WorldWideScience

Sample records for alpine plant species

  1. Plants in alpine environments

    Science.gov (United States)

    Germino, Matthew J.

    2014-01-01

    Alpine and subalpine plant species are of special interest in ecology and ecophysiology because they represent life at the climate limit and changes in their relative abundances can be a bellwether for climate-change impacts. Perennial life forms dominate alpine plant communities, and their form and function reflect various avoidance, tolerance, or resistance strategies to interactions of cold temperature, radiation, wind, and desiccation stresses that prevail in the short growing seasons common (but not ubiquitous) in alpine areas. Plant microclimate is typically uncoupled from the harsh climate of the alpine, often leading to substantially warmer plant temperatures than air temperatures recorded by weather stations. Low atmospheric pressure is the most pervasive, fundamental, and unifying factor for alpine environments, but the resulting decrease in partial pressure of CO2 does not significantly limit carbon gain by alpine plants. Factors such as tree islands and topographic features create strong heterogeneous mosaics of microclimate and snow cover that are reflected in plant community composition. Factors affecting tree establishment and growth and formation of treeline are key to understanding alpine ecology. Carbohydrate and other carbon storage, rapid development in a short growing season, and physiological function at low temperature are prevailing attributes of alpine plants. A major contemporary research theme asks whether chilling at alpine-treeline affects the ability of trees to assimilate the growth resources and particularly carbon needed for growth or whether the growth itself is limited by the alpine environment. Alpine areas tend to be among the best conserved, globally, yet they are increasingly showing response to a range of anthropogenic impacts, such as atmospheric deposition.

  2. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Directory of Open Access Journals (Sweden)

    Jonas J Lembrechts

    Full Text Available Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  3. Nitrogen:phosphorous supply ratio and allometry in five alpine plant species

    DEFF Research Database (Denmark)

    Luo, Xi; Mazer, Susan J.; Guo, Hui

    2016-01-01

    altered the levels of N, P, and the N:P supply ratio (from 1.7:1 to 135:1) provided to five alpine species representing two functional groups (grasses and composite forbs) under greenhouse conditions; we then measured the effects of these treatments on plant morphology and tissue content (SLA, leaf area...

  4. The Alpine Cushion Plant Silene acaulis as Foundation Species: A Bug’s-Eye View to Facilitation and Microclimate

    Science.gov (United States)

    Molenda, Olivia; Reid, Anya; Lortie, Christopher J.

    2012-01-01

    Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms–predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson’s diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants. PMID:22655035

  5. The alpine cushion plant Silene acaulis as foundation species: a bug's-eye view to facilitation and microclimate.

    Science.gov (United States)

    Molenda, Olivia; Reid, Anya; Lortie, Christopher J

    2012-01-01

    Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms--predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson's diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants.

  6. The alpine cushion plant Silene acaulis as foundation species: a bug's-eye view to facilitation and microclimate.

    Directory of Open Access Journals (Sweden)

    Olivia Molenda

    Full Text Available Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms--predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson's diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants.

  7. What are the most crucial soil factors for predicting the distribution of alpine plant species?

    Science.gov (United States)

    Buri, A.; Pinto-Figueroa, E.; Yashiro, E.; Guisan, A.

    2017-12-01

    Nowadays the use of species distribution models (SDM) is common to predict in space and time the distribution of organisms living in the critical zone. The realized environmental niche concept behind the development of SDM imply that many environmental factors must be accounted for simultaneously to predict species distributions. Climatic and topographic factors are often primary included, whereas soil factors are frequently neglected, mainly due to the paucity of soil information available spatially and temporally. Furthermore, among existing studies, most included soil pH only, or few other soil parameters. In this study we aimed at identifying what are the most crucial soil factors for explaining alpine plant distributions and, among those identified, which ones further improve the predictive power of plant SDMs. To test the relative importance of the soil factors, we performed plant SDMs using as predictors 52 measured soil properties of various types such as organic/inorganic compounds, chemical/physical properties, water related variables, mineral composition or grain size distribution. We added them separately to a standard set of topo-climatic predictors (temperature, slope, solar radiation and topographic position). We used ensemble forecasting techniques combining together several predictive algorithms to model the distribution of 116 plant species over 250 sites in the Swiss Alps. We recorded the variable importance for each model and compared the quality of the models including different soil proprieties (one at a time) as predictors to models having only topo-climatic variables as predictors. Results show that 46% of the soil proprieties tested become the second most important variable, after air temperature, to explain spatial distribution of alpine plants species. Moreover, we also assessed that addition of certain soil factors, such as bulk soil water density, could improve over 80% the quality of some plant species models. We confirm that soil p

  8. Ecological implications of reduced pollen deposition in alpine plants: a case study using a dominant cushion plant species.

    Science.gov (United States)

    Reid, Anya; Hooper, Robyn; Molenda, Olivia; Lortie, Christopher J

    2014-01-01

    The reproductive assurance hypothesis states that self-incompatible female plants must produce twice the number of seeds relative to their self-compatible hermaphroditic counterparts to persist in gynodioecious populations. This is a viable life-history strategy, provided that pollination rates are sufficiently high. However, reduced pollination rates in alpine plants are likely due to climate induced plant-pollinator mismatches and general declines in pollinators. Using a gynodioecious population of the dominant plant Silene acaulis (Caryophyllaceae), we tested the reproductive assurance hypothesis and also the stress gradient hypothesis with a series of pollinator exclusion trials and extensive measurements of subsequent reproductive output (gender ratio, plant size, percent fruit-set, fruit weight, seeds per fruit, total seeds, seed weight, and seed germination). The reproductive assurance hypothesis was supported with female plants being more sensitive to and less likely to be viable under reductions in pollination rates. These findings are the first to show that the stress gradient hypothesis is also supported under a gradient of pollen supply instead of environmental limitations. Beneficiary abundance was negatively correlated to percent fruit-set under current pollen supply, but became positive under reduced pollen supply suggesting that there are important plant-plant-pollinator interactions related to reproduction in these alpine plant species.

  9. Altered precipitation patterns and simulated nitrogen deposition effects on phenology of common plant species in a Tibetan Plateau alpine meadow

    Science.gov (United States)

    The interactive effects of five seasonal precipitation distribution patterns and two levels of N deposition (ambient and doubled) on phenological traits of six dominant plant species were studied in an alpine meadow of the Tibetan Plateau for two consecutive years. Seasonal precipitation patterns i...

  10. Nitrogen:phosphorous supply ratio and allometry in five alpine plant species.

    Science.gov (United States)

    Luo, Xi; Mazer, Susan J; Guo, Hui; Zhang, Nan; Weiner, Jacob; Hu, Shuijin

    2016-12-01

    In terrestrial ecosystems, atmospheric nitrogen (N) deposition has greatly increased N availability relative to other elements, particularly phosphorus (P). Alterations in the availability of N relative to P can affect plant growth rate and functional traits, as well as resource allocation to above- versus belowground biomass ( M A and M B ). Biomass allocation among individual plants is broadly size-dependent, and this can often be described as an allometric relationship between M A and M B , as represented by the equation MA=αMBβ, or log M A  = logα + βlog M B . Here, we investigated whether the scaling exponent or regression slope may be affected by the N:P supply ratio. We hypothesized that the regression slope between M A and M B should be steeper under a high N:P supply ratio due to P limitation, and shallower under a low N:P supply ratio due to N limitation. To test these hypotheses, we experimentally altered the levels of N, P, and the N:P supply ratio (from 1.7:1 to 135:1) provided to five alpine species representing two functional groups (grasses and composite forbs) under greenhouse conditions; we then measured the effects of these treatments on plant morphology and tissue content (SLA, leaf area, and leaf and root N/P concentrations) and on the scaling relationship between M A and M B . Unbalanced N:P supply ratios generally negatively affected plant biomass, leaf area, and tissue nutrient concentration in both grasses and composite forbs. High N:P ratios increased tissue N:P ratios in both functional groups, but more in the two composite forbs than in the grasses. The positive regression slopes between log M A and log M B exhibited by plants raised under a N:P supply ratio of 135:1 were significantly steeper than those observed under the N:P ratio of 1.7:1 and 15:1. Plant biomass allocation is highly plastic in response to variation in the N:P supply ratio. Studies of resource allocation of individual plants should focus on the effects of

  11. Flower-visiting insects observed on the critically endangered alpine plant species Callianthemum kernerianum Freyn ex A. Kerner (Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Mauro Gobbi

    2017-03-01

    Full Text Available In the present paper we provide the first contribution to the knowledge of the flower-visiting insect assemblages of the alpine plant species Callianthemum kernerianum Freyn ex A. Kerner (Ranunculaceae. This focal plant species was selected since it is a steno-endemic and critically endangered species belonging to the IUCN red-list. Fifteen taxa were recorded, among which very few are true pollinators, whereas all the others can be considered only indirect pollinators. The peculiar phenology of the plant and the harsh habitat conditions in which it grows probably affect the richness and abundance of flower-visiting insects as well as of true pollinators. This could be the reason for this plant to be a self-compatible species.

  12. Seed dormancy in alpine species

    OpenAIRE

    Schwienbacher, Erich; Navarro-Cano, Jose Antonio; Neuner, Gilbert; Erschbamer, Brigitta

    2011-01-01

    In alpine species the classification of the various mechanisms underlying seed dormancy has been rather questionable and controversial. Thus, we investigated 28 alpine species to evaluate the prevailing types of dormancy. Embryo type and water impermeability of seed coats gave an indication of the potential seed dormancy class. To ascertain the actual dormancy class and level, we performed germination experiments comparing the behavior of seeds without storage, after cold-dry storage, after c...

  13. Determinants of 15N Natural Abundance in Leaves of Co-Occurring Plant Species and Types within an Alpine Lichen Heath in the Northern Caucasus

    NARCIS (Netherlands)

    Makarov, M.I.; Onipchenko, V.G.; Malysheva, T.I.; van Logtestijn, R.S.P; Soudzilovskaia, N.A.; Cornelissen, J.H.C.

    2014-01-01

    Several factors may have interactive effects on natural 15N abundance of plant species. Some of these effects could be associated with different plant functional types, including mycorrhizal association type. Due to its high taxonomic and functional diversity, the alpine heath community in the

  14. Frost resistance of alpine woody plants

    Directory of Open Access Journals (Sweden)

    Gilbert eNeuner

    2014-12-01

    Full Text Available This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research.Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover.Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate.In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers and fruits and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  15. Frost resistance in alpine woody plants.

    Science.gov (United States)

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  16. Investigation on the geographical distribution and life form of plant species in sub alpine zone Karsanak region, Shahrekord

    Directory of Open Access Journals (Sweden)

    Jahanbakhsh Pairanj

    2011-09-01

    Full Text Available This study was carried out in rangelands of Karsanak, Chaharmahal and Bakhtiari province, which is regarded as one of the rich rangelands. Phytogeographically, this region is located in Irano-Turanian (zone of sub alpine. Endemic and rare plants were identified and geographical distribution and life form of identified plant species were investigated as well. Overall, 100 species from 17 families were identified from which 20 percent of identified species was endemic element of Irano-Turanian region. Results indicated that 75.7 percent of identified plants belonged to the Irano-Turanian and only 3 and 2 percent belonged to Euro-Siberian and Mediterranean regions respectively. The reason of high percentage of Irano-Turanian elements is probably the long distance of this region from other regions. Similarities of Irano-Turanian and Mediterranean were included 6.1 percent of identified plants and Irano-Turanian and Euro-Siberian included 2 percent. Results of life forms showed hemichryptophytes including 60 percent of life forms which indicate the cold and mountainous weather.

  17. Clonal Re-Introduction of Endangered Plant Species: The Case of German False Tamarisk in Pre-Alpine Rivers

    Science.gov (United States)

    Koch, Christiane; Kollmann, Johannes

    2012-08-01

    The scope of re-introduction as a measure for plant species protection is increasing, but as long as no standardized methods are available, species-specific assessments are necessary to determine whether seeds, adult plants or plant fragments should be used. The endangered German False Tamarisk ( Myricaria germanica), which occurs on gravel bars along pre-alpine rivers, is difficult to grow from seeds. Thus, propagation of stem cuttings was investigated as an alternative method. Experiments were conducted in a greenhouse and a field site with three treatments: cutting length 5 or 10 cm, vertical burial 5 or 10 cm, and water level low or high. Plants grown in the greenhouse were transplanted to the River Isar to test establishment of rooted cuttings on gravel bars. The cuttings in the greenhouse showed high survival (34-96 %). Survival and biomass production were greatest for 10-cm cuttings buried at 10-cm depth, while only one of the 5-cm cuttings survived at this depth, and no significant effect of variation in water level was observed. None of the cuttings transplanted to field sites survived, most likely because of drought stress and competition. We conclude that for re-introduction of Myricaria germanica rooted cuttings can be easily produced in large quantities, while transplantation to near-natural environments has to be improved to reduce mortality.

  18. UV Screening in Native and Non-native Plant Species in the Tropical Alpine: Implications for Climate Change-Driven Migration of Species to Higher Elevations

    Directory of Open Access Journals (Sweden)

    Paul W. Barnes

    2017-08-01

    Full Text Available Ongoing changes in Earth’s climate are shifting the elevation ranges of many plant species with non-native species often experiencing greater expansion into higher elevations than native species. These climate change-induced shifts in distributions inevitably expose plants to novel biotic and abiotic environments, including altered solar ultraviolet (UV-B (280–315 nm radiation regimes. Do the greater migration potentials of non-native species into higher elevations imply that they have more effective UV-protective mechanisms than native species? In this study, we surveyed leaf epidermal UV-A transmittance (TUV A in a diversity of plant species representing different growth forms to test whether native and non-native species growing above 2800 m elevation on Mauna Kea, Hawaii differed in their UV screening capabilities. We further compared the degree to which TUV A varied along an elevation gradient in the native shrub Vaccinium reticulatum and the introduced forb Verbascum thapsus to evaluate whether these species differed in their abilities to adjust their levels of UV screening in response to elevation changes in UV-B. For plants growing in the Mauna Kea alpine/upper subalpine, we found that adaxial TUV A, measured with a UVA-PAM fluorometer, varied significantly among species but did not differ between native (mean = 6.0%; n = 8 and non-native (mean = 5.8%; n = 11 species. When data were pooled across native and non-native taxa, we also found no significant effect of growth form on TUV A, though woody plants (shrubs and trees were represented solely by native species whereas herbaceous growth forms (grasses and forbs were dominated by non-native species. Along an elevation gradient spanning 2600–3800 m, TUV A was variable (mean range = 6.0–11.2% and strongly correlated with elevation and relative biologically effective UV-B in the exotic V. thapsus; however, TUV A was consistently low (3% and did not vary with elevation in the native

  19. The biodiversity and stability of alpine meadow plant communities in ...

    African Journals Online (AJOL)

    The biodiversity and stability of alpine meadow plant communities in relation to altitude gradient in three headwater resource regions. ... with the help of the degree of stability. Key words: Alpine meadow, Yangtze, Yellow and Yalu Tsangpo river source region, altitude gradient, species diversity, membership functions.

  20. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2017-10-01

    Full Text Available Arctic and alpine biomes are most often strongly nitrogen-limited, and hence biological nitrogen fixation is a strong driver of these ecosystems. Both biomes are characterized by low temperatures and short growing seasons, but they differ in seasonality of solar radiation and in soil water balance due to underlying permafrost in the Arctic. Arcto-alpine plant species are well-adapted to the low temperatures that prevail in their habitats, and plant growth is mainly limited by the availability of nutrients, in particular nitrogen, due to slow mineralization. Nitrogen fixing bacteria are likely important for plant growth in these habitats, but very little is known of these bacteria or forces shaping their communities. In this study, we characterized the potential nitrogen fixing bacterial (PNFB communities associated with two arcto-alpine pioneer plant species, Oxyria digyna (mountain sorrel and Saxifraga oppositifolia (blue saxifrage, in three climate regions. Both of these plants readily colonize low nutrient mineral soils. Our goal was to investigate how climate (region and, on the other hand, host plant and plant species shape these communities. To our knowledge, this is the first comprehensive study describing PNFB communities associated with pioneer plants in different arcto-alpine biomes. Replicate samples were taken from two arctic regions, Kilpisjärvi and Ny-Ålesund, and one alpine region, Mayrhofen. In these, the PNFB communities in the bulk and rhizosphere soils and the plant endospheres were characterized by nifH-targeted PCR and massive parallel sequencing. The data revealed strong effects of climatic region on the dominating nitrogen fixers. Specifically, nifH sequences related to Geobacter (δ-Proteobacteria were present in high relative abundances in the nitrogen-fixing communities in the Mayrhofen and Kilpisjärvi regions, while members of the Clostridiales prevailed in the Kilpisjärvi and Ny-Ålesund regions. The bulk and

  1. The relationship between soil physical properties and alpine plant diversity on Qinghai-Tibet Plateau

    Directory of Open Access Journals (Sweden)

    Lin Tang

    2015-04-01

    Full Text Available Through a large-scale research, we examined the heterogeneity of soil properties and plant diversity, as well as their relationships across alpine grassland types on Qinghai-Tibet Plateau. The soil pH and EC value increased with the constant deepening of the soil in all the three alpine grassland types which in order of absolute value in every soil layer were alpine desert steppe, alpine steppe and alpine meadow. Among the three grassland types, the alpine meadow possessed the highest SM but the lowest SBD. For plant diversity, alpine meadow was the highest, alpine desert steppe ranked the second and alpine steppe was the last. SM and SBD were the highest influential soil physical properties to species richness, but with opposite effects.

  2. Plant Functional Diversity Can Be Independent of Species Diversity: Observations Based on the Impact of 4-Yrs of Nitrogen and Phosphorus Additions in an Alpine Meadow.

    Science.gov (United States)

    Li, Wei; Cheng, Ji-Min; Yu, Kai-Liang; Epstein, Howard E; Guo, Liang; Jing, Guang-Hua; Zhao, Jie; Du, Guo-Zhen

    2015-01-01

    Past studies have widely documented the decrease in species diversity in response to addition of nutrients, however functional diversity is often independent from species diversity. In this study, we conducted a field experiment to examine the effect of nitrogen and phosphorus fertilization ((NH4)2 HPO4) at 0, 15, 30 and 60 g m-2 yr-1 (F0, F15, F30 and F60) after 4 years of continuous fertilization on functional diversity and species diversity, and its relationship with productivity in an alpine meadow community on the Tibetan Plateau. To this purpose, three community-weighted mean trait values (specific leaf area, SLA; mature plant height, MPH; and seed size, SS) for 30 common species in each fertilization level were determined; three components of functional diversity (functional richness, FRic; functional evenness, FEve; and Rao's index of quadratic entropy, FRao) were quantified. Our results showed that: (i) species diversity sharply decreased, but functional diversity remained stable with fertilization; (ii) community-weighted mean traits (SLA and MPH) had a significant increase along the fertilization level; (iii) aboveground biomass was not correlated with functional diversity, but it was significantly correlated with species diversity and MPH. Our results suggest that decreases in species diversity due to fertilization do not result in corresponding changes in functional diversity. Functional identity of species may be more important than functional diversity in influencing aboveground productivity in this alpine meadow community, and our results also support the mass ratio hypothesis; that is, the traits of the dominant species influenced the community biomass production.

  3. Ontogenetic niche shifts in three Vaccinium species on a sub-alpine mountain side

    DEFF Research Database (Denmark)

    Auffret, Alistair G.; Meineri, Eric; Bruun, Hans Henrik

    2010-01-01

    Background: Climate warming in arctic and alpine regions is expected to result in the altitudinal migration of plant species, but current predictions neglect differences between species' regeneration niche and established niche. Aims: To examine potential recruitment of Vaccinium myrtillus, V...

  4. [Fine root nitrogen contents and morphological adaptations of alpine plants].

    NARCIS (Netherlands)

    Salpagarova, F.S.; van Logtestijn, R. S.; Onipchenko, Vladimir G.; Akhmetzhanova, A.A.; Agafonov, V. A.

    Nitrogen and carbon contents of fine roots were studied for 92 alpine plant species in the Northwest Caucasus. Nitrogen content ranged from 0.43% (Bromus variegatus) to 3.75% (Corydalis conorhiza) with mean value 1.3%. Carbon content ranged from 40.3% (Corydalis conorhiza) to 51.7% (Empetrum nigrum)

  5. Vascular plant flora of the alpine zone in the southern Rocky Mountains, U.S.A

    Science.gov (United States)

    James F. Fowler; B. E. Nelson; Ronald L. Hartman

    2014-01-01

    Field detection of changes in occurrence, distribution, or abundance of alpine plant species is predicated on knowledge of which species are in specific locations. The alpine zone of the Southern Rocky Mountain Region has been systematically inventoried by the staff and floristics graduate students from the Rocky Mountain Herbarium over the last 27 years. It is...

  6. Functional traits and root morphology of alpine plants.

    Science.gov (United States)

    Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian

    2011-09-01

    Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level.

  7. Ethnobotany of medicinal plants among the communities of Alpine and Sub-alpine regions of Pakistan.

    Science.gov (United States)

    Kayani, Sadaf; Ahmad, Mushtaq; Sultana, Shazia; Khan Shinwari, Zabta; Zafar, Muhammed; Yaseen, Ghulam; Hussain, Manzoor; Bibi, Tahira

    2015-04-22

    To best of our knowledge it is first quantitative ethno-botanical study from Alpine and Sub-alpine, Western Himalaya of Pakistan. The study aims to report, compare the uses and highlight the ethno-botanical significance of medicinal plants for treatment of various diseases. A total of 290 (278 males and 12 females) informants including 14 Local Traditional Healers (LTHs) were interviewed. Information was collected using semi-structured interviews, analyzed and compared by quantitative ethno-botanical indices such as Informant Consensus Factor (ICF), Relative frequency of citation (RFC), use value (UV), Fidelity Level (FL) and Jaccard index (JI). A total of 125 plant species (Gymnosperms 7 species, Monocotyledons 2 and 116 Di-cotyledons) belonging to 41 families are collected, identified and ethno-botanically assessed. The most dominant family is Ranunculaceae (20 species) followed by Rosaceae (14 species). In diseases treated, gastrointestinal tract (GIT) diseases have highest proportion (27.5%) followed by respiratory diseases (20%) in the mountain communities. The most dominant life form of plants used is herbs (78%) followed by shrubs (19%) while the most commonly used plant parts are leaves (44 reports) followed by underground part, the roots (37 reports). The highest ICF (0.68) is found for ear, nose and eye disease category followed by respiratory disorders (0.46). There are 15 medicinal plants having 100% FL. Use value (UV) and Relative frequency of citation (RFC) range from 0.03 to 0.53 and 0.04 to 0.23 respectively. In comparison, maximum similarity index is found in the studies with JI 19.52 followed by 17.39. Similarity percentage of plant uses range from 1.69% to 19.52% while dissimilarity percentage varies from 0% to 20%. The Alpine and Sub-alpine regions of Pakistan are rich in medicinal plants and still need more research exploration. On the other hand, ethno-botanical knowledge in study areas is decreasing day by day due to high emigration rates

  8. Plants assemble species specific bacterial communities from common core taxa in three arcto-alpine climate zones

    NARCIS (Netherlands)

    Kumar, Manoj; Brader, Guenter; Sessitsch, Angela; Maki, Anita; van Elsas, Jan D.; Nissinen, Riitta

    2017-01-01

    Evidence for the pivotal role of plant-associated bacteria to plant health and productivity has accumulated rapidly in the last years. However, key questions related to what drives plant bacteriomes remain unanswered, among which is the impact of climate zones on plant-associated microbiota. This is

  9. Seeds of alpine plants are short lived: implications for long-term conservation.

    Science.gov (United States)

    Mondoni, Andrea; Probert, Robin J; Rossi, Graziano; Vegini, Emanuele; Hay, Fiona R

    2011-01-01

    Alpine plants are considered one of the groups of species most sensitive to the direct and indirect threats to ecosystems caused by land use and climate change. Collecting and banking seeds of plant species is recognized as an effective tool for providing propagating material to re-establish wild plant populations and for habitat repair. However, seeds from cold wet environments have been shown to be relatively short lived in storage, and therefore successful long-term seed conservation for alpine plants may be difficult. Here, the life spans of 69 seed lots representing 63 related species from alpine and lowland locations from northern Italy are compared. Seeds were placed into experimental storage at 45 °C and 60 % relative humidity (RH) and regularly sampled for germination. The time taken in storage for viability to fall to 50 % (p(50)) was determined using probit analysis and used as a measure of relative seed longevity between seed lots. Across species, p(50) at 45 °C and 60 % RH varied from 4·7 to 95·5 d. Seed lots from alpine populations/species had significantly lower p(50) values compared with those from lowland populations/species; the lowland seed lots showed a slower rate of loss of germinability, higher initial seed viability, or both. Seeds were progressively longer lived with increased temperature and decreased rainfall at the collecting site. Seeds of alpine plants are short lived in storage compared with those from lowland populations/related taxa. The lower resistance to ageing in seeds of alpine plants may arise from low selection pressure for seed resistance to ageing and/or damage incurred during seed development due to the cool wet conditions of the alpine climate. Long-term seed conservation of several alpine species using conventional seed banking methods will be problematic.

  10. Distance and environmental difference in alpine plant communities

    Science.gov (United States)

    Malanson, George P.; Zimmerman, Dale L.; Fagre, Daniel B.

    2017-01-01

    Differences in plant communities are a response to the abiotic environment, species interactions, and dispersal. The role of geographic distance relative to the abiotic environment is explored for alpine tundra vegetation from 319 plots of four regions along the Rocky Mountain cordillera in the USA. The site by species data were ordinated using nonmetric multidimensional scaling to produce dependent variables for use in best-subsets regression. For independent variables, observations of local topography and microtopography were used as environmental indicators. Two methods of including distance in studies of vegetation and environment are used and contrasted. The relative importance of geographic distance in accounting for the pattern of alpine tundra similarity indicates that location is a factor in plant community composition. Mantel tests provide direct correlations between difference and distance but have known weaknesses. Moran spatial eigenvectors used in regression based approaches have greater geographic specificity, but require another step, ordination, in creating a vegetation variable. While the spatial eigenvectors are generally preferable, where species–environment relations are weak, as seems to be the case for the alpine sites studied here, the fewer abstractions of the Mantel test may be useful.

  11. Dispersal and microsite limitation of a rare alpine plant

    OpenAIRE

    Frei, Eva S.; Scheepens, J. F.; Stöcklin, Jürg

    2012-01-01

    Knowledge on the limitation of plant species’ distributions is important for preserving alpine biodiversity, particularly when the loss of alpine habitats because of global warming or land use changes is faster than colonization of new habitats. We investigated the potential of the rare alpine plant Campanula thyrsoides L. to colonize grassland sites of different suitability on a small mountain plateau in the Swiss Alps. A total of 15 experimental sites were selected according to their differ...

  12. Ecological implications of reduced pollen supply in the alpine: a case study using a dominant cushion plant species [v2; ref status: indexed, http://f1000r.es/3xc

    Directory of Open Access Journals (Sweden)

    Anya Reid

    2014-08-01

    Full Text Available The reproductive assurance hypothesis states that self-incompatible female plants must produce twice the number of seeds relative to their self-compatible hermaphroditic counterparts to persist in gynodioecious populations. This is a viable life-history strategy, provided that pollination rates are sufficiently high. However, reduced pollination rates in alpine plants are likely due to climate induced plant-pollinator mismatches and general declines in pollinators. Using a gynodioecious population of the dominant plant Silene acaulis (Caryophyllaceae, we tested the reproductive assurance hypothesis and also the stress gradient hypothesis with a series of pollinator exclusion trials and extensive measurements of subsequent reproductive output (gender ratio, plant size, percent fruit-set, fruit weight, seeds per fruit, total seeds, seed weight, and seed germination. The reproductive assurance hypothesis was supported with female plants being more sensitive to and less likely to be viable under reductions in pollination rates. These findings are the first to show that the stress gradient hypothesis is also supported under a gradient of pollen supply instead of environmental limitations. Beneficiary abundance was negatively correlated to percent fruit-set under current pollen supply, but became positive under reduced pollen supply suggesting that there are important plant-plant-pollinator interactions related to reproduction in these alpine plant species.

  13. Experimental warming increases herbivory by leaf-chewing insects in an alpine plant community

    OpenAIRE

    Birkemoe, Tone; Bergmann, Saskia; Hasle, Toril Elisabet; Klanderud, Kari

    2016-01-01

    Abstract Climate warming is predicted to affect species and trophic interactions worldwide, and alpine ecosystems are expected to be especially sensitive to changes. In this study, we used two ongoing climate warming (open?top chambers) experiments at Finse, southern Norway, to examine whether warming had an effect on herbivory by leaf?chewing insects in an alpine Dryas heath community. We recorded feeding marks on the most common vascular plant species in warmed and control plots at two expe...

  14. Seedling recruitment of forb species under experimental microhabitats in alpine grassland

    International Nuclear Information System (INIS)

    Li, S. S.; Yu, L.; Lin, W. G.; Pingi, T. F.

    2015-01-01

    Which factors limit plant seedling recruitment in alpine meadow of the Qinghai-Tibetan Plateau (QTP), China? This study examined the relative influence of seed mass and microsites (resulted from grazing disturbance) on field seedling emergence and survival of nineteen alpine herbaceous species with a range of traits in QTP. Seed mass had significant effects on seedling emergence and survival eliminating influence of light and nutrient variances among these species. The larger-seed species had more advantageous than the smaller-seed species in seedling survival, but it was disadvatage for seedling emergence, especially under high nutrient availability and low light intensity conditions. Light had obvious effects on seedling survival, but less effects on seedling emergence for these species. Moreover, nutrient and light treatments altered the regression relationships of seed mass and seedling emergence and survival and the order of significances was L25>L50>L100>L10>L4. These results suggested that seed mass may restrict seedling recruitment processes, however, light and nutrient availability all have significant effects on seedling emergence and survival for these alpine species. Moderate light intensity was propitious to seedling emergence and survival in alpine grassland. This suggests that ecological factors in alpine grassland provide a stochastic influence on different seed-mass species. These trends may help to explain why many small-seeded species of Asteraceae and Gramineae tend to be more abundant in disturbed habitats. (author)

  15. Relation between extinction and assisted colonization of plants in the arctic-alpine and boreal regions.

    Science.gov (United States)

    Pykälä, Juha

    2017-06-01

    Assisted colonization of vascular plants is considered by many ecologists an important tool to preserve biodiversity threatened by climate change. I argue that assisted colonization may have negative consequences in arctic-alpine and boreal regions. The observed slow movement of plants toward the north has been an argument for assisted colonization. However, these range shifts may be slow because for many plants microclimatic warming (ignored by advocates of assisted colonization) has been smaller than macroclimatic warming. Arctic-alpine and boreal plants may have limited possibilities to disperse farther north or to higher elevations. I suggest that arctic-alpine species are more likely to be driven to extinction because of competitive exclusion by southern species than by increasing temperatures. If so, the future existence of arctic-alpine and boreal flora may depend on delaying or preventing the migration of plants toward the north to allow northern species to evolve to survive in a warmer climate. In the arctic-alpine region, preventing the dispersal of trees and shrubs may be the most important method to mitigate the negative effects of climate change. The purported conservation benefits of assisted colonization should not be used to promote the migration of invasive species by forestry. © 2016 Society for Conservation Biology.

  16. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.

    Science.gov (United States)

    Kimball, Kenneth D; Davis, Michael L; Weihrauch, Douglas M; Murray, Georgia L D; Rancourt, Kenneth

    2014-09-01

    • Most alpine plants in the Northeast United States are perennial and flower early in the growing season, extending their limited growing season. Concurrently, they risk the loss of reproductive efforts to late frosts. Quantifying long-term trends in northeastern alpine flower phenology and late-spring/early-summer frost risk is limited by a dearth of phenology and climate data, except for Mount Washington, New Hampshire (1916 m a.s.l.).• Logistic phenology models for three northeastern US alpine species (Diapensia lapponica, Carex bigelowii and Vaccinium vitis-idaea) were developed from 4 yr (2008-2011) of phenology and air temperature measurements from 12 plots proximate to Mount Washington's long-term summit meteorological station. Plot-level air temperature, the logistic phenology models, and Mount Washington's climate data were used to hindcast model yearly (1935-2011) floral phenology and frost damage risk for the focal species.• Day of year and air growing degree-days with threshold temperatures of -4°C (D. lapponica and C. bigelowii) and -2°C (V. vitis-idaea) best predicted flowering. Modeled historic flowering dates trended significantly earlier but the 77-yr change was small (1.2-2.1 d) and did not significantly increase early-flowering risk from late-spring/early-summer frost damage.• Modeled trends in phenological advancement and sensitivity for three northeastern alpine species are less pronounced compared with lower elevations in the region, and this small shift in flower timing did not increase risk of frost damage. Potential reasons for limited earlier phenological advancement at higher elevations include a slower warming trend and increased cloud exposure with elevation and/or inadequate chilling requirements. © 2014 Botanical Society of America, Inc.

  17. Dominance hierarchies, diversity and species richness of vascular plants in an alpine meadow: contrasting short and medium term responses to simulated global change

    Directory of Open Access Journals (Sweden)

    Juha M. Alatalo

    2014-05-01

    Full Text Available We studied the impact of simulated global change on a high alpine meadow plant community. Specifically, we examined whether short-term (5 years responses are good predictors for medium-term (7 years changes in the system by applying a factorial warming and nutrient manipulation to 20 plots in Latnjajaure, subarctic Sweden. Seven years of experimental warming and nutrient enhancement caused dramatic shifts in dominance hierarchies in response to the nutrient and the combined warming and nutrient enhancement treatments. Dominance hierarchies in the meadow moved from a community being dominated by cushion plants, deciduous, and evergreen shrubs to a community being dominated by grasses, sedges, and forbs. Short-term responses were shown to be inconsistent in their ability to predict medium-term responses for most functional groups, however, grasses showed a consistent and very substantial increase in response to nutrient addition over the seven years. The non-linear responses over time point out the importance of longer-term studies with repeated measurements to be able to better predict future changes. Forecasted changes to temperature and nutrient availability have implications for trophic interactions, and may ultimately influence the access to and palatability of the forage for grazers. Depending on what anthropogenic change will be most pronounced in the future (increase in nutrient deposits, warming, or a combination of them both, different shifts in community dominance hierarchies may occur. Generally, this study supports the productivity–diversity relationship found across arctic habitats, with community diversity peaking in mid-productivity systems and degrading as nutrient availability increases further. This is likely due the increasing competition in plant–plant interactions and the shifting dominance structure with grasses taking over the experimental plots, suggesting that global change could have high costs to biodiversity in the

  18. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Guo, Yanjun; Guo, Na; He, Yuji; Gao, Jianhua

    2015-09-01

    Alpine meadow ecosystems are susceptible to climate changes. Still, climate impact on cuticular wax in alpine meadow plants is poorly understood. Assessing the variations of cuticular wax in alpine meadow plants across different latitudes might be useful for predicting how they may respond to climate change. We studied nine alpine meadows in a climate gradient in the east side of Qinghai-Tibetan Plateau, with mean annual temperature ranging from -7.7 to 3.2°C. In total, 42 plant species were analyzed for cuticular wax, averaged 16 plant species in each meadow. Only four plant species could be observed in all sampling meadows, including Kobresia humilis,Potentilla nivea,Anaphalis lacteal, and Leontopodium nanum. The amounts of wax compositions and total cuticular wax in the four plant species varied among sampling meadows, but no significant correlation could be observed between them and temperature, precipitation, and aridity index based on plant species level. To analyze the variations of cuticular wax on community level, we averaged the amounts of n-alkanes, aliphatic acids, primary alcohols, and total cuticular wax across all investigated plant species in each sampling site. The mean annual temperature, mean temperature in July, and aridity index were significantly correlated with the averaged amounts of wax compositions and total cuticular wax. The average chain length of n-alkanes in both plant and soil linearly increased with increased temperature, whereas reduced with increased aridity index. No significant correlation could be observed between mean annual precipitation and mean precipitation from June to August and the cuticular wax amounts and average chain length. Our results suggest that the survival of some alpine plants in specific environments might be depended on their abilities in adjusting wax deposition on plant leaves, and the alpine meadow plants as a whole respond to climate change, benefiting the stability of alpine meadow ecosystem.

  19. Alpine plant functional group responses to fertiliser addition depend on abiotic regime and community composition.

    NARCIS (Netherlands)

    Onipchenko, V.G.; Makarov, M.I.; Akmetzhanova, A.A.; Soudzilovskaia, N.A.; Aibazova, F.U.; Elkanova, M.K.; Stogova, A.V.; Cornelissen, J.H.C.

    2012-01-01

    Background and aims: We ask how productivity responses of alpine plant communities to increased nutrient availability can be predicted from abiotic regime and initial functional type composition. Methods: We compared four Caucasian alpine plant communities (lichen heath, Festuca varia grassland,

  20. The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia's headwaters.

    Science.gov (United States)

    Wang, Xuexia; Dong, Shikui; Yang, Bing; Li, Yuanyuan; Su, Xukun

    2014-10-01

    A 3-year survey was conducted to explore the relationships among plant composition, productivity, and soil fertility characterizing four different degradation stages of an alpine meadow in the source region of the Yangtze and Yellow Rivers, China. Results showed that plant species diversity, productivity, and soil fertility of the top 30-cm soil layer significantly declined with degradation stages of alpine meadow over the study period. The productivity of forbs significantly increased with degradation stages, and the soil potassium stock was not affected by grassland degradation. The vegetation composition gradually shifted from perennial graminoids (grasses and sedges) to annual forbs along the degradation gradient. The abrupt change of response in plant diversity, plant productivity, and soil nutrients was demonstrated after heavy grassland degradation. Moreover, degradation can indicate plant species diversity and productivity through changing soil fertility. However, the clear relationships are difficult to establish. In conclusion, degradation influenced ecosystem function and services, such as plant species diversity, productivity, and soil carbon and nitrogen stocks. Additionally, both plant species diversity and soil nutrients were important predictors in different degradation stages of alpine meadows. To this end, heavy degradation grade was shown to cause shift of plant community in alpine meadow, which provided an important basis for sustaining ecosystem function, manipulating the vegetation composition of the area and restoring the degraded alpine grassland.

  1. Root diversity in alpine plants: root length, tensile strength and plant age

    Science.gov (United States)

    Pohl, M.; Stroude, R.; Körner, C.; Buttler, A.; Rixen, C.

    2009-04-01

    A high diversity of plant species and functional groups is hypothesised to increase the diversity of root types and their subsequent effects for soil stability. However, even basic data on root characteristics of alpine plants are very scarce. Therefore, we determined important root characteristics of 13 plant species from different functional groups, i.e. grasses, herbs and shrubs. We excavated the whole root systems of 62 plants from a machine-graded ski slope at 2625 m a.s.l. and analysed the rooting depth, the horizontal root extension, root length and diameter. Single roots of plant species were tested for tensile strength. The age of herbs and shrubs was determined by growth-ring analysis. Root characteristics varied considerably between both plant species and functional groups. The rooting depth of different species ranged from 7.2 ± 0.97 cm to 20.5 ± 2.33 cm, but was significantly larger in the herb Geum reptans (70.8 ± 10.75 cm). The woody species Salix breviserrata reached the highest horizontal root extensions (96.8 ± 25.5 cm). Most plants had their longest roots in fine diameter classes (0.5

  2. How cushion communities are maintained in alpine ecosystems: A review and case study on alpine cushion plant reproduction

    Directory of Open Access Journals (Sweden)

    Jianguo Chen

    2017-08-01

    Full Text Available Cushion species occur in nearly all alpine environments worldwide. In past decades, the adaptive and ecosystem-engineering roles of such highly specialized life forms have been well studied. However, the adaptive strategies responsible for cushion species reproductive success and maintenance in severe alpine habitats remain largely unclear. In this study, we reviewed the current understanding of reproductive strategies and population persistence in alpine cushion species. We then present a preliminary case study on the sexual reproduction of Arenaria polytrichoides (Caryophyllaceae, a typical cushion species inhabiting high elevations of the Himalaya Hengduan Mountains, which is a hotspot for diversification of cushion species. Finally, we highlight the limitations of our current understanding of alpine cushion species reproduction and propose future directions for study.

  3. Relations of alpine plant communities across environmental gradients: Multilevel versus multiscale analyses

    Science.gov (United States)

    Malanson, George P.; Zimmerman, Dale L.; Kinney, Mitch; Fagre, Daniel B.

    2017-01-01

    Alpine plant communities vary, and their environmental covariates could influence their response to climate change. A single multilevel model of how alpine plant community composition is determined by hierarchical relations is compared to a separate examination of those relations at different scales. Nonmetric multidimensional scaling of species cover for plots in four regions across the Rocky Mountains created dependent variables. Climate variables are derived for the four regions from interpolated data. Plot environmental variables are measured directly and the presence of thirty-seven site characteristics is recorded and used to create additional independent variables. Multilevel and best subsets regressions are used to determine the strength of the hypothesized relations. The ordinations indicate structure in the assembly of plant communities. The multilevel analyses, although revealing significant relations, provide little explanation; of the site variables, those related to site microclimate are most important. In multiscale analyses (whole and separate regions), different variables are better explanations within the different regions. This result indicates weak environmental niche control of community composition. The weak relations of the structure in the patterns of species association to the environment indicates that either alpine vegetation represents a case of the neutral theory of biogeography being a valid explanation or that it represents disequilibrium conditions. The implications of neutral theory and disequilibrium explanations are similar: Response to climate change will be difficult to quantify above equilibrium background turnover.

  4. Photosynthesis and photosynthetic electron flow in the alpine evergreen species Quercus guyavifolia in winter

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2016-10-01

    Full Text Available Alpine evergreen broadleaf tree species must regularly cope with low night temperatures in winter. However, the effects of low night temperatures on photosynthesis in alpine evergreen broadleaf tree species are unclear. We measured the diurnal photosynthetic parameters before and after cold snap for leaves of Quercus guyavifolia growing in its native habitat at 3290 m. On 11 and 12 December 2013 (before cold snap, stomatal and mesophyll conductances (gs and gm, CO2 assimilation rate (An, and total electron flow through PSII (JPSII at daytime were maintained at high levels. The major action of alternative electron flow was to provide extra ATP for primary metabolisms. On 20 December 2013 (after cold snap, the diurnal values of gs, gm, An and JPSII at daytime largely decreased, mainly due to the large decrease in night air temperature. Meanwhile, the ratio of photorespiration and alternative electron flow to JPSII largely increased on 20 December. Furthermore, the high levels of alternative electron flow were accompanied with low rates of extra ATP production. A quantitative limitation analysis reveals that the gm limitation increased on 20 December with decreased night air temperature. Therefore, the night air temperature was an important determinant of stomatal/mesophyll conductance and photosynthesis. When photosynthesis is inhibited following freezing night temperatures, photorespiration and alternative electron flow are important electron sinks, which support the role of photorespiration and alternative electron flow in photoportection for alpine plants under low temperatures.

  5. Grazing responses in herbs in relation to herbivore selectivity and plant traits in an alpine ecosystem.

    Science.gov (United States)

    Evju, Marianne; Austrheim, Gunnar; Halvorsen, Rune; Mysterud, Atle

    2009-08-01

    Herbivores shape plant communities through selective foraging. However, both herbivore selectivity and the plant's ability to tolerate or resist herbivory may depend on the density of herbivores. In an alpine ecosystem with a long history of grazing, plants are expected to respond to both enhanced and reduced grazing pressures, and the interaction between plant traits and changes in species abundance are expected to differ between the two types of alteration of grazing regime. To understand the mechanisms behind species response, we investigated the relationship between sheep selectivity (measured in situ), plant traits and experimentally derived measures of change in species abundance as a response to the enhancement (from low to high density) or cessation (from low to zero density) of sheep grazing pressure over a six-year time period for 22 abundant herb species in an alpine habitat in south Norway. Sheep selected large, late-flowering herbs with a low leaf C/N ratio. Species that increased in abundance in response to enhanced grazing pressure were generally small and had high root/shoot ratios, thus exhibiting traits that reflect both resistance (through avoidance) and tolerance (through regrowth capacity) strategies. The abundance of selected species remained stable during the study period, and also under the enhanced grazing pressure treatment. There was, however, a tendency for selected species to respond positively to cessation of grazing, although overall responses to cessation of grazing were much less pronounced than responses to enhanced grazing. Avoidance through short stature (probably associated with increased light availability through the removal of tall competitors) as well as a certain amount of regrowth capacity appear to be the main mechanisms behind a positive response to enhanced grazing pressure in this study. The plant trait perspective clearly improves our insight into the mechanisms behind observed changes in species abundance when the

  6. Evolutionary diversification of cryophilic Grylloblatta species (Grylloblattodea: Grylloblattidae in alpine habitats of California

    Directory of Open Access Journals (Sweden)

    Roderick George K

    2010-06-01

    Full Text Available Abstract Background Climate in alpine habitats has undergone extreme variation during Pliocene and Pleistocene epochs, resulting in repeated expansion and contraction of alpine glaciers. Many cold-adapted alpine species have responded to these climatic changes with long-distance range shifts. These species typically exhibit shallow genetic differentiation over a large geographical area. In contrast, poorly dispersing organisms often form species complexes within mountain ranges, such as the California endemic ice-crawlers (Grylloblattodea: Grylloblattidae: Grylloblatta. The diversification pattern of poorly dispersing species might provide more information on the localized effects of historical climate change, the importance of particular climatic events, as well as the history of dispersal. Here we use multi-locus genetic data to examine the phylogenetic relationships and geographic pattern of diversification in California Grylloblatta. Results Our analysis reveals a pattern of deep genetic subdivision among geographically isolated populations of Grylloblatta in California. Alpine populations diverged from low elevation populations and subsequently diversified. Using a Bayesian relaxed clock model and both uncalibrated and calibrated measurements of time to most recent common ancestor, we reconstruct the temporal diversification of alpine Grylloblatta populations. Based on calibrated relaxed clock estimates, evolutionary diversification of Grylloblatta occurred during the Pliocene-Pleistocene epochs, with an initial dispersal into California during the Pliocene and species diversification in alpine clades during the middle Pleistocene epoch. Conclusions Grylloblatta species exhibit a high degree of genetic subdivision in California with well defined geographic structure. Distinct glacial refugia can be inferred within the Sierra Nevada, corresponding to major, glaciated drainage basins. Low elevation populations are sister to alpine populations

  7. SEED GERMINATION BEHAVIOUR OF THREE ALPINE SPECIES FROM ULUDAĞ MOUNT,TURKEY

    Directory of Open Access Journals (Sweden)

    HülyaARSLAN

    2013-02-01

    Full Text Available In this study, the germination requirements of three species from alpine belt of Uludağ Mount; Gypsophila olympica Boiss., Matthiola montana Boiss. and Silene rhynchocarpa Boiss. We tested thegermination under (20 °C dark, (20 °C continuous light, and photoperiod 20/10 °C (12/12h with distilled water. Different germination behaviour was found for these three species from closely related habitat conditions. G. olympica showed similar germination percentages in dark, light and photoperiod, and germinated faster in light (3.9 days. S. rhyncocarpa germinated 100 % at all the threeconditions but faster in dark with 2.0 days. M. montana seeds were found to require light for germination. The germination was 27.2 % at dark, whereas the seeds were germinated 90 % under photoperiod.The results can be useful for both in situ and ex situ conservation of these plant species.

  8. Pollen sensitivity to ultraviolet-B (UV-B) suggests floral structure evolution in alpine plants.

    Science.gov (United States)

    Zhang, Chan; Yang, Yong-Ping; Duan, Yuan-Wen

    2014-03-31

    Various biotic and abiotic factors are known to exert selection pressures on floral traits, but the influence of ultraviolet-B (UV-B) light on the evolution of flower structure remains relatively unexplored. We have examined the effectiveness of flower structure in blocking radiation and the effects of UV-B on pollen viability in 42 species of alpine plants in the Hengduan Mountains, China. Floral forms were categorized as either protecting or exposing pollen grains to UV-B. The floral materials of plants with exposed and protected pollen grains were able to block UV-B at similar levels. Exposure to UV-B radiation in vitro resulted in a significantly greater loss of viability in pollen from plant species with protective floral structures. The pronounced sensitivity of protected pollen to UV-B radiation was associated with the type of flower structure. These findings demonstrate that UV-B plays an important role in the evolution of protective floral forms in alpine plants.

  9. Effects of simulated herbivory on defensive compounds in forage plants of norwegian alpine rangelands.

    Science.gov (United States)

    Saetnan, Eli R; Batzli, George O

    2009-04-01

    A field study on the effects of current grazing practices on plants in central Norway found no increase in either phenolic compounds or proteinase inhibitors in plants subjected to grazing by sheep. This could either reflect insufficient damage to the plants due to low grazing intensity or a lack of a long-term response of the plants to grazing. In this study, we tested the hypothesis that damage to forage plants used by sheep and rodents in Norwegian alpine rangelands can stimulate a long-term (at least 2-week) increase in levels of defensive compounds. We used clipping experiments to manipulate the severity and timing of damage to eight species of common plants used by herbivores in Norway. Under greenhouse conditions (i.e., climate-controlled), we subjected mature plants to one of four clipping treatments: control (0% leaf tissue removed), low (10-15% leaf tissue removed), high (70-75% leaf tissue removed), or sustained (15% of leaf tissue removed every other day up to a total removal of 75%, i.e., five clippings over 9 days). Samples were collected 2 weeks after final clipping and analyzed for concentrations of total phenolics, proteinase inhibitors, ratio of total phenolics to soluble proteins, and ratio of proteinase inhibitors to soluble plant proteins. As expected, the different species of plants responded differently to simulated herbivory, but most plants either showed no response to mechanical wounding and tissue loss or had reduced defensive compounds. Thus, our results do not support the hypothesis that herbivory induces a long-term increase in defensive compounds in alpine rangelands of Norway, a result consistent with those from field studies.

  10. Molecular phylogeography of the Andean alpine plant, Gunnera magellanica

    Science.gov (United States)

    Shimizu, M.; Fujii, N.; Ito, M.; Asakawa, T.; Nishida, H.; Suyama, C.; Ueda, K.

    2015-12-01

    To clarify the evolutionary history of Gunnera magellanica (Gunneraceae), an alpine plant of the Andes mountains, we performed molecular phylogeographic analyses based on the sequences of an internal transcribed spacer (ITS) of nuclear ribosomal DNA and four non-coding regions (trnH-psbA, trnL-trnF, atpB-rbcL, rpl16 intron) of chloroplast DNA. We investigated 3, 4, 4 and 11 populations in, Ecuador, Bolivia, Argentina, and Chile, respectively, and detected six ITS genotypes (Types A-F) in G. magellanica. Five genotypes (Types A-E) were observed in the northern Andes population (Ecuador and Bolivia); only one ITS genotype (Type F) was observed in the southern Andes population (Chile and Argentina). Phylogenetic analyses showed that the ITS genotypes of the northern and southern Andes populations form different clades with high bootstrap probability. Furthermore, network analysis, analysis of molecular variance, and spatial analysis of molecular variance showed that there were two major clusters (the northern and southern Andes populations) in this species. Furthermore, in chloroplast DNA analysis, three major clades (northern Andes, Chillan, and southern Andes) were inferred from phylogenetic analyses using four non-coding regions, a finding that was supported by the above three types of analysis. The Chillan clade is the northernmost population in the southern Andes populations. With the exception of the Chillan clade (Chillan population), results of nuclear DNA and chloroplast DNA analyses were consistent. Both markers showed that the northern and southern Andes populations of G. magellanica were genetically different from each other. This type of clear phylogeographical structure was supported by PERMUT analysis according to Pons & Petit (1995, 1996). Moreover, based on our preliminary estimation that is based on the ITS sequences, the northern and southern Andes clades diverged ~0.63-3 million years ago, during a period of upheaval in the Andes. This suggests

  11. The relationship between species richness and evenness in plant communities along a successional gradient: a study from sub-alpine meadows of the Eastern Qinghai-Tibetan Plateau, China.

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    Full Text Available The relationship between species richness and evenness across communities remains an unsettled issue in ecology from both theoretical and empirical perspectives. As a result, we do not know the mechanisms that could generate a relationship between species richness and evenness, and how this responds to spatial scale. Here we examine the relationship between species richness(S and evenness (Pielou's J' evenness using a chronosequence of successional sub-alpine meadow communities in the eastern Qinghai-Tibetan Plateau. These meadows range from natural community (never farmed, to those that have been protected from agricultural exploitation for periods ranging from 1 to 10 years. A total of 30 sampling quadrats with size of 0.5 m×0.5 m were laid out along two transects at each meadow. Using correlation analyses we found a consistent negative correlation between S and J' in these communities along the successional gradient at the sampling scale of 0.5 m×0.5 m. We also explored the relationship between S and J' at different sampling scales (from 0.5 m×0.5 m to10 m×10 m using properly measured ramet-mapped data of a10 m×10 m quadrat in the natural community. We found that S was negatively corrected with J' at the scales of 0.5 m×0.5 m to 2 m×2 m, but such a relationships disappeared at relative larger scales (≥2 m×4 m. When fitting different species abundance models combined with trait-specific methods, we found that niche preemption may be the determining mechanism of species evenness along the succession gradient. Considering all results together, we can conclude that such niche differentiation and spatial scale effects may help to explain the maintenance of high species richness in sub-alpine meadow communities.

  12. Sensitivity of subalpine tree seedlings and alpine plants to natural and manipulated climate variation: Initial results from an Alpine Treeline Warming Experiment (Invited)

    Science.gov (United States)

    Kueppers, L. M.

    2010-12-01

    Niche models and paleoecological studies indicate that future climate change will alter the geographic distributions of plant species. Changes in temperature, snowmelt timing, or moisture conditions at one edge of a species’ range may have different consequences for recruitment, carbon exchange, phenology, and survival than changes at another edge. Similarly, local genetic adaptation may constrain species and community responses to climate change. We have established a new experiment to investigate potential shifts in the distribution of subalpine tree species, and the alpine species they might replace. We are asking how tree species recruitment and alpine species growth and reproduction vary within their current ranges, and in response to temperature and soil moisture manipulations. We are also examining whether genetic provenance and ecosystem processes constrain tree seedling and alpine herb responses. Our Alpine Treeline Warming Experiment is located across three sites at Niwot Ridge, CO, ranging from near the lower limit of subalpine forest to alpine tundra. We use infrared heaters to raise growing season surface soil temperatures by 4-5°C, and to lengthen the growing season. The warming treatment is crossed with a soil moisture manipulation to distinguish effects due to higher temperatures from those due to drier soil. Each plot is a common garden sown with high and low elevation provenances of limber pine (Pinus flexilis) and Engelmann spruce (Picea engelmannii). We established an additional set of experimental plots to examine treatment effects on alpine species phenology, growth and reproduction. Under ambient conditions in 2009, tree seedling germination rate, lifespan, and first season survival was higher within the species’ current range than in the alpine, and for Engelmann spruce, was higher at the low elevation limit than the high elevation limit. Source population (low vs. high elevation) was a significant factor explaining natural variation in

  13. Environmental effects on fine-scale spatial genetic structure in four Alpine keystone forest tree species.

    Science.gov (United States)

    Mosca, Elena; Di Pierro, Erica A; Budde, Katharina B; Neale, David B; González-Martínez, Santiago C

    2018-02-01

    Genetic responses to environmental changes take place at different spatial scales. While the effect of environment on the distribution of species' genetic diversity at large geographical scales has been the focus of several recent studies, its potential effects on genetic structure at local scales are understudied. Environmental effects on fine-scale spatial genetic structure (FSGS) were investigated in four Alpine conifer species (five to eight populations per species) from the eastern Italian Alps. Significant FSGS was found for 11 of 25 populations. Interestingly, we found no significant differences in FSGS across species but great variation among populations within species, highlighting the importance of local environmental factors. Interannual variability in spring temperature had a small but significant effect on FSGS of Larix decidua, probably related to species-specific life history traits. For Abies alba, Picea abies and Pinus cembra, linear models identified spring precipitation as a potentially relevant climate factor associated with differences in FSGS across populations; however, models had low explanatory power and were strongly influenced by a P. cembra outlier population from a very dry site. Overall, the direction of the identified effects is according to expectations, with drier and more variable environments increasing FSGS. Underlying mechanisms may include climate-related changes in the variance of reproductive success and/or environmental selection of specific families. This study provides new insights on potential changes in local genetic structure of four Alpine conifers in the face of environmental changes, suggesting that new climates, through altering FSGS, may also have relevant impacts on plant microevolution. © 2017 John Wiley & Sons Ltd.

  14. Evaluating the Importance of Plant Functional Traits: the Subalpine and Alpine

    Science.gov (United States)

    Sanchez, A.; Smith, W. K.

