WorldWideScience

Sample records for alpine life zone

  1. Investigation on the geographical distribution and life form of plant species in sub alpine zone Karsanak region, Shahrekord

    Directory of Open Access Journals (Sweden)

    Jahanbakhsh Pairanj

    2011-09-01

    Full Text Available This study was carried out in rangelands of Karsanak, Chaharmahal and Bakhtiari province, which is regarded as one of the rich rangelands. Phytogeographically, this region is located in Irano-Turanian (zone of sub alpine. Endemic and rare plants were identified and geographical distribution and life form of identified plant species were investigated as well. Overall, 100 species from 17 families were identified from which 20 percent of identified species was endemic element of Irano-Turanian region. Results indicated that 75.7 percent of identified plants belonged to the Irano-Turanian and only 3 and 2 percent belonged to Euro-Siberian and Mediterranean regions respectively. The reason of high percentage of Irano-Turanian elements is probably the long distance of this region from other regions. Similarities of Irano-Turanian and Mediterranean were included 6.1 percent of identified plants and Irano-Turanian and Euro-Siberian included 2 percent. Results of life forms showed hemichryptophytes including 60 percent of life forms which indicate the cold and mountainous weather.

  2. Leaf ultraviolet optical properties along a latitudinal gradient in the Arctic-Alpine life zone

    International Nuclear Information System (INIS)

    Robberecht, R.; Caldwell, M.M.; Billings, W.D.

    1980-01-01

    Leaf epidermal transmittance of terrestrial solar ultraviolet-B radiation (295 to 320 nm) was examined along a latitudinal gradient of solar uv-B radiation. In high uv-B radiation zones, e.g., equatorial and tropical regions, mean epidermal transmittance for the species examined was less than 2%. At higher latitudes, mean epidermal transmittance exceeded 5%. Although this latitudinal solar uv-B gradient represents more than a seven-fold difference in daily integrated uv-B irradiance, the calculated mean effective uv-B irradiance at the mesophyll of low-latitude species is not substantially different from that of species at higher latitudes. Species in high uv-B radiation environments appear to attenuate this radiation more effectively than those in lower irradiance environments. In most cases, absorption of uv-B in the epidermis is the major parameter effecting low transmittance. Reflectance from glabrous leaves is generally less than 10%. In some species, pubescent or glaucous leaf surfaces can reflect more than 40% of the uv-B radiation incident on a horizontal leaf, although such surface characteristics do not necessarily indicate high uv-B reflectance. Under controlled conditions, epidermal transmittance in Pisum sativum L. decreased in response to uv-B irradiation. The modification of epidermal transmittance, resulting in lower uv-B irradiance at the mesophyll, may represent a mechanism of plant acclimation to uv-B radiation. Such acclimation may have occurred in several wildland species of temperate-latitude origin that have invaded high uv-B irradiance equatorial and tropical regions

  3. The Alpine loop of the tethys zone

    NARCIS (Netherlands)

    Bemmelen, R.W. van

    The Alpine loop in Europe results from semi-autochthonous crustal movements which are restricted to the mobile Tethys zone. Its evolution cannot be explained by a uniform northward drift and push of the African continent; it has to be sought, in the first place, in geodynamic processes occurring in

  4. Vascular plant flora of the alpine zone in the southern Rocky Mountains, U.S.A

    Science.gov (United States)

    James F. Fowler; B. E. Nelson; Ronald L. Hartman

    2014-01-01

    Field detection of changes in occurrence, distribution, or abundance of alpine plant species is predicated on knowledge of which species are in specific locations. The alpine zone of the Southern Rocky Mountain Region has been systematically inventoried by the staff and floristics graduate students from the Rocky Mountain Herbarium over the last 27 years. It is...

  5. Characterising the Alpine Fault Damage Zone using Fault Zone Guided Waves, South Westland, New Zealand

    Science.gov (United States)

    Eccles, J. D.; Gulley, A.; Boese, C. M.; Malin, P. E.; Townend, J.; Thurber, C. H.; Guo, B.; Sutherland, R.

