characterized by distinct patterns of neuronal loss. In amyotrophic lateral sclerosis (ALS upper and lower motoneurons degenerate whereas in Huntington’s disease (HD medium spiny neurons in the striatum are preferentially affected. Despite these differences the pathophysiological mechanisms and risk factors are remarkably similar. In addition, non-neuronal features, such as weight loss implicate a dysregulation in energy metabolism. Mammalian sirtuins, especially the mitochondrial NAD+ dependent sirtuin 3 (SIRT3, regulate mitochondrial function and aging processes. SIRT3 expression depends on the activity of the metabolic master regulator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α, a modifier of ALS and HD in patients and model organisms. This prompted us to systematically probe Sirt3 mRNA and protein levels in mouse models of ALS and HD and to correlate these with patient tissue levels. We found a selective reduction of Sirt3 mRNA levels and function in the cervical spinal cord of end-stage ALS mice (superoxide dismutase 1, SOD1G93A. In sharp contrast, a tendency to increased Sirt3 mRNA levels was found in the striatum in HD mice (R6/2. Cultured primary neurons express the highest levels of Sirt3 mRNA. In primary cells from PGC-1α knock-out (KO mice the Sirt3 mRNA levels were highest in astrocytes. In human post mortem tissue increased mRNA and protein levels of Sirt3 were found in the spinal cord in ALS, while Sirt3 levels were unchanged in the human HD striatum. Based on these findings we conclude that SIRT3 mediates the different effects of PGC-1α during the course of transgenic (tg ALS and HD and in the human conditions only partial aspects Sirt3 dysregulation manifest.

  8. Formation of epitaxial Al 2O 3/NiAl(1 1 0) films: aluminium deposition

    Science.gov (United States)

    Lykhach, Y.; Moroz, V.; Yoshitake, M.

    2005-02-01

    Structure of epitaxial Al 2O 3 layers formed on NiAl(1 1 0) substrates has been studied by means of reflection high-energy electron diffraction (RHEED). The elucidated structure was compared to the model suggested for 0.5 nm-thick Al 2O 3 layers [K. Müller, H. Lindner, D.M. Zehner, G. Ownby, Verh. Dtsch. Phys. Ges. 25 (1990) 1130; R.M. Jaeger, H. Kuhlenbeck, H.J. Freund, Surf. Sci. 259 (1991) 235]. The stepwise growth of Al 2O 3 film, involving deposition and subsequent oxidation of aluminium onto epitaxial 0.5 nm-thick Al 2O 3 layers, has been investigated. Aluminium was deposited at room temperature, whereas its oxidation took place during annealing at 1070 K. The Al 2O 3 thickness was monitored by means of Auger electron spectroscopy (AES). It was found that Al 2O 3 layer follows the structure of 0.5 nm thick Al 2O 3 film, although a tilting of Al 2O 3(1 1 1) surface plane with respect to NiAl(1 1 0) surface appeared after Al deposition.

  9. The Association of Plasminogen Activator Inhibitor Type 1 (PAI-1) Level and PAI-1 4G/5G Gene Polymorphism with the Formation and the Grade of Endometrial Cancer.

    Science.gov (United States)

    Yıldırım, Malik Ejder; Karakuş, Savas; Kurtulgan, Hande Küçük; Kılıçgün, Hasan; Erşan, Serpil; Bakır, Sevtap

    2017-08-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor (Serpine 1), and it inhibits both tissue plasminogen activator and urokinase plasminogen activator which are important in fibrinolysis. We aimed to find whether there is a possible association between PAI-1 level, PAI-1 4G/5G polymorphism, and endometrial cancer. PAI-1 levels in peripheral blood were determined in 82 patients with endometrial carcinoma and 76 female healthy controls using an enzyme-linked immunoassay (ELISA). Then, the genomic DNA was extracted and screened by reverse hybridization procedure (Strip assay) to detect PAI 1 4G/5G polymorphism. The levels of PAI-1 in the patients were higher statistically in comparison to controls (P 5G polymorphism was quite different between patients and controls (P = 0.008), and 4G allelic frequency was significantly higher in the patients of endometrial cancer than in controls (P = 0.026). We found significant difference between Grade 1 and Grade 2+3 patients in terms of the PAI-1 levels (P = 0.047). There was no association between PAI-1 4G/5G polymorphism and the grades of endometrial cancer (P = 0.993). Our data suggest that the level of PAI-1 and PAI-1 4G/5G gene polymorphism are effective in the formation of endometrial cancer. PAI-1 levels are also associated with the grades of endometrial cancer.

  10. Wild-type catalase peroxidase vs G279D mutant type: Molecular basis of Isoniazid drug resistance in Mycobacterium tuberculosis.

    Science.gov (United States)

    Singh, Aishwarya; Singh, Aditi; Grover, Sonam; Pandey, Bharati; Kumari, Anchala; Grover, Abhinav

    2018-01-30

    Mycobacterium tuberculosis katG gene is responsible for production of an enzyme catalase peroxidase that peroxidises and activates the prodrug Isoniazid (INH), a first-line antitubercular agent. INH interacts with catalase peroxidase enzyme within its heme pocket and gets converted to an active form. Mutations occurring in katG gene are often linked to reduced conversion rates for INH. This study is focussed on one such mutation occurring at residue 279, where glycine often mutates to aspartic acid (G279D). In the present study, several structural analyses were performed to study the effect of this mutation on functionality of KatG protein. On comparison, mutant protein exhibited a lower docking score, smaller binding cavity and reduced affinity towards INH. Molecular dynamics analysis revealed the mutant to be more rigid and less compact than the native protein. Essential dynamics analysis determined correlated motions of residues within the protein structure. G279D mutant was found to have many residues that showed related motions and an undesirable effect on the functionality of protein. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Analysis of triclosan-selected Salmonella enterica mutants of eight serovars revealed increased aminoglycoside susceptibility and reduced growth rates.

    Directory of Open Access Journals (Sweden)

    Ulrike Rensch

    Full Text Available The biocide triclosan (TRC is used in a wide range of household, personal care, veterinary, industrial and medical products to control microbial growth. This extended use raises concerns about a possible association between the application of triclosan and the development of antibiotic resistance. In the present study we determined triclosan mutant prevention concentrations (MPC for Salmonella enterica isolates of eight serovars and investigated selected mutants for their mechanisms mediating decreased susceptibility to triclosan. MPCTRC values were 8-64-fold higher than MIC values and ranged between 1-16 µg/ml. The frequencies at which mutants were selected varied between 1.3 x 10(-10-9.9 x 10(-11. Even if MIC values of mutants decreased by 3-7 dilution steps in the presence of the efflux pump inhibitor Phe-Arg-β-naphtylamide, only minor changes were observed in the expression of genes encoding efflux components or regulators, indicating that neither the major multidrug efflux pump AcrAB-TolC nor AcrEF are up-regulated in triclosan-selected mutants. Nucleotide sequence comparisons confirmed the absence of alterations in the regulatory regions acrRA, soxRS, marORAB, acrSE and ramRA of selected mutants. Single bp and deduced Gly93→Val amino acid exchanges were present in fabI, the target gene of triclosan, starting from a concentration of 1 µg/ml TRC used for MPC determinations. The fabI genes were up to 12.4-fold up-regulated. Complementation experiments confirmed the contribution of Gly93→Val exchanges and fabI overexpression to decreased triclosan susceptibility. MIC values of mutants compared to parent strains were even equal or resulted in a more susceptible phenotype (1-2 dilution steps for the aminoglycoside antibiotics kanamycin and gentamicin as well as for the biocide chlorhexidine. Growth rates of selected mutants were significantly lower and hence, might partly explain the rare occurrence of Salmonella field isolates exhibiting

  12. Identification of a single-nucleotide insertion in the promoter region affecting the sodC promoter activity in Brucella neotomae.

    Directory of Open Access Journals (Sweden)

    Dina A Moustafa

    Full Text Available Brucella neotomae is not known to be associated with clinical disease in any host species. Previous research suggested that B. neotomae might not express detectable levels of Cu/Zn superoxide dismutase (SOD, a periplasmic enzyme known to be involved in protecting Brucella from oxidative bactericidal effects of host phagocytes. This study was undertaken to investigate the genetic basis for the disparity in SOD expression in B. neotomae. Our Western blot and SOD enzyme assay analyses indicated that B. neotomae does express SOD, but at a substantially reduced level. Nucleotide sequence analysis of region upstream to the sodC gene identified a single-nucleotide insertion in the potential promoter region. The same single-nucleotide insertion was also detected in the sodC promoter of B. suis strain Thomsen, belonging to biovar 2 in which SOD expression was undetectable previously. Examination of the sodC promoter activities using translational fusion constructs with E. coli β-galactosidase demonstrated that the B. neotomae and B. suis biovar 2 promoters were very weak in driving gene expression. Site-directed mutation studies indicated that the insertion of A in the B. neotomae sodC promoter reduced the promoter activity. Increasing the level of SOD expression in B. neotomae through complementation with B. abortus sodC gene did not alter the bacterial survival in J774A.1 macrophage-like cells and in tissues of BALB/c and C57BL/6 mice. These results for the first time demonstrate the occurrence of a single-nucleotide polymorphism affecting promoter function and gene expression in Brucella.

  13. Bacterio-opsin mutants of Halobacterium halobium

    Science.gov (United States)

    Betlach, Mary; Pfeifer, Felicitas; Friedman, James; Boyer, Herbert W.

    1983-01-01

    The bacterio-opsin (bop) gene of Halobacterium halobium R1 has been cloned with about 40 kilobases of flanking genomic sequence. The 40-kilobase segment is derived from the (G+C)-rich fraction of the chromosome and is not homologous to the major (pHH1) or minor endogenous covalently closed circular DNA species of H. halobium. A 5.1-kilobase Pst I fragment containing the bop gene was subcloned in pBR322 and a partial restriction map was determined. Defined restriction fragments of this clone were used as probes to analyze the defects associated with the bop gene in 12 bacterio-opsin mutants. Eleven out of 12 of the mutants examined had inserts ranging from 350 to 3,000 base pairs either in the bop gene or up to 1,400 base pairs upstream. The positions of the inserts were localized to four regions in the 5.1-kilobase genomic fragment: within the gene (one mutant), in a region that overlaps the 5′ end of the gene (seven mutants), and in two different upstream regions (three mutants). Two revertants of the mutant with the most distal insert had an additional insert in the same region. The polar effects of these inserts are discussed in terms of inactivation of a regulatory gene or disruption of part of a coordinately expressed operon. Given the defined nature of the bop mRNA—i.e., it has a 5′ leader sequence of three ribonucleotides—these observations indicate that the bop mRNA might be processed from a large mRNA transcript. Images PMID:16593291

  14. The G protein Gi1 exhibits basal coupling but not preassembly with G protein-coupled receptors.

    Science.gov (United States)

    Bondar, Alexey; Lazar, Josef

    2017-06-09

    The G i/o protein family transduces signals from a diverse group of G protein-coupled receptors (GPCRs). The observed specificity of G i/o -GPCR coupling and the high rate of G i/o signal transduction have been hypothesized to be enabled by the existence of stable associates between G i/o proteins and their cognate GPCRs in the inactive state (G i/o -GPCR preassembly). To test this hypothesis, we applied the recently developed technique of two-photon polarization microscopy (2PPM) to Gα i1 subunits labeled with fluorescent proteins and four GPCRs: the α 2A -adrenergic receptor, GABA B , cannabinoid receptor type 1 (CB 1 R), and dopamine receptor type 2. Our experiments with non-dissociating mutants of fluorescently labeled Gα i1 subunits (exhibiting impaired dissociation from activated GPCRs) showed that 2PPM is capable of detecting GPCR-G protein interactions. 2PPM experiments with non-mutated fluorescently labeled Gα i1 subunits and α 2A -adrenergic receptor, GABA B , or dopamine receptor type 2 receptors did not reveal any interaction between the G i1 protein and the non-stimulated GPCRs. In contrast, non-stimulated CB 1 R exhibited an interaction with the G i1 protein. Further experiments revealed that this interaction is caused solely by CB 1 R basal activity; no preassembly between CB 1 R and the G i1 protein could be observed. Our results demonstrate that four diverse GPCRs do not preassemble with non-active G i1 However, we also show that basal GPCR activity allows interactions between non-stimulated GPCRs and G i1 (basal coupling). These findings suggest that G i1 interacts only with active GPCRs and that the well known high speed of GPCR signal transduction does not require preassembly between G proteins and GPCRs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A differential autophagy-dependent response to DNA double-strand breaks in bone marrow mesenchymal stem cells from sporadic ALS patients

    Directory of Open Access Journals (Sweden)

    Shane Wald-Altman

    2017-05-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is an incurable motor neurodegenerative disease caused by a diversity of genetic and environmental factors that leads to neuromuscular degeneration and has pathophysiological implications in non-neural systems. Our previous work showed abnormal levels of mRNA expression for biomarker genes in non-neuronal cell samples from ALS patients. The same genes proved to be differentially expressed in the brain, spinal cord and muscle of the SOD1G93A ALS mouse model. These observations support the idea that there is a pathophysiological relevance for the ALS biomarkers discovered in human mesenchymal stem cells (hMSCs isolated from bone marrow samples of ALS patients (ALS-hMSCs. Here, we demonstrate that ALS-hMSCs are also a useful patient-based model to study intrinsic cell molecular mechanisms of the disease. We investigated the ALS-hMSC response to oxidative DNA damage exerted by neocarzinostatin (NCS-induced DNA double-strand breaks (DSBs. We found that the ALS-hMSCs responded to this stress differently from cells taken from healthy controls (HC-hMSCs. Interestingly, we found that ALS-hMSC death in response to induction of DSBs was dependent on autophagy, which was initialized by an increase of phosphorylated (pAMPK, and blocked by the class III phosphoinositide 3-kinase (PI3K and autophagy inhibitor 3-methyladenine (3MeA. ALS-hMSC death in response to DSBs was not apoptotic as it was caspase independent. This unique ALS-hMSC-specific response to DNA damage emphasizes the possibility that an intrinsic abnormal regulatory mechanism controlling autophagy initiation exists in ALS-patient-derived hMSCs. This mechanism may also be relevant to the most-affected tissues in ALS. Hence, our approach might open avenues for new personalized therapies for ALS.

  16. A differential autophagy-dependent response to DNA double-strand breaks in bone marrow mesenchymal stem cells from sporadic ALS patients.

    Science.gov (United States)

    Wald-Altman, Shane; Pichinuk, Edward; Kakhlon, Or; Weil, Miguel

    2017-05-01

    Amyotrophic lateral sclerosis (ALS) is an incurable motor neurodegenerative disease caused by a diversity of genetic and environmental factors that leads to neuromuscular degeneration and has pathophysiological implications in non-neural systems. Our previous work showed abnormal levels of mRNA expression for biomarker genes in non-neuronal cell samples from ALS patients. The same genes proved to be differentially expressed in the brain, spinal cord and muscle of the SOD1 G93A ALS mouse model. These observations support the idea that there is a pathophysiological relevance for the ALS biomarkers discovered in human mesenchymal stem cells (hMSCs) isolated from bone marrow samples of ALS patients (ALS-hMSCs). Here, we demonstrate that ALS-hMSCs are also a useful patient-based model to study intrinsic cell molecular mechanisms of the disease. We investigated the ALS-hMSC response to oxidative DNA damage exerted by neocarzinostatin (NCS)-induced DNA double-strand breaks (DSBs). We found that the ALS-hMSCs responded to this stress differently from cells taken from healthy controls (HC-hMSCs). Interestingly, we found that ALS-hMSC death in response to induction of DSBs was dependent on autophagy, which was initialized by an increase of phosphorylated (p)AMPK, and blocked by the class III phosphoinositide 3-kinase (PI3K) and autophagy inhibitor 3-methyladenine (3MeA). ALS-hMSC death in response to DSBs was not apoptotic as it was caspase independent. This unique ALS-hMSC-specific response to DNA damage emphasizes the possibility that an intrinsic abnormal regulatory mechanism controlling autophagy initiation exists in ALS-patient-derived hMSCs. This mechanism may also be relevant to the most-affected tissues in ALS. Hence, our approach might open avenues for new personalized therapies for ALS. © 2017. Published by The Company of Biologists Ltd.