    2011-12-01

    Over the past several decades, researchers have attempted to characterize plant groups according to traits that are considered functional, i.e. contributing significantly to fitness. Due to the complexity of measuring fitness, the capability for photosynthetic carbon gain is often used as a proxy. Thus, this approach correlates structural differences to photosynthetic performance, especially those differences that are known to be associated with photosynthesis, are easily measured and inexpensive. At the often sharp boundary between the subalpine forest and alpine community (treeline ecotone), plant structural traits change dramatically, i.e. tall evergreen trees give way abruptly to low-stature shrubs, grasses, forbs, and herbs. Yet, the differences in functional traits, so abundant in the literature for a variety of species and communities, have not been compared contiguous communities such as the subalpine forest and alpine. Can differences in functional traits already identified in the literature also be used to characterize species of these two contrasting communities? Or are there other traits that are most functional and/or, possibly, unique to each community and not the most popular traits reported so far in the literature. Also, does the community structure itself help determine functional traits? For example, the top ten most frequently studied traits (145 total papers from approximately 63 different refereed journals) considered functional include the following (% of the 145 publications): specific leaf area or mass (SLA or SLM 39%), plant height (36%), leaf nitrogen content (34%), leaf size (19%), leaf area (16%), leaf photosynthetic performance (15%), leaf dry matter content (LDMC 15%), leaf mass per unit leaf area (LMA 15%), leaf thickness (15%), and seed mass (14%). In addition, another 120 traits were mentioned as functional, although all fell below a 14% citation rate. Particular focus was placed on this group due to the possibility that they might

  15. Inflorescences of alpine cushion plants freeze autonomously and may survive subzero temperatures by supercooling

    Science.gov (United States)

    Hacker, Jürgen; Ladinig, Ursula; Wagner, Johanna; Neuner, Gilbert

    2011-01-01

    Freezing patterns in the high alpine cushion plants Saxifraga bryoides, Saxifraga caesia, Saxifraga moschata and Silene acaulis were studied by infrared thermography at three reproductive stages (bud, anthesis, fruit development). The single reproductive shoots of a cushion froze independently in all four species at every reproductive stage. Ice formation caused lethal damage to the respective inflorescence. After ice nucleation, which occurred mainly in the stalk or the base of the reproductive shoot, ice propagated throughout that entire shoot, but not into neighboring shoots. However, anatomical ice barriers within cushions were not detected. The naturally occurring temperature gradient within the cushion appeared to interrupt ice propagation thermally. Consequently, every reproductive shoot needed an autonomous ice nucleation event to initiate freezing. Ice nucleation was not only influenced by minimum temperatures but also by the duration of exposure. At moderate subzero exposure temperatures (−4.3 to −7.7 °C) the number of frozen inflorescences increased exponentially. Due to efficient supercooling, single reproductive shoots remained unfrozen down to −17.4 °C (cooling rate 6 K h−1). Hence, the observed freezing pattern may be advantageous for frost survival of individual inflorescences and reproductive success of high alpine cushion plants, when during episodic summer frosts damage can be avoided by supercooling. PMID:21151351

  16. Zealandozetes southensis gen. nov., sp. nov. (Acari, Oribatida, Maudheimiidae) from alpine cushions plant in New Zealand.

    Science.gov (United States)

    Ermilov, Sergey G; Minor, Maria A; Behan-Pelletier, Valerie M

    2015-10-01

    A new oribatid mite genus, Zealandozetes gen. nov. (Oribatida, Maudheimiidae), with type species Zealandozetes southensis sp. nov., is proposed and described based on adult and juvenile instars. It inhabits the soil under and around cushion-forming plants in the high-altitude alpine zone of two mountain ranges (the Pisa Range and The Remarkables) in the South Island of New Zealand. It is distinguished from species of Maudheimia by having pteromorphs reduced to pleural carinae, notogastral saccules, small pedotecta I, and both postanal porose area and Ah expressed as complex saccules. Juveniles are similar to those of Maudheimia, except the humeral organ of Z. southensis is cupule-like and gastronotic microsclerites are lacking. We give a revised diagnosis for Maudheimiidae and discuss both supportive and contradictory evidence for inclusion of Zealandozetes. Finally, we discuss endemism of Zealandozetes with reference to the knowledge of New Zealand biogeography and its oribatid fauna.

  17. Leaf waxes of slow-growing alpine and fast-growing lowland Poa species: inherent differences and responses to UV-B radiation

    NARCIS (Netherlands)

    Pilon, J.; Lambers, H.; Baas, W.; Tosserams, M.; Rozema, J.J.; Atkin, O.K.

    1999-01-01

    We investigated whether alpine and lowland Poa species exhibit inherent differences in leaf cuticular waxes, leaf UV absorbing compounds and/or growth responses to UV-B treatment. All plants were grown hydroponically in a growth cabinet (constant 20°; 14 hr photoperiod; 520 mol photons m-2 s-1 PAR).

  18. Integrating species distribution models (SDMs) and phylogeography for two species of Alpine Primula.

    Science.gov (United States)

    Schorr, G; Holstein, N; Pearman, P B; Guisan, A; Kadereit, J W

    2012-06-01

    The major intention of the present study was to investigate whether an approach combining the use of niche-based palaeodistribution modeling and phylo-geography would support or modify hypotheses about the Quaternary distributional history derived from phylogeographic methods alone. Our study system comprised two closely related species of Alpine Primula. We used species distribution models based on the extant distribution of the species and last glacial maximum (LGM) climate models to predict the distribution of the two species during the LGM. Phylogeographic data were generated using amplified fragment length polymorphisms (AFLPs). In Primula hirsuta, models of past distribution and phylogeographic data are partly congruent and support the hypothesis of widespread nunatak survival in the Central Alps. Species distribution models (SDMs) allowed us to differentiate between alpine regions that harbor potential nunatak areas and regions that have been colonized from other areas. SDMs revealed that diversity is a good indicator for nunataks, while rarity is a good indicator for peripheral relict populations that were not source for the recolonization of the inner Alps. In P. daonensis, palaeo-distribution models and phylogeographic data are incongruent. Besides the uncertainty inherent to this type of modeling approach (e.g., relatively coarse 1-km grain size), disagreement of models and data may partly be caused by shifts of ecological niche in both species. Nevertheless, we demonstrate that the combination of palaeo-distribution modeling with phylogeographical approaches provides a more differentiated picture of the distributional history of species and partly supports (P. hirsuta) and partly modifies (P. daonensis and P. hirsuta) hypotheses of Quaternary distributional history. Some of the refugial area indicated by palaeodistribution models could not have been identified with phylogeographic data.

  19. Fruitful factors: what limits seed production of flowering plants in the alpine?

    Science.gov (United States)

    Straka, Jason R; Starzomski, Brian M

    2015-05-01

    Predicting demographic consequences of climate change for plant communities requires understanding which factors influence seed set, and how climate change may alter those factors. To determine the effects of pollen availability, temperature, and pollinators on seed production in the alpine, we combined pollen-manipulation experiments with measurements of variation in temperature, and abundance and diversity of potential pollinators along a 400-m elevation gradient. We did this for seven dominant species of flowering plants in the Coast Range Mountains, British Columbia, Canada. The number of viable seeds set by plants was influenced by pollen limitation (quantity of pollen received), mate limitation (quality of pollen), temperature, abundance of potential pollinators, seed predation, and combinations of these factors. Early flowering species (n = 3) had higher seed set at high elevation and late-flowering species (n = 4) had higher seed set at low elevation. Degree-days >15 °C were good predictors of seed set, particularly in bee-pollinated species, but had inconsistent effects among species. Seed production in one species, Arnica latifolia, was negatively affected by seed-predators (Tephritidae) at mid elevation, where there were fewer frost-hours during the flowering season. Anemone occidentalis, a fly-pollinated, self-compatible species had high seed set at all elevations, likely due to abundant potential pollinators. Simultaneously measuring multiple factors affecting reproductive success of flowering plants helped identify which factors were most important, providing focus for future studies. Our work suggests that responses of plant communities to climate change may be mediated by flowering time, pollination syndrome, and susceptibility to seed predators.

  20. Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities.

    Science.gov (United States)

    Carlson, Bradley Z; Choler, Philippe; Renaud, Julien; Dedieu, Jean-Pierre; Thuiller, Wilfried

    2015-11-01

    Quantifying relationships between snow cover duration and plant community properties remains an important challenge in alpine ecology. This study develops a method to estimate spatial variation in energy availability in the context of a topographically complex, high-elevation watershed, which was used to test the explanatory power of environmental gradients both with and without snow cover in relation to taxonomic and functional plant diversity. Snow cover in the French Alps was mapped at 15-m resolution using Landsat imagery for five recent years, and a generalized additive model (GAM) was fitted for each year linking snow to time and topography. Predicted snow cover maps were combined with air temperature and solar radiation data at daily resolution, summed for each year and averaged across years. Equivalent growing season energy gradients were also estimated without accounting for snow cover duration. Relationships were tested between environmental gradients and diversity metrics measured for 100 plots, including species richness, community-weighted mean traits, functional diversity and hyperspectral estimates of canopy chlorophyll content. Accounting for snow cover in environmental variables consistently led to improved predictive power as well as more ecologically meaningful characterizations of plant diversity. Model parameters differed significantly when fitted with and without snow cover. Filtering solar radiation with snow as compared without led to an average gain in R(2) of 0·26 and reversed slope direction to more intuitive relationships for several diversity metrics. The results show that in alpine environments high-resolution data on snow cover duration are pivotal for capturing the spatial heterogeneity of both taxonomic and functional diversity. The use of climate variables without consideration of snow cover can lead to erroneous predictions of plant diversity. The results further indicate that studies seeking to predict the response of alpine

  1. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai‐Tibetan Plateau

    OpenAIRE

    Guo, Yanjun; Guo, Na; He, Yuji; Gao, Jianhua

    2015-01-01

    Abstract Alpine meadow ecosystems are susceptible to climate changes. Still, climate impact on cuticular wax in alpine meadow plants is poorly understood. Assessing the variations of cuticular wax in alpine meadow plants across different latitudes might be useful for predicting how they may respond to climate change. We studied nine alpine meadows in a climate gradient in the east side of Qinghai‐Tibetan Plateau, with mean annual temperature ranging from −7.7 to 3.2°C. In total, 42 plant spec...

  2. Persistent history of the bird-dispersed arctic-alpine plant Vaccinium vitis-idaea L. (Ericaceae) in Japan.

    Science.gov (United States)

    Ikeda, Hajime; Yoneta, Yusuke; Higashi, Hiroyuki; Eidesen, Pernille Bronken; Barkalov, Viachenslav; Yakubov, Valentin; Brochmann, Christian; Setoguchi, Hiroaki

    2015-05-01

    Arctic-alpine plants have expanded and contracted their ranges in response to the Pleistocene climate oscillations. Today, many arctic-alpine plants have vast distributions in the circumarctic region as well as marginal, isolated occurrences in high mountains at lower latitudes. These marginal populations may represent relict, long-standing populations that have persisted for several cycles of cold and warm climate during the Pleistocene, or recent occurrences that either result from southward step-wise migration during the last glacial period or from recent long-distance dispersal. In light of these hypotheses, we investigated the biogeographic history of the marginal Japanese populations of the widespread arctic-alpine plant Vaccinium vitis-idaea (Ericaceae), which is bird-dispersed, potentially over long distances. We sequenced three nuclear loci and one plastid DNA region in 130 individuals from 65 localities covering its entire geographic range, with a focus on its marginal populations in Japan. We found a homogenous genetic pattern across its enormous range based on the loci analysed, in contrast to the geographically structured variation found in a previous study of amplified fragment length polymorphisms in this species. However, we found several unique haplotypes in the Japanese populations, excluding the possibility that these marginal populations result from recent southward migration. Thus, even though V. vitis-idaea is efficiently dispersed via berries, our study suggests that its isolated populations in Japan have persisted during several cycles of cold and warm climate during the Pleistocene.

  3. Plant community and soil chemistry responses to long-term nitrogen inputs drive changes in alpine bacterial communities.

    Science.gov (United States)

    Yuan, Xia; Knelman, Joseph E; Gasarch, Eve; Wang, Deli; Nemergut, Diana R; Seastedt, Timothy R

    2016-06-01

    Bacterial community composition and diversity was studied in alpine tundra soils across a plant species and moisture gradient in 20 y-old experimental plots with four nutrient addition regimes (control, nitrogen (N), phosphorus (P) or both nutrients). Different bacterial communities inhabited different alpine meadows, reflecting differences in moisture, nutrients and plant species. Bacterial community alpha-diversity metrics were strongly correlated with plant richness and the production of forbs. After meadow type, N addition proved the strongest determinant of bacterial community structure. Structural Equation Modeling demonstrated that tundra bacterial community responses to N addition occur via changes in plant community composition and soil pH resulting from N inputs, thus disentangling the influence of direct (resource availability) vs. indirect (changes in plant community structure and soil pH) N effects that have remained unexplored in past work examining bacterial responses to long-term N inputs in these vulnerable environments. Across meadow types, the relative influence of these indirect N effects on bacterial community structure varied. In explicitly evaluating the relative importance of direct and indirect effects of long-term N addition on bacterial communities, this study provides new mechanistic understandings of the interaction between plant and microbial community responses to N inputs amidst environmental change.

  4. Alpine Plant Monitoring for Global Climate Change; Analysis of the Four California GLORIA Target Regions

    Science.gov (United States)

    Dennis, A.; Westfall, R. D.; Millar, C. I.

    2007-12-01

    The Global Observation Research Initiative in Alpine Environments (GLORIA) is an international research project with the goal to assess climate-change impacts on vegetation in alpine environments worldwide. Standardized protocols direct selection of each node in the network, called a Target Region (TR), which consists of a set of four geographically proximal mountain summits at elevations extending from treeline to the nival zone. For each summit, GLORIA specifies a rigorous mapping and sampling design for data collection, with re-measurement intervals of five years. Whereas TRs have been installed in six continents, prior to 2004 none was completed in North America. In cooperation with the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT), California Native Plant Society, and the White Mountain Research Station, four TRs have been installed in California: two in the Sierra Nevada and two in the White Mountains. We present comparative results from analyses of baseline data across these four TRs. The number of species occurring in the northern Sierra (Tahoe) TR was 35 (16 not found in other TRs); in the central Sierra (Dunderberg) TR 65 species were found. In the White Mountains, 54 species were found on the granitic/volcanic soils TR and 46 (19 not found in other TRs) on the dolomitic soils TR. In all, we observed 83 species in the Sierra Nevada range TRs and 75 in the White Mountain TRs. Using a mixed model ANOVA of percent cover from summit-area-sections and quadrat data, we found primary differences to be among mountain ranges. Major soil differences (dolomite versus non-dolomite) also contribute to floristic differentiation. Aspect did not seem to contribute significantly to diversity either among or within target regions. Summit floras in each target region comprised groups of two distinct types of species: those with notably broad elevational ranges and those with narrow elevational ranges. The former we propose to be species that

  5. Ethnobotanical survey on wild alpine food plants in Lower and Central Valais (Switzerland).

    Science.gov (United States)

    Abbet, Christian; Mayor, Romain; Roguet, Didier; Spichiger, Rodolphe; Hamburger, Matthias; Potterat, Olivier

    2014-01-01

    Swiss Alps have an ancestral tradition with regard to the use of wild plants as medicines and food. However, this knowledge is falling into oblivion, and is nowadays confined to village areas. Aim of the study was to identify wild edible plants used today and during the last two centuries by the alpine population of Valais (Switzerland). Data were collected by means of semi-directed interviews made in four different lateral valleys of Valais (Val d'Anniviers, Val d'Entremont, Val d'Hérens, and Val d'Illiez). Wild food plants were classified according to their uses (salads, cooked vegetables, spices, raw snacks, teas, alcoholic drinks, sirups, and jams). Books and reports written in the XIXth century were consulted to identify uses of wild plants which have fallen in oblivion meanwhile. A total of 98 edible wild plants, distributed into 38 botanical families, were identified during the interviews. Several plants were highly cited (e.g. Taraxacum officinale, Chenopodium bonus-henricus). The most frequent usage was as tea (18%), followed by uses as cooked vegetables (16%), jams (16%), and raw snacks (16%). A strong association was observed between food and medicinal uses of plants. Wild food plants were of critical importance in times of food scarcity. Meanwhile, they have lost their relevance as vital components of the diet and are nowadays rather perceived and appreciated as delicacies. This study provides for the first time comprehensive data on present day and historical uses of wild plants as food in Lower and Central Valais. Besides being of historical interest, this ethnobotanical information can be used to identify species which may provide interesting opportunities for diversification of mountain agriculture. © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Cooccurrence patterns of plants and soil bacteria in the high-alpine subnival zone track environmental harshness

    Directory of Open Access Journals (Sweden)

    Andrew J. King

    2012-10-01

    Full Text Available Plants and soil microorganisms interact to play a central role in ecosystem functioning. To determine the potential importance of biotic interactions in shaping the distributions of these organisms in a high-alpine subnival landscape, we examine cooccurrence patterns between plant species and bulk-soil bacteria abundances. In this context, a cooccurrence relationship reflects a combination of several assembly processes: that both parties can disperse to the site, that they can survive the abiotic environmental conditions, and that interactions between the biota either facilitate survival or allow for coexistence. Across the entire landscape, 31% of the bacterial sequences in this dataset were significantly correlated to the abundance distribution of one or more plant species. These sequences fell into 14 clades, 6 of which are related to bacteria that are known to form symbioses with plants in other systems. Abundant plant species were more likely to have significant as well as stronger correlations with bacteria and these patterns were more prevalent in lower altitude sites. Conversely, correlations between plant species abundances and bacterial relative abundances were less frequent in sites near the snowline. Thus, plant-bacteria associations became more common as environmental conditions became less harsh and plants became more abundant. This pattern in cooccurrence strength and frequency across the subnival landscape suggests that plant-bacteria interactions are important for the success of life, both below- and above-ground, in an extreme environment.

  7. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai–Tibet Plateau, China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huawu, E-mail: wuhuawu416@163.com [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Li, Xiao-Yan, E-mail: xyli@bnu.edu.cn [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Jiang, Zhiyun; Chen, Huiying; Zhang, Cicheng; Xiao, Xiong [College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2016-01-15

    Plant water use patterns reflect the complex interactions between different functional types and environmental conditions in water-limited ecosystems. However, the mechanisms underlying the water use patterns of plants in the alpine desert of the Qinghai–Tibet Plateau remain poorly understood. This study investigated seasonal variations in the water sources of herbs (Carex moorcroftii, Astragalus adsurgens) and shrubs (Artemisia oxycephala, Hippophae rhamnoides) using stable oxygen-18 isotope methods. The results indicated that the native herbs (C. moorcroftii, A. adsurgens) and one of the shrubs (A. oxycephala) mainly relied on water from the shallow layer (0–30 cm) throughout the growing season, while the introduced shrub (H. rhamnoides) showed plasticity in switching between water from shallow and deep soil layers depending on soil water availability. All studied plants primarily depended on water from shallow soil layers early in the season. The differences of water use patterns between the introduced and native plants are closely linked with the range of active root zones when competing for water. Our findings will facilitate the mechanistic understanding of plant–soil–water relations in alpine desert ecosystems and provide information for screening introduced species for sand fixation. - Highlights: • Stable oxygen-18 in soil water experienced great evaporation enrichment. • H. rhamnoides experiences a flexible plasticity to switch between shallow and deep soil water. • Native plants mostly relied on shallow and middle soil water. • Water-use patterns by introduced-native plants are controlled by root characteristics.

  8. Distribution and diversity of Arctic-Alpine species in the Balkans

    DEFF Research Database (Denmark)

    Stevanovic, Vladimir; Vukojicic, Snezana; Sinzar-Sekulic, Jasmina

    2009-01-01

    The distributions of 77 Arctic-Alpine species in the Balkans are mapped and the centers of their richness and diversity presented. Within the Dinaric Alps these are Mts Vranica, Durmitor, and Prokletije; in the Scardo-Pindhic mountains, Šarplanina-Rudoka-Korab form a continuous chain; in the Rhod......The distributions of 77 Arctic-Alpine species in the Balkans are mapped and the centers of their richness and diversity presented. Within the Dinaric Alps these are Mts Vranica, Durmitor, and Prokletije; in the Scardo-Pindhic mountains, Šarplanina-Rudoka-Korab form a continuous chain......; in the Rhodope-Rila mountain system there are Mts Vitoša, Rila, and Pirin; while in the Balkan mountain system there are the West and Central part of Stara planina. A comparison of floristic richness and distribution of Arctic-Alpine flora in relation to altitude, geographical location, and geological substrate...... is made. Correlations between floristic richness and geographical distance of the Balkan mountains from the two main centers of Arctic-Alpine flora in Central Europe are also provided....

  9. Alpine plant community trends on the elk summer range of Rocky Mountain National Park, Colorado: An analysis of existing data

    Science.gov (United States)

    Zeigenfuss, Linda C.

    2006-01-01

    The majority of the elk (Cervus elaphus) population of Rocky Mountain National Park in Colorado summer in the park’s high-elevation alpine and subalpine meadows and willow krummholz. The park’s population of white-tailed ptarmigan (Lagopus leucurus altipetens) depends on both dwarf and krummholz willows for food and cover. Concern about the effects of elk herbivory on these communities prompted the monitoring of 12 vegetation transects in these regions from 1971 to 1996. Over this 25-year period, data were collected on plant species cover and frequency and shrub heights. These data have not been statistically analyzed for trends in the measured variables over time to determine changes in species abundance. Krummholz willow species (Salix planifolia, S. brachycarpa) declined 17–20 percent in cover and about 25 centimeters in height over the study period. Graminoids (particularly Deschampsia caespitosa, Carex, and Poa) increased slightly from 1971 to 1996. No significant increases of nonnative plant species were observed. An increase in presence of bare ground over the 25-year period warrants continued measurement of these transects. Lack of good data on elk density, distribution, or use levels precludes correlating changes in plant species cover, frequency, or heights with elk population trends. I recommend development of a more rigorously designed monitoring program that includes these transects as well as others chosen on a random or stratified design and consistent measurement protocol and sampling intervals. Some method of quantifying elk use, either through measurement of plant utilization, pellet counts, or census-type surveys, would allow correlation of changes in plant species over time with changes in elk distribution and density on the park’s alpine and subalpine regions.

  10. Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas

    NARCIS (Netherlands)

    Namgail, T.; Rawat, G.S.; Mishra, C.; Wieren, van S.E.; Prins, H.H.T.

    2012-01-01

    A non-linear relationship between phytodiversity and altitude has widely been reported, but the relationship between phytomass and altitude remains little understood.We examined the phytomass and diversity of vascular plants along altitudinal gradients on the dry alpine rangelands of Ladakh, western

  11. The importance of nitrogen and carbohydrate storage for plant growth of the alpine herb Veratrum album

    DEFF Research Database (Denmark)

    Kleijn, David; Treier, Urs; Müller-Schärer, Heinz

    2005-01-01

    We examined whether nitrogen (N) and carbohydrates reserves allow Veratrum album, an alpine forb, to start spring growth earlier than the neighbouring vegetation and to survive unpredictable disturbances resulting in loss of above-ground biomass.Seasonal dynamics of plant reserves, soil N...

  12. Grazing intensity on the plant diversity of alpine meadow in the eastern Tibetan plateau

    Directory of Open Access Journals (Sweden)

    Wu Ning

    2004-04-01

    Full Text Available Because ofthe remoteness and harsh conditions of the high-altitude rangelands on the eastern Tibetan Plateau, the relationship between yak grazing and plant diversity has not been so clear although livestock increase was thought as the main issue leading to the degradation of rangeland. In the debate of rangeland degradation, biodiversity loss has been assumed as one of the indicators in the last two decades. In this paper authors measured the effects of different grazing intensities on the plant diversity and the structure of Kobresia pygmaea community in the case-study area, northwestern Sichuan. The results indicated that plant diversity of alpine meadow has different changing trends respectively with the change of grazing intensity and seasons. In June the highest plant diversity occurred in the intensively grazed (HG plots, but in July and September species biodiversity index of slightly grazed (LG plots is higher than other experimental treatments. In August the intermediate grazed (IG plots has the highest biodiversity index. Moreover, it was found that intensively grazing always leads to the increase of plant density, but meanwhile the decrease of community height, coverage and biomass. Over-grazing can change the community structure and lead to the succession from Kobresia pygmaea dominated community to Poa pratensis dominated. Analyzing results comprehensively, it can be suggested that the relationship between grazing intensity and plant diversity is not linear, i.e. diversity index is not as good as other characteristics of community structure to evaluate rangeland degradation on the high altitude situation. The change of biodiversity is so complicated that it can not be explained with the simple corresponding causality.

  13. Geomorphic determinants of species composition of alpine tundra, Glacier National Park, U.S.A.

    Science.gov (United States)

    George P. Malanson,; Bengtson, Lindsey E.; Fagre, Daniel B.

    2012-01-01

    Because the distribution of alpine tundra is associated with spatially limited cold climates, global warming may threaten its local extent or existence. This notion has been challenged, however, based on observations of the diversity of alpine tundra in small areas primarily due to topographic variation. The importance of diversity in temperature or moisture conditions caused by topographic variation is an open question, and we extend this to geomorphology more generally. The extent to which geomorphic variation per se, based on relatively easily assessed indicators, can account for the variation in alpine tundra community composition is analyzed versus the inclusion of broad indicators of regional climate variation. Visual assessments of topography are quantified and reduced using principal components analysis (PCA). Observations of species cover are reduced using detrended correspondence analysis (DCA). A “best subsets” regression approach using the Akaike Information Criterion for selection of variables is compared to a simple stepwise regression with DCA scores as the dependent variable and scores on significant PCA axes plus more direct measures of topography as independent variables. Models with geographic coordinates (representing regional climate gradients) excluded explain almost as much variation in community composition as models with them included, although they are important contributors to the latter. The geomorphic variables in the model are those associated with local moisture differences such as snowbeds. The potential local variability of alpine tundra can be a buffer against climate change, but change in precipitation may be as important as change in temperature.

  14. Growth responses of low-alpine dwarf-shrub heath species to nitrogen deposition and management

    International Nuclear Information System (INIS)

    Britton, Andrea J.; Fisher, Julia M.

    2008-01-01

    Nitrogen deposition is a continuing problem in European alpine regions. We hypothesised that, despite climatic limitations, low-alpine Calluna heathland would respond to nitrogen addition with increased shoot growth and flowering and that fire and grazing would modify responses. In a five-year study, 0-50 kg N ha -1 y -1 were added, combined with burning (+/-) and clipping (+/-). Calluna vulgaris responded with increased shoot extension, but effects on flowering were variable. Burning enhanced the positive effect of nitrogen addition and negative effects of clipping. Sub-dominant shrubs generally did not respond to nitrogen. C. vulgaris shoot extension was stimulated by nitrogen addition of 10 kg N ha -1 y -1 (above background) supporting suggestions that alpine heathlands are sensitive to low levels of nitrogen deposition. Increased C. vulgaris growth could negatively impact on important lichen components of this vegetation through increased shading and competition. Climatic factors constrain productivity in this community, but do not prevent rapid responses to nitrogen deposition by some species. - Low levels of N deposition increase productivity in alpine dwarf-shrub heath despite strong climatic constraints

  15. Interactive effects of nitrogen deposition and fire on plant and soil chemistry in an alpine heathland

    International Nuclear Information System (INIS)

    Britton, A.J.; Helliwell, R.C.; Fisher, J.M.; Gibbs, S.

    2008-01-01

    The response of alpine heathland vegetation and soil chemistry to N additions of 0, 10, 20 and 50 kg N ha -1 year -1 in combination with simulated accidental fire (+/-) was monitored over a 5-year period. N addition caused rapid and significant increases in plant tissue N content and N:P and N:K of Calluna vulgaris, suggesting increasing phosphorus and potassium limitation of growth. Soil C:N declined significantly with N addition, indicating N saturation and increasing likelihood of N leakage. Fire further decreased soil C:N and reduced potential for sequestration of additional N. This study shows that alpine heathlands, which occupy the headwaters of many rivers, have limited potential to retain deposited N and may rapidly become N saturated, leaking N into downstream communities and surface waters. - N deposition on alpine heathland causes a rapid shift towards P limitation and subsequent N saturation of vegetation and soil

  16. Diversity and distribution patterns of root-associated fungi on herbaceous plants in alpine meadows of southwestern China.

    Science.gov (United States)

    Gao, Qian; Yang, Zhu L

    2016-01-01

    The diversity of root-associated fungi associated with four ectomycorrhizal herbaceous species, Kobresia capillifolia, Carex parva, Polygonum macrophyllum and Potentilla fallens, collected in three sites of alpine meadows in southwestern China, was estimated based on internal transcribed spacer (ITS) rDNA sequence analysis of root tips. Three hundred seventy-seven fungal sequences sorted to 154 operational taxonomical units (sequence similarity of ≥ 97% across the ITS) were obtained from the four plant species across all three sites. Similar taxa (in GenBank with ≥ 97% similarity) were not found in GenBank and/or UNITE for most of the OTUs. Ectomycorrhiz a made up 64% of the fungi operational taxonomic units (OTUs), endophytes constituted 4% and the other 33% were unidentified root-associated fungi. Fungal OTUs were represented by 57% basidiomycetes and 43% ascomycetes. Inocybe, Tomentella/Thelophora, Sebacina, Hebeloma, Pezizomycotina, Cenococcum geophilum complex, Cortinarius, Lactarius and Helotiales were OTU-rich fungal lineages. Across the sites and host species the root-associated fungal communities generally exhibited low host and site specificity but high host and sampling site preference. Collectively our study revealed noteworthy diversity and endemism of root-associated fungi of alpine plants in this global biodiversity hotspot. © 2016 by The Mycological Society of America.

  17. Relationship between reproductive allocation and relative abundance among 32 species of a Tibetan alpine meadow: effects of fertilization and grazing.

    Directory of Open Access Journals (Sweden)

    Kechang Niu

    Full Text Available Understanding the relationship between species traits and species abundance is an important goal in ecology and biodiversity science. Although theoretical studies predict that traits related to performance (e.g. reproductive allocation are most directly linked to species abundance within a community, empirical investigations have rarely been done. It also remains unclear how environmental factors such as grazing or fertilizer application affect the predicted relationship.We conducted a 3-year field experiment in a Tibetan alpine meadow to assess the relationship between plant reproductive allocation (RA and species relative abundance (SRA on control, grazed and fertilized plots. Overall, the studied plant community contained 32 common species.At the treatment level, (i RA was negatively correlated with SRA on control plots and during the first year on fertilized plots. (ii No negative RA-SRA correlations were observed on grazed plots and during the second and third year on fertilized plots. (iii Seed size was positively correlated with SRA on control plots. At the plot level, the correlation between SRA and RA were not affected by treatment, year or species composition.Our study shows that the performance-related trait RA can negatively affect SRA within communities, which is possibly due to the tradeoffs between clonal growth (for space occupancy and sexual reproduction. We propose that if different species occupy different positions along these tradeoffs it will contribute to biodiversity maintenance in local communities or even at lager scale.

  18. Multiscale landscape genomic models to detect signatures of selection in the alpine plant Biscutella laevigata.

    Science.gov (United States)

    Leempoel, Kevin; Parisod, Christian; Geiser, Céline; Joost, Stéphane

    2018-02-01

    Plant species are known to adapt locally to their environment, particularly in mountainous areas where conditions can vary drastically over short distances. The climate of such landscapes being largely influenced by topography, using fine-scale models to evaluate environmental heterogeneity may help detecting adaptation to micro-habitats. Here, we applied a multiscale landscape genomic approach to detect evidence of local adaptation in the alpine plant Biscutella laevigata . The two gene pools identified, experiencing limited gene flow along a 1-km ridge, were different in regard to several habitat features derived from a very high resolution (VHR) digital elevation model (DEM). A correlative approach detected signatures of selection along environmental gradients such as altitude, wind exposure, and solar radiation, indicating adaptive pressures likely driven by fine-scale topography. Using a large panel of DEM-derived variables as ecologically relevant proxies, our results highlighted the critical role of spatial resolution. These high-resolution multiscale variables indeed indicate that the robustness of associations between genetic loci and environmental features depends on spatial parameters that are poorly documented. We argue that the scale issue is critical in landscape genomics and that multiscale ecological variables are key to improve our understanding of local adaptation in highly heterogeneous landscapes.

  19. Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China.

    Science.gov (United States)

    Yang, Zhen'an; Xiong, Wan; Xu, Yingyi; Jiang, Lin; Zhu, Erxiong; Zhan, Wei; He, Yixin; Zhu, Dan; Zhu, Qiuan; Peng, Changhui; Chen, Huai

    2016-12-01

    As the main form of land use and human disturbance of grassland, livestock grazing has great influences on the soil resources and plant communities. This study observed the variation of soil properties and community characteristics of four treatments of different grazing intensity (no grazing, UG; light grazing, LG; moderate grazing, MG; and heavy grazing, HG) in an alpine meadow of Sichuan Province on the northeastern margin of the Tibetan Plateau. The results showed that grazing increased the pH, soil bulk density (BD), and contents of total carbon (TC) and total nitrogen (TN), and the BD increased while the others decreased with the grazing intensity. At the community level, with the increase of the grazing intensity, the vegetation coverage (R 2  = 0.61, P grazing, the dominant species of the plant community shifted from palatable grasses (Gramineae and Cyperaceae) to unpalatable grasses (Compositae and Ranunculaceae). Based on the results, LG may be the optimal grassland management mode to be used in the long time in the alpine meadow of the Tibetan Plateau.

  20. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions

    Science.gov (United States)

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y.

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia. In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. PMID:27402618

  1. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions.

    Science.gov (United States)

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  2. Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow.

    Science.gov (United States)

    Zhang, Juanjuan; Yan, Xuebin; Su, Fanglong; Li, Zhen; Wang, Ying; Wei, Yanan; Ji, Yangguang; Yang, Yi; Zhou, Xianhui; Guo, Hui; Hu, Shuijin

    2018-06-01

    Nitrogen and phosphorus are two important nutrient elements for plants. The current paradigm suggests that the scaling of plant tissue N to P is conserved across environments and plant taxa because these two elements are coupled and coordinately change with each other following a constant allometric trajectory. However, this assumption has not been vigorously examined, particularly in changing N and P environments. We propose that changes in relative availability of N and P in soil alter the N to P relationship in plants. Taking advantage of a 4-yr N and P addition experiment in a Tibetan alpine meadow, we examined changes in plant N and P concentrations of 14 common species. Our results showed that while the scaling of N to P under N additions was similar to the previously reported pattern with a uniform 2/3 slope of the regression between log N and log P, it was significantly different under P additions with a smaller slope. Also, graminoids had different responses from forbs. These results indicate that the relative availability of soil N and P is an important determinant regulating the N and P concentrations in plants. These findings suggest that alterations in the N to P relationships may not only alter plant photosynthate allocation to vegetative or reproductive organs, but also regulate the metabolic and growth rate of plant and promote shifts in plant community composition in a changing nutrient loading environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Grazing intensifies degradation of a Tibetan Plateau alpine meadow through plant-pest interaction.

    Science.gov (United States)

    Cao, Hui; Zhao, Xinquan; Wang, Shiping; Zhao, Liang; Duan, Jichuang; Zhang, Zhenhua; Ge, Shidong; Zhu, Xiaoxue

    2015-06-01

    Understanding the plant-pest interaction under warming with grazing conditions is critical to predict the response of alpine meadow to future climate change. We investigated the effects of experimental warming and grazing on the interaction between plants and the grassland caterpillar Gynaephora menyuanensis in an alpine meadow on the Tibetan Plateau in 2010 and 2011. Our results showed that grazing significantly increased nitrogen concentration in graminoids and sward openness with a lower sward height, sward coverage, and plant litter mass in the community. Grazing significantly increased G. menyuanensis body size and potential fecundity in 2010. The increases in female body size were about twofold greater than in males. In addition, grazing significantly increased G. menyuanensis density and its negative effects on aboveground biomass and graminoid coverage in 2011. We found that G. menyuanensis body size was significantly positively correlated with nitrogen concentration in graminoids but negatively correlated with plant litter mass. Even though warming did not significantly increased G. menyuanensis performance and the negative effects of G. menyuanensis on alpine meadow, the increases in G. menyuanensis growth rate and its negative effect on aboveground biomass under the warming with grazing treatment were significantly higher than those under the no warming with grazing treatment. The positive effects of grazing on G. menyuanensis performance and its damage were exacerbated by the warming treatment. Our results suggest that the fitness of G. menyuanensis would increase under future warming with grazing conditions, thereby posing a greater risk to alpine meadow and livestock production.

  4. Surface erosion at disturbed alpine sites: effects of vegetation cover and plant diversity

    Science.gov (United States)

    Martin, C.; Pohl, M.; Alewell, C.; Körner, C.; Buttler, A.; Rixen, C.

    2009-04-01

    The relationship between plant diversity and soil stability in disturbed alpine terrain is poorly studied. In this paper, we investigated the influence of plant cover and diversity on water run-off and sediment yield on ski slopes. Rainfall simulations were conducted on a micro-scale (25 x 25 cm) to be able to replicate plots with different degrees of vegetation cover. We selected plots with 10%, 30% and 60% of vegetation cover containing different combinations of plant diversities: (i) grass, (ii) herb, (iii) moss/ lichen, and all combinations of these plant groups. Each combination was replicated five times with an applied rain intensity of 375 ml min-1 for about 5 minutes. As could be expected, percent vegetation cover had a large effect on surface erosion: sediment yield decreased with increasing vegetation cover. However, within the plots with 60% cover, sediment yield was lower at higher plant diversity and functional group diversity. The findings of this study support the view that beside the re-establishment of a closed vegetation cover, plant diversity is a relevant factor to reduce surface erosion at disturbed sites in alpine ecosystems.

  5. Trade-offs Between Electricity Production from Small Hydropower Plants and Ecosystem Services in Alpine River Basins

    Science.gov (United States)

    Meier, Philipp; Schwemmle, Robin; Viviroli, Daniel

    2015-04-01

    The need for a reduction in greenhouse gas emissions and the decision to phase out nuclear power plants in Switzerland and Germany increases pressure to develop the remaining hydropower potential in Alpine catchments. Since most of the potential for large reservoirs is already exploited, future development focusses on small run-of-the-river hydropower plants (SHP). Being considered a relatively environment-friendly electricity source, investment in SHP is promoted through subsidies. However, SHP can have a significant impact on riverine ecosystems, especially in the Alpine region where residual flow reaches tend to be long. An increase in hydropower exploitation will therefore increase pressure on ecosystems. While a number of studies assessed the potential for hydropower development in the Alps, two main factors were so far not assessed in detail: (i) ecological impacts within a whole river network, and (ii) economic conditions under which electricity is sold. We present a framework that establishes trade-offs between multiple objectives regarding environmental impacts, electricity production and economic evaluation. While it is inevitable that some ecosystems are compromised by hydropower plants, the context of these impacts within a river network should be considered when selecting suitable sites for SHP. From an ecological point of view, the diversity of habitats, and therefore the diversity of species, should be maintained within a river basin. This asks for objectives that go beyond lumped parameters of hydrological alteration, but also consider habitat diversity and the spatial configuration. Energy production in run-of-the-river power plants depends on available discharge, which can have large fluctuations. In a deregulated electricity market with strong price variations, an economic valuation should therefore be based on the expected market value of energy produced. Trade-off curves between different objectives can help decision makers to define policies

  6. Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?

    Science.gov (United States)

    Röder, Gregory; Rahier, Martine; Naisbit, Russell E

    2011-05-04

    Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae) that possesses constitutive chemical defence (pyrrolizidine alkaloids) and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae). Plants were induced in the field using chemical elicitors of the jasmonic acid (JA) and salicylic acid (SA) pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.

  7. Do induced responses mediate the ecological interactions between the specialist herbivores and phytopathogens of an alpine plant?

    Directory of Open Access Journals (Sweden)

    Gregory Röder

    2011-05-01

    Full Text Available Plants are not passive victims of the myriad attackers that rely on them for nutrition. They have a suite of physical and chemical defences, and are even able to take advantage of the enemies of their enemies. These strategies are often only deployed upon attack, so may lead to indirect interactions between herbivores and phytopathogens. In this study we test for induced responses in wild populations of an alpine plant (Adenostyles alliariae that possesses constitutive chemical defence (pyrrolizidine alkaloids and specialist natural enemies (two species of leaf beetle, Oreina elongata and Oreina cacaliae, and the phytopathogenic rust Uromyces cacaliae. Plants were induced in the field using chemical elicitors of the jasmonic acid (JA and salicylic acid (SA pathways and monitored for one month under natural conditions. There was evidence for induced resistance, with lower probability and later incidence of attack by beetles in JA-induced plants and of rust infection in SA-induced plants. We also demonstrate ecological cross-effects, with reduced fungal attack following JA-induction, and a cost of SA-induction arising from increased beetle attack. As a result, there is the potential for negative indirect effects of the beetles on the rust, while in the field the positive indirect effect of the rust on the beetles appears to be over-ridden by direct effects on plant nutritional quality. Such interactions resulting from induced susceptibility and resistance must be considered if we are to exploit plant defences for crop protection using hormone elicitors or constitutive expression. More generally, the fact that induced defences are even found in species that possess constitutively-expressed chemical defence suggests that they may be ubiquitous in higher plants.

  8. Assessing and comparing climatic control on distribution and reproduction of alpine and lowland species in the subalpine habitat of western Norway

    Energy Technology Data Exchange (ETDEWEB)

    Meineri, Eric

    2012-02-15

    study area and the study sites, and are representative of the alpine and lowland communities occurring at the studied sites. Results and discussion: The climatic control on flowering performances and seedling emergence did not reflect the climatic niches of three out of four species, suggesting ontogenetic niche shift. These mismatches challenge the predictive ability of both SDMs and empirical studies focusing on reproductive life-stages. Papers II and III highlight the complexity of climatic control on reproduction and show species-specific results. Flowering was both climate- and size-dependent for three species, but the way size-dependency was expressed differed between species. Seedling emergence was less species-specific although one species (Veronica officinalis) was found to be affected by the climate experienced by its source populations while the three other species were only responding to the climate of their sowing sites. This illustrates the importance of accounting for the complexity of reproduction to improve climate-change predictions on plant reproduction. Finally, Papers I and II suggest a high importance of biotic interactions from the lowland flora for the two alpine species, stressing the importance of understanding plant-plant interactions to forecast climate-change impacts. Further research and conclusions: Structured population models can resolve some of the problems reported in this synthesis but further methodological developments are necessary to integrate local adaptation patterns and to accurately project the outputs of such models in space. Dispersal has been largely ignored in climate-change studies. Further research should also aim to improve knowledge on dispersal because quantifying dispersal and recruitment rates is required to predict accurately climate-change impacts on plant populations and potential range displacements. Individualistic responses to climate suggest drastic changes in plant communities over the coming years. Given

  9. Where to Combat Shrub Encroachment in Alpine Timberline Ecosystems: Combining Remotely-Sensed Vegetation Information with Species Habitat Modelling.

    Science.gov (United States)

    Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël

    2016-01-01

    In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species' habitat, using black grouse Tetrao tetrix (L.) in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1) identified and located the six predominant treeline vegetation types; 2) modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3) simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2) and (3) to 4) locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix), Rhododendron-dominated, Juniperus-dominated and mixed heathland) were predicted with high accuracy (AUC >0.9). Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29%) would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2%) and Alnus viridis (4.8%). The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the spatial

  10. Where to Combat Shrub Encroachment in Alpine Timberline Ecosystems: Combining Remotely-Sensed Vegetation Information with Species Habitat Modelling.

    Directory of Open Access Journals (Sweden)

    Veronika Braunisch

    Full Text Available In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species' habitat, using black grouse Tetrao tetrix (L. in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1 identified and located the six predominant treeline vegetation types; 2 modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3 simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2 and (3 to 4 locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix, Rhododendron-dominated, Juniperus-dominated and mixed heathland were predicted with high accuracy (AUC >0.9. Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29% would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2% and Alnus viridis (4.8%. The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the

  11. Impact of γ-rays on seed germination/short-term storage in four native alpine species: Correlation with free radical and antioxidant profiles

    Science.gov (United States)

    Zani, Deborah; Dondi, Daniele; Araújo, Susana; Mondoni, Andrea; Balestrazzi, Alma

    2017-02-01

    In this study, the impact of gamma (γ) radiation on seeds was investigated in four native alpine species, Campanula barbata L., Cirsium spinosissinum (L.) Scop., Plantago alpina L., and Silene vulgaris (Moench) Garcke. Seeds were γ-irradiated with 100 and 200 Gy total doses delivered at a high dose rate of 2.7 Gy min-1. Irradiated and non-irradiated seeds were used immediately, and subsequently 7 and 14 days after drying (15% Relative Humidity, 15 °C) to assess their response to standard seed bank processing. Germination rates, seedling length and weight, antioxidant activity and phenolics content were measured, while free radical accumulation profiles were acquired by electron paramagnetic resonance (EPR). Germination was only hampered in irradiated C. barbata seeds. C. barbata and C. spinosissinum seedlings obtained from irradiated seeds suffered a decrease in length and weight, while growth was not affected in P. alpina and S. vulgaris, when compared to non-irradiated control. Although profiles of seed antioxidant activity were not influenced immediately after γ-irradiation, subsequent drying under seed bank standards induced changes in seed antioxidant activity, depending on the species. According to EPR data, C. barbata and C. Spinosissinum seeds revealed high free radical levels in non-irradiated samples, which were further enhanced by γ-irradiation. An opposite behaviour was observed in P. alpina and S. vulgaris. The four alpine species showed different profiles of γ-ray sensitivity. The reported data encourage future research to test inter-specific variability in the plant response to γ-rays based on a multidisciplinary approach which integrates environmental data. Considering that seeds of alpine plants are short-lived in storage, γ-irradiation could emerge as a promissory priming tool for native endangered species.

  12. Response of Polygonum viviparum species and community level to long-term livestock grazing in alpine shrub meadow in Qinghai-Tibet Plateau.

    Science.gov (United States)

    Zhu, Zhi-Hong; Lundholm, Jeremy; Li, Yingnian; Wang, Xiaoan

    2008-06-01

    Grazing by domestic herbivores is generally recognized as a major ecological factor and an important evolutionary force in grasslands. Grazing has both extensive and profound effects on individual plants and communities. We investigated the response patterns of Polygonum viviparum species and the species diversity of an alpine shrub meadow in response to long-term livestock grazing by a field manipulative experiment controlling livestock numbers on the Qinghai-Tibet Plateau in China. Here, we hypothesize that within a range of grazing pressure, grazing can alter relative allocation to different plant parts without changing total biomass for some plant species if there is life history trade-offs between plant traits. The same type of communities exposed to different grazing pressures may only alter relative species' abundances or species composition and not vary species diversity because plant species differ in resistant capability to herbivory. The results show that plant height and biomass of different organs differed among grazing treatments but total biomass remained constant. Biomass allocation and absolute investments to both reproduction and growth decreased and to belowground storage increased with increased grazing pressure, indicating the increasing in storage function was attained at a cost of reducing reproduction of bulbils and represented an optimal allocation and an adaptive response of the species to long-term aboveground damage. Moreover, our results showed multiform response types for either species groups or single species along the gradient of grazing intensity. Heavy grazing caused a 13.2% increase in species richness. There was difference in species composition of about 18%-20% among grazing treatment. Shannon-Wiener (H') diversity index and species evenness (E) index did not differ among grazing treatments. These results support our hypothesis.

  13. Explaining plant-soil diversity in Alpine ecosystems: more than just time since ecosystem succession started

    Science.gov (United States)

    Lane, Stuart; Baetz, Nico; Borgeaud, Laure; Verrecchia, Eric; Vittoz, Pascal

    2014-05-01

    Ecosystem succession in Alpine environments has been a focus of research for many decades. Following from the classic ideas of Jenny (1941, 1961), following perturbation, an ecosystem (flora, fauna and soil) should evolve as a function of time at a rate conditioned by external variables (relief, climate, geology). More recently, biogeomorphologists have focused upon the notion of co-evolution of geomorphic processes with ecosystems over very short through to very long (evolutionary) time-scales. Alpine environments have been a particular focus of models of co-evolution, as a means of understanding the rate of plant colonization of previously glaciated terrain. However, work in this field has tended to adopt an over simplified view of the relationship between perturbation and succession, including: how the landform and ecosystem itself conditions the impact of a perturbation to create a complex spatial impact; and how perturbations are not simply ecosystem destroyers but can be a significant source of ecosystem resources. What this means is that at the within landform scale, there may well be a complex and dynamic topographic and sedimentological template that co-evolves with the development of soil, flora and fauna. In this paper, we present and test conceptual models for such co-evolution for an Alpine alluvial fan and an Alpine piedmont braided river. We combine detailed floristic inventory with soil inventory, survey of edaphic variables above and below ground (e.g. vertical and lateral sedimentological structure, using electrical resistance tomography) and the analysis of historical aerial imagery. The floristic inventory shows the existence of a suite of distinct plant communities within each landform. Time since last perturbation is not a useful explanatory variable of the spatial distribution of these communities because: (1) perturbation impacts are spatially variable, as conditioned by the extent distribution of topographic, edaphic and ecological

  14. Alpine endemic spiders shed light on the origin and evolution of subterranean species.

    Science.gov (United States)

    Mammola, Stefano; Isaia, Marco; Arnedo, Miquel A

    2015-01-01

    We designed a comparative study to unravel the phylogeography of two Alpine endemic spiders characterized by a different degree of adaptation to subterranean life: Troglohyphantes vignai (Araneae, Linyphiidae) and Pimoa rupicola (Araneae, Pimoidae), the latter showing minor adaptation to hypogean life. We sampled populations of the model species in caves and other subterranean habitats across their known geographical range in the Western Alps. By combining phylogeographic inferences and Ecological Niche Modeling techniques, we inferred the biogeographic scenario that led to the present day population structure of the two species. According to our divergent time estimates and relative uncertainties, the isolation of T. vignai and P. rupicola from their northern sister groups was tracked back to Middle-Late Miocene. Furthermore, the fingerprint left by Pleistocene glaciations on the population structure revealed by the genetic data, led to the hypothesis that a progressive adaptation to subterranean habitats occurred in T. vignai, followed by strong population isolation. On the other hand, P. rupicola underwent a remarkable genetic bottleneck during the Pleistocene glaciations, that shaped its present population structure. It seems likely that such shallow population structure is both the result of the minor degree of specialization to hypogean life and the higher dispersal ability characterizing this species. The simultaneous study of overlapping spider species showing different levels of adaptation to hypogean life, disclosed a new way to clarify patterns of biological diversification and to understand the effects of past climatic shift on the subterranean biodiversity.

  15. Simulated global change: contrasting short and medium term growth and reproductive responses of a common alpine/Arctic cushion plant to experimental warming and nutrient enhancement.

    Science.gov (United States)

    Alatalo, Juha M; Little, Chelsea J

    2014-01-01

    Cushion plants are important components of alpine and Arctic plant communities around the world. They fulfill important roles as facilitators, nurse plants and foundation species across trophic levels for vascular plants, arthropods and soil microorganisms, the importance of these functions increasing with the relative severity of the environment. Here we report results from one of the few experimental studies simulating global change impacts on cushion plants; a factorial experiment with warming and nutrient enhancement that was applied to an alpine population of the common nurse plant, Silene acaulis, in sub-arctic Sweden. Experimental perturbations had significant short-term impacts on both stem elongation and leaf length. S. acaulis responded quickly by increasing stem elongation and (to a lesser extent) leaf length in the warming, nutrient, and the combined warming and nutrient enhancements. Cover and biomass also initially increased in response to the perturbations. However, after the initial positive short-term responses, S. acaulis cover declined in the manipulations, with the nutrient and combined warming and nutrient treatments having largest negative impact. No clear patterns were found for fruit production. Our results show that S. acaulis living in harsh environments has potential to react quickly when experiencing years with favorable conditions, and is more responsive to nutrient enhancement than to warming in terms of vegetative growth. While these conditions have an initial positive impact, populations experiencing longer-term increased nutrient levels will likely be negatively affected.

  16. Temporal stability of pollinator preference in an alpine plant community and its implications for the evolution of floral traits.

    Science.gov (United States)

    Gong, Yan-Bing; Huang, Shuang-Quan

    2011-07-01

    A traditional view of diverse floral traits is that they reflect differences in foraging preferences of pollinators. The role of pollinators in the evolution of floral traits has been questioned recently by broad community surveys, especially studies concerning variation in pollinator assemblages and visitation frequency, which suggest a diminished role of pollinators in floral evolution. Here, we investigate the relationships between six categories of floral traits of 29 species and 10 pollinator functional groups in an alpine meadow in the Hengduan Mountains of China, over three consecutive years. Simpson's diversity index was used to estimate the level of pollinator generalization of each plant species by considering both pollinator groups and their relative visitation frequencies. Multivariate analyses indicated that eight of the ten pollinator groups showed constant preferences for at least two floral traits, leading to a relatively stable level of ecological generalization for most floral traits (two out of three categories), despite the fact that the level of generalization of the entire community varied across years. Shape preferences of butterflies, honeybees and beeflies varied such that open flowers exhibited a lower level of ecological generalization in 2007 than closed flowers, in contrast with the other 2 years. These results suggest that temporally stabilized preferences of diverse pollinators may contribute to the evolution of specialized versus generalized floral traits; however, their role may be moderated by variation in community structure, including both the composition and abundance of plants and pollinators.

  17. PV plants for Alpine huts: Installation and operating experience at seven ENEL plants

    International Nuclear Information System (INIS)

    Belli, G.; Iliceto, A.; Previ, A.

    1988-01-01

    The problem of supplying electric power to isolated users far from the electricity distribution grid is one of general interest. Such consumers are nowadays generally supplied with electricity produced by small diesel generator-sets, and only recently have photovoltaic arrays and wind-turbines offered an alternative to the internal combustion engine. ENEL, as a State-owned electricity utility, is interested in the development of this particular application of renewable energy sources. Enlarging a low-voltage distribution network to connect consumers whose power requirements are extremely low (about 1000 kWh/year) may, in certain conditions, be uneconomical, both for the utility, which has to absorb most of the expense involved in construction and maintenance, and for the consumer himself. The paper reports the design criteria, the tests and the problems encountered in electrifying seven alpine huts belonging to CAI (Italian Alpine Club)

  18. The role of competition along productivity gradients: experimental comparison of four alpine communities in the Caucasus.

    NARCIS (Netherlands)

    Onipchenko, V.G.; Blinnikov, M.S.; Gerasimova, M.A.; Volkova, E.V.; Cornelissen, J.H.C.

    2009-01-01

    Question. Competitive and facilitative interactions among plant species in different abiotic environments potentially link productivity, vegetation structure, species composition and functional diversity. We investigated these interactions among four alpine communities along an environmental

  19. Effects of elevated temperature and CO2 concentration on photosynthesis of the alpine plants in Zoige Plateau, China

    Science.gov (United States)

    Zijuan, Zhou; Peixi, Su; Rui, Shi; Tingting, Xie

    2017-04-01

    Increasing temperature and carbon dioxide concentration are the important aspects of global climate change. Alpine ecosystem response to global change was more sensitive and rapid than other ecosystems. Increases in temperature and atmospheric CO2concentrations have strong impacts on plant physiology. Photosynthesis is the basis for plant growth and the decisive factor for the level of productivity, and also is a very sensitive physiological process to climate change. In this study, we examined the interactive effects of elevated temperature and atmospheric CO2 concentration on the light response of photosynthesis in two alpine plants Elymus nutans and Potentilla anserine, which were widely distributed in alpine meadow in the Zoige Plateau, China. We set up as follows: the control (Ta 20˚ C, CO2 380μmolṡmol-1), elevated temperature (Ta 25˚ C, CO2 380 μmolṡmol-1), elevated CO2 concentration (Ta 20˚ C, CO2 700μmolṡmol-1), elevated temperature and CO2 concentration (Ta 25˚ C, CO2 700μmolṡmol-1). The results showed that compared to P. anserine, E. nutans had a higher maximum net photosynthetic rate (Pnmax), light saturation point (LSP) and apparent quantum yield (AQY) in the control. Elevated temperature increased the Pnmaxand LSP values in P. anserine, while Pnmaxand LSP were decreased in E. nutans. Elevated CO2 increased the Pnmaxand LSP values in E. nutans and P. anserine, while the light compensation point (LCP) decreased; Elevated both temperature and CO2, the Pnmaxand LSP were all increased for E. nutans and P. anserine, but did not significantly affect AQY. We concluded that although elevated temperature had a photoinhibition for E. nutans, the interaction of short-term elevated CO2 concentration and temperature can improve the photosynthetic capacity of alpine plants. Key Words: elevated temperature; CO2 concentration; light response; alpine plants

  20. A New GLORIA (Global Research Initiative in Alpine Environments Site in Southwestern Montana

    Science.gov (United States)

    Apple, M. E.; Warden, J. E.; Apple, C. J.; Pullman, T. Y.; Gallagher, J. H.

    2008-12-01

    Global climate change is predicted to have a major impact on the alpine environments and plants of western North America. Alpine plant species and treelines may migrate upwards due to warmer temperatures. Species composition, vegetation cover, and the phenology of photosynthesis, flowering, pollination, and seed dispersal may change. The Global Research Initiative in Alpine Environments (GLORIA) is a network of alpine sites established with the goal of understanding the interactions between climate change and alpine plants. The Continental Divide traverses Southwestern Montana, where the flora contains representative species from both sides of the divide. In the summer of 2008, we established a GLORIA site in southwestern Montana east of the Continental Divide with the objective of determining whether the temperature changes at the site, and if so, how temperature changes influence alpine plants. We are monitoring soil temperature along with species composition and percent cover of alpine plants at four sub-summits along an ascending altitudinal gradient. We placed the treeline, lower alpine, and upper alpine sites on Mt. Fleecer (45°49'36.06"N, 112°48'08.18"W, 2886.2 m (9469 ft)) and the highest sub-summit on Keokirk Mountain, (45°35'37.94"N, 112°57'03.89"W, 2987.3 m (9801 ft)) in the Pioneer Range. Interesting species on these mountains include Lewisia pygmaea, the Pygmy Bitterroot, Silene acaulis, the Moss Campion, Eritrichium nanum, the Alpine Forget-Me-Not, Lloydia serotina, the Alpine Lily, and Pinus albicaulis, the Whitebark Pine. This new site will remain in place indefinitely. Baseline and subsequent data from this site will be linked with the global network of GLORIA sites with which we will assess changes in alpine flora.