    2015-12-01

    Fault Zone Guided Waves (FZGWs) are observed within New Zealand's transpressional continental plate boundary, the Alpine Fault, which is late in its typical seismic cycle. Distinctive dispersive seismic coda waves (~7-35 Hz), trapped within the low-velocity fault damage zone, have been recorded on three component 2 Hz borehole seismometers installed within 20 m of the principal slip zone in the shallow (SAMBA and WIZARD seismometer arrays allows spatio-temporal patterns of 2013 events to be analysed and the segmentation and low velocity zone depth extent further explored. Three layer, dispersion modeling of the low-velocity zone indicates a waveguide width of 60-200 m with a 10-40% reduction in S-wave velocity, similar to that inferred for the fault core of other mature plate boundary faults such as the San Andreas and North Anatolian Faults.

  6. Leaf litter degradation in the wave impact zone of a pre-alpine lake

    OpenAIRE

    Pabst, Simone; Scheifhacken, Nicole; Hesselschwerdt, John; Wantzen, Karl M.

    2008-01-01

    Contrary to streams, decomposition processes of terrestrial leaf litter are still poorly understood in lakes. Here, we examined the decomposition of two leaf species, beech (Fagus sylvatica) and poplar (Populus nigra italica ) in the littoral zone of a large pre-alpine lake at a wave exposed site. We focussed on the shredding impact of benthic invertebrates in a field experiment and on the effects of wave-induced disturbances under field and mesocosm conditions. In contrast to our expectatio...

  7. Role of fluids in the metamorphism of the Alpine Fault Zone, New Zealand

    International Nuclear Information System (INIS)

    Vry, J.K.; Storkey, A.C.; Harris, C.

    1999-01-01

    Full text: Models of fluid/rock interaction in and adjacent to the Alpine Fault in the Hokitika area, South Island, New Zealand, were investigated using hydrogen and other stable isotope studies, together with field and petrographic observations. All analysed samples from the study area have similar whole-rock δD values (δD WR = -56 to -30 per mill, average -45 per mill, n 20), irrespective of rock type, degree of chloritisation, location along the fault, or across-strike distance from the fault in the garnet zone. The green, chlorite-rich fault rocks, which probably formed from Australian Plate precursors, record nearly-isothermal fluid/rock interaction with a greyschist-derived metamorphic fluid at high temperatures, near 450-500 deg C. δD of water in equilibrium with the green fault rocks (δD H20,green ) is 18 per mill; δD of water in equilibrium with the greyschists and greyschist-derived mylonites (δD H20, grey ) is 19 per mill at 500 deg C δD H20, green is -17 per mill; δD H20,grey is -14 per mill at 450 deg C. There is no indication of an influx of a meteoric or mantle-derived fluid in the Alpine Fault Zone in the study area. The Alpine Fault Zone at the surface shows little evidence of late-stage retrogression or veining, which might be attributed to down-temperature fluid flow. It is probable that prograde metamorphism in the root zone of the Southern Alps releases metamorphic fluids that, in some regions, rise vertically rather than following the trace of the Alpine Fault up to the surface, due to the combined effects of the fault, the disturbed isotherms under the Southern Alps, and the brittle-ductile transition. Such fluids could mix with meteoric fluids to deposit quartz-rich, possibly gold-bearing veins in the region - 5-10 km back from the fault trace. These results and interpretations are consistent with interpretations of magnetotelluric data obtained in the South Island GeopHysical Transects (SIGHT) program. Copyright (1999) Geological

  8. Seismic micro-zoning in the alpine valleys and local application in urban planning regulations

    Directory of Open Access Journals (Sweden)

    Stéphane Cartier

    2009-03-01

    Full Text Available Confrontées au risque sismique, les vallées sédimentaires alpines testent différentes solutions politiques pour transcrire en règles d’urbanisme les connaissances apportées par les micro-zonages. France, Italie, Slovénie et Suisse composent avec leur tradition politique et l’adoption de codes européens pour améliorer la sécurité selon la vulnérabilité et la géologie locales.Management of earthquake risks in the sedimentary valleys of the Alps depends on the ability to transcribe scientific knowledge obtained from micro-zoning into urban planning regulations. France, Italy, Slovenia and Switzerland are working with new European codes, and within their respective political contexts, to improve earthquake safety on the basis of enhanced input on local geological conditions and vulnerability levels.

  9. Influence of mineralogy and microstructures on strain localization and fault zone architecture of the Alpine Fault, New Zealand

    Science.gov (United States)

    Ichiba, T.; Kaneki, S.; Hirono, T.; Oohashi, K.; Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.