  17. The −675 4G/5G Polymorphism in Plasminogen Activator Inhibitor-1 Gene Is Associated with Risk of Asthma: A Meta-Analysis

    Science.gov (United States)

    Xiu, Qing-yu

    2012-01-01

    Background A number of studies assessed the association of −675 4G/5G polymorphism in the promoter region of plasminogen activator inhibitor (PAI)-1 gene with asthma in different populations. However, most studies reported inconclusive results. A meta-analysis was conducted to investigate the association between polymorphism in the PAI-1 gene and asthma susceptibility. Methods Databases including Pubmed, EMBASE, HuGE Literature Finder, Wanfang Database, China National Knowledge Infrastructure (CNKI) and Weipu Database were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association in the dominant model, recessive model, codominant model, and additive model. Results Eight studies involving 1817 cases and 2327 controls were included. Overall, significant association between 4G/5G polymorphism and asthma susceptibility was observed for 4G4G+4G5G vs. 5G5G (OR = 1.56, 95% CI 1.12–2.18, P = 0.008), 4G/4G vs. 4G/5G+5G/5G (OR = 1.38, 95% CI 1.06–1.80, P = 0.02), 4G/4G vs. 5G/5G (OR = 1.80, 95% CI 1.17–2.76, P = 0.007), 4G/5G vs. 5G/5G (OR = 1.40, 95% CI 1.07–1.84, P = 0.02), and 4G vs. 5G (OR = 1.35, 95% CI 1.08–1.68, P = 0.008). Conclusions This meta-analysis suggested that the −675 4G/5G polymorphism of PAI-1 gene was a risk factor of asthma. PMID:22479620

  18. ALS-Plus Syndrome: Non-Pyramidal Features in a Large ALS Cohort

    Science.gov (United States)

    McCluskey, Leo; Vandriel, Shannon; Elman, Lauren; Van Deerlin, Vivianna M.; Powers, John; Boller, Ashley; Wood, Elisabeth McCarty; Woo, John; McMillan, Corey T.; Rascovsky, Katya; Grossman, Murray

    2014-01-01

    Objective Autopsy studies show widespread pathology in amyotrophic lateral sclerosis (ALS), but clinical surveys of multisystem disease in ALS are rare. We investigated ALS-Plus syndrome, an understudied group of patients with clinical features extending beyond pyramidal and neuromuscular systems with or without cognitive/behavioral deficits. Methods In a large, consecutively-ascertained cohort of 550 patients with ALS, we documented atypical clinical manifestations. Genetic screening for C9orf72 hexanucleotide expansions was performed in 343 patients, and SOD1, TARDBP, and VCP were tested in the subgroup of patients with a family history of ALS. Gray matter and white matter imaging was available in a subgroup of 30 patients. Results Seventy-five (13.6%) patients were identified with ALS-Plus syndrome. We found disorders of ocular motility, cerebellar, extrapyramidal and autonomic functioning. Relative to those without ALS-Plus, cognitive impairment (8.0% vs 2.9%, p=0.029), bulbar-onset (49.3% vs 23.2%, pALS-Plus. Survival was significantly shorter in ALS-Plus (29.66 months vs 42.50 months, p=0.02), regardless of bulbar-onset or mutation status. Imaging revealed significantly greater cerebellar and cerebral disease in ALS-Plus compared to those without ALS-Plus. Conclusions ALS-Plus syndrome is not uncommon, and the presence of these atypical features is consistent with neuropathological observations that ALS is a multisystem disorder. ALS-Plus syndrome is associated with increased risk for poor survival and the presence of a pathogenic mutation. PMID:25086858

  19. Mutations in matrix and SP1 repair the packaging specificity of a Human Immunodeficiency Virus Type 1 mutant by reducing the association of Gag with spliced viral RNA

    Directory of Open Access Journals (Sweden)

    Ristic Natalia

    2010-09-01

    Full Text Available Abstract Background The viral genome of HIV-1 contains several secondary structures that are important for regulating viral replication. The stem-loop 1 (SL1 sequence in the 5' untranslated region directs HIV-1 genomic RNA dimerization and packaging into the virion. Without SL1, HIV-1 cannot replicate in human T cell lines. The replication restriction phenotype in the SL1 deletion mutant appears to be multifactorial, with defects in viral RNA dimerization and packaging in producer cells as well as in reverse transcription of the viral RNA in infected cells. In this study, we sought to characterize SL1 mutant replication restrictions and provide insights into the underlying mechanisms of compensation in revertants. Results HIV-1 lacking SL1 (NLΔSL1 did not replicate in PM-1 cells until two independent non-synonymous mutations emerged: G913A in the matrix domain (E42K on day 18 postinfection and C1907T in the SP1 domain (P10L on day 11 postinfection. NLΔSL1 revertants carrying either compensatory mutation showed enhanced infectivity in PM-1 cells. The SL1 revertants produced significantly more infectious particles per nanogram of p24 than did NLΔSL1. The SL1 deletion mutant packaged less HIV-1 genomic RNA and more cellular RNA, particularly signal recognition particle RNA, in the virion than the wild-type. NLΔSL1 also packaged 3- to 4-fold more spliced HIV mRNA into the virion, potentially interfering with infectious virus production. In contrast, both revertants encapsidated 2.5- to 5-fold less of these HIV-1 mRNA species. Quantitative RT-PCR analysis of RNA cross-linked with Gag in formaldehyde-fixed cells demonstrated that the compensatory mutations reduced the association between Gag and spliced HIV-1 RNA, thereby effectively preventing these RNAs from being packaged into the virion. The reduction of spliced viral RNA in the virion may have a major role in facilitating infectious virus production, thus restoring the infectivity of NLΔSL1

  20. Transcriptional Responses of the Bdtf1-Deletion Mutant to the Phytoalexin Brassinin in the Necrotrophic Fungus Alternaria brassicicola

    Directory of Open Access Journals (Sweden)

    Yangrae Cho

    2014-07-01

    Full Text Available Brassica species produce the antifungal indolyl compounds brassinin and its derivatives, during microbial infection. The fungal pathogen Alternaria brassicicola detoxifies brassinin and possibly its derivatives. This ability is an important property for the successful infection of brassicaceous plants. Previously, we identified a transcription factor, Bdtf1, essential for the detoxification of brassinin and full virulence. To discover genes that encode putative brassinin-digesting enzymes, we compared gene expression profiles between a mutant strain of the transcription factor and wild-type A. brassicicola under two different experimental conditions. A total of 170 and 388 genes were expressed at higher levels in the mutants than the wild type during the infection of host plants and saprophytic growth in the presence of brassinin, respectively. In contrast, 93 and 560 genes were expressed, respectively, at lower levels in the mutant than the wild type under the two conditions. Fifteen of these genes were expressed at lower levels in the mutant than in the wild type under both conditions. These genes were assumed to be important for the detoxification of brassinin and included Bdtf1 and 10 putative enzymes. This list of genes provides a resource for the discovery of enzyme-coding genes important in the chemical modification of brassinin.

  1. Association between the plasminogen activator inhibitor-1 4G/5G polymorphism and risk of venous thromboembolism: a meta-analysis.

    Science.gov (United States)

    Wang, Jiarong; Wang, Chengdi; Chen, Nan; Shu, Chi; Guo, Xiaojiang; He, Yazhou; Zhou, Yanhong

    2014-12-01

    The plasminogen activator inhibitor-1 (PAI-1) 4G/5G polymorphism was considered to be associated with risk of venous thromboembolism (VTE), while evidence remains inadequate. To provide a more accurate estimation of this relationship, we performed an updated meta-analysis of all eligible studies. A systematical search was performed in PubMed, EMBASE, Wanfang, China National Knowledge Infrastructure (CNKI) and Cqvip databases to identify relevant studies published before March 6(th) 2014. The odds ratios (ORs) with 95% confidence intervals (CIs) were pooled using the fixed/random-effects model using Review Manager 5.1 and STATA 12.0. A total of 34 studies with 3561 cases and 5693 controls were analyzed. Overall, significant association between the PAI-1 4G/5G variant and VTE risk in total population (dominant model: OR=1.32, 95%CI: 1.13-1.54) was observed. And this variant was also related to the deep vein thrombosis risk (dominant model: OR=1.60, 95%CI: 1.24-2.06, P=0.0003). In the subgroup analyses on ethnicity, significant results were obtained in both Asians (dominant model: OR=2.08, 95%CI: 1.29-3.35, P=0.003) and Caucasians (dominant model: OR=1.31, 95%CI: 1.10-1.56, P=0.003). However, no significant association was found in patients with provoked VTE. In terms of subgroup analyses on co-existence of other thrombotic risk factors, the PAI-1 4G/5G polymorphism was significantly associated with VTE risk in patients with factor V Leiden mutation (dominant model: OR=1.72, 95%CI: 1.17-2.53), but not in patients with cancer or surgery. Our findings demonstrate the role of PAI-1 4G/5G polymorphism being a risk candidate locus for VTE susceptibility, especially in patients with other genetic thrombophilic disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Hypoxic resistance of KRAS mutant tumor cells to 3-Bromopyruvate is counteracted by Prima-1 and reversed by N-acetylcysteine.

    Science.gov (United States)

    Orue, Andrea; Chavez, Valery; Strasberg-Rieber, Mary; Rieber, Manuel

    2016-11-18

    The metabolic inhibitor 3-bromopyruvate (3-BrPA) is a promising anti-cancer alkylating agent, shown to inhibit growth of some colorectal carcinoma with KRAS mutation. Recently, we demonstrated increased resistance to 3-BrPA in wt p53 tumor cells compared to those with p53 silencing or mutation. Since hypoxic microenvironments select for tumor cells with diminished therapeutic response, we investigated whether hypoxia unequally increases resistance to 3-BrPA in wt p53 MelJuso melanoma harbouring (Q61L)-mutant NRAS and wt BRAF, C8161 melanoma with (G12D)-mutant KRAS (G464E)-mutant BRAF, and A549 lung carcinoma with a KRAS (G12S)-mutation. Since hypoxia increases the toxicity of the p53 activator, Prima-1 against breast cancer cells irrespective of their p53 status, we also investigated whether Prima-1 reversed hypoxic resistance to 3-BrPA. In contrast to the high susceptibility of hypoxic mutant NRAS MelJuso cells to 3-BrPA or Prima-1, KRAS mutant C8161 and A549 cells revealed hypoxic resistance to 3-BrPA counteracted by Prima-1. In A549 cells, Prima-1 increased p21CDKN1mRNA, and reciprocally inhibited mRNA expression of the SLC2A1-GLUT1 glucose transporter-1 and ALDH1A1, gene linked to detoxification and stem cell properties. 3-BrPA lowered CAIX and VEGF mRNA expression. Death from joint Prima-1 and 3-BrPA treatment in KRAS mutant A549 and C8161 cells seemed mediated by potentiating oxidative stress, since it was antagonized by the anti-oxidant and glutathione precursor N-acetylcysteine. This report is the first to show that Prima-1 kills hypoxic wt p53 KRAS-mutant cells resistant to 3-BrPA, partly by decreasing GLUT-1 expression and exacerbating pro-oxidant stress.

  3. The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity

    KAUST Repository

    Abulfaraj, Aala A.; Mariappan, Kiruthiga; Bigeard, Jean; Manickam, Prabhu; Blilou, Ikram; Guo, Xiujie; Al-Babili, Salim; Pflieger, Delphine; Hirt, Heribert; Rayapuram, Naganand

    2018-01-01

    Mammalian Ras-GTPase–activating protein SH3-domain–binding proteins (G3BPs) are a highly conserved family of RNA-binding proteins that link kinase receptor-mediated signaling to RNA metabolism. Mammalian G3BP1 is a multifunctional protein that functions in viral immunity. Here, we show that the Arabidopsis thaliana homolog of human G3BP1 negatively regulates plant immunity. Arabidopsis g3bp1 mutants showed enhanced resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated in Atg3bp1 mutants by altered stomatal and apoplastic immunity. Atg3bp1 mutants restricted pathogen entry into stomates showing insensitivity to bacterial coronatine–mediated stomatal reopening. AtG3BP1 was identified as a negative regulator of defense responses, which correlated with moderate up-regulation of salicylic acid biosynthesis and signaling without growth penalty.

  4. The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity

    KAUST Repository

    Abulfaraj, Aala Abdulaziz Hussien

    2018-05-31

    Mammalian Ras-GTPase–activating protein SH3-domain–binding proteins (G3BPs) are a highly conserved family of RNA-binding proteins that link kinase receptor-mediated signaling to RNA metabolism. Mammalian G3BP1 is a multifunctional protein that functions in viral immunity. Here, we show that the Arabidopsis thaliana homolog of human G3BP1 negatively regulates plant immunity. Arabidopsis g3bp1 mutants showed enhanced resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated in Atg3bp1 mutants by altered stomatal and apoplastic immunity. Atg3bp1 mutants restricted pathogen entry into stomates showing insensitivity to bacterial coronatine–mediated stomatal reopening. AtG3BP1 was identified as a negative regulator of defense responses, which correlated with moderate up-regulation of salicylic acid biosynthesis and signaling without growth penalty.

  5. Denys-Drash syndrome associated WT1 glutamine 369 mutants have altered sequence-preferences and altered responses to epigenetic modifications

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideharu; Zhang, Xing; Zheng, Yu; Wilson, Geoffrey G.; Cheng, Xiaodong

    2016-09-04

    Mutations in human zinc-finger transcription factor WT1 result in abnormal development of the kidneys and genitalia and an array of pediatric problems including nephropathy, blastoma, gonadal dysgenesis and genital discordance. Several overlapping phenotypes are associated with WT1 mutations, including Wilms tumors, Denys-Drash syndrome (DDS), Frasier syndrome (FS) and WAGR syndrome (Wilms tumor, aniridia, genitourinary malformations, and mental retardation). These conditions vary in severity from individual to individual; they can be fatal in early childhood, or relatively benign into adulthood. DDS mutations cluster predominantly in zinc fingers (ZF) 2 and 3 at the C-terminus of WT1, which together with ZF4 determine the sequence-specificity of DNA binding. We examined three DDS associated mutations in ZF2 of human WT1 where the normal glutamine at position 369 is replaced by arginine (Q369R), lysine (Q369K) or histidine (Q369H). These mutations alter the sequence-specificity of ZF2, we find, changing its affinity for certain bases and certain epigenetic forms of cytosine. X-ray crystallography of the DNA binding domains of normal WT1, Q369R and Q369H in complex with preferred sequences revealed the molecular interactions responsible for these affinity changes. DDS is inherited in an autosomal dominant fashion, implying a gain of function by mutant WT1 proteins. This gain, we speculate, might derive from the ability of the mutant proteins to sequester WT1 into unproductive oligomers, or to erroneously bind to variant target sequences.

  6. Cln6 mutants associated with neuronal ceroid lipofuscinosis are degraded in a proteasome-dependent manner.

    Science.gov (United States)

    Oresic, Kristina; Mueller, Britta; Tortorella, Domenico

    2009-06-01

    NCLs (neuronal ceroid lipofuscinoses), a group of inherited neurodegenerative lysosomal storage diseases that predominantly affect children, are the result of autosomal recessive mutations within one of the nine cln genes. The wild-type cln gene products are composed of membrane and soluble proteins that localize to the lysosome or the ER (endoplasmic reticulum). However, the destiny of the Cln variants has not been fully characterized. To explore a possible link between ER quality control and processing of Cln mutants, we investigated the fate of two NCL-related Cln6 mutants found in patient samples (Cln6(G123D) and Cln6(M241T)) in neuronal-derived human cells. The point mutations are predicted to be in the putative transmembrane domains and most probably generate misfolded membrane proteins that are subjected to ER quality control. Consistent with this paradigm, both mutants underwent rapid proteasome-mediated degradation and complexed with components of the ER extraction apparatus, Derlin-1 and p97. In addition, knockdown of SEL1L [sel-1 suppressor of lin-12-like (Caenorhabditis elegans)], a member of an E3 ubiquitin ligase complex involved in ER protein extraction, rescued significant amounts of Cln6(G123D) and Cln6(M241T) polypeptides. The results implicate ER quality control in the instability of the Cln variants that probably contributes to the development of NCL.

  7. Association between single nucleotide polymorphisms in the antioxidant genes CAT, GR and SOD1, erythrocyte enzyme activities, dietary and life style factors and breast cancer risk in a Danish, prospective cohort study

    DEFF Research Database (Denmark)

    Kopp, Tine Iskov; Vogel, Ulla; Dragsted, Lars Ove

    2017-01-01

    investigated in 703 breast cancer case-control pairs in the Danish, prospective "Diet, Cancer and Health" cohort together with gene-environment interactions between the polymorphisms, enzyme activities and intake of fruits and vegetables, alcohol and smoking in relation to breast cancer risk. Our results...... showed that genetically determined variations in the antioxidant enzyme activities of SOD1, CAT and GSR were not associated with risk of breast cancer per se. However, intake of alcohol, fruit and vegetables, and smoking status interacted with some of the polymorphisms in relation to breast cancer risk...

  8. 26Al/sup g,m/ production cross sections from the 23Na(α,n)26Al reaction

    International Nuclear Information System (INIS)

    Norman, E.B.; Chupp, T.E.; Lesko, K.T.; Schwalbach, P.; Grant, P.J.

    1981-01-01

    Cross sections have been determined for the production of 26 Al/sup g,m/ from the 23 Na(α,n) reaction. Total 26 Al production cross sections were obtained from measurements of the thick-target neutron yield. 26 Al/sup m/ cross sections were measured using an activation technique. 26 Al/sup g/ cross sections were deduced by subtracting the 26 Al/sup m/ cross sections from the total (α,n) cross sections. The principle of detailed balance has been applied to the low energy data to obtain cross sections for the astrophysically interesting 26 Al/sup g/(n,α 0 ) 23 Na reaction. These results are compared with the results of Hauser-Feshbach calculations

  9. PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics.

    Science.gov (United States)

    Chantreau, Maxime; Grec, Sébastien; Gutierrez, Laurent; Dalmais, Marion; Pineau, Christophe; Demailly, Hervé; Paysant-Leroux, Christine; Tavernier, Reynald; Trouvé, Jean-Paul; Chatterjee, Manash; Guillot, Xavier; Brunaud, Véronique; Chabbert, Brigitte; van Wuytswinkel, Olivier; Bendahmane, Abdelhafid; Thomasset, Brigitte; Hawkins, Simon

    2013-10-15

    Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. We have developed a flax mutant population that can be used as an efficient

  10. Membranas poliméricas de PE-g-MA-Al/AlPO4 impregnado com Fe, Al - utilização na recuperação de efluentes de galvanoplastia

    Directory of Open Access Journals (Sweden)

    Joice Andrade de Araújo

    2014-01-01

    Full Text Available Neste trabalho foram desenvolvidas membranas filtrantes de materiais híbridos de polietileno de alta densidade modificado com anidrido maleico e ionizado com hidróxido de alumínio (PE-g-MA-Al (matriz orgânica e fosfato de alumínio amorfo puro (AlPO4 ou impregnado com ferro e/ou alumínio (fase dispersa inorgânica. Essas membranas foram obtidas nas composições de PE-g-MA-Al (M1, PE-g-MA-Al/AlPO4 (M2, PE-g-MA-Al/AlPO4-Al (M3, PE-g-MA-Al/AlPO4-Fe (M4 e PE-g-MA-Al/AlPO4-Fe,Al (M5, na proporção de 97/3% em massa, pelo método de "casting", usando xileno à quente e sob refluxo, como solvente. As técnicas de espectroscopia na região do infravermelho (FTIR, difração de raios X (DRX, análise termogravimétrica (TGA, análise textural, tensão superficial e microscopia eletrônica de varredura (MEV serviram para comprovar a influência da natureza dos materiais e da metodologia usada na confecção das membranas na incorporação da fase inorgânica na matriz polimérica e nas propriedades dos materiais híbridos resultantes. A aplicação das membranas na recuperação de metais presentes no efluente de galvanoplastia mostrou que a presença do ferro e/ou alumínio influenciou na morfologia e nas propriedades texturais desses materiais, e consequentemente na utilização como membranas mesoporosas de ultrafiltração, com os melhores resultados apresentados por M1 e M3 na recuperação de ferro (32 e 35% e zinco (62 e 60%.