  1. Lepidopteran species richness of alpine sites in the High Sudetes Mts.Effect of area and isolation

    Czech Academy of Sciences Publication Activity Database

    Bílá, Karolína; Kuras, T.; Šipoš, J.; Kindlmann, Pavel

    2013-01-01

    Roč. 17, č. 2 (2013), s. 257-267 ISSN 1366-638X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk LC06073 Institutional support: RVO:67179843 Keywords : Central Europe * Alpine habitats * Island biogeography * Incidence function model * Species–area relationship * Species richness Subject RIV: EH - Ecology, Behaviour Impact factor: 1.789, year: 2013

  2. Artificial asymmetric warming reduces nectar yield in a Tibetan alpine species of Asteraceae

    Science.gov (United States)

    Mu, Junpeng; Peng, Youhong; Xi, Xinqiang; Wu, Xinwei; Li, Guoyong; Niklas, Karl J.; Sun, Shucun

    2015-01-01

    Background and Aims Asymmetric warming is one of the distinguishing features of global climate change, in which winter and night-time temperatures are predicted to increase more than summer and diurnal temperatures. Winter warming weakens vernalization and hence decreases the potential to flower for some perennial herbs, and night warming can reduce carbohydrate concentrations in storage organs. This study therefore hypothesized that asymmetric warming should act to reduce flower number and nectar production per flower in a perennial herb, Saussurea nigrescens, a key nectar plant for pollinators in Tibetan alpine meadows. Methods A long-term (6 years) warming experiment was conducted using open-top chambers placed in a natural meadow and manipulated to achieve asymmetric increases in temperature, as follows: a mean annual increase of 0·7 and 2·7 °C during the growing and non-growing seasons, respectively, combined with an increase of 1·6 and 2·8 °C in the daytime and night-time, respectively, from June to August. Measurements were taken of nectar volume and concentration (sucrose content), and also of leaf non-structural carbohydrate content and plant morphology. Key Results Six years of experimental warming resulted in reductions in nectar volume per floret (64·7 % of control), floret number per capitulum (8·7 %) and capitulum number per plant (32·5 %), whereas nectar concentration remained unchanged. Depletion of leaf non-structural carbohydrates was significantly higher in the warmed than in the ambient condition. Overall plant density was also reduced by warming, which, when combined with reductions in flower development and nectar volumes, led to a reduction of ∼90 % in nectar production per unit area. Conclusions The negative effect of asymmetric warming on nectar yields in S. nigrescens may be explained by a concomitant depletion of leaf non-structural carbohydrates. The results thus highlight a novel aspect of how climate change might

  3. Phosphorus and Defoliation Interact and Improve the Growth and Composition of the Plant Community and Soil Properties in an Alpine Pasture of Qinghai-Tibet Plateau.

    Science.gov (United States)

    Qi, Juan; Nie, Zhongnan; Jiao, Ting; Zhang, Degang

    2015-01-01

    Pasture degradation caused by overgrazing and inappropriate fertiliser management is a major production and environmental threat in Qinghai-Tibet Plateau. Previous research has focused on the effects of mixed nitrogen (N) and phosphorus (P) fertiliser and reduced grazing pressure on the plant community of the grassland; however, the role of P and how it interacts with various defoliation (the process of the complete or partial removal of the above-ground parts of plants by grazing or cutting) intensities on the plant and soil of the grassland ecosystem have not been quantified. A field experiment was conducted to quantify how P application in combination of defoliation pressure could impact the dynamic change of the plant and soil in a native alpine grassland ecosystem of the Qinghai-Tibet Plateau, China, from May 2012 to September 2014. A split-plot design with 4 replicates and repeated measures was used to determine the growth and composition of plant community and soil physical and chemical properties under various levels of P fertiliser and defoliation intensity. The results showed that applying 20 kg P/ha increased the herbage yield of Melissitus ruthenica by 68% and total pasture yield by 25%. Close defoliation favoured the growth and plant frequency of the shorter species, whereas lax defoliation favoured that of the taller plant species. Medium P rate and cutting to 3 cm above ground gave an overall best outcome in pasture yield, quality and frequency and soil moisture and nutrient concentration. Application of P fertiliser with a moderate defoliation pressure to promote legume growth and N fixation has the potential to achieve multiple benefits in increasing pasture and livestock production and improving environmental sustainability in the alpine pasture of Qinghai-Tibet Plateau, a fragile and P-deficient ecosystem zone in China and its western neighbouring countries.

  4. ANTECOLOGY ENTOMOPHILOUS ALPINE PLANTS OF THE NORTH-WESTERN CAUCASUS. I MORPHOLOGY OF THE GENERATIVE ORGANS

    Directory of Open Access Journals (Sweden)

    A. S. Kurashev

    2012-01-01

    Full Text Available Plants with yellow and white color dominated, 37% and 24%, respectively. The flowers of most species of plants - actinomorphic (70%. Most species have actinomorphic flowers (70%. The average height of the generative organs in communities varies from 7 to 22 cm. Wide variation and lack of correlation between morphological parameters of plants can talk about a wide variety of plants’ adaptations to pollinate, and they have no distinct syndromes of pollination.

  5. Elevation gradient of successful plant traits for colonizing alpine summits under climate change

    International Nuclear Information System (INIS)

    Matteodo, Magalì; Wipf, Sonja; Stöckli, Veronika; Rixen, Christian; Vittoz, Pascal

    2013-01-01

    Upward migration of plant species due to climate change has become evident in several European mountain ranges. It is still, however, unclear whether certain plant traits increase the probability that a species will colonize mountain summits or vanish, and whether these traits differ with elevation. Here, we used data from a repeat survey of the occurrence of plant species on 120 summits, ranging from 2449 to 3418 m asl, in south-eastern Switzerland to identify plant traits that increase the probability of colonization or extinction in the 20th century. Species numbers increased across all plant traits considered. With some traits, however, numbers increased proportionally more. The most successful colonizers seemed to prefer warmer temperatures and well-developed soils. They produced achene fruits and/or seeds with pappus appendages. Conversely, cushion plants and species with capsule fruits were less efficient as colonizers. Observed changes in traits along the elevation gradient mainly corresponded to the natural distribution of traits. Extinctions did not seem to be clearly related to any trait. Our study showed that plant traits varied along both temporal and elevational gradients. While seeds with pappus seemed to be advantageous for colonization, most of the trait changes also mirrored previous gradients of traits along elevation and hence illustrated the general upward migration of plant species. An understanding of the trait characteristics of colonizing species is crucial for predicting future changes in mountain vegetation under climate change. (letter)

  6. Spatial distribution and environmental analysis of the alpine flora in the Pyrenees

    Directory of Open Access Journals (Sweden)

    D. Gómez

    2017-09-01

    Full Text Available On the basis of the digital edition of the “Atlas of the vascular flora of the Pyrenees” (www.florapyrenaea. org, the alpine flora of this mountain range is delimited in order to know its diversity and the different patterns of its spatial distribution, along with some other environmental characteristics. The Pyrenean alpine flora is made up of 645 taxa (630 species and 15 subspecies. All the administrative regions harbour more than 60% of the alpine plants, with Catalonia and Aragon reaching the highest values (around 90%. Along the altitudinal gradient, the highest plant diversity is found between 2300 and 2600 m. a. s. l., although 25% of the total alpine flora goes beyond 3000 m. On the other hand, a remarkable number of alpine plants live in the lowlands, and thus more than 300 alpine plants can be found below 1500 m. The average altitude range of the alpine plants is 1369 m, 300 m wider than that observed for the whole Pyrenean flora. Life-forms, habitat distribution and habitat naturalness of alpine plants are significantly different from those of the whole Pyrenean flora. Distribution of abundance categories also shows values of rarity significantly lower among alpine plants than for the whole flora. More than half the Pyrenean endemic plants are present in the alpine flora. High diversity and wide ecological amplitude of the alpine flora must be taken into account either when considering vulnerability of alpine plants facing “global change” or when addressing conservation policies for the whole Pyrenees from a common perspective.

  7. Collared Pikas as a Model Species for Studying the Biological Impacts of Climate Change in Alpine Ecosystems

    Science.gov (United States)

    O'Donovan, K. S.; Hik, D.

    2007-12-01

    Climate models suggest that global temperatures could rise between 1.4° C and 5.8° C over the next 100 years, and that these effects will be most extreme in northern mountain regions. Pikas (Ochotona, Lagomorpha) are widespread small mammals in the alpine environments of Asia and North America. They are cold adapted and consequently sensitive to warming global temperatures. Considerable research has shown a poleward migration of many species as a result of rising temperatures, but high alpine dwelling species, like the pika, may already be trapped at the top of mountains. Little is known about the threshold values of environmental conditions under which pikas either persist or disappear. Collared pikas (Ochotona collaris) inhabit alpine meadows in the Kluane region of the southwest Yukon. Sites located along an environmental gradient from nunataks in the St Elias Icefields to the Ruby Range Mountains have experienced different climatic and glacial histories. Using baseline data from the long-term study in the Ruby Ranges, we report on differences in the ecological and climatic conditions of sites along this gradient and how this translates into differences in the behavioural and population ecology of the pikas living there. By looking at these differences we can infer the potential impacts of a warming climate, and the subsequent ecological changes on collared pika populations in order to clarify the causes of local extinction and allow us to develop models for predicting ecological responses as conditions change under future climate regimes.

  8. Comparative Transcriptome Analysis Reveals Adaptive Evolution of Notopterygium incisum and Notopterygium franchetii, Two High-Alpine Herbal Species Endemic to China.

    Science.gov (United States)

    Jia, Yun; Liu, Mi-Li; Yue, Ming; Zhao, Zhe; Zhao, Gui-Fang; Li, Zhong-Hu

    2017-07-11

    The extreme conditions (e.g., cold, low oxygen, and strong ultraviolet radiation) of the high mountains provide an ideal natural laboratory for studies on speciation and the adaptive evolution of organisms. Up to now, few genome/transcriptome-based studies have been carried out on how plants adapt to conditions at extremely high altitudes. Notopterygium incisum and Notopterygium franchetii ( Notopterygium , Apiaceae) are two endangered high-alpine herbal plants endemic to China. To explore the molecular genetic mechanisms of adaptation to high altitudes, we performed high-throughput RNA sequencing (RNA-seq) to characterize the transcriptomes of the two species. In total, more than 130 million sequence reads, 81,446 and 63,153 unigenes with total lengths of 86,924,837 and 62,615,693 bp, were generated for the two herbal species, respectively. OrthoMCL analysis identified 6375 single-copy orthologous genes between N. incisum and N. franchetii . In total, 381 positively-selected candidate genes were identified for both plants by using estimations of the non-synonymous to synonymous substitution rate. At least 18 of these genes potentially participate in RNA splicing, DNA repair, glutathione metabolism and the plant-pathogen interaction pathway, which were further enriched in various functional gene categories possibly responsible for environment adaptation in high mountains. Meanwhile, we detected various transcription factors that regulated the material and energy metabolism in N. incisum and N. franchetii, which probably play vital roles in the tolerance to stress in surroundings. In addition, 60 primer pairs based on orthologous microsatellite-containing sequences between the both Notopterygium species were determined. Finally, 17 polymorphic microsatellite markers (SSR) were successfully characterized for the two endangered species. Based on these candidate orthologous and SSR markers, we detected that the adaptive evolution and species divergence of N. incisum

  9. Comparative Transcriptome Analysis Reveals Adaptive Evolution of Notopterygium incisum and Notopterygium franchetii, Two High-Alpine Herbal Species Endemic to China

    Directory of Open Access Journals (Sweden)

    Yun Jia

    2017-07-01

    Full Text Available The extreme conditions (e.g., cold, low oxygen, and strong ultraviolet radiation of the high mountains provide an ideal natural laboratory for studies on speciation and the adaptive evolution of organisms. Up to now, few genome/transcriptome-based studies have been carried out on how plants adapt to conditions at extremely high altitudes. Notopterygium incisum and Notopterygium franchetii (Notopterygium, Apiaceae are two endangered high-alpine herbal plants endemic to China. To explore the molecular genetic mechanisms of adaptation to high altitudes, we performed high-throughput RNA sequencing (RNA-seq to characterize the transcriptomes of the two species. In total, more than 130 million sequence reads, 81,446 and 63,153 unigenes with total lengths of 86,924,837 and 62,615,693 bp, were generated for the two herbal species, respectively. OrthoMCL analysis identified 6375 single-copy orthologous genes between N. incisum and N. franchetii. In total, 381 positively-selected candidate genes were identified for both plants by using estimations of the non-synonymous to synonymous substitution rate. At least 18 of these genes potentially participate in RNA splicing, DNA repair, glutathione metabolism and the plant–pathogen interaction pathway, which were further enriched in various functional gene categories possibly responsible for environment adaptation in high mountains. Meanwhile, we detected various transcription factors that regulated the material and energy metabolism in N. incisum and N. franchetii, which probably play vital roles in the tolerance to stress in surroundings. In addition, 60 primer pairs based on orthologous microsatellite-containing sequences between the both Notopterygium species were determined. Finally, 17 polymorphic microsatellite markers (SSR were successfully characterized for the two endangered species. Based on these candidate orthologous and SSR markers, we detected that the adaptive evolution and species divergence

  10. Linking sheep density and grazing frequency to persistence of herb species in an alpine environment

    Czech Academy of Sciences Publication Activity Database

    Lanta, V.; Austrheim, G.; Evju, M.; Klimešová, Jitka; Mysterud, A.

    2014-01-01

    Roč. 29, č. 3 (2014), s. 411-420 ISSN 0912-3814 R&D Projects: GA ČR GA526/09/0963 Institutional support: RVO:67985939 Keywords : sheep grazing * alpine pastures * Norway Subject RIV: EH - Ecology, Behaviour Impact factor: 1.296, year: 2014

  11. Climate change, tourism and historical grazing influence the distribution of Carex lachenalii Schkuhr - A rare arctic-alpine species in the Tatra Mts.

    Science.gov (United States)

    Czortek, Patryk; Delimat, Anna; Dyderski, Marcin K; Zięba, Antoni; Jagodziński, Andrzej M; Jaroszewicz, Bogdan

    2018-03-15

    Mountain vegetation is highly specialized to harsh climatic conditions and therefore is sensitive to any change in environment. The rarest and most vulnerable plants occurring in alpine regions are expected to respond rapidly to environmental changes. An example of such a species is Carex lachenalii subsp. lachenalii Schkuhr, which occurs in Poland on only a few isolated sites in the Tatra Mts. The aim of this study was to assess changes in distribution of C. lachenalii in the Tatra Mts over the past 50-150years and the effects of climate change, tourism and historical grazing on the ecological niche of C. lachenalii. We focused on changes in the importance of functional diversity components in shaping plant species composition. Over the past 50-150years, the elevation of the average distribution of C. lachenalii shifted about 178m upward alongside a significant prolongation of the vegetative season by approximately 20days in the last 50-60years. Species composition of plots without C. lachenalii was characterized by competition between plants, whereas on plots with C. lachenalii habitat filtering was the most important component. Our results suggest that climate change was the main factor driving upward shift of C. lachenalii. Moderate trampling enhanced horizontal spread of this plant, whereas cessation of grazing grazing caused decline of C. lachenalii. The three environmental factors studied that determined shifts in distribution of C. lachenalii may also contribute to changes in distribution of other rare mountain plant species causing changes in ecosystem functioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Population dynamics along a primary succession gradient: do alpine species fit into demographic succession theory?

    Science.gov (United States)

    Marcante, Silvia; Winkler, Eckart; Erschbamer, Brigitta

    2009-05-01

    Understanding processes and mechanisms governing changes in plant species along primary successions has been of major importance in ecology. However, to date hardly any studies have focused on the complete life cycle of species along a successional gradient, comparing pioneer, early and late-successional species. In this study it is hypothesized that pioneer species should initially have a population growth rate, lambda, greater than one with high fecundity rates, and declining growth rates when they are replaced by late-successional species. Populations of late-successional species should also start, at the mid-successional stage (when pioneer species are declining), with growth rates greater than one and arrive at rates equal to one at the late successional stage, mainly due to higher survival rates that allow these species to persist for a long time. The demography of pioneer- (Saxifraga aizoides), early (Artemisia genipi) and late-successional species (Anthyllis vulneraria ssp. alpicola) was investigated together with that of a ubiquitous species (Poa alpina) along the Rotmoos glacier foreland (2300-2400 m a.s.l., Central Alps, Austria) over 3 years. A matrix modelling approach was used to compare the main demographic parameters. Elasticity values were plotted in a demographic triangle using fecundity, individual growth and survival as vital rates contributing to the population growth rates. The results largely confirmed the predictions for population growth rates during succession. However, high survival rates of larger adults characterized all species, regardless of where they were growing along the succession. At the pioneer site, high mortality rates of seedlings, plantlets and young individuals were recorded. Fecundity was found to be of minor relevance everywhere, but it was nevertheless sufficient to increase or maintain the population sizes. Demographically, all the species over all sites behaved like late-successional or climax species in secondary

  13. Genome-scale transcriptome analysis of the alpine "glasshouse" plant Rheum nobile (Polygonaceae with special translucent bracts.

    Directory of Open Access Journals (Sweden)

    Lizhong Wang

    Full Text Available Rheum nobile is an alpine plant with translucent bracts concealing the inflorescence which produce a "glasshouse" effect promoting the development of fertile pollen grains in such conditions. The current understanding of the adaptation of such bracts to alpine environments mainly focuses on the phenotypic and physiological changes while the genetic basis is very limited. By sequencing the upper bract and the lower rosulate leaf from the same R. nobile stem, we identified candidate genes that may be involved in alpine adaption of the translucent bract in "glasshouse" plants and illustrated the changes in gene expression underlying the adaptive and complex evolution of the bracts phenotype.A total of 174.2 million paired-end reads from each transcriptome were assembled into 25,249 unigenes. By comparing the gene expression profiles, we identified 1,063 and 786 genes up-regulated respectively in the upper bract and the lower leaf. Functional enrichment analyses of these genes recovered a number of differential important pathways, including flavonoid biosynthesis, mismatch repair and photosynthesis related pathways. These pathways are mainly involved in three types of functions: 9 genes in the UV protective process, 9 mismatch repair related genes and 88 genes associated with photosynthesis.This study provides the first comprehensive dataset characterizing Rheum nobile gene expression at the transcriptomic scale, and provides novel insights into the gene expression profiles associated with the adaptation of the "glasshouse" plant bracts. The dataset will be served as a public genetic resources for further functional and evolutionary studies of "glasshouse" plants.

  14. Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude.

    Science.gov (United States)

    Roth, Tobias; Plattner, Matthias; Amrhein, Valentin

    2014-01-01

    As a consequence of climate warming, species usually shift their distribution towards higher latitudes or altitudes. Yet, it is unclear how different taxonomic groups may respond to climate warming over larger altitudinal ranges. Here, we used data from the national biodiversity monitoring program of Switzerland, collected over an altitudinal range of 2500 m. Within the short period of eight years (2003-2010), we found significant shifts in communities of vascular plants, butterflies and birds. At low altitudes, communities of all species groups changed towards warm-dwelling species, corresponding to an average uphill shift of 8 m, 38 m and 42 m in plant, butterfly and bird communities, respectively. However, rates of community changes decreased with altitude in plants and butterflies, while bird communities changed towards warm-dwelling species at all altitudes. We found no decrease in community variation with respect to temperature niches of species, suggesting that climate warming has not led to more homogenous communities. The different community changes depending on altitude could not be explained by different changes of air temperatures, since during the 16 years between 1995 and 2010, summer temperatures in Switzerland rose by about 0.07°C per year at all altitudes. We discuss that land-use changes or increased disturbances may have prevented alpine plant and butterfly communities from changing towards warm-dwelling species. However, the findings are also consistent with the hypothesis that unlike birds, many alpine plant species in a warming climate could find suitable habitats within just a few metres, due to the highly varied surface of alpine landscapes. Our results may thus support the idea that for plants and butterflies and on a short temporal scale, alpine landscapes are safer places than lowlands in a warming world.

  15. Plant Species Sensitivity Distributions for ozone exposure

    International Nuclear Information System (INIS)

    Goethem, T.M.W.J. van; Azevedo, L.B.; Zelm, R. van; Hayes, F.; Ashmore, M.R.; Huijbregts, M.A.J.

    2013-01-01

    This study derived Species Sensitivity Distributions (SSD), representing a cumulative stressor-response distribution based on single-species sensitivity data, for ozone exposure on natural vegetation. SSDs were constructed for three species groups, i.e. trees, annual grassland and perennial grassland species, using species-specific exposure–response data. The SSDs were applied in two ways. First, critical levels were calculated for each species group and compared to current critical levels for ozone exposure. Second, spatially explicit estimates of the potentially affected fraction of plant species in Northwestern Europe were calculated, based on ambient ozone concentrations. We found that the SSD-based critical levels were lower than for the current critical levels for ozone exposure, with conventional critical levels for ozone relating to 8–20% affected plant species. Our study shows that the SSD concept can be successfully applied to both derive critical ozone levels and estimate the potentially affected species fraction of plant communities along specific ozone gradients. -- Highlights: ► Plant Species Sensitivity Distributions were derived for ozone exposure. ► Annual grassland species, as a species assemblage, tend to be most sensitive to ozone. ► Conventional critical levels for ozone relate to 8–20% affected plant species. ► The affected fraction of plant species for current ozone exposure in Northwestern Europe is estimated. -- Species Sensitivity Distributions offer opportunities in ozone risk assessment to both derive critical levels and estimate the affected fraction of a plant community

  16. Invasive plant species in hardwood tree plantations

    Science.gov (United States)

    Rochelle R. Beasley; Paula M. Pijut

    2010-01-01

    Invasive plants are species that can grow and spread aggressively, mature quickly, and invade an ecosystem causing economic and environmental damage. Invasive plants usually invade disturbed areas, but can also colonize small areas quickly, and may spread and dominate large areas in a few short years. Invasive plant species displace native or desirable forest...

  17. Inventory of the Alpine Flora of Haramosh and Bagrote Valleys (Karakoram Range) District Gilgit, Gilgit-Baltistan, Pakistan

    International Nuclear Information System (INIS)

    Khan, S. W.; Abbas, Q.; Khatoon, S.; Raza, G.; Hussain, A.

    2016-01-01

    Inventorying of plant biodiversity of Haramosh and Bugrote valleys (District Gilgit, Gilgit-Baltistan, Pakistan) was done for fourteen years from 2001- 2014. The fourteen years inventorying revealed a rich plant biodiversity consisting of 232 species belonging to 106 genera and 34 families of flowering plants. The Alpine zone had 18 genera with 4 or more species; Pedicularis with 10 species was the largest genus of this zone, followed by Potentilla and Carex (each with 9 species) and Draba (8 species). Genera containing 9 or 10 species occurred only in Alpine zone. In the Alpine zone, 15 of the larger families were represented by 189 species, forming 81.46 percent of the Alpine flora. Although the highest number of species belonging to these larger families was present in the subalpine zone, but in terms of percentage their contribution was the highest in the Alpine flora. Percentage-wise the contribution of these families gradually increased from Desert zone to Alpine zone, because of their particular distribution patterns. Although the total number of species was the highest in the Subalpine zone, but in the species specific to any one zone, the Alpine zone had the highest number, that is, 96 of the total 232 species of Alpine zone were exclusively found in this zone only. Out of these 96 species specific to the Alpine zone, 53 belonged to such 22 genera that were exclusively found in the Alpine zone only. The Alpine zone was characterized by herbs and low shrubs, with Potentilla species as the dominants. A clear trend of migration of certain species both from lower to higher latitudes and altitudes was observed. The species richness index of Alpine zone however showed increasing trend probably due to species migrations towards the alpine zone. The major threats to the plant biodiversity were recognized as the deforestation and habitat loss due to over-exploitation of species, over-grazing by livestock, and climate changes due to global warming, which were

  18. Do invasive plant species alter soil health?

    Science.gov (United States)

    Invasive species may alter soil characteristics or interact with the soil microbial community to yield a competitive advantage. Our objectives were to determine: if invasive plant species alter soil properties important to soil health; and the long-term effects of invasive plant species on soil pro...

  19. Alpine ecosystems

    Science.gov (United States)

    P.W. Rundel; C.I. Millar

    2016-01-01

    Alpine ecosystems are typically defined as those areas occurring above treeline, while recognizing that alpine ecosystems at a local scale may be found below this boundary for reasons including geology, geomorphology, and microclimate. The lower limit of the alpine ecosystems, the climatic treeline, varies with latitude across California, ranging from about 3500 m in...

  20. Conifer seedling recruitment across a gradient from forest to alpine tundra: effects of species, provenance, and site

    Science.gov (United States)

    Castanha, C.; Torn, M.S.; Germino, M.J.; Weibel, Bettina; Kueppers, L.M.

    2013-01-01

    Background: Seedling germination and survival is a critical control on forest ecosystem boundaries, such as at the alpine–treeline ecotone. In addition, while it is known that species respond individualistically to the same suite of environmental drivers, the potential additional effect of local adaptation on seedling success has not been evaluated. Aims: To determine whether local adaptation may influence the position and movement of forest ecosystem boundaries, we quantified conifer seedling recruitment in common gardens across a subalpine forest to alpine tundra gradient at Niwot Ridge, Colorado, USA. Methods: We studied Pinus flexilis and Picea engelmannii grown from seed collected locally at High (3400 m a.s.l.) and Low (3060 m a.s.l.) elevations. We monitored emergence and survival of seeds sown directly into plots and survival of seedlings germinated indoors and transplanted after snowmelt. Results: Emergence and survival through the first growing season was greater for P. flexilis than P. engelmannii and for Low compared with High provenances. Yet survival through the second growing season was similar for both species and provenances. Seedling emergence and survival tended to be greatest in the subalpine forest and lowest in the alpine tundra. Survival was greater for transplants than for field-germinated seedlings. Conclusions: These results suggest that survival through the first few weeks is critical to the establishment of natural germinants. In addition, even small distances between seed sources can have a significant effect on early demographic performance – a factor that has rarely been considered in previous studies of tree recruitment and species range shifts.

  1. Functional traits drive plant community and ecosystem response to global change across arctic and alpine environments

    DEFF Research Database (Denmark)

    Chisholm, Chelsea Lee

    elevation. In summary, my research stresses the importance of including information on functional identity in studies at scales of the individual, community and ecosystem. I found strong links between functional trait identity and ecosystem functioning across alpine meadows and treeline ecotones. A common...

  2. Natural selection and neutral evolution jointly drive population divergence between alpine and lowland ecotypes of the allopolyploid plant Anemone multifida (Ranunculaceae).

    Science.gov (United States)

    McEwen, Jamie R; Vamosi, Jana C; Rogers, Sean M

    2013-01-01

    Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral) and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst  = 0.074-0.445 at outlier loci), but neutral population differentiation was also evident between alpine populations (FST  = 0.041-0.095 at neutral loci). By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence.

  3. Natural selection and neutral evolution jointly drive population divergence between alpine and lowland ecotypes of the allopolyploid plant Anemone multifida (Ranunculaceae.

    Directory of Open Access Journals (Sweden)

    Jamie R McEwen

    Full Text Available Population differentiation can be driven in large part by natural selection, but selectively neutral evolution can play a prominent role in shaping patters of population divergence. The decomposition of the evolutionary history of populations into the relative effects of natural selection and selectively neutral evolution enables an understanding of the causes of population divergence and adaptation. In this study, we examined heterogeneous genomic divergence between alpine and lowland ecotypes of the allopolyploid plant, Anemone multifida. Using peak height and dominant AFLP data, we quantified population differentiation at non-outlier (neutral and outlier loci to determine the potential contribution of natural selection and selectively neutral evolution to population divergence. We found 13 candidate loci, corresponding to 2.7% of loci, with signatures of divergent natural selection between alpine and lowland populations and between alpine populations (Fst  = 0.074-0.445 at outlier loci, but neutral population differentiation was also evident between alpine populations (FST  = 0.041-0.095 at neutral loci. By examining population structure at both neutral and outlier loci, we determined that the combined effects of selection and neutral evolution are associated with the divergence of alpine populations, which may be linked to extreme abiotic conditions and isolation between alpine sites. The presence of outlier levels of genetic variation in structured populations underscores the importance of separately analyzing neutral and outlier loci to infer the relative role of divergent natural selection and neutral evolution in population divergence.

  4. Overlapping Leaves Covering Flowers in the Alpine Species Eriophyton wallichii (Lamiaceae): Key Driving Factors and Their Potential Impact on Pollination.

    Science.gov (United States)

    Peng, De-Li; Song, Bo; Yang, Yang; Niu, Yang; Sun, Hang

    2016-01-01

    Extrafloral structures are supposed to have evolved to protect flowers from harsh physical environments but might have effects on pollination. Overlapping leaves cover flowers in Eriophyton wallichii, an alpine perennial endemic to the Himalaya-Hengduan Mountains. In previous study, it has showed that these extrafloral leaves can protect interior flowers from temperature fluctuations caused by drastic solar radiation fluctuations, but these leaves may also protect interior flowers from rain wash and UVB damage, and we do not know which one is the main function. In this study, we investigated whether rain and UVB protection are the main functions of overlapping leaves covering flowers and their potential impact on pollination. We first measured the intensities of UVB radiation in open air, beneath leaves and corollas, and then examined pollen susceptibility to different intensities of UVB and rain in the laboratory to estimate whether corollas per se protect interior pollen from UVB and rain damage. We also carried out pollination treatments and observed pollinator visitation of flowers with and without leaves in the field to assess whether the overlapping leaves covering flowers impair pollinator attraction. Our results showed that (1) water and strong UVB significantly decreased pollen germinability, but corollas per se could protect pollen from UVB and rain damage; (2) no autonomous self-pollination and apomixis occurred, and pollinators were essential for the reproduction of E. wallichii; however, flower coverage by overlapping leaves did not limit pollination. We suggested that rain and UVB protection was not the main function of overlapping leaves covered flowers, given that this protection can be provided by corollas per se. Alternatively, this extrafloral structure in E. wallichii may have evolved in response to extreme high temperatures associated with the strong solar radiation fluctuations. This indicates that, even in alpine plants, extreme high

  5. Overlapping Leaves Covering Flowers in the Alpine Species Eriophyton wallichii (Lamiaceae: Key Driving Factors and Their Potential Impact on Pollination.

    Directory of Open Access Journals (Sweden)

    De-Li Peng

    Full Text Available Extrafloral structures are supposed to have evolved to protect flowers from harsh physical environments but might have effects on pollination. Overlapping leaves cover flowers in Eriophyton wallichii, an alpine perennial endemic to the Himalaya-Hengduan Mountains. In previous study, it has showed that these extrafloral leaves can protect interior flowers from temperature fluctuations caused by drastic solar radiation fluctuations, but these leaves may also protect interior flowers from rain wash and UVB damage, and we do not know which one is the main function. In this study, we investigated whether rain and UVB protection are the main functions of overlapping leaves covering flowers and their potential impact on pollination. We first measured the intensities of UVB radiation in open air, beneath leaves and corollas, and then examined pollen susceptibility to different intensities of UVB and rain in the laboratory to estimate whether corollas per se protect interior pollen from UVB and rain damage. We also carried out pollination treatments and observed pollinator visitation of flowers with and without leaves in the field to assess whether the overlapping leaves covering flowers impair pollinator attraction. Our results showed that (1 water and strong UVB significantly decreased pollen germinability, but corollas per se could protect pollen from UVB and rain damage; (2 no autonomous self-pollination and apomixis occurred, and pollinators were essential for the reproduction of E. wallichii; however, flower coverage by overlapping leaves did not limit pollination. We suggested that rain and UVB protection was not the main function of overlapping leaves covered flowers, given that this protection can be provided by corollas per se. Alternatively, this extrafloral structure in E. wallichii may have evolved in response to extreme high temperatures associated with the strong solar radiation fluctuations. This indicates that, even in alpine plants

  6. The myth of plant species saturation

    Science.gov (United States)

    Thomas J. Stohlgren; David T. Barnett; Catherine S. Jarnevich; Curtis Flather; John Kartesz

    2008-01-01

    Plant species assemblages, communities or regional floras might be termed saturated when additional immigrant species are unsuccessful at establishing due to competitive exclusion or other inter-specific interactions, or when the immigration of species is off-set by extirpation of species. This is clearly not the case for state, regional or national floras in the USA...

  7. Predicting plant distribution in an heterogeneous Alpine landscape: does soil matter?

    Science.gov (United States)

    Buri, Aline; Cianfrani, Carmen; Pradervand, Jean-Nicolas; Guisan, Antoine

    2016-04-01

    Topographic and climatic factors are usually used to predict plant distribution because they are known to explain their presence or absence. Soil properties have been widely shown to influence plant growth and distributions. However, they are rarely taken into account as predictors of plant species distribution models (SDM) in an edaphically heterogeneous landscape. Or, when it happens, interpolation techniques are used to project soil factors in space. In heterogeneous landscape, such as in the Alps region, where soil properties change abruptly as a function of environmental conditions over short distances, interpolation techniques require a huge quantities of samples to be efficient. This is costly and time consuming, and bring more errors than predictive approach for an equivalent number of samples. In this study we aimed to assess whether soil proprieties may be generalized over entire mountainous geographic extents and can improve predictions of plant distributions over traditional topo-climatic predictors. First, we used a predictive approach to map two soil proprieties based on field measurements in the western Swiss Alps region; the soil pH and the ratio of stable isotopes 13C/12C (called δ13CSOM). We used ensemble forecasting techniques combining together several predictive algorithms to build models of the geographic variation in the values of both soil proprieties and projected them in the entire study area. As predictive factors, we employed very high resolution topo-climatic data. In a second step, output maps from the previous task were used as an input for vegetation regional models. We integrated the predicted soil proprieties to a set of basic topo-climatic predictors known to be important to model plants species. Then we modelled the distribution of 156 plant species inhabiting the study area. Finally, we compared the quality of the models having or not soil proprieties as predictors to evaluate their effect on the predictive power of our models

  8. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  9. Alpine bistort (Bistorta vivipara) in edge habitat associates with fewer but distinct ectomycorrhizal fungal species: a comparative study of three contrasting soil environments in Svalbard.

    Science.gov (United States)

    Mundra, Sunil; Bahram, Mohammad; Eidesen, Pernille Bronken

    2016-11-01

    Bistorta vivipara is a widespread arctic-alpine ectomycorrhizal (ECM) plant species. Recent findings suggest that fungal communities associated with B. vivipara roots appear random over short distances, but at larger scales, environmental filtering structure fungal communities. Habitats in highly stressful environments where specialist species with narrower niches may have an advantage represent unique opportunity to test the effect of environmental filtering. We utilised high-throughput amplicon sequencing to identify ECM communities associated with B. vivipara in Svalbard. We compared ECM communities in a core habitat where B. vivipara is frequent (Dryas-heath) with edge habitats representing extremes in terms of nutrient availability where B. vivipara is less frequent (bird-manured meadow and a nutrient-depleted mine tilling). Our analysis revealed that soil conditions in edge habitats favour less diverse but more distinct ECM fungal communities with functional traits adapted to local conditions. ECM richness was overall lower in both edge habitats, and the taxonomic compositions of ECM fungi were in line with our functional expectations. Stress-tolerant genera such as Laccaria and Hebeloma were abundant in nutrient-poor mine site whereas functional competitors genera such as Lactarius and Russula were dominant in the nutrient-rich bird-cliff site. Our results suggest that ECM communities in rare edge habitats are most likely not subsets of the larger pool of ECM fungi found in natural tundra, and they may represent a significant contribution to the overall diversity of ECM fungi in the Arctic.

  10. Species distribution modeling for the invasive raccoon dog (Nyctereutes procyonoides in Austria and first range predictions for alpine environments

    Directory of Open Access Journals (Sweden)

    Duscher Tanja

    2017-01-01

    Full Text Available Species distribution models are important tools for wildlife management planning, particularly in the case of invasive species. We employed a recent framework for niche-based invasive species distribution modeling to predict the probability of presence for the invasive raccoon dog (Nyctereutes procyonoides in Austria. The raccoon dog is an adaptive, mobile and highly reproductive Asiatic canid that has successfully invaded many parts of Europe. It is known to occur in Austria since 1963 and is now widespread in the northern and eastern parts of the country, but its population density remains low. With the help of a species distribution model we identified focal areas for future monitoring and management actions, and we address some management implications for the raccoon dog in Austria. We also determined the environmental predictors of raccoon dog distribution in this alpine country. Its distribution seems to be mainly limited by climatic factors (snow depth, duration of snow cover, winter precipitation and mean annual temperature and is thus linked to elevation. Consequently, we assumed the Alps to be a barrier for the spread of the invasive raccoon dog in Europe; however, its ecological permeability is expected to increase with ongoing climate change.

  11. The Invasive Plant Species Education Guide

    Science.gov (United States)

    Mason, Kevin; James, Krista; Carlson, Kitrina; D'Angelo, Jean

    2010-01-01

    To help high school students gain a solid understanding of invasive plant species, university faculty and students from the University of Wisconsin-Stout (UW-Stout) and a local high school teacher worked together to develop the Invasive Plant Species (IPS) Education Guide. The IPS Education Guide includes nine lessons that give students an…

  12. Endangered Species (Plants). LC Science Tracer Bullet.

    Science.gov (United States)

    Niskern, Diana, Comp.

    This guide is intended for those who wish to study the literature dealing with various aspects of endangered plant species. This document includes the following sections, some of which are bibliographies: (1) "Introductions to the Topic"; (2) "Subject Headings" (for endangered species of plants used by the Library of Congress); (3) "General…

  13. Pleistocene colonization of afro-alpine 'sky islands' by the arctic-alpine Arabis alpina.

    Science.gov (United States)

    Assefa, A; Ehrich, D; Taberlet, P; Nemomissa, S; Brochmann, C

    2007-08-01

    The afro-alpine region comprises the high mountains of Ethiopia and tropical East Africa, which represent biological 'sky islands' with high level of endemism. However, some primarily arctic-alpine plants also occur in the afro-alpine mountains. It has been suggested that these plants are Tertiary relicts, but a recent worldwide study of Arabis alpina suggests that this species colonized the region twice during the Pleistocene. Here we investigate the detailed colonization history of A. alpina in the afro-alpine region based on chloroplast DNA sequences from 11 mountain systems. The results confirm the twice-into-Africa scenario. The Asian lineage is confined to the mountains closest to the Arabian Peninsula, on opposite sides of the Rift Valley (Simen Mts and Gara Muleta in Ethiopia), suggesting long-distance dispersal of this lineage. The African lineage is divided into two phylogeographic groups with distinct geographic distribution. The observed pattern is consistent with isolation of the African lineage in at least two interglacial refugia, located on separated highlands, followed by range expansion in cooler period(s), when the afro-alpine habitat extended further down the mountains. Several long-distance dispersal events, also across the Rift Valley, are suggested by single haplotypes observed outside the area occupied by the phylogeographic groups they belonged to.

  14. Geographical parthenogenesis and population genetic structure in the alpine species Ranunculus kuepferi (Ranunculaceae).

    Science.gov (United States)

    Cosendai, A-C; Wagner, J; Ladinig, U; Rosche, C; Hörandl, E

    2013-06-01

    Geographical parthenogenesis describes the enigmatic phenomenon that asexual organisms have larger distribution areas than their sexual relatives, especially in previously glaciated areas. Classical models suggest temporary advantages to asexuality in colonization scenarios because of uniparental reproduction and clonality. We analyzed population genetic structure and self-fertility of the plant species Ranunculus kuepferi on 59 populations from the whole distribution area (European Alps, Apennines and Corsica). Amplified fragment length polymorphisms (AFLPs) and five microsatellite loci revealed individual genotypes for all populations and mostly insignificant differences between diploid sexuals and tetraploid apomicts in all measures of genetic diversity. Low frequencies of private AFLP fragments/simple sequence repeat alleles, and character incompatibility analyses suggest that facultative recombination explains best the unexpectedly high genotypic diversity of apomicts. STRUCTURE analyses using AFLPs revealed a higher number of partitions and a stronger geographical subdivision for diploids than for tetraploids, which contradicts expectations of standard gene flow models, but indicates a reduction of genetic structure in asexuals. Apomictic populations exhibited high admixture near the sexual area, but appeared rather uniform in remote areas. Bagging experiments and analyses of pollen tube growth confirmed self-fertility for pollen-dependent apomicts, but self-sterility for diploid sexuals. Facultative apomixis combines advantages of both modes of reproduction: uniparental reproduction allows for rapid colonization of remote areas, whereas facultative sexuality and polyploidy maintains genetic diversity within apomictic populations. The density dependence of outcrossing limits range expansions of sexual populations.

  15. Geographical parthenogenesis and population genetic structure in the alpine species Ranunculus kuepferi (Ranunculaceae)

    Science.gov (United States)

    Cosendai, A-C; Wagner, J; Ladinig, U; Rosche, C; Hörandl, E

    2013-01-01

    Geographical parthenogenesis describes the enigmatic phenomenon that asexual organisms have larger distribution areas than their sexual relatives, especially in previously glaciated areas. Classical models suggest temporary advantages to asexuality in colonization scenarios because of uniparental reproduction and clonality. We analyzed population genetic structure and self-fertility of the plant species Ranunculus kuepferi on 59 populations from the whole distribution area (European Alps, Apennines and Corsica). Amplified fragment length polymorphisms (AFLPs) and five microsatellite loci revealed individual genotypes for all populations and mostly insignificant differences between diploid sexuals and tetraploid apomicts in all measures of genetic diversity. Low frequencies of private AFLP fragments/simple sequence repeat alleles, and character incompatibility analyses suggest that facultative recombination explains best the unexpectedly high genotypic diversity of apomicts. STRUCTURE analyses using AFLPs revealed a higher number of partitions and a stronger geographical subdivision for diploids than for tetraploids, which contradicts expectations of standard gene flow models, but indicates a reduction of genetic structure in asexuals. Apomictic populations exhibited high admixture near the sexual area, but appeared rather uniform in remote areas. Bagging experiments and analyses of pollen tube growth confirmed self-fertility for pollen-dependent apomicts, but self-sterility for diploid sexuals. Facultative apomixis combines advantages of both modes of reproduction: uniparental reproduction allows for rapid colonization of remote areas, whereas facultative sexuality and polyploidy maintains genetic diversity within apomictic populations. The density dependence of outcrossing limits range expansions of sexual populations. PMID:23403961

  16. Seroprevalence of pestivirus in four species of alpine wild ungulates in the High Valley of Susa, Italy.

    Science.gov (United States)

    Olde Riekerink, R G M; Dominici, A; Barkema, H W; de Smit, A J

    2005-07-01

    Wildlife, once infected, can serve as a reservoir of infectious diseases that form a constant threat to domestic livestock. To make control and eradication programs successful in the long-term, presence of pestivirus in wildlife populations should be monitored. The goal of this study was to investigate seroprevalence of pestivirus in four alpine wild ungulates in the High Valley of Susa, north-west Italy. Species studied were: red deer (Cervus elaphus), roe deer (Capreolus capreolus), wild boar (Sus scrofa) and chamois (Rupicapra rupicapra). A further goal was using virus neutralisation tests (VNT) for four strains of pestivirus in chamois and wild boar. Three hundred and seventy-five serum samples collected during the hunting season of 1999 were tested for pestivirus specific antibodies. Positive sera of chamois and wild boar were subsequently tested in a VNT with four major subtypes of pestivirus, and virus isolation was performed. No antibodies were found in the 73 samples of roe deer, while 7 (12.5%), 8 (5.9%) and 28 (25.5%) of 56, 136 and 110 samples of wild boar, red deer and chamois were ELISA-positive, respectively. Different ranges of titers were found in the VNT and no pestivirus was isolated in the ELISA-positive wild boar and chamois samples. Several possibilities, which might explain the high seroprevalence in chamois are discussed. Pestivirus antibodies were found in three out of four large alpine ungulates in the High Valley of Susa. Seroprevalence was particularly high in chamois. Further investigation is needed to characterise the pestiviruses that circulate in these animals.

  17. Three new species of oribatid mites of the family Punctoribatidae (Acari, Oribatida) from alpine bogs of New Zealand.

    Science.gov (United States)

    Ermilov, Sergey G; Minor, Maria A

    2016-03-15

    Three new species of oribatid mites of the family Punctoribatidae (Acari, Oribatida) are described from alpine bogs of the Central Otago region in the South Island of New Zealand. Macrogena hexasetosa sp. nov. is morphologically most similar to M. brevisensilla Ermilov & Minor, 2015, however, it differs from the latter by larger body size, the presence of six pairs of genital setae, notogastral and ano-adanal setae of medium size, setiform rostral setae, narrower tutorial cusps, the absence of antero-ventral teeth on genua I, II and femora II, and by the absence of striae on the subcapitular mentum. Porallozetes badamdorji sp. nov. differs from the type species-P. dispar (Hammer, 1973)-by larger body length, the presence of interlamellar setae, short and clavate bothridial setae, anterior notogastral margin, notogastral setae of medium size, semi-oval dorsophragmata, and by the position of notogastral porose areas A2 posteriorly to A1. Safrobates gerdi sp. nov. differs from the type species-S. miniporus Mahunka, 1989-by larger body size, the presence of setiform rostral setae, and by notogastral setae of medium length. Porallozetes and Safrobates are recorded in New Zealand for the first time. Generic diagnoses for Macrogena, Porallozetes and Safrobates are given.

  18. Uncertainty in predicting range dynamics of endemic alpine plants under climate warming.

    Science.gov (United States)

    Hülber, Karl; Wessely, Johannes; Gattringer, Andreas; Moser, Dietmar; Kuttner, Michael; Essl, Franz; Leitner, Michael; Winkler, Manuela; Ertl, Siegrun; Willner, Wolfgang; Kleinbauer, Ingrid; Sauberer, Norbert; Mang, Thomas; Zimmermann, Niklaus E; Dullinger, Stefan

    2016-07-01

    Correlative species distribution models have long been the predominant approach to predict species' range responses to climate change. Recently, the use of dynamic models is increasingly advocated for because these models better represent the main processes involved in range shifts and also simulate transient dynamics. A well-known problem with the application of these models is the lack of data for estimating necessary parameters of demographic and dispersal processes. However, what has been hardly considered so far is the fact that simulating transient dynamics potentially implies additional uncertainty arising from our ignorance of short-term climate variability in future climatic trends. Here, we use endemic mountain plants of Austria as a case study to assess how the integration of decadal variability in future climate affects outcomes of dynamic range models as compared to projected long-term trends and uncertainty in demographic and dispersal parameters. We do so by contrasting simulations of a so-called hybrid model run under fluctuating climatic conditions with those based on a linear interpolation of climatic conditions between current values and those predicted for the end of the 21st century. We find that accounting for short-term climate variability modifies model results nearly as differences in projected long-term trends and much more than uncertainty in demographic/dispersal parameters. In particular, range loss and extinction rates are much higher when simulations are run under fluctuating conditions. These results highlight the importance of considering the appropriate temporal resolution when parameterizing and applying range-dynamic models, and hybrid models in particular. In case of our endemic mountain plants, we hypothesize that smoothed linear time series deliver more reliable results because these long-lived species are primarily responsive to long-term climate averages. © 2016 John Wiley & Sons Ltd.

  19. Diversity and antimicrobial activity of endophytic fungi associated with the alpine plant Saussurea involucrata.

    Science.gov (United States)

    Lv, Ya-li; Zhang, Fu-sheng; Chen, Juan; Cui, Jin-long; Xing, Yong-mei; Li, Xiang-dong; Guo, Shun-xing

    2010-01-01

    Endophytic fungi are rich in species diversity and may play an important role in the fitness of their host plants. This study investigated the diversity and antimicrobial potential of endophytic fungi obtained from Saussurea involucrata KAR. et KIR. A total of 49 endophytic fungi were isolated from S. involucrata and identified using morphological and molecular techniques. Extracts of fermentation broth from the 49 fungi were tested for antimicrobial activity against pathogenic microorganisms using the agar diffusion method. Forty-eight out of the 49 endophytic fungi were identified and grouped into 14 taxa. Cylindrocarpon sp. was the dominant species isolated from S. involucrata, followed by Phoma sp. and Fusarium sp. Among the 49 endophytic fungi, 9 root isolates having darkly pigmented, septate hyphae were identified as dark septate endophytic (DSE) fungus, and 12 fungi inhibited at least one test microorganism. Moreover, 5 strains showed a broader spectrum of antimicrobial activity and 4 strains displayed strong inhibition (+++) against pathogenic fungi. The results indicate that endophytic fungi isolated from S. involucrata are diverse in species and a potential source of antimicrobial agents.

  20. Hydroelectric power generation in an Alpine basin: future water-energy scenarios in a run-of-the-river plant

    Science.gov (United States)

    Bongio, Marco; Avanzi, Francesco; De Michele, Carlo

    2016-08-01

    We investigate scenarios of hydroelectric power generation for an Alpine run-of-the-river plant in 2050. To this end, we include a conversion from streamflow to energy in a hydrological model of the basin, and we introduce a set of benchmark climate scenarios to evaluate expected future production. These are a "future-like-present" scenario assuming future precipitation and temperature inputs to be statistically equivalent to those observed during the recent past at the same location, a "warmer-future" scenario, which considers an additional increase in temperature, and a "liquid-only" scenario where only liquid precipitation is admitted. In addition, two IPCC-like climatic scenarios (RCP 4.5 and RCP 8.5) are considered. Uncertainty in glaciers' volume is accounted by initializing the hydrological model with two different inventories of glaciers. Ensemble results reveal that 1) an average decrease between -40% and -19% of hydroelectric power generation in 2050 is predicted at the plant considered (with respect to present condition); 2) an average decrease between -20% and -38% of cumulative incoming streamflow volume at the plant is also predicted, again with respect to present condition; 3) these effects are associated with a strong average decrease of the volume of glaciers (between -76% and -96%, depending on the initial value considered). However, Monte Carlo simulations show that results are also prone to high uncertainties. Implications of these results for run-of-the-river plants are discussed.

  1. Can dispersal investment explain why tall plant species achieve longer dispersal distances than short plant species?

    Science.gov (United States)

    Thomson, Fiona J; Letten, Andrew D; Tamme, Riin; Edwards, Will; Moles, Angela T

    2018-01-01

    Tall plant species disperse further distances than do short species, within and across dispersal syndromes, yet the driver underpinning this relationship is unclear. The ability of taller plants to invest more in dispersal structures may explain the positive relationship between plant height and dispersal distance. Here, we quantify the cross-species relationships between presence of dispersal structures, dispersal investment plant height and dispersal distance. Plant height, dispersal syndrome and dispersal investment data were collated for 1613 species from the literature, with dispersal distance data collated for 114 species. We find that species with high dispersal investment disperse further than do species with low dispersal investment. Tall species have a greater probability of having dispersal structures on their seeds compared with short species. For species with dispersal structures on their seeds, plant height is very weakly related to dispersal investment. Our results provide the first global confirmation of the dispersal investment-distance hypothesis, and show dispersal investment can be used for predicting species dispersal distances. However, our results and those of previous studies indicate plant height is still the best proxy for estimating species dispersal distances due to it being such a readily available plant trait. © 2017 Landcare Research. New Phytologist © 2017 New Phytologist Trust.

  2. The myth of plant species saturation

    Science.gov (United States)

    Stohlgren, Thomas J.; Barnett, David T.; Jarnevich, Catherine S.; Flather, Curtis; Kartesz, John

    2008-01-01

    Plant species assemblages, communities or regional floras might be termed ‘saturated’ when additional immigrant species are unsuccessful at establishing due to competitive exclusion or other inter-specific interactions, or when the immigration of species is off-set by extirpation of species. This is clearly not the case for state, regional or national floras in the USA where colonization (i.e. invasion by exotic species) exceeds extirpation by roughly a 24 to 1 margin. We report an alarming temporal trend in plant invasions in the Pacific Northwest over the past 100 years whereby counties highest in native species richness appear increasingly invaded over time. Despite the possibility of some increased awareness and reporting of native and exotic plant species in recent decades, historical records show a significant, consistent long-term increase in exotic species (number and frequency) at county, state and regional scales in the Pacific Northwest. Here, as in other regions of the country, colonization rates by exotic species are high and extirpation rates are negligible. The rates of species accumulation in space in multi-scale vegetation plots may provide some clues to the mechanisms of the invasion process from local to national scales.

  3. Abundance, reproduction, and seed predation of an alpine plant decrease from the center toward the range limit.

    Science.gov (United States)

    Vaupel, Andrea; Matthies, Diethart

    2012-10-01

    Biogeographic models predict that, because of increasingly unfavorable and stressful conditions, populations become less frequent, smaller, less dense, and less reproductive toward the range edges. These models have greatly influenced the thinking on geographical range limits and have broad implications for ecology, evolution, and conservation. However, empirical tests of the models have rarely investigated comprehensive sets of population properties. We studied population size and density and a broad set of fitness-related traits in 66 populations of the alpine thistle Carduus defloratus along a latitudinal (615 km) and altitudinal (342-2300 m) gradient from the European Alps in the south to the northern range limit in the low mountain ranges of central Germany. Regression analysis indicated that population size and plant density declined with decreasing altitude from the center to the range margin, but plant size increased. In spite of the larger size of plants, the number of seeds produced strongly declined toward the range margin, mainly due to an increase in seed abortion. The number of flowering plants in a population influenced all components of reproduction. Plants in large populations initiated more seeds, aborted fewer seeds, and produced more and larger seeds per plant. The probability that seeds were attacked by insect larvae and the proportion of seeds damaged decreased strongly from the center to the margin of the distribution. However, in spite of the much lower level of parasitization, plants at the range margin produced far fewer viable seeds. Fluctuating asymmetry of leaf width, an indicator of developmental instability, was similar across the range and not related to population size.

  4. Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau.

    Science.gov (United States)

    Liu, Yinzhan; Mu, Junpeng; Niklas, Karl J; Li, Guoyong; Sun, Shucun

    2012-07-01

    • Temperature is projected to increase more during the winter than during the summer in cold regions. The effects of winter warming on reproductive effort have not been examined for temperate plant species. • Here, we report the results of experimentally induced seasonal winter warming (0.4 and 2.4°C increases in growing and nongrowing seasons, respectively, using warmed and ambient open-top chambers in a Tibetan Plateau alpine meadow) for nine indeterminate-growing species producing multiple (single-flowered or multi-flowered) inflorescences and three determinate-growing species producing single inflorescences after a 3-yr period of warming. • Warming reduced significantly flower number and seed production per plant for all nine multi-inflorescence species, but not for the three single-inflorescence species. Warming had an insignificant effect on the fruit to flower number ratio, seed size and seed number per fruit among species. The reduction in seed production was largely attributable to the decline in flower number per plant. The flowering onset time was unaffected for nine of the 12 species. Therefore, the decline in flower production and seed production in response to winter warming probably reflects a physiological response (e.g. metabolic changes associated with flower production). • Collectively, the data indicate that global warming may reduce flower and seed production for temperate herbaceous species and will probably have a differential effect on single- vs multi-inflorescence species. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  5. Moss Mediates the Influence of Shrub Species on Soil Properties and Processes in Alpine Tundra.

    Science.gov (United States)

    Bueno, C Guillermo; Williamson, Scott N; Barrio, Isabel C; Helgadóttir, Ágústa; HiK, David S

    2016-01-01

    In tundra ecosystems, bryophytes influence soil processes directly and indirectly through interactions with overstory shrub species. We experimentally manipulated moss cover and measured seasonal soil properties and processes under two species of deciduous shrubs with contrasting canopy structures, Salix planifolia pulchra and Betula glandulosa-nana complex. Soil properties (seasonal temperature, moisture and C:N ratios) and processes (seasonal litter decomposition and soil respiration) were measured over twelve months. Shrub species identity had the largest influence on summer soil temperatures and soil respiration rates, which were higher under Salix canopies. Mosses were associated with lower soil moisture irrespective of shrub identity, but modulated the effects of shrubs on winter soil temperatures and soil C:N ratios so that moss cover reduced differences in soil winter temperatures between shrub species and reduced C:N ratios under Betula but not under Salix canopies. Our results suggest a central role of mosses in mediating soil properties and processes, with their influence depending on shrub species identity. Such species-dependent effects need to be accounted for when forecasting vegetation dynamics under ongoing environmental changes.

  6. Linkages of plant stoichiometry to ecosystem production and carbon fluxes with increasing nitrogen inputs in an alpine steppe.

    Science.gov (United States)

    Peng, Yunfeng; Li, Fei; Zhou, Guoying; Fang, Kai; Zhang, Dianye; Li, Changbin; Yang, Guibiao; Wang, Guanqin; Wang, Jun; Yang, Yuanhe

    2017-12-01

    Unprecedented levels of nitrogen (N) have entered terrestrial ecosystems over the past century, which substantially influences the carbon (C) exchange between the atmosphere and biosphere. Temperature and moisture are generally regarded as the major controllers over the N effects on ecosystem C uptake and release. N-phosphorous (P) stoichiometry regulates the growth and metabolisms of plants and soil organisms, thereby affecting many ecosystem C processes. However, it remains unclear how the N-induced shift in the plant N:P ratio affects ecosystem production and C fluxes and its relative importance. We conducted a field manipulative experiment with eight N addition levels in a Tibetan alpine steppe and assessed the influences of N on aboveground net primary production (ANPP), gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem exchange (NEE); we used linear mixed-effects models to further determine the relative contributions of various factors to the N-induced changes in these parameters. Our results showed that the ANPP, GEP, ER, and NEE all exhibited nonlinear responses to increasing N additions. Further analysis demonstrated that the plant N:P ratio played a dominate role in shaping these C exchange processes. There was a positive relationship between the N-induced changes in ANPP (ΔANPP) and the plant N:P ratio (ΔN:P), whereas the ΔGEP, ΔER, and ΔNEE exhibited quadratic correlations with the ΔN:P. In contrast, soil temperature and moisture were only secondary predictors for the changes in ecosystem production and C fluxes along the N addition gradient. These findings highlight the importance of plant N:P ratio in regulating ecosystem C exchange, which is crucial for improving our understanding of C cycles under the scenarios of global N enrichment. © 2017 John Wiley & Sons Ltd.