    2017-12-01

    The Alpine Fault on New Zealand's South Island is an oblique, dextral strike-slip fault that accommodated the majority of displacement between the Pacific and the Australian Plates and presents the biggest seismic hazard in the region. Along its central segment, the hanging wall comprises greenschist and amphibolite facies Alpine Schists. Exhumation from 35 km depth, along a SE-dipping detachment, lead to mylonitization which was subsequently overprinted by brittle deformation and finally resulted in the fault's 1 km wide damage zone. The geomechanical behavior of a fault is affected by the internal structure of its fault zone. Consequently, studying processes controlling fault zone architecture allows assessing the seismic hazard of a fault. Here we present the results of a combined microstructural (SEM and TEM), mineralogical (XRD) and geochemical (XRF) investigation of outcrop samples originating from several locations along the Alpine Fault, the aim of which is to evaluate the influence of mineralogical composition, alteration and pre-existing fabric on strain localization and to identify the controls on the fault zone architecture, particularly the locus of brittle deformation in P, T and t space. Field observations reveal that the fault's principal slip zone (PSZ) is either a thin (govern strain localization. However, our preliminary results suggest that qualitative mineralogical composition has only minor impact on fault zone architecture. Quantities of individual mineral phases differ markedly between fault damage zone and fault core at specific sites, but the quantitative composition of identical structural units such as the fault core, is similar in all samples. This indicates that the degree of strain localization at the Alpine Fault might be controlled by small initial heterogeneities in texture and fabric or a combination of these, rather than in mineralogy. Further microstructural investigations are needed to test this hypothesis.

  10. Terrestrial Zone Exoplanets and Life

    Science.gov (United States)

    Matthews, Brenda

    2018-01-01

    One of the most exciting results from ALMA has been the detection of significant substructure within protoplanetary disks that can be linked to planet formation processes. For the first time, we are able to observe the process of assembly of material into larger bodies within such disks. It is not possible, however, for ALMA to probe the growth of planets in protoplanetary disks at small radii, i.e., in the terrestrial zone, where we expect rocky terrestrial planets to form. In this regime, the optical depths prohibit observation at the high frequencies observed by ALMA. To probe the effects of planet building processes and detect telltale gaps and signatures of planetary mass bodies at such small separations from the parent star, we require a facility of superior resolution and sensitivity at lower frequencies. The ngVLA is just such a facility. We will present the fundamental science that will be enabled by the ngVLA in protoplanetary disk structure and the formation of planets. In addition, we will discuss the potential for an ngVLA facility to detect the molecules that are the building blocks of life, reaching limits well beyond those reachable with the current generation of telescopes, and also to determine whether such planets will be habitable based on studies of the impact of stars on their nearest planetary neighbours.

  11. Controls on fault zone structure and brittle fracturing in the foliated hanging wall of the Alpine Fault

    Science.gov (United States)

    Williams, Jack N.; Toy, Virginia G.; Massiot, Cécile; McNamara, David D.; Smith, Steven A. F.; Mills, Steven

    2018-04-01

    Three datasets are used to quantify fracture density, orientation, and fill in the foliated hanging wall of the Alpine Fault: (1) X-ray computed tomography (CT) images of drill core collected within 25 m of its principal slip zones (PSZs) during the first phase of the Deep Fault Drilling Project that were reoriented with respect to borehole televiewer images, (2) field measurements from creek sections up to 500 m from the PSZs, and (3) CT images of oriented drill core collected during the Amethyst Hydro Project at distances of ˜ 0.7-2 km from the PSZs. Results show that within 160 m of the PSZs in foliated cataclasites and ultramylonites, gouge-filled fractures exhibit a wide range of orientations. At these distances, fractures are interpreted to have formed at relatively high confining pressures and/or in rocks that had a weak mechanical anisotropy. Conversely, at distances greater than 160 m from the PSZs, fractures are typically open and subparallel to the mylonitic or schistose foliation, implying that fracturing occurred at low confining pressures and/or in rocks that were mechanically anisotropic. Fracture density is similar across the ˜ 500 m width of the field transects. By combining our datasets with measurements of permeability and seismic velocity around the Alpine Fault, we further develop the hierarchical model for hanging-wall damage structure that was proposed by Townend et al. (2017). The wider zone of foliation-parallel fractures represents an outer damage zone that forms at shallow depths. The distinct inner damage zone. This zone is interpreted to extend towards the base of the seismogenic crust given that its width is comparable to (1) the Alpine Fault low-velocity zone detected by fault zone guided waves and (2) damage zones reported from other exhumed large-displacement faults. In summary, a narrow zone of fracturing at the base of the Alpine Fault's hanging-wall seismogenic crust is anticipated to widen at shallow depths, which is