  11. Increased production of pyruvic acid by Escherichia coli RNase G mutants in combination with cra mutations.

    Science.gov (United States)

    Sakai, Taro; Nakamura, Naoko; Umitsuki, Genryou; Nagai, Kazuo; Wachi, Masaaki

    2007-08-01

    The Escherichia coli RNase G is known as an endoribonuclease responsible for the 5'-end maturation of 16S rRNA and degradation of several specific mRNAs such as adhE and eno mRNAs. In this study, we found that an RNase G mutant derived from the MC1061 strain did not grow on a glucose minimal medium. Genetic analysis revealed that simultaneous defects of cra and ilvIH, encoding a transcriptional regulator of glycolysis/gluconeogenesis and one of isozymes of acetohydroxy acid synthase, respectively, were required for this phenomenon to occur. The results of additional experiments presented here indicate that the RNase G mutation, in combination with cra mutation, caused the increased production of pyruvic acid from glucose, which was then preferentially converted to valine due to the ilvIH mutation, resulting in depletion of isoleucine. In fact, the rng cra double mutant produced increased amount of pyruvate in the medium. These results suggest that the RNase G mutation could be applied in the breeding of producer strains of pyruvate and its derivatives such as valine.

  12. Oxygen Association-Dissociation and Stability Analysis on Mouse Hemoglobins with Mutant α- and β-Globins

    Science.gov (United States)

    D'Surney, S. J.; Popp, R. A.

    1992-01-01

    Oxygen association-dissociation and hemoglobin stability analysis were performed on mouse hemoglobins with amino acid substitutions in an α-globin (α89, His to Leu) and a β-globin (β59, Lys to Ile). The variant α-globin, designated chain 5(m) in the Hba(g2) haplotype, had a high oxygen affinity and was stable. The variant β-globin, (β(s2)) of the Hbb(s2) haplotype, also had an elevated oxygen affinity and in addition was moderately unstable in 19% isopropanol. Hemoglobins from the expected nine (Hba(g2)/Hba(g2);Hbb(s)/Hbb(s) X Hba(a)/Hba(a);Hbb(s2)/Hbb(s2)) F(2) genotypes can be grouped into five classes of P(50) values characterized by strict additivity and dependency on mutant globin gene dosage; physiologically, both globin variants gave indistinguishable effects on oxygen affinity. The hemoglobin of normal mice (Hba(a)/Hba(a);Hbb(s)/Hbb(s)) had a P(50) = 40 mm Hg and the hemoglobin of Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) F(2) mice had a P(50) = 25 mm Hg (human P(50) = 26 mm Hg). Peripheral blood from Hba(g2)/Hba(g2);Hbb(s)/Hbb(s), Hba(a)/Hba(a);Hbb(s2)/Hbb(s2) and Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice exhibited normal hematological values except for a slightly higher hematocrit for Hba(g2)/Hba(g2);Hbb(s)/Hbb(s) and Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice, slightly elevated red cell counts for mice of the three mutant genotypes, and significantly lower values for the mean corpuscular volume and mean corpuscular hemoglobin for Hba(g2)/Hba(g2);Hbb(s2)/Hbb(s2) mice. PMID:1427042

  13. Effects of the peroxisome proliferator clofibric acid on superoxide dismutase expression in the human HepG2 hepatoma cell line.

    Science.gov (United States)

    Bécuwe, P; Bianchi, A; Keller, J M; Dauça, M

    1999-09-15

    We examined the effects of clofibric acid, a peroxisome proliferator, on the production of superoxide radicals, on the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and on the expression of superoxide dismutases (SODs) in the human HepG2 hepatoma cell line. To this end, HepG2 cells were treated for 1 or 5 days with 0.25, 0.50, or 0.75 mM clofibric acid. The production of superoxide radicals was only enhanced in HepG2 cells exposed for 5 days to the different clofibric acid concentrations. However, this overproduction of superoxide radicals was not accompanied by increased rates of lipid peroxidation, as the MDA and 4-HNE levels did not change significantly. Manganese (Mn) SOD activity was increased when HepG2 cells were treated for 1 day with 0.50 or 0.75 mM clofibric acid. For this duration of treatment, no change was observed in total SOD and copper/zinc (Cu/Zn) SOD activities. For a 5-day treatment, total SOD and MnSOD activities as well as the enzyme apoprotein and MnSOD mRNA levels increased whatever the clofibric acid concentration used. This transcriptional induction of the MnSOD gene was correlated with an activation of the activator protein-1 transcription factor for 1 and 5 days of treatment, but was independent of nuclear factor-kappa B and of peroxisome proliferator-activated receptor. On the other hand, the PP exerted very little effect if any on Cu,ZnSOD expression. In contrast to rodent data, PP treatment of human hepatoma cells induces MnSOD expression.

  14. Reduction of microhemorrhages in the spinal cord of symptomatic ALS mice after intravenous human bone marrow stem cell transplantation accompanies repair of the blood-spinal cord barrier

    Science.gov (United States)

    Eve, David J.; Steiner, George; Mahendrasah, Ajay; Sanberg, Paul R.; Kurien, Crupa; Thomson, Avery; Borlongan, Cesar V.; Garbuzova-Davis, Svitlana

    2018-01-01

    Blood-spinal cord barrier (BSCB) alterations, including capillary rupture, have been demonstrated in animal models of amyotrophic lateral sclerosis (ALS) and ALS patients. To date, treatment to restore BSCB in ALS is underexplored. Here, we evaluated whether intravenous transplantation of human bone marrow CD34+ (hBM34+) cells into symptomatic ALS mice leads to restoration of capillary integrity in the spinal cord as determined by detection of microhemorrhages. Three different doses of hBM34+ cells (5 × 104, 5 × 105 or 1 × 106) or media were intravenously injected into symptomatic G93A SOD1 mice at 13 weeks of age. Microhemorrhages were determined in the cervical and lumbar spinal cords of mice at 4 weeks post-treatment, as revealed by Perls’ Prussian blue staining for ferric iron. Numerous microhemorrhages were observed in the gray and white matter of the spinal cords in media-treated mice, with a greater number of capillary ruptures within the ventral horn of both segments. In cell-treated mice, microhemorrhage numbers in the cervical and lumbar spinal cords were inversely related to administered cell doses. In particular, the pervasive microvascular ruptures determined in the spinal cords in late symptomatic ALS mice were significantly decreased by the highest cell dose, suggestive of BSCB repair by grafted hBM34+ cells. The study results provide translational outcomes supporting transplantation of hBM34+ cells at an optimal dose as a potential therapeutic strategy for BSCB repair in ALS patients. PMID:29535831

  15. Reduction of microhemorrhages in the spinal cord of symptomatic ALS mice after intravenous human bone marrow stem cell transplantation accompanies repair of the blood-spinal cord barrier.

    Science.gov (United States)

    Eve, David J; Steiner, George; Mahendrasah, Ajay; Sanberg, Paul R; Kurien, Crupa; Thomson, Avery; Borlongan, Cesar V; Garbuzova-Davis, Svitlana

    2018-02-13

    Blood-spinal cord barrier (BSCB) alterations, including capillary rupture, have been demonstrated in animal models of amyotrophic lateral sclerosis (ALS) and ALS patients. To date, treatment to restore BSCB in ALS is underexplored. Here, we evaluated whether intravenous transplantation of human bone marrow CD34 + (hBM34 + ) cells into symptomatic ALS mice leads to restoration of capillary integrity in the spinal cord as determined by detection of microhemorrhages. Three different doses of hBM34 + cells (5 × 10 4 , 5 × 10 5 or 1 × 10 6 ) or media were intravenously injected into symptomatic G93A SOD1 mice at 13 weeks of age. Microhemorrhages were determined in the cervical and lumbar spinal cords of mice at 4 weeks post-treatment, as revealed by Perls' Prussian blue staining for ferric iron. Numerous microhemorrhages were observed in the gray and white matter of the spinal cords in media-treated mice, with a greater number of capillary ruptures within the ventral horn of both segments. In cell-treated mice, microhemorrhage numbers in the cervical and lumbar spinal cords were inversely related to administered cell doses. In particular, the pervasive microvascular ruptures determined in the spinal cords in late symptomatic ALS mice were significantly decreased by the highest cell dose, suggestive of BSCB repair by grafted hBM34 + cells. The study results provide translational outcomes supporting transplantation of hBM34 + cells at an optimal dose as a potential therapeutic strategy for BSCB repair in ALS patients.

  16. Association study on glutathione S-transferase omega 1 and 2 and familial ALS

    NARCIS (Netherlands)

    van de Giessen, Elsmarieke; Fogh, Isabella; Gopinath, Sumana; Smith, Bradley; Hu, Xun; Powell, John; Andersen, Peter; Nicholson, Garth; Al Chalabi, Ammar; Shaw, Christopher E.

    2008-01-01

    Glutathione S-transferase omega 1 and 2 (GSTO1 and 2) protect from oxidative stress, a possible pathogenic mechanism underlying the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Alzheimer's disease. Significant association of age of onset in Alzheimer's

  17. 4G/5G plasminogen activator inhibitor-1 and -308 A/G tumor necrosis factor-α promoter gene polymorphisms in Argentinean lupus patients: focus on lupus nephritis.

    Science.gov (United States)

    Muñoz, Sebastián Andrés; Aranda, Federico; Allievi, Alberto; Orden, Alberto Omar; Perés Wingeyer, Silvia; Trobo, Rosana; Alvarez, Analía; Eimon, Alicia; Barreira, Juan Carlos; Schneeberger, Emilce; Dal Pra, Fernando; Sarano, Judith; Hofman, Julio; Chamorro, Julián; de Larrañaga, Gabriela

    2014-02-01

    We investigated the relationship between the 4G/5G plasminogen activator inhibitor (PAI-1) and -308 A/G tumor necrosis factor-α (TNF-α) polymorphisms and the clinical and biochemical features of systemic lupus erythematosus (SLE) in an Argentinean patient cohort. A total of 402 patients were studied, including 179 SLE patients and 223 healthy individuals. PCR-RLFP was used to determine the genotypes of the 4G/5G PAI-1 and -308 A/G TNF-α polymorphisms. SLE patients with lupus nephritis (LN) (n = 86) were compared with patients without LN (n = 93). Additionally, LN patients were divided into proliferative LN and non-proliferative LN groups according to the results of the renal biopsies. No significant differences were noted in the genotype distributions or allele frequencies of these TNF-α and PAI-1 polymorphisms between SLE patients and controls. There were higher numbers of criteria for SLE, more lupus flares and higher damage scores in LN patients, but there were similar frequencies of anti-phospholipid antibody (APA) positivity and anti-phospholipid syndrome. No significant difference was noted for any studied variable between the proliferative LN and non-proliferative LN groups except for the presence of APA. We found no significant differences in the TNF-α and PAI-1 genotype distributions or allele frequencies between groups. We found that the -308 A/G TNF-α and 4G/5G PAI-1 polymorphisms are not associated with susceptibility to SLE in an Argentinean population. We also did not find any association between the presence of any specific allele or genotype and the development of LN in SLE patients. Finally, no association was noted between either of the two polymorphisms and the severity of renal disease.

  18. Evaluation of dwarf mutant of cowpea (Vigna Unguiculata L. Walp.) developed through gamma irradiation for nitrogen fixation characters

    International Nuclear Information System (INIS)

    Anjana, G.; Thimmaiah, S.K.

    2002-01-01

    A dwarf mutant developed through gamma-irradiation and mutation breeding of its parent cowpea variety, namely KBC-1 has been characterized for nitrogen-fixation characters such as root nodule acetylene reduction activity (ARA) and legthemoglobin content at different days after sowing (DAS). Significant variations in these characters were noticed among the varieties and for interactions between the varieties and DAS. The ARA was nearly one-and-a half fold higher in the mutant at both 30 (12.69 μmoles)C 2 H 4 formed/h/g fr.wt. of nodules) and 50 DAS (6.74 μmoles) over its parent (9.20 and 4.46 μmoles at 30 and 50 DAS, respectively). Further, the ARA in the mutant decreased linearly with an increase in the DAS. The leghemoglobin (Lb) content was also higher in the mutant over the parent at all the DAS. However, it decreased linearly with an increase in the DAS in both the mutant and the parent. The highest leghemoglobin content was noticed at 30 DAS in both mutant (2.1 mg/g fr. wt. of nodules) and the parent (1.45 mg/g). Thus, the dwarf cowpea mutant was found to be associated with higher nitrogen-fixing ability which could be exploited in future breeding programmes. (author)

  19. Superoxide Dismutase (SOD Enzyme Activity Assay in Fasciola spp. Para-sites and Liver Tissue Extract

    Directory of Open Access Journals (Sweden)

    M Assady

    2011-09-01

    Full Text Available Background: The purpose of this comparative study was to detect superoxide dismutase (SOD activities in Fasciola hepatica, F. gigantica parasites, infected and healthy liver tissues in order to determine of species effects and liver infection on SODs activity level.Methods: Fasciola spp. parasites and sheep liver tissues (healthy and infected liver tissues, 10 samples for each, were collected, homogenized and investigated for protein measurement, protein detection and SOD enzyme activity assay. Protein concentration was measured by Bradford method and SODs band protein was detected on SDS-PAGE. SODs activity was determined by iodonitrotetrazolium chloride, INT, and xanthine substrates. Independent samples t-test was conducted for analysis of SODs activities difference.Results: Protein concentration means were detected for F. hepatica 1.3 mg/ ml, F. gigantica 2.9 mg/ml, healthy liver tissue 5.5 mg/ml and infected liver tissue 1.6 mg/ml (with similar weight sample mass. Specific enzyme activities in the samples were obtained 0.58, 0.57, 0.51, 1.43 U/mg for F. hepatica, F. gigantica, healthy liver and infected liver respectively. Gel electrophoresis of Fasciola spp. and sheep liver tissue extracts revealed a band protein with MW of 60 kDa. The statistical analysis revealed significant difference between SOD activities of Fasciola species and also between SOD activity of liver tissues (P<.05.Conclusion: Fasciola species and liver infection are effective causes on SOD enzyme activity level.

  20. The Drosophila mitochondrial translation elongation factor G1 contains a nuclear localization signal and inhibits growth and DPP signaling.

    Science.gov (United States)

    Trivigno, Catherine; Haerry, Theodor E

    2011-02-25

    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low.

  1. Increasing Power by Sharing Information from Genetic Background and Treatment in Clustering of Gene Expression Time Series

    Directory of Open Access Journals (Sweden)

    Sura Zaki Alrashid

    2018-02-01

    Full Text Available Clustering of gene expression time series gives insight into which genes may be co-regulated, allowing us to discern the activity of pathways in a given microarray experiment. Of particular interest is how a given group of genes varies with different conditions or genetic background. This paper develops
a new clustering method that allows each cluster to be parameterised according to whether the behaviour of the genes across conditions is correlated or anti-correlated. By specifying correlation between such genes,more information is gain within the cluster about how the genes interrelate. Amyotrophic lateral sclerosis (ALS is an irreversible neurodegenerative disorder that kills the motor neurons and results in death within 2 to 3 years from the symptom onset. Speed of progression for different patients are heterogeneous with significant variability. The SOD1G93A transgenic mice from different backgrounds (129Sv and C57 showed consistent phenotypic differences for disease progression. A hierarchy of Gaussian isused processes to model condition-specific and gene-specific temporal co-variances. This study demonstrated about finding some significant gene expression profiles and clusters of associated or co-regulated gene expressions together from four groups of data (SOD1G93A and Ntg from 129Sv and C57 backgrounds. Our study shows the effectiveness of sharing information between replicates and different model conditions when modelling gene expression time series. Further gene enrichment score analysis and ontology pathway analysis of some specified clusters for a particular group may lead toward identifying features underlying the differential speed of disease progression.

  2. Interaction of the heterotrimeric G protein alpha subunit SSG-1 of Sporothrix schenckii with proteins related to stress response and fungal pathogenicity using a yeast two-hybrid assay

    Directory of Open Access Journals (Sweden)

    González-Méndez Ricardo

    2010-12-01

    Full Text Available Abstract Background Important biological processes require selective and orderly protein-protein interactions at every level of the signalling cascades. G proteins are a family of heterotrimeric GTPases that effect eukaryotic signal transduction through the coupling of cell surface receptors to cytoplasmic effector proteins. They have been associated with growth and pathogenicity in many fungi through gene knock-out studies. In Sporothrix schenckii, a pathogenic, dimorphic fungus, we previously identified a pertussis sensitive G alpha subunit, SSG-1. In this work we inquire into its interactions with other proteins. Results Using the yeast two-hybrid technique, we identified protein-protein interactions between SSG-1 and other important cellular proteins. The interactions were corroborated using co-immuneprecipitation. Using these techniques we identified a Fe/Mn superoxide dismutase (SOD, a glyceraldehyde-3-P dehydrogenase (GAPDH and two ion transport proteins, a siderophore-iron transporter belonging to the Major Facilitator Superfamily (MFS and a divalent-cation transporter of the Nramp (natural resistance-associated macrophage protein family as interacting with SSG-1. The cDNA's encoding these proteins were sequenced and bioinformatic macromolecular sequence analyses were used for the correct classification and functional assignment. Conclusions This study constitutes the first report of the interaction of a fungal G alpha inhibitory subunit with SOD, GAPDH, and two metal ion transporters. The identification of such important proteins as partners of a G alpha subunit in this fungus suggests possible mechanisms through which this G protein can affect pathogenicity and survival under conditions of environmental stress or inside the human host. The two ion transporters identified in this work are the first to be reported in S. schenckii and the first time they are identified as interacting with fungal G protein alpha subunits. The association

  3. Differential survival among sSOD-1* genotypes in Chinook Salmon

    Science.gov (United States)

    Hayes, Michael C.; Reisenbichler, Reginald R.; Rubin, Stephen P.; Wetzel, Lisa A.; Marshall , Anne R.