  7. Stable water use efficiency under climate change of three sympatric conifer species at the Alpine treeline

    Directory of Open Access Journals (Sweden)

    Gerhard eWieser

    2016-06-01

    Full Text Available The ability of treeline associated conifers in the Central Alps to cope with recent climate warming and increasing CO2 concentration is still poorly understood. We determined tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies and Larix decidua trees from 1975-2010. Stable isotope ratios were compared with leaf level gas exchange measurements carried out in situ between 1979 and 2007. Results indicate that tree ring derived intrinsic water-use efficiency (iWUE of P. cembra, P. abies and L. decidua remained constant during the last 36 years despite climate warming and rising atmospheric CO2. Temporal patterns in Δ13C and Δ18O mirrored leaf level gas exchange assessments, suggesting parallel increases of CO2-fixation and stomatal conductance of treeline conifer species. As at the study site soil water availability was not a limiting factor iWUE remained largely stable throughout the study period. The stability in iWUE was accompanied by an increase in basal area increment (BAI suggesting that treeline trees benefit from both recent climate warming and CO2 fertilization. Finally, our results suggest that iWUE may not change species composition at treeline in the Austrian Alps due to similar ecophysiological responses to climatic changes of the three sympatric study species.

  8. Stable Water Use Efficiency under Climate Change of Three Sympatric Conifer Species at the Alpine Treeline.

    Science.gov (United States)

    Wieser, Gerhard; Oberhuber, Walter; Gruber, Andreas; Leo, Marco; Matyssek, Rainer; Grams, Thorsten Erhard Edgar

    2016-01-01

    The ability of treeline associated conifers in the Central Alps to cope with recent climate warming and increasing CO2 concentration is still poorly understood. We determined tree ring stable carbon and oxygen isotope ratios of Pinus cembra, Picea abies, and Larix decidua trees from 1975 to 2010. Stable isotope ratios were compared with leaf level gas exchange measurements carried out in situ between 1979 and 2007. Results indicate that tree ring derived intrinsic water-use efficiency (iWUE) of P. cembra, P. abies and L. decidua remained constant during the last 36 years despite climate warming and rising atmospheric CO2. Temporal patterns in Δ(13)C and Δ(18)O mirrored leaf level gas exchange assessments, suggesting parallel increases of CO2-fixation and stomatal conductance of treeline conifer species. As at the study site soil water availability was not a limiting factor iWUE remained largely stable throughout the study period. The stability in iWUE was accompanied by an increase in basal area increment (BAI) suggesting that treeline trees benefit from both recent climate warming and CO2 fertilization. Finally, our results suggest that iWUE may not change species composition at treeline in the Austrian Alps due to similar ecophysiological responses to climatic changes of the three sympatric study species.

  9. Ensemble habitat mapping of invasive plant species

    Science.gov (United States)

    Stohlgren, T.J.; Ma, P.; Kumar, S.; Rocca, M.; Morisette, J.T.; Jarnevich, C.S.; Benson, N.

    2010-01-01

    Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species-environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species-environment matching models for risk analysis. ?? 2010 Society for Risk Analysis.

  10. What shapes fitness costs of reproduction in long-lived iteroparous species? A case study on the Alpine ibex.

    Science.gov (United States)

    Garnier, Alexandre; Gaillard, Jean-Michel; Gauthier, Dominique; Besnard, Aurélien

    2016-01-01

    The fitness costs of reproduction can be masked by individual differences, and may only become apparent during adverse environmental conditions. Individual differences, however, are usually assessed by reproductive success, so how fitness costs are influenced by the interplay between the environmental context and overall individual differences requires further investigation. Here, we evaluated fitness costs of reproduction based on 15 yr of monitoring of individual Alpine ibex (Capra ibex) during a period when the population was affected by a severe disease outbreak (pneumonia). We quantified fitness costs using a novel multi-event capture-mark-recapture (CMR) modeling approach that accounted for uncertainty in reproductive status to estimate the survival and reproductive success of female ibex while also accounting for overall individual heterogeneity using mixture models. Our results show that the ability of females to reproduce was highly heterogeneous. In particular, one group including 76% of females had a much higher probability of giving birth annually (between 0.66 and 0.77, depending on the previous reproductive status) than females of the second group (24% of females, between 0 and 0.05 probability of giving birth annually). Low reproductive costs in terms of future reproduction occurred and were independent of the pneumonia outbreak. There was no survival cost of reproduction either before or after the epizootic, but the cost was high during the epizootic. Our findings indicate that adverse environmental conditions, such as disease outbreaks, may lead to survival costs of reproduction in long-lived species and select against females that have a high reproductive effort. Thereby, the occurrence of adverse conditions increases the diversity of reproductive tactics within a population.

  11. Germination and early plant development of ten plant species ...

    Science.gov (United States)

    Ten agronomic plant species were exposed to different concentrations of nano titanium dioxide (nTiO2) or nano cerium oxide (nCeO2) (0, 250, 500 and 1000 mg/L) to examine potential effects on germination and early seedling development. We modified a standard test protocol developed for soluble chemicals (OPPTS 850.4200) to determine if such an approach might be useful for screening engineered nanomaterials (ENMs) and whether there were differences in response across a range of commercially important plant species to two common metal oxide ENMs. Eight of 10 species responded to nTiO2, and 5 species responded to nCeO2. Overall, it appeared that early root growth may be a more sensitive indicator of potential effects from ENM exposure than germination. The observed effects did not always relate to the exposure concentration, indicating that mass-based concentration may not fully explain developmental effects of these two ENMs. The results suggest that nTiO2 and nCeO2 have different effects on early plant growth of agronomic species, which may alter the timing of specific developmental events during their life cycle. In addition, standard germination tests, which are commonly used for toxicity screening of new materials, may not detect the subtle but potentially more important changes associated with early growth and development in terrestrial plants. Engineered nanoparticles (ENMs) have been recognized as valuable components of new technologies and are current

  12. Plant species descriptions show signs of disease.

    Science.gov (United States)

    Hood, Michael E; Antonovics, Janis

    2003-11-07

    It is well known that diseases can greatly influence the morphology of plants, but often the incidence of disease is either too rare or the symptoms too obvious for the 'abnormalities' to cause confusion in systematics. However, we have recently come across several misinterpretations of disease-induced traits that may have been perpetuated into modern species inventories. Anther-smut disease (caused by the fungus Microbotryum violaceum) is common in many members of the Caryophyllaceae and related plant families. This disease causes anthers of infected plants to be filled with dark-violet fungal spores rather than pollen. Otherwise, their vegetative morphology is within the normal range of healthy plants. Here, we present the results of a herbarium survey showing that a number of type specimens (on which the species name and original description are based) in the genus Silene from Asia are diseased with anther smut. The primary visible disease symptom, namely the dark-violet anthers, is incorporated into the original species descriptions and some of these descriptions have persisted unchanged into modern floras. This raises the question of whether diseased type specimens have erroneously been given unique species names.

  13. Combined effects of extreme climatic events and elevation on nutritional quality and herbivory of Alpine plants.

    Directory of Open Access Journals (Sweden)

    Annette Leingärtner

    Full Text Available Climatic extreme events can cause the shift or disruption of plant-insect interactions due to altered plant quality, e.g. leaf carbon to nitrogen ratios, and phenology. However, the response of plant-herbivore interactions to extreme events and climatic gradients has been rarely studied, although climatic extremes will increase in frequency and intensity in the future and insect herbivores represent a highly diverse and functionally important group. We set up a replicated climate change experiment along elevational gradients in the German Alps to study the responses of three plant guilds and their herbivory by insects to extreme events (extreme drought, advanced and delayed snowmelt versus control plots under different climatic conditions on 15 grassland sites. Our results indicate that elevational shifts in CN (carbon to nitrogen ratios and herbivory depend on plant guild and season. CN ratios increased with altitude for grasses, but decreased for legumes and other forbs. In contrast to our hypotheses, extreme climatic events did not significantly affect CN ratios and herbivory. Thus, our study indicates that nutritional quality of plants and antagonistic interactions with insect herbivores are robust against seasonal climatic extremes. Across the three functional plant guilds, herbivory increased with nitrogen concentrations. Further, increased CN ratios indicate a reduction in nutritional plant quality with advancing season. Although our results revealed no direct effects of extreme climatic events, the opposing responses of plant guilds along elevation imply that competitive interactions within plant communities might change under future climates, with unknown consequences for plant-herbivore interactions and plant community composition.

  14. Nocturnal activity of a "diurnal" species, the northern chamois, in a predator-free Alpine area.

    Science.gov (United States)

    Carnevali, Lucilla; Lovari, Sandro; Monaco, Andrea; Mori, Emiliano

    2016-05-01

    The reduction of predation risk is widely considered a major factor affecting the nocturnal activity of mammals. Furthermore, on precipitous mountain terrain, moving in very poor light conditions should be avoided by animals with no special eyesight adaptation to darkness. The Northern chamois Rupicapra rupicapra has been for long considered as a diurnal species, with occasional nocturnal movements. For the first time, we have quantified the nocturnal activity of 21 radiotagged female chamois from the Italian Eastern Alps (Paneveggio-Pale di San Martino Natural Park), continuously monitored for two years from sunset to sunrise, with 24h tracking sessions carried out for six months. Large predators were not present in the study site. Despite their mainly diurnal activity pattern, peaks of nocturnal movements were detected throughout the year. The least proportion of active night fixes occurred in January and in July, while the most were in April and in October. The greater nocturnal activity in the warm months compared to cold periods, was probably due to frozen snow cover reducing nocturnal movements. Movements were mainly concentrated in bright moonlight nights, possibly because of the absence of large predators, but more likely because of increased visibility. Changes in activity levels throughout the year may also reflect changes in energy requirements of Northern chamois. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 137Cs in alpine tundra habitats

    International Nuclear Information System (INIS)

    Allen, D.J.

    1976-01-01

    An experiment is reported that was carried out to determine the relative importance of physical habitat factors such as snow cover, wind, soil contamination and moisture, and certain plant characteristics (gross morphology and specialized morphology) in the contamination of alpine perennial, tundra vegetation by 137 Cs from worldwide fallout. The accumulations of 137 Cs and 40 K found among species of plants and soil samples in major ecological habitats of alpine tundra in Rocky Mountain National Park are shown tabulated. From this study it would appear that the 'scrubbing-out' action of precipitation and moisture in general may have enhanced direct deposition from the air and influenced foliar absorption rate. However, morphology, physiology, longevity, plant-soil interface distance, and species differences seem to play a more dominant role in radionuclide accumulation. It is difficult to accurately predict fallout behavior by monitoring vegetation 137 Cs levels. The soil (habitat) is seemingly a better indicator of 137 Cs fallout accumulation than plant species, especially when 'spot-check' sampling is employed. (U.K.)

  16. Alpine ethnobotany in Italy: traditional knowledge of gastronomic and medicinal plants among the Occitans of the upper Varaita valley, Piedmont.

    Science.gov (United States)

    Pieroni, Andrea; Giusti, Maria Elena

    2009-11-06

    A gastronomic and medical ethnobotanical study was conducted among the Occitan communities living in Blins/Bellino and Chianale, in the upper Val Varaita, in the Piedmontese Alps, North-Western Italy, and the traditional uses of 88 botanical taxa were recorded. Comparisons with and analysis of other ethnobotanical studies previously carried out in other Piemontese and surrounding areas, show that approximately one fourth of the botanical taxa quoted in this survey are also known in other surrounding Occitan valleys. It is also evident that traditional knowledge in the Varaita valley has been heavily eroded. This study also examined the local legal framework for the gathering of botanical taxa, and the potential utilization of the most quoted medicinal and food wild herbs in the local market, and suggests that the continuing widespread local collection from the wild of the aerial parts of Alpine wormwood for preparing liquors (Artemisia genipi, A. glacialis, and A. umbelliformis) should be seriously reconsidered in terms of sustainability, given the limited availability of these species, even though their collection is culturally salient in the entire study area.

  17. Identification and Characterization of Mycoplasma feriruminatoris sp. nov. Strains Isolated from Alpine Ibex: A 4th Species in the Mycoplasma mycoides Cluster Hosted by Non-domesticated Ruminants?

    Directory of Open Access Journals (Sweden)

    Chloé Ambroset

    2017-05-01

    Full Text Available The genus Mycoplasma, a group of free-living, wall-less prokaryotes includes more than 100 species of which dozens are primary pathogens of humans and domesticated animals. Mycoplasma species isolated from wildlife are rarely investigated but could provide a fuller picture of the evolutionary history and diversity of this genus. In 2013 several isolates from wild Caprinae were tentatively assigned to a new species, Mycoplasma (M. feriruminatoris sp. nov., characterized by an unusually rapid growth in vitro and close genetic proximity to ruminant pathogenic species. We suspected that atypical isolates recently collected from Alpine ibex in France belonged to this new species. The present study was undertaken to verify this hypothesis and to further characterize the French ibex isolates. Phylogenetic analyses were performed to identify the isolates and position them in trees containing several other mycoplasma species pathogenic to domesticated ruminants. Population diversity was characterized by genomic macrorestriction and by examining the capacity of different strains to produce capsular polysaccharides, a feature now known to vary amongst mycoplasma species pathogenic to ruminants. This is the first report of M. feriruminatoris isolation from Alpine ibex in France. Phylogenetic analyses further suggested that M. feriruminatoris might constitute a 4th species in a genetic cluster that so far contains only important ruminant pathogens, the so-called Mycoplasma mycoides cluster. A PCR assay for specific identification is proposed. These French isolates were not clonal, despite being collected in a restricted region of the Alps, which signifies a considerable diversity of the new species. Strains were able to concomitantly produce two types of capsular polysaccharides, β-(1→6-galactan and β-(1→6-glucan, with variation in their respective ratio, a feature never before described in mycoplasmas.

  18. Global Research Initiative in Alpine Environments: A New GLORIA Site in Southwestern Montana

    Science.gov (United States)

    Apple, M. E.; Pullman, T. Y.; Mitman, G. G.

    2007-12-01

    Global climate change is expected to have pronounced effects on the alpine environments and thus the alpine plants of western North America. Predicted responses include an upward migration of treelines, altered species compositions, changes in the percentage of land covered by vegetation, and a change in the phenology of alpine plants. To determine the effects of climate change on the alpine flora of southwestern Montana, we are installing a GLORIA (Global Research Initiative in Alpine Environments) site in order to monitor temperature, species composition, and percent cover of vascular plants, lichens, and mosses along an ascending altitudinal gradient. We are including lichens and mosses because of their importance as ecological indicator species. The abundance and spatial distribution of lichens and mosses provides essential baseline data for long-term monitoring of local and global impacts on the environment. Mt. Fleecer (9250 ft.), which is west of the continental divide and semi-isolated from other peaks in the Anaconda-Pintlar Range, is currently the most likely location for the southwestern Montana GLORIA site. Mt. Fleecer is accessible because it does not have the steep and hazardous glaciated talus cirques that characterize many of the neighboring, higher peaks. However, if an accessible and suitable higher summit is found, then it will be included as the highest summit in the GLORIA site. Interesting species at Mt. Fleecer include the whitebark pine, Pinus albicaulis, which is a keystone species in high mountain ecosystems of the western United States and Canada, the green gentian, Frasera speciosa, and the shooting star, Dodecatheon pulchellum. Data from this site will become part of a global network of GLORIA sites with which we will assess changes in alpine flora. Information gained from this GLORIA site can also be used as a link between studies of alpine climate change and related investigations on the timing of snowmelt and its influence on

  19. Plant species evaluated for new crop potential

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.E.

    1985-01-01

    Ninety-two plant species from various regions of the USA were screened for their energy-producing potential. Samples were analysed for oil, polyphenol, hydrocarbon and protein. Oil fractions of some species were analysed for classes of lipid constituents and yields of unsaponifiable matter and fatty acids were determined. Hydrocarbon fractions of some species were analysed for rubber, gutta and waxes. Average MW and MW distribution of rubber and gutta were determined. Complete analytical data for 16 species is presented. Large quantities of oil were obtained from Philadelphus coronarius, Cacalia muhlenbergii, Lindera benzoin and Koelreuteria paniculata. High yields of polyphenols came from Acer ginnala, Cornus obliqua and Salix caprea and maximum yields of hydrocarbon and protein were from Elymus virginicus and Lindera benzoin, respectively.

  20. [Effects of compensation capacity and palatability on the dominance of plant species in grazing community].

    Science.gov (United States)

    Pan, Sheng-wang; Wang, Hai-yang; Du, Guo-zhen; Lei, Shu-qing; Wei, Shi-qiang

    2008-08-01

    With simulated mowing experiment and field survey, the compensation capacity and dominance shift of nine alpine plant species in grazing community were studied. The results showed that for most test species, there existed definite correlations between their compensation capacity and palatability. The species with better palatability, i.e., Astragalus polycladus, Medicago rythenica, Kobresia humilis, and Polygonum viviparvum, had higher compensation capacity, with their compensation index being 1.013, 0.907, 0.849, and 0.802, respectively, followed by Elymus nutans, with its compensation index being 0.668, while the species with poorer palatability, i.e., Taraxacum tibetanum, Swertis bimaculata, and Ajania tenuifolia had lower compensation capacity, with their compensation index being 0.649, 0.587, and 0.553, respectively. Festuca sinensis was more palatable but had the lowest compensation index (0.473). The nine species had three types of dominance shift, i.e., decreasing, increasing, and neutral. F. sinensis was of decreasing type, E. nutans, A. polycladus and P. viviparvum were of neutral, and the other five species were of increasing type. The compensation capacity and palatability of plant species in grazing community could explain their dominance shift to a certain extent.

  1. Climatic niche breadth can explain variation in geographical range size of alpine and subalpine plants

    NARCIS (Netherlands)

    Yu, Fangyuan; Groen, T.A.; Wang, Tiejun; Skidmore, A.K.; Huang, J.; Ma, K.

    2017-01-01

    Understanding the environmental factors determining the distribution of species with different range sizes can provide valuable insights for evolutionary ecology and conservation biology in the face of expected climate change. However, little is known about what determines the variation in

  2. Food Plants of 19 butterflies species (Lepidoptera from Loreto, Peru

    Directory of Open Access Journals (Sweden)

    Joel Vásquez Bardales

    2017-04-01

    Full Text Available This work reports the food plants utilized by 19 species of butterflies from Allpahuayo-Mishana Research Center and the Community of San Rafael, Loreto, Peru. We report 23 plant species and one hybrid of angiosperms used by the butterflies. Larval host plants were 21 species and five were adult nectar sources. Two species were both host plant and nectar source: Passiflora coccinea Aubl. and Passiflora edulis Sims. The most frequently used plant families were Solanaceae, Passifloraceae, Fabaceae and Aristolochiaceae.

  3. INVENTORY OF THE INVASIVE ALIE N PLANT SPECIES IN INDONESIA

    Directory of Open Access Journals (Sweden)

    SRI S UDARMIYATI T JITROSOEDIRDJO

    2005-01-01

    Full Text Available An inventory of the alien plant species in Indone sia based on the existing references and herbarium specimens concluded that 1936 alien plant species ar e found in Indonesia which belong to 187 families. Field studies should be done to get the complete figur es of alien plant species in Indonesia. Based on the existing figures of the plant species, the invasive alien plant species can be iden tified, followed by studies on the assessment of losses, biology, management and their possible utilizations. Alien plant species are imported to Indonesia for cultivation, collection of the botanical garden, as experimental plants or other curiosities. Aside from plants purposely imported, there are also introduced plant propagules conta-minating imported agricultural products. These alien plant species can be beneficial or have a potential of being invasive. The alien cultivated species consisted of 67% of the total number. More than half of the cultivated plants are ornamental plants. Some of th e species are naturalized or escaped from cultivation and become wild and invasive. Some other natura lized species, adapted well without any problems of invasion. There are 339 species or 17% of the species r ecorded as weeds. The highest record of weeds is found in the family of Poaceae (57 species, follo wed by Asteraceae (53 species and Cyperaceae (35 species. There are 6 families having more than 10 species of weeds: Amaranthaceae, Asteraceae, Cyperaceae, Euphorbiaceae, Poaceae, and Rubiaceae. Three families have more than 100 species: Asteraceae 162 species, Poaceae 120 species, and Papillionaceae 103 species. Five species of aquatic and 20 species of terrestrial plants considered as important alien plant species in Indonesia were identified and some of their distributions noted

  4. Alpine glacial relict species losing out to climate change: The case of the fragmented mountain hare population (Lepus timidus) in the Alps.

    Science.gov (United States)

    Rehnus, Maik; Bollmann, Kurt; Schmatz, Dirk R; Hackländer, Klaus; Braunisch, Veronika

    2018-03-13

    Alpine and Arctic species are considered to be particularly vulnerable to climate change, which is expected to cause habitat loss, fragmentation and-ultimately-extinction of cold-adapted species. However, the impact of climate change on glacial relict populations is not well understood, and specific recommendations for adaptive conservation management are lacking. We focused on the mountain hare (Lepus timidus) as a model species and modelled species distribution in combination with patch and landscape-based connectivity metrics. They were derived from graph-theory models to quantify changes in species distribution and to estimate the current and future importance of habitat patches for overall population connectivity. Models were calibrated based on 1,046 locations of species presence distributed across three biogeographic regions in the Swiss Alps and extrapolated according to two IPCC scenarios of climate change (RCP 4.5 & 8.5), each represented by three downscaled global climate models. The models predicted an average habitat loss of 35% (22%-55%) by 2100, mainly due to an increase in temperature during the reproductive season. An increase in habitat fragmentation was reflected in a 43% decrease in patch size, a 17% increase in the number of habitat patches and a 34% increase in inter-patch distance. However, the predicted changes in habitat availability and connectivity varied considerably between biogeographic regions: Whereas the greatest habitat losses with an increase in inter-patch distance were predicted at the southern and northern edges of the species' Alpine distribution, the greatest increase in patch number and decrease in patch size is expected in the central Swiss Alps. Finally, both the number of isolated habitat patches and the number of patches crucial for maintaining the habitat network increased under the different variants of climate change. Focusing conservation action on the central Swiss Alps may help mitigate the predicted effects of

  5. Temperature microclimates of plants in a tropical alpine environment: How much does growth form matter?

    Czech Academy of Sciences Publication Activity Database

    Sklenář, P.; Kučerová, Andrea; Macková, Jana; Romoleroux, K.

    2016-01-01

    Roč. 48, č. 1 (2016), s. 61-78 ISSN 1523-0430 R&D Projects: GA AV ČR IAA601110702 Institutional support: RVO:67985939 ; RVO:60077344 Keywords : leaf temperature * Antisana volcano * cushion plant Subject RIV: EH - Ecology, Behaviour; EH - Ecology, Behaviour (BC-A) Impact factor: 1.782, year: 2016

  6. Run-of-river power plants in Alpine regions: whither optimal capacity?

    Science.gov (United States)

    Lazzaro, Gianluca; Botter, Gianluca

    2015-04-01

    Hydropower is the major renewable electricity generation technology worldwide. The future expansion of this technology mostly relies on the development of small run-of-river projects, in which a fraction of the running flows is diverted from the river to a turbine for energy production. Even though small hydro inflicts a smaller impact on aquatic ecosystems and local communities compared to large dams, it cannot prevent stresses on plant, animal, and human well-being. This is especially true in mountain regions where the plant outflow is located several kilometers downstream of the intake, thereby inducing the depletion of river reaches of considerable length. Moreover, the negative cumulative effects of run-of-river systems operating along the same river threaten the ability of stream networks to supply ecological corridors for plants, invertebrates or fishes, and support biodiversity. Research in this area is severely lacking. Therefore, the prediction of the long-term impacts associated to the expansion of run-of-river projects induced by global-scale incentive policies remains highly uncertain. This contribution aims at providing objective tools to address the preliminary choice of the capacity of a run-of-river hydropower plant when the economic value of the plant and the alteration of the flow regime are simultaneously accounted for. This is done using the concepts of Pareto-optimality and Pareto-dominance, which are powerful tools suited to face multi-objective optimization in presence of conflicting goals, such as the maximization of the profitability and the minimization of the hydrologic disturbance induced by the plant in the river reach between the intake and the outflow. The application to a set of case studies belonging to the Piave River basin (Italy) suggests that optimal solutions are strongly dependent the natural flow regime at the plant intake. While in some cases (namely, reduced streamflow variability) the optimal trade-off between economic

  7. Comparative seed germination traits in alpine and subalpine grasslands: higher elevations are associated with warmer germination temperatures.

    Science.gov (United States)

    Fernández-Pascual, E; Jiménez-Alfaro, B; Bueno, Á

    2017-01-01

    Seed germination traits in alpine grasslands are poorly understood, despite the sensitivity of these communities to climate change. We hypothesise that germination traits predict species occurrence along the alpine-subalpine elevation gradient. Phylogenetic comparative analyses were performed using fresh seeds of 22 species from alpine and subalpine grasslands (1600-2400 m) of the Cantabrian Mountains, Spain (43° N, 5° W). Laboratory experiments were conducted to characterise germinability, optimum germination temperature and effect of cold and warm stratification on dormancy breaking. Variability in these traits was reduced by phylogenetic principal component analysis (phyl.PCA). Phylogenetic generalised least squares regression (PGLS) was used to fit a model in which species average elevation was predicted from their position on the PCA axes. Most subalpine species germinated in snow-like conditions, whereas most alpine species needed accumulation of warm temperatures. Phylogenetic signal was low. PCA1 ordered species according to overall germinability, whilst PCA2 ordered them according to preference for warm or cold germination. PCA2 significantly predicted species occurrence in the alpine-subalpine gradient, as higher elevation species tended to have warmer germination preferences. Our results show that germination traits in high-mountain grasslands are closely linked to the alpine-subalpine gradient. Alpine species, especially those from stripped and wind-edge communities, prefer warmer germination niches, suggesting that summer emergence prevents frost damage during seedling establishment. In contrast, alpine snowfield and subalpine grassland plants have cold germination niches, indicating that winter emergence may occur under snow to avoid drought stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Chilling- and Freezing-Induced Alterations in Cytosine Methylation and Its Association with the Cold Tolerance of an Alpine Subnival Plant, Chorispora bungeana.

    Directory of Open Access Journals (Sweden)

    Yuan Song

    Full Text Available Chilling (0-18°C and freezing (<0°C are two distinct types of cold stresses. Epigenetic regulation can play an important role in plant adaptation to abiotic stresses. However, it is not yet clear whether and how epigenetic modification (i.e., DNA methylation mediates the adaptation to cold stresses in nature (e.g., in alpine regions. Especially, whether the adaptation to chilling and freezing is involved in differential epigenetic regulations in plants is largely unknown. Chorispora bungeana is an alpine subnival plant that is distributed in the freeze-thaw tundra in Asia, where chilling and freezing frequently fluctuate daily (24 h. To disentangle how C. bungeana copes with these intricate cold stresses through epigenetic modifications, plants of C. bungeana were treated at 4°C (chilling and -4°C (freezing over five periods of time (0-24 h. Methylation-sensitive amplified fragment-length polymorphism markers were used to investigate the variation in DNA methylation of C. bungeana in response to chilling and freezing. It was found that the alterations in DNA methylation of C. bungeana largely occurred over the period of chilling and freezing. Moreover, chilling and freezing appeared to gradually induce distinct DNA methylation variations, as the treatment went on (e.g., after 12 h. Forty-three cold-induced polymorphic fragments were randomly selected and further analyzed, and three of the cloned fragments were homologous to genes encoding alcohol dehydrogenase, UDP-glucosyltransferase and polygalacturonase-inhibiting protein. These candidate genes verified the existence of different expressive patterns between chilling and freezing. Our results showed that C. bungeana responded to cold stresses rapidly through the alterations of DNA methylation, and that chilling and freezing induced different DNA methylation changes. Therefore, we conclude that epigenetic modifications can potentially serve as a rapid and flexible mechanism for C. bungeana

  9. Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis.

    Science.gov (United States)

    Cui, Jin-Long; Guo, Ting-Ting; Ren, Zhen-Xing; Zhang, Na-Sha; Wang, Meng-Liang

    2015-01-01

    Rhodiola spp. are rare and endangered alpine plants widely used as medicines and food additives by many civilizations since ancient times. Their main effective ingredients (such as salidroside and p-tyrosol) are praised to exhibit pharmacologic effects on high-altitude sickness and possess anti-aging and other adaptogenic capacities based on their antioxidant properties. In this study, 347 endophytic fungi were isolated from R. crenulata, R. angusta, and R. sachalinensis, and the molecular diversity and antioxidant activities of these fungi were investigated for the first time. These fungi were categorized into 180 morphotypes based on cultural characteristics, and their rRNA gene ITS sequences were analyzed by BLAST search in the GenBank database. Except for 12 unidentified fungi (6.67%), all others were affiliated to at least 57 genera in 20 orders of four phyla, namely, Ascomycota (88.89%), Basidiomycota (2.78%), Zygomycota (1.11%), and Glomeromycota (0.56%), which exhibited high abundance and diversity. Antioxidant assay showed that the DPPH radical-scavenging rates of 114 isolates (63.33%) were >50%, and those of five isolates (Rct45, Rct63, Rct64, Rac76, and Rsc57) were >90%. The EC50 values of five antioxidant assays suggested significant potential of these fungi on scavenging DPPH•, O2-•, and OH• radicals, as well as scavenging nitrite and chelating Fe2+, which showed preference and selection between endophytic fungi and their hosts. Further research also provided the first evidence that Rac12 could produce salidrosides and p-tyrosol. Results suggested that versatile endophytic fungi associated with Rhodiola known as antioxidants could be exploited as potential sources of novel antioxidant products.

  10. Diversity and Antioxidant Activity of Culturable Endophytic Fungi from Alpine Plants of Rhodiola crenulata, R. angusta, and R. sachalinensis

    Science.gov (United States)

    Cui, Jin-Long; Guo, Ting-Ting; Ren, Zhen-Xing; Zhang, Na-Sha; Wang, Meng-Liang

    2015-01-01

    Rhodiola spp. are rare and endangered alpine plants widely used as medicines and food additives by many civilizations since ancient times. Their main effective ingredients (such as salidroside and p-tyrosol) are praised to exhibit pharmacologic effects on high-altitude sickness and possess anti-aging and other adaptogenic capacities based on their antioxidant properties. In this study, 347 endophytic fungi were isolated from R. crenulata, R. angusta, and R. sachalinensis, and the molecular diversity and antioxidant activities of these fungi were investigated for the first time. These fungi were categorized into 180 morphotypes based on cultural characteristics, and their rRNA gene ITS sequences were analyzed by BLAST search in the GenBank database. Except for 12 unidentified fungi (6.67%), all others were affiliated to at least 57 genera in 20 orders of four phyla, namely, Ascomycota (88.89%), Basidiomycota (2.78%), Zygomycota (1.11%), and Glomeromycota (0.56%), which exhibited high abundance and diversity. Antioxidant assay showed that the DPPH radical-scavenging rates of 114 isolates (63.33%) were >50%, and those of five isolates (Rct45, Rct63, Rct64, Rac76, and Rsc57) were >90%. The EC50 values of five antioxidant assays suggested significant potential of these fungi on scavenging DPPH•, O2−•, and OH• radicals, as well as scavenging nitrite and chelating Fe2+, which showed preference and selection between endophytic fungi and their hosts. Further research also provided the first evidence that Rac12 could produce salidrosides and p-tyrosol. Results suggested that versatile endophytic fungi associated with Rhodiola known as antioxidants could be exploited as potential sources of novel antioxidant products. PMID:25768014

  11. Diversity and antioxidant activity of culturable endophytic fungi from alpine plants of Rhodiola crenulata, R. angusta, and R. sachalinensis.

    Directory of Open Access Journals (Sweden)

    Jin-Long Cui

    Full Text Available Rhodiola spp. are rare and endangered alpine plants widely used as medicines and food additives by many civilizations since ancient times. Their main effective ingredients (such as salidroside and p-tyrosol are praised to exhibit pharmacologic effects on high-altitude sickness and possess anti-aging and other adaptogenic capacities based on their antioxidant properties. In this study, 347 endophytic fungi were isolated from R. crenulata, R. angusta, and R. sachalinensis, and the molecular diversity and antioxidant activities of these fungi were investigated for the first time. These fungi were categorized into 180 morphotypes based on cultural characteristics, and their rRNA gene ITS sequences were analyzed by BLAST search in the GenBank database. Except for 12 unidentified fungi (6.67%, all others were affiliated to at least 57 genera in 20 orders of four phyla, namely, Ascomycota (88.89%, Basidiomycota (2.78%, Zygomycota (1.11%, and Glomeromycota (0.56%, which exhibited high abundance and diversity. Antioxidant assay showed that the DPPH radical-scavenging rates of 114 isolates (63.33% were >50%, and those of five isolates (Rct45, Rct63, Rct64, Rac76, and Rsc57 were >90%. The EC50 values of five antioxidant assays suggested significant potential of these fungi on scavenging DPPH•, O2-•, and OH• radicals, as well as scavenging nitrite and chelating Fe2+, which showed preference and selection between endophytic fungi and their hosts. Further research also provided the first evidence that Rac12 could produce salidrosides and p-tyrosol. Results suggested that versatile endophytic fungi associated with Rhodiola known as antioxidants could be exploited as potential sources of novel antioxidant products.

  12. Alpine tourism

    Directory of Open Access Journals (Sweden)

    Andrea Macchiavelli

    2009-06-01

    Full Text Available The spectacular increase in tourism in the Alps in recent decades has been founded mainly on the boom in skiing, resulting in both strong real estate development and an increasing array of infrastructures and ski runs. Today the ski market seems to have virtually reached saturation point and the winter sports sector needs to diversify its offer through innovation. After a review of the main factors of change in mountain tourism, the paper presents a grid for interpreting the life cycle of alpine destinations, identifying the phases that characterize their evolution. The conditions that may favour innovation in alpine tourism are then identified, as well as the contradictions that frequently accompany them. In most cases, innovation is the result of a process that begins within the alpine community, frequently encouraged and supported by national and international institutions and with whose help structural difficulties are successfully overcome.La forte croissance qu’ont connue les pays alpins dans les dernières décennies a surtout été fondée sur l’offre des activités du ski, avec comme conséquence, un massif développement immobilier et la multiplication d’infrastructures et de pistes. Aujourd’hui, le marché du ski semble arriver à saturation, la Convention alpine a mis un frein à la poursuite du développement des domaines skiables et on observe donc avec intérêt la diversification de l’offre soutenue par l’innovation. Après avoir rappelé les facteurs de changement en cours les plus significatifs dans le tourisme montagnard, l’article présente une grille interprétative de l’évolution des destinations touristiques alpines, identifiant les phases qui ont caractérisé son développement. Ensuite, l’article propose une réflexion sur certaines conditions qui peuvent favoriser l’innovation dans le tourisme alpin, ainsi que sur les contradictions qui accompagnent souvent ces conditions. Dans la plupart des cas

  13. Taxonomic perspective of plant species yielding vegetable oils used ...

    African Journals Online (AJOL)

    A search conducted to determine the plants yielding vegetable oils resulted in 78 plant species with potential use in cosmetics and skin care products. The taxonomic position of these plant species is described with a description of vegetable oils from these plants and their use in cosmetic and skin care products.

  14. Plants on the move: plant-soil interactions in poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.

    2008-01-01

    As a result of recent global climate change, areas that have previously been climatically unsuitable for species have now become suitable new habitats. Many plant-species are expanding their range polewards, colonizing these newly available areas. If these species are able to expand their range

  15. A tale of two single mountain alpine endemics: Packera franciscana and Erigeron mancus

    Science.gov (United States)

    James F. Fowler; Carolyn H. Sieg; Brian M. Casavant; Addie E. Hite

    2012-01-01

    Both the San Francisco Peaks ragwort, Packera franciscana and the La Sal daisy, Erigeron mancus are endemic to treeline/alpine habitats of the single mountain they inhabit. There is little habitat available for these plant species to migrate upward in a warming climate scenario. For P. franciscana, 2008 estimates indicate over 18,000 ramets in a 4 m band along a...

  16. Teaching the Species Concept Using Hybrid Plants and Habitats.

    Science.gov (United States)

    Wilson, C. M.; Oldham, J. H.

    1984-01-01

    Describes a field exercise which links ecology and taxonomy in the teaching of the species concept. Two common hedgerow plants (red and white campions) are used as a pair of "species" that are normally distinct. Plants of intermediate character can be encountered, and the status of these plants is investigated. (Author/JN)

  17. Matgrass sward plant species benefit from soil organisms

    NARCIS (Netherlands)

    Brinkman, E.P.; Raaijmakers, C.E.; Bakx-Schotman, J.M.T.; Hannula, S.E.; Kemmers, R.H.; Boer, de W.; Putten, van der W.H.

    2012-01-01

    Soil organisms are important in the structuring of plant communities. However, little is known about how to apply this knowledge to vegetation management. Here, we examined if soil organisms may promote plant species of characteristic habitats, and suppress plant species of disturbed habitats. We

  18. Climate change and alpine stream biology

    DEFF Research Database (Denmark)

    Hotaling, Scott; Finn, Debra S.; Joseph Giersch, J.

    2017-01-01

    In alpine regions worldwide, climate change is dramatically altering ecosystems and affecting biodiversity in many ways. For streams, receding alpine glaciers and snowfields, paired with altered precipitation regimes, are driving shifts in hydrology, species distributions, basal resources......, and threatening the very existence of some habitats and biota. Alpine streams harbour substantial species and genetic diversity due to significant habitat insularity and environmental heterogeneity. Climate change is expected to affect alpine stream biodiversity across many levels of biological resolution from...... micro- to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism-focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call...

  19. [Nitrogen bio-cycle in the alpine tundra ecosystem of Changbai Mountain and its comparison with arctic tundra].

    Science.gov (United States)

    Wei, Jing; Zhao, Jing-zhu; Deng, Hong-bing; Wu, Gang; Hao, Ying-jie; Shang, Wen-yan

    2005-03-01

    The nitrogen bio-cycle was discussed in the alpine tundra ecosystem of Changbai Mountain through compartment model. The alpine tundra of Changbai Mountain was compared with Arctic tundra by the common ratio of genus and species in this paper. It was found that the 89.3% of genus and 58.6% of species was the common between Changbai alpine tundra and Arctic tundra while 95.5% of lichen genus and 58.7% lichen species, 82.1% of moss genus and 76.3% of moss species, 93.1% of vascular bundle genus and 40.5% of vascular bundle species were the common, respectively, which made vegetation type or community to be similar between Changbai alpine tundra and Arctic tundra. The total storage of nitrogen was 65220.6 t in the vegetation-plant system of Changbai Mountain, of which soil pool amounted to 99.3%. The nitrogen storage of each compartment was as follows: the vegetation pool, litterfall pool and soil pool were 237.4 t, 145.3 t and 64837.9 t respectively. The transferable amounts of nitrogen were 131.7 t x a(-1), 58 t/a and 73.7 t x a(-1) in the aboveground plant, belowground root system and litterfall of alpine tundra ecosystem of Changbai Mountain.

  20. Is grazing exclusion effective in restoring vegetation in degraded alpine grasslands in Tibet, China?

    Directory of Open Access Journals (Sweden)

    Yan Yan

    2015-06-01

    Full Text Available Overgrazing is considered one of the key disturbance factors that results in alpine grassland degradation in Tibet. Grazing exclusion by fencing has been widely used as an approach to restore degraded grasslands in Tibet since 2004. Is the grazing exclusion management strategy effective for the vegetation restoration of degraded alpine grasslands? Three alpine grassland types were selected in Tibet to investigate the effect of grazing exclusion on plant community structure and biomass. Our results showed that species biodiversity indicators, including the Pielou evenness index, the Shannon–Wiener diversity index, and the Simpson dominance index, did not significantly change under grazing exclusion conditions. In contrast, the total vegetation cover, the mean vegetation height of the community, and the aboveground biomass were significantly higher in the grazing exclusion grasslands than in the free grazed grasslands. These results indicated that grazing exclusion is an effective measure for maintaining community stability and improving aboveground vegetation growth in alpine grasslands. However, the statistical analysis showed that the growing season precipitation (GSP plays a more important role than grazing exclusion in which influence on vegetation in alpine grasslands. In addition, because the results of the present study come from short term (6–8 years grazing exclusion, it is still uncertain whether these improvements will be continuable if grazing exclusion is continuously implemented. Therefore, the assessments of the ecological effects of the grazing exclusion management strategy on degraded alpine grasslands in Tibet still need long term continued research.

  1. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants.

    Science.gov (United States)

    Buchner, Othmar; Stoll, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2015-04-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, Rhododendron ferrugineum, Senecio incanus and Ranunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv /Fm), which remained impeded for several days when plants were exposed to natural light conditions subsequently to the heat treatment. In contrast, plants exposed to heat stress under natural irradiation were able to tolerate and recover from heat stress more readily. The critical temperature threshold for chlorophyll fluorescence was higher under illumination (Tc (')) than in the dark (Tc). Heat stress caused a significant de-epoxidation of the xanthophyll cycle pigments both in the light and in the dark conditions. Total free radical scavenging activity was highest when heat stress was applied in the dark. This study demonstrates that, in the European Alps, heat waves can temporarily have a negative impact on photosynthesis and, importantly, that results obtained from experiments performed in darkness and/or on detached plant material may not reliably predict the impact of heat stress under field conditions. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  2. Testing the niche-breadth-range-size hypothesis: habitat specialization vs. performance in Australian alpine daisies.

    Science.gov (United States)

    Hirst, Megan J; Griffin, Philippa C; Sexton, Jason P; Hoffmann, Ary A

    2017-10-01

    Relatively common species within a clade are expected to perform well across a wider range of conditions than their rarer relatives, yet experimental tests of this "niche-breadth-range-size" hypothesis remain surprisingly scarce. Rarity may arise due to trade-offs between specialization and performance across a wide range of environments. Here we use common garden and reciprocal transplant experiments to test the niche-breadth-range-size hypothesis, focusing on four common and three rare endemic alpine daisies (Brachyscome spp.) from the Australian Alps. We used three experimental contexts: (1) alpine reciprocal seedling experiment, a test of seedling survival and growth in three alpine habitat types differing in environmental quality and species diversity; (2) warm environment common garden, a test of whether common daisy species have higher growth rates and phenotypic plasticity, assessed in a common garden in a warmer climate and run simultaneously with experiment 1; and (3) alpine reciprocal seed experiment, a test of seed germination capacity and viability in the same three alpine habitat types as in experiment 1. In the alpine reciprocal seedling experiment, survival of all species was highest in the open heathland habitat where overall plant diversity is high, suggesting a general, positive response to a relatively productive, low-stress environment. We found only partial support for higher survival of rare species in their habitats of origin. In the warm environment common garden, three common daisies exhibited greater growth and biomass than two rare species, but the other rare species performed as well as the common species. In the alpine reciprocal seed experiment, common daisies exhibited higher germination across most habitats, but rare species maintained a higher proportion of viable seed in all conditions, suggesting different life history strategies. These results indicate that some but not all rare, alpine endemics exhibit stress tolerance at the

  3. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Wen, Lu; Dong, Shikui; Li, Yuanyuan; Li, Xiaoyan; Shi, Jianjun; Wang, Yanlong; Liu, Demei; Ma, Yushou

    2013-01-01

    The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC), and soil total nitrogen (TN) were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe) were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  4. VT Biodiversity Project - Plant and Animal Species Atlas

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This database contains town-level totals of documented species records for several plant and animal taxa including vascular plants, trees,...

  5. Evolutionary responses of native plant species to invasive plants: a review.

    Science.gov (United States)

    Oduor, Ayub M O

    2013-12-01

    Strong competition from invasive plant species often leads to declines in abundances and may, in certain cases, cause localized extinctions of native plant species. Nevertheless, studies have shown that certain populations of native plant species can co-exist with invasive plant species,suggesting the possibility of adaptive evolutionary responses of those populations to the invasive plants. Empirical inference of evolutionary responses of the native plant species to invasive plants has involved experiments comparing two conspecific groups of native plants for differences in expression of growth/reproductive traits: populations that have experienced competition from the invasive plant species (i.e. experienced natives) versus populations with no known history of interactions with the invasive plant species (i.e. naıve natives). Here, I employ a meta-analysis to obtain a general pattern of inferred evolutionary responses of native plant species from 53 such studies. In general, the experienced natives had significantly higher growth/reproductive performances than naıve natives, when grown with or without competition from invasive plants.While the current results indicate that certain populations of native plant species could potentially adapt evolutionarily to invasive plant species, the ecological and evolutionary mechanisms that probably underlie such evolutionary responses remain unexplored and should be the focus of future studies.

  6. Phytophthora species, new threats to the plant health in Korea.

    Science.gov (United States)

    Hyun, Ik-Hwa; Choi, Woobong

    2014-12-01

    Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species) of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.

  7. Phytophthora Species, New Threats to the Plant Health in Korea

    Directory of Open Access Journals (Sweden)

    Ik-Hwa Hyun

    2014-12-01

    Full Text Available Given the lack of a resistant genetic pool in host plants, the introduction of exotic invasive pathogens can result in epidemics that affect a specific ecosystem and economy. Plant quarantine, which is designed to protect endemic plant resources, is a highly invaluable safeguard that should keep biosecurity with increasing international trade and global transportation. A total of 34 species of plant pathogens including Phytophthora infestans were documented as introduced from other countries into Korea from 1900 to 2010. The genus Phytophthora, classified in oomycetes, includes more than 120 species that are mostly recognized worldwide as highly invasive plant pathogens. After 2000, over 50 new species of Phytophthora were identified internationally as plant pathogens occurring in crops and forest trees. In Korea, Phytophthora is also one of the most serious plant pathogens. To date, 22 species (about one-fifth of known species of the genus have been identified and reported as plant pathogens in the country. The likelihood of new exotic Phytophthora species being introduced into Korea continues to increase, thus necessitating intensive plant quarantine inspections. As new potential threats to plant health in Korea, six Phytophthora species, namely, P. alni, P. inundata, P. kernoviae, P. pinifolia, P. quercina, and P. ramorum, are discussed in this review with focus on history, disease, biology, management, and plant quarantine issues.

  8. Sensitivity Analysis of Snow Cover to Climate Change Scenarios and Their Impact on Plant Habitats in Alpine Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Keller, F.; Goyette, S.; Beniston, M. [Department of Geosciences, Geography, Fribourg (Switzerland)

    2005-10-01

    In high altitude areas snow cover duration largely determines the length of the growing season of the vegetation. A sensitivity study of snow cover to various scenarios of temperature and precipitation has been conducted to assess how snow cover and vegetation may respond for a very localized area of the high Swiss Alps (2050-2500 m above sea level). A surface energy balance model has been upgraded to compute snow depth and duration, taking into account solar radiation geometry over complex topography. Plant habitat zones have been defined and 23 species, whose photoperiodic preferences were documented in an earlier study, were grouped into each zone. The sensitivity of snowmelt to a change in mean, minimum and maximum temperature alone and a change in mean temperature combined with a precipitation change of +10% in winter and -10% in summer is investigated. A seasonal increase in the mean temperature of 3 to 5 K reduces snow cover depth and duration by more than a month on average. Snow melts two months earlier in the rock habitat zone with the mean temperature scenario than under current climate conditions. This allows the species in this habitat to flower earlier in a warmer climate, but not all plants are able to adapt to such changes.

  9. What determines plant species diversity in Central Africa?

    NARCIS (Netherlands)

    Proosdij, van Andreas S.J.

    2017-01-01

    Planet Earth hosts an incredible biological diversity. Estimated numbers of species occurring on Earth range from 5 to 11 million eukaryotic species including 400,000-450,000 species of plants. Much of this biodiversity remains poorly known and many species have not yet been named or even been

  10. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    exotic plant species due to reduced enemy exposure, few studies have actually analyzed the ecological consequences of this situation in the field. Here, we examined how exposure to aboveground herbivores influences shifts in dominance among exotic and phylogenetically related native plant species...... in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...

  11. Invasive exotic plant species in Sierra Nevada ecosystems

    Science.gov (United States)

    Carla M. D' Antonio; Eric L. Berlow; Karen L. Haubensak

    2004-01-01

    The Sierra Nevada is a topographically and floristically diverse region of the western United States. While it comprises only a fifth of the total land area of California, half of the native plant species in the state occur within the range. In addition, more than 400 plant species are endemic to the Sierra Nevada and many of these are listed as threatened or have...

  12. Research Note Herbaceous plant species richness and composition ...

    African Journals Online (AJOL)

    This study investigated the relationship between grazing veld condition and herbaceous plant species richness in the moist Midlands Mistbelt Grassland in KwaZulu-Natal. The observed herbaceous plant species richness and composition of 12 sample plots (50 m x 50 m) was determined in three study sites using quadrat ...

  13. Evaluation of allelopathic potential of selected plant species on ...

    African Journals Online (AJOL)

    The phytotoxicity of shoot leachates of selected plant species was assessed on germination, and on shootcut and seedling bioassays of Parthenium hysterophorus. Shoot leachates of selected plant species were effective in inhibiting germination of Parthenium seeds, with Azardirachta indica the most effective.

  14. The descriptive capacity of ecological plant species groups

    NARCIS (Netherlands)

    Witte, J.P.M.

    2002-01-01

    In this article we question whether ecological species groups are appropriate for describing the plant cover of the Netherlands with the aid of a national database containing distribution data of indigenous plant species on a kilometre square basis. To answer the question, a comparison is made with

  15. The importance of Anatolian mountains as the cradle of global diversity in Arabis alpina, a key arctic-alpine species.

    Science.gov (United States)

    Ansell, Stephen W; Stenøien, Hans K; Grundmann, Michael; Russell, Stephen J; Koch, Marcus A; Schneider, Harald; Vogel, Johannes C

    2011-08-01

    Anatolia is a biologically diverse, but phylogeographically under-explored region. It is described as either a centre of origin and long-term Pleistocene refugium, or as a centre for genetic amalgamation, fed from distinct neighbouring refugia. These contrasting hypotheses are tested through a global phylogeographic analysis of the arctic-alpine herb, Arabis alpina. Herbarium and field collections were used to sample comprehensively the entire global range, with special focus on Anatolia and Levant. Sequence variation in the chloroplast DNA trnL-trnF region was examined in 483 accessions. A haplotype genealogy was constructed and phylogeographic methods, demographic analysis and divergence time estimations were used to identify the centres of diversity and to infer colonization history. Fifty-seven haplotypes were recovered, belonging to three haplogroups with non-overlapping distributions in (1) North America/Europe/northern Africa, (2) the Caucuses/Iranian Plateau/Arabian Peninsula and (3) Ethiopia-eastern Africa. All haplogroups occur within Anatolia, and all intermediate haplotypes linking the three haplogroups are endemic to central Anatolia and Levant, where haplotypic and nucleotide diversities exceeded all other regions. The local pattern of haplotype distribution strongly resembles the global pattern, and the haplotypes began to diverge approx. 2·7 Mya, coinciding with the climate cooling of the early Middle Pleistocene. The phylogeographic structure of Arabis alpina is consistent with Anatolia being the cradle of origin for global genetic diversification. The highly structured landscape in combination with the Pleistocene climate fluctuations has created a network of mountain refugia and the accumulation of spatially arranged genotypes. This local Pleistocene population history has subsequently left a genetic imprint at the global scale, through four range expansions from the Anatolian diversity centre into Europe, the Near East, Arabia and Africa. Hence

  16. Alpine dams

    Directory of Open Access Journals (Sweden)

    Alain Marnezy

    2009-03-01

    Full Text Available Les barrages-réservoirs de montagne ont été réalisés initialement dans les Alpes pour répondre à la demande d’énergie en période hivernale. Une certaine diversification des usages de l’eau s’est ensuite progressivement développée, en relation avec le développement touristique des collectivités locales. Aujourd’hui, la participation des ouvrages d’Électricité De France à la production de neige de culture représente une nouvelle étape. Dans les régions où les aménagements hydroélectriques sont nombreux, les besoins en eau pour la production de neige peuvent être résolus par prélèvements à partir des adductions EDF. Les gestionnaires de stations échappent ainsi aux inconvénients liés à la construction et à la gestion des « retenues collinaires ». Cette évolution, qui concerne déjà quelques régions alpines comme la haute Maurienne ou le Beaufortin, apparaît comme une forme renouvelée d’intégration territoriale de la ressource en eau.Mountain reservoirs were initially built in the Alps to meet energy needs in the winter. A certain diversification in the uses of water then gradually developed, related to tourism development in the local communities. Today, the use of facilities belonging to EDF (French Electricity Authority to provide water for winter resorts to make artificial snow represents a new phase. By taking water from EDF resources to supply snow-making equipment, resort managers are thus able to avoid the problems related to the construction and management of small headwater dams. This new orientation in the use of mountain water resources already affects a number of alpine regions such as the Upper Maurienne valley and Beaufortain massif and represents a renewed form of the territorial integration of water resources.

  17. Radiocesium storage in soil microbial biomass of undisturbed alpine meadow soils and its relation to {sup 137}Cs soil-plant transfer

    Energy Technology Data Exchange (ETDEWEB)

    Stemmer, Michael [Institute of Soil Research, University of Agricultural Sciences, Gregor-Mendel-Strasse 33, 1180 Vienna (Austria)]. E-mail: michael.stemmer@boku.ac.at; Hromatka, Angelika [Department of Environmental Research, ARC Seibersdorf Research GmbH, 2444 Seibersdorf (Austria); Lettner, Herbert [Institute of Physics and Biophysics, University of Salzburg, Hellbrunner Strasse 34, 5020 Salzburg (Austria); Strebl, Friederike [Department of Environmental Research, ARC Seibersdorf Research GmbH, 2444 Seibersdorf (Austria)

    2005-07-01

    This study focuses on radiocesium storage in soil microbial biomass of undisturbed alpine meadow sites and its relation to the soil-to-plant transfer. Soil and plant samples were taken in August 1999 from an altitude transect (800-1600 m.a.s.l.) at Gastein valley, Austria. Soil samples were subdivided into 3-cm layers for analyses of total, K{sub 2}SO{sub 4}-extractable and microbially stored {sup 137}Cs. Microbial biomass was measured by the fumigation extraction method, and fungal biomass was quantified using ergosterol as biomarker molecule. In general, the quantity of {sup 137}Cs stored in the living soil microbial biomass was relatively small. At the high-altitude meadows, showing high amounts of fungal biomass, microbially stored {sup 137}Cs amounted to 0.64 {+-} 0.14 kBq m{sup -2} which corresponds to about 1.2-2.7% of the total {sup 137}Cs soil inventory. At lower altitudes, microbial {sup 137}Cs content was distinctly smaller and in most cases not measurable at all using the fumigation extraction method. However, a positive correlation between the observed soil-to-plant aggregated transfer factor, microbially stored {sup 137}Cs and fungal biomass was found, which indicates a possible role of fungal biomass in the storage and turnover of {sup 137}Cs in soils and in the {sup 137}Cs uptake by plants.

  18. The Beetle (Coleoptera and True bug (Heteroptera species pool of the alpine “Pian di Gembro” wetland (Villa di Tirano, Italy and its conservation

    Directory of Open Access Journals (Sweden)

    Matteo Montagna

    2011-04-01

    Full Text Available he C oleoptera and Heteroptera species pool was investigated in the “Pian di Gembro” wetland (Villa di T irano, Sondrio, Italy. T he wetland consists of a bog and its surroundings, referred to as wetland components, that are both subjected to a diversified intermediate management regime (DIMR. T he application of the DIMR for plant species conservation resulted in the establishment of 11 wetland zones with a characteristic vegetation. In a three year sampling program, 997 C oleoptera and Heteroptera representing 141 species from 14 families were collected. Among these species, 64 species share both wetland components, 11 are restricted to the bog and 63 were found in the surroundings only. Among the species pool there were 23 tyrphophile taxa and only one tyrphobiont. With the exception of one zone, all zones are inhabited by zone-specific species. By taking into account both the general species pool and the pool of species of particular interest to conservationists, only one zone can be considered as redundant since it is inhabited by species that occur also in other zones. Hence, all the zones, with one exception, are effective for species pool conservation. The existing DIMR implemented for plant species conservation is also effective for conserving the species pool of C oleoptera and Heteroptera.

  19. [Ecological distribution of arbuscular mycorrhizal fungi in alpine grasslands of Tibet Plateau].

    Science.gov (United States)

    Cai, Xiao-bu; Peng, Yue-lin; Gai, Jing-ping

    2010-10-01

    Seventy soil samples with the roots of 37 dominant or common plant species on the grasslands in south and north Tibet Plateau were collected to study the ecological distribution of arbuscular mycorrhizal (AM) fungi in the investigation area. A total of 35 AM fungi species belonging to 5 genera were isolated, among which, 18 species belonged to Glomus, 9 species belonged to Acaulospora, 6 species belonged to Scutellospora, 1 species belonged to Entrophospora, and 1 species belonged to Paraglomus. There were 23 AM fungi species belonging to 4 genera isolated from south Tibet, and 22 species belonging to 4 genera from north Tibet. The Shannon diversity index of AM fungi in south and north Tibet Plateau was 2.31 and 2.75, respectively, and the spore density and species richness were significantly higher in north Tibet than in south Tibet. In different ecological zones, lesser AM fungi common species were found, species distribution was more site-specific, and different dominant species were observed. In alpine grassland, mountain meadow, and alpine meadow, the Shannon index of AM fungi was 1.91, 1.83, and 1.80, respectively; while in severely degraded temperate grassland, this index was only 1.64. The highest species richness of AM fungi occurred at the altitude of 4000-4600 m, but the highest Shannon index and species evenness occurred at the altitude of 4600-5220 m, with the values being 2.42 and 0.79, respectively. At all altitudes, Glomus was the dominant genus, and its relative abundance was higher when the altitude was below 4000 m. Acaulospora was mainly observed at the altitudes higher than 4000 m, Scutellospora was mainly distributed at the altitude 3500-5220 m, Paraglomus mainly occurred in the north alpine meadow with an altitude of 4000-5220 m and occasionally in the alpine steppe, whereas Entrophospora was only found in the south temperate grassland with an altitude of 3500-3700 m.

  20. Fuel breaks affect nonnative species abundance in Californian plant communities

    Science.gov (United States)

    Kyle E Merriam; Jon E. Keeley; Jan L. Beyers

    2006-01-01

    We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment...

  1. Life styles of Colletotrichum species and implications for plant biosecurity

    NARCIS (Netherlands)

    Silva, Dilani D. De; Crous, Pedro W.; Ades, Peter Kevin; Hyde, Kevin D.; Taylor, Paul W. J.