  12. Consequences for selected high-elevation butterflies and moths from the spread of Pinus mugo into the alpine zone in the High Sudetes Mountains

    Directory of Open Access Journals (Sweden)

    Karolína Bílá

    2016-06-01

    Full Text Available Due to changes in the global climate, isolated alpine sites have become one of the most vulnerable habitats worldwide. The indigenous fauna in these habitats is threatened by an invasive species, dwarf pine (Pinus mugo, which is highly competitive and could be important in determining the composition of the invertebrate community. In this study, the association of species richness and abundance of butterflies with the extent of Pinus mugo cover at individual alpine sites was determined. Butterflies at alpine sites in the High Sudetes Mountains (Mts. were sampled using Moericke yellow water traps. The results of a Canonical Correspondence Analysis (CCA indicated that at a local scale the area of alpine habitats is the main limiting factor for native species of alpine butterflies. Butterfly assemblages are associated with distance to the tree-line with the optimum situated in the lower forest zone. In addition the CCA revealed that biotic factors (i.e. Pinus mugo and alpine tundra vegetation accounted for a significant amount of the variability in species data. Regionally, the CCA identified that the species composition of butterflies and moths is associated with presence and origin of Pinus mugo. Our study provides evidence that the structure of the Lepidopteran fauna that formed during the postglacial period and also the present composition of species assemblages is associated with the presence of Pinus mugo. With global warming, Pinus mugo has the potential to spread further into alpine areas and negatively affect the local species communities.

  13. Time-lapse ERT and DTS for seasonal and short-term monitoring of an alpine river hyporheic zone

    Science.gov (United States)

    Boaga, Jacopo; Laura, Busato; Mariateresa, Perri; Giorgio, Cassiani

    2016-04-01

    The hyporheic zone (HZ) is the area located beneath and adjacent to rivers and streams, where the interactions between surface water and groundwater take place. This complex physical domain allows the transport of several substances from a stream to the unconfined aquifer below, and vice versa, thus playing a fundamental role in the river ecosystem. The importance of the hyporheic zone makes its characterization a goal shared by several disciplines, which range from applied geophysics to biogeochemistry, from hydraulics to ecology. The frontier field of HZ characterization stays in applied non-invasive methodologies as Electrical Resistivity Tomography - ERT - and Distributed Temperature Sensing - DTS. ERT is commonly applied in cross-well configuration or with a superficial electrodes deployment while DTS is used in hydro-geophysics in the last decade, revealing a wide applicability to the typical issues of this field of study. DTS for hydro-geophysics studies is based on Raman scattering and employs heat as tracer and uses a fiber-optic cable to acquire temperature values. We applied both techniques for an alpine river case studies located in Val di Sole, TN, Italy. The collected measurements allow high-resolution characterization of the hyporheic zone, overcoming the critical problem of invasive measurements under riverbeds. In this work, we present the preliminary results regarding the characterization of the hyporheic zone of the alpine river obtained combining ERT and DTS time-lapse measurements. The data collection benefits from an innovative instrumentation deployment, which consists of both an ERT multicore cable and a DTS fiber-optic located in two separated boreholes drilled 5m under the watercourse and perpendicular to it. In particular we present the first year monitoring results and a short time-lapse monitoring experiment conducted during summer 2015. The site and the results here described are part of the EU FP7 CLIMB (Climate Induced Changes on the

  14. Background and triggered microseismicity in the Alpine Fault zone, central Southern Alps, New Zealand

    Science.gov (United States)

    Boese, C. M.; Stern, T. A.; Smith, E. G.; Townend, J.; Henderson, M.