    2011-01-01

    Differential survival and growth were tested in Chinook salmon Oncorhynchus tshawytscha expressing two common alleles, *–100 and *–260, at the superoxide dismutase locus (sSOD-1*). These tests were necessary to support separate studies in which the two alleles were used as genetic marks under the assumption of mark neutrality. Heterozygous adults were used to produce progeny with –100/–100, –100/–260, and –260/–260 genotypes that were reared in two natural streams and two hatcheries in the states of Washington and Oregon. The latter also were evaluated as returning adults. In general, the genotype ratios of juveniles reared at hatcheries were consistent with high survival and little or no differential survival in the hatchery. Adult returns at one hatchery were significantly different from the expected proportions, and the survival of the –260/–260 genotype was 0.56–0.89 times that of the –100/–100 genotype over four year-classes. Adult returns at a second hatchery (one year-class) were similar but not statistically significant: survival of the –260/–260genotype relative to the –100/–100 genotype was 0.76. The performance of the heterozygote group was intermediate at both hatcheries. Significant differences in growth were rarely observed among hatchery fish (one year-class of juveniles and one age-class of adult males) but were consistent with greater performance for the –100/–100 genotype. Results from two groups of juveniles reared in streams (one year-class from each stream) suggested few differences in growth, but the observed genotype ratios were significantly different from the expected ratios in one stream. Those differences were consistent with the adult data; survival for the –260/–260 genotype was 76% of that of the –100/–100 genotype. These results, which indicate nonneutrality among sSOD-1* genotypes, caused us to modify our related studies and suggest caution in the interpretation of results and analyses in

  4. TNF Lectin-Like Domain Restores Epithelial Sodium Channel Function in Frameshift Mutants Associated with Pseudohypoaldosteronism Type 1B

    Directory of Open Access Journals (Sweden)

    Anita Willam

    2017-05-01

    Full Text Available Previous in vitro studies have indicated that tumor necrosis factor (TNF activates amiloride-sensitive epithelial sodium channel (ENaC current through its lectin-like (TIP domain, since cyclic peptides mimicking the TIP domain (e.g., solnatide, showed ENaC-activating properties. In the current study, the effects of TNF and solnatide on individual ENaC subunits or ENaC carrying mutated glycosylation sites in the α-ENaC subunit were compared, revealing a similar mode of action for TNF and solnatide and corroborating the previous assumption that the lectin-like domain of TNF is the relevant molecular structure for ENaC activation. Accordingly, TNF enhanced ENaC current by increasing open probability of the glycosylated channel, position N511 in the α-ENaC subunit being identified as the most important glycosylation site. TNF significantly increased Na+ current through ENaC comprising only the pore forming subunits α or δ, was less active in ENaC comprising only β-subunits, and showed no effect on ENaC comprising γ-subunits. TNF did not increase the membrane abundance of ENaC subunits to the extent observed with solnatide. Since the α-subunit is believed to play a prominent role in the ENaC current activating effect of TNF and TIP, we investigated whether TNF and solnatide can enhance αβγ-ENaC current in α-ENaC loss-of-function frameshift mutants. The efficacy of solnatide has been already proven in pathological conditions involving ENaC in phase II clinical trials. The frameshift mutations αI68fs, αT169fs, αP197fs, αE272fs, αF435fs, αR438fs, αY447fs, αR448fs, αS452fs, and αT482fs have been reported to cause pseudohypoaldosteronism type 1B (PHA1B, a rare, life-threatening, salt-wasting disease, which hitherto has been treated only symptomatically. In a heterologous expression system, all frameshift mutants showed significantly reduced amiloride-sensitive whole-cell current compared to wild type αβγ-ENaC, whereas membrane

  5. Plasminogen activator inhibitor-1 4G/5G gene polymorphism and coronary artery disease in the Chinese Han population: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yan-yan Li

    Full Text Available BACKGROUND: The polymorphism of plasminogen activator inhibitor-1 (PAI-1 4G/5G gene has been indicated to be correlated with coronary artery disease (CAD susceptibility, but study results are still debatable. OBJECTIVE AND METHODS: The present meta-analysis was performed to investigate the association between PAI-1 4G/5G gene polymorphism and CAD in the Chinese Han population. A total of 879 CAD patients and 628 controls from eight separate studies were involved. The pooled odds ratio (OR for the distribution of the 4G allele frequency of PAI-1 4G/5G gene and its corresponding 95% confidence interval (CI was assessed by the random effect model. RESULTS: The distribution of the 4 G allele frequency was 0.61 for the CAD group and 0.51 for the control group. The association between PAI-1 4G/5G gene polymorphism and CAD in the Chinese Han population was significant under an allelic genetic model (OR = 1.70, 95% CI = 1.18 to 2.44, P = 0.004. The heterogeneity test was also significant (P<0.0001. Meta-regression was performed to explore the heterogeneity source. Among the confounding factors, the heterogeneity could be explained by the publication year (P = 0.017, study region (P = 0.014, control group sample size (P = 0.011, total sample size (P = 0.011, and ratio of the case to the control group sample size (RR (P = 0.019. In a stratified analysis by the total sample size, significantly increased risk was only detected in subgroup 2 under an allelic genetic model (OR = 1.93, 95% CI = 1.09 to 3.35, P = 0.02. CONCLUSIONS: In the Chinese Han population, PAI-1 4G/5G gene polymorphism was implied to be associated with increased CAD risk. Carriers of the 4G allele of the PAI-1 4G/5G gene might predispose to CAD.

  6. Inhibition of mutant IDH1 decreases D-2-HG levels without affecting tumorigenic properties of chondrosarcoma cell lines.

    Science.gov (United States)

    Suijker, Johnny; Oosting, Jan; Koornneef, Annemarie; Struys, Eduard A; Salomons, Gajja S; Schaap, Frank G; Waaijer, Cathelijn J F; Wijers-Koster, Pauline M; Briaire-de Bruijn, Inge H; Haazen, Lizette; Riester, Scott M; Dudakovic, Amel; Danen, Erik; Cleton-Jansen, Anne-Marie; van Wijnen, Andre J; Bovée, Judith V M G

    2015-05-20

    Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are found in a subset of benign and malignant cartilage tumors, gliomas and leukaemias. The mutant enzyme causes the production of D-2-hydroxyglutarate (D-2-HG), affecting CpG island and histone methylation. While mutations in IDH1/2 are early events in benign cartilage tumors, we evaluated whether these mutations play a role in malignant chondrosarcomas. Compared to IDH1/2 wildtype cell lines, chondrosarcoma cell lines harboring an endogenous IDH1 (n=3) or IDH2 mutation (n=2) showed up to a 100-fold increase in intracellular and extracellular D-2-HG levels. Specific inhibition of mutant IDH1 using AGI-5198 decreased levels of D-2-HG in a dose dependent manner. After 72 hours of treatment one out of three mutant IDH1 cell lines showed a moderate decrease in viability , while D-2-HG levels decreased >90%. Likewise, prolonged treatment (up to 20 passages) did not affect proliferation and migration. Furthermore, global gene expression, CpG island methylation as well as histone H3K4, -9, and -27 trimethylation levels remained unchanged. Thus, while IDH1/2 mutations cause enchondroma, malignant progression towards central chondrosarcoma renders chondrosarcoma growth independent of these mutations. Thus, monotherapy based on inhibition of mutant IDH1 appears insufficient for treatment of inoperable or metastasized chondrosarcoma patients.

  7. 4G/5G Polymorphism of Plasminogen Activator Inhibitor -1 Gene Is Associated with Mortality in Intensive Care Unit Patients with Severe Pneumonia

    Science.gov (United States)

    Sapru, Anil; Hansen, Helen; Ajayi, Temitayo; Brown, Ron; Garcia, Oscar; Zhuo, HanJing; Wiemels, Joseph; Matthay, Michael A.; Wiener-Kronish, Jeanine

    2011-01-01

    Background Higher plasma and pulmonary edema fluid levels of plasminogen activator inhibitor-1 (PAI-1) are associated with increased mortality in patients with pneumonia and acute lung injury. The 4G allele of the 4G/5G polymorphism of the PAI-1 gene is associated with higher PAI-1 levels and an increased incidence of hospitalizations for pneumonia. The authors hypothesized that the 4G allele would be associated with worse clinical outcomes (mortality and ventilator-free days) in patients with severe pneumonia. Methods The authors enrolled patients admitted with severe pneumonia in a prospective cohort. Patients were followed until hospital discharge. DNA was isolated from blood samples, and genotyping detection for the PAI-1 4G/5G polymorphism was carried out using Taqman-based allelic discrimination. Results A total of 111 patients were available for analysis. Distribution of genotypes was 4G/4G 26 of 111 (23%), 4G/5G 59 of 111 (53%), and 5G/5G 26 of 111 (23%). Of 111 patients, 32 (29%) died before hospital discharge and 105 patients (94%) received mechanical ventilation. Patients with the 4G/4G and the 4G/5G genotypes had higher mortality (35% vs. 8%, P = 0.007) and fewer ventilator-free days (median 4 vs. 13, P = 0.04) compared to patients with the 5G/5G genotype. Conclusions The 4G allele of the 4G/5G polymorphism in the PAI-1 gene is associated with fewer ventilator-free days and increased mortality in hospitalized patients with severe pneumonia. These findings suggest that PAI-1 may have a role in pathogenesis and that the 4G/5G polymorphism may be an important biomarker of risk in patients with severe pneumonia. PMID:19387177

  8. 4G/5G polymorphism of plasminogen activator inhibitor-1 gene is associated with mortality in intensive care unit patients with severe pneumonia.

    Science.gov (United States)

    Sapru, Anil; Hansen, Helen; Ajayi, Temitayo; Brown, Ron; Garcia, Oscar; Zhuo, HanJing; Wiemels, Joseph; Matthay, Michael A; Wiener-Kronish, Jeanine

    2009-05-01

    Higher plasma and pulmonary edema fluid levels of plasminogen activator inhibitor-1 (PAI-1) are associated with increased mortality in patients with pneumonia and acute lung injury. The 4G allele of the 4G/5G polymorphism of the PAI-1 gene is associated with higher PAI-1 levels and an increased incidence of hospitalizations for pneumonia. The authors hypothesized that the 4G allele would be associated with worse clinical outcomes (mortality and ventilator-free days) in patients with severe pneumonia. The authors enrolled patients admitted with severe pneumonia in a prospective cohort. Patients were followed until hospital discharge. DNA was isolated from blood samples, and genotyping detection for the PAI-1 4G/5G polymorphism was carried out using Taqman-based allelic discrimination. A total of 111 patients were available for analysis. Distribution of genotypes was 4G/4G 26 of 111 (23%), 4G/5G 59 of 111 (53%), and 5G/5G 26 of 111 (23%). Of 111 patients, 32 (29%) died before hospital discharge and 105 patients (94%) received mechanical ventilation. Patients with the 4G/4G and the 4G/5G genotypes had higher mortality (35% vs. 8%, P = 0.007) and fewer ventilator-free days (median 4 vs. 13, P = 0.04) compared to patients with the 5G/5G genotype. The 4G allele of the 4G/5G polymorphism in the PAI-1 gene is associated with fewer ventilator-free days and increased mortality in hospitalized patients with severe pneumonia. These findings suggest that PAI-1 may have a role in pathogenesis and that the 4G/5G polymorphism may be an important biomarker of risk in patients with severe pneumonia.

  9. Calcium-Induced Activation of a Mutant G-Protein-Coupled Receptor Causes In Vitro Transformation of NIH/3T3 Cells

    Directory of Open Access Journals (Sweden)

    Ana O. Hoff

    1999-12-01

    Full Text Available The calcium-sensing receptor (CaR is a G-proteincoupled receptor that is widely expressed, has tissuespecific functions, regulates cell growth. Activating mutations of this receptor cause autosomal dominant hypocalcemia, a syndrome characterized by hypocalcemia and hypercalciuria. The identification of a family with an activating mutation of the CaR (Thr151 Met in which hypocalcemia cosegregates with several unusual neoplasms led us to examine the transforming effects of this mutant receptor. Transfection of NIH/3T3 cells with the mutant but not the normal receptor supported colony formation in soft agar at subphysiologic calcium concentrations. The mutant CaR causes a calcium-dependent activation of the extracellular signal-regulated protein kinase (ERK 1/2 and Jun-N-terminal kinase/stress-activated (JNK/ SAPK pathways, but not P38 MAP kinase. These findings contribute to a growing body of information suggesting that this receptor plays a role in the regulation of cellular proliferation, that aberrant activation of the mutant receptor in this family may play a role in the unusual neoplastic manifestations.

  10. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress.

    Directory of Open Access Journals (Sweden)

    Qingjie Guan

    Full Text Available The 636-bp-long cDNA sequence of OsCu/Zn-SOD (AK059841 was cloned from Oryza sativa var. Longjing11 via reverse transcription polymerase chain reaction (RT-PCR. The encoded protein comprised of 211 amino acids is highly homologous to Cu/Zn-SOD proteins from tuscacera rice and millet. Quantitative RT-PCR revealed that in rice, the level of OsCu/Zn-SOD gene expression was lowest in roots and was highest in petals and during the S5 leaf stage. Moreover, the expression level of OsCu/Zn-SOD gene expression decreased during the L5 leaf stage to maturity. The level of OsCu/Zn-SOD gene expression, however, was increased under saline-sodic stress and NaHCO3 stress. Germination tests under 125, 150, and 175 mM NaCl revealed that OsCu/Zn-SOD-overexpressing lines performed better than the non-transgenic (NT Longjing11 lines in terms of germination rate and height. Subjecting seedlings to NaHCO3 and water stress revealed that OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of SOD activity, fresh weight, root length, and height. Under simulated NaHCO3 stress, OsCu/Zn-SOD-overexpressing lines performed better than NT in terms of survival rate (25.19% > 6.67% and yield traits (average grain weight 20.6 > 18.15 g. This study showed that OsCu/Zn-SOD gene overexpression increases the detoxification capacity of reactive oxygen species in O. sativa and reduces salt-induced oxidative damage. We also revealed the regulatory mechanism of OsCu/Zn-SOD enzyme in saline-sodic stress resistance in O. sativa. Moreover, we provided an experimental foundation for studying the mechanism of OsCu/Zn-SOD enzymes in the chloroplast.

  11. In black South Africans from rural and urban communities, the 4G/5G PAI-1 polymorphism influences PAI-1 activity, but not plasma clot lysis time.

    Directory of Open Access Journals (Sweden)

    Zelda de Lange

    Full Text Available Data on genetic and environmental factors influencing PAI-1 levels and their consequent effect on clot lysis in black African populations are limited. We identified polymorphisms in the promoter area of the PAI-1 gene and determined their influence on PAI-1act levels and plasma clot lysis time (CLT. We also describe gene-environment interactions and the effect of urbanisation. Data from 2010 apparently healthy urban and rural black participants from the South African arm of the PURE study were cross-sectionally analysed. The 5G allele frequency of the 4G/5G polymorphism was 0.85. PAI-1act increased across genotypes in the urban subgroup (p = 0.009 but not significantly in the rural subgroup, while CLT did not differ across genotypes. Significant interaction terms were found between the 4G/5G polymorphism and BMI, waist circumference and triglycerides in determining PAI-1act, and between the 4G/5G polymorphism and fibrinogen and fibrinogen gamma prime in determining CLT. The C428T and G429A polymorphisms did not show direct relationships with PAI-1act or CLT but they did influence the association of other environmental factors with PAI-1act and CLT. Several of these interactions differed significantly between rural and urban subgroups, particularly in individuals harbouring the mutant alleles. In conclusion, although the 4G/5G polymorphism significantly affected PAI-1act, it contributed less than 1% to the PAI-1act variance. (Central obesity was the biggest contributor to PAI-1act variance (12.5%. Urbanisation significantly influenced the effect of the 4G/5G polymorphism on PAI-1act as well as gene-environment interactions for the C428T and G429A genotypes in determining PAI-1act and CLT.

  12. In black South Africans from rural and urban communities, the 4G/5G PAI-1 polymorphism influences PAI-1 activity, but not plasma clot lysis time.

    Science.gov (United States)

    de Lange, Zelda; Rijken, Dingeman C; Hoekstra, Tiny; Conradie, Karin R; Jerling, Johann C; Pieters, Marlien

    2013-01-01

    Data on genetic and environmental factors influencing PAI-1 levels and their consequent effect on clot lysis in black African populations are limited. We identified polymorphisms in the promoter area of the PAI-1 gene and determined their influence on PAI-1act levels and plasma clot lysis time (CLT). We also describe gene-environment interactions and the effect of urbanisation. Data from 2010 apparently healthy urban and rural black participants from the South African arm of the PURE study were cross-sectionally analysed. The 5G allele frequency of the 4G/5G polymorphism was 0.85. PAI-1act increased across genotypes in the urban subgroup (p = 0.009) but not significantly in the rural subgroup, while CLT did not differ across genotypes. Significant interaction terms were found between the 4G/5G polymorphism and BMI, waist circumference and triglycerides in determining PAI-1act, and between the 4G/5G polymorphism and fibrinogen and fibrinogen gamma prime in determining CLT. The C428T and G429A polymorphisms did not show direct relationships with PAI-1act or CLT but they did influence the association of other environmental factors with PAI-1act and CLT. Several of these interactions differed significantly between rural and urban subgroups, particularly in individuals harbouring the mutant alleles. In conclusion, although the 4G/5G polymorphism significantly affected PAI-1act, it contributed less than 1% to the PAI-1act variance. (Central) obesity was the biggest contributor to PAI-1act variance (12.5%). Urbanisation significantly influenced the effect of the 4G/5G polymorphism on PAI-1act as well as gene-environment interactions for the C428T and G429A genotypes in determining PAI-1act and CLT.