    Colletotrichum is a genus of major plant pathogens causing anthracnose diseases in many plant crops worldwide. The genus comprises a highly diverse group of pathogens that infect a wide range of plant hosts. The life styles of Colletotrichum species can be broadly categorised as necrotrophic,

  2. Impact of climatic change on alpine ecosystems: inference and prediction

    Directory of Open Access Journals (Sweden)

    Nigel G. Yoccoz

    2011-01-01

    Full Text Available Alpine ecosystems will be greatly impacted by climatic change, but other factors, such as land use and invasive species, are likely to play an important role too. Climate can influence ecosystems at several levels. We describe some of them, stressing methodological approaches and available data. Climate can modify species phenology, such as flowering date of plants and hatching date in insects. It can also change directly population demography (survival, reproduction, dispersal, and therefore species distribution. Finally it can effect interactions among species – snow cover for example can affect the success of some predators. One characteristic of alpine ecosystems is the presence of snow cover, but surprisingly the role played by snow is relatively poorly known, mainly for logistical reasons. Even if we have made important progress regarding the development of predictive models, particularly so for distribution of alpine plants, we still need to set up observational and experimental networks which properly take into account the variability of alpine ecosystems and of their interactions with climate.Les écosystèmes alpins vont être grandement influencés par les changements climatiques à venir, mais d’autres facteurs, tels que l’utilisation des terres ou les espèces invasives, pourront aussi jouer un rôle important. Le climat peut influencer les écosystèmes à différents niveaux, et nous en décrivons certains, en mettant l’accent sur les méthodes utilisées et les données disponibles. Le climat peut d’abord modifier la phénologie des espèces, comme la date de floraison des plantes ou la date d’éclosion des insectes. Il peut ensuite affecter directement la démographie des espèces (survie, reproduction, dispersion et donc à terme leur répartition. Il peut enfin agir sur les interactions entre espèces – le couvert neigeux par exemple modifie le succès de certains prédateurs. Une caractéristique des

  3. Assessment of Hyperspectral Remote Sensing for Analyzing the Impact of Human Trampling on Alpine Swards

    Directory of Open Access Journals (Sweden)

    Marlena Kycko

    2017-02-01

    Full Text Available Tourist traffic has been observed to cause changes in vegetation cover, particularly in alpine areas. These changes can be monitored using remote-sensing methods. This paper presents an analysis of the condition of the dominant sward species surrounding the most frequented alpine tourist trails in the Tatra National Park, one of the most visited natural mountain parks in Poland and a UNESCO Man and the Biosphere Reserve. Hyperspectral measurements of interactions between the electromagnetic spectrum and the morphology and physiology of plants were presented. The spectral properties of plants and remote-sensing vegetation indices could be used at a later date for monitoring, for example from the air. The results identified the species' sensitivity and resistance to trampling and allowed an assessment of their physiological condition. Differences were observed in the conditions of trampled and control plants. The alpine swards in the Tatra National Park were assessed as being in good condition, with only small areas located close to the most popular trails showing damage. The proposed method for analyzing the condition of alpine swards could be a useful tool for the future management of protected areas.

  4. Clonal growth and plant species abundance

    Czech Academy of Sciences Publication Activity Database

    Herben, Tomáš; Nováková, Z.; Klimešová, Jitka

    2014-01-01

    Roč. 114, č. 2 (2014), s. 377-388 ISSN 0305-7364 R&D Projects: GA ČR GA526/09/0963 Institutional support: RVO:67985939 Keywords : clonal plants * frequency * plant communities of Central Europe Subject RIV: EF - Botanics Impact factor: 3.654, year: 2014

  5. Distribution patterns of rare earth elements in various plant species

    Energy Technology Data Exchange (ETDEWEB)

    Wyttenbach, A.; Tobler, L.; Furrer, V. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs.

  6. Plant population differentiation and climate change: responses of grassland species along an elevational gradient.

    Science.gov (United States)

    Frei, Esther R; Ghazoul, Jaboury; Matter, Philippe; Heggli, Martin; Pluess, Andrea R

    2014-02-01

    Mountain ecosystems are particularly susceptible to climate change. Characterizing intraspecific variation of alpine plants along elevational gradients is crucial for estimating their vulnerability to predicted changes. Environmental conditions vary with elevation, which might influence plastic responses and affect selection pressures that lead to local adaptation. Thus, local adaptation and phenotypic plasticity among low and high elevation plant populations in response to climate, soil and other factors associated with elevational gradients might underlie different responses of these populations to climate warming. Using a transplant experiment along an elevational gradient, we investigated reproductive phenology, growth and reproduction of the nutrient-poor grassland species Ranunculus bulbosus, Trifolium montanum and Briza media. Seeds were collected from low and high elevation source populations across the Swiss Alps and grown in nine common gardens at three different elevations with two different soil depths. Despite genetic differentiation in some traits, the results revealed no indication of local adaptation to the elevation of population origin. Reproductive phenology was advanced at lower elevation in low and high elevation populations of all three species. Growth and reproduction of T. montanum and B. media were hardly affected by garden elevation and soil depth. In R. bulbosus, however, growth decreased and reproductive investment increased at higher elevation. Furthermore, soil depth influenced growth and reproduction of low elevation R. bulbosus populations. We found no evidence for local adaptation to elevation of origin and hardly any differences in the responses of low and high elevation populations. However, the consistent advanced reproductive phenology observed in all three species shows that they have the potential to plastically respond to environmental variation. We conclude that populations might not be forced to migrate to higher elevations

  7. Forest fires are a risk factor for plant species

    Directory of Open Access Journals (Sweden)

    Živanović Stanimir

    2014-01-01

    Full Text Available The growth, development and the prevalence area of plant species are determined by a variety of influences. Plants are increasingly exposed to the different stress factors. Fires in nature can completely destroy the whole forest complex habitats with great biological diversity of many species in a short period of time. This study deals with the effects of a fire, such as heat, to the plants. After the fire, the environment is being changed and some species in areas affected by the fire will appear only after the fire, some species that had existed before the fire, will be developed in accordance with the new conditions, and some species will disappear after the fire. The aim of the study was to assess the sustainability of the natural vegetation in fire conditions, which is important for natural regeneration and nursery production. Fire temperatures cause irreparable damage of the plant functions or of the plant organs. In the analysis of the plant species the frequency of the fire is often more important than the type and intensity of the fire. Regarding possible long fire season in Serbia, as well as the presented statistics data about the number of fires and burnt areas, it can be concluded that there is an evident risk of plant species of fire, which are more common in this region.

  8. Ensilage of oats and wheatgrass under natural alpine climatic conditions by indigenous lactic acid bacteria species isolated from high-cold areas.

    Science.gov (United States)

    Zhang, Miao; Wang, Xiaojie; Cui, Meiyan; Wang, Yanping; Jiao, Zhen; Tan, Zhongfang

    2018-01-01

    Five different species of selected broad-spectrum antibiotic lactic acid bacteria isolated from extremely high-cold areas were used as starters to ferment indigenous forage oats and wheatgrass under rigid alpine climatic conditions. The five isolates were Lactobacillus plantarum QZ227, Enterococcus mundtii QZ251, Pediococcus cellicola QZ311, Leuconostoc mesenteroides QZ1137 and Lactococcus lactis QZ613, and commercial Lactobacillus plantarum FG1 was used as the positive control and sterile water as the negative control. The minimum and maximum temperatures were -22°C and 23°C during the fermentation process, respectively. The pH of wheatgrass silage fermented by the QZ227 and FG1 inocula reached the expected values (≤4.15) although the pathogens detected in the silage should be further investigated. All of the inocula additives used in this study were effective in improving the fermentation quality of oat silage as indicated by the higher content of lactic acid, lower pH values (≤4.17) and significant inhibition of pathogens. QZ227 exhibited a fermentation ability that was comparable with the commercial inoculum FG1 for the whole process, and the deterioration rate was significantly lower than for FG1 after storage for 7 months. The pathogens Escherichia coli, mold and yeast were counted and isolated from the deteriorated silage. E. coli were the main NH3-N producer while F. fungi and yeast produced very little.

  9. Phytotoxic studies of medicinal plant species of Pakistan

    International Nuclear Information System (INIS)

    Gilani, S.A.; Adnan, M.; Kikuchi, A.; Fujii, Y.; Shinwari, Z.K.; Kazuo, N.; Watanabe, K.N.

    2010-01-01

    Allelopathic screening of 81 medicinal plant species, collected from North West Frontier Province (NWFP) Pakistan, was carried out to identify significantly higher allelopathic species for future phyto chemical analyses. For this purpose, sandwich method was used to test allelopathic potentials of leaf leachates of these plant species against lettuce seeds (Lactuca sativa L.). Two different concentrations of 10 mg and 50 mg of leaf leachates were used in the study. The radicle and hypocotyl growths were measured and compared with control treatments. It was observed that an endemic species Seriphidium kurramense, Andrachne cordifolia and Rhazya stricta were the stronger phyto toxic plants as compared to the other test species. Based on the current screening, three potential medicinal plants are recommended for future bioassay guided isolation of allelochemicals and for genetic diversity studies. It would also be interesting to see correlation between genetic markers and isolated allelochemicals. (author)

  10. Alpine research today

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Brun

    2009-06-01

    Full Text Available Alpine research benefits from several international coordination networks, only one of which – ISCAR (the International Scientific Committee on Research in the Alps – works solely in the Alpine arc. The creation of ISCAR is a consequence of the input and involvement of various Alpine partners around the Alpine Convention. Alpine research now aims to promote an integrated vision of Alpine territories focusing on creating and maintaining spatial and temporal networks of sustainable relationships between humans and the other components of the ecosphere. It combines resource usage with conservation of the biological and cultural diversity that makes up the Alpine identity. This article aims to show: (1 how international Alpine research coordination is organised; (2 the role played by the Alpine Convention as a framework of reference for specifically Alpine research; and (3 the role that the ISCAR international commit-tee and the Interreg “Alpine Space” programmes play in uniting research around territorial challenges relating to biodiversity conservation and territorial development.La recherche sur les Alpes bénéficie de plusieurs réseaux de coordination internationaux dont un seul, le comité international recherche alpine (ISCAR, se consacre exclusivement à l’arc alpin. La création de l’ISCAR est une retombée de la mobilisation des divers partenaires alpins autour de la mise en place de la Convention alpine. Aujourd’hui, la recherche alpine vise à promouvoir une vision intégrée des territoires centrée sur la création et le maintien d’un réseau spatial et temporel de relations durables entre les hommes et les autres composantes de l’écosphère. Elle associe étroitement la mise en valeur des ressources et la conservation des diversités biologiques et culturelles qui constituent l’identité alpine. Cet article a pour ambition de montrer : (1 comment s’organise la coordination internationale des recherches sur les

  11. Allelopathy of plant species of pharmaceutical importance to cultivated species

    Directory of Open Access Journals (Sweden)

    Álisson Sobrinho Maranho

    2012-11-01

    Full Text Available This study aimed to identify possible allelopathic effects of leaf aqueous extracts of Baccharis dracunculifolia DC., Pilocarpus pennatifolius Lem., Cyperus rotundus L., Morus rubra L., Casearia sylvestris Sw., and Plectranthus barbatus Andr. on the germination and initial growth of Lactuca sativa L., Brassica oleracea L. cv. capitata, B. oleracea L. cv. italica, B. pekinenses L., B. campestris L., Lycopersicum esculentum Miller, and Eruca sativa L. To obtain the aqueous extracts, leaves previously dried at a 1g.10mL-1 concentration were used, diluted in six solutions (10, 30, 50, 70, 90, and 100% and compared to control, distilled water, with five replications of 10 seeds for all vegetable species. The aqueous extracts of all species showed allelopathic potential for germination of seeds, the germination speed index, and the initial growth of shoots and roots of vegetable crops. The aqueous extracts of C. rotundus and P. barbatus promoted lower and higher allelopathic effects, respectively, and the vegetal structure mostly affected by the extracts was the primary root. The results indicate the existence of allelopathic potential in the species tested, so there’s a need for adopting care procedures when cultivating vegetables with them.

  12. Plant species richness enhances nitrogen retention in green roof plots.

    Science.gov (United States)

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  13. Ungulate herbivory on alpine willow in the Sangre de Cristo Mountains of Colorado

    Science.gov (United States)

    Zeigenfuss, L.C.; Schoenecker, K.A.; Amburg, L.K.V.

    2011-01-01

    In many areas of the Rocky Mountains, elk (Cervus elaphus) migrate from low-elevation mountain valleys during spring to high-elevation subalpine and alpine areas for the summer. Research has focused on the impacts of elk herbivory on winter-range plant communities, particularly on woody species such as willow and aspen; however, little information is available on the effects of elk herbivory on alpine willows. In the Sangre de Cristo Mountains of south central Colorado, select alpine areas appear to receive high levels of summer elk herbivory, while other areas are nearly unbrowsed. In 2005 and 2008, we measured willow height, cover, and utilization on sites that appeared to be used heavily by elk, as well as on sites that appeared to be used lightly, to determine differences between these communities over time. We found less willow cover and shorter willows at sites that received higher levels of browsing compared to those that had lower levels of browsing. Human recreational use was greater at lightly browsed sites than at highly browsed sites. From 2005 to 2008, willow utilization declined, and willow cover and height increased at sites with heavy browsing, likely owing to ownership change of adjacent valley land which led to (1) removal of grazing competition from, cattle at valley locations and (2) increased human use in alpine areas, which displaced elk. We discuss the implications of increased human use and climate change on elk use of these alpine habitats. ?? 2011.

  14. Connecting infrared spectra with plant traits to identify species

    Science.gov (United States)

    Buitrago, Maria F.; Skidmore, Andrew K.; Groen, Thomas A.; Hecker, Christoph A.

    2018-05-01

    Plant traits are used to define species, but also to evaluate the health status of forests, plantations and crops. Conventional methods of measuring plant traits (e.g. wet chemistry), although accurate, are inefficient and costly when applied over large areas or with intensive sampling. Spectroscopic methods, as used in the food industry and mineralogy, are nowadays applied to identify plant traits, however, most studies analysed visible to near infrared, while infrared spectra of longer wavelengths have been little used for identifying the spectral differences between plant species. This study measured the infrared spectra (1.4-16.0 μm) on individual, fresh leaves of 19 species (from herbaceous to woody species), as well as 14 leaf traits for each leaf. The results describe at which wavelengths in the infrared the leaves' spectra can differentiate most effectively between these plant species. A Quadratic Discrimination Analysis (QDA) shows that using five bands in the SWIR or the LWIR is enough to accurately differentiate these species (Kappa: 0.93, 0.94 respectively), while the MWIR has a lower classification accuracy (Kappa: 0.84). This study also shows that in the infrared spectra of fresh leaves, the identified species-specific features are correlated with leaf traits as well as changes in their values. Spectral features in the SWIR (1.66, 1.89 and 2.00 μm) are common to all species and match the main features of pure cellulose and lignin spectra. The depth of these features varies with changes of cellulose and leaf water content and can be used to differentiate species in this region. In the MWIR and LWIR, the absorption spectra of leaves are formed by key species-specific traits including lignin, cellulose, water, nitrogen and leaf thickness. The connection found in this study between leaf traits, features and spectral signatures are novel tools to assist when identifying plant species by spectroscopy and remote sensing.

  15. Larvicidal activity of six Nigerian plant species against Anopheles ...

    African Journals Online (AJOL)

    This study evaluated the larvicidal activity of extracts from six Nigerian plant species (Zanthoxylum zanthoxyloides, Piper guineense, Nicotianat abacum, Erythrophleum suaveoleus, Jatropha curcas and Petiveria alliacea) against laboratory-bred Anopheles gambiae and Aedes aegypti larvae. Zanthoxylum zanthoxyloides ...

  16. Arcto-alpine species at their niche margin: The Western Carpathian refugia of Juncus castaneus and J. triglumis in Slovakia

    Czech Academy of Sciences Publication Activity Database

    Dítě, D.; Peterka, T.; Dítětová, Z.; Hájková, Petra; Hájek, P.

    2017-01-01

    Roč. 54, 1-3 (2017), s. 67-82 ISSN 0003-3847 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : distribution * relict species * vegetation Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 0.600, year: 2016

  17. Species composition, Plant Community structure and Natural ...

    African Journals Online (AJOL)

    Bheema

    objective of this work was to study the vegetation structure, composition and Natural ... Vegetation classification was performed using PC - ORD for windows version 5.0. Five communities were recognized. Results showed that a total of 157 plant ..... Vegetation types and forest fire management in Ethiopia In: MOA & GTZ.

  18. Thermal Hyperspectral Remote Sensing for Plant Species and Stress Detection

    Science.gov (United States)

    Schlerf, M.; Rock, G.; Ullah, S.; Gerhards, M.; Udelhoven, T.; Skidmore, A. K.

    2014-12-01

    Thermal infrared (TIR) spectroscopy offers a novel opportunity for measuring emissivity spectra of natural surfaces. Emissivity spectra are not directly measured, they first have to be retrieved from the raw measurements. Once retrieved, the spectra can be used, for example, to discriminate plant species or to detect plant stress. Knowledge of plant species distribution is essential for the sustainable management of ecosystems. Remote sensing of plant species has so far mostly been limited to data in the visible and near-infrared where, however, different species often reveal similar reflectance curves. Da Luz and Crowley showed in a recent paper that in the TIR plants indeed have distinct spectral features. Also with a certain species, subtle changes of emissivity in certain wavebands may occur, when biochemical compounds change due to osmotic adjustment induced by water stress. Here we show, that i) emissive imaging spectroscopy allows for reliable and accurate retrieval of plant emissivity spectra, ii) emissivity spectra are well suited to discriminate plant species, iii) a reduction in stomatal conductance (caused by stress) changes the thermal infrared signal. For 13 plant species in the laboratory and for 8 plant species in a field setup emissivity spectra were retrieved. A comparison shows, that for most species the shapes of the emissivity curves agree quite well, but that clear offsets between the two types of spectra exist. Discrimination analysis revealed that based on the lab spectra, 13 species could be distinguished with an average overall classification accuracy of 92% using the 6 best spectral bands. For the field spectra (8 species), a similar high OAA of 89% was achieved. Species discrimination is likely to be possible due to variations in the composition of the superficial epidermal layer of plant leaves and in internal chemical concentrations producing unique emissivity features. However, to date, which spectral feature is responsible for which

  19. Widespread plant species: Natives versus aliens in our changing world

    Science.gov (United States)

    Stohlgren, T.J.; Pysek, P.; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D.M.; Wilson, J.R.U.; Murray, B.R.; Phillips, M.L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments. ?? 2011 Springer Science+Business Media B.V.

  20. Widespread plant species: natives vs. aliens in our changing world

    Science.gov (United States)

    Stohlgren, Thomas J.; Pyšek, Petr; Kartesz, John; Nishino, Misako; Pauchard, Aníbal; Winter, Marten; Pino, Joan; Richardson, David M.; Wilson, John R.U.; Murray, Brad R.; Phillips, Megan L.; Ming-yang, Li; Celesti-Grapow, Laura; Font, Xavier

    2011-01-01

    Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.

  1. Human population, grasshopper and plant species richness in European countries

    Science.gov (United States)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  2. Species distribution modelling for plant communities: Stacked single species or multivariate modelling approaches?

    Science.gov (United States)

    Emilie B. Henderson; Janet L. Ohmann; Matthew J. Gregory; Heather M. Roberts; Harold S.J. Zald

    2014-01-01

    Landscape management and conservation planning require maps of vegetation composition and structure over large regions. Species distribution models (SDMs) are often used for individual species, but projects mapping multiple species are rarer. We compare maps of plant community composition assembled by stacking results from many SDMs with multivariate maps constructed...

  3. Nitric oxide and reactive oxygen species in plant biotic interactions.

    Science.gov (United States)

    Scheler, Claudia; Durner, Jörg; Astier, Jeremy

    2013-08-01

    Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plants. Recent progress has been made in defining their role during plant biotic interactions. Over the last decade, their function in disease resistance has been highlighted and focused a lot of investigations. Moreover, NO and ROS have recently emerged as important players of defense responses after herbivore attacks. Besides their role in plant adaptive response development, NO and ROS have been demonstrated to be involved in symbiotic interactions between plants and microorganisms. Here we review recent data concerning these three sides of NO and ROS functions in plant biotic interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Plant Species Recovery on a Compacted Skid Road

    Directory of Open Access Journals (Sweden)

    Beyza Sat Gungor

    2008-05-01

    Full Text Available This study was executed to determine the plant species of herbaceous cover in a skid road subjected to soil compaction due to timber skidding in a beech (Fagus orientalis Lipsky. stand. Our previous studies have shown that ground based timber skidding destroys the soils extremely, and degradations on ecosystem because of the timber skidding limit recovery and growth of plant cover on skid roads. However, some plant species show healthy habitat, recovery and they can survive after the extreme degradation in study area. We evaluated composition of these plant species and their cover-abundance scales in 100 m x 3 m transect. 15 plant species were determined belongs to 12 plant families and Liliaceae was the highest representative plant family. Smilax aspera L., Epimedium pubigerum (DC. Moren et Decaisne, Carex distachya Desf. var. distachya Desf., Pteridium aquilinum (L. Kuhn., Trachystemon orientalis (L. G. Don, Hedera helix L. have the highest coverabundance scale overall of determined species on compacted skid road.

  5. Response of rhizosphere soil microbial to Deyeuxia angustifolia encroaching in two different vegetation communities in alpine tundra.

    Science.gov (United States)

    Li, Lin; Xing, Ming; Lv, Jiangwei; Wang, Xiaolong; Chen, Xia

    2017-02-21

    Deyeuxia angustifolia (Komarov) Y. L Chang is an herb species originating from the birch forests in the Changbai Mountain. Recently, this species has been found encroaching into large areas in the western slopes of the alpine tundra in the Changbai Mountain, threatening the tundra ecosystem. In this study, we systematically assessed the response of the rhizosphere soil microbial to D. angustifolia encroaching in alpine tundra by conducting experiments for two vegetation types (shrubs and herbs) by real-time PCR and Illumina Miseq sequencing methods. The treatments consisted of D. angustifolia sites (DA), native sites (NS, NH) and encroaching sites (ES, EH). Our results show that (1) Rhizosphere soil properties of the alpine tundra were significantly impacted by D. angustifolia encroaching; microbial nutrient cycling and soil bacterial communities were shaped to be suitable for D. angustifolia growth; (2) The two vegetation community rhizosphere soils responded differently to D. angustifolia encroaching; (3) By encroaching into both vegetation communities, D. angustifolia could effectively replace the native species by establishing positive plant-soil feedback. The strong adaptation and assimilative capacity contributed to D. angustifolia encroaching in the alpine tundra. Our research indicates that D. angustifolia significantly impacts the rhizosphere soil microbial of the alpine tundra.

  6. Plant species richness regulates soil respiration through changes in productivity.

    NARCIS (Netherlands)

    Tavares Correa Dias, A.; van Ruijven, J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  7. Plant species richness regulates soil respiration through changes in productivity

    NARCIS (Netherlands)

    Dias, A.A.; Ruijven, van J.; Berendse, F.

    2010-01-01

    Soil respiration is an important pathway of the C cycle. However, it is still poorly understood how changes in plant community diversity can affect this ecosystem process. Here we used a long-term experiment consisting of a gradient of grassland plant species richness to test for effects of

  8. Eco-taxonomic distribution of plant species around motor mechanic ...

    African Journals Online (AJOL)

    A survey of plant species and their families present in auto mechanic workshops in Benin City and Asaba was carried out. The frequency of occurrence of plants in the sites visited was used to determine prevalence. Peperomia pellucida occurred most in all the sites visited with a 55% frequency. The high rate of occurrence ...

  9. Antimicrobial activity of some endemic plant species from Turkey ...

    African Journals Online (AJOL)

    Six plant extracts obtained from different parts such as the leaves, flowers and seeds of four species of the endemic plants in Turkey were tested on a total of 14 microorganisms, 10 of which were bacterial strains and 4 yeast strains. Verbascum eriocarpum (flower) extract was found to be effective against Staphylococcus ...

  10. Plant species responses to oil degradation and toxicity reduction in ...

    African Journals Online (AJOL)

    Plant species responses to oil degradation and toxicity reduction in soil. ... Abstract. A field project located at the Botanical garden of the University of Port Harcourt was designed to evaluate changes in contaminants concentration and toxicity during phytoremediation. Vegetated plots were established by planting different ...

  11. ecotaxonomic baseline evaluation of the plant species in a ...

    African Journals Online (AJOL)

    Admin

    representative plant species of important ethnobotanical values were recorded on the vegetation study of the site. This corroborate with the fact that ethnobotany is increasingly becoming an important aspect of plant research emanating from the global drive towards the documentation of customary use, the need for.

  12. Assessing The Ecological Status Of Woody Plant Species At Eroded ...

    African Journals Online (AJOL)

    Woody plant species up to 0.10 m and above in height growing in and within 0.5 m from the edges of ten gully erosion areas of Abia and Imo states of Nigeria were enumerated in January and July 2000 through July 2003. Questionnaires were served to find the causal factors of each gully. The plants were enumerated and ...

  13. Spatial heterogeneity influences native and nonnative plant species richness.

    Science.gov (United States)

    Kumar, Sunil; Stohlgren, Thomas J; Chong, Geneva W

    2006-12-01

    Spatial heterogeneity may have differential effects on the distribution of native and nonnative plant species richness. We examined the effects of spatial heterogeneity on native and nonnative plant species richness distributions in the central part of Rocky Mountain National Park, Colorado, USA. Spatial heterogeneity around vegetation plots was characterized using landscape metrics, environmental/topographic variables (slope, aspect, elevation, and distance from stream or river), and soil variables (nitrogen, clay, and sand). The landscape metrics represented five components of landscape heterogeneity and were measured at four spatial extents (within varying radii of 120, 240, 480, and 960 m) using the FRAGSTATS landscape pattern analysis program. Akaike's Information Criterion adjusted for small sample size (AICc) was used to select the best models from a set of multiple linear regression models developed for native and nonnative plant species richness at four spatial extents and three levels of ecological hierarchy (i.e., landscape, land cover, and community). Both native and nonnative plant species richness were positively correlated with edge density, Simpson's diversity index and interspersion/juxtaposition index, and were negatively correlated with mean patch size. The amount of variation explained at four spatial extents and three hierarchical levels ranged from 30% to 70%. At the landscape level, the best models explained 43% of the variation in native plant species richness and 70% of the variation in nonnative plant species richness (240-m extent). In general, the amount of variation explained was always higher for nonnative plant species richness, and the inclusion of landscape metrics always significantly improved the models. The best models explained 66% of the variation in nonnative plant species richness for both the conifer land cover type and lodgepole pine community. The relative influence of the components of spatial heterogeneity differed for

  14. Dispersal limitation does not control high elevational distribution of alien plant species in the southern Sierra Nevada, California

    Science.gov (United States)

    Rundel, Philip W.; Keeley, Jon E.

    2016-01-01

    Patterns of elevational distribution of alien plant species in the southern Sierra Nevada of California were used to test the hypothesis that alien plant species invading high elevations around the world are typically climate generalists capable of growing across a wide elevational range. The Sierra Nevada has been heavily impacted for more than a century and a half, first by heavy grazing up into high elevation meadows, followed by major logging, and finally, by impacts associated with recreational use. The comparative elevational patterns of distribution and growth form were compared for native and alien plant species in the four families (Asteraceae, Brassicaceae, Fabaceae, and Poaceae) that contribute the majority of naturalized aliens in the study area. The distribution of realized climatic niche breadth, as measured by elevational range of occurrence, was virtually identical for alien and native species, with both groups showing a roughly Gaussian distribution peaking with species whose range covers a span of 1500–1999 m. In contrast to alien species, which only rarely occurred at higher elevations, native species showed a distribution of upper elevation limits peaking at 3000–3499 m, an elevation that corresponds to the zone of upper montane and subalpine forests. Consistent with a hypothesis of abiotic limitations, only a few alien species have been ecologically successful invaders at subalpine and alpine elevations above 2500 m. The low diversity of aliens able to become established in these habitats is unlikely due to dispersal limitations, given the long history of heavy grazing pressure at high elevations across this region. Instead, this low diversity is hypothesized to be a function of life history traits and multiple abiotic stresses that include extremes of cold air and soil temperature, heavy snowfall, short growing seasons, and low resource availability. These findings have significant implications for resource managers.

  15. Testing the stress-gradient hypothesis at the roof of the world: effects of the cushion plant Thylacospermum caespitosum on species assemblages.

    Directory of Open Access Journals (Sweden)

    Miroslav Dvorský

    Full Text Available Many cushion plants ameliorate the harsh environment they inhabit in alpine ecosystems and act as nurse plants, with significantly more species growing within their canopy than outside. These facilitative interactions seem to increase with the abiotic stress, thus supporting the stress-gradient hypothesis. We tested this prediction by exploring the association pattern of vascular plants with the dominant cushion plant Thylacospermum caespitosum (Caryophyllaceae in the arid Trans-Himalaya, where vascular plants occur at one of the highest worldwide elevational limits. We compared plant composition between 1112 pair-plots placed both inside cushions and in surrounding open areas, in communities from cold steppes to subnival zones along two elevational gradients (East Karakoram: 4850-5250 m and Little Tibet: 5350-5850 m. We used PERMANOVA to assess differences in species composition, Friedman-based permutation tests to determine individual species habitat preferences, species-area curves to assess whether interactions are size-dependent and competitive intensity and importance indices to evaluate plant-plant interactions. No indications for net facilitation were found along the elevation gradients. The open areas were not only richer in species, but not a single species preferred to grow exclusively inside cushions, while 39-60% of 56 species detected had a significant preference for the habitat outside cushions. Across the entire elevation range of T. caespitosum, the number and abundance of species were greater outside cushions, suggesting that competitive rather than facilitative interactions prevail. This was supported by lower soil nutrient contents inside cushions, indicating a resource preemption, and little thermal amelioration at the extreme end of the elevational gradient. We attribute the negative associations to competition for limited resources, a strong environmental filter in arid high-mountain environment selecting the stress

  16. Intraspecific genetic variation and species coexistence in plant communities.

    Science.gov (United States)

    Ehlers, Bodil K; Damgaard, Christian F; Laroche, Fabien

    2016-01-01

    Many studies report that intraspecific genetic variation in plants can affect community composition and coexistence. However, less is known about which traits are responsible and the mechanisms by which variation in these traits affect the associated community. Focusing on plant-plant interactions, we review empirical studies exemplifying how intraspecific genetic variation in functional traits impacts plant coexistence. Intraspecific variation in chemical and architectural traits promotes species coexistence, by both increasing habitat heterogeneity and altering competitive hierarchies. Decomposing species interactions into interactions between genotypes shows that genotype × genotype interactions are often intransitive. The outcome of plant-plant interactions varies with local adaptation to the environment and with dominant neighbour genotypes, and some plants can recognize the genetic identity of neighbour plants if they have a common history of coexistence. Taken together, this reveals a very dynamic nature of coexistence. We outline how more traits mediating plant-plant interactions may be identified, and how future studies could use population genetic surveys of genotype distribution in nature and methods from trait-based ecology to better quantify the impact of intraspecific genetic variation on plant coexistence. © 2016 The Author(s).

  17. Factors determining plant species richness in Alaskan artic tundra

    NARCIS (Netherlands)

    Welle, van der M.E.W.; Vermeulen, P.J.; Shaver, G.R.; Berendse, F.

    2003-01-01

    We studied the relationship between plant N:P ratio, soil characteristics and species richness in wet sedge and tussock tundra in northern Alaska at seven sites. We also collected data on soil characteristics, above-ground biomass, species richness and composition. The N:P ratio of the vegetation

  18. Season and plant species influence foraging efficiency of Nguni ...

    African Journals Online (AJOL)

    This study investigated the seasonal and plant species patterns of short-term intake rate (STIR) by Nguni goats fed six common browse species in subhumid subtropical savannas. Six 2-year-old castrated Nguni goats weighing an average of 26 kg each were penned individually and maintained on a basal diet of ram, lamb ...

  19. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall.

    Science.gov (United States)

    Li, Ruicheng; Luo, Tianxiang; Mölg, Thomas; Zhao, Jingxue; Li, Xiang; Cui, Xiaoyong; Du, Mingyuan; Tang, Yanhong

    2016-02-09

    The alpine meadow on the Tibetan Plateau is the highest and largest pasture in the world, and its formation and distribution are mainly controlled by Indian summer monsoon effects. However, little is known about how monsoon-related cues may trigger spring phenology of the vast alpine vegetation. Based on the 7-year observations with fenced and transplanted experiments across lower to upper limits of Kobresia meadows in the central plateau (4400-5200 m), we found that leaf unfolding dates of dominant sedge and grass species synchronized with monsoon onset, regardless of air temperature. We also found similar patterns in a 22-year data set from the northeast plateau. In the monsoon-related cues for leaf unfolding, the arrival of monsoon rainfall is crucial, while seasonal air temperatures are already continuously above 0 °C. In contrast, the early-emerging cushion species generally leafed out earlier in warmer years regardless of precipitation. Our data provide evidence that leaf unfolding of dominant species in the alpine meadows senses the arrival of monsoon-season rainfall. These findings also provide a basis for interpreting the spatially variable greening responses to warming detected in the world's highest pasture, and suggest a phenological strategy for avoiding damages of pre-monsoon drought and frost to alpine plants.

  20. Genetic population structure of the alpine species Rhododendron pseudochrysanthum sensu lato (Ericaceae inferred from chloroplast and nuclear DNA

    Directory of Open Access Journals (Sweden)

    Wang Wei-Kuang

    2011-04-01

    Full Text Available Abstract Background A complex of incipient species with different degrees of morphological or ecological differentiation provides an ideal model for studying species divergence. We examined the phylogeography and the evolutionary history of the Rhododendron pseudochrysanthum s. l. Results Systematic inconsistency was detected between gene genealogies of the cpDNA and nrDNA. Rooted at R. hyperythrum and R. formosana, both trees lacked reciprocal monophyly for all members of the complex. For R. pseudochrysanthum s.l., the spatial distribution of the cpDNA had a noteworthy pattern showing high genetic differentiation (FST = 0.56-0.72 between populations in the Yushan Mountain Range and populations of the other mountain ranges. Conclusion Both incomplete lineage sorting and interspecific hybridization/introgression may have contributed to the lack of monophyly among R. hyperythrum, R. formosana and R. pseudochrysanthum s.l. Independent colonizations, plus low capabilities of seed dispersal in current environments, may have resulted in the genetic differentiation between populations of different mountain ranges. At the population level, the populations of Central, and Sheishan Mountains may have undergone postglacial demographic expansion, while populations of the Yushan Mountain Range are likely to have remained stable ever since the colonization. In contrast, the single population of the Alishan Mountain Range with a fixed cpDNA haplotype may have experienced bottleneck/founder's events.

  1. Genetic population structure of the alpine species Rhododendron pseudochrysanthum sensu lato (Ericaceae) inferred from chloroplast and nuclear DNA.

    Science.gov (United States)

    Huang, Chi-Chun; Hung, Kuo-Hsiang; Hwang, Chi-Chuan; Huang, Jao-Ching; Lin, Hung-Du; Wang, Wei-Kuang; Wu, Pei-Yin; Hsu, Tsai-Wen; Chiang, Tzen-Yuh

    2011-04-19

    A complex of incipient species with different degrees of morphological or ecological differentiation provides an ideal model for studying species divergence. We examined the phylogeography and the evolutionary history of the Rhododendron pseudochrysanthum s. l. Systematic inconsistency was detected between gene genealogies of the cpDNA and nrDNA. Rooted at R. hyperythrum and R. formosana, both trees lacked reciprocal monophyly for all members of the complex. For R. pseudochrysanthum s.l., the spatial distribution of the cpDNA had a noteworthy pattern showing high genetic differentiation (FST=0.56-0.72) between populations in the Yushan Mountain Range and populations of the other mountain ranges. Both incomplete lineage sorting and interspecific hybridization/introgression may have contributed to the lack of monophyly among R. hyperythrum, R. formosana and R. pseudochrysanthum s.l. Independent colonizations, plus low capabilities of seed dispersal in current environments, may have resulted in the genetic differentiation between populations of different mountain ranges. At the population level, the populations of Central, and Sheishan Mountains may have undergone postglacial demographic expansion, while populations of the Yushan Mountain Range are likely to have remained stable ever since the colonization. In contrast, the single population of the Alishan Mountain Range with a fixed cpDNA haplotype may have experienced bottleneck/founder's events.

  2. Mycorrhizal status helps explain invasion success of alien plant species.

    Science.gov (United States)

    Menzel, Andreas; Hempel, Stefan; Klotz, Stefan; Moora, Mari; Pyšek, Petr; Rillig, Matthias C; Zobel, Martin; Kühn, Ingolf

    2017-01-01

    It is still debated whether alien plants benefit from being mycorrhizal, or if engaging in the symbiosis constrains their establishment and spread in new regions. We analyzed the association between mycorrhizal status of alien plant species in Germany and their invasion success. We compared whether the representation of species with different mycorrhizal status (obligate, facultative, or non-mycorrhizal) differed at several stages of the invasion process. We used generalized linear models to explain the occupied geographical range of alien plants, incorporating interactions of mycorrhizal status with plant traits related to morphology, reproduction, and life-history. Non-naturalized aliens did not differ from naturalized aliens in the relative frequency of different mycorrhizal status categories. Mycorrhizal status significantly explained the occupied range of alien plants; with facultative mycorrhizal species inhabiting a larger range than non-mycorrhizal aliens and obligate mycorrhizal plant species taking an intermediate position. Aliens with storage organs, shoot metamorphoses, or specialized structures promoting vegetative dispersal occupied a larger range when being facultative mycorrhizal. We conclude that being mycorrhizal is important for the persistence of aliens in Germany and constitutes an advantage compared to being non-mycorrhizal. Being facultative mycorrhizal seems to be especially advantageous for successful spread, as the flexibility of this mycorrhizal status may enable plants to use a broader set of ecological strategies. © 2016 by the Ecological Society of America.

  3. Mercury uptake and accumulation by four species of aquatic plants

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Kathleen [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)]. E-mail: skinnk@sage.edu; Wright, Nicole [NEIWPCC-NYSDEC, 625 Broadway, 4th Floor, Albany, NY 12233-3502 (United States)]. E-mail: ndwright@gw.dec.state.ny.us; Porter-Goff, Emily [Department of Biology, Russell Sage College, 45 Ferry Street, Troy, NY 12180 (United States)

    2007-01-15

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox[reg] (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox[reg] results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively. - Four species of aquatic plants reduced mercury in water.

  4. Contrasting species-environment relationships in communities of testate amoebae, bryophytes and vascular plants along the fen-bog gradient.

    Science.gov (United States)

    Lamentowicz, Mariusz; Lamentowicz, Lukasz; van der Knaap, Willem O; Gabka, Maciej; Mitchell, Edward A D

    2010-04-01

    We studied the vegetation, testate amoebae and abiotic variables (depth of the water table, pH, electrical conductivity, Ca and Mg concentrations of water extracted from mosses) along the bog to extremely rich fen gradient in sub-alpine peatlands of the Upper Engadine (Swiss Alps). Testate amoeba diversity was correlated to that of mosses but not of vascular plants. Diversity peaked in rich fen for testate amoebae and in extremely rich fen for mosses, while for testate amoebae and mosses it was lowest in bog but for vascular plants in extremely rich fen. Multiple factor and redundancy analyses (RDA) revealed a stronger correlation of testate amoebae than of vegetation to water table and hydrochemical variables and relatively strong correlation between testate amoeba and moss community data. In RDA, hydrochemical variables explained a higher proportion of the testate amoeba and moss data than water table depth. Abiotic variables explained a higher percentage of the species data for testate amoebae (30.3% or 19.5% for binary data) than for mosses (13.4%) and vascular plants (10%). These results show that (1) vascular plant, moss and testate amoeba communities respond differently to ecological gradients in peatlands and (2) testate amoebae are more strongly related than vascular plants to the abiotic factors at the mire surface. These differences are related to vertical trophic gradients and associated niche differentiation.

  5. Generalist Bee Species on Brazilian Bee-Plant Interaction Networks

    Directory of Open Access Journals (Sweden)

    Astrid de Matos Peixoto Kleinert

    2012-01-01

    Full Text Available Determining bee and plant interactions has an important role on understanding general biology of bee species as well as the potential pollinating relationship between them. Bee surveys have been conducted in Brazil since the end of the 1960s. Most of them applied standardized methods and had identified the plant species where the bees were collected. To analyze the most generalist bees on Brazilian surveys, we built a matrix of bee-plant interactions. We estimated the most generalist bees determining the three bee species of each surveyed locality that presented the highest number of interactions. We found 47 localities and 39 species of bees. Most of them belong to Apidae (31 species and Halictidae (6 families and to Meliponini (14 and Xylocopini (6 tribes. However, most of the surveys presented Apis mellifera and/or Trigona spinipes as the most generalist species. Apis mellifera is an exotic bee species and Trigona spinipes, a native species, is also widespread and presents broad diet breath and high number of individuals per colony.

  6. Plant-soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Putten, van der W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  7. Metalaxyl toxicity, uptake, and distribution in several ornamental plant species.

    Science.gov (United States)

    Wilson, P C; Whitwell, T; Klaine, S J

    2001-01-01

    Phytoremediation depends on the ability of plants to tolerate and assimilate contaminants. This research characterized the interaction between several ornamental plant species and the fungicidal active ingredient, metalaxyl [N-(2,6-dimethylphenyl)-N-(methoxyacetyl)alanine methyl ester]. Species evaluated included sweetflag (Acorus gramineus Sol. ex Aiton), canna (Canna hybrida L. 'Yellow King Humbert'), parrotfeather [Myriophyllum aquaticum (Vell.) Verdc.], and pickerelweed (Pontederia cordata L.). Metalaxyl tolerance levels for each species were determined by exposing plants for 7 d to solutions containing 0, 5, 10, 25, 50, 75, or 100 mg metalaxyl L-1 aqueous nutrient media. Response endpoints included fresh mass production after 7 d exposure and 7 d post-exposure and quantum efficiency using dark-adapted (Fv/Fm) and light-adapted (fluorescence yields) plants. Metalaxyl uptake and distribution within the plant was determined by growing plants in aqueous nutrient media containing 1.18 x 10(6) Bq L-1 [14C]metalaxyl (0.909 mg L-1) for 1, 3, 5, or 7 d. Plant tissues were combusted and analyzed by liquid scintillation counting. Metalaxyl had no effects on the endpoints measured, except for fresh mass production of sweetflag at the 75 and 100 mg L-1 treatment levels. However, leaf necrosis was apparent in most species after 5 d exposure to concentrations greater than 25 mg L-1. Metalaxyl removal from the spiked nutrient media ranged from 15 to 60% during the 7-d exposure period. The majority of metalaxyl removed from the solution was detected within individual plants. In nearly all cases, activity from the radiolabeled pesticide accumulated in the leaves. Uptake of metalaxyl was correlated with water uptake throughout the 7 d. These results suggest that all species examined may be good candidates for incorporation into a phytoremediation scheme for metalaxyl.

  8. Floristic summary of plant species in the air pollution literature.

    Science.gov (United States)

    Bennett, J P

    1996-01-01

    A floristic summary and analysis was performed on a list of the plant species that have been studied for the effects of gaseous and chemical air pollutants on vegetation in order to compare the species with the flora of North America north of Mexico. The scientific names of 2081 vascular plant species were extracted from almost 4000 journal articles stored in two large literature databases on the effects of air pollutants on plants. Three quarters of the plant species studied occur in North America, but this was only 7% of the total North American flora. Sixteen percent and 56% of all North American genera and families have been studied. The most studied genus is Pinus with 70% of the North American species studied, and the most studied family is the grass family, with 12% of the species studied. Although Pinus is ranked 86th in the North American flora, the grass family is ranked third, indicating that representation at the family level is better than at the genus level. All of the top ten families in North America are represented in the top 20 families in the air pollution effects literature, but only one genus (Lupinus) in the top ten genera in North America is represented in the top thirteen genera in the air pollution literature.

  9. Comparative cross-species alternative splicing in plants.

    Science.gov (United States)

    Ner-Gaon, Hadas; Leviatan, Noam; Rubin, Eitan; Fluhr, Robert

    2007-07-01

    Alternative splicing (AS) can add significantly to genome complexity. Plants are thought to exhibit less AS than animals. An algorithm, based on expressed sequence tag (EST) pairs gapped alignment, was developed that takes advantage of the relatively small intron and exon size in plants and directly compares pairs of ESTs to search for AS. EST pairs gapped alignment was first evaluated in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum) for which annotated genome sequence is available and was shown to accurately predict splicing events. The method was then applied to 11 plant species that include 17 cultivars for which enough ESTs are available. The results show a large, 3.7-fold difference in AS rates between plant species with Arabidopsis and rice in the lower range and lettuce (Lactuca sativa) and sorghum (Sorghum bicolor) in the upper range. Hence, compared to higher animals, plants show a much greater degree of variety in their AS rates and in some plant species the rates of animal and plant AS are comparable although the distribution of AS types may differ. In eudicots but not monocots, a correlation between genome size and AS rates was detected, implying that in eudicots the mechanisms that lead to larger genomes are a driving force for the evolution of AS.

  10. Resource heterogeneity, soil fertility, and species diversity: effects of clonal species on plant communities.

    Science.gov (United States)

    Eilts, J Alexander; Mittelbach, Gary G; Reynolds, Heather L; Gross, Katherine L

    2011-05-01

    Spatial heterogeneity in soil resources is widely thought to promote plant species coexistence, and this mechanism figures prominently in resource-ratio models of competition. However, most experimental studies have found that nutrient enhancements depress diversity regardless of whether nutrients are uniformly or heterogeneously applied. This mismatch between theory and empirical pattern is potentially due to an interaction between plant size and the scale of resource heterogeneity. Clonal plants that spread vegetatively via rhizomes or stolons can grow large and may integrate across resource patches, thus reducing the positive effect of small-scale resource heterogeneity on plant species richness. Many rhizomatous clonal species respond strongly to increased soil fertility, and they have been hypothesized to drive the descending arm of the hump-shaped productivity-diversity relationship in grasslands. We tested whether clonals reduce species richness in a grassland community by manipulating nutrient heterogeneity, soil fertility, and the presence of rhizomatous clonal species in a 6-year field experiment. We found strong and consistent negative effects of clonals on species richness. These effects were greatest at high fertility and when soil resources were applied at a scale at which rhizomatous clonals could integrate across resource patches. Thus, we find support for the hypothesis that plant size and resource heterogeneity interact to determine species diversity.

  11. Beyond arctic and alpine: the influence of winter climate on temperate ecosystems.

    Science.gov (United States)

    Ladwig, Laura M; Ratajczak, Zak R; Ocheltree, Troy W; Hafich, Katya A; Churchill, Amber C; Frey, Sarah J K; Fuss, Colin B; Kazanski, Clare E; Muñoz, Juan D; Petrie, Matthew D; Reinmann, Andrew B; Smith, Jane G

    2016-02-01

    Winter climate is expected to change under future climate scenarios, yet the majority of winter ecology research is focused in cold-climate ecosystems. In many temperate systems, it is unclear how winter climate relates to biotic responses during the growing season. The objective of this study was to examine how winter weather relates to plant and animal communities in a variety of terrestrial ecosystems ranging from warm deserts to alpine tundra. Specifically, we examined the association between winter weather and plant phenology, plant species richness, consumer abundance, and consumer richness in 11 terrestrial ecosystems associated with the U.S. Long-Term Ecological Research (LTER) Network. To varying degrees, winter precipitation and temperature were correlated with all biotic response variables. Bud break was tightly aligned with end of winter temperatures. For half the sites, winter weather was a better predictor of plant species richness than growing season weather. Warmer winters were correlated with lower consumer abundances in both temperate and alpine systems. Our findings suggest winter weather may have a strong influence on biotic activity during the growing season and should be considered in future studies investigating the effects of climate change on both alpine and temperate systems.

  12. Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach

    DEFF Research Database (Denmark)

    Bothwell, H.; Bisbing, S.; Therkildsen, Nina Overgaard

    2013-01-01

    loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi...

  13. Mineral composition of the plant species of the Hypercum family

    International Nuclear Information System (INIS)

    Marichkova, L.; K ostarova, O.

    1985-01-01

    Using the neutron activation analysis totally 18 macro and microelements in the epigeous parts of some species of the Hypercum family as well as their 10% water extracts were determined. The elements Mn, Ni, Sr were analyzed in epigeous parts of the plants by X-ray fluorescence analysis. The quantities found out in the extracts were in the order lower than that in the epigeous parts of the plants exept iron where the concentration in the extracts is two order lower than that in epigeous. The elements Ce, Cd, Se and Sb were not found in 10% water plant extracts. Toxic elements such as As and Hg were not found in the epigeous parts of the plants in the examined species

  14. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate.

    Science.gov (United States)

    Reddy, Krishna N; Rimando, Agnes M; Duke, Stephen O; Nandula, Vijay K

    2008-03-26

    Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. The objective of this study was to determine if there is any correlation of metabolism of glyphosate to AMPA in different plant species and their natural level of resistance to glyphosate. Greenhouse studies were conducted to determine the glyphosate I 50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected leguminous and nonleguminous species treated with glyphosate at respective I 50 rates. Coffee senna [ Cassia occidentalis (L.) Link] was the most sensitive ( I 50 = 75 g/ha) and hemp sesbania [ Sesbania herbacea (P.Mill.) McVaugh] was the most resistant ( I 50 = 456 g/ha) to glyphosate. Hemp sesbania was 6-fold and Illinois bundleflower [ Desmanthus illinoensis (Michx.) MacM. ex B.L.Robins. & Fern.] was 4-fold more resistant to glyphosate than coffee senna. Glyphosate was present in all plant species, and its concentration ranged from 0.308 to 38.7 microg/g of tissue. AMPA was present in all leguminous species studied except hemp sesbania. AMPA concentration ranged from 0.119 to 4.77 microg/g of tissue. Shikimate was present in all plant species treated with glyphosate, and levels ranged from 0.053 to 16.5 mg/g of tissue. Non-glyphosate-resistant (non-GR) soybean accumulated much higher shikimate than glyphosate-resistant (GR) soybean. Although some leguminous species were found to be more resistant to glyphosate than others, and there was considerable variation between species in the glyphosate to AMPA levels found, metabolism of glyphosate to AMPA did not appear to be a common factor in explaining natural resistance levels.

  15. Invasive vascular plant species of limnocrenic karst springs in Poland

    Science.gov (United States)

    Spałek, Krzysztof

    2015-04-01

    Natural water reservoirs are very valuable floristic sites in Poland. Among them, the most important for preservation of biodiversity of flora are limnocrenic karst springs. The long-term process of human pressure on habitats of this type caused disturbance of their biological balance. Changes in the water regime, industrial development and chemisation of agriculture, especially in the period of last two hundred years, led to systematic disappearance of localities of many plant species connected with rare habitats and also to appear numerous invasive plant species. They are: Acorus calamus, Echinocystis lobata, Elodea canadensis, Erechtites hieraciifolia, Impatiens glandulifera, Solidago canadensis, S. gigantea and S. graminifolia. Fielworks were conducted in 2010-2014.

  16. Seasonal variations in CO2 and CH4 fluxes of four different plant compositions of a Sphagnum-dominated Alpine peat bog

    Science.gov (United States)

    Drollinger, Simon; Maier, Andreas; Karer, Jasmin; Glatzel, Stephan

    2017-04-01

    Peatlands are the only type of ecosystems which have the ability to accumulate significant amounts of carbon (C) under undisturbed conditions. The amount of C sequestered in peatlands depends on the balance between gross primary production, ecosystem respiration and decomposition of plant material. Sphagnum-dominated bogs possess the greatest peat accumulation potential of all peatlands, thus in turn, feature highest C release potentials. Many studies report about the C balances of undisturbed northern peat bogs, however, little is known about the effects of peatland degradation on the C balance between different plant compositions within peat bog ecosystems. Particularly in the Alpine region, where temperature increase during the last century has been almost twice as high as the global mean. The investigated peat bog is located in the inner Alpine Enns valley in the Eastern Alps, Austria (N 47˚ 34.873' E 14˚ 20.810'). It is a pine peat bog covered by Sphagnum mosses and a present extent of about 62 ha. Due to increasing differences in surface height of the peatland compared to the surrounding areas and related lowered water retention capacity attributed to the subsidence of the adjacent intensively managed meadows on deeply drained peat soils, the function of the peatland as a carbon sink is strongly endangered. Hence, the current mean water table depth of the central peat bog area is about -12 cm. To reveal differences in peatland-atmosphere C exchanges within the peatland ecosystem, we investigated CO2 and CH4 fluxes of four different vegetation compositions (PM1-PM4) at the treeless central peat bog area. PM1 is dominated by the graminoids Rhynchospora alba and Eriophorum vaginatum. PM2 is inhabited by small individuals (< 35 cm) of the conifer Pinus mugo, whereas PM3 is dominated by the ericaceous plant Calluna vulgaris. PM4 again is populated by Pinus mugo, but higher growing (35 - 60 cm) and with corresponding higher amount of biomass. Fluxes were measured

  17. Impacts of twenty years of experimental warming on soil carbon, nitrogen, moisture and soil across alpine/subarctic tundra communities

    DEFF Research Database (Denmark)

    M. Alatalo, Juha; K. Jägerbrand, Annika; Juhanson, Jaanis

    2017-01-01

    High-altitude and alpine areas are predicted to experience rapid and substantial increases in future temperature, which may have serious impacts on soil carbon, nutrient and soil fauna. Here we report the impact of 20 years of experimental warming on soil properties and soil mites in three...... contrasting plant communities in alpine/subarctic Sweden. Long-term warming decreased juvenile oribatid mite density, but had no effect on adult oribatids density, total mite density, any major mite group or the most common species. Long-term warming also caused loss of nitrogen, carbon and moisture from...... be important for buffering mites from global warming. The results indicated that juvenile mites may be more vulnerable to global warming than adult stages. Importantly, the results also indicated that global warming may cause carbon and nitrogen losses in alpine and tundra mineral soils and that its effects...

  18. Environmental and climatic conditions at a potential Glacial refugial site of tree species near the Southern Alpine glaciers. New insights from multiproxy sedimentary studies at Lago della Costa (Euganean Hills, Northeastern Italy)

    Science.gov (United States)

    Kaltenrieder, Petra; Belis, Claudio A.; Hofstetter, Simone; Ammann, Brigitta; Ravazzi, Cesare; Tinner, Willy

    2009-12-01

    It has been hypothesized that refugia of thermophilous tree species were located in Northern Italy very close to the Alps, though, this hypothesis has yet to be tested thoroughly. In contrast to Central and Southern Italy with its relative wealth of data, only a few fragmentary records are currently available from Northern Italy for the last Glacial (Würm, Weichselian). Our new study site Lago della Costa lies adjacent to the catchment of the megafans of the Alpine forelands and the braided rivers of the Northeastern Po Plain that have so far inhibited the recovery of continuous Glacial and Late-Glacial records. We analyze pollen, plant macrofossils, charcoal and ostracods to reconstruct the vegetation, fire and lake history for the period 33,000-16,000 cal. BP. We compare our data with Glacial records from Southern Europe to discuss similarities and dissimilarities between these potential refugial areas. A comparison with independent paleoclimatic proxies allows to assess potential linkages between environmental and climatic variability. New macrofossil and pollen data at Lago della Costa unambiguously document the local persistence of boreal tree taxa such as Larix decidua and Betula tree species around the study site during the last Glacial. The regular occurrence of pollen of temperate trees in the organic lake sediments (fine-detritus calcareous gyttja) suggests that temperate taxa such as Corylus avellana, Quercus deciduous, Tilia, Ulmus, Fraxinus excelsior, Carpinus, Abies alba and Fagus sylvatica, most likely survived the Last Glacial Maximum (LGM) at favorable sites in the Euganean Hills. The percentage values of temperate trees are comparable with those from Southern Europe (e.g. Monticchio in Southern Italy). We conclude that the Euganean Hills were one of the northernmost refugial areas of temperate taxa in Europe. However, the relative and absolute abundances of pollen of temperate trees are highly variable. Pollen-inferred declines of temperate tree

  19. Extraction and antioxidant activities of two species Origanum plant ...

    African Journals Online (AJOL)

    The antioxidant of ethanolic extract of two species of Origanum and essential oil of plant Origanum vulgare were investigated and also the total phenolic and flavonoid content measured. The radical scavenging activity was measured using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Total phenolic and flavonoid ...

  20. Plant species diversity in a changing agricultural landscape: the ...

    African Journals Online (AJOL)

    Makerere University, P.O. Box 7062 Kampala, Uganda. Abstract. Plant diversity in Kaweri Coffee Plantation was inventoried in January 2002. The aim was to document the species in the area before establishment of a coffee plantation and to create a database for monitoring changes in the ecosystem. International Forestry ...

  1. The effect of plant species on soil nitrogen mineralization

    NARCIS (Netherlands)

    Krift, van der A.J.; Berendse, F.

    2001-01-01

    1. To ascertain the influence of different plant species on nitrogen (N) cycling, we performed a long-term garden experiment with six grasses and five dicots with different potential growth rates, that are adapted to habitats with different nutrient supplies. We measured in situ N mineralization and

  2. Widespread plant species: natives versus aliens in our changing world

    Czech Academy of Sciences Publication Activity Database

    Stohlgren, T. J.; Pyšek, Petr; Kartesz, J.; Nishino, M.; Pauchard, A.; Winter, M.; Pino, J.; Richardson, D. M.; Wilson, J. R. U.; Murray, B. R.; Phillips, M. L.; Ming-yang, L.; Celesti-Grapow, L.; Font, X.