    2010-12-01

    The Alpine Fault is a 460 km-long continental transform fault that bounds the western edge of the Southern Alps and constitutes the primary structure accommodating Pacific-Australia relative plate motion in the central South Island. Paleoseismic evidence suggests that large earthquakes (MW~7.9) occur every 200-400 years and that the central Alpine Fault last ruptured in 1717 AD. In historic times, however, there have been no large earthquakes and the central section of the Alpine Fault exhibits particularly low levels of seismicity above magnitude ML=2. This central portion of the fault is associated with the highest rates of dip-slip faulting (~10 mm/yr) and hanging-wall uplift (6-9 mm/yr). Previous geological and geophysical studies have suggested that large volumes of fluid are present in the rapidly exhumed crustal section immediately to the east of the central Alpine Fault. The Southern Alps Microearthquake Borehole Array (SAMBA) of 11 short-period seismometers installed in 1-100 m-deep boreholes was established in early 2009. SAMBA extends for 50 km along the Alpine Fault between the Whataroa and Karangarua Rivers and recorded ~1300 earthquakes of magnitude -0.5 SAMBA in the central Southern Alps. Most microearthquakes occur at depths shallower than 10 km and exhibit predominantly strike-slip focal mechanisms. The observations reinforce previous results indicating very low levels of seismicity northeast of the Whataroa River, a possible site of future deep drilling. The highest daily number of events recorded so far occurred after the MW=7.8 Dusky Sound earthquake of 15 July 2009, which ruptured the subduction interface beneath Fiordland and offshore, approximately 360 km southwest of the center of the SAMBA array. The triggered microearthquakes occurred in the middle of a pre-existing cluster. After five days, the rate of seismicity returned to the previous level. Map of the central Southern Alps showing the national station network (GeoNet, black triangles

  15. Evapotranspiration partitioning in the highest alpine meadow zones through in-situ chamber and dual stable water isotope approaches

    Science.gov (United States)

    Cui, J.; Tian, L.

    2017-12-01

    Understanding plant functionality within the water cycles of grassland ecosystems is crucial for obtaining both regional water balance and plant adaptability in the context of ongoing climate change. The transpiration to evapotranspiration ratio (T/ET) is an indicator of plant's contribution to ecosystem water cycle. In this study, we used high-frequency laser spectroscopy (L2130-i), three custom-built chambers, and eddy covariance techniques, to constrain the role played by plants in evapotranspiration over an alpine meadow ecosystem in the central Tibetan Plateau (TP). Three different sizes of chambers are used to direct measure the isotopic compositions in evapotranspiration (δET), evaporation (δE) and transpiration (δT). The consistent T/ET between δ18O and δD manifests that chamber and dual isotope tracers are robust methods to estimate T/ET in alpine meadow zone. Sensitivity analysis shows that the isotopic composition of evapotranspiration is the main contributor to, and the uncertainty source for, the T/ET estimate. The influence of meteorological and biotic factors on T/ET is also discussed. The results from this study indicate that plants play an important role in the water cycles of alpine meadow ecosystems despite the sparse distribution of plant cover. We also synthesized the published T/ET data over the entire TP region, and found a good relation between T/ET and leaf area index (LAI). Moreover, soil water content played some role in controlling T/ET beyond the LAI in arid/semiarid regions such as the TP. More than half of the TP is covered by grassland, but its low biomass and shallow rooting depth make it very vulnerable to climate change variables such as air temperature warming and variations in precipitation. Given the crucial role played by plants in an ecosystem's water cycle, any variations in grassland cover are likely to exert a critical impact on the regional hydrological cycle, and even the regional climate.

  16. Effects of simulated soil temperature on stem diameter increment of Pinus cembra at the alpine timberline: a new approach based on root zone roofing

    OpenAIRE

    Gruber, A.; Wieser, G.; Oberhuber, W.

    2010-01-01

    For assessing the impact of soil temperature on tree growth in remote areas such as the alpine timberline we introduce a new method for soil temperature manipulations. This new approach is based on roofing of the rooting zone and allows either soil cooling or soil warming without significantly influencing soil water availability and the above ground microclimate.

  17. Effects of simulated soil temperature on stem diameter increment of Pinus cembra at the alpine timberline: a new approach based on root zone roofing.

    Science.gov (United States)

    Gruber, A; Wieser, G; Oberhuber, W

    2010-03-01

    For assessing the impact of soil temperature on tree growth in remote areas such as the alpine timberline we introduce a new method for soil temperature manipulations. This new approach is based on roofing of the rooting zone and allows either soil cooling or soil warming without significantly influencing soil water availability and the above ground microclimate.