  13. PAI-1 -675 4G/5G polymorphism in association with diabetes and diabetic complications susceptibility: a meta-analysis study.

    Science.gov (United States)

    Xu, Kuanfeng; Liu, Xiaoyun; Yang, Fan; Cui, Dai; Shi, Yun; Shen, Chong; Tang, Wei; Yang, Tao

    2013-01-01

    A meta-analysis was performed to assess the association between the PAI-1 -675 4G/5G polymorphism and susceptibility to diabetes mellitus (DM), diabetic nephropathy (DN), diabetic retinopathy (DR) and diabetic coronary artery disease (CAD). A literature-based search was conducted to identify all relevant studies. The fixed or random effect pooled measure was calculated mainly at the allele level to determine heterogeneity bias among studies. Further stratified analyses and sensitivity analyses were also performed. Publication bias was examined by the modified Begg's and Egger's test. Twenty published articles with twenty-seven outcomes were included in the meta-analysis: 6 studies with a total of 1,333 cases and 3,011 controls were analyzed for the PAI-1 -675 4G/5G polymorphism with diabetes risk, 7 studies with 1,060 cases and 1,139 controls for DN risk, 10 studies with 1,327 cases and 1,557 controls for DR and 4 studies with 610 cases and 1,042 controls for diabetic CAD risk respectively. Using allelic comparison (4G vs. 5G), the PAI-1 -675 4G/5G polymorphism was observed to have no significant association with diabetes (REM OR 1.07, 95% CI 0.96, 1.20), DN (REM OR 1.10, 95% CI 0.98, 1.25), DR (REM OR 1.09, 95% CI 0.97, 1.22) or diabetic CAD risk (REM OR 1.07, 95% CI 0.81, 1.42), and similar results were obtained in the dominant, recessive and co-dominant models. Our meta-analyses suggest that the PAI-1 -675 4G/5G polymorphism might not be a risk factor for DM, DN, DR or diabetic CAD risk in the populations investigated. This conclusion warrants confirmation by further studies.

  14. Homologous series of induced early mutants in indican rice. Pt.1. The production of homologous series of early mutants

    International Nuclear Information System (INIS)

    Chen Xiulan; Yang Hefeng; He Zhentian; Han Yuepeng; Liu Xueyu

    1999-01-01

    The percentage of homologous series of early mutants induced from the same Indican rice variety were almost the same (1.37%∼1.64%) in 1983∼1993, but the ones from the different eco-typical varieties were different. The early variety was 0.73%, the mid variety was 1.51%, and the late variety was 1.97%. The percentage of homologous series of early mutants from the varieties with the same pedigree and relationship were similar, but the one from the cog nation were lower than those from distant varieties. There are basic laws and characters in the homologous series of early mutants: 1. The inhibited phenotype is the basic of the homologous series of early mutants; 2. The production of the homologous series of early mutants is closely related with the growing period of the parent; 3. The parallel mutation of the stem and leaves are simultaneously happened with the variation of early or late maturing; 4. The occurrence of the homologous series of early mutants is in a state of imbalance. According to the law of parallel variability, the production of homologous series of early mutants can be predicted as long as the parents' classification of plant, pedigree and ecological type are identified. Therefore, the early breeding can be guided by the law of homologous series of early mutants

  15. Mutants with Enhanced Nitrogenase Activity in Hydroponic Azospirillum brasilense-Wheat Associations

    Science.gov (United States)

    Pereg Gerk, Lily; Gilchrist, Kate; Kennedy, Ivan R.

    2000-01-01

    The effect of a mutation affecting flocculation, differentiation into cyst-like forms, and root colonization on nitrogenase expression by Azospirillum brasilense is described. The gene flcA of strain Sp7 restored these phenotypes in spontaneous mutants of both strains Sp7 and Sp245. Employing both constitutive pLA-lacZ and nifH-lacZ reporter fusions expressed in situ, the colony morphology, colonization pattern, and potential for nitrogenase activity of spontaneous mutants and flcA Tn5-induced mutants were established. The results of this study show that the ability of Sp7 and Sp245 mutant strains to remain in a vegetative form improved their ability to express nitrogenase activity in association with wheat in a hydroponic system. Restoring the cyst formation and colonization pattern to the spontaneous mutant Sp7-S reduced nitrogenase activity rates in association with plants to that of the wild-type Sp7. Although Tn5-induced flcA mutants showed higher potentials for nitrogenase expression than Sp7, their potentials were lower than that of Sp7-S, indicating that other factors in this strain contribute to its exceptional nitrogenase activity rates on plants. The lack of lateral flagella is not one of these factors, as Sp7-PM23, a spontaneous mutant impaired in swarming and lateral-flagellum production but not in flocculation, showed wild-type nitrogenase activity and expression. The results also suggest factors of importance in evolving an effective symbiosis between Azospirillum and wheat, such as increasing the availability of microaerobic niches along the root, increased supply of carbon sources by the plant, and the retention of the bacterial cells in vegetative form for faster metabolism. PMID:10788397

  16. The Drosophila mitochondrial translation elongation factor G1 contains a nuclear localization signal and inhibits growth and DPP signaling.

    Directory of Open Access Journals (Sweden)

    Catherine Trivigno

    2011-02-01

    Full Text Available Mutations in the human mitochondrial elongation factor G1 (EF-G1 are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico, which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low.

  17. Quantitative assessment of integrated phrenic nerve activity.

    Science.gov (United States)

    Nichols, Nicole L; Mitchell, Gordon S

    2016-06-01

    Integrated electrical activity in the phrenic nerve is commonly used to assess within-animal changes in phrenic motor output. Because of concerns regarding the consistency of nerve recordings, activity is most often expressed as a percent change from baseline values. However, absolute values of nerve activity are necessary to assess the impact of neural injury or disease on phrenic motor output. To date, no systematic evaluations of the repeatability/reliability have been made among animals when phrenic recordings are performed by an experienced investigator using standardized methods. We performed a meta-analysis of studies reporting integrated phrenic nerve activity in many rat groups by the same experienced investigator; comparisons were made during baseline and maximal chemoreceptor stimulation in 14 wild-type Harlan and 14 Taconic Sprague Dawley groups, and in 3 pre-symptomatic and 11 end-stage SOD1(G93A) Taconic rat groups (an ALS model). Meta-analysis results indicate: (1) consistent measurements of integrated phrenic activity in each sub-strain of wild-type rats; (2) with bilateral nerve recordings, left-to-right integrated phrenic activity ratios are ∼1.0; and (3) consistently reduced activity in end-stage SOD1(G93A) rats. Thus, with appropriate precautions, integrated phrenic nerve activity enables robust, quantitative comparisons among nerves or experimental groups, including differences caused by neuromuscular disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype

    OpenAIRE

    Whitehall, VLJ; Dumenil, TD; McKeone, DM; Bond, CE; Bettington, ML; Buttenshaw, RL; Bowdler, L; Montgomery, GW; Wockner, LF; Leggett, BA

    2014-01-01

    The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause o...

  19. Variants of the elongator protein 3 (ELP3) gene are associated with motor neuron degeneration

    NARCIS (Netherlands)

    Simpson, Claire L.; Lemmens, Robin; Miskiewicz, Katarzyna; Broom, Wendy J.; Hansen, Valerie K.; van Vught, Paul W. J.; Landers, John E.; Sapp, Peter; Van Den Bosch, Ludo; Knight, Joanne; Neale, Benjamin M.; Turner, Martin R.; Veldink, Jan H.; Ophoff, Roel A.; Tripathi, Vineeta B.; Beleza, Ana; Shah, Meera N.; Proitsi, Petroula; Van Hoecke, Annelies; Carmeliet, Peter; Horvitz, H. Robert; Leigh, P. Nigel; Shaw, Christopher E.; van den Berg, Leonard H.; Sham, Pak C.; Powell, John F.; Verstreken, Patrik; Brown, Robert H.; Robberecht, Wim; Al-Chalabi, Ammar

    2009-01-01

    Amyotrophic lateral sclerosis (ALS) is a spontaneous, relentlessly progressive motor neuron disease, usually resulting in death from respiratory failure within 3 years. Variation in the genes SOD1 and TARDBP accounts for a small percentage of cases, and other genes have shown association in both

  20. Association between human leukocyte antigen-G genotype and success of in vitro fertilization and pregnancy outcome

    DEFF Research Database (Denmark)

    Hviid, T V F; Hylenius, S; Lindhard, A

    2004-01-01

    spontaneous abortions (RSA), 29 white women undergoing IVF treatments, 61 RSA women and 93 fertile controls were HLA-G genotype. The HLA-G genotype, homozygous for the presence of the 14 bp sequence in exon 8, was significantly associated with reduced fertility with respect to unsuccessful IVF treatments...

  1. Stability of Seven Days Sample Storage of Erythrocyte’s SOD and Blood’s GPx

    Directory of Open Access Journals (Sweden)

    Miswar Fattah

    2012-12-01

    Full Text Available The research was about SOD erythrocyte activities at day 0, 1, 3, 5, and 7 which centrifuged at room temperature (22.5 0C and storage temperature (-80 0C, SOD activities at day-0 which centrifuged at 4 0C, SOD whole blood activities with one day incubated at 2-8 0C and GPx activities at day 0, 1, 3, 5, and 7 with 2–8 0C storage temperature. Laboratory analysis were performed by using reagent from Randox Laboratories, and Hitachi 917 analyzer from Boehringer Mannheim. SOD activities were measured at 505 nm absorbance meanwhile 340 nm absorbance is used to measure GPx. Data was analyzed by using t-test method and showed that SOD activities at day 0, 1, 3, 5, and 7 with room temperature centrifuged had no significant differences. Significant differences are found at day-0 with centrifuged at 4 0C and one day incubated whole blood at 2–8 0C. GPx activities at day- 3 had no significant differences. Significant differences are found at day-0,1, 5 and 7 after storage.

  2. Association between Polymorphisms in Antioxidant Genes and Inflammatory Bowel Disease.

    Directory of Open Access Journals (Sweden)

    Cristiana Costa Pereira

    Full Text Available Inflammation is the driving force in inflammatory bowel disease (IBD and its link to oxidative stress and carcinogenesis has long been accepted. The antioxidant system of the intestinal mucosa in IBD is compromised resulting in increased oxidative injury. This defective antioxidant system may be the result of genetic variants in antioxidant genes, which can represent susceptibility factors for IBD, namely Crohn's disease (CD and ulcerative colitis (UC. Single nucleotide polymorphisms (SNPs in the antioxidant genes SOD2 (rs4880 and GPX1 (rs1050450 were genotyped in a Portuguese population comprising 436 Crohn's disease and 367 ulcerative colitis patients, and 434 healthy controls. We found that the AA genotype in GPX1 is associated with ulcerative colitis (OR = 1.93, adjusted P-value = 0.037. Moreover, we found nominal significant associations between SOD2 and Crohn's disease susceptibility and disease subphenotypes but these did not withstand the correction for multiple testing. These findings indicate a possible link between disease phenotypes and antioxidant genes. These results suggest a potential role for antioxidant genes in IBD pathogenesis and should be considered in future association studies.

  3. Genomic and Transcriptomic Associations Identify a New Insecticide Resistance Phenotype for the Selective Sweep at the Cyp6g1 Locus of Drosophila melanogaster.

    Science.gov (United States)

    Battlay, Paul; Schmidt, Joshua M; Fournier-Level, Alexandre; Robin, Charles

    2016-08-09

    Scans of the Drosophila melanogaster genome have identified organophosphate resistance loci among those with the most pronounced signature of positive selection. In this study, the molecular basis of resistance to the organophosphate insecticide azinphos-methyl was investigated using the Drosophila Genetic Reference Panel, and genome-wide association. Recently released full transcriptome data were used to extend the utility of the Drosophila Genetic Reference Panel resource beyond traditional genome-wide association studies to allow systems genetics analyses of phenotypes. We found that both genomic and transcriptomic associations independently identified Cyp6g1, a gene involved in resistance to DDT and neonicotinoid insecticides, as the top candidate for azinphos-methyl resistance. This was verified by transgenically overexpressing Cyp6g1 using natural regulatory elements from a resistant allele, resulting in a 6.5-fold increase in resistance. We also identified four novel candidate genes associated with azinphos-methyl resistance, all of which are involved in either regulation of fat storage, or nervous system development. In Cyp6g1, we find a demonstrable resistance locus, a verification that transcriptome data can be used to identify variants associated with insecticide resistance, and an overlap between peaks of a genome-wide association study, and a genome-wide selective sweep analysis. Copyright © 2016 Battlay et al.

  4. The effects of 3% diquafosol sodium eye drop application on meibomian gland and ocular surface alterations in the Cu, Zn-superoxide dismutase-1 (Sod1) knockout mice.

    Science.gov (United States)

    Ikeda, Keisuke; Simsek, Cem; Kojima, Takashi; Higa, Kazunari; Kawashima, Motoko; Dogru, Murat; Shimizu, Takahiko; Tsubota, Kazuo; Shimazaki, Jun

    2018-04-01

    The purpose of the study is to investigate the effect of 3% diquafosol sodium eye drops on meibomian gland and ocular surface alterations in the superoxide dismutase-1 (Sod1 -/- ) mice in comparison to the wild-type mouse. Three percent diquafosol sodium eye drop was instilled to 20 eyes of 10 50-week-old male Sod1 -/- mice and 22 eyes of 11 C57BL/6 strain 50-week-old wild-type (WT) male mice six times a day for 2 weeks. Aqueous tear secretion quantity was measured with phenol red-impregnated cotton threads without anesthesia. Tear film stability and corneal epithelial damage were assessed by fluorescein and lissamine green staining. We also performed oil red O (ORO) lipid staining to evaluate the lipid changes in the meibomian glands. Meibomian gland specimens underwent hematoxylin and eosin staining to examine histopathological changes and meibomian gland acinar unit density after sacrifice. Immunohistochemistry staining was performed using cytokeratin 4, cytokeratin 13, and transglutaminase-1 antibodies. Quantitative real-time polymerase chain reaction for cytokeratin 4, cytokeratin 13, and transglutaminase-1 mRNA expression was also performed. The aqueous tear quantity, the mean tear film breakup time, and the number of lipid droplets significantly improved in the Sod1 -/- mice with treatment. The mean meibomian acinar unit density did not change in the Sod1 -/- mice and WT mice after treatment. Application of 3% diquafosol sodium eye drop significantly decreased the corneal fluorescein and lissamine green staining scores in the Sod1 -/- mice after 2 weeks. We showed a notable increase in cytokeratin 4, cytokeratin 13 immunohistochemistry staining, and cytokeratin 4, cytokeratin 13 mRNA expressions with a marked decrease in immunohistochemistry staining and significant decline in mRNA expression of transglutaminase-1 after 3% diquafosol sodium treatment. Topical application of 3% diquafosol sodium eye drop improved the number of lipid droplets, tear stability

  5. Amphitrite ornata dehaloperoxidase (DHP): investigations of structural factors that influence the mechanism of halophenol dehalogenation using "peroxidase-like" myoglobin mutants and "myoglobin-like" DHP mutants.

    Science.gov (United States)

    Du, Jing; Huang, Xiao; Sun, Shengfang; Wang, Chunxue; Lebioda, Lukasz; Dawson, John H

    2011-09-27

    Dehaloperoxidase (DHP), discovered in the marine terebellid polychaete Amphitrite ornata, is the first heme-containing globin with a peroxidase activity. The sequence and crystal structure of DHP argue that it evolved from an ancient O(2) transport and storage globin. Thus, DHP retains an oxygen carrier function but also has the ability to degrade halophenol toxicants in its living environment. Sperm whale myoglobin (Mb) in the ferric state has a peroxidase activity ∼10 times lower than that of DHP. The catalytic activity enhancement observed in DHP appears to have been generated mainly by subtle changes in the positions of the proximal and distal histidine residues that appeared during DHP evolution. Herein, we report investigations into the mechanism of action of DHP derived from examination of "peroxidase-like" Mb mutants and "Mb-like" DHP mutants. The dehalogenation ability of wild-type Mb is augmented in the peroxidase-like Mb mutants (F43H/H64L, G65T, and G65I Mb) but attenuated in the Mb-like T56G DHP variant. X-ray crystallographic data show that the distal His residues in G65T Mb and G65I are positioned ∼0.3 and ∼0.8 Å, respectively, farther from the heme iron compared to that in the wild-type protein. The H93K/T95H double mutant Mb with the proximal His shifted to the "DHP-like" position has an increased peroxidase activity. In addition, a better dehaloperoxidase (M86E DHP) was generated by introducing a negative charge near His89 to enhance the imidazolate character of the proximal His. Finally, only minimal differences in dehalogenation activities are seen among the exogenous ligand-free DHP, the acetate-bound DHP, and the distal site blocker L100F DHP mutant. Thus, we conclude that binding of halophenols in the internal binding site (i.e., distal cavity) is not essential for catalysis. This work provides a foundation for a new structure-function paradigm for peroxidases and for the molecular evolution of the dual-function enzyme DHP.