    2011-01-01

    Roč. 13, č. 9 (2011), s. 1931-1944 ISSN 1387-3547 R&D Projects: GA MŠk LC06073 Institutional research plan: CEZ:AV0Z60050516 Keywords : plant invasions * species distribution * Old and New World Subject RIV: EF - Botanics Impact factor: 2.896, year: 2011

  3. Relationships between Plant Biomass and Species Richness under ...

    African Journals Online (AJOL)

    The study was conducted in a montane grassland of Kokosa District, West Arsi Zone of Oromia Region, southern Ethiopia. The objective of the study was to investigate the relationships between aboveground plant biomass and species richness in three farming systems and four grazing management systems. A total of 180 ...

  4. Regional Assessment of Ozone Sensitive Tree Species Using Bioindicator Plants

    Science.gov (United States)

    John W. Coulston; Gretchen C. Smith; William D. Smith

    2003-01-01

    Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone on forest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document...

  5. Rare and Endangered Geophyte Plant Species in Serpentine of Kosovo

    Directory of Open Access Journals (Sweden)

    Naim Berisha

    2014-12-01

    Full Text Available Our study documents information on rarity, geographical distribution, taxonomy and conservation status of 11 geophyte species in serpentine soils of Kosovo, already included in the Red Book of Vascular Flora of Kosovo. Kosovo’s serpentine vegetation represents a diversity that yet has not been sufficiently explored. Large serpentine complexes are found in the northern Kosovo but also southern part of the country is rich in serpentines, therefore in endemics. Serpentine rocks and soils are characterized by low level of principal plant nutrients (N, P, K, Ca and exceptionally high levels of Mg and Fe. Serpentines play particular importance for flora of the country due to their richness in endemic plant species. The following 11 plant species have been studied: Aristolochia merxmuelleri, Colchicum hungaricum, Crocus flavus, Crocus kosaninii, Epimedium alpinum, Gentiana punctata, Gladiolus illyricus, Lilium albanicum, Paeonia peregrina, Tulipa gesneriana and Tulipa kosovarica. Five out of eleven studied geophytes fall within Critically Endangered IUCN based threat category and five out of eleven are local endemics. Aristolochia merxmuelleri and Tulipa kosovarica are steno-endemic plant species that are found exclusively in serpentine soils. Information in our database should prove to be valuable to efforts in ecology, floristics, biosystematics, conservation and land management.

  6. Seasonal nutrient fluctuation in selected plant species in the Kalahari

    African Journals Online (AJOL)

    The Ca:P ratio of the plant species that were sampled in the present study fell outside the range that is considered to be healthy for ruminants in all instances, with calcium in excess. Keywords: calcium, Kalahari, nitrogen content, nutritional value, phosphorus, seasonal variation. African Journal of Range & Forage Science ...

  7. The assessment of invasive alien plant species removal programs ...

    African Journals Online (AJOL)

    Yusuf Adam

    Abstract. The occupation of natural environments by invasive alien plant species (IAPs) are a growing threat to ecosystems. This has resulted in the creation of government-based initiatives to mitigate invasion, however, there has been little progress towards assessing these initiatives. Remote sensing is a commonly used ...

  8. Status and Woody Plant Species Diversity in Tara Gedam Forest ...

    African Journals Online (AJOL)

    The result revealed that a total of forty one different species of woody plants were identified in Tara Gedam forest. Olea europaea was the dominant one with recorded value of 598. Allophylus abyssinicus and Albizia schimperiana ranked the second and third in dominance with 556 and 474 numbers respectively. Acanthus ...

  9. Sparse Distribution Pattern Of Some Plant Species In Two ...

    African Journals Online (AJOL)

    Mountain forests play major roles in biodiversity; containing many endemics and species of conservation concern. The diversity and distribution patterns of plants in mountain ecosystems are influenced by various environmental and anthropogenic factors that exhibit heterogeneity over space and time. This study analysed ...

  10. Ecotaxonmic baseline evaluation of the plant species in a ...

    African Journals Online (AJOL)

    The survey of the flora composition of an ecosystem is important in several environmental baseline studies. An ecotaxonomic assessment was carried out in Ase-Ndoni proposed Rivgas Refinery project site in other to find out the plant species of medicinal and other economic values. The investigation was carried out to ...

  11. The assessment of invasive alien plant species removal programs ...

    African Journals Online (AJOL)

    The occupation of natural environments by invasive alien plant species (IAPs) are a growing threat to ecosystems. This has resulted in the creation of government-based initiatives to mitigate invasion, however, there has been little progress towards assessing these initiatives. Remote sensing is a commonly used tool in the ...

  12. Plant roots and spectroscopic methods - analyzing species, biomass and vitality.

    Science.gov (United States)

    Rewald, Boris; Meinen, Catharina

    2013-01-01

    In order to understand plant functioning, plant community composition, and terrestrial biogeochemistry, it is decisive to study standing root biomass, (fine) root dynamics, and interactions belowground. While most plant taxa can be identified by visual criteria aboveground, roots show less distinctive features. Furthermore, root systems of neighboring plants are rarely spatially segregated; thus, most soil horizons and samples hold roots of more than one species necessitating root sorting according to taxa. In the last decades, various approaches, ranging from anatomical and morphological analyses to differences in chemical composition and DNA sequencing were applied to discern species' identity and biomass belowground. Among those methods, a variety of spectroscopic methods was used to detect differences in the chemical composition of roots. In this review, spectroscopic methods used to study root systems of herbaceous and woody species in excised samples or in situ will be discussed. In detail, techniques will be reviewed according to their usability to discern root taxa, to determine root vitality, and to quantify root biomass non-destructively or in soil cores holding mixtures of plant roots. In addition, spectroscopic methods which may be able to play an increasing role in future studies on root biomass and related traits are highlighted.

  13. Plant-soil feedback of native and range-expanding plant species is insensitive to temperature

    NARCIS (Netherlands)

    Van Grunsven, R.H.A.; Van der Putten, W.H.; Bezemer, T.M.; Veenendaal, E.M.

    2010-01-01

    Temperature change affects many aboveground and belowground ecosystem processes. Here we investigate the effect of a 5°C temperature increase on plant–soil feedback. We compare plant species from a temperate climate region with immigrant plants that originate from warmer regions and have recently

  14. Plant-soil feedback of native and range expanding plant species is insensitive to temperature

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Veenendaal, E.M.; Bezemer, T.M.; Putten, van der W.H.

    2010-01-01

    Temperature change affects many aboveground and belowground ecosystem processes. Here we investigate the effect of a 5°C temperature increase on plant–soil feedback. We compare plant species from a temperate climate region with immigrant plants that originate from warmer regions and have recently

  15. Ecological Performances of Plant Species of Halophilous Hydromorphic Ecosystems

    Directory of Open Access Journals (Sweden)

    Maria Speranza

    2015-12-01

    Full Text Available Coastal wetlands are very special environments, characterized by soils permanently or seasonally saturated by salt or brackish water. They host microorganisms and plants able to adapt to anoxic conditions. This paper proposes a review of recent scientific papers dealing with the study of coastal wetlands from different points of view. Some studies examine the species composition and the pattern of the spatial distribution of plant communities, depending on the depth of the salt water table, as well as on other related factors. A significant number of studies analyse instead the coastal wetlands in their ability for the phytoremediation (phytostabilisation and/or phytoextraction and highlight the importance of interactions between the rhizosphere of the halophytes and the physical environment. Finally, more recent studies consider the plant species of the coastal wetlands as a source of useful products (food, feed, oils and expose the results of promising researches on their cultivation.

  16. Application of heat stress in situ demonstrates a protective role of irradiation on photosynthetic performance in alpine plants

    OpenAIRE

    Buchner, Othmar; STOLL, Magdalena; Karadar, Matthias; Kranner, Ilse; Neuner, Gilbert

    2014-01-01

    The impact of sublethal heat on photosynthetic performance, photosynthetic pigments and free radical scavenging activity was examined in three high mountain species, R hododendron ferrugineum, S enecio incanus and R anunculus glacialis using controlled in situ applications of heat stress, both in darkness and under natural solar irradiation. Heat treatments applied in the dark reversibly reduced photosynthetic performance and the maximum quantum efficiency of photosystem II (Fv/Fm), which rem...

  17. Plant species richness and ecosystem multifunctionality in global drylands

    Science.gov (United States)

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  18. The Role of Different Agricultural Plant Species in Air Pollution

    Science.gov (United States)

    Fiala, P.; Miller, D.; Shivers, S.; Pusede, S.; Roberts, D. A.

    2017-12-01

    The goal of this research project is to use remote sensing data to study the relationship between different plant species and the pollutants in the air. It is known that chemical reactions within plants serve as both sources and sinks for different types of Volatile Organic Compounds. However, the species-specific relationships have not been well studied. Through the better characterization of this relationship, certain aspects of air pollution may be more effectively managed. For this project, I used Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and trace gas measurements from instruments on board the NASA DC-8 to assess the relationship between different plant species and the pollutants in the air. I used measurements primarily from the agricultural land surrounding Bakersfield, CA. I created a map of the crop species in this area using Multiple Endmember Spectral Mixture Analysis (MESMA) on the AVIRIS imagery, and matched this to trace gas measurements taken on the DC-8. I used a Hysplit matrix trajectory to account for the air transport over the vegetation and up to contact with the plane. Finally, I identified correlations between the plant types and the concentration of the pollutants. The results showed that there were significant relationships between specific species and pollutants, with lemons and grapes contributing to enhanced pollution, and tree nuts reducing pollution. Specifically, almonds produced significantly lower levels of O3 , NO, and NO2. Lemons and grapes had high O3 levels, and lemons had high levels of isoprene. In total, these data show that it may be possible to mitigate airborne pollution via selective planting; however, the overall environmental effects are much more complicated and must be analyzed further.

  19. Systemic movement of Agrobacterium tumefaciens in several plant species.

    Science.gov (United States)

    Cubero, J; Lastra, B; Salcedo, C I; Piquer, J; López, M M

    2006-08-01

    The systemic movement of Agrobacterium spp. inside plants of different species was studied to determine the most valuable diagnostic methodology for their detection. Pathogenic agrobacteria were detected by isolation and PCR in tissue away from primary tumours in tomato plants grown in the presence of Agrobacterium spp. Moreover, this bacterium was also able to induce secondary tumours beyond the inoculation site. In addition, the capacity of agrobacteria to translocate and induce secondary tumours was analysed in rose, grapevine, chrysanthemum, cherry and peach x almond hybrid GF677. No differences among strains of Agrobacterium spp. were detected in secondary tumour development, although some of them induced a significantly higher number of primary tumours in some species. Movement of inoculated pathogenic cells of four strains was also demonstrated in symptomless portions of the plant stems by isolation and PCR. Finally, pathogenic agrobacteria were detected in root, crown and stem portions of naturally infected walnuts. In all assays, PCR was the most efficient technique for detecting the movement of Agrobacterium spp. within the plants. Migration of agrobacteria inside plants is a complex phenomenon and more extensive than previously reported. Therefore, efficient and sensitive detection methods such as PCR must be used to select clean plants to avoid latent infections of Agrobacterium spp. The results show that migration of Agrobacterium spp. could be relatively frequent in several cultivated fruit trees, and systemic infections should be taken into account when designing strategies for controlling crown gall disease.

  20. Reduced plant-soil feedback of plant species expanding their range as compared to natives

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Putten, van der W.H.; Bezemer, T.M.; Tamis, W.L.M.; Berendse, F.; Veenendaal, E.M.

    2007-01-01

    1. As a result of global warming, species may spread into previously cool regions. Species that disperse faster than their natural enemies may become released from top-down control. We investigated whether plants originating from southern Europe and recently established in north-western Europe

  1. Alien Plant Species Mountain Endemic Tree Species in Gunung Gede Pangrango National Park

    Directory of Open Access Journals (Sweden)

    Budi Utomo

    2012-09-01

    Full Text Available 800x600 Up to now, montane rain forest of Gunung Gede-Pangrango National Park, faces problem in the form of invasion of exotic plant species into the area.  Location of the area that borders with various land uses, such as Botanical Garden and agricultural land, make it very susceptible toward invasion of plant species from outside the area.  The collapse of large trees which normally constitute a mechanism of natural regeneration, was in fact stimulating the development of exotic species, particularly those which were invasive, inside the area. The objective of this research was to test the competitive ability of endemic species, which in this case was represented by Cleystocalyx operculata and Mischocarpus pentapetalus, toward exotic plant species, represented by Austroeupatoriun inulaefolium and Passiflora ligularis, during 5 months of study.  Growth rate of exotic plant species, as well as the dry weight biomass, were larger than those of endemic species.  Indirect estimation of competitive ability showed that competitive ability (β of endemic species were 4-5 times less, namely 0.0274 (for C. operculata and 0.0251 (for M. pentapetalus; as compared with those of exotic species, namely 0.125 (for P. ligularis and 0.1104 (for A. inulaefolium.  Direct test also proved that competitive ability (β of endemic species was lower than that of exotic species, as shown by relative crowding value   Estimation of future competitive ability, using diagram of input/ output ratio, showed also the disability of endemic species to compete with exotic species, where position of input/output ratio points were parallel with equilibrium line y=x. Considering those facts, there is urgent need for controlling these invasive exotic species inside the National Park area to maintain the sustainability of biodiversity and regeneration of endemic species in montane rain forest of Gunung Gede–Pangrango National Park.    Keywords: endemic, exotic, invasion

  2. Mercury uptake and accumulation by four species of aquatic plants.

    Science.gov (United States)

    Skinner, Kathleen; Wright, Nicole; Porter-Goff, Emily

    2007-01-01

    The effectiveness of four aquatic plants including water hyacinth (Eichornia crassipes), water lettuce (Pistia stratiotes), zebra rush (Scirpus tabernaemontani) and taro (Colocasia esculenta) were evaluated for their capabilities in removing mercury from water. The plants were exposed to concentrations of 0 mg/L, 0.5 mg/L or 2 mg/L of mercury for 30 days. Assays were conducted using both Microtox (water) and cold vapor Atomic Absorption Spectroscopy (AAS) (roots and water). The Microtox results indicated that the mercury induced acute toxicity had been removed from the water. AAS confirmed an increase of mercury within the plant root tissue and a corresponding decrease of mercury in the water. All species of plants appeared to reduce mercury concentrations in the water via root uptake and accumulation. Water lettuce and water hyacinth appeared to be the most effective, followed by taro and zebra rush, respectively.

  3. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  4. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained...... and tested on a total of 10,413 images containing 22 weed and crop species at early growth stages. These images originate from six different data sets, which have variations with respect to lighting, resolution, and soil type. This includes images taken under controlled conditions with regard to camera...... stabilisation and illumination, and images shot with hand-held mobile phones in fields with changing lighting conditions and different soil types. For these 22 species, the network is able to achieve a classification accuracy of 86.2%....

  5. Networks of plants: how to measure similarity in vegetable species

    Science.gov (United States)

    Vivaldo, Gianna; Masi, Elisa; Pandolfi, Camilla; Mancuso, Stefano; Caldarelli, Guido

    2016-06-01

    Despite the common misconception of nearly static organisms, plants do interact continuously with the environment and with each other. It is fair to assume that during their evolution they developed particular features to overcome similar problems and to exploit possibilities from environment. In this paper we introduce various quantitative measures based on recent advancements in complex network theory that allow to measure the effective similarities of various species. By using this approach on the similarity in fruit-typology ecological traits we obtain a clear plant classification in a way similar to traditional taxonomic classification. This result is not trivial, since a similar analysis done on the basis of diaspore morphological properties do not provide any clear parameter to classify plants species. Complex network theory can then be used in order to determine which feature amongst many can be used to distinguish scope and possibly evolution of plants. Future uses of this approach range from functional classification to quantitative determination of plant communities in nature.

  6. Advanced inflow forecasting for a hydropower plant in an Alpine hydropower regulated catchment - coupling of operational and hydrological forecasts

    Science.gov (United States)

    Tilg, Anna-Maria; Schöber, Johannes; Huttenlau, Matthias; Messner, Jakob; Achleitner, Stefan

    2017-04-01

    Hydropower is a renewable energy source which can help to stabilize fluctuations in the volatile energy market. Especially pumped-storage infrastructures in the European Alps play an important role within the European energy grid system. Today, the runoff of rivers in the Alps is often influenced by cascades of hydropower infrastructures where the operational procedures are triggered by energy market demands, water deliveries and flood control aspects rather than by hydro-meteorological variables. An example for such a highly hydropower regulated river is the catchment of the river Inn in the Eastern European Alps, originating in the Engadin (Switzerland). A new hydropower plant is going to be built as transboundary project at the boarder of Switzerland and Austria using the water of the Inn River. For the operation, a runoff forecast to the plant is required. The challenge in this case is that a high proportion of runoff is turbine water from an upstream situated hydropower cascade. The newly developed physically based hydrological forecasting system is mainly capable to cover natural hydrological runoff processes caused by storms and snow melt but can model only a small degree of human impact. These discontinuous parts of the runoff downstream of the pumped storage are described by means of an additional statistical model which has been developed. The main goal of the statistical model is to forecast the turbine water up to five days in advance. The lead time of the data driven model exceeds the lead time of the used energy production forecast. Additionally, the amount of turbine water is linked to the need of electricity production and the electricity price. It has been shown that especially the parameters day-ahead prognosis of the energy production and turbine inflow of the previous week are good predictors and are therefore used as input parameters for the model. As the data is restricted due to technical conditions, so-called Tobit models have been used to

  7. Seed longevity and germination characteristics of six fen plant species.

    Science.gov (United States)

    Tatár, S

    2010-01-01

    Fens are among the most threatened habitats in Europe as their area has decreased considerably in the last centuries. For successful management and restoration conservationists need detailed knowledge about seed bank formation and seed longevity of plants, as these features are closely related to successional and vegetation dynamical processes. I analysed seed longevity and the germination characteristics of six fen plant species by seed burial experiments. Based on seed weight, seed bank was expected for long-term persistent for the light-seeded Schoenus nigricans, Carex appropinquata, C. pseudocyperus, C. davalliana and Peucedanum palustre and also that for the medium-seeded Cicuta virosa. It was proved that, the latter two species have short-term persistent seed banks, while Carex pseudocyperus has a transient seed bank, therefore these species may only have a limited role in restoration from seed banks. It was found that Schoenus nigricans, Carex appropinquata and C. davalliana have persistent seed banks, because some of their four-year-old seeds have emerged. Fresh seeds had low germination rate in all studied species and majority of seeds emerged after winter, except for Carex pseudocyperus. After the germination peak in spring, the majority of the ungerminated seeds of Schoenus nigricans, Peucedanum palustre, Carex appropinquata, C. davalliana and Cicuta virosa entered a secondary dormancy phase that was broken in autumn. I found the seasonal emergence of the latter three species highly similar.

  8. Nocardia otitidiscaviarum pneumonia in an Alpine chamois (Rupicapra rupicapra rupicapra).

    Science.gov (United States)

    Domenis, L; Pecoraro, P; Spedicato, R; Corvonato, M; Peletto, S; Zuccon, F; Acutis, P

    2009-07-01

    Nocardia otitidiscaviarum was cultured from the lung of an Alpine chamois (Rupicapra rupicapra rupicapra) with suppurative bronchopneumonia. This is the first report of both nocardiosis and Nocardia otitidiscaviarum in this wild ungulate species.

  9. Sesquiterpene lactones and monoterpene glucosides from plant species Picris echoides

    Directory of Open Access Journals (Sweden)

    MILUTIN STEFANOVIC

    2000-11-01

    Full Text Available Investigation of the constituents of the aerial parts of domestic plant species Picris echoides afforded the sesquiterpene lactones, i.e., guaianolides jacquilenin (1, 11-epi-jacquilenin (2, achillin (3 and eudesmanolide telekin (4. The chemical indentification of the two monoterpene glucosides (–-cis-chrysanthenol-b-D-glucopyranoside (5 and its 6’-acetate 6 is also repoted. The guaianolide achillin (3 and the two monoterpene glucosides 5 and 6 were isolated for the first time from this plant species. Isolation was achieved by column chromatography and the structures were established mainly by the interpretation of their physical and spectral data, which were in agreement with those in the literature.

  10. Long-term addition of fertilizer, labile carbon, and fungicide alters the biomass of plant functional groups in a subarctic-alpine community

    DEFF Research Database (Denmark)

    Haugwitz-Hardenberg-Reventlow, M S; Michelsen, A.

    2011-01-01

    experiment on a subarctic-alpine fellfield dominated by woody evergreen shrubs, bryophytes, and lichens. To manipulate nutrient availability additions of NPK fertilizer, labile C, and fungicide (benomyl) were done in a fully factorial design, replicated in six blocks. The treatments were run for 10 years...

  11. Drivers of vegetative dormancy across herbaceous perennial plant species.

    Science.gov (United States)

    Shefferson, Richard P; Kull, Tiiu; Hutchings, Michael J; Selosse, Marc-André; Jacquemyn, Hans; Kellett, Kimberly M; Menges, Eric S; Primack, Richard B; Tuomi, Juha; Alahuhta, Kirsi; Hurskainen, Sonja; Alexander, Helen M; Anderson, Derek S; Brys, Rein; Brzosko, Emilia; Dostálik, Slavomir; Gregg, Katharine; Ipser, Zdeněk; Jäkäläniemi, Anne; Jersáková, Jana; Dean Kettle, W; McCormick, Melissa K; Mendoza, Ana; Miller, Michael T; Moen, Asbjørn; Øien, Dag-Inge; Püttsepp, Ülle; Roy, Mélanie; Sather, Nancy; Sletvold, Nina; Štípková, Zuzana; Tali, Kadri; Warren, Robert J; Whigham, Dennis F

    2018-03-25

    Vegetative dormancy, that is the temporary absence of aboveground growth for ≥ 1 year, is paradoxical, because plants cannot photosynthesise or flower during dormant periods. We test ecological and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life-history costs of sprouting, and of dormancy. Short-lived and mycoheterotrophic species have higher proportions of dormant plants than long-lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maximum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of dormancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes. © 2018 John Wiley & Sons Ltd/CNRS.

  12. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.

    Science.gov (United States)

    Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; Amaral, Renata Claro Ribeiro do; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytes ATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  13. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Directory of Open Access Journals (Sweden)

    Renata Perugini BIASI-GARBIN

    2016-01-01

    Full Text Available Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE, Libidibia ferrea (AE, and Persea americana (AcE also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  14. Evaluating Hypotheses of Plant Species Invasions on Mediterranean Islands: Inverse Patterns between Alien and Endemic Species

    Directory of Open Access Journals (Sweden)

    Alexander Bjarnason

    2017-08-01

    Full Text Available Invasive alien species cause major changes to ecosystem functioning and patterns of biodiversity, and the main factors involved in invasion success remain contested. Using the Mediterranean island of Crete, Greece as a case study, we suggest a framework for analyzing spatial data of alien species distributions, based on environmental predictors, aiming to gain an understanding of their spatial patterns and spread. Mediterranean islands are under strong ecological pressure from invading species due to their restricted size and increased human impact. Four hypotheses of invasibility, the “propagule pressure hypothesis” (H1, “biotic resistance hypothesis vs. acceptance hypothesis” (H2, “disturbance-mediated hypothesis” (H3, and “environmental heterogeneity hypothesis” (H4 were tested. Using data from alien, native, and endemic vascular plant species, the propagule pressure, biotic resistance vs. acceptance, disturbance-mediated, and environmental heterogeneity hypotheses were tested with Generalized Additive Modeling (GAM of 39 models. Based on model selection, the optimal model includes the positive covariates of native species richness, the negative covariates of endemic species richness, and land area. Variance partitioning between the four hypotheses indicated that the biotic resistance vs. acceptance hypothesis explained the vast majority of the total variance. These results show that areas of high species richness have greater invasibility and support the acceptance hypothesis and “rich-get-richer” distribution of alien species. The negative correlation between alien and endemic species appears to be predominantly driven by altitude, with fewer alien and more endemic species at greater altitudes, and habitat richness. The negative relationship between alien and endemic species richness provides potential for understanding patterns of endemic and alien species on islands, contributing to more effective conservation

  15. An integrated geochemical, geophysical and mineralogical study of river sediments in alpine area and soil samples near steel plant, in Austria

    Science.gov (United States)

    Irfan, M. I.; Meisel, T.

    2012-04-01

    Concentration of nickel and chromium in any part of the ecosystem is important for environmental concerns in particular human health due to the reason that some species of them can cause health problem e.g. dermatitis and cancer. Sediment samples collected form a river Vordernberger Bach (Leoben, Austria) in an alpine region and soil samples collected in an area adjacent to steel production unit in same narrow valley were investigated. In previous studies a correlation between magnetic susceptibility values and concentration of nickel and chromium showed that a magnetic susceptibility meter can be used to point out the contaminated areas as in-situ device. The purpose of the whole study is to understand the real (point or diffuse, anthropogenic or geogenic) sources of contamination of soils, water and river sediments through heavy metal deposition. Unseparated, magnetic and non-magnetic fractions of soil samples were investigated for geochemical and mineralogical aspects with XRF, ICP-MS, EMPA, Multi-Functional Kappabridge (MFK1) and laser ablation coupled with ICP-MS. Mineralogical study of sediment samples for several sampling points with higher Ni and Cr content was performed. Sediment samples were sieved below 1.4 mm and then a concentrate of heavy minerals was prepared in the field through panning. Concentrated heavy minerals were then subjected for heavy liquid separation in the laboratory. Separated magnetic and non-magnetic fractions below 0.71/0.1 mm and density greater than 2.9 g/cm3 were selected for mineralogical investigation. The abundance of typical anthropogenic particles, e.g., spherical, tinder, roasted ores, iron and steel mill slag was observed under the microscope. Magnetite (mostly anthropogenic), maghemite, chromspinel, chromite (type I & II), (Ca,Al)-ferrite, wustite, apatite (anthropogenic), olivine mixed crystals, calcium silicate and spinel (anthropogenic) are found in magnetic fraction. Non-magnetic fractions contain hematite, siderite

  16. Alpine biodiversity and assisted migration: The case of the American pika (Ochotona princeps)

    Science.gov (United States)

    Wilkening, Jennifer L.; Ray, Chris; Ramsay, Nathan G.; Klingler, Kelly

    2015-01-01

    Alpine mammals are predicted to be among the species most threatened by climate change, due to the projected loss and further fragmentation of alpine habitats. As temperature or precipitation regimes change, alpine mammals may also be faced with insurmountable barriers to dispersal. The slow rate or inability to adjust to rapidly shifting environmental conditions may cause isolated alpine species to become locally extirpated, resulting in reduced biodiversity. One proposed method for mitigating the impacts of alpine species loss is assisted migration. This method, which involves translocating a species to an area with more favourable climate and habitat characteristics, has become the subject of debate and controversy in the conservation community. The uncertainty associated with climate change projections, coupled with the thermal sensitivity of many alpine mammals, makes it difficult to a priori assess the efficacy of this technique as a conservation management tool. Here we present the American pika (Ochotona princeps) as a case study. American pikas inhabit rocky areas throughout the western US, and populations in some mountainous areas have become locally extirpated in recent years. We review known climatic and habitat requirements for this species, and also propose protocols designed to reliably identify favourable relocation areas. We present data related to the physiological constraints of this species and outline specific requirements which must be addressed for translocation of viable populations, including wildlife disease and genetic considerations. Finally, we discuss potential impacts on other alpine species and alpine communities, and overall implications for conserving alpine biodiversity in a changing climate.

  17. Invasive plant species: Inventory, mapping, and monitoring - A national strategy

    Science.gov (United States)

    Ludke, J. Larry; D'Erchia, Frank; Coffelt, Jan; Hanson, Leanne

    2002-01-01

    America is under siege by invasive species of plants and animals, and by diseases. The current environmental, economic, and health-related costs of invasive species could exceed $138 billion per year-more than all other natural disasters combined. Notorious examples include West Nile virus, Dutch elm disease, chestnut blight, and purple loose- strife in the Northeast; kudzu, Brazilian peppertree, water hyacinth, nutria, and fire ants in the Southeast; zebra mussels, leafy spurge, and Asian long-horn beetles in the Midwest; salt cedar, Russian olive, and Africanized bees in the Southwest; yellow star thistle, European wild oats, oak wilt disease, Asian clams, and white pine blister rust in California; cheatgrass, various knapweeds, and thistles in the Great Basin; whirling disease of salmonids in the Northwest; hundreds of invasive species from microbes to mammals in Hawaii; and the brown tree snake in Guam. Thousands of species from other countries are introduced intentionally or accidentally into the United States each year. Based on past experience, 10-15 percent can be expected to establish free-living populations and about 1 percent can be expected to cause significant impacts to ecosystems, native species, economic productivity, and (or) human health.

  18. Hydroperiod regime controls the organization of plant species in wetlands.

    Science.gov (United States)

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-11-27

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of the organization of plant species in wetlands and how the different drivers interact to yield such signatures are unknown. Focusing on Everglades National Park (ENP) in Florida, we show here that cluster sizes of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. Moreover, we individuate and model those signatures via the interplay between global forcings arising from the hydroperiod regime and local controls exerted by neighboring vegetation. With power law clustering often associated with systems near critical transitions, our findings are highly relevant for the management of wetland ecosystems. In addition, our results show that changes in climate and land management have a quantifiable predictable impact on the type of vegetation and its spatial organization in wetlands.

  19. Safe-site effects on rhizosphere bacterial communities in a high-altitude alpine environment.

    Science.gov (United States)

    Ciccazzo, Sonia; Esposito, Alfonso; Rolli, Eleonora; Zerbe, Stefan; Daffonchio, Daniele; Brusetti, Lorenzo

    2014-01-01

    The rhizosphere effect on bacterial communities associated with three floristic communities (RW, FI, and M sites) which differed for the developmental stages was studied in a high-altitude alpine ecosystem. RW site was an early developmental stage, FI was an intermediate stage, M was a later more matured stage. The N and C contents in the soils confirmed a different developmental stage with a kind of gradient from the unvegetated bare soil (BS) site through RW, FI up to M site. The floristic communities were composed of 21 pioneer plants belonging to 14 species. Automated ribosomal intergenic spacer analysis showed different bacterial genetic structures per each floristic consortium which differed also from the BS site. When plants of the same species occurred within the same site, almost all their bacterial communities clustered together exhibiting a plant species effect. Unifrac significance value (P floristic communities rhizospheres on their soil bacterial communities.

  20. Effects of 'target' plant species body size on neighbourhood species richness and composition in old-field vegetation.

    Directory of Open Access Journals (Sweden)

    Brandon S Schamp

    Full Text Available Competition is generally regarded as an important force in organizing the structure of vegetation, and evidence from several experimental studies of species mixtures suggests that larger mature plant size elicits a competitive advantage. However, these findings are at odds with the fact that large and small plant species generally coexist, and relatively smaller species are more common in virtually all plant communities. Here, we use replicates of ten relatively large old-field plant species to explore the competitive impact of target individual size on their surrounding neighbourhoods compared to nearby neighbourhoods of the same size that are not centred by a large target individual. While target individuals of the largest of our test species, Centaurea jacea L., had a strong impact on neighbouring species, in general, target species size was a weak predictor of the number of other resident species growing within its immediate neighbourhood, as well as the number of resident species that were reproductive. Thus, the presence of a large competitor did not restrict the ability of neighbouring species to reproduce. Lastly, target species size did not have any impact on the species size structure of neighbouring species; i.e. they did not restrict smaller, supposedly poorer competitors, from growing and reproducing close by. Taken together, these results provide no support for a size-advantage in competition restricting local species richness or the ability of small species to coexist and successfully reproduce in the immediate neighbourhood of a large species.

  1. Planting intensity, residence time, and species traits determine invasion success of alien woody species

    Czech Academy of Sciences Publication Activity Database

    Pyšek, Petr; Křivánek, Martin; Jarošík, Vojtěch

    2009-01-01

    Roč. 90, č. 10 (2009), s. 2734-2744 ISSN 0012-9658 R&D Projects: GA ČR GA206/05/0323; GA MŠk LC06073 Grant - others:Evropská komise(XE) GOCE-CT-2003-506675 ALARM Institutional research plan: CEZ:AV0Z60050516 Keywords : woody species * invasion * planting Subject RIV: EF - Botanics Impact factor: 4.411, year: 2009

  2. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    International Nuclear Information System (INIS)

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P.

    2003-01-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 μg m -3 in 1982 and 15.6 μg m -3 in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants

  3. Herbicides: an unexpected ally for native plants in the war against invasive species

    Science.gov (United States)

    Andrea Watts; Tim Harrington; Dave Peter

    2015-01-01

    Herbicides are primarily used for protecting agricultural crops from weeds and controlling vegetation competition in newly planted forest stands. Yet for over 40 years, they have also proven useful in controlling invasive plant species in natural areas. Nonnative invasive plant species, if not controlled, can displace native species and disrupt an ecosystem by changing...

  4. 45 CFR 670.25 - Designation of specially protected species of native mammals, birds, and plants.

    Science.gov (United States)

    2010-10-01

    ... native mammals, birds, and plants. 670.25 Section 670.25 Public Welfare Regulations Relating to Public... Protected Species of Mammals, Birds, and Plants § 670.25 Designation of specially protected species of native mammals, birds, and plants. The following species has been designated as Specially Protected...

  5. Stochastic species turnover and stable coexistence in a species-rich, fire-prone plant community.

    Directory of Open Access Journals (Sweden)

    Wilfried Thuiller

    2007-09-01

    Full Text Available Understanding the mechanisms that maintain diversity is important for managing ecosystems for species persistence. Here we used a long-term data set to understand mechanisms of coexistence at the local and regional scales in the Cape Floristic Region, a global hotspot of plant diversity. We used a dataset comprising 81 monitoring sites, sampled in 1966 and again in 1996, and containing 422 species for which growth form, regeneration mode, dispersal distance and abundances at both the local (site and meta-community scales are known. We found that species presence and abundance were stable at the meta-community scale over the 30 year period but highly unstable at the local scale, and were not influenced by species' biological attributes. Moreover, rare species were no more likely to go extinct at the local scale than common species, and that alpha diversity in local communities was strongly influenced by habitat. We conclude that stochastic environmental fluctuations associated with recurrent fire buffer populations from extinction, thereby ensuring stable coexistence at the meta-community scale by creating a "neutral-like" pattern maintained by niche-differentiation.

  6. Discriminant WSRC for Large-Scale Plant Species Recognition

    Directory of Open Access Journals (Sweden)

    Shanwen Zhang

    2017-01-01

    Full Text Available In sparse representation based classification (SRC and weighted SRC (WSRC, it is time-consuming to solve the global sparse representation problem. A discriminant WSRC (DWSRC is proposed for large-scale plant species recognition, including two stages. Firstly, several subdictionaries are constructed by dividing the dataset into several similar classes, and a subdictionary is chosen by the maximum similarity between the test sample and the typical sample of each similar class. Secondly, the weighted sparse representation of the test image is calculated with respect to the chosen subdictionary, and then the leaf category is assigned through the minimum reconstruction error. Different from the traditional SRC and its improved approaches, we sparsely represent the test sample on a subdictionary whose base elements are the training samples of the selected similar class, instead of using the generic overcomplete dictionary on the entire training samples. Thus, the complexity to solving the sparse representation problem is reduced. Moreover, DWSRC is adapted to newly added leaf species without rebuilding the dictionary. Experimental results on the ICL plant leaf database show that the method has low computational complexity and high recognition rate and can be clearly interpreted.

  7. Effect of plant species on nitrogen recovery in aquaponics.

    Science.gov (United States)

    Hu, Zhen; Lee, Jae Woo; Chandran, Kartik; Kim, Sungpyo; Brotto, Ariane Coelho; Khanal, Samir Kumar

    2015-01-01

    Nitrogen transformations in aquaponics with different edible plant species, i.e., tomato (Lycopersicon esculentum) and pak choi (Brassica campestris L. subsp. chinensis) were systematically examined and compared. Results showed that nitrogen utilization efficiencies (NUE) of tomato- and pak choi-based aquaponic systems were 41.3% and 34.4%, respectively. The abundance of nitrifying bacteria in tomato-based aquaponics was 4.2-folds higher than that in pak choi-based aquaponics, primarily due to its higher root surface area. In addition, tomato-based aquaponics had better water quality than that of pak choi-based aquaponics. About 1.5-1.9% of nitrogen input were emitted to atmosphere as nitrous oxide (N2O) in tomato- and pak choi-based aquaponic systems, respectively, suggesting that aquaponics is a potential anthropogenic source of N2O emission. Overall, this is the first intensive study that examined the role plant species played in aquaponics, which could provide new strategy in designing and operating an aquaponic system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species

    National Research Council Canada - National Science Library

    Pimentel, David

    2011-01-01

    ...: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species, this reference discusses how non-native species invade new ecosystems and the subsequent economic and environmental effects of these species...

  9. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Directory of Open Access Journals (Sweden)

    Ryan D Haffele

    Full Text Available Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5 mixtures of introduced cool season vegetation often termed dense nesting cover (DNC. The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32 plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  10. Duck productivity in restored species-rich native and species-poor non-native plantings.

    Science.gov (United States)

    Haffele, Ryan D; Eichholz, Michael W; Dixon, Cami S

    2013-01-01

    Conservation efforts to increase duck production have led the United States Fish and Wildlife Service to restore grasslands with multi-species (3-5) mixtures of introduced cool season vegetation often termed dense nesting cover (DNC). The effectiveness of DNC to increase duck production has been variable, and maintenance of the cover type is expensive. In an effort to decrease the financial and ecological costs (increased carbon emissions from plowing and reseeding) of maintaining DNC and provide a long-term, resilient cover that will support a diversity of grassland fauna, restoration of multi-species (16-32) plantings of native plants has been explored. We investigated the vegetation characteristics, nesting density and nest survival between the 2 aforementioned cover types in the Prairie Pothole Region of North Dakota, USA from 2010-2011 to see if restored-native plantings provide similar benefits to nesting hens as DNC. We searched 14 fields (7 DNC, 271 ha; and 7 restored native, 230 ha) locating 3384 nests (1215 in restored-native vegetation and 2169 in DNC) in 2010-2011. Nest survival was similar between cover types in 2010, while DNC had greater survival than native plantings in 2011. Densities of nests adjusted for detection probability were not different between cover types in either year. We found no structural difference in vegetation between cover types in 2010; however, a difference was detected during the late sampling period in 2011 with DNC having deeper litter and taller vegetation. Our results indicate restored-native plantings are able to support similar nesting density as DNC; however, nest survival is more stable between years in DNC. It appears the annual variation in security between cover types goes undetected by hens as hens selected cover types at similar levels both years.

  11. Historic land use influences contemporary establishment of invasive plant species.

    Science.gov (United States)

    Mattingly, W Brett; Orrock, John L

    2013-08-01

    The legacy of agricultural land use can have widespread and persistent effects on contemporary landscapes. Although agriculture can lead to persistent changes in soil characteristics and plant communities, it remains unclear whether historic agricultural land use can alter the likelihood of contemporary biological invasions. To understand how agricultural land-use history might interact with well-known drivers of invasion, we conducted factorial manipulations of soil disturbance and resource additions within non-agricultural remnant sites and post-agricultural sites invaded by two non-native Lespedeza species. Our results reveal that variation in invader success can depend on the interplay of historic land use and contemporary processes: for both Lespedeza species, establishment was greater in remnant sites, but soil disturbance enhanced establishment irrespective of land-use history, demonstrating that contemporary processes can help to overcome legacy constraints on invader success. In contrast, additions of resources known to facilitate seedling recruitment (N and water) reduced invader establishment in post-agricultural but not in remnant sites, providing evidence that interactions between historic and contemporary processes can also limit invader success. Our findings thus illustrate that a consideration of historic land use may help to clarify the often contingent responses of invasive plants to known determinants of invasibility. Moreover, in finding significantly greater soil compaction at post-agricultural sites, our study provides a putative mechanism for historic land-use effects on contemporary invasive plant establishment. Our work suggests that an understanding of invasion dynamics requires knowledge of anthropogenic events that often occur decades before the introduction of invasive propagules.

  12. Plant species used in traditional smallholder dairy processing in East Shoa, Ethiopia.

    Science.gov (United States)

    Mekonnen, Hailemariam; Lemma, A

    2011-04-01

    Plant species used in traditional dairy processing were studied in three districts (Bosset, Ada, and Gimbichu) in Eastern Shoa, Ethiopia, from October 2007 to March 2008. A total of 300 smallholders were interviewed using semi-structured questionnaires, and three focus group discussions were conducted, followed by plants specimen collection and identification. A total of 36 plant species, falling under 24 plant families, were identified. Nearly half of the identified plant species had more than one use types. Eleven plant species were/are used for washing (scrubbing) dairy utensils, ten plant species for smoking dairy utensils, 12 plant species in butter making, 15 plant species in ghee making, and five plant species for packaging (wrapping) butter and cheese. The plant species that had the highest overall citations from each use category were Ocimum hardiense, Olea europaea subspecies africana, Trachyspermum copticum, Curcuma longa, and Croton macrostachyus. The plant species used in the three study districts, representing different agro ecologies, showed some similarities, but levels of uses differed significantly (P < 0.05). Higher informant citations might indicate their better efficacy, however need to be further investigated to determine their effects on milk and milk product quality and to make sure that they are innocuous to human and animal health. Finally, as the present study tried to document natural products used in traditional dairy processing, it could be considered as part of the global efforts aimed at promoting organic food production.

  13. Species composition of alien plants in the built-up area of Beijing

    OpenAIRE

    Juanjuan Zhao; Zhiyun Ouyang; Hua Zheng; Weihua Xu; Xiaoke Wang; Yongming Ni

    2010-01-01

    The widely-used practice of planting alien plant species has become a major concern in Chinese urban management. It is imperative to investigate the composition of alien plant species in urban areas forplant diversity protection and green space management. In this study, we investigated 1050 tree plots, 797 shrub plots and 2,228 herbaceous plots based on stratified random selection, within the fifth ring road area of Beijing. The results revealed the following: (1) There were 324 plant specie...

  14. Assessing the effects of abiotic stress and livestock grazing disturbance on an alpine grassland with CSR model

    Science.gov (United States)

    Wang, Jun; Luo, Peng; Mou, Chengxiang; Yang, Hao; Mo, Li; Luo, Chuan; Kattge, Jens

    2016-04-01

    How the abiotic factors represented by cold environment and biotic factors represented by livestock grazing will affect the vegetation structure of alpine grassland is a core issue in understanding the cause of biodiversity change on Tibetan Plateau. Past studies on changes of floristic composition, growth forms did not adequately answer question. Given the fact that the response of plant to environment change depend on its life strategy, a synthetical method that based on plant life strategy may deepen our understanding of the mechanism. Using Grime's concept of CSR plant classification, we carried out a vegetation survey along a gradient (three levels) of graze intensity on the south-east of Tibet Plateau, in order to evaluate the role and mechanism of abiotic stress and grazing disturbance in driving plant diversity change, by analyzing the plant life strategy compositions in each of the community and by comparing the characteristic of the strategy compositions along the graze gradient. When the graze intensity was relative low, the dominant plant life strategy gathered in the stress tolerance corner, which conformed the theory of environmental filter, indicating that the ideal top plant community may be dominated by the species with stress tolerant strategy. We also found that the response of strategy dominance to graze intensity increase is positively correlated with the competitive capacity (R 2=0.671; PCSR plant strategy be a useful tool to evaluate the effects of abiotic and biotic factors on plant community assembly of alpine grassland, which may contribute to predict the impacts of climate change and human activity on alpine grassland plant diversity and ecosystem service function related.

  15. Pollen production in selected species of anemophilous plants

    Directory of Open Access Journals (Sweden)

    Krystyna Piotrowska

    2012-12-01

    Full Text Available In the study, structural features of flowers of the following allergenic plant species were analysed: Betula verrucosa, Secale cereale, Rumex acetosella, Plantago major and Artemisia vulgaris. Pollen production was established by calculating the number of pollen grains produced by the stamen, flower and inflorescence. The dates of occurrence and pollen grains concentration in the air of Lublin were determined. A positive correlation was found between the length of anthers and the number of pollen grains produced. The largest number of pollen grains per anther is produced by Secale cereale (22 360, whereas the smallest one by Plantago major (5 870. The other species produced intermediate numbers of pollen grains in the anther: Betula verrucosa - 11 160, Rumex acetosella - 10 850, Artemisia vulgaris - 9 580. The birch pollen season in Lublin lasts about a month, and pollen of this taxon reaches the highest airborne concentrations among the studied taxa. Low values of pollen concentrations are characteristic for rye and plantain, whereas slightly higher values are recorded for sorrel pollen. Mugwort pollen reaches high concentrations which are noted at the beginning of August.

  16. Wild Plant Species with Extremely Small Populations Require Conservation and Reintroduction in China

    Science.gov (United States)

    Hai Ren; Qianmei Zhang; Hongfang Lu; Hongxiao Liu; Qinfeng Guo; Jun Wang; Shuguang Jian; Hai’ou Bao

    2012-01-01

    China is exceptionally rich in biodiversity, with more than 30000 vascular plant species that include many endemic genera, species of ancient origin, and cultivated plants (Yang et al. 2005). Because of rapid economic development, population growth, pollution, and continuing resource exploitation, China’s plant diversity faces severe threats. According to the Chinese...

  17. Host plant use among closely related Anaea butterfly species (Lepidoptera, Nymphalidae, Charaxinae

    Directory of Open Access Journals (Sweden)

    QUEIROZ J. M.

    2002-01-01

    Full Text Available There is a great number of Charaxinae (Lepidoptera: Nymphalidae species in the tropics whose larvae feed on several plant families. However the genus Anaea is almost always associated with Croton species (Euphorbiaceae. This work describes patterns of host plant use by immature and adult abundance on different vertical strata of sympatric Anaea species in a forest of Southeastern Brazil. Quantitative samples of leaves were taken in April/1999 and May/2000 to collect eggs and larvae of four Anaea species on C.alchorneicarpus, C. floribundus and C. salutaris in a semideciduous forest. Sampled leaves were divided into three classes of plant phenological stage: saplings, shrubs and trees. The results showed that the butterfly species are segregating in host plant use on two scales: host plant species and plant phenological stages. C. alchorneicarpus was used by only one Anaea species, whereas C. floribundus was used by three species and C. salutaris by four Anaea species. There was one Anaea species concentrated on sapling, another on sapling/shrub and two others on shrub/tree leaves. Adults of Anaea were more frequent at canopy traps but there were no differences among species caught in traps at different vertical positions. This work supplements early studies on host plant use among Charaxinae species and it describes how a guild of closely related butterfly species may be organized in a complex tropical habitat.

  18. Le tourisme alpin

    Directory of Open Access Journals (Sweden)

    Andrea Macchiavelli

    2009-06-01

    Full Text Available La forte croissance qu’ont connue les pays alpins dans les dernières décennies a surtout été fondée sur l’offre des activités du ski, avec comme conséquence, un massif développement immobilier, la multiplication d’infrastructures et l’extension des domaines. Aujourd’hui, le marché du ski semble arriver à saturation, la Convention alpine a mis un frein à la poursuite du développement des domaines skiables et on observe donc avec intérêt la diversification de l’offre soutenue par l’innovation. Après avoir rappelé les facteurs de changement en cours les plus significatifs dans le tourisme montagnard, l’article présente une grille interprétative de l’évolution des destinations touristiques alpines, identifiant les phases qui ont caractérisé son développement. Puis il propose une réflexion sur certaines conditions qui peuvent favoriser l’innovation dans le tourisme alpin, ainsi que sur les contradictions qui les accompagnent souvent. Dans la plupart des cas l’innovation est le résultat d’un processus qui a été lancé et qui s’est développé au sein de la communauté alpine, souvent favorisé et soutenu par des institutions nationales et internationales, et grâce auquel les difficultés structurelles qui ont déjà été abordées précédemment ont pu être surmontées avec succès.The spectacular increase in tourism in the Alps in recent decades has been founded mainly on the boom in skiing, resulting in both strong real estate development and an increasing array of infrastructures and ski runs. Today the ski market seems to have virtually reached saturation point and the winter sports sector needs to diversify its offer through innovation. After a review of the main factors of change in mountain tourism, the paper presents a grid for interpreting the life cycle of alpine destinations, identifying the phases that characterize their evolution. The conditions that may favour innovation in alpine

  19. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands.

    Science.gov (United States)

    Zhu, Juntao; Jiang, Lin; Zhang, Yangjian

    2016-09-26

    Functional diversity, the extent of functional differences among species in a community, drives biodiversity-ecosystem function (BEF) relationships. Here, four species traits and aboveground biomass production (ABP) were considered. We used two community-wide measures of plant functional composition, (1) community weighted means of trait values (CWM) and (2) functional trait diversity based on Rao's quadratic diversity (FD Q ) to evaluate the effects of functional diversity on the ABP in the Northern Tibetan alpine grasslands. Both species and functional diversity were positively related to the ABP. Functional trait composition had a larger predictive power for the ABP than species diversity and FD Q , indicating a primary dependence of ecosystem property on the identity of dominant species in our study system. Multivariate functional diversity was ineffective in predicting ecosystem function due to the trade-offs among different traits or traits selection criterions. Our study contributes to a better understanding of the mechanisms driving the BEF relationships in stressed ecosystems, and especially emphasizes that abiotic and biotic factors affect the BEF relationships in alpine grasslands.

  20. A new Legionella species, Legionella feeleii species nova, causes Pontiac fever in an automobile plant.

    Science.gov (United States)

    Herwaldt, L A; Gorman, G W; McGrath, T; Toma, S; Brake, B; Hightower, A W; Jones, J; Reingold, A L; Boxer, P A; Tang, P W

    1984-03-01

    From 15 to 21 August 1981, Pontiac fever affected 317 automobile assembly plant workers. Results of serologic tests were negative for Mycoplasma, Chlamydia, respiratory tract viruses, and previously described legionellae. A gram-negative, rod-shaped organism (WO-44C) that did not grow on blood agar, required L-cysteine for growth, and contained large amounts of branched-chain fatty acids was isolated from a water-based coolant. The organism did not react with antisera against other legionellae, and on DNA hybridization the organism was less than 10% related to other Legionella species. Geometric mean titers found by indirect fluorescent antibody testing to WO-44C were significantly higher in ill employees than in controls (p = 0.0001). Attack rates by department decreased linearly with the department's distance from the implicated coolant system. The etiologic agent apparently was a new Legionella species; we propose the name Legionella feeleii species nova (AATC 35072). This is the first outbreak of nonpneumonic legionellosis in which the etiologic agent is not L. pneumophila, serogroup 1.

  1. Plant trait-species abundance relationships vary with environmental properties in subtropical forests in eastern china.

    Directory of Open Access Journals (Sweden)

    En-Rong Yan

    Full Text Available Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N and phosphorus (P contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA, leaf N concentration (LN, and total leaf area per twig size (TLA were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.

  2. Alien plant species list and distribution for Camdeboo National Park, Eastern Cape Province, South Africa

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2009-09-01

    Full Text Available Protected areas globally are threatened by the potential negative impacts that invasive alien plants pose, and Camdeboo National Park (CNP, South Africa, is no exception. Alien plants have been recorded in the CNP since 1981, before it was proclaimed a national park by South African National Parks in 2005. This is the first publication of a list of alien plants in and around the CNP. Distribution maps of some of the first recorded alien plant species are also presented and discussed. To date, 39 species of alien plants have been recorded, of which 13 are invasive and one is a transformer weed. The majority of alien plant species in the park are herbaceous (39% and succulent (24% species. The most widespread alien plant species in the CNP are Atriplex inflata (= A. lindleyi subsp. inflata, Salsola tragus (= S. australis and cacti species, especially Opuntia ficus-indica. Eradication and control measures that have been used for specific problematic alien plant species are described. Conservation implications: This article represents the first step in managing invasive alien plants and includes the collation of a species list and basic information on their distribution in and around the protected area. This is important for enabling effective monitoring of both new introductions and the distribution of species already present. We present the first species list and distribution information for Camdeboo National Park.

  3. Contrasting structures of plant-mite networks compounded by phytophagous and predatory mite species.

    Science.gov (United States)

    de Araújo, Walter Santos; Daud, Rodrigo Damasco

    2018-04-01

    Differences in the feeding habits between phytophagous and predatory species can determine distinct ecological interactions between mites and their host plants. Herein, plant-mite networks were constructed using available literature on plant-dwelling mites from Brazilian natural vegetation in order to contrast phytophagous and predatory mite networks. The structural patterns of plant-mite networks were described through network specialization (connectance) and modularity. A total of 187 mite species, 65 host plant species and 646 interactions were recorded in 14 plant-mite networks. Phytophagous networks included 96 mite species, 61 host plants and 277 interactions, whereas predatory networks contained 91 mite species, 54 host plants and 369 interactions. No differences in the species richness of mites and host plants were observed between phytophagous and predatory networks. However, plant-mite networks composed of phytophagous mites showed lower connectance and higher modularity when compared to the predatory mite networks. The present results corroborate the hypothesis that trophic networks are more specialized than commensalistic networks, given that the phytophagous species must deal with plant defenses, in contrast to predatory mites which only inhabit and forage for resources on plants.

  4. Species Diversity Distribution Patterns of Chinese Endemic Seed Plants Based on Geographical Regions.

    Science.gov (United States)

    Huang, Jihong; Ma, Keping; Huang, Jianhua

    2017-01-01

    Based on a great number of literatures, we established the database about the Chinese endemic seed plants and analyzed the compositions, growth form, distribution and angiosperm original families of them within three big natural areas and seven natural regions. The results indicate that the above characters of Chinese endemic plants take on relative rule at the different geographical scales. Among the three big natural areas, Eastern Monsoon area has the highest endemic plants richness, whereas Northwest Dryness area is the lowest. For life forms, herbs dominate. In contrast, the proportion of herbs of Eastern Monsoon area is remarkable under other two areas. Correspondingly the proportions of trees and shrubs are substantially higher than other two. For angiosperm original families, the number is the highest in Eastern Monsoon area, and lowest in Northwest Dryness area. On the other hand, among the seven natural regions, the humid and subtropical zone in Central and Southern China has the highest endemic plants richness, whereas the humid, hemi-humid region and temperate zone in Northeast China has the lowest. For life forms, the proportion of herbs tends to decrease from humid, hemi-humid region and temperate zone in Northeast China to humid and tropical zone in Southern China. Comparably, trees, shrubs and vines or lianas increase with the same directions. This fully represents these characters of Chinese endemic plants vary with latitudinal gradients. Furthermore, as to the number of endemic plants belonging to angiosperm original families, the number is the most in humid and subtropical zone in Center and Southern China, and tropical zone in Southern China in the next place. In contrast, the endemic plant of these two regions relatively is richer than that of The Qinghai-Tibet alpine and cold region. All above results sufficiently reflect that the Chinese endemic plants mainly distribute in Eastern Monsoon area, especially humid and subtropical zone in Center

  5. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment. In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  6. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Science.gov (United States)

    Eisenhauer, Nico; Migunova, Varvara D; Ackermann, Michael; Ruess, Liliane; Scheu, Stefan

    2011-01-01

    Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices. We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment). In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years. The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  7. Changes in semi-arid plant species associations along a livestock grazing gradient.

    Directory of Open Access Journals (Sweden)

    Hugo Saiz

    Full Text Available In semi-arid ecosystems, vegetation is heterogeneously distributed, with plant species often associating in patches. These associations between species are not constant, but depend on the particular response of each species to environmental factors. Here, we investigated how plant species associations change in response to livestock grazing in a semi-arid ecosystem, Cabo de Gata-Níjar Natural Park in South East Spain. We established linear point-intercept transects at four sites with different grazing intensity, and recorded all species at each point. We investigated plant associations by comparing the number of times that each pair of species occurred at the same spatial point (co-occurrences, with the expected number of times based on species abundances. We also assessed associations for each shrub and grass species by considering all their pairs of associations and for the whole plant community by considering all pairs of associations on each site. At all sites, the plant community had a negative pattern of association, with fewer co-occurrences than expected. Negative association in the plant community increased at maximum grazing intensity. Most species associated as expected, particularly grass species, and positive associations were most important at intermediate grazing intensities. No species changed its type of association along the grazing gradient. We conclude that in the present plant community, grazing-resistant species compete among themselves and segregate in space. Some shrub species act as refuges for grazing-sensitive species that benefit from being spatially associated with shrub species, particularly at intermediate grazing intensities where positive associations were highest. At high grazing intensity, these shrubs can no longer persist and positive associations decrease due to the disappearance of refuges. Spatial associations between plant species and their response to grazing help identify the factors that organize

  8. Increased plant carbon translocation linked to overyielding in grassland species mixtures.

    Directory of Open Access Journals (Sweden)

    Gerlinde B De Deyn

    Full Text Available Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully understood, especially at the plant species level. We examined how growing plants in species mixture influences intraspecific rates of short-term carbon (C- translocation, and determined whether such short-term responses are reflected in biomass yields. We grew monocultures and mixtures of six common C3 grassland plant species in outdoor mesocosms, applied a (13C-CO(2 pulse in situ to trace assimilated C through plants, into the soil, and back to the atmosphere, and quantified species-specific biomass. Pulse derived (13C enrichment was highest in the legumes Lotus corniculatus and Trifolium repens, and relocation (i.e. transport from the leaves to other plant parts of the recently assimilated (13C was most rapid in T. repens grown in 6-species mixtures. The grass Anthoxanthum odoratum also showed high levels of (13C enrichment in 6-species mixtures, while (13C enrichment was low in Lolium perenne, Plantago lanceolata and Achillea millefolium. Rates of C loss through respiration were highest in monocultures of T. repens and relatively low in species mixtures, while the proportion of (13C in the respired CO(2 was similar in monocultures and mixtures. The grass A. odoratum and legume T. repens were most promoted in 6-species mixtures, and together with L. corniculatus, caused the net biomass increase in 6-species mixtures. These plant species also had highest rates of (13C-label translocation, and for A. odoratum and T. repens this effect was greatest in plant individuals grown in species mixtures. Our study reveals that short-term plant C translocation can be accelerated in plant individuals of legume and C3 grass species when grown in mixtures, and that this is strongly positively related to overyielding. These results demonstrate a mechanistic coupling between changes in intraspecific plant carbon physiology and increased

  9. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  10. Plant species occurrence patterns in Eurasian grasslands reflect adaptation to nutrient ratios

    NARCIS (Netherlands)

    Roeling, Ineke S.; Ozinga, Wim A.; Dijk, van Jerry; Eppinga, Maarten B.; Wassen, Martin J.