  18. A new pygmy leafmining moth, Stigmella tatrica sp. n., from the alpine zone of the Tatra Mountains (Lepidoptera, Nepticulidae

    Directory of Open Access Journals (Sweden)

    Zdenko Tokár

    2017-06-01

    Full Text Available Stigmella tatrica sp. n. is described from moths taken in the alpine zone of the Tatra Mountains in Slovakia. The new species is similar to several other montane species of Stigmella Schrank, 1802 in the S. aurella (Fabricius, 1775 group in external characters and male genitalia; its closest relative is S. dryadella (O. Hofmann, 1868. It is indistinguishable from S. tormentillella (Herrich-Schäffer, 1860 by the colour and pattern elements of the forewing; however, it differs in the male genitalia in the shape and number of cornuti, in the female genitalia by long apophyses with protruding ovipositor, and by COI barcodes. Immature stages are unknown, but Dryas octopetala L. (Rosaceae is the possible hostplant. The long ovipositor suggests an unusual, possibly hidden place for oviposition. The male and female adults and genitalia of both sexes are figured and photographs of the habitat are provided.

  19. Potential Habitats for Exotic Life Within the Life Supporting Zone

    Science.gov (United States)

    Leitner, Johannes J.; Firneis, Maria G.; Hitzenberger, Regina

    2010-05-01

    Questions like "Are we alone in the universe?", "How unique is Earth as a planet?" or "How unique is water-based life in the universe?" still are nowhere near of being answered. In recent years, discussions on these topics are more and more influenced by questions whether water is really the only possible solvent, or which conditions are necessary for life to evolve in planetary habitats. A change in our present geocentric mindset on the existence of life is required, in order to address these new questions [see also 1]. In May 2009 a new research platform at the University of Vienna was initiated in order to contribute to the solution of these questions. One task is to find essential biomarkers relevant to the problem of the detection of exotic life. In this context exotic life means: life, which is not necessarily based on a double bond between carbon and oxygen (C=O) and not on water as the only possible solvent. At present little is known about metabolistic systems, which are not based on C=O or on metabolisms which are operative in alternative solvents and a high effort of future laboratory work is necessary to open this window for looking for exotic life. To address the whole spectrum of life the concept of a general life supporting zone is introduced in order to extend the classical habitable zone (which is based on liquid water on a planetary surface, [2]). The life supporting zone of a planetary system is composed of different single "habitable zones" for the liquid phases of specific solvents and composites between water and other solvents. Besides exoplanetary systems which seem to be the most promising place for exotic life in our present understanding, some potential places could also exist within our Solar System and habitats like the subsurface of Enceladus, liquid ethane/methane lakes on Titan or habitable niches in the Venus atmosphere will also be taken into account. A preliminary list of appropriate solvents and their abundances in the Solar

  20. Frost resistance of alpine woody plants

    Directory of Open Access Journals (Sweden)

    Gilbert eNeuner

    2014-12-01

    Full Text Available This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research.Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover.Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate.In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers and fruits and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  1. Frost resistance in alpine woody plants.

    Science.gov (United States)

    Neuner, Gilbert

    2014-01-01

    This report provides a brief review of key findings related to frost resistance in alpine woody plant species, summarizes data on their frost resistance, highlights the importance of freeze avoidance mechanisms, and indicates areas of future research. Freezing temperatures are possible throughout the whole growing period in the alpine life zone. Frost severity, comprised of both intensity and duration, becomes greater with increasing elevation and, there is also a greater probability, that small statured woody plants, may be insulated by snow cover. Several frost survival mechanisms have evolved in woody alpine plants in response to these environmental conditions. Examples of tolerance to extracellular freezing and freeze dehydration, life cycles that allow species to escape frost, and freeze avoidance mechanisms can all be found. Despite their specific adaption to the alpine environment, frost damage can occur in spring, while all alpine woody plants have a low risk of frost damage in winter. Experimental evidence indicates that premature deacclimation in Pinus cembra in the spring, and a limited ability of many species of alpine woody shrubs to rapidly reacclimate when they lose snow cover, resulting in reduced levels of frost resistance in the spring, may be particularly critical under the projected changes in climate. In this review, frost resistance and specific frost survival mechanisms of different organs (leaves, stems, vegetative and reproductive over-wintering buds, flowers, and fruits) and tissues are compared. The seasonal dynamics of frost resistance of leaves of trees, as opposed to woody shrubs, is also discussed. The ability of some tissues and organs to avoid freezing by supercooling, as visualized by high resolution infrared thermography, are also provided. Collectively, the report provides a review of the complex and diverse ways that woody plants survive in the frost dominated environment of the alpine life zone.