  6. Amphitrite ornata Dehaloperoxidase (DHP): Investigations of Structural Factors That Influence the Mechanism of Halophenol Dehalogenation Using ;Peroxidase-like; Myoglobin Mutants and ;Myoglobin-like; DHP Mutants

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jing; Huang, Xiao; Sun, Shengfang; Wang, Chunxue; Lebioda, Lukasz; Dawson, John H. (SC)

    2012-05-14

    Dehaloperoxidase (DHP), discovered in the marine terebellid polychaete Amphitrite ornata, is the first heme-containing globin with a peroxidase activity. The sequence and crystal structure of DHP argue that it evolved from an ancient O{sub 2} transport and storage globin. Thus, DHP retains an oxygen carrier function but also has the ability to degrade halophenol toxicants in its living environment. Sperm whale myoglobin (Mb) in the ferric state has a peroxidase activity {approx}10 times lower than that of DHP. The catalytic activity enhancement observed in DHP appears to have been generated mainly by subtle changes in the positions of the proximal and distal histidine residues that appeared during DHP evolution. Herein, we report investigations into the mechanism of action of DHP derived from examination of 'peroxidase-like' Mb mutants and 'Mb-like' DHP mutants. The dehalogenation ability of wild-type Mb is augmented in the peroxidase-like Mb mutants (F43H/H64L, G65T, and G65I Mb) but attenuated in the Mb-like T56G DHP variant. X-ray crystallographic data show that the distal His residues in G65T Mb and G65I are positioned {approx}0.3 and {approx}0.8 {angstrom}, respectively, farther from the heme iron compared to that in the wild-type protein. The H93K/T95H double mutant Mb with the proximal His shifted to the 'DHP-like' position has an increased peroxidase activity. In addition, a better dehaloperoxidase (M86E DHP) was generated by introducing a negative charge near His89 to enhance the imidazolate character of the proximal His. Finally, only minimal differences in dehalogenation activities are seen among the exogenous ligand-free DHP, the acetate-bound DHP, and the distal site blocker L100F DHP mutant. Thus, we conclude that binding of halophenols in the internal binding site (i.e., distal cavity) is not essential for catalysis. This work provides a foundation for a new structure-function paradigm for peroxidases and for the

  7. Superoxide dismutases and glutaredoxins have a distinct role in the response of Candida albicans to oxidative stress generated by the chemical compounds menadione and diamide.

    Science.gov (United States)

    Chaves, Guilherme Maranhão; da Silva, Walicyranison Plinio

    2012-12-01

    To cope with oxidative stress, Candida albicans possesses several enzymes involved in a number of biological processes, including superoxide dismutases (Sods) and glutaredoxins (Grxs). The resistance of C. albicans to reactive oxygen species is thought to act as a virulence factor. Genes such as SOD1 and GRX2, which encode for a Sod and Grx, respectively, in C. albicans are widely recognised to be important for pathogenesis. We generated a double mutant, Δgrx2/sod1, for both genes. This strain is very defective in hyphae formation and is susceptible to killing by neutrophils. When exposed to two compounds that generate reactive oxygen species, the double null mutant was susceptible to menadione and resistant to diamide. The reintegration of the SOD1 gene in the null mutant led to recovery in resistance to menadione, whereas reintegration of the GRX2 gene made the null mutant sensitive to diamide. Despite having two different roles in the responses to oxidative stress generated by chemical compounds, GRX2 and SOD1 are important for C. albicans pathogenesis because the double mutant Δgrx2/sod1 was very susceptible to neutrophil killing and was defective in hyphae formation in addition to having a lower virulence in an animal model of systemic infection.

  8. Superoxide dismutases and glutaredoxins have a distinct role in the response of Candida albicans to oxidative stress generated by the chemical compounds menadione and diamide

    Directory of Open Access Journals (Sweden)

    Guilherme Maranhão Chaves

    2012-12-01

    Full Text Available To cope with oxidative stress, Candida albicans possesses several enzymes involved in a number of biological processes, including superoxide dismutases (Sods and glutaredoxins (Grxs. The resistance of C. albicans to reactive oxygen species is thought to act as a virulence factor. Genes such as SOD1 and GRX2, which encode for a Sod and Grx, respectively, in C. albicans are widely recognised to be important for pathogenesis. We generated a double mutant, Δgrx2/sod1, for both genes. This strain is very defective in hyphae formation and is susceptible to killing by neutrophils. When exposed to two compounds that generate reactive oxygen species, the double null mutant was susceptible to menadione and resistant to diamide. The reintegration of the SOD1 gene in the null mutant led to recovery in resistance to menadione, whereas reintegration of the GRX2 gene made the null mutant sensitive to diamide. Despite having two different roles in the responses to oxidative stress generated by chemical compounds, GRX2 and SOD1 are important for C. albicans pathogenesis because the double mutant Δgrx2/sod1 was very susceptible to neutrophil killing and was defective in hyphae formation in addition to having a lower virulence in an animal model of systemic infection.

  9. Coal combustion by-product (CCB) utilization in turfgrass sod production

    Energy Technology Data Exchange (ETDEWEB)

    Schlossberg, M.J.; Miller, W.P. [University of Georgia, Athens, GA (United States). Dept. of Crop & Soil Science

    2004-04-01

    Coal combustion by-products (CCB) are produced nationwide, generating 101 Mg of waste annually. Though varied, the majority of CCB are crystalline alumino-silicate minerals. Both disposal costs of CCB and interest in alternative horticultural/agricultural production systems have increased recently. Field studies assessed the benefit of CCB and organic waste/product mixtures as supplemental soil/growth media for production of hybrid bermudagrass (Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy) sod. Growth media were applied at depths of 2 to 4 cm (200 to 400 m{sup 3}{center_dot}ha{sup -1}) and vegetatively established by sprigging. Cultural practices typical of commercial methods were employed over 99- or 114-day growth periods. Sod was monitored during these propagation cycles, then harvested, evaluated, and installed offsite in a typical lawn-establishment method. Results showed mixtures of CCB and biosolids as growth media increased yield of biomass, with both media and tissue having greater nutrient content than the control media. Volumetric water content of CCB-containing media significantly exceeded that of control media and soil included with a purchased bermudagrass sod. Once installed, sod grown on CCB-media did not differ in rooting strength from control or purchased sod. When applied as described, physicochemical characteristics of CCB-media are favorable and pose little environmental risk to soil or water resources.

  10. The SOD gene family in tomato: identification, phylogenetic relationships and expression patterns

    Directory of Open Access Journals (Sweden)

    kun feng

    2016-08-01

    Full Text Available Superoxide dismutases (SODs are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L. is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants.

  11. Molecular analyses of in vivo hprt mutant T cells from atomic bomb survivors

    International Nuclear Information System (INIS)

    Hakoda, M.; Hirai, Y.; Kyoizumi, S.; Akiyama, M.

    1989-01-01

    In vivo-derived hprt-deficient mutant T cells isolated from three nonirradiated controls and two atomic bomb survivors were studied by Southern blot analysis to investigate the molecular spectra of the mutations. Mutant frequencies for the three controls were 1.8, 2.3, and 7.3 x 10(-6), and those for the two survivors (who had received radiation doses of 2.46 and 2.15 Gy, based upon the revised atomic bomb shielded kerma estimates) were 9.3 and 14.4 x 10(-6), respectively. Fourteen (13%) of 105 mutant T-cell colonies from the controls showed various structural changes in the hprt gene. The frequency of mutants with hprt gene structural changes in one atomic bomb survivor, who exhibited a mutant frequency of 9.3 x 10(-6), was 26% (16/61), which was significantly higher than that of the controls. However, the frequency of structural changes in the other survivor (14%, 8/59) was not higher than that of the controls. Two sets of mutants (in total, eight mutants) from the survivor, who showed a significantly higher frequency of mutants with hprt gross alterations than did the controls, had the same hprt changes and the same rearrangements of T-cell receptor (TcR) beta- and gamma-chain genes, indicating a clonal expansion from one progenitor mutant. This phenomenon may reflect an in vivo recovery process of T cells in the periphery after exposure to atomic bomb radiation. However, when comparing the frequency of mutations, these two sets of mutants should be reduced. After reducing the total number of mutants from the number of gross hprt changes, the frequency was not significantly higher than that of the controls

  12. Chloroquine clinical failures in P. falciparum malaria are associated with mutant Pfmdr-1, not Pfcrt in Madagascar.

    Directory of Open Access Journals (Sweden)

    Valérie Andriantsoanirina

    2010-10-01

    Full Text Available Molecular studies have demonstrated that mutations in the Plasmodium falciparum chloroquine resistance transporter gene (Pfcrt play a major role in chloroquine resistance, while mutations in P. falciparum multidrug resistance gene (Pfmdr-1 act as modulator. In Madagascar, the high rate of chloroquine treatment failure (44% appears disconnected from the overall level of in vitro CQ susceptibility (prevalence of CQ-resistant parasites 60% of isolates, but did not explore their association with P. falciparum chloroquine resistance. To document the association of Pfmdr-1 alleles with chloroquine resistance in Madagascar, 249 P. falciparum samples collected from patients enrolled in a chloroquine in vivo efficacy study were genotyped in Pfcrt/Pfmdr-1 genes as well as the estimation of the Pfmdr-1 copy number. Except 2 isolates, all samples displayed a wild-type Pfcrt allele without Pfmdr-1 amplification. Chloroquine treatment failures were significantly associated with Pfmdr-1 86Y mutant codon (OR = 4.6. The cumulative incidence of recurrence of patients carrying the Pfmdr-1 86Y mutation at day 0 (21 days was shorter than patients carrying Pfmdr-1 86N wild type codon (28 days. In an independent set of 90 selected isolates, in vitro susceptibility to chloroquine was not associated with Pfmdr-1 polymorphisms. Analysis of two microsatellites flanking Pfmdr-1 allele showed that mutations occurred on multiple genetic backgrounds. In Madagascar, Pfmdr-1 polymorphism is associated with late chloroquine clinical failures and unrelated with in vitro susceptibility or Pfcrt genotype. These results highlight the limits of the current in vitro tests routinely used to monitor CQ drug resistance in this unique context. Gaining insight about the mechanisms that regulate polymorphism in Pfmdr1 remains important, particularly regarding the evolution and spread of Pfmdr-1 alleles in P. falciparum populations under changing drug pressure which may have important

  13. Early motor deficits in mouse disease models are reliably uncovered using an automated home-cage wheel-running system: a cross-laboratory validation.

    Science.gov (United States)

    Mandillo, Silvia; Heise, Ines; Garbugino, Luciana; Tocchini-Valentini, Glauco P; Giuliani, Alessandro; Wells, Sara; Nolan, Patrick M

    2014-03-01

    Deficits in motor function are debilitating features in disorders affecting neurological, neuromuscular and musculoskeletal systems. Although these disorders can vary greatly with respect to age of onset, symptomatic presentation, rate of progression and severity, the study of these disease models in mice is confined to the use of a small number of tests, most commonly the rotarod test. To expand the repertoire of meaningful motor function tests in mice, we tested, optimised and validated an automated home-cage-based running-wheel system, incorporating a conventional wheel with evenly spaced rungs and a complex wheel with particular rungs absent. The system enables automated assessment of motor function without handler interference, which is desirable in longitudinal studies involving continuous monitoring of motor performance. In baseline studies at two test centres, consistently significant differences in performance on both wheels were detectable among four commonly used inbred strains. As further validation, we studied performance in mutant models of progressive neurodegenerative diseases--Huntington's disease [TgN(HD82Gln)81Dbo; referred to as HD mice] and amyotrophic lateral sclerosis [Tg(SOD1G93A)(dl)1/GurJ; referred to as SOD1 mice]--and in a mutant strain with subtle gait abnormalities, C-Snap25(Bdr)/H (Blind-drunk, Bdr). In both models of progressive disease, as with the third mutant, we could reliably and consistently detect specific motor function deficits at ages far earlier than any previously recorded symptoms in vivo: 7-8 weeks for the HD mice and 12 weeks for the SOD1 mice. We also conducted longitudinal analysis of rotarod and grip strength performance, for which deficits were still not detectable at 12 weeks and 23 weeks, respectively. Several new parameters of motor behaviour were uncovered using principal component analysis, indicating that the wheel-running assay could record features of motor function that are independent of rotarod

  14. Karakterisasi Paduan AlMgSi Untuk Kelongsong Bahan Bakar U3Si2/Al Dengan Densitas Uranium 5,2 gU/cm3

    Directory of Open Access Journals (Sweden)

    Aslina Br. Ginting

    2018-03-01

    Full Text Available Meningkatnya densitas uranium dari 2,96 gU/cm3 menjadi 5,2 gU/cm3 bahan bakar U3Si2/Al harus diikuti dengan penggunaan kelongsong yang kompatibel. Bahan bakar berdensitas tinggi mempunyai kekerasan yang tinggi, sehingga bila menggunakan paduan AlMg2 sebagai kelongsong dapat menyebabkan terjadi dogbone pada saat perolan. Selain fenomena dogbone, pada saat bahan bakar tersebut digunakan di reaktor dapat terjadi swelling karena meningkatnya hasil fisi maupun burn up. Oleh karena itu, perlu dicari pengganti bahan kelongsong untuk bahan bakar U3Si2/Al densitas tinggi. Pada penelitian ini telah dilakukan karakterisasi paduan AlMgSi sebagai kandidat pengganti kelongsong AlMg2. Karakterisasi yang dilakukan meliputi analisis termal, kekerasan, mikrostruktur dan laju korosi. Analisis termal dilakukan menggunakan DTA (Differential Thermal Analysis dan DSC (Differential Scanning Calorimetry. Analisis kekerasan menggunakan alat uji kekerasan mikro, mikrostruktur menggunakan SEM (Scanning Electron Microscope dan analisis laju korosi dilakukan dengan pemanasan pada temperatur 150 oC selama 77 jam di dalam autoclave. Hasil analisis menunjukkan bahwa kelongsong AlMgSi maupun AlMg2 mempunyai kompatibilitas panas dengan bahan bakar U3Si2/Al cukup stabil hingga temperatur 650 oC. Kelongsong AlMgSi mempunyai kekerasan sebesar 115 HVN dan kelongsong AlMg2 sebesar 70,1 HVN. Sementara itu, analisis mikrostruktur menunjukkan bahwa morfologi ikatan antarmuka (interface bonding kelongsong AlMgSi lebih baik dari kelongsong AlMg2, demikian halnya dengan laju korosi bahwa kelongsong AlMgSi mempunyai laju korosi lebih kecil dibanding kelongsong AlMg2. Hasil karakterisasi termal, kekerasan, mikrostruktur dan laju korosi menunjukkan bahwa PEB U3Si2/Al densitas 5,2 gU/cm3 menggunakan kelongsong AlMgSi lebih baik dibanding PEB U3Si2/Al  densitas 5,2 gU/cm3  menggunakan kelongsong AlMg2. Kata kunci: U3Si2/Al, densitas 5,2 gU/cm3, kelongsong AlMgSi dan AlMg2.

  15. Frequency of the MDR1 mutant allele associated with multidrug sensitivity in dogs from Brazil

    Directory of Open Access Journals (Sweden)

    Monobe MM

    2015-04-01

    Full Text Available Marina M Monobe,1 João P Araujo Junior,2 Kari V Lunsford,3 Rodrigo C Silva,4 Camilo Bulla41Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, 2Department of Microbiology and Immunology, Biosciences Institute, Sao Paulo State University (UNESP, Botucatu, Brazil; 3Department of Clinical Sciences and Animal Health Center, 4Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi, MS, USAAbstract: To date, a 4-bp deletion in the MDR1 gene has been detected in more than ten dog breeds, as well as in mixed breed dogs, in several countries, however information regarding this mutation in dogs from Brazil is lacking. For this reason, 103 Collies, 77 Border Collies, 76 Shetland Sheepdogs, 20 Old English Sheepdogs, 55 German Shepherds, 16 Australian Shepherds, and 53 Whippets from Brazil were screened for the presence of the mutation. The heterozygous mutated genotype, MDR1 (+/−, frequency found for Collies, Australian Shepherd, and Shetland Sheepdog was 50.5% (95% CI =41.1%–59.9%, 31.3% (95% CI =8.6%–53.2%, and 15.8% (95% CI =7.7%–23.9%, respectively. Homozygous mutated genotype, MDR1 (−/−, was detected only in Collies 35.9%. The MDR1 allele mutant frequency found for Collies, Australian Shepherd, and Shetland Sheepdog was 61.2% (95% CI =54.8%–67.5%, 15.6% (95% CI =3.1%–28.2%, and 7.9% (95% CI =3.7%–12.1%, respectively. Additionally, even free of the mutant allele, the maximum mutant prevalence (MMP in that population, with 95% CI, was 3.8%, 5.2%, 5.4%, and 13.8% for Border Collies, German Shepherds, Whippets, and Old English Sheepdogs, respectively. In this way, this information is important, not only for MDR1 genotype-based breeding programs and international exchange of breeding animals of predisposed breeds, but also for modification of drug therapy for breeds at risk.Keywords: P-glycoprotein, MDR1 mutation, ivermectin, dog, drug

  16. Crystallization and preliminary X-ray crystallographic analysis of the receptor-uncoupled mutant of Gαi1

    International Nuclear Information System (INIS)

    Morikawa, Tomohito; Muroya, Ayumu; Nakajima, Yoshitaka; Tanaka, Takeshi; Hirai, Keiko; Sugio, Shigetoshi; Wakamatsu, Kaori; Kohno, Toshiyuki

    2007-01-01

    The K349P mutant of Gα i1 , which is unable to couple to G-protein-coupled receptors, has been crystallized and analyzed. The same crystallization conditions were applicable irrespective of the identity of the bound nucleotide or of the presence of the mutation. In order to understand the molecular mechanisms by which G-protein-coupled receptors (GPCRs) activate G proteins, the K349P mutant of Gα i1 (K349P), which is unable to couple to the muscarinic acetylcholine receptor, was prepared and its crystals were grown along with those of wild-type Gα i1 protein (WT). The two proteins were crystallized under almost identical conditions, thus enabling a detailed structural comparison. The crystallization conditions performed well irrespective of the identity of the bound nucleotide (GDP or GTPγS) and the crystals diffracted to resolutions of 2.2 Å (WT·GDP), 2.8 Å (WT·GTPγS), 2.6 Å (K349P·GDP) and 3.2 Å (K349P·GTPγS)

  17. Effects of mutant human Ki-rasG12C gene dosage on murine lung tumorigenesis and signaling to its downstream effectors

    International Nuclear Information System (INIS)

    Dance-Barnes, Stephanie T.; Kock, Nancy D.; Floyd, Heather S.; Moore, Joseph E.; Mosley, Libyadda J.; D'Agostino, Ralph B.; Pettenati, Mark J.; Miller, Mark Steven

    2008-01-01

    Studies in cell culture have suggested that the level of RAS expression can influence the transformation of cells and the signaling pathways stimulated by mutant RAS expression. However, the levels of RAS expression in vivo appear to be subject to feedback regulation, limiting the total amount of RAS protein that can be expressed. We utilized a bitransgenic mouse lung tumor model that expressed the human Ki-ras G12C allele in a tetracycline-inducible, lung-specific manner. Treatment for 12 months with 500 μg/ml of doxycycline (DOX) allowed for maximal expression of the human Ki-ras G12C allele in the lung, and resulted in the development of focal hyperplasia and adenomas. We determined if different levels of mutant RAS expression would influence the phenotype of the lung lesions. Treatment with 25, 100 and 500 μg/ml of DOX resulted in dose-dependent increases in transgene expression and tumor multiplicity. Microscopic analysis of the lungs of mice treated with the 25 μg/ml dose of DOX revealed infrequent foci of hyperplasia, whereas mice treated with the 100 and 500 μg/ml doses exhibited numerous hyperplastic foci and also adenomas. Immunohistochemical and RNA analysis of the downstream effector pathways demonstrated that different levels of mutant RAS transgene expression resulted in differences in the expression and/or phosphorylation of specific signaling molecules. Our results suggest that the molecular alterations driving tumorigenesis may differ at different levels of mutant Ki-ras G12C expression, and this should be taken into consideration when inducible transgene systems are utilized to promote tumorigenesis in mouse models

  18. Molecular identification of Nocardia species using the sodA gene: Identificación molecular de especies de Nocardia utilizando el gen sodA.