    2018-01-01

    Previous studies of Eurasian grasslands have suggested that nutrient ratios, rather than absolute nutrient availabilities and associated productivity, may be driving plant species richness patterns. However, the underlying assumption that species occupy distinct niches along nutrient ratio gradients

  11. Performance of dryland and wetland plant species on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Ranalli, Melissa A; Lundholm, Jeremy T

    2011-04-01

    Green roofs are constructed ecosystems where plants perform valuable services, ameliorating the urban environment through roof temperature reductions and stormwater interception. Plant species differ in functional characteristics that alter ecosystem properties. Plant performance research on extensive green roofs has so far indicated that species adapted to dry conditions perform optimally. However, in moist, humid climates, species typical of wetter soils might have advantages over dryland species. In this study, survival, growth and the performance of thermal and stormwater capture functions of three pairs of dryland and wetland plant species were quantified using an extensive modular green roof system. Seedlings of all six species were germinated in a greenhouse and planted into green roof modules with 6 cm of growing medium. There were 34 treatments consisting of each species in monoculture and all combinations of wet- and dryland species in a randomized block design. Performance measures were survival, vegetation cover and roof surface temperature recorded for each module over two growing seasons, water loss (an estimate of evapotranspiration) in 2007, and albedo and water capture in 2008. Over two seasons, dryland plants performed better than wetland plants, and increasing the number of dryland species in mixtures tended to improve functioning, although there was no clear effect of species or habitat group diversity. All species had survival rates >75 % after the first winter; however, dryland species had much greater cover, an important indicator of green roof performance. Sibbaldiopsis tridentata was the top performing species in monoculture, and was included in the best treatments. Although dryland species outperformed wetland species, planting extensive green roofs with both groups decreased performance only slightly, while increasing diversity and possibly habitat value. This study provides further evidence that plant composition and diversity can

  12. Impacts of different climate change regimes and extreme climatic events on an alpine meadow community.

    Science.gov (United States)

    Alatalo, Juha M; Jägerbrand, Annika K; Molau, Ulf

    2016-02-18

    Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 °C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 °C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 °C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity.

  13. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, Eske; Hansen, Anders J.; Nielsen, Kirstine Klitgaard

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log...... explained variation is in general small. The results show that the species area relationships are different for native and endemic species. This is discussed in relation to classical island biogeographical models, and the concepts of radiative speciation....

  14. Climate change may threaten habitat suitability of threatened plant species within Chinese nature reserves.

    Science.gov (United States)

    Wang, Chunjing; Liu, Chengzhu; Wan, Jizhong; Zhang, Zhixiang

    2016-01-01

    Climate change has the potential to alter the distributions of threatened plant species, and may therefore diminish the capacity of nature reserves to protect threatened plant species. Chinese nature reserves contain a rich diversity of plant species that are at risk of becoming more threatened by climate change. Hence, it is urgent to identify the extent to which future climate change may compromise the suitability of threatened plant species habitats within Chinese nature reserves. Here, we modelled the climate suitability of 82 threatened plant species within 168 nature reserves across climate change scenarios. We used Maxent modelling based on species occurrence localities and evaluated climate change impacts using the magnitude of change in climate suitability and the degree of overlap between current and future climatically suitable habitats. There was a significant relationship between overlap with current and future climate suitability of all threatened plant species habitats and the magnitude of changes in climate suitability. Our projections estimate that the climate suitability of more than 60 threatened plant species will decrease and that climate change threatens the habitat suitability of plant species in more than 130 nature reserves under the low, medium, and high greenhouse gas concentration scenarios by both 2050s and 2080s. Furthermore, future climate change may substantially threaten tree plant species through changes in annual mean temperature. These results indicate that climate change may threaten plant species that occur within Chinese nature reserves. Therefore, we suggest that climate change projections should be integrated into the conservation and management of threatened plant species within nature reserves.

  15. Climate change may threaten habitat suitability of threatened plant species within Chinese nature reserves

    Science.gov (United States)

    Wan, Jizhong

    2016-01-01

    Climate change has the potential to alter the distributions of threatened plant species, and may therefore diminish the capacity of nature reserves to protect threatened plant species. Chinese nature reserves contain a rich diversity of plant species that are at risk of becoming more threatened by climate change. Hence, it is urgent to identify the extent to which future climate change may compromise the suitability of threatened plant species habitats within Chinese nature reserves. Here, we modelled the climate suitability of 82 threatened plant species within 168 nature reserves across climate change scenarios. We used Maxent modelling based on species occurrence localities and evaluated climate change impacts using the magnitude of change in climate suitability and the degree of overlap between current and future climatically suitable habitats. There was a significant relationship between overlap with current and future climate suitability of all threatened plant species habitats and the magnitude of changes in climate suitability. Our projections estimate that the climate suitability of more than 60 threatened plant species will decrease and that climate change threatens the habitat suitability of plant species in more than 130 nature reserves under the low, medium, and high greenhouse gas concentration scenarios by both 2050s and 2080s. Furthermore, future climate change may substantially threaten tree plant species through changes in annual mean temperature. These results indicate that climate change may threaten plant species that occur within Chinese nature reserves. Therefore, we suggest that climate change projections should be integrated into the conservation and management of threatened plant species within nature reserves. PMID:27326373

  16. Vascular plant and vertebrate species richness in national parks of the eastern United States

    Science.gov (United States)

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  17. A simple spatial model exploring positive feedbacks at tropical alpine treelines

    NARCIS (Netherlands)

    Bader, M.; Rietkerk, M.; Bregt, A.K.

    2008-01-01

    Climate change could cause alpine treelines to shift in altitude or to change their spatial pattern, but little is known about the drivers of treeline dynamics and patterning. The position and patterns of tropical alpine treelines are generally attributed to land use, especially burning. Species

  18. Phytophthora multivora sp. nov., a new species recovered from declining Eucalyptus, Banksia, Agonis and other plant species in Western Australia

    NARCIS (Netherlands)

    Scott, P.M.; Burgess, T.I.; Barber, P.A.; Shearer, B.L.; Stukely, M.J.C.; Hardy, G.E.St.J.; Jung, T.

    2009-01-01

    A new Phytophthora species, isolated from rhizosphere soil of declining or dead trees of Eucalyptus gomphocephala, E. marginata, Agonis flexuosa, and another 13 plant species, and from fine roots of E. marginata and collar lesions of Banksia attenuata in Western Australia, is described as

  19. Increasing temperature causes flowering onset time changes of alpine ginger Roscoea in the Central Himalayas

    Directory of Open Access Journals (Sweden)

    Dharmalingam Mohandass

    2015-09-01

    Full Text Available Recent herbarium-based phenology assessments of many plant species have found significant responses to global climate change over the previous century. In this study, we investigate how the flowering phenology of three alpine ginger Roscoea species responses to climate change over the century from 1913 to 2011, by comparing between herbarium-based phenology records and direct flowering observations. According to the observations, flowering onset of the three alpine ginger species occurred either 22 days earlier or was delayed by 8–30 days when comparing the mean peak flowering date between herbarium-based phenology records and direct flowering observations. It is likely that this significant change in flowering onset is due to increased annual minimum and maximum temperatures and mean annual temperature by about 0.053°C per year. Our results also show that flowering time changes occurred due to an increasing winter–spring minimum temperature and monsoon minimum temperature, suggesting that these Roscoea species respond greatly to climate warming resulting in changes on flowering times.

  20. An Ethnobotanical Survey on Fuel Wood and Timber plant Species ...

    African Journals Online (AJOL)

    Yomi

    2011-12-19

    Dec 19, 2011 ... wood and 41 species belonging to 25 families were utilized as timber. Three tree species; Quercus incana, Cedrus deodara and Taxus wallichiana was found endangered. There is a dire need to conserve these species. Key words: Ethnobotany, fuel wood, timber species, Kaghan valleys, Khyber Pakhtoon ...

  1. Competitive context drives pollinator behavior: linking foraging plasticity, natural pollen deposition, and plant reproduction

    OpenAIRE

    Briggs, Heather Mae

    2016-01-01

    With ongoing global pollinator declines it is important to understand the functional impact of pollinator species losses. While network-based simulation models of pollinator declines predict that plant communities will be robust to losses of pollinator species, these predictions have never been tested empirically. In four chapters, my dissertation uses both empirical and modeling approaches to explore the impacts of losing pollinator species in alpine plant communities. First, I test the hypo...

  2. Plant species richness and abundance in residential yards across a tropical watershed: implications for urban sustainability

    Directory of Open Access Journals (Sweden)

    Cristina P. Vila-Ruiz

    2014-09-01

    Full Text Available Green spaces within residential areas provide important contributions to the sustainability of urban systems. Therefore, studying the characteristics of these areas has become a research priority in cities worldwide. This project evaluated various aspects of the plant biodiversity of residential yards (i.e., front yards and back yards within the Río Piedras watershed in the San Juan metropolitan area of Puerto Rico. Our work included gathering information on vegetation composition and abundance of woody species (i.e., trees, shrubs, palms, ferns and large herbs (>2 m height, species origin (native vs. introduced, and species uses (ornamental, food, and medicinal plants. A total of 424 yards were surveyed within an area of 187,191 m². We found 383 woody species, with shrubs being the most abundant plant habitat. As expected, residential yards hosted a disproportionate amount of introduced species (69.5%. The most common shrub species were all non-native ornamentals, whereas the most common tree species included food trees as well as ornamental plants and two native species. Front yards hosted more ornamental species per unit area than backyards, while the latter had more food plants. The high amount of introduced species may present a challenge in terms of implementation of plant conservation initiatives if there is no clear definition of urban conservation goals. On the other hand, the high frequency of yards containing food plants may facilitate the development of residential initiatives that could provide future adaptive capacity to food shortages.

  3. Species composition, plant cover and diversity of recently reforested ...

    African Journals Online (AJOL)

    SERVER

    2007-12-17

    Dec 17, 2007 ... plants. In the early stages of reforestation, herbs dominated the plant community in most plots, and woody plants became more important with time after reforestation. Preliminary ... Given the importance of colonization on forest stand composition ..... if the former was in full sunlight than if overtopped by the.

  4. Invasive plant species and the Joint Fire Science Program.

    Science.gov (United States)

    Heather E. Erickson; Rachel White

    2007-01-01

    Invasive nonnative plants may be responsible for serious, long-term ecological impacts, including altering fire behavior and fire regimes. Therefore, knowing how to successfully manage invasive plants and their impacts on natural resources is crucial. We present a summary of research on invasive plants and fire that has been generated through the Joint Fire Science...

  5. Pollinator networks, alien species and the conservation of rare plants: Trinia glauca as a case study

    NARCIS (Netherlands)

    Carvalheiro, L.G.; Barbosa, E.R.; Memmott, J.

    2008-01-01

    1. Despite the essential role of pollination in the maintenance of many rare plant species, conservation management plans rarely consider the service of pollination. 2. This study identifies the main pollinators of a rare English plant species, Trinia glauca (Apiaceae), and provides recommendations

  6. Number of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters

    DEFF Research Database (Denmark)

    Willerslev, E.; Hansen, Anders J.; Nielsen, K. K.

    2002-01-01

    By simple and multiple regression analyses we investigate updated species numbers of endemic and native vascular plants and seed plants in the Galapagos Archipelago in relation to geographical parameters. We find that the best models to describe species numbers are regression models with log...

  7. Impact of mine dumps on transport the invasive plant species to Upper Silesia

    Science.gov (United States)

    Sotkova, N.; Lokajickova, B.; Mec, J.; Svehlakova, H.; Stalmachova, B.

    2017-10-01

    Human activities significantly change the species composition in the area. The main factor of change was the mining industry, which changed the natural conditions on Upper Silesia. The anthropogenic relief of mine dumps are the main centre of alien plant in an industrial landscape. The poster deals with the state of the invasive plant species by the phyto-sociological surveys on Upper Silesia.

  8. Determining a charge for the clearing of invasive alien plant species ...

    African Journals Online (AJOL)

    South Africa is running out of water supply options. One option, however, is to control invasive alien plant species (IAPs) within water catchment areas and in riparian zones. The National Water Act and subsequent documentation provide a guide for the use of economic instruments to manage invasive alien plant species at ...

  9. The effects of fire-breaks on plant diversity and species composition ...

    African Journals Online (AJOL)

    There is a dearth of knowledge on the effects of annual burning of fire-breaks on species composition, plant diversity and soil properties. Whittaker's plant diversity technique was used to gather data on species composition and diversity in four grassland communities on the Loskop Dam Nature Reserve (LDNR). The study ...

  10. Importance of water quality on plant abundance and diversity in high-alpine meadows of the Yerba Loca Natural Sanctuary at the Andes of north-central Chile Importancia de la calidad del agua sobre la abundancia y diversidad vegetal en vegas altoandinas del Santuario Natural Yerba Loca en los Andes de Chile centro-norte

    Directory of Open Access Journals (Sweden)

    ROSANNA GINOCCHIO

    2008-12-01

    Full Text Available Porphyry Cu-Mo deposits have influenced surface water quality in high-Andes of north-central Chile since the Miocene. Water anomalies may reduce species abundance and diversity in alpine meadows as acidic and metal-rich waters are highly toxic to plants The study assessed the importance of surface water quality on plant abundance and diversity in high-alpine meadows at the Yerba Loca Natural Santuary (YLNS, central Chile (33°15' S, 70°18' W. Hydrochemical and plant prospecting were carried out on Piedra Carvajal, Chorrillos del Plomo and La Lata meadows the growing seasons of 2006 and 2007. Direct gradient analysis was performed through canonical correspondence analysis (CCA to look for relationships among water chemistry and plant factors. High variability in water chemistry was found inside and among meadows, particularly for pH, sulphate, electric conductivity, hardness, and total dissolved Cu, Zn, Cd, Pb and Fe. Data on species abundance and water chemical factors suggests that pH and total dissolved Cu are very important factor determining changes in plant abundance and diversity in study meadows. For instance, Festuca purpurascens, Colobanthus quitensis, and Arenaria rivularis are abundant in habitals with Cu-rich waters while Festuca magellanica, Patosia clandestina, Plantago barbata, Werneria pygmea, and Erigeron andícola are abundant in habitals with dilute waters.Los megadepósitos de pórfidos de Cu-Mo han influido sobre la calidad de las aguas superficiales en las zonas altoandinas del centro-norte de Chile desde el Mioceno. Estas alteraciones en la calidad de las aguas podrían afectar negativamente a la vegetación presente en las vegas altoandinas, ya que las aguas acidas y ricas en metales son altamente tóxicas para las plantas. En este estudio se evaluó el efecto de la calidad de las aguas en la abundancia y diversidad florística de las vegas altoandinas del Santuario de la Naturaleza Yerba Loca (SNYL, en Chile central (33

  11. Traits related to species persistence and dispersal explain changes in plant communities subjected to habitat loss

    DEFF Research Database (Denmark)

    Marini, Lorenzo; Bruun, Hans Henrik; Heikkinen, Risto

    2012-01-01

    -history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life-history traits and their interactions using linear mixed models. Results We found that the negative effect......Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life-history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal...... in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five...

  12. Seed longevity of dominant plant species from degraded savanna in ...

    African Journals Online (AJOL)

    The low decay constant of some species is an indication of their abilities to form persistent seed banks. The intermittent and extended germination of seeds of the same species from the same batch shown by some species may be regarded as an ecological adaptation to prevent synchronous germination in unpredictable ...

  13. Research Note Impacts of mine dump pollution on plant species ...

    African Journals Online (AJOL)

    Species composition and structure of vegetation close to the mine dump significantly changed, possibly due to negative impacts of heavy metals on recruitment as pollution-sensitive species died off, whereas tolerant species invaded the vacated ecological niches. Ordination analyses confirmed a strong pollution gradient, ...

  14. Herbs versus Trees: Influences on Teenagers' Knowledge of Plant Species

    Science.gov (United States)

    Lückmann, Katrin; Menzel, Susanne

    2014-01-01

    The study reports on species knowledge among German adolescents (n = 507) as: (1) self-assessed evaluation of one's species knowledge; and (2) factual knowledge about popular local herbs and trees. Besides assessing species knowledge, we were interested in whether selected demographic factors, environmental attitude (as measured through the New…

  15. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate

    2015-01-01

    Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired......-interaction models to describe how species' interactions influenced diversity-productivity relationships. Communities with more species had higher total biomass than did monoculture communities, but native and nonnative communities diverged in root : shoot ratios and the mechanism responsible for increased...

  16. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens.

    Science.gov (United States)

    2016-03-01

    Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  17. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens

    Directory of Open Access Journals (Sweden)

    Isabel Díaz-Reviriego

    2016-03-01

    Full Text Available Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  18. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    Science.gov (United States)

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. Plant biodiversity effects in reducing fluvial erosion are limited to low species richness.

    Science.gov (United States)

    Allen, Daniel C; Cardinale, Bradley J; Wynn-Thompson, Theresa

    2016-01-01

    It has been proposed that plant biodiversity may increase the erosion resistance of soils, yet direct evidence for any such relationship is lacking. We conducted a mesocosm experiment with eight species of riparian herbaceous plants, and found evidence that plant biodiversity significantly reduced fluvial erosion rates, with the eight-species polyculture decreasing erosion by 23% relative to monocultures. Species richness effects were largest at low levels of species richness, with little increase between four and eight species. Our results suggest that plant biodiversity reduced erosion rates indirectly through positive effects on root length and number of root tips, and that interactions between legumes and non-legumes were particularly important in producing biodiversity effects. Presumably, legumes increased root production of non-legumes by increasing soil nitrogen availability due to their ability to fix atmospheric nitrogen. Our data suggest that a restoration project using species from different functional groups might provide the best insurance to maintain long-term erosion resistance.

  20. Links between plant litter chemistry, species diversity, and below-ground ecosystem function

    OpenAIRE

    Meier, Courtney L.; Bowman, William D.

    2008-01-01

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics...

  1. INVASIVE ALIEN PLANT SPECIES USED FOR THE TREATMENT OF VARIOUS DISEASES IN LIMPOPO PROVINCE, SOUTH AFRICA

    OpenAIRE

    Maema, Lesibana Peter; Potgieter, Martin; Mahlo, Salome Mamokone

    2016-01-01

    Background: Invasive alien plant species (IAPs) are plants that have migrated from one geographical region to non-native region either intentional or unintentional. The general view of IAPs in environment is regarded as destructive to the ecosystem and they pose threat to native vegetation and species. However, some of these IAPS are utilized by local inhabitants as a substitute for scarce indigenous plants. The aim of the study is to conduct ethnobotanical survey on medicinal usage of invasi...

  2. KEY TO THE POWDERY MILDEW SPECIES ON THE BASIS OF THE HOST PLANT FAMILIES AND GENERA

    Directory of Open Access Journals (Sweden)

    E. V. Rakhimova

    2015-05-01

    Full Text Available Key on the basis of the host plant taxonomy, symptoms of the infected plants and microscopic features of fungi was composed for identification of powdery mildews of the Kazakhstan. Features, which were used for identification of fungus, were the number of asci in cleistothecium, the number of ascospores in ascus and the type of appendages of cleistothecium. Key was composed for 81 species and 25 variations of Erysiphales fungi, infecting 739 species of host plants, which belong to 305 genera.

  3. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners

    NARCIS (Netherlands)

    Macel, M.; de Vos, R.C.H.; Jansen, J.J.; Van der Putten, W.H.; Van Dam, N.M.

    2014-01-01

    t is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native

  4. Collection and Domestication of Rangeland Plant Species with Emphasis on Mongolia and China

    Science.gov (United States)

    Changing economic and social conditions are threatening plant diversity on rangelands in Mongolia and China. Teams of collaborating scientists from the U.S.A., Mongolia, and China collected seed of rangeland plant species in Mongolia and Inner Mongolia, China, to preserve plant biodiversity from th...

  5. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners

    NARCIS (Netherlands)

    Macel, M.; Vos, de R.C.H.; Jansen, J.J.; Putten, van der W.H.; Dam, van N.M.

    2014-01-01

    It is often assumed that exotic plants can become invasive when they possess novel secondary chemistry compared with native plants in the introduced range. Using untargeted metabolomic fingerprinting, we compared a broad range of metabolites of six successful exotic plant species and their native

  6. Use of plant woody species electrical potential for irrigation scheduling.

    Science.gov (United States)

    Ríos-Rojas, Liliana; Morales-Moraga, David; Alcalde, José A; Gurovich, Luis A

    2015-01-01

    The electrical response of plants to environmental stimuli can be measured and quantitatively related to the intensity of several stimulating sources, like temperature, solar radiation, soil water content, evapotranspiration rates, sap flow and dendrometric cycles. These relations can be used to assess the influence of different environmental situations on soil water availability to plants, defined as a steady state condition between leaf transpirative flow and soil water flow to plant roots. A restricted soil water flow due to soil dryness can trigger water stress in plants, if the atmospheric evaporative demand is high, causing partial stomata closure as a physiological response to avoid plant dehydration; water stressed and unstressed plants manifest a differential electrical response. Real time plant electrical response measurements can anticipate actions that prevent the plant reaching actual stress conditions, optimizing stomata gas exchange and photosynthetic rates. An electrophysiological sensor developed in this work, allows remote real-time recording information on plant electrical potential (EP) in the field, which is highly related to EP measurements obtained with a laboratory Keithley voltmeter sensor used in an highly controlled experimental setup. Our electrophysiological sensor is a wireless, autonomous devise, which transmits EP information via Internet to a data server. Using both types of sensors (EP electrodes with a Keithley voltmeter and the electrophysiological sensor), we measured in real time the electrical responses of Persea americana and Prunus domestica plants, to induced water deficits. The differential response for 2 scenarios: irrigation and water restriction is identified by a progressive change in slope on the daily maximal and minimal electric signal values in stressed plants, and a zero-slope for similar signals for well-watered plants. Results show a correspondence between measured signals obtained by our electrophysiological

  7. Mapping topographic plant location properties using a dense matching approach

    Science.gov (United States)

    Niederheiser, Robert; Rutzinger, Martin; Lamprecht, Andrea; Bardy-Durchhalter, Manfred; Pauli, Harald; Winkler, Manuela

    2017-04-01

    Within the project MEDIALPS (Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains) six regions in Alpine and in Mediterranean mountain regions are investigated to assess how plant species respond to climate change. The project is embedded in the Global Observation Research Initiative in Alpine Environments (GLORIA), which is a well-established global monitoring initiative for systematic observation of changes in the plant species composition and soil temperature on mountain summits worldwide to discern accelerating climate change pressures on these fragile alpine ecosystems. Close-range sensing techniques such as terrestrial photogrammetry are well suited for mapping terrain topography of small areas with high resolution. Lightweight equipment, flexible positioning for image acquisition in the field, and independence on weather conditions (i.e. wind) make this a feasible method for in-situ data collection. New developments of dense matching approaches allow high quality 3D terrain mapping with less requirements for field set-up. However, challenges occur in post-processing and required data storage if many sites have to be mapped. Within MEDIALPS dense matching is used for mapping high resolution topography for 284 3x3 meter plots deriving information on vegetation coverage, roughness, slope, aspect and modelled solar radiation. This information helps identifying types of topography-dependent ecological growing conditions and evaluating the potential for existing refugial locations for specific plant species under climate change. This research is conducted within the project MEDIALPS - Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains funded by the Earth System Sciences Programme of the Austrian Academy of Sciences.

  8. Plant species dispersed by Galapagos tortoises surf the wave of habitat suitability under anthropogenic climate change

    OpenAIRE

    Ellis-Soto, Diego; Blake, Stephen; Soultan, Alaaeldin; Gu?zou, Anne; Cabrera, Fredy; L?tters, Stefan

    2017-01-01

    Native biodiversity on the Galapagos Archipelago is severely threatened by invasive alien species. On Santa Cruz Island, the abundance of introduced plant species is low in the arid lowlands of the Galapagos National Park, but increases with elevation into unprotected humid highlands. Two common alien plant species, guava (Psidium guajava) and passion fruit (Passiflora edulis) occur at higher elevations yet their seeds are dispersed into the lowlands by migrating Galapagos tortoises (Chelonoi...

  9. Variation in habitat suitability does not always relate to variation in species' plant functional traits

    OpenAIRE

    Thuiller, Wilfried; Albert, Cécile H.; Dubuis, Anne; Randin, Christophe; Guisan, Antoine

    2009-01-01

    Habitat suitability models, which relate species occurrences to environmental variables, are assumed to predict suitable conditions for a given species. If these models are reliable, they should relate to change in plant growth and function. In this paper, we ask the question whether habitat suitability models are able to predict variation in plant functional traits, often assumed to be a good surrogate for a species' overall health and vigour. Using a thorough sampling design, we show a tigh...

  10. 75 FR 28636 - Endangered and Threatened Wildlife and Plants; Initiation of 5-Year Reviews of 34 Species in...

    Science.gov (United States)

    2010-05-21

    ... Endangered and Threatened Wildlife and Plants at 50 CFR 17.11 (for animals) and 17.12 (for plants) (List). We... following reasons: (1) The species is considered extinct; (2) the species is considered to be recovered; and... Animal Species and 18 Plant Species in California and Nevada Common name Scientific name Status Where...

  11. Planting density and initial growth of two tree species adapted to the semi-arid region

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2012-10-01

    Full Text Available Planting densities influence several aspects of forest formation, including management practices, timber yield, quality, and extraction, and consequently its production costs. The objective of this study was to evaluate Mimosa caesalpiinifolia and Gliricidia sepium growth as a function of planting density (400, 600, 800, 1000, and 1200 plants ha-1 and plant age. The species were evaluated every 90 days for plant height (PH, crown diameter (CD and root collar diameter (RCD (10 cm above the ground, with the first evaluation performed at 90 days and the last at 720 days. When plants were one year of age and beyond, evaluations were conducted also for stem diameter at breast height (DBH (1.30 m above the ground. A randomized block design with split-plots and three replicates was adopted. Species were assigned to plots, planting densities were assigned to subplots, and evaluation ages were assigned to subsubplots. The four traits in both species had their values decreased as planting density increased, but continually increased as plant age increased. For PH and RCD there was an alternation between species superiority, with gliricidia being superior to sabiá at some ages, while the opposite occurred at other ages. As to CD the species only differed in the last measurement, gliricidia being superior. With regard to DBH, gliricidia was superior starting from the second measurement. There was an effect of the species × ages interaction for the four traits and also an effect of the densities × ages interaction for CD and DBH.

  12. The factors controlling species density in herbaceous plant communities: An assessment

    Science.gov (United States)

    Grace, J.B.

    1999-01-01

    This paper evaluates both the ideas and empirical evidence pertaining to the control of species density in herbaceous plant communities. While most theoretical discussions of species density have emphasized the importance of habitat productivity and disturbance regimes, many other factors (e.g. species pools, plant litter accumulation, plant morphology) have been proposed to be important. A review of literature presenting observations on the density of species in small plots (in the vicinity of a few square meters or less), as well as experimental studies, suggests several generalizations: (1) Available data are consistent with an underlying unimodal relationship between species density and total community biomass. While variance in species density is often poorly explained by predictor variables, there is strong evidence that high levels of community biomass are antagonistic to high species density. (2) Community biomass is just one of several factors affecting variations in species density. Multivariate analyses typically explain more than twice as much variance in species density as can be explained by community biomass alone. (3) Disturbance has important and sometimes complex effects on species density. In general, the evidence is consistent with the intermediate disturbance hypothesis but exceptions exist and effects can be complex. (4) Gradients in the species pool can have important influences on patterns of species density. Evidence is mounting that a considerable amount of the observed variability in species density within a landscape or region may result from environmental effects on the species pool. (5) Several additional factors deserve greater consideration, including time lags, species composition, plant morphology, plant density and soil microbial effects. Based on the available evidence, a conceptual model of the primary factors controlling species density is presented here. This model suggests that species density is controlled by the effects of

  13. Organic, integrated and conventional management in apple orchards: effect on plant species composition, richness and diversity

    Directory of Open Access Journals (Sweden)

    Zdeňka Lososová

    2011-01-01

    Full Text Available The study was conducted to assess the effect of conventional, integrated and organic management on differences in plant species composition, richness and diversity. The plants were studied in triads of orchards situated in three regions of the Czech Republic. Data about species occurrences were collected on 15 permanent plots in the tree rows and 15 plots between tree rows in each of the apple orchards during 2009. A total of 201 vascular plant species (127 native species, 65 archaeophytes, and 9 neophytes were found. Management type and also different regional conditions had a significant effect on plant species composition and on diversity parameters of orchard spontaneous vegetation. Species richness and species pool was significantly higher in the organic orchards than in the differently managed orchards. Management type had significant effect on proportions of archaeophytes, and also neophytes in apple orchards. The results showed that a change from conventional to integrated and organic management in apple orchards lead to higher plant species diversity and to changes in plant species composition.

  14. Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway

    Science.gov (United States)

    Grytnes, John Arvid; Heegaard, Einar; Ihlen, Per G.

    2006-05-01

    Species richness patterns of ground-dwelling vascular plants, bryophytes, and lichens were compared along an altitudinal gradient (310-1135 m a.s.l.), in western Norway. Total species richness peaked at intermediate altitudes, vascular plant species richness peaked immediately above the forest limit (at 600-700 m a.s.l.), bryophyte species richness had no statistically significant trend, whereas lichen richness increased from the lowest point and up to the forest limit, with no trend above. It is proposed that the pattern in vascular plant species richness is enhanced by an ecotone effect. Bryophyte species richness responds to local scale factors whereas the lichen species richness may be responding to the shading from the forest trees.

  15. THRIPS SPECIES (INSECTA: THYSANOPTERA OF ORNAMENTAL PLANTS FROM THE PARKS AND GREENHOUSES OF ADP PITESTI

    Directory of Open Access Journals (Sweden)

    Daniela Bărbuceanu

    2012-04-01

    Full Text Available The observations carried-out in 2008/2010 to ornamental plants from parks and greenhouses of ADP Pitesti relieve 12 species of thrips. One species of them, Frankliniella occidentalis was identified in greenhouses on Rosa sp., Dianthus sp. and Zantedeschia sp. In parks, the thrips species belong to 12 species, dominated by Frankliniella intonsa. All of them are polypfagous and divided in two throphic levels: primary and secondary consumers. The thrips species are mentioned for the first time in Romania on this host plant. In greenhouses are necessary intensive chemical treatments and methods of cultural hygiene to limit the F. occidentalis populations.

  16. Rejoinder to Harrison (2008): The myth of plant species saturation

    Science.gov (United States)

    Thomas J. Stohlgren; Curtis Flather; Catherine S. Jarnevich; David T. Barnett; John Kartesz

    2008-01-01

    We find ourselves in general agreement with many of Harrison's remarks especially since we both find our data present a ' strong case that at county to state scales, exotic plant invasions have led to few native plant extinctions' (emphasis added, Harrison 2007: 000). Where we differ appears related to the breadth of scales to which our conclusions may...

  17. Hemicryptophytes plant species as indicator of grassland state in ...

    African Journals Online (AJOL)

    Plots of 10 m X 10 m were installed along a land use gradient (from communal lands to the protected area via the buffer zone) in three vegetation types for plant biomass harvesting and hemicryptophytes traits measurement. The hemicryptophyte density, biovolume, tussock size, contact frequency, contribution to total plant ...

  18. Antimicrobial activity of some endemic plant species from Turkey

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... Antibacterial and antifungal activity of Heracleum sphondylium subsp. arvinense. Afr. J. Biotechnol. 5: 1087-1089. Ertürk Ö (2006). Antibacterial and antifungal activity of ethanolic extracts from eleven spice plants. Biologia. 61: 275-278. Fazly Bazzaz BS, Haririzadeh G (2003). Screening of Iranian plants for.

  19. Race to Displace: A Game to Model the Effects of Invasive Species on Plant Communities

    Science.gov (United States)

    Hopwood, Jennifer L.; Flowers, Susan K.; Seidler, Katie J.; Hopwood, Erica L.

    2013-01-01

    Invasive species are a substantial threat to biodiversity. Educating students about invasive species introduces fundamental concepts in biology, ecology, and environmental science. In the Race to Displace game, students assume the characteristics of select native or introduced plants and experience first hand the influences of species interactions…

  20. The new flora of the northeastern USA: quantifying introduced plant species occupancy in forest ecosystems

    Science.gov (United States)

    Bethany K. Schulz; Andrew N. Gray

    2013-01-01

    Introduced plant species have significant negative impacts in many ecosystems and are found in many forests around the world. Some factors linked to the distribution of introduced species include fragmentation and disturbance, native species richness, and climatic and physical conditions of the landscape. However, there are few data sources that enable the assessment...

  1. The role of cattle in maintaining plant species diversity in wet dune valleys

    NARCIS (Netherlands)

    Aptroot, A.; van Dobben, H. F.; Slim, P. A.; Olff, H.

    The succession of species-rich wetland vegetation in dune valleys into species-poor dwarf shrub vegetation was followed by means of permanent vegetation plots, in which the cover of vascular plant, moss and lichen species were recorded over a period of up to 33 years. Low density cattle grazing is

  2. Plant–soil interactions in the expansion and native range of a poleward shifting plant species

    NARCIS (Netherlands)

    Van Grunsven, R.H.A.; Van der Putten, W.H.; Bezemer, T.M.; Berendse, F.; Veenendaal, E.M.

    2010-01-01

    Climate warming causes range shifts of many species toward higher latitudes and altitudes. However, range shifts of host species do not necessarily proceed at the same rates as those of their enemies and symbionts. Here, we examined how a range shifting plant species performs in soil from its

  3. Phytochemicals of selected plant species of the Apocynaceae and Asclepiadaceae from Western Ghats, Tamil Nadu, India

    Science.gov (United States)

    A concern about the declining supply of petroleum products has led to a renewed interest in evaluating plant species as potential alternate sources of energy. Five species of the Apocynaceae and three species of the Asclepiadaceae from the Western Ghats were evaluated as alternative sources of energ...

  4. Semenic Mountains’ alpine skiing area

    Directory of Open Access Journals (Sweden)

    Petru BANIAȘ

    2017-03-01

    Full Text Available The present paper presents, after a short history of alpine skiing which describes apparition, necessity, utility and universality of skiing during time, a comparative study referring to the alpine skiing domain in the Semenic Mountains area. In the paper are also presented general notions about alpine skiing methodology together with an ample description of the plateau area form Semenic Mountains, describing localization and touristic potential. Based on the SWOT analysis made for each slope, was realized a complex analysis of the entire skiing domain, an analysis which includes technical, financial, climatic and environmental aspects, along with an analysis of the marketing policy applied for the specific zone.

  5. Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species.

    Science.gov (United States)

    Mariotte, Pierre; Meugnier, Claire; Johnson, David; Thébault, Aurélie; Spiegelberger, Thomas; Buttler, Alexandre

    2013-05-01

    In grassland communities, plants can be classified as dominants or subordinates according to their relative abundances, but the factors controlling such distributions remain unclear. Here, we test whether the presence of the arbuscular mycorrhizal (AM) fungus Glomus intraradices affects the competitiveness of two dominant (Taraxacum officinale and Agrostis capillaris) and two subordinate species (Prunella vulgaris and Achillea millefolium). Plants were grown in pots in the presence or absence of the fungus, in monoculture and in mixtures of both species groups with two and four species. In the absence of G. intraradices, dominants were clearly more competitive than subordinates. In inoculated pots, the fungus acted towards the parasitic end of the mutualism-parasitism continuum and had an overall negative effect on the growth of the plant species. However, the negative effects of the AM fungus were more pronounced on dominant species reducing the differences in competitiveness between dominant and subordinate species. The effects of G. intraradices varied with species composition highlighting the importance of plant community to mediate the effects of AM fungi. Dominant species were negatively affected from the AM fungus in mixtures, while subordinates grew identically with and without the fungus. Therefore, our findings predict that the plant dominance hierarchy may flatten out when dominant species are more reduced than subordinate species in an unfavourable AM fungal relationship (parasitism).

  6. Allelochemical Control of Non-Indigenous Invasive Plant Species Affecting Military Testing and Training Activities

    Science.gov (United States)

    2010-10-01

    crude root exudates and water phase were applied directly to the liquid media in which the plants were growing . The chloroform and ethyl acetate... plant neighbors in the introduced range. We partially tested this hypothesis by growing seven competing native European plant species either with... bamboo ) in natural Indian soil in a single pulse, but soil concentrations at the time of planting seeds were either undetectable or very low

  7. Regional climate model downscaling may improve the prediction of alien plant species distributions

    Science.gov (United States)

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  8. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Science.gov (United States)

    Ding, Tao; Melcher, Ulrich

    2016-01-01

    Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  9. Influences of Plant Species, Season and Location on Leaf Endophytic Bacterial Communities of Non-Cultivated Plants.

    Directory of Open Access Journals (Sweden)

    Tao Ding

    Full Text Available Bacteria are known to be associated endophytically with plants. Research on endophytic bacteria has identified their importance in food safety, agricultural production and phytoremediation. However, the diversity of endophytic bacterial communities and the forces that shape their compositions in non-cultivated plants are largely uncharacterized. In this study, we explored the diversity, community structure, and dynamics of endophytic bacteria in different plant species in the Tallgrass Prairie Preserve of northern Oklahoma, USA. High throughput sequencing of amplified segments of bacterial rDNA from 81 samples collected at four sampling times from five plant species at four locations identified 335 distinct OTUs at 97% sequence similarity, representing 16 phyla. Proteobacteria was the dominant phylum in the communities, followed by the phyla Bacteriodetes and Actinobacteria. Bacteria from four classes of Proteobacteria were detected with Alphaproteobacteria as the dominant class. Analysis of molecular variance revealed that host plant species and collecting date had significant influences on the compositions of the leaf endophytic bacterial communities. The proportion of Alphaproteobacteria was much higher in the communities from Asclepias viridis than from other plant species and differed from month to month. The most dominant bacterial groups identified in LDA Effect Size analysis showed host-specific patterns, indicating mutual selection between host plants and endophytic bacteria and that leaf endophytic bacterial compositions were dynamic, varying with the host plant's growing season in three distinct patterns. In summary, next generation sequencing has revealed variations in the taxonomic compositions of leaf endophytic bacterial communities dependent primarily on the nature of the plant host species.

  10. Exotic species and the structure of a plant-galling network

    Directory of Open Access Journals (Sweden)

    Walter Santos de Araujo

    2017-06-01

    Full Text Available Gall-inducing insects are highly specialized herbivores and is expected that networks composed by gall-inducing insects and their host plants are also very specialized. However, presence of exotic species might reduce the interaction number for native species, which would lead to changes in the specialization of plant-galling networks. In this study, we use network metrics to describe, for the first time, the structure of a network of gall-inducing insects associated to ornamental host plants. We found that the plant-galling network has a low-connected structure and is more modular than expected by chance. Native insect herbivores were significantly more frequent on native host plant species, while exotic herbivores occurred mostly on exotic host plant species. On the other hand, the number of interactions between insect herbivores and native or exotic plant species did not vary. Our findings show that plant-galling networks are very specialized and structured independently of exotic species presence.

  11. Plant species used in dental diseases: ethnopharmacology aspects and antimicrobial activity evaluation.

    Science.gov (United States)

    Vieira, Denise R P; Amaral, Flavia MaM; Maciel, Márcia C G; Nascimento, Flávia R F; Libério, Silvana A; Rodrigues, Vandílson P

    2014-09-29

    Ethnopharmacological surveys show that several plant species are used empirically by the population, in oral diseases. However, it is necessary to check the properties of these plant species. To evaluate in vitro antimicrobial activity against Streptococcus mutans from plant species selected in a previous ethnopharmacology study. An ethnopharmacological survey was conducted with users of a dental clinic school services, located in Sao Luis, Maranhão, Brazil, aiming to identify plant species used in oral diseases treatment. From the ethnopharmacological survey, species were selected for in vitro antimicrobial activity evaluation against Streptococcus mutans, by agar diffusion method and determination of Minimum Inhibitory Concentration (MIC). Two hundred and seventy one people participated in the research: 55.7% reported the use of plants for medicinal purposes, 29.5% of which have knowledge and/or use plants for some type of oral disease. Thirty four species belonging to 24 (twenty four) botanical families were reported, being Aloe vera L., Anacardium occidentale L., Schinus terebinthifolius Raddi, Chenopodium ambrosioides L. and Punica granatum L. the most cited. The most commonly reported indications were healing after tooth extraction, followed by toothache, inflammation and bleeding gums., The determination of Minimum Inhibitory Concentration (MIC) demonstrated that Punica granatum L., Psidium guajava L. and Schinus terebinthifolius Raddi showed similar activity to 0.12% chlorhexidine, used as positive control. That result is important to follow up the study of these species in the search for new anticariogenic agents originated by plants. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Nitrogen and protein contents in some aquatic plant species

    Directory of Open Access Journals (Sweden)

    Krystyna Bytniewska

    2015-01-01

    Full Text Available Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L. Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein content in the plants under examination constitutes 18 to 25%o of dry matter. Albumins and glutelins are the most abundant protein fractions.

  13. Plant species dynamics in the Southern Tall Grassveld under ...

    African Journals Online (AJOL)

    An analysis of temporal changes in botanical composition in a long-term grazing trial indicates that species dynamics in the Southern Tall Grassveld of Natal are determined by the specific combination of grazing, mowing and fire impacts. Species composition of a grazing systems trial was recorded at intervals during 16 ...

  14. Systematic Experimental Designs For Mixed-species Plantings

    Science.gov (United States)

    Jeffery C. Goelz

    2001-01-01

    Systematic experimental designs provide splendid demonstration areas for scientists and land managers to observe the effects of a gradient of species composition. Systematic designs are based on large plots where species composition varies gradually. Systematic designs save considerable space and require many fewer seedlings than conventional mixture designs. One basic...

  15. An Ethnobotanical Survey on Fuel Wood and Timber plant Species ...

    African Journals Online (AJOL)

    Yomi

    2011-12-19

    Dec 19, 2011 ... 3Department of Botany, Post Graduate College Abbottabad, Pakistan. Accepted 17 March, 2011. A survey was conducted to explore the fuel wood species and timber producing species of Kaghan valleys, Pakistan. Consumption pattern and impact on the forest resources were also taken into consideration.

  16. seed longevity of dominant plant species from degraded savanna

    African Journals Online (AJOL)

    Mgina

    groups: (1) non-dormant seeds (2) seeds with enforced dormancy and (3) seeds with seed coat imposed dormancy. The low decay constant of some species is an indication of their abilities to form persistent seed banks. The intermittent and extended germination of seeds of the same species from the same batch shown by ...

  17. Ethical perception of cross-species gene transfer in plant

    African Journals Online (AJOL)

    Jane

    2011-09-30

    Sep 30, 2011 ... the ethical acceptance of cross-species gene transfers in developing country. Key words: Ethical perception, genetically modified (GM) rice, cross-species gene transfer, Malaysia. INTRODUCTION. Rice is a staple food in much of Asia countries including. Malaysia, and by 2025 about 60% more rice must ...

  18. An Ethnobotanical Survey on Fuel Wood and Timber plant Species ...

    African Journals Online (AJOL)

    A survey was conducted to explore the fuel wood species and timber producing species of Kaghan valleys, Pakistan. Consumption pattern and impact on the forest resources were also taken into consideration. A questionnaire was used as a survey instrument to obtain desired data. For this study, 10 villages were randomly ...

  19. Exotic and indigenous problem plants species used, by the Bapedi ...

    African Journals Online (AJOL)

    EB

    Tel: +27 152683126. Email: Sebuasemenya@gmail.com. Introduction. Exotic species are widespread in South Africa, both in cultivated and communal areas. At least 161 species have been declared as exotics, and cause serious ..... Edeoga HO, Osuagwu GGE, Omosun G,. Mbaebie BO, Osuagwu AN. Pharmaceutical and.

  20. The exploration of plant species in nature reserve of Mount Mutis East Nusa Tenggara Province

    Directory of Open Access Journals (Sweden)

    Solikin Solikin

    2016-04-01

    Full Text Available This research was aimed to explore and inventory the plant diversity, especially medicinal plants in Nature Reserve of Mount Mutis. Data were collected in Fatumnasi Village, Fatumnasi District of South Central Timor Regency in Octo-ber 2011 through plant exploration and interview the local people. Plants inventory was conducted along the tracks during exploration. Herbs vegetation analysis was conducted among the tree stands of Eucalyptus urophylla. In addi-tion, orchid vegetation analysis was only conducted to orchids that have been found attaching to Eucalyptus urophylla trees. Results showed that there were about 52 family, 78 genera and 84 species of plants in the observed area. Tree species was dominated by 'ampupu' (Eucalyptus urophylla, while orchid species was dominated by Eria retusa. Herbaceous plant communities were dominated by Centella asiatica, Cyperus sp. and Cynodon dactylon. There were about eight plant species of medicinal plants and one food plant species found in the forestthat have been known by local people. Keywords: exploration, inventory, Mount Mutis, nature reserve

  1. Cultural significance of medicinal plant families and species among Quechua farmers in Apillapampa, Bolivia.

    Science.gov (United States)

    Thomas, Evert; Vandebroek, Ina; Sanca, Sabino; Van Damme, Patrick

    2009-02-25

    Medicinal plant use was investigated in Apillapampa, a community of subsistence farmers located in the semi-arid Bolivian Andes. The main objectives were to identify the culturally most significant medicinal plant families and species in Apillapampa. A total of 341 medicinal plant species was inventoried during guided fieldtrips and transect sampling. Data on medicinal uses were obtained from fifteen local Quechua participants, eight of them being traditional healers. Contingency table and binomial analyses of medicinal plants used versus the total number of inventoried species per family showed that Solanaceae is significantly overused in traditional medicine, whereas Poaceae is underused. Also plants with a shrubby habitat are significantly overrepresented in the medicinal plant inventory, which most likely relates to their year-round availability to people as compared to most annual plants that disappear in the dry season. Our ranking of medicinal species according to cultural importance is based upon the Quality Use Agreement Value (QUAV) index we developed. This index takes into account (1) the average number of medicinal uses reported for each plant species by participants; (2) the perceived quality of those medicinal uses; and (3) participant consensus. According to the results, the QUAV index provides an easily derived and valid appraisal of a medicinal plant's cultural significance.

  2. Individual-based ant-plant networks: diurnal-nocturnal structure and species-area relationship.

    Directory of Open Access Journals (Sweden)

    Wesley Dáttilo

    Full Text Available Despite the importance and increasing knowledge of ecological networks, sampling effort and intrapopulation variation has been widely overlooked. Using continuous daily sampling of ants visiting three plant species in the Brazilian Neotropical savanna, we evaluated for the first time the topological structure over 24 h and species-area relationships (based on the number of extrafloral nectaries available in individual-based ant-plant networks. We observed that diurnal and nocturnal ant-plant networks exhibited the same pattern of interactions: a nested and non-modular pattern and an average level of network specialization. Despite the high similarity in the ants' composition between the two collection periods, ant species found in the central core of highly interacting species totally changed between diurnal and nocturnal sampling for all plant species. In other words, this "night-turnover" suggests that the ecological dynamics of these ant-plant interactions can be temporally partitioned (day and night at a small spatial scale. Thus, it is possible that in some cases processes shaping mutualistic networks formed by protective ants and plants may be underestimated by diurnal sampling alone. Moreover, we did not observe any effect of the number of extrafloral nectaries on ant richness and their foraging on such plants in any of the studied ant-plant networks. We hypothesize that competitively superior ants could monopolize individual plants and allow the coexistence of only a few other ant species, however, other alternative hypotheses are also discussed. Thus, sampling period and species-area relationship produces basic information that increases our confidence in how individual-based ant-plant networks are structured, and the need to consider nocturnal records in ant-plant network sampling design so as to decrease inappropriate inferences.

  3. Matgrass sward plant species benefit from soil organisms

    NARCIS (Netherlands)

    Brinkman, E.P.; Raaijmakers, C.E.; Bakx-Schotman, J.M.T.; Hannula, S.E.; Kemmers, R.H.; De Boer, W.; Van der Putten, W.H.

    2012-01-01

    Soilorganisms are important in the structuring of plant communities. However, little is known about how to apply this knowledge to vegetation management. Here, we examined if soilorganisms may promote plantspecies of characteristic habitats, and suppress plantspecies of disturbed habitats. We

  4. Invasive clonal plant species have a greater root-foraging plasticity than non-invasive ones.

    Science.gov (United States)

    Keser, Lidewij H; Dawson, Wayne; Song, Yao-Bin; Yu, Fei-Hai; Fischer, Markus; Dong, Ming; van Kleunen, Mark

    2014-03-01

    Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.

  5. Encounters between Alpine ibex, Alpine chamois and domestic sheep in the Swiss Alps

    Directory of Open Access Journals (Sweden)

    Marie-Pierre Ryser-Degiorgis

    2002-12-01

    Full Text Available Abstract Information regarding spatio-temporal relationships and encounters of sympatric domestic sheep, Alpine ibex (Capra ibex ibex and Alpine chamois (Rupicapra rupicapra rupicapra in the Swiss Alps were systematically registered to evaluate the possibility of an interspecific transmission of infectious agents on pastures. Observations were performed in alpine regions of four Swiss cantons during the 1997 and 1998 mountain summer grazing season. In the main study area, Val Chamuera (canton of Grisons, a consistent reduction in the number of ibexes was observed after the arrival of sheep on the pasture. Some ibexes remained for a longer time in the area, but in general, ibexes and sheep did not use the same compartments of the area simultaneously. However, a salt lick for sheep attracted the ibexes, and several encounters were recorded in the compartments close to this salt lick. Several encounters registered in other areas of the Swiss Alps also occurred in the neighbourhood of a salt lick; however, in other cases different species were attracted by rich pastures. The study indicates that encounters (0-50 m between free-ranging individuals of different Caprinae species, domestic and wild, are not uncommon events in the Alps. Therefore, encounters can be considered to be a predisposing factor for interspecific transmission of infectious agents such as Mycoplasma conjunctivae, causing keratoconjunctivitis in chamois, ibex, domestic sheep and goats.

  6. Threatened plant species of the Nevada Test Site, Ash Meadows, central-southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-04-01

    This report is a companion one to Endangered Plant Species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada (COO-2307-11) and deals with the threatened plant species of the same area. The species are those cited in the Federal Register, July 1, 1975, and include certain ones listed as occurring only in California or Arizona, but which occur also in central-southern Nevada. As with the earlier report, the purpose of this one is to record in detail the location of the past plant collections which constitute the sole or principal basis for defining the species' distributions and frequency of occurrence in southern Nye County, Nevada, and to recommend the area of the critical habitat where this is appropriate. Many of the species occur also in southern California, and for these the central-southern Nevada records are presented for consideration of the overall status of the species throughout its range.

  7. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    Energy Technology Data Exchange (ETDEWEB)

    Rivas-Ubach, Albert [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington 99354 USA; CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; Hódar, José A. [Grupo de Ecología Terrestre, Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071 Granada Spain; Sardans, Jordi [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain; Kyle, Jennifer E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Kim, Young-Mo [Biological Sciences Division, Pacific Northwest National Laboratory, Richland Washington 99354 USA; Oravec, Michal [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Urban, Otmar [Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a CZ-603 00 Brno Czech Republic; Guenther, Alex [Department of Earth System Science, University of California, Irvine California 92697 USA; Peñuelas, Josep [CREAF, Cerdanyola del Vallès 08913 Catalonia Spain; CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès 08913 Catalonia Spain

    2016-06-02

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but the entire metabolome (the set of molecular metabolites), including defensive compounds. Metabolomes are the final products of genotypes and are directly affected by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from Pinus pinaster, P. nigra and P. sylvestris to determine if these closely related Pinus species with different coevolutionary histories with the caterpillars of the processionary moth respond similarly to attacks by this lepidopteran. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the pine species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of phenolic metabolites were generally not higher in the attacked trees, which had lower concentrations of terpenes, suggesting that herbivores avoid individuals with high concentrations of terpenes. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution.

  8. Effects of plant diversity on primary production and species interactions in brackish water angiosperm communities

    DEFF Research Database (Denmark)

    Salo, Tiina; Gustafsson, Camilla; Boström, Christoffer

    2009-01-01

    Research on plant biodiversity and ecosystem functioning has mainly focused on terrestrial ecosystems, and our understanding of how plant species diversity and interactions affect processes in marine ecosystems is still limited. To investigate if plant species richness and composition influence...... plant productivity in brackish water angiosperm communities, a 14 wk field experiment was conducted. Using a replacement design with a standardized initial aboveground biomass, shoots of Zostera marina, Potamogeton filiformis and P. perfoliatus were planted on a shallow, sandy bottom in replicated...... production in bicultures in general, while a positive net effect was found in the P. perfoliatus and P. filiformis biculture. Despite the absence of significant results for other treatments and plant variables, a trend of positive complementarity and negative selection effects were present. Plant diversity...

  9. Metabolic Profiling of Alpine and Ecuadorian Lichens

    Directory of Open Access Journals (Sweden)

    Verena K. Mittermeier

    2015-10-01

    Full Text Available Non-targeted 1H-NMR methods were used to determine metabolite profiles from crude extracts of Alpine and Ecuadorian lichens collected from their natural habitats. In control experiments, the robustness of metabolite detection and quantification was estimated using replicate measurements of Stereocaulon alpinum extracts. The deviations in the overall metabolite fingerprints were low when analyzing S. alpinum collections from different locations or during different annual and seasonal periods. In contrast, metabolite profiles observed from extracts of different Alpine and Ecuadorian lichens clearly revealed genus- and species-specific profiles. The discriminating functions determining cluster formation in principle component analysis (PCA were due to differences in the amounts of genus-specific compounds such as sticticin from the Sticta species, but also in the amounts of ubiquitous metabolites, such as sugar alcohols or trehalose. However, varying concentrations of these metabolites from the same lichen species e.g., due to different environmental conditions appeared of minor relevance for the overall cluster formation in PCA. The metabolic clusters matched phylogenetic analyses using nuclear ribosomal DNA (nrDNA internal transcribed spacer (ITS sequences of lichen mycobionts, as exemplified for the genus Sticta. It can be concluded that NMR-based non-targeted metabolic profiling is a useful tool in the chemo-taxonomy of lichens. The same approach could also facilitate the discovery of novel lichen metabolites on a rapid and systematical basis.

  10. Identifying plant traits: a key aspect for suitable species selection in ecological restoration of semiarid slopes

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio

    2017-04-01

    In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In

  11. Individual species-area relationship of woody plant communities in a heterogeneous subtropical monsoon rainforest.

    Science.gov (United States)

    Tsai, Cheng-Han; Lin, Yi-Ching; Wiegand, Thorsten; Nakazawa, Takefumi; Su, Sheng-Hsin; Hsieh, Chih-Hao; Ding, Tzung-Su

    2015-01-01

    The spatial structure of species richness is often characterized by the species-area relationship (SAR). However, the SAR approach rarely considers the spatial variability of individual plants that arises from species interactions and species' habitat associations. Here, we explored how the interactions of individual plants of target species influence SAR patterns at a range of neighborhood distances. We analyzed the data of 113,988 woody plants of 110 species from the Fushan Forest Dynamics Plot (25 ha), northern Taiwan, which is a subtropical rainforest heavily influenced by typhoons. We classified 34 dominant species into 3 species types (i.e., accumulator, repeller, or no effect) by testing how the individual species-area relationship (i.e., statistics describing how neighborhood species richness changes around individuals) of target species departs (i.e., positively, negatively, or with no obvious trend) from a null model that accounts for habitat association. Deviation from the null model suggests that the net effect of species' interactions increases (accumulate) or decreases (repel) neighborhood species richness. We found that (i) accumulators were dominant at small interaction distances (30 m); (iii) repellers were rarely detected; and (iv) large-sized and abundant species tended to be accumulators. The findings suggest that positive species interactions have the potential to accumulate neighborhood species richness, particularly through size- and density-dependent mechanisms. We hypothesized that the frequently disturbed environment of this subtropical rainforest (e.g., typhoon-driven natural disturbances such as landslides, soil erosion, flooding, and windthrow) might create the spatial heterogeneity of species richness and promote positive species interactions.

  12. New approaches for sampling and modeling native and exotic plant species richness

    Science.gov (United States)

    Chong, G.W.; Reich, R.M.; Kalkhan, M.A.; Stohlgren, T.J.

    2001-01-01

    We demonstrate new multi-phase, multi-scale approaches for sampling and modeling native and exotic plant species to predict the spread of invasive species and aid in control efforts. Our test site is a 54,000-ha portion of Rocky Mountain National Park, Colorado, USA. This work is based on previous research wherein we developed vegetation sampling techniques to identify hot spots of diversity, important rare habitats, and locations of invasive plant species. Here we demonstrate statistical modeling tools to rapidly assess current patterns of native and exotic plant species to determine which habitats are most vulnerable to invasion by exotic species. We use stepwise multiple regression and modified residual kriging to estimate numbers of native species and exotic species, as well as probability of observing an exotic species in 30 × 30-m cells. Final models accounted for 62% of the variability observed in number of native species, 51% of the variability observed in number of exotic species, and 47% of the variability associated with observing an exotic species. Important independent variables used in developing the models include geographical location, elevation, slope, aspect, and Landsat TM bands 1-7. These models can direct resource managers to areas in need of further inventory, monitoring, and exotic species control efforts.

  13. Landscape genomics of tropical high altitude plant species

    OpenAIRE

    Mastretta-Yanes, Alicia

    2014-01-01

    Changes to species distributions involve demographic processes that occur over generations and affect allele frequencies within populations, leading to patterns of genetic restructuring. The specific genetic structuring patterns that will be observed as a consequence depend on explicit geographical features, such as topography and latitude. Over the first decades of phylogeography, the effect of climate history and geography on species genomes was examined at low resolution with DNA sequenc...