    Science.gov (United States)

    Sánchez-Herrera, K; Sandoval, H; Mouniee, D; Ramírez-Durán, N; Bergeron, E; Boiron, P; Sánchez-Saucedo, N; Rodríguez-Nava, V

    2017-09-01

    Currently for bacterial identification and classification the rrs gene encoding 16S rRNA is used as a reference method for the analysis of strains of the genus Nocardia. However, it does not have enough polymorphism to differentiate them at the species level. This fact makes it necessary to search for molecular targets that can provide better identification. The sod A gene (encoding the enzyme superoxide dismutase) has had good results in identifying species of other Actinomycetes. In this study the sod A gene is proposed for the identification and differentiation at the species level of the genus Nocardia. We used 41 type species of various collections; a 386 bp fragment of the sod A gene was amplified and sequenced, and a phylogenetic analysis was performed comparing the genes rrs (1171 bp), hsp 65 (401 bp), sec A1 (494 bp), gyr B (1195 bp) and rpo B (401 bp). The sequences were aligned using the Clustal X program. Evolutionary trees according to the neighbour-joining method were created with the programs Phylo_win and MEGA 6. The specific variability of the sod A genus of the genus Nocardia was analysed. A high phylogenetic resolution, significant genetic variability, and specificity and reliability were observed for the differentiation of the isolates at the species level. The polymorphism observed in the sod A gene sequence contains variable regions that allow the discrimination of closely related Nocardia species. The clear specificity, despite its small size, proves to be of great advantage for use in taxonomic studies and clinical diagnosis of the genus Nocardia.

  19. Characterization of a vraG Mutant in a Genetically Stable Staphylococcus aureus Small-Colony Variant and Preliminary Assessment for Use as a Live-Attenuated Vaccine against Intrammamary Infections.

    Directory of Open Access Journals (Sweden)

    Julie Côté-Gravel

    Full Text Available Staphylococcus aureus is a leading cause of bovine intramammary infections (IMIs that can evolve into difficult-to-treat chronic mastitis. To date, no vaccine formulation has shown high protective efficacy against S. aureus IMI, partly because this bacterium can efficiently evade the immune system. For instance, S. aureus small colony variants (SCVs have intracellular abilities and can persist without producing invasive infections. As a first step towards the development of a live vaccine, this study describes the elaboration of a novel attenuated mutant of S. aureus taking advantage of the SCV phenotype. A genetically stable SCV was created through the deletion of the hemB gene, impairing its ability to adapt and revert to the invasive phenotype. Further attenuation was obtained through inactivation of gene vraG (SACOL0720 which we previously showed to be important for full virulence during bovine IMIs. After infection of bovine mammary epithelial cells (MAC-T, the double mutant (ΔvraGΔhemB was less internalized and caused less cell destruction than that seen with ΔhemB and ΔvraG, respectively. In a murine IMI model, the ΔvraGΔhemB mutant was strongly attenuated, with a reduction of viable counts of up to 5-log10 CFU/g of mammary gland when compared to the parental strain. A complete clearance of ΔvraGΔhemB from glands was observed whereas mortality rapidly (48h occurred with the wild-type strain. Immunization of mice using subcutaneous injections of live ΔvraGΔhemB raised a strong immune response as judged by the high total IgG titers measured against bacterial cell extracts and by the high IgG2a/IgG1 ratio observed against the IsdH protein. Also, ΔvraGΔhemB had sufficient common features with bovine mastitis strains so that the antibody response also strongly recognized strains from a variety of mastitis associated spa types. This double mutant could serve as a live-attenuated component in vaccines to improve cell-mediated immune

  20. Regulation of protease-activated receptor 1 signaling by the adaptor protein complex 2 and R4 subfamily of regulator of G protein signaling proteins.

    Science.gov (United States)

    Chen, Buxin; Siderovski, David P; Neubig, Richard R; Lawson, Mark A; Trejo, Joann

    2014-01-17

    The G protein-coupled protease-activated receptor 1 (PAR1) is irreversibly proteolytically activated by thrombin. Hence, the precise regulation of PAR1 signaling is important for proper cellular responses. In addition to desensitization, internalization and lysosomal sorting of activated PAR1 are critical for the termination of signaling. Unlike most G protein-coupled receptors, PAR1 internalization is mediated by the clathrin adaptor protein complex 2 (AP-2) and epsin-1, rather than β-arrestins. However, the function of AP-2 and epsin-1 in the regulation of PAR1 signaling is not known. Here, we report that AP-2, and not epsin-1, regulates activated PAR1-stimulated phosphoinositide hydrolysis via two different mechanisms that involve, in part, a subset of R4 subfamily of "regulator of G protein signaling" (RGS) proteins. A significantly greater increase in activated PAR1 signaling was observed in cells depleted of AP-2 using siRNA or in cells expressing a PAR1 (420)AKKAA(424) mutant with defective AP-2 binding. This effect was attributed to AP-2 modulation of PAR1 surface expression and efficiency of G protein coupling. We further found that ectopic expression of R4 subfamily members RGS2, RGS3, RGS4, and RGS5 reduced activated PAR1 wild-type signaling, whereas signaling by the PAR1 AKKAA mutant was minimally affected. Intriguingly, siRNA-mediated depletion analysis revealed a function for RGS5 in the regulation of signaling by the PAR1 wild type but not the AKKAA mutant. Moreover, activation of the PAR1 wild type, and not the AKKAA mutant, induced Gαq association with RGS3 via an AP-2-dependent mechanism. Thus, AP-2 regulates activated PAR1 signaling by altering receptor surface expression and through recruitment of RGS proteins.

  1. Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Vercruysse, Pauline; Sinniger, Jérôme; El Oussini, Hajer; Scekic-Zahirovic, Jelena; Dieterlé, Stéphane; Dengler, Reinhard; Meyer, Thomas; Zierz, Stephan; Kassubek, Jan; Fischer, Wilhelm; Dreyhaupt, Jens; Grehl, Torsten; Hermann, Andreas; Grosskreutz, Julian; Witting, Anke; Van Den Bosch, Ludo; Spreux-Varoquaux, Odile; Ludolph, Albert C; Dupuis, Luc

    2016-04-01

    Amyotrophic lateral sclerosis, the most common adult-onset motor neuron disease, leads to death within 3 to 5 years after onset. Beyond progressive motor impairment, patients with amyotrophic lateral sclerosis suffer from major defects in energy metabolism, such as weight loss, which are well correlated with survival. Indeed, nutritional intervention targeting weight loss might improve survival of patients. However, the neural mechanisms underlying metabolic impairment in patients with amyotrophic lateral sclerosis remain elusive, in particular due to the lack of longitudinal studies. Here we took advantage of samples collected during the clinical trial of pioglitazone (GERP-ALS), and characterized longitudinally energy metabolism of patients with amyotrophic lateral sclerosis in response to pioglitazone, a drug with well-characterized metabolic effects. As expected, pioglitazone decreased glycaemia, decreased liver enzymes and increased circulating adiponectin in patients with amyotrophic lateral sclerosis, showing its efficacy in the periphery. However, pioglitazone did not increase body weight of patients with amyotrophic lateral sclerosis independently of bulbar involvement. As pioglitazone increases body weight through a direct inhibition of the hypothalamic melanocortin system, we studied hypothalamic neurons producing proopiomelanocortin (POMC) and the endogenous melanocortin inhibitor agouti-related peptide (AGRP), in mice expressing amyotrophic lateral sclerosis-linked mutant SOD1(G86R). We observed lower Pomc but higher Agrp mRNA levels in the hypothalamus of presymptomatic SOD1(G86R) mice. Consistently, numbers of POMC-positive neurons were decreased, whereas AGRP fibre density was elevated in the hypothalamic arcuate nucleus of SOD1(G86R) mice. Consistent with a defect in the hypothalamic melanocortin system, food intake after short term fasting was increased in SOD1(G86R) mice. Importantly, these findings were replicated in two other amyotrophic

  2. Periplasmic Cu,Zn superoxide dismutase and cytoplasmic Dps concur in protecting Salmonella enterica serovar Typhimurium from extracellular reactive oxygen species.

    Science.gov (United States)

    Pacello, Francesca; Ceci, Pierpaolo; Ammendola, Serena; Pasquali, Paolo; Chiancone, Emilia; Battistoni, Andrea

    2008-02-01

    Several bacteria possess periplasmic Cu,Zn superoxide dismutases which can confer protection from extracellular reactive oxygen species. Thus, deletion of the sodC1 gene reduces Salmonella enterica serovar Typhimurium ability to colonize the spleens of wild type mice, but enhances virulence in p47phox mutant mice. To look into the role of periplamic Cu,Zn superoxide dismutase and into possible additive effects of the ferritin-like Dps protein involved in hydrogen peroxide detoxification, we have analyzed bacterial survival in response to extracellular sources of superoxide and/or hydrogen peroxide. Exposure to extracellular superoxide of Salmonella Typhimurium mutant strains lacking the sodC1 and sodC2 genes and/or the dps gene does not cause direct killing of bacteria, indicating that extracellular superoxide is poorly bactericidal. In contrast, all mutant strains display a sharp hydrogen peroxide-dependent loss of viability, the dps,sodC1,sodC2 mutant being less resistant than the dps or the sodC1,sodC2 mutants. These findings suggest that the role of Cu,Zn superoxide dismutase in bacteria is to remove rapidly superoxide from the periplasm to prevent its reaction with other reactive molecules. Moreover, the nearly additive effect of the sodC and dps mutations suggests that localization of antioxidant enzymes in different cellular compartments is required for bacterial resistance to extracytoplasmic oxidative attack.

  3. Repair effects of exogenous SOD on Bacillus subtilis against gamma radiation exposure

    International Nuclear Information System (INIS)

    Chen, Xiaoming; Zhang, E.; Fang, Liu; Zhang, Jianguo; Zhu, Jie; He, Wei; Luo, Xuegang

    2013-01-01

    Superoxide dismutase (SOD) is an enzyme that removes free radicals from cells in many organisms. In order to further characterize these repair effects and their mechanism when subjected to radiation, Bacillus subtilis cells were exposed to gamma radiation and the cell survival rate, intracellular SOD activity, and DNA double-strand breakage were investigated. Vegetative cells of B. subtilis were irradiated by 60 Co gamma radiation at varying doses and subsequently exposed to varying levels of exogenous SOD. Standard plate-count, xanthine oxidase, and pulsed-field gel electrophoresis (PFGE) methods were employed to investigate the repair effects. The results showed that the exogenous SOD could significantly improve cell survival rate and intracellular SOD activity after gamma radiation. The cell survival rate was elevated 30–87 times above levels observed in control samples. Adding exogenous SOD into gamma irradiated cells may dramatically increase intracellular SOD activity (p 60 Co γ radiation and exposed to exogenous SOD. • Adding exogenous SOD into γ-irradiated cells may dramatically increase cell survival rate. • DNA strand scission may be prevented by addition of SOD. • Exogenous SOD may have the ability to repair cell damage after γ-rays radiation

  4. Isocitrate dehydrogenase 1 R132C mutation occurs exclusively in microsatellite stable colorectal cancers with the CpG island methylator phenotype.

    Science.gov (United States)

    Whitehall, V L J; Dumenil, T D; McKeone, D M; Bond, C E; Bettington, M L; Buttenshaw, R L; Bowdler, L; Montgomery, G W; Wockner, L F; Leggett, B A

    2014-11-01

    The CpG Island Methylator Phenotype (CIMP) is fundamental to an important subset of colorectal cancer; however, its cause is unknown. CIMP is associated with microsatellite instability but is also found in BRAF mutant microsatellite stable cancers that are associated with poor prognosis. The isocitrate dehydrogenase 1 (IDH1) gene causes CIMP in glioma due to an activating mutation that produces the 2-hydroxyglutarate oncometabolite. We therefore examined IDH1 alteration as a potential cause of CIMP in colorectal cancer. The IDH1 mutational hotspot was screened in 86 CIMP-positive and 80 CIMP-negative cancers. The entire coding sequence was examined in 81 CIMP-positive colorectal cancers. Forty-seven cancers varying by CIMP-status and IDH1 mutation status were examined using Illumina 450K DNA methylation microarrays. The R132C IDH1 mutation was detected in 4/166 cancers. All IDH1 mutations were in CIMP cancers that were BRAF mutant and microsatellite stable (4/45, 8.9%). Unsupervised hierarchical cluster analysis identified an IDH1 mutation-like methylation signature in approximately half of the CIMP-positive cancers. IDH1 mutation appears to cause CIMP in a small proportion of BRAF mutant, microsatellite stable colorectal cancers. This study provides a precedent that a single gene mutation may cause CIMP in colorectal cancer, and that this will be associated with a specific epigenetic signature and clinicopathological features.

  5. Developmental delay in a Streptomyces venezuelae glgE null mutant is associated with the accumulation of α-maltose 1-phosphate.

    Science.gov (United States)

    Miah, Farzana; Bibb, Maureen J; Barclay, J Elaine; Findlay, Kim C; Bornemann, Stephen

    2016-07-01

    The GlgE pathway is thought to be responsible for the conversion of trehalose into a glycogen-like α-glucan polymer in bacteria. Trehalose is first converted to maltose, which is phosphorylated by maltose kinase Pep2 to give α-maltose 1-phosphate. This is the donor substrate of the maltosyl transferase GlgE that is known to extend α-1,4-linked maltooligosaccharides, which are thought to be branched with α-1,6 linkages. The genome of Streptomyces venezuelae contains all the genes coding for the GlgE pathway enzymes but none of those of related pathways, including glgC and glgA of the glycogen pathway. This provides an opportunity to study the GlgE pathway in isolation. The genes of the GlgE pathway were upregulated at the onset of sporulation, consistent with the known timing of α-glucan deposition. A constructed ΔglgE null mutant strain was viable but showed a delayed developmental phenotype when grown on maltose, giving less cell mass and delayed sporulation. Pre-spore cells and spores of the mutant were frequently double the length of those of the wild-type, implying impaired cross-wall formation, and spores showed reduced tolerance to stress. The mutant accumulated α-maltose 1-phosphate and maltose but no α-glucan. Therefore, the GlgE pathway is necessary and sufficient for polymer biosynthesis. Growth of the ΔglgE mutant on galactose and that of a Δpep2 mutant on maltose were analysed. In both cases, neither accumulation of α-maltose 1-phosphate/α-glucan nor a developmental delay was observed. Thus, high levels of α-maltose 1-phosphate are responsible for the developmental phenotype of the ΔglgE mutant, rather than the lack of α-glucan.

  6. Association of plasminogen-activator inhibitor 1 (PAI-1) 4G/5G gene polymorphism with survival and chemotherapy-related vascular toxicity in non-seminomatous testicular cancer (TC)

    NARCIS (Netherlands)

    de Haas, E. C.; Zwart, N.; Meijer, C.; Boezen, H. M.; Suurmeijer, A. J.; van der Meer, J.; Hoekstra, H. J.; van Leeuwen, F. E.; Sleijffer, D. T.; Gietema, J. A.

    5083 Background: High PAI-1 expression by tumor has been associated with poor prognosis in different cancer types, while high systemic PAI-1 levels may increase the risk of vascular thrombosis. We investigated whether the 4G/5G del/ins polymorphism in the PAI-1 promoter (rs1799889; 4G might lead to

  7. Loss of anti-Bax function in Gerstmann-Sträussler-Scheinker syndrome-associated prion protein mutants.

    Directory of Open Access Journals (Sweden)

    Julie Jodoin

    2009-08-01

    Full Text Available Previously, we have shown the loss of anti-Bax function in Creutzfeldt Jakob disease (CJD-associated prion protein (PrP mutants that are unable to generate cytosolic PrP (CyPrP. To determine if the anti-Bax function of PrP modulates the manifestation of prion diseases, we further investigated the anti-Bax function of eight familial Gerstmann-Sträussler-Scheinker Syndrome (GSS-associated PrP mutants. These PrP mutants contained their respective methionine ((M or valine ((V at codon 129. All of the mutants lost their ability to prevent Bax-mediated chromatin condensation or DNA fragmentation in primary human neurons. In the breast carcinoma MCF-7 cells, the F198S(V, D202N(V, P102L(V and Q217R(V retained, whereas the P102L(M, P105L(V, Y145stop(M and Q212P(M PrP mutants lost their ability to inhibit Bax-mediated condensed chromatin. The inhibition of Bax-mediated condensed chromatin depended on the ability of the mutants to generate cytosolic PrP. However, except for the P102L(V, none of the mutants significantly inhibited Bax-mediated caspase activation. These results show that the cytosolic PrP generated from the GSS mutants is not as efficient as wild type PrP in inhibiting Bax-mediated cell death. Furthermore, these results indicate that the anti-Bax function is also disrupted in GSS-associated PrP mutants and is not associated with the difference between CJD and GSS.

  8. Obtención de Variantes Hiperactivas e Inactivas de la Endocelulasa Cel9 de Myxobacter Sp. Al-1 Obtención de Variantes Hiperactivas e Inactivas de la Endocelulasa Cel9 de Myxobacter Sp. Al-1

    Directory of Open Access Journals (Sweden)

    Mario Pedraza-Reyes

    2012-02-01

    Full Text Available Debido a su aplicación industrial, existe un gran interés en la producción de celulasas con propiedades bioquímicas novedosas. Por ello, en el presente trabajo se utilizó una estrategia basada en un método de mutagénesis aleatoria in vivo para la obtención de variantes de la endocelulasa Cel9 del microorganismo gram-negativo Myxobacter Sp. AL-1. Siguiendo este enfoque, se obtuvieron cepas transformantes de Escherichia coli capaces de secretar variantes de la proteína Cel9 cuyas actividades específicas fueron incrementadas hasta 7.5 veces con respecto a la actividad mostrada por la enzima nativa. Del mismo modo, se generaron cepas de E. coli productoras de variantes de la proteína Cel9 con baja o nula actividad enzimática. Experimentos de subclonación y fraccionamiento celular revelaron que las mutaciones asociadas con los fenotipos de las variantes de la enzima Cel9 ocurrieron en la secuencia del gen cel9. Así mismo, se demostró que los fenotipos de las cepas mutantes carentes de actividad enzimática no dependen de su incapacidad para secretar las proteínas mutantes. Además de su potencial aplicación biotecnológica, los resultados obtenidos en este trabajo permiten avanzar en el entendimiento de la relación estructura-función de la celulasa Cel9 de Myxobacter Sp. AL-1.Due to its biotechnological impact, there is currently a growing interest in the production of cellulases with novel biochemical properties. Here, multiple generations of random mutagenesis in vivo and screening were employed to generate variants of the modular cellulase Cel9 from Myxobacter Sp. AL-1. Following this approach, Cel9 variants which showed increases upto 7.5 fold of cellulase activity were obtained. In addition, Cel9 mutants which completely lost the ability to degrade cellulose were also obtained. Results revealed that mutations associated with the phenotype of the Cel9 variants occurred on the mutant gene sequence and that themutants with null

  9. Fine Mapping and Cloning of Leafy Head Mutant Gene pla1-5 in Rice

    Directory of Open Access Journals (Sweden)

    Gong-neng FENG

    2013-09-01

    Full Text Available We identified a leafy head mutant pla1-5 (plastochron 1-5 from the progeny of japonica rice cultivar Taipei 309 treated with 60Co-γ ray irradiation. The pla1-5 mutant has a dwarf phenotype and small leaves. Compared with its wild type, pla1-5 has more leaves and fewer tillers, and it fails to produce normal panicles at the maturity stage. Genetic analysis showed that the pla1-5 phenotype is controlled by a single recessive nuclear gene. Using the map-based cloning strategy, we narrowed down the location of the target gene to a 58-kb region between simple sequence repeat markers CHR1027 and CHR1030 on the long arm of chromosome 10. The target gene cosegregated with molecular markers CHR1028 and CHR1029. There were five predicted genes in the mapped region. The results from sequencing analysis revealed that there was one base deletion in the first exon of LOC_Os10g26340 encoding cytochrome P450 CYP78A11 in the pla1-5 mutant, which might result in a downstream frame shift and premature termination. These results suggest that the P450 CYP78A11 gene is the candidate gene of PLA1-5.

  10. Primary Cilia in the Murine Cerebellum and in Mutant Models of Medulloblastoma.

    Science.gov (United States)

    Di Pietro, Chiara; Marazziti, Daniela; La Sala, Gina; Abbaszadeh, Zeinab; Golini, Elisabetta; Matteoni, Rafaele; Tocchini-Valentini, Glauco P

    2017-01-01

    Cellular primary cilia crucially sense and transduce extracellular physicochemical stimuli. Cilium-mediated developmental signaling is tissue and cell type specific. Primary cilia are required for cerebellar differentiation and sonic hedgehog (Shh)-dependent proliferation of neuronal granule precursors. The mammalian G-protein-coupled receptor 37-like 1 is specifically expressed in cerebellar Bergmann glia astrocytes and participates in regulating postnatal cerebellar granule neuron proliferation/differentiation and Bergmann glia and Purkinje neuron maturation. The mouse receptor protein interacts with the patched 1 component of the cilium-associated Shh receptor complex. Mice heterozygous for patched homolog 1 mutations, like heterozygous patched 1 humans, have a higher incidence of Shh subgroup medulloblastoma (MB) and other tumors. Cerebellar cells bearing primary cilia were identified during postnatal development and in adulthood in two mouse strains with altered Shh signaling: a G-protein-coupled receptor 37-like 1 null mutant and an MB-susceptible, heterozygous patched homolog 1 mutant. In addition to granule and Purkinje neurons, primary cilia were also expressed by Bergmann glia astrocytes in both wild-type and mutant animals, from birth to adulthood. Variations in ciliary number and length were related to the different levels of neuronal and glial cell proliferation and maturation, during postnatal cerebellar development. Primary cilia were also detected in pre-neoplastic MB lesions in heterozygous patched homolog 1 mutant mice and they could represent specific markers for the development and analysis of novel cerebellar oncogenic models.

  11. E4orf1 Limits the Oncolytic Potential of the E1B-55K Deletion Mutant Adenovirus▿

    Science.gov (United States)

    Thomas, Michael A.; Broughton, Robin S.; Goodrum, Felicia D.; Ornelles, David A.

    2009-01-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G1 phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G1 restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3′-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function. PMID:19129452

  12. E4orf1 limits the oncolytic potential of the E1B-55K deletion mutant adenovirus.

    Science.gov (United States)

    Thomas, Michael A; Broughton, Robin S; Goodrum, Felicia D; Ornelles, David A

    2009-03-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G(1) phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G(1) restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3'-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function.

  13. Plasminogen activator inhibitor 1 4G/5G and -844G/A variants in idiopathic recurrent pregnancy loss.

    Science.gov (United States)

    Magdoud, Kalthoum; Herbepin, Viviana G; Touraine, Renaud; Almawi, Wassim Y; Mahjoub, Touhami

    2013-09-01

    Plasminogen activator inhibitor type 1 (PAI-1) regulates fibrinolysis, and the common promoter region variants -675G/A (4G/5G) and -844G/A are associated with increased thrombotic risk. Despite evidence linking altered fibrinolysis with adverse pregnancy events, including idiopathic recurrent pregnancy loss (RPL), the contribution of PAI-1 variants to RPL risk remains controversial. We investigated the association between the PAI-1 -844G/A and 4G/5G (-675G/A) variants with altered risk of RPL. This was a case-control study involving 304 women with confirmed RPL and 371 age- and ethnically matched control women. PAI-1 genotyping was performed by PCR single-specific primer -675 (G/A) and real-time PCR (-844G/A) analysis. Minor allele frequency (MAF) of 4G/5G (P 5G single-nucleotide polymorphism (SNP) was significantly associated with RPL under additive, dominant, and recessive genetic models; no association of -844G/A with RPL was seen irrespective of the genetic model tested. Taking common -844G/5G haplotype as reference (OR = 1.00), multivariate analysis confirmed the association of 4G-containing -844A/4G (P 5G, but not -844G/A, PAI-1 variant is associated with an increased risk of RPL. © 2013 John Wiley & Sons Ltd.

  14. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice

    Directory of Open Access Journals (Sweden)

    Karen S. Coughlan

    2016-09-01

    Full Text Available Transgenic transactivation response DNA-binding protein 43 (TDP-43 mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS; however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43A315T mice. Similar to our recent results in SOD1G93A mice, TDP-43A315T mice fed a standard pellet diet showed increased 5′ adenosine monophosphate-activated protein kinase (AMPK activation at postnatal day (P80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43A315T mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43A315T model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS.

  15. Maximization and handling of sod peat loading. Final report; Palaturpeen kuormituksen maksimointi ja kaesittely. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Nurmi, H.; Paappanen, T.; Frilander, P.

    1996-11-01

    The objective of this two year (1994-1995) project was to improve especially the efficiency of sod peat production, carried out using spreading wagon method, by increasing the sod peat load set for the field to value 20 kgDgm{sup 2} (original value 10-14 kgDgm{sup 2}), and by studying and developing a collection method for ridging and ridge processing, suitable for high-loads. The research was emphasized to laboratory tests, but some field test were also made. Laboratory test equipment, to be mounted to peat machine simulator, were constructed, and picking-up of sod peat was tested in laboratory. It was possible to increase the sod peat load most accurately to 20 kgDgm{sup 2} by using wave-like sod peat. The picking device of the ridger consisted of a grid, standing the sod up, moving on the field. Above this there is a rotating truncheon coil which transfers the sod along the grid to further processing. The share of the fines by weight, loosened from the field during picking up of the sod was 0.5 % of the sod-mass, and the losses were 11 % of the number of the sod. At the driving speed 2.9 km/h the suitable coil rotation speed was about 20 r/min, hence the rotation speed of the truncheons was twice as high as the driving speed. A picking device, which consisted of two vertical truncheon-coils rotating into opposite directions, was constructed for collection of sod in the ridge. The operation of the device appeared to be good. While picking-up the sod in the ridge on the average 1.3 % of fines was loosened from the field with respect to the sod-mass. 41 % of the fines mixed with the ridge was sieved. The losses were on the average 3.9 % of the sod-mass. The highest measured power demand was 12 kW as the driving speed was 3.0 km/h. Collection method developed within this project, requires more field tests before commercial use

  16. A Manganese Superoxide Dismutase (SOD2 Gene Polymorphism in Insulin-Dependent Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Flemming Pociot

    1993-01-01

    Full Text Available Interleukin I (lL-I is selectively cytotoxic to the insulin producing beta cell of pancreatic islets. This effect may be due to IL-I induced generation of reactive oxygen species and nitric oxide. Since beta cells contain low amounts of the superoxide radical scavenger enzyme manganese superoxide dismutase (MnSOD, this may leave beta cells more susceptible to IL-I than other cell types. Genetic variation in the MnSOD locus could reflect differences in scavenger potential. We, therefore, studied possible restriction fragment length polymorphisms (RFLPs of this locus in patients with insulin-dependent diabetes mellitus (100M (n= 154 and control individuals (n=178, Taql revealed a double diallelic RFLP in patients as well as in controls. No overall difference in allelic or genotype frequencies were observed between 100M patients and control individuals (p=0.11 and no significant association of any particular RFLP pattern with 100M was found. Structurally polymorphic MnSOD protein variants with altered activities have been reported. If genetic variation results in MnSOD variants with reduced activities, the MnSOD locus may still be a candidate gene for 100M susceptibility. Whether the RFLPs reported in this study reflects differences in gene expression level, protein level and/or specific activity of the protein is yet to be studied.

  17. The prevalence of 4G/5G polymorphism of plasminogen activator inhibitor-1 (PAI-1) gene in central serous chorioretinopathy and its association with plasma PAI-1 levels.

    Science.gov (United States)

    Sogutlu Sari, Esin; Yazici, Alper; Eser, Betül; Erol, Muhammet Kazim; Kilic, Adil; Ermis, Sitki Samet; Koytak, Arif; Akşit, Hasan; Yakut, Tahsin

    2014-12-01

    Central serous chorioretinopathy (CSCR) is a poorly understood disease and the choroidal circulation abnormality induced by the plasminogen activator inhibitor type 1 (PAI-1) seems to be associated with the pathogenesis. There are many reports indicating that 4 G/5 G polymorphism of the PAI-1 gene is a risk factor for several diseases related to the elevated serum levels of PAI-1. To evaluate the 4 G/5 G polymorphism of the PAI-1 gene and its association with serum levels of PAI-1 in acute CSCR patients. Sixty CSCR patients and 50 healthy control patients were included. The PAI-1 4 G/5 G was genotyped using the polymerase chain reaction-restriction technique. Serum PAI-1 level was measured using enzyme-linked immunosorbent assay. Demographic data consisting of age, sex, body mass index (BMI) as well as genotype disturbances and serum PAI-1 levels were compared between the groups. Statistical significance for differences in the serum PAI-1 levels of each group with different genotypes was also analyzed. The CSCR group consisted of 40 male (66.7%) and 20 female (33.3%) patients with a mean age of 46.7 ± 8.39 years. The control group consisted of 32 male (64%) and 18 female (36%) healthy subjects with a mean age of 45.8 ± 8.39 years. There was no statistically significant difference between the groups in terms of age, sex and BMI. In the CSCR group the genotype frequencies were 4 G/4G: 30% (n = 18), 4G/5 G: 50% (n = 30), 5 G/5G: 20% (n = 12) and in the control group genotype frequencies were 34% (n = 17), 42% (n = 21) and 24% (n = 12), respectively. There was no statistically significant difference in the distribution of genotypes among the groups (chi-squared, p = 0.70). The CSCR group had a significantly higher serum PAI-1 concentration than the control group (p = 0.001). In both groups the mean plasma PAI-1 concentration did not vary significantly among the different genotypes (p > 0.05). Although our results demonstrated that the patients with acute CSCR have

  18. Transcriptome changes associated wtih delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor

    Science.gov (United States)

    Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr 1-1), a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr 1-1 gene was over-expressed under the control of a c...

  19. SRAP analysis for space induced mutant line of maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Du Wenping; Yu Guirong; Song Jun; Xu Liyuan

    2011-01-01

    In order to detect the effects of space mutation on maize, 16 SRAP primers were applied for the discrimination of the maize inbred line '968' and its 93 mutant materials, 154 polymorphic fragments were amplified. The average of polymorphic bands detected by per SRAP primer combination was 9.6 with a range from 5 to 18. Genetic similarities among the 94 materials ranged from 0.481 to 1.000 with an average of 0.903, and the largest genetic distance was found between mutant line 37 and control. The 94 materials were divided into six groups with the similarity coefficient of 0.732. The phylogenetic analysis showed distinct variation among the mutants. The results indicated that SRAP markers could be used for analyzing genetic variation of mutants. (authors)

  20. Pilot study of large-scale production of mutant pigs by ENU mutagenesis.

    Science.gov (United States)

    Hai, Tang; Cao, Chunwei; Shang, Haitao; Guo, Weiwei; Mu, Yanshuang; Yang, Shulin; Zhang, Ying; Zheng, Qiantao; Zhang, Tao; Wang, Xianlong; Liu, Yu; Kong, Qingran; Li, Kui; Wang, Dayu; Qi, Meng; Hong, Qianlong; Zhang, Rui; Wang, Xiupeng; Jia, Qitao; Wang, Xiao; Qin, Guosong; Li, Yongshun; Luo, Ailing; Jin, Weiwu; Yao, Jing; Huang, Jiaojiao; Zhang, Hongyong; Li, Menghua; Xie, Xiangmo; Zheng, Xuejuan; Guo, Kenan; Wang, Qinghua; Zhang, Shibin; Li, Liang; Xie, Fei; Zhang, Yu; Weng, Xiaogang; Yin, Zhi; Hu, Kui; Cong, Yimei; Zheng, Peng; Zou, Hailong; Xin, Leilei; Xia, Jihan; Ruan, Jinxue; Li, Hegang; Zhao, Weiming; Yuan, Jing; Liu, Zizhan; Gu, Weiwang; Li, Ming; Wang, Yong; Wang, Hongmei; Yang, Shiming; Liu, Zhonghua; Wei, Hong; Zhao, Jianguo; Zhou, Qi; Meng, Anming

    2017-06-22

    N-ethyl-N-nitrosourea (ENU) mutagenesis is a powerful tool to generate mutants on a large scale efficiently, and to discover genes with novel functions at the whole-genome level in Caenorhabditis elegans, flies, zebrafish and mice, but it has never been tried in large model animals. We describe a successful systematic three-generation ENU mutagenesis screening in pigs with the establishment of the Chinese Swine Mutagenesis Consortium. A total of 6,770 G1 and 6,800 G3 pigs were screened, 36 dominant and 91 recessive novel pig families with various phenotypes were established. The causative mutations in 10 mutant families were further mapped. As examples, the mutation of SOX10 (R109W) in pig causes inner ear malfunctions and mimics human Mondini dysplasia, and upregulated expression of FBXO32 is associated with congenital splay legs. This study demonstrates the feasibility of artificial random mutagenesis in pigs and opens an avenue for generating a reservoir of mutants for agricultural production and biomedical research.