  14. Plant species with extremely small populations (PSESP in China: A seed and spore biology perspective

    Directory of Open Access Journals (Sweden)

    Ellie Merrett Wade

    2016-10-01

    Full Text Available Approximately one fifth of the world's plants are at risk of extinction. Of these, a significant number exist as populations of few individuals, with limited distribution ranges and under enormous pressure due to habitat destruction. In China, these most-at-risk species are described as ‘plant species with extremely small populations’ (PSESP. Implementing conservation action for such listed species is urgent. Storing seeds is one of the main means of ex situ conservation for flowering plants. Spore storage could provide a simple and economical method for fern ex situ conservation. Seed and spore germination in nature is a critical step in species regeneration and thus in situ conservation. But what is known about the seed and spore biology (storage and germination of at-risk species? We have used China's PSESP (the first group listing as a case study to understand the gaps in knowledge on propagule biology of threatened plant species. We found that whilst germination information is available for 28 species (23% of PSESP, storage characteristics are only known for 8% of PSESP (10 species. Moreover, we estimate that 60% of the listed species may require cryopreservation for long-term storage. We conclude that comparative biology studies are urgently needed on the world's most threatened taxa so that conservation action can progress beyond species listing.

  15. Modeling invasive alien plant species in river systems : Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    NARCIS (Netherlands)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G.W.; Egger, G.; Leuven, R.S.E.W.; Middelkoop, H.

    2017-01-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding

  16. Site fidelity by bees drives pollination facilitation in sequentially blooming plant species.

    Science.gov (United States)

    Ogilvie, Jane E; Thomson, James D

    2016-06-01

    Plant species can influence the pollination and reproductive success of coflowering neighbors that share pollinators. Because some individual pollinators habitually forage in particular areas, it is also possible that plant species could influence the pollination of neighbors that bloom later. When flowers of a preferred forage plant decline in an area, site-fidelity may cause individual flower feeders to stay in an area and switch plant species rather than search for preferred plants in a new location. A newly blooming plant species may quickly inherit a set of visitors from a prior plant species, and therefore experience higher pollination success than it would in an area where the first species never bloomed. To test this, we manipulated the placement and timing of two plant species, Delphinium barbeyi and later-blooming Gentiana parryi. We recorded the responses of individually marked bumble bee pollinators. About 63% of marked individuals returned repeatedly to the same areas to forage on Delphinium. When Delphinium was experimentally taken out of bloom, most of those site-faithful individuals (78%) stayed and switched to Gentiana. Consequently, Gentiana flowers received more visits in areas where Delphinium had previously flowered, compared to areas where Delphinium was still flowering or never occurred. Gentiana stigmas received more pollen in areas where Delphinium disappeared than where it never bloomed, indicating that Delphinium increases the pollination of Gentiana when they are separated in time. Overall, we show that individual bumble bees are often site-faithful, causing one plant species to increase the pollination of another even when separated in time, which is a novel mechanism of pollination facilitation.

  17. Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump.

    Science.gov (United States)

    Jambhulkar, Hemlata P; Juwarkar, Asha A

    2009-05-01

    A field experiment was conducted on a 10-hectare area on fly ash dump at Khaperkheda Thermal Power Plant, Nagpur, India, where different ecologically and economically important plant species were planted using bioremediation technology. The technology involves the use of organic amendment and selection of suitable plant species along with site-specific nitrogen-fixing strains of biofertilizers. The study was conducted to find out the metal accumulation potential of different plant species. The total heavy metal contents in fly ash were determined and their relative abundance was found in the order of Fe>Mn>Zn>Cu>Ni>Cr>Pb>Cd. Fly ash samples had acidic pH, low electrical conductivity, low level of organic carbon and trace amounts of N and P. Plantation of divergent species was done on fly ash dump using the bioremediation technique. After 3 years of plantation, luxuriant growth of these species was found covering almost the entire fly ash dump. The results of the metal analysis of these species indicated that iron accumulated to the greatest extent in vegetation followed by Mn, Ni, Zn, Cu, Cr and Pb. Cassia siamea was found to accumulate all metals at higher concentrations compared to other species. The experimental study revealed that C. siamea could be used as a hyper-accumulator plant for bioremediation of fly ash dump.

  18. Rapid plant evolution in the presence of an introduced species alters community composition.

    Science.gov (United States)

    Smith, David Solance; Lau, Matthew K; Jacobs, Ryan; Monroy, Jenna A; Shuster, Stephen M; Whitham, Thomas G

    2015-10-01

    Because introduced species may strongly interact with native species and thus affect their fitness, it is important to examine how these interactions can cascade to have ecological and evolutionary consequences for whole communities. Here, we examine the interactions among introduced Rocky Mountain elk, Cervus canadensis nelsoni, a common native plant, Solidago velutina, and the diverse plant-associated community of arthropods. While introduced species are recognized as one of the biggest threats to native ecosystems, relatively few studies have investigated an evolutionary mechanism by which introduced species alter native communities. Here, we use a common garden design that addresses and supports two hypotheses. First, native S. velutina has rapidly evolved in the presence of introduced elk. We found that plants originating from sites with introduced elk flowered nearly 3 weeks before plants originating from sites without elk. Second, evolution of S. velutina results in a change to the plant-associated arthropod community. We found that plants originating from sites with introduced elk supported an arthropod community that had ~35 % fewer total individuals and a different species composition. Our results show that the impacts of introduced species can have both ecological and evolutionary consequences for strongly interacting species that subsequently cascade to affect a much larger community. Such evolutionary consequences are likely to be long-term and difficult to remediate.

  19. Comparative analysis of diosgenin in Dioscorea species and related medicinal plants by UPLC-DAD-MS.

    Science.gov (United States)

    Yi, Tao; Fan, Lan-Lan; Chen, Hong-Li; Zhu, Guo-Yuan; Suen, Hau-Man; Tang, Yi-Na; Zhu, Lin; Chu, Chu; Zhao, Zhong-Zhen; Chen, Hu-Biao

    2014-08-09

    Dioscorea is a genus of flowering plants, and some Dioscorea species are known and used as a source for the steroidal sapogenin diosgenin. To screen potential resource from Dioscorea species and related medicinal plants for diosgenin extraction, a rapid method to compare the contents of diosgenin in various plants is crucial. An ultra-performance liquid chromatography (UPLC) coupled with diode array detection (DAD) and electrospray ionization mass spectrometry (ESI-MS) method was developed for identification and determination of diosgenin in various plants. A comprehensive validation of the developed method was conducted. Twenty-four batches of plant samples from four Dioscorea species, one Smilax species and two Heterosmilax species were analyzed by using the developed method.The present method presented good sensitivity, precision and accuracy. Diosgenin was found in three Dioscorea species and one Heterosmilax species, namely D. zingiberensis, D. septemloba, D. collettii and H. yunnanensis. The method is suitable for the screening of diosgenin resources from plants. D. zingiberensis is an important resource for diosgenin harvesting.

  20. Padus serotina (Rosaceae, a new host plant for some species of parasitic microfungi

    Directory of Open Access Journals (Sweden)

    Nałgorzata Ruszkiewicz-Michalska

    2014-08-01

    Full Text Available Four species of parasitic microfungi were collected recenUy on Padus serotina (Ehrh. Borkh. (Rosaceae in Poland. Three species, Phyllactina guttata (Wallr. ex Fr. Lév. (Erysiphales, Monilia linhartiana Sacc. (Hyphomycetes, and Microsphaeropsis olivacea (Bonord. Höhn. (Coelomycetes, have not been reported before on thc plant, and Padus serotina is a new host for them. Monnilia linhartiana Sacc. is a new species for Poland. The fourth species, Podosphaera tridactyla (Wallr. de Baly var. tridactyla (Erysiphales, is known only from three localities in Europe, and has been collected on the host plant in Poland for the first time.

  1. Habitat types on the Hanford Site: Wildlife and plant species of concern

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J.L.; Rickard, W.H.; Brandt, C.A. [and others

    1993-12-01

    The objective of this report is to provide a comprehensive source of the best available information on Hanford Site sensitive and critical habitats and plants and animals of importance or special status. In this report, sensitive habitats include areas known to be used by threatened, endangered, or sensitive plant or animal species, wetlands, preserves and refuges, and other sensitive habitats outlined in the Hanford Site Baseline Risk Assessment Methodology. Potentially important species for risk assessment and species of special concern with regard to their status as threatened, endangered, or sensitive are described, and potential habitats for these species identified.

  2. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands.

    Science.gov (United States)

    Seabloom, Eric W; Borer, Elizabeth T; Buckley, Yvonne M; Cleland, Elsa E; Davies, Kendi F; Firn, Jennifer; Harpole, W Stanley; Hautier, Yann; Lind, Eric M; MacDougall, Andrew S; Orrock, John L; Prober, Suzanne M; Adler, Peter B; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori A; Blumenthal, Dana M; Brown, Cynthia S; Brudvig, Lars A; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L; Crawley, Michael J; Damschen, Ellen I; Dantonio, Carla M; DeCrappeo, Nicole M; Du, Guozhen; Fay, Philip A; Frater, Paul; Gruner, Daniel S; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S; Humphries, Hope C; Jin, Virginia L; Kay, Adam; Kirkman, Kevin P; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Ladwig, Laura; Lambrinos, John G; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R; Pyke, David A; Risch, Anita C; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D; Wright, Justin; Yang, Louie

    2015-07-15

    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands.

  3. The importance of species phylogenetic relationships and species traits for the intensity of plant-soil feedback

    Czech Academy of Sciences Publication Activity Database

    Münzbergová, Zuzana; Šurinová, Mária

    2015-01-01

    Roč. 6, č. 11 (2015), s. 1-16 ISSN 2150-8925 R&D Projects: GA ČR(CZ) GA15-11635S Institutional support: RVO:67985939 Keywords : phylogenetic relationships * species traits * plant- soil feedback Subject RIV: EF - Botanics Impact factor: 2.287, year: 2015

  4. INVASIVE ALIEN PLANT SPECIES USED FOR THE TREATMENT OF VARIOUS DISEASES IN LIMPOPO PROVINCE, SOUTH AFRICA.

    Science.gov (United States)

    Maema, Lesibana Peter; Potgieter, Martin; Mahlo, Salome Mamokone

    2016-01-01

    Invasive alien plant species (IAPs) are plants that have migrated from one geographical region to non-native region either intentional or unintentional. The general view of IAPs in environment is regarded as destructive to the ecosystem and they pose threat to native vegetation and species. However, some of these IAPS are utilized by local inhabitants as a substitute for scarce indigenous plants. The aim of the study is to conduct ethnobotanical survey on medicinal usage of invasive plant species in Waterberg District, Limpopo Province, South Africa. An ethnobotanical survey on invasive plant species was conducted to distinguish species used for the treatment of various ailments in the Waterberg, District in the area dominated by Bapedi traditional healers. About thirty Bapedi traditional healers (30) were randomly selected via the snowball method. A guided field work by traditional healers and a semi-structured questionnaire was used to gather information from the traditional healers. The questionnaire was designed to gather information on the local name of plants, plant parts used and methods of preparation which is administered by the traditional healers. The study revealed that Schinus molle L., Catharanthus roseus (L.), Datura stramonium L., Opuntia stricta (Haw.) Haw., Opuntia ficus- indica, Sambucus canadensis L., Ricinus communis L., Melia azedarch L., Argemone ochroleuca and Eriobotrya japónica are used for treatment of various diseases such as chest complaint, blood purification, asthma, hypertension and infertility. The most plant parts that were used are 57.6% leaves, followed by 33.3% roots, and whole plant, seeds and bark at 3% each. Noticeably, most of these plants are cultivated (38%), followed by 28% that are common to the study area, 20% abundant, 12% wild, and 3% occasionally. Schinus molle is the most frequently used plant species for the treatment of various ailments in the study area. National Environmental Management Biodiversity Act (NEMBA

  5. Plant species from coal mine overburden dumping site in Satui, South Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Vivi Novianti

    2017-07-01

    Full Text Available Coal mine overburden (OB materials were nutrient-poor, loosely adhered particles of shale, stones, boulders, and cobbles, also contained elevated concentration of trace metals. This condition cause OB substrate did not support plants growth. However, there were certain species that able to grow on overburden dumping site. This investigation sought to identify plants species that presence on coal mine overburden. The research was conducted on opencast coal mine OB dumping site in Satui, South Kalimantan. Vegetation sampling was carried out on six different ages of coal mine OB dumps (7, 10, 11, 42, 59 and 64 month using line transect. Species identification used information from local people, AMDAL report of PT Arutmin Indonesia-Satui mine project, and website. There were 123 plant species, consisted of 79 herbs (Cyperaceae, Poaceae and Asteraceae, 10 lianes, bryophyte, 9 ferns, 10 shrubs, and 14 trees. A number of Poaceae, i.e., Paspalumconjugatum, Paspalumdilatatum, and Echinochloacolona generally present among the stones, boulders, and cobbles. While Cyperaceae such as Fimbristylis miliaceae, Cyperus javanicus, Rhyncospora corymbosa and Scleria sumatrensis most often foundinand around thebasin/pond with its smooth and humid substrate characteristics. Certain species of shrubs and trees present on the 7 month OB dumping site. They wereChromolaena odorata, Clibadium surinamense, Melastoma malabathricum, Trema micrantha, and Solanum torvum (Shrubs, Ochroma pyramidale and Homalanthus populifolius (trees. This plant species could be used for accelerating primary succession purpose on coal mine overburden dumping site. Nevertheless, species selection was needed to avoid planting invasive species.

  6. Using habitat suitability models to target invasive plant species surveys.

    Science.gov (United States)

    Crall, Alycia W; Jarnevich, Catherine S; Panke, Brendon; Young, Nick; Renz, Mark; Morisette, Jeffrey

    2013-01-01

    Managers need new tools for detecting the movement and spread of nonnative, invasive species. Habitat suitability models are a popular tool for mapping the potential distribution of current invaders, but the ability of these models to prioritize monitoring efforts has not been tested in the field. We tested the utility of an iterative sampling design (i.e., models based on field observations used to guide subsequent field data collection to improve the model), hypothesizing that model performance would increase when new data were gathered from targeted sampling using criteria based on the initial model results. We also tested the ability of habitat suitability models to predict the spread of invasive species, hypothesizing that models would accurately predict occurrences in the field, and that the use of targeted sampling would detect more species with less sampling effort than a nontargeted approach. We tested these hypotheses on two species at the state scale (Centaurea stoebe and Pastinaca sativa) in Wisconsin (USA), and one genus at the regional scale (Tamarix) in the western United States. These initial data were merged with environmental data at 30-m2 resolution for Wisconsin and 1-km2 resolution for the western United States to produce our first iteration models. We stratified these initial models to target field sampling and compared our models and success at detecting our species of interest to other surveys being conducted during the same field season (i.e., nontargeted sampling). Although more data did not always improve our models based on correct classification rate (CCR), sensitivity, specificity, kappa, or area under the curve (AUC), our models generated from targeted sampling data always performed better than models generated from nontargeted data. For Wisconsin species, the model described actual locations in the field fairly well (kappa = 0.51, 0.19, P habitat suitability models can be highly useful tools for guiding invasive species monitoring

  7. Threatened plant species in the river ports of Central Europe: a potential for nature conservation

    Czech Academy of Sciences Publication Activity Database

    Jehlík, V.; Dostálek, J.; Frantík, Tomáš

    2016-01-01

    Roč. 19, č. 2 (2016), s. 999-1012 ISSN 1083-8155 Institutional support: RVO:67985939 Keywords : Central Europe * plant species richness * waterway Subject RIV: EH - Ecology, Behaviour Impact factor: 1.970, year: 2016

  8. Predicting invasive species impacts on hydrological processes: the consequences of plant physiology for landscape processes

    CSIR Research Space (South Africa)

    Le Maitre, David C

    2004-01-01

    Full Text Available attention, despite growing evidence of their significance. The wide range in plant growth forms and physiology among invading species suggests that estimation of the hydrological impacts could be difficult. The concept of limits to evaporation was developed...

  9. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland

    DEFF Research Database (Denmark)

    Pirhofer-Walzl, Karin; Rasmussen, Jim; Jensen, Henning Høgh

    2012-01-01

    amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40 kg N ha-1 to neighbouring plants. Below-ground N transfer from legumes...... to neighbouring plants differed among nitrogen donors and nitrogen receivers and may depend on root characteristics and regrowth strategies of plant species in the multi-species grassland.......Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red...

  10. Removal of the pharmaceuticals ibuprofen and iohexol by four wetland plant species in hydroponic culture: plant uptake and microbial degradation.

    Science.gov (United States)

    Zhang, Yang; Lv, Tao; Carvalho, Pedro N; Arias, Carlos A; Chen, Zhanghe; Brix, Hans

    2016-02-01

    We aimed at assessing the effects of four wetland plant species commonly used in constructed wetland systems: Typha, Phragmites, Iris and Juncus for removing ibuprofen (IBU) and iohexol (IOH) from spiked culture solution and exploring the mechanisms responsible for the removal. IBU was nearly completely removed by all plant species during the 24-day experiment, whereas the IOH removal varied between 13 and 80 %. Typha and Phragmites were the most efficient in removing IBU and IOH, respectively, with first-order removal rate constants of 0.38 and 0.06 day(-1), respectively. The pharmaceuticals were taken up by the roots and translocated to the aerial tissues. However, at the end of the experiment, plant accumulation constituted only up to 1.1 and 5.7 % of the amount of IBU and IOH spiked initially. The data suggest that the plants mainly function by facilitating pharmaceutical degradation in the rhizosphere through release of root exudates.

  11. Leaf and floral heating in cold climates: do sub-Antarctic megaherbs resemble tropical alpine giants?

    Directory of Open Access Journals (Sweden)

    Lorna Little

    2016-08-01

    Full Text Available High latitude and altitude floras are characterized by low-statured, small, wind-pollinated plants, which mainly reproduce by self-pollination or asexual reproduction. However, at odds with this are some sub-Antarctic islands that have plant species with giant growth forms and large, brightly coloured flowers which require insect visitation for pollination. The size, colour and shape of the inflorescences and leaves of these megaherbs suggest thermal benefits similar to giant tropical alpine plants of equatorial Africa, South America and Hawaii. We evaluated whether heating occurs in sub-Antarctic megaherbs, and to what extent it is related to environmental variables. We measured leaf and inflorescence temperature in six sub-Antarctic megaherb species on Campbell Island, latitude 52.3°S, New Zealand Biological Region. Using thermal imaging techniques, in combination with measurement of solar radiation, ambient air temperature, wind speed, wind chill and humidity, we assessed environmental influences on leaf and floral heating. We found that leaf and inflorescence temperatures of all megaherbs were higher than simultaneously measured ambient temperatures. Greatest heating was seen in Pleurophyllum speciosum, with observed leaves 9°C higher, and inflorescences nearly 11°C higher, than ambient temperature. Heating was highly correlated with brief, unpredictable periods of solar radiation, and occurred most rapidly in species with hairy, corrugated leaves and darkly pigmented, densely packed inflorescences. This is the first evidence that floral and leaf heating occurs in sub-Antarctic megaherbs, and suggests that leaf hairiness, flower colour and shape could provide thermal benefits like those seen in tropical alpine megaherbs.

  12. Spatial Autocorrelation Patterns of Understory Plant Species in a Subtropical Rainforest at Lanjenchi, Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Su-Wei Fan

    2010-06-01

    Full Text Available Many studies described relationships between plant species and intrinsic or exogenous factors, but few quantified spatial scales of species patterns. In this study, quantitative methods were used to explore the spatial scale of understory species (including resident and transient species, in order to identify the influential factors of species distribution. Resident species (including herbaceous species, climbers and tree ferns < 1 m high were investigated on seven transects, each 5-meter wide and 300-meter long, at Lanjenchi plot in Nanjenshan Reserve, southern Taiwan. Transient species (seedling of canopy, subcanopy and shrub species < 1 cm diameter at breast height were censused in three of the seven transects. The herb coverage and seedling abundance were calculated for each 5 × 5 m quadrat along the transects, and Moran’s I and Galiano’s new local variance (NLV indices were then used to identify the spatial scale of autocorrelation for each species. Patterns of species abundance of understory layer varied among species at fine scale within 50 meters. Resident species showed a higher proportion of significant autocorrelation than the transient species. Species with large size or prolonged fronds or stems tended to show larger scales in autocorrelation. However, dispersal syndromes and fruit types did not relate to any species’ spatial patterns. Several species showed a significant autocorrelation at a 180-meter class which happened to correspond to the local replicates of topographical features in hilltops. The spatial patterns of understory species at Lanjenchi plot are mainly influenced by species’ intrinsic traits and topographical characteristics.

  13. In vitro propagation of the elite species plant Pluchea lanceolata ...

    African Journals Online (AJOL)

    An effective in vitro regeneration protocol was developed from nodal segment of Pluchea lanceolata (DC.) Oliver. & Hiern, a medicinally important plant used in ayurvedic system of medicine for curing diseases similar to rheumatoid arthritis. Nodal segments were cultured in MS medium supplemented with auxin and ...

  14. In vitro propagation of the elite species plant Pluchea lanceolata ...

    African Journals Online (AJOL)

    SAM

    2014-06-18

    Jun 18, 2014 ... An effective in vitro regeneration protocol was developed from nodal segment of Pluchea lanceolata. (DC.) Oliver. & Hiern, a medicinally important plant used in ayurvedic system of medicine for curing diseases similar to rheumatoid arthritis. Nodal segments were cultured in MS medium supplemented.

  15. Specific plant induced biofilm formation in Methylobacterium species

    Science.gov (United States)

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  16. In vitro susceptibility testing of Yersinia species to eight plant ...

    African Journals Online (AJOL)

    AJL

    2012-05-24

    May 24, 2012 ... V. amygdalina Del against Y. enterocolitica 0:03 to 17.7 mm for Citrus aurantifolia (christim) Swingle .... The inhibitory effect of neat ethanolic plant extracts and some natural antimicrobials against Yersinia sp. .... Susceptibility pattern of Yersinia sp. to the various antimicrobial agents (ethanolic extracts).

  17. Conservation status of vascular plant species from the QMM / Rio ...

    African Journals Online (AJOL)

    A botanical inventory of the Mandena littoral forest, completed in 1991 as part of an environmental impact assessment study for a titanium oxide mining project being developed by QMM / Rio Tinto in the Tolagnaro (Fort Dauphin) region of southeastern Madagascar, identified 29 plant taxa as priorities for conservation, ...

  18. Biodiversity and ethnobotanical potentials of plant species of ...

    African Journals Online (AJOL)

    Plant biodiversity and ethnobotanical potentials of University of Agriculture Makurdi (UAM) Wildlife Park and Ikwe Games Reserve, Benue State, Nigeria, were investigated in this study. Floristic survey was conducted in the two reserves using stratified sampling technique based on the three identified microhabitats in each of ...

  19. an assessment of seed propagation of oilferous plant species with

    African Journals Online (AJOL)

    nb

    Hewitt (1998) observed the same and reported that that large seeds may enable early development of an enlarged resource gathering system (root or photosynthetic tissue) to produce a fast growing plant. Ekta and Singh (2000) stated that seedling from large seeds survived long term extreme water stress than those from ...

  20. Rapid plant identification using species- and group-specific primers targeting chloroplast DNA.

    Directory of Open Access Journals (Sweden)

    Corinna Wallinger

    Full Text Available Plant identification is challenging when no morphologically assignable parts are available. There is a lack of broadly applicable methods for identifying plants in this situation, for example when roots grow in mixture and for decayed or semi-digested plant material. These difficulties have also impeded the progress made in ecological disciplines such as soil- and trophic ecology. Here, a PCR-based approach is presented which allows identifying a variety of plant taxa commonly occurring in Central European agricultural land. Based on the trnT-F cpDNA region, PCR assays were developed to identify two plant families (Poaceae and Apiaceae, the genera Trifolium and Plantago, and nine plant species: Achillea millefolium, Fagopyrum esculentum, Lolium perenne, Lupinus angustifolius, Phaseolus coccineus, Sinapis alba, Taraxacum officinale, Triticum aestivum, and Zea mays. These assays allowed identification of plants based on size-specific amplicons ranging from 116 bp to 381 bp. Their specificity and sensitivity was consistently high, enabling the detection of small amounts of plant DNA, for example, in decaying plant material and in the intestine or faeces of herbivores. To increase the efficacy of identifying plant species from large number of samples, specific primers were combined in multiplex PCRs, allowing screening for multiple species within a single reaction. The molecular assays outlined here will be applicable manifold, such as for root- and leaf litter identification, botanical trace evidence, and the analysis of herbivory.

  1. Crosstalk between sugarcane and a plant-growth promoting Burkholderia species

    OpenAIRE

    Chanyarat Paungfoo-Lonhienne; Thierry G. A. Lonhienne; Yun Kit Yeoh; Bogdan C. Donose; Richard I. Webb; Jeremy Parsons; Webber Liao; Evgeny Sagulenko; Prakash Lakshmanan; Philip Hugenholtz; Susanne Schmidt; Mark A. Ragan

    2016-01-01

    Bacterial species in the plant-beneficial-environmental clade of Burkholderia represent a substantial component of rhizosphere microbes in many plant species. To better understand the molecular mechanisms of the interaction, we combined functional studies with high-resolution dual transcriptome analysis of sugarcane and root-associated diazotrophic Burkholderia strain Q208. We show that Burkholderia Q208 forms a biofilm at the root surface and suppresses the virulence factors that typically t...

  2. Strong Response of an Invasive Plant Species (Centaurea solstitialis L.) to Global Environmental Changes.

    OpenAIRE

    Dukes, Jeffrey; Chiariello, Nona R; Loarie, Scott R; Field, Christopher B

    2011-01-01

    Global environmental changes are altering interactions among plant species, sometimes favoring invasive species. Here, we examine how a suite of five environmental factors, singly and in combination, can affect the success of a highly invasive plant. We introduced Centaurea solstitialis L. (yellow starthistle), which is considered by many to be California’s most troublesome wildland weed, to grassland plots in the San Francisco Bay Area. These plots experienced ambient or elevated levels of wa...

  3. Endangered plant species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Beatley, J.C.

    1977-02-01

    A total of 15 vascular plant taxa, currently appearing on the Endangered Species list, occur in southern Nye County, Nevada, and/or adjacent Inyo County, California. It is the purpose of this report to record in detail the locations of the plant collections upon which the distributions are based, and other information relevant to their status as Endangered Species, and to recommend the areas to be designated critical habitats.

  4. A simple and efficient method for isolating small RNAs from different plant species

    OpenAIRE

    Rosas-Cárdenas, Flor de Fátima; Durán-Figueroa, Noé; Vielle-Calzada, Jean-Philippe; Cruz-Hernández, Andrés; Marsch-Martínez, Nayelli; de Folter, Stefan

    2011-01-01

    Abstract Background Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. Results We developed a simple and efficient method to isolate sma...

  5. Endangered plant species of the Nevada Test Site, Ash Meadows, and Central-Southern Nevada

    International Nuclear Information System (INIS)

    Beatley, J.C.

    1977-02-01

    A total of 15 vascular plant taxa, currently appearing on the Endangered Species list, occur in southern Nye County, Nevada, and/or adjacent Inyo County, California. It is the purpose of this report to record in detail the locations of the plant collections upon which the distributions are based, and other information relevant to their status as Endangered Species, and to recommend the areas to be designated critical habitats

  6. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species.

    Science.gov (United States)

    Zhao, Yan-Tao; Ali, Arshad; Yan, En-Rong

    2017-02-01

    The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context. © The Author 2016. Published by Oxford University Press. All rights

  7. Mapping plant species ranges in the Hawaiian Islands: developing a methodology and associated GIS layers

    Science.gov (United States)

    Price, Jonathan P.; Jacobi, James D.; Gon, Samuel M.; Matsuwaki, Dwight; Mehrhoff, Loyal; Wagner, Warren; Lucas, Matthew; Rowe, Barbara

    2012-01-01

    This report documents a methodology for projecting the geographic ranges of plant species in the Hawaiian Islands. The methodology consists primarily of the creation of several geographic information system (GIS) data layers depicting attributes related to the geographic ranges of plant species. The most important spatial-data layer generated here is an objectively defined classification of climate as it pertains to the distribution of plant species. By examining previous zonal-vegetation classifications in light of spatially detailed climate data, broad zones of climate relevant to contemporary concepts of vegetation in the Hawaiian Islands can be explicitly defined. Other spatial-data layers presented here include the following: substrate age, as large areas of the island of Hawai'i, in particular, are covered by very young lava flows inimical to the growth of many plant species; biogeographic regions of the larger islands that are composites of multiple volcanoes, as many of their species are restricted to a given topographically isolated mountain or a specified group of them; and human impact, which can reduce the range of many species relative to where they formerly were found. Other factors influencing the geographic ranges of species that are discussed here but not developed further, owing to limitations in rendering them spatially, include topography, soils, and disturbance. A method is described for analyzing these layers in a GIS, in conjunction with a database of species distributions, to project the ranges of plant species, which include both the potential range prior to human disturbance and the projected present range. Examples of range maps for several species are given as case studies that demonstrate different spatial characteristics of range. Several potential applications of species-range maps are discussed, including facilitating field surveys, informing restoration efforts, studying range size and rarity, studying biodiversity, managing

  8. Variation in habitat suitability does not always relate to variation in species' plant functional traits.

    Science.gov (United States)

    Thuiller, Wilfried; Albert, Cécile H; Dubuis, Anne; Randin, Christophe; Guisan, Antoine

    2010-02-23

    Habitat suitability models, which relate species occurrences to environmental variables, are assumed to predict suitable conditions for a given species. If these models are reliable, they should relate to change in plant growth and function. In this paper, we ask the question whether habitat suitability models are able to predict variation in plant functional traits, often assumed to be a good surrogate for a species' overall health and vigour. Using a thorough sampling design, we show a tight link between variation in plant functional traits and habitat suitability for some species, but not for others. Our contrasting results pave the way towards a better understanding of how species cope with varying habitat conditions and demonstrate that habitat suitability models can provide meaningful descriptions of the functional niche in some cases, but not in others.

  9. Location of plant species in Norway gathered as a part of a survey vegetation mapping programme

    Science.gov (United States)

    Bryn, Anders; Kristoffersen, Hans-Petter; Angeloff, Michael; Nystuen, Ingvild; Aune-Lundberg, Linda; Endresen, Dag; Svindseth, Christian; Rekdal, Yngve

    2015-01-01

    Georeferenced species data have a wide range of applications and are increasingly used for e.g. distribution modelling and climate change studies. As an integrated part of an on-going survey programme for vegetation mapping, plant species have been recorded. The data described in this paper contains 18.521 registrations of plants from 1190 different circular plots throughout Norway. All species localities are georeferenced, the spatial uncertainty is provided, and additional ecological information is reported. The published data has been gathered from 1991 until 2015. The entries contain all higher vascular plants and pteridophytes, and some cryptogams. Other ecological information is also provided for the species locations, such as the vegetation type, the cover of the species and slope. The entire material is stored and available for download through the GBIF server. PMID:26958614

  10. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  11. Ecophysiological variation in two provenances of Pinus flexilis seedlings across an elevation gradient from forest to alpine.

    Science.gov (United States)

    Reinhardt, Keith; Castanha, Cristina; Germino, Matthew J; Kueppers, Lara M

    2011-06-01

    Climate change is predicted to cause upward shifts in forest tree distributions, which will require seedling recruitment beyond current forest boundaries. However, predicting the likelihood of successful plant establishment beyond current species' ranges under changing climate is complicated by the interaction of genetic and environmental controls on seedling establishment. To determine how genetics and climate may interact to affect seedling establishment, we transplanted recently germinated seedlings from high- and low-elevation provenances (HI and LO, respectively) of Pinus flexilis in common gardens arrayed along an elevation and canopy gradient from subalpine forest into the alpine zone and examined differences in physiology and morphology between provenances and among sites. Plant dry mass, projected leaf area and shoot:root ratios were 12-40% greater in LO compared with HI seedlings at each elevation. There were no significant changes in these variables among sites except for decreased dry mass of LO seedlings in the alpine site. Photosynthesis, carbon balance (photosynthesis/respiration) and conductance increased >2× with elevation for both provenances, and were 35-77% greater in LO seedlings compared with HI seedlings. There were no differences in dark-adapted chlorophyll fluorescence (Fv/Fm) among sites or between provenances. Our results suggest that for P. flexilis seedlings, provenances selected for above-ground growth may outperform those selected for stress resistance in the absence of harsh climatic conditions, even well above the species' range limits in the alpine zone. This indicates that forest genetics may be important to understanding and managing species' range adjustments due to climate change.

  12. Application of RAPD for molecular characterization of plant species of medicinal value from an arid environment.

    Science.gov (United States)

    Arif, I A; Bakir, M A; Khan, H A; Al Farhan, A H; Al Homaidan, A A; Bahkali, A H; Al Sadoon, M; Shobrak, M

    2010-11-09

    The use of highly discriminatory methods for the identification and characterization of genotypes is essential for plant protection and appropriate use. We utilized the RAPD method for the genetic fingerprinting of 11 plant species of desert origin (seven with known medicinal value). Andrachne telephioides, Zilla spinosa, Caylusea hexagyna, Achillea fragrantissima, Lycium shawii, Moricandia sinaica, Rumex vesicarius, Bassia eriophora, Zygophyllum propinquum subsp migahidii, Withania somnifera, and Sonchus oleraceus were collected from various areas of Saudi Arabia. The five primers used were able to amplify the DNA from all the plant species. The amplified products of the RAPD profiles ranged from 307 to 1772 bp. A total of 164 bands were observed for 11 plant species, using five primers. The number of well-defined and major bands for a single plant species for a single primer ranged from 1 to 10. The highest pair-wise similarities (0.32) were observed between A. fragrantissima and L. shawii, when five primers were combined. The lowest similarities (0) were observed between A. telephioides and Z. spinosa; Z. spinosa and B. eriophora; B. eriophora and Z. propinquum. In conclusion, the RAPD method successfully discriminates among all the plant species, therefore providing an easy and rapid tool for identification, conservation and sustainable use of these plants.

  13. Les barrages alpins

    Directory of Open Access Journals (Sweden)

    Alain Marnezy

    2009-03-01

    Full Text Available Les barrages-réservoirs de montagne ont été réalisés initialement dans les Alpes pour répondre à la demande d’énergie en période hivernale. Une certaine diversification des usages de l’eau s’est ensuite progressivement développée, en relation avec le développement touristique des collectivités locales. Aujourd’hui, la participation des ouvrages d’Électricité De France à la production de neige de culture représente une nouvelle étape. Dans les régions où les aménagements hydroélectriques sont nombreux, les besoins en eau pour la production de neige peuvent être résolus par prélèvements à partir des adductions EDF. Les gestionnaires de stations échappent ainsi aux inconvénients liés à la construction et à la gestion des « retenues collinaires ». Cette évolution, qui concerne déjà quelques régions alpines comme la haute Maurienne ou le Beaufortin, apparaît comme une forme renouvelée d’intégration territoriale de la ressource en eau.Mountain reservoirs were initially built in the Alps to meet energy needs in the winter. A certain diversification in the uses of water then gradually developed, related to tourism development in the local communities. Today, the use of facilities belonging to EDF (French Electricity Authority to provide water for winter resorts to make artificial snow represents a new phase. By taking water from EDF resources to supply snow-making equipment, resort managers are thus able to avoid the problems related to the construction and management of small headwater dams. This new orientation in the use of mountain water resources already affects a number of alpine regions such as the Upper Maurienne valley and Beaufortain massif and represents a renewed form of the territorial integration of water resources.

  14. Physiology of Alpine skiing.

    Science.gov (United States)

    Andersen, R E; Montgomery, D L

    1988-10-01

    Physiological profiles of elite Alpine skiers reveal the importance of muscular strength, anaerobic power, anaerobic endurance, aerobic endurance, coordination, agility, balance, and flexibility. On-hill snow training and dryland training programmes should focus on the elevation of these fitness components. Physical characteristics of elite skiers reveal an average height and body mass. Today, successful skiers are taller and heavier than their predecessors. Slalom skiers tend to be leaner than skiers in other events while the downhill racers are the heaviest. Elite skiers have strong legs when peak torque is measured during isometric and isokinetic conditions involving knee extension, which may be a specific adaptation since the skier is in a crouched position for a prolonged period when racing. Leg strength correlates significantly with performance in the downhill and giant slalom events. The glycolytic contribution in the slalom and giant slalom events is about 40% of the total energy cost. Following a race, blood lactate concentration averages 9 to 13 mmol/L. A muscle lactate concentration of 24 mmol/kg wet muscle tissue has been reported. Elite skiers have higher lactate values than advanced or novice skiers. The aerobic demands of competitive Alpine skiing may approach (90 to 95%) of the athlete's maximal aerobic power. Maximal heart rate is achieved during the latter part of the race. Elite skiers have a high VO2max. This may reflect their training programme and not the actual demands of the sport. When turning, muscular activity acts to impede blood flow and oxygen delivery. As a consequence, anaerobic metabolism is increased. Glycogen studies show significant utilisation from both slow and fast twitch muscle fibres. Skilled and unskilled skiers differ with respect to glycogen utilisation. Skilled skiers have greater glycogen depletion in the slow twitch fibres compared to unskilled skiers. Muscle glycogen decreases by about 32 mmol/kg wet muscle tissue

  15. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  16. Molecular species composition of plant cardiolipin determined by liquid chromatography mass spectrometry

    Science.gov (United States)

    Zhou, Yonghong; Peisker, Helga

    2016-01-01

    Cardiolipin (CL), an anionic phospholipid of the inner mitochondrial membrane, provides essential functions for stabilizing respiratory complexes and is involved in mitochondrial morphogenesis and programmed cell death in animals. The role of CL and its metabolism in plants are less well understood. The measurement of CL in plants, including its molecular species composition, is hampered by the fact that CL is of extremely low abundance, and that plants contain large amounts of interfering compounds including galactolipids, neutral lipids, and pigments. We used solid phase extraction by anion exchange chromatography to purify CL from crude plant lipid extracts. LC/MS was used to determine the content and molecular species composition of CL. Thus, up to 23 different molecular species of CL were detected in different plant species, including Arabidopsis, mung bean, spinach, barley, and tobacco. Similar to animals, plant CL is dominated by highly unsaturated species, mostly containing linoleic and linolenic acid. During phosphate deprivation or exposure to an extended dark period, the amount of CL decreased in Arabidopsis, accompanied with an increased degree in unsaturation. The mechanism of CL remodeling during stress, and the function of highly unsaturated CL molecular species, remains to be defined. PMID:27179363

  17. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi.

    Science.gov (United States)

    Holste, Ellen K; Kobe, Richard K; Gehring, Catherine A

    2017-04-01

    Experiments with plant species that can host both arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) are important to separating the roles of fungal type and plant species and understanding the influence of the types of symbioses on plant growth and nutrient acquisition. We examined the effects of mycorrhizal fungal type on the growth and tissue nutrient content of two tree species (Eucalyptus grandis and Quercus costaricensis) grown under four nutrient treatments (combinations of low versus high nitrogen (N) and phosphorus (P) with different N:P ratios) in the greenhouse. Trees were inoculated with unidentified field mixtures of AMF or EMF species cultivated on root fragments of AMF- or EMF-specific bait plants. In E. grandis, inoculation with both AMF and EMF positively affected belowground plant dry weight and negatively affected aboveground dry weight, while only inoculation with AMF increased tissue nutrient content. Conversely, Q. costaricensis dry weight and nutrient content did not differ significantly among inoculation treatments, potentially due to its dependence on cotyledon reserves for growth. Mineral nutrition of both tree species differed with the ratio of N to P applied while growth did not. Our results demonstrate that both tree species' characteristics and the soil nutrient environment can affect how AMF and EMF interact with their host plants. This research highlights the importance of mycorrhizal fungal-tree-soil interactions during early seedling growth and suggests that differences between AMF and EMF associations may be crucial to understanding forest ecosystem functioning.

  18. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    Science.gov (United States)

    Kneitel, Jamie M

    2012-01-01

    Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance) and regional (competitive ability and colonization rate) community scales. The most common species (four protozoa and a rotifer) from the middle trophic level of a pitcher plant (Sarracenia purpurea) inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate) and other ecological traits (size, growth rate, and carrying capacity) were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at different scales

  19. Are trade-offs among species' ecological interactions scale dependent? A test using pitcher-plant inquiline species.

    Directory of Open Access Journals (Sweden)

    Jamie M Kneitel

    Full Text Available Trade-offs among species' ecological interactions is a pervasive explanation for species coexistence. The traits associated with trade-offs are typically measured to mechanistically explain species coexistence at a single spatial scale. However, species potentially interact at multiple scales and this may be reflected in the traits among coexisting species. I quantified species' ecological traits associated with the trade-offs expected at both local (competitive ability and predator tolerance and regional (competitive ability and colonization rate community scales. The most common species (four protozoa and a rotifer from the middle trophic level of a pitcher plant (Sarracenia purpurea inquiline community were used to link species traits to previously observed patterns of species diversity and abundance. Traits associated with trade-offs (competitive ability, predator tolerance, and colonization rate and other ecological traits (size, growth rate, and carrying capacity were measured for each of the focal species. Traits were correlated with one another with a negative relationship indicative of a trade-off. Protozoan and rotifer species exhibited a negative relationship between competitive ability and predator tolerance, indicative of coexistence at the local community scale. There was no relationship between competitive ability and colonization rate. Size, growth rate, and carrying capacity were correlated with each other and the trade-off traits: Size was related to both competitive ability and predator tolerance, but growth rate and carrying capacity were correlated with predator tolerance. When partial correlations were conducted controlling for size, growth rate and carrying capacity, the trade-offs largely disappeared. These results imply that body size is the trait that provides the basis for ecological interactions and trade-offs. Altogether, this study showed that the examination of species' traits in the context of coexistence at

  20. The assessment of invasive alien plant species removal programs ...

    African Journals Online (AJOL)

    Yusuf Adam

    Yusuf Adama, Njoya S Ngetara, Syd Ramdhanib a School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Howard ... Shaanker, 2013). These species affect human health, agriculture, forestry and biodiversity .... 2.2 Field data collection and image processing. Field data for the classification of ...

  1. Growth responses to ozone in plant species from wetlands

    NARCIS (Netherlands)

    Franzaring, J.H.; Tonneijck, A.E.G.; Kooijman, A.W.N.; Dueck, Th.A.

    2000-01-01

    Ten wet grassland species were fumigated with four concentrations of ozone (charcoal-filtered air, non-filtered air and non-filtered air plus 25 or 50 nl 1-1 ozone) in open-top chambers during one growing season to investigate the long-term effect of this air pollutant on various growth variables.

  2. Integrative modelling reveals mechanisms linking productivity and plant species richness

    NARCIS (Netherlands)

    Grace, James B.; Anderson, T. Michael; Seabloom, Eric W.; Borer, Elizabeth T.; Adler, Peter B.; Harpole, W. Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M.; Pärtel, Meelis; Bakker, Jonathan D.; Buckley, Yvonne M.; Crawley, Michael J.; Damschen, Ellen I.; Davies, Kendi F.; Fay, Philip A.; Firn, Jennifer; Gruner, Daniel S.; Hector, Andy; Knops, Johannes M. H.; MacDougall, Andrew S.; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Smith, Melinda D.

    2016-01-01

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a

  3. Ecological modules and roles of species in heathland plant-insect flower visitor networks.

    Science.gov (United States)

    Dupont, Yoko L; Olesen, Jens M

    2009-03-01

    1. Co-existing plants and flower-visiting animals often form complex interaction networks. A long-standing question in ecology and evolutionary biology is how to detect nonrandom subsets (compartments, blocks, modules) of strongly interacting species within such networks. Here we use a network analytical approach to (i) detect modularity in pollination networks, (ii) investigate species composition of modules, and (iii) assess the stability of modules across sites. 2. Interactions between entomophilous plants and their flower-visitors were recorded throughout the flowering season at three heathland sites in Denmark, separated by >or= 10 km. Among sites, plant communities were similar, but composition of flower-visiting insect faunas differed. Visitation frequencies of visitor species were recorded as a measure of insect abundance. 3. Qualitative (presence-absence) interaction networks were tested for modularity. Modules were identified, and species classified into topological roles (peripherals, connectors, or hubs) using 'functional cartography by simulated annealing', a method recently developed by Guimerà & Amaral (2005a). 4. All networks were significantly modular. Each module consisted of 1-6 plant species and 18-54 insect species. Interactions aggregated around one or two hub plant species, which were largely identical at the three study sites. 5. Insect species were categorized in taxonomic groups, mostly at the level of orders. When weighted by visitation frequency, each module was dominated by one or few insect groups. This pattern was consistent across sites. 6. Our study adds support to the conclusion that certain plant species and flower-visitor groups are nonrandomly and repeatedly associated. Within a network, these strongly interacting subgroups of species may exert reciprocal selection pressures on each other. Thus, modules may be candidates for the long-sought key units of co-evolution.

  4. Public reaction to invasive plant species in a disturbed Colorado landscape

    Science.gov (United States)

    Michael T. Daab; Courtney G. Flint

    2010-01-01

    Invasive plant species degrade ecosystems in many ways. Controlling invasive plants is costly for government agencies, businesses, and individuals. North central Colorado is currently experiencing large-scale disturbance, and millions of acres are vulnerable to invasion because of natural and socioeconomic processes. Mountain pine beetles typically endemic to this...

  5. Plant biomass and species composition along an environmental gradient in montane riparian meadows

    Science.gov (United States)

    Kathleen A. Dwire; J. Boone Kauffman; E. N. Jack Brookshire; John E. Baham

    2004-01-01

    In riparian meadows, narrow zonation of the dominant vegetation frequently occurs along the elevational gradient from the stream edge to the floodplain terrace. We measured plant species composition and above- and belowground biomass in three riparian plant communities - a priori defined as wet, moist, and dry meadow - along short streamside topographic gradients in...

  6. Transfer of knowledge about flowering and vegetative propagation from model species to bulbous plants

    NARCIS (Netherlands)

    Leeggangers, H.A.C.F.; Moreno Pachón, N.M.; Gude, H.; Immink, G.H.

    2013-01-01

    The extensive characterization of plant genes and genome sequences summed to the continuous development of biotechnology tools, has played a major role in understanding biological processes in plant model species. The challenge for the near future is to generate methods and pipelines for an

  7. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients

    NARCIS (Netherlands)

    Meisner, A.; De Boer, W.; Cornelissen, J.H.C.; Van der Putten, W.H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to

  8. Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Olsrud, Maria; Michelsen, Anders

    2010-01-01

    the fungal composition in roots of co-existing ericaceous plants is scarce. In the present paper, the fungal community in roots of four ericaceous plant species, Empetrum hermaphroditum, Andromeda polifolia, Vaccinium uliginosum and Vaccinium vitis-idaea which often dominate subarctic heaths and mires...

  9. Phytotherapy of Polish migrants in Misiones, Argentina: legacy and acquired plant species.

    Science.gov (United States)

    Kujawska, Monika; Hilgert, Norma I

    2014-05-14

    Analyzing how and why phytotherapeutical practices survive a migratory process is important for understanding migrant health seeking behaviour and health demand. Contrary to most studies, which focus on migrants from warm climates who settle in European and American cities, this study explores continuations in the herbal pharmacopoeia of Eastern European peasants who settled down in rural subtropical areas of Argentina. The study also explores the pharmacopoeia among the descendants of the first generation born in Argentina. Primary and secondary sources were employed in the study. Data were collected during over 200 interviews (semi-structured, free lists and in-depth) with 94 study participants. Voucher specimens of species mentioned were gathered and identified. Illnesses were reported according to local ethnomedical terminology and classification. Only reports from informants' own experience were included in the analysis. The unit of analysis was a plant use report (plant species × plant part × ailment × informant). The frequency of mentions was calculated for plant parts used and modes of preparation and administration of herbal medicines, and the Informant Diversity Value was also estimated. Secondary information was obtained from ethnobotanical and ethnomedical literature concerning the whole of Poland. A list was made of medicinal plant species known from Poland available in the study area. Then, the similarity between the available species and those used by Polish migrants was evaluated by applying the Simpson index. An exhaustive list of 129 plant species used by the Polish community in Misiones, Argentina, was obtained. Among 37 species known form Poland and available in Misiones, 19 were used by the community. There was low consensus on the treatment of health conditions with legacy plants between Polish migrants and the Polish folk pharmacopoeia. The reasons for the relatively low use of legacy species are explained. More continuation has been

  10. Conservation state of populations of rare plant species in highly transformed meadow steppes of Southern Opillya

    Directory of Open Access Journals (Sweden)

    I. I. Dmytrash-Vatseba

    2016-09-01

    Full Text Available Degradation of natural habitats causes rapid extinction of rare plant populations. The diversity of rare plant species in the meadow steppes of Southern Opillya (Western Ukraine depends strongly on patch area, pasture digression of vegetation and a variety of eco-coenotical conditions. The main threats for the rare components of the meadow steppe flora are reduction of habitat and overgrazing. Spatial connections between sites are unable to support a constant rare plant population. The analysis of the composition of rare plant meadow-steppe species indicated that habitats with similar rare species composition usually have similar parameters of area, stages of pasture digression and eco-coenotical conditions. Spatial connectivity of patches does not ensure species similarity of rare components of the flora. Rare plant species were grouped according to their preferences for habitat , area and condition. In small patches subject to any stage of pasture digression grow populations of Adonis vernalis L., Pulsatilla patens (L. Mill., P. grandis Wender., Stipa capillata L., S. рennata L., Chamaecytisus blockianus (Pawł. Klásková etc. On the contrary, populations of other species (Carlina onopordifolia Besser. ex Szafer., Kuecz. et Pawł., Adenophora liliifolia (L. Ledeb. ex A. DC., Crambe tataria Sebeók, Euphorbia volhynica Besser ex Racib., Stipa tirsa Stev. etc. prefer large habitats, not changed by pasture digression. Prevention of reduction of rare species diversity requires preservation (also extension of patch area and regulation of grazing intensity.

  11. Mycorrhizal status helps explain invasion success of alien plant species

    Czech Academy of Sciences Publication Activity Database

    Menzel, A.; Hempel, S.; Klotz, S.; Moora, M.; Pyšek, Petr; Rillig, M. C.; Zobel, M.; Kühn, I.

    2017-01-01

    Roč. 98, č. 1 (2017), s. 92-102 ISSN 0012-9658 R&D Projects: GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : plant invasion * mycorrhiza * naturalization Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 4.809, year: 2016

  12. Determination of Leaf Dust Accumulation on Certain Plant Species Grown Alongside National Highway- 22, India

    OpenAIRE

    Navjot Singh Kaler; S. K. Bhardwaj; K. S. Pant; T. S. Rai

    2016-01-01

    Vehicular traffic is one of the major contributors to accumulate dust on plants grown alongside roads. Plants intercept tons of dust, absorb noise and serve as acoustic screens on busy highways. Vegetation contributes in reducing dust concentration in environment by acting as a sink for air pollutants. Taking this into account, the present study was conducted on National highway- 22 from Parwanoo to Solan, falling in Solan district of Himachal Pradesh, India. Specifically, four plant species...

  13. World-wide every fifth vascular plant species is or was used as medicinal or aromatic plant

    OpenAIRE

    Wittig, Rüdiger; Dingermann, Theo; Sieglstetter, Robert; Xie, Yingzhong; Thiombiano, Adjima; Hahn, Karen

    2015-01-01

    It is common knowledge that plants have been the world-wide most important source of medicines and that they still play this role in developing countries. However, up to now, complete lists of medicinal and aromatic plants (MAP) exist for comparatively few countries. A review of all lists know to the authors reveals the following results: A total of 20.7 % of the plant species analyzed by either publications or own research are or were used as MAP. However, regarding single countries, the dif...

  14. Factors determining the plant species diversity and species composition in a suburban landscape

    Czech Academy of Sciences Publication Activity Database

    Čepelová, B.; Münzbergová, Zuzana

    2012-01-01

    Roč. 106, č. 4 (2012), s. 336-346 ISSN 0169-2046 R&D Projects: GA ČR GAP505/10/0593; GA ČR GD206/08/H049 Institutional support: RVO:67985939 Keywords : suburban landscape * species diversity * species composition Subject RIV: EF - Botanics Impact factor: 2.314, year: 2012

  15. 76 FR 44564 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Listed Species

    Science.gov (United States)

    2011-07-26

    ... Endangered Species Act of 1973, as amended (Act), of seven animal and plant species. We conduct these reviews... Federal Regulations (CFR) at 50 CFR 17.11 (for animals) and 17.12 (for plants). Section 4(c)(2)(A) of the... following reasons (50 CFR 424.11(d)): (A) The species is considered extinct; (B) The species is considered...

  16. 77 FR 38762 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Listed Species

    Science.gov (United States)

    2012-06-29

    ... reviews under the Endangered Species Act of 1973, as amended (Act), of seven animal and plant species. We... Federal Regulations (CFR) at 50 CFR 17.11 (for animals) and 17.12 (for plants). Section 4(c)(2)(A) of the... CFR 424.11(d)): (A) The species is considered extinct; (B) The species is considered to be recovered...

  17. 76 FR 30377 - Endangered and Threatened Wildlife and Plants; 5-Year Reviews of Species in California, Nevada...

    Science.gov (United States)

    2011-05-25

    ... Federal Regulations (CFR) at 50 CFR 17.11 (for animals) and 17.12 (for plants). Section 4(c)(2)(A) of the... CFR 424.11(d)): (A) The species is considered extinct; (B) The species is considered to be recovered... Information, 22 Animal Species and 31 Plant Species in California and Nevada Common name Scientific name...

  18. 75 FR 55820 - Endangered and Threatened Wildlife and Plants; 5-Year Status Reviews of Seven Midwest Species

    Science.gov (United States)

    2010-09-14

    ... Species Act of 1973, as amended (Act), of seven animal and plant species. We conduct these reviews to... Federal Regulations (CFR) at 50 CFR 17.11 (for animals) and 17.12 (for plants). Section 4(c)(2)(A) of the... CFR 424.11(d)): (A) The species is considered extinct; (B) The species is considered to be recovered...

  19. Biotic interactions overrule plant responses to climate, depending on the species' biogeography.

    Science.gov (United States)

    Welk, Astrid; Welk, Erik; Bruelheide, Helge

    2014-01-01

    This study presents an experimental approach to assess the relative importance of climatic and biotic factors as determinants of species' geographical distributions. We asked to what extent responses of grassland plant species to biotic interactions vary with climate, and to what degree this variation depends on the species' biogeography. Using a gradient from oceanic to continental climate represented by nine common garden transplant sites in Germany, we experimentally tested whether congeneric grassland species of different geographic distribution (oceanic vs. continental plant range type) responded differently to combinations of climate, competition and mollusc herbivory. We found the relative importance of biotic interactions and climate to vary between the different components of plant performance. While survival and plant height increased with precipitation, temperature had no effect on plant performance. Additionally, species with continental plant range type increased their growth in more benign climatic conditions, while those with oceanic range type were largely unable to take a similar advantage of better climatic conditions. Competition generally caused strong reductions of aboveground biomass and growth. In contrast, herbivory had minor effects on survival and growth. Against expectation, these negative effects of competition and herbivory were not mitigated under more stressful continental climate conditions. In conclusion we suggest variation in relative importance of climate and biotic interactions on broader scales, mediated via species-specific sensitivities and factor-specific response patterns. Our results have important implications for species distribution models, as they emphasize the large-scale impact of biotic interactions on plant distribution patterns and the necessity to take plant range types into account.

  20. Students' Perception of Plant and Animal Species: A Case Study from Rural Argentina

    Science.gov (United States)

    Nates, Juliana; Campos, Claudia; Lindemann-Matthies, Petra

    2010-01-01

    Exotic species seriously affect local biodiversity in Argentina. This article investigates how students in San Juan province perceive native and exotic species. With the help of a written questionnaire, 865 students (9-17 years old) were asked to name the plant and animal they liked most, disliked most, and perceived as most useful, and to name…

  1. Minimizing Risks of Invasive Alien Plant Species in Tropical Production Forest Management

    Directory of Open Access Journals (Sweden)

    Michael Padmanaba

    2014-08-01

    Full Text Available Timber production is the most pervasive human impact on tropical forests, but studies of logging impacts have largely focused on timber species and vertebrates. This review focuses on the risk from invasive alien plant species, which has been frequently neglected in production forest management in the tropics. Our literature search resulted in 114 publications with relevant information, including books, book chapters, reports and papers. Examples of both invasions by aliens into tropical production forests and plantation forests as sources of invasions are presented. We discuss species traits and processes affecting spread and invasion, and silvicultural practices that favor invasions. We also highlight potential impacts of invasive plant species and discuss options for managing them in production forests. We suggest that future forestry practices need to reduce the risks of plant invasions by conducting surveillance for invasive species; minimizing canopy opening during harvesting; encouraging rapid canopy closure in plantations; minimizing the width of access roads; and ensuring that vehicles and other equipment are not transporting seeds of invasive species. Potential invasive species should not be planted within dispersal range of production forests. In invasive species management, forewarned is forearmed.

  2. Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change.

    Science.gov (United States)

    Yu, Qiang; Wilcox, Kevin; La Pierre, Kimberly; Knapp, Alan K; Han, Xingguo; Smith, Melinda D

    2015-09-01

    Why some species are consistently more abundant than others, and predicting how species will respond to global change, are fundamental questions in ecology. Long-term observations indicate that plant species with high stoichiometric homeostasis for nitrogen (HN), i.e., the ability to decouple foliar N levels from variation in soil N availability, were more common and stable through time than low-HN species in a central U.S. grassland. However, with nine years of nitrogen addition, species with high H(N) decreased in abundance, while those with low H(N) increased in abundance. In contrast, in climate change experiments simulating a range of forecast hydrologic changes, e.g., extreme drought (two years), increased rainfall variability (14 years), and chronic increases in rainfall (21 years), plant species with the highest H(N) were least responsive to changes in soil water availability. These results suggest that H(N) may be predictive of plant species success and stability, and how plant