  2. Petrophysical, Geochemical, and Hydrological Evidence for Extensive Fracture-Mediated Fluid and Heat Transport in the Alpine Fault's Hanging-Wall Damage Zone

    Science.gov (United States)

    Townend, John; Sutherland, Rupert; Toy, Virginia G.; Doan, Mai-Linh; Célérier, Bernard; Massiot, Cécile; Coussens, Jamie; Jeppson, Tamara; Janku-Capova, Lucie; Remaud, Léa.; Upton, Phaedra; Schmitt, Douglas R.; Pezard, Philippe; Williams, Jack; Allen, Michael John; Baratin, Laura-May; Barth, Nicolas; Becroft, Leeza; Boese, Carolin M.; Boulton, Carolyn; Broderick, Neil; Carpenter, Brett; Chamberlain, Calum J.; Cooper, Alan; Coutts, Ashley; Cox, Simon C.; Craw, Lisa; Eccles, Jennifer D.; Faulkner, Dan; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Hartog, Arthur; Henry, Gilles; Howarth, Jamie; Jacobs, Katrina; Kato, Naoki; Keys, Steven; Kirilova, Martina; Kometani, Yusuke; Langridge, Rob; Lin, Weiren; Little, Tim; Lukacs, Adrienn; Mallyon, Deirdre; Mariani, Elisabetta; Mathewson, Loren; Melosh, Ben; Menzies, Catriona; Moore, Jo; Morales, Luis; Mori, Hiroshi; Niemeijer, André; Nishikawa, Osamu; Nitsch, Olivier; Paris, Jehanne; Prior, David J.; Sauer, Katrina; Savage, Martha K.; Schleicher, Anja; Shigematsu, Norio; Taylor-Offord, Sam; Teagle, Damon; Tobin, Harold; Valdez, Robert; Weaver, Konrad; Wiersberg, Thomas; Zimmer, Martin

    2017-12-01

    Fault rock assemblages reflect interaction between deformation, stress, temperature, fluid, and chemical regimes on distinct spatial and temporal scales at various positions in the crust. Here we interpret measurements made in the hanging-wall of the Alpine Fault during the second stage of the Deep Fault Drilling Project (DFDP-2). We present observational evidence for extensive fracturing and high hanging-wall hydraulic conductivity (˜10-9 to 10-7 m/s, corresponding to permeability of ˜10-16 to 10-14 m2) extending several hundred meters from the fault's principal slip zone. Mud losses, gas chemistry anomalies, and petrophysical data indicate that a subset of fractures intersected by the borehole are capable of transmitting fluid volumes of several cubic meters on time scales of hours. DFDP-2 observations and other data suggest that this hydrogeologically active portion of the fault zone in the hanging-wall is several kilometers wide in the uppermost crust. This finding is consistent with numerical models of earthquake rupture and off-fault damage. We conclude that the mechanically and hydrogeologically active part of the Alpine Fault is a more dynamic and extensive feature than commonly described in models based on exhumed faults. We propose that the hydrogeologically active damage zone of the Alpine Fault and other large active faults in areas of high topographic relief can be subdivided into an inner zone in which damage is controlled principally by earthquake rupture processes and an outer zone in which damage reflects coseismic shaking, strain accumulation and release on interseismic timescales, and inherited fracturing related to exhumation.

  3. Plants in alpine environments

    Science.gov (United States)

    Germino, Matthew J.

    2014-01-01

    Alpine and subalpine plant species are of special interest in ecology and ecophysiology because they represent life at the climate limit and changes in their relative abundances can be a bellwether for climate-change impacts. Perennial life forms dominate alpine plant communities, and their form and function reflect various avoidance, tolerance, or resistance strategies to interactions of cold temperature, radiation, wind, and desiccation stresses that prevail in the short growing seasons common (but not ubiquitous) in alpine areas. Plant microclimate is typically uncoupled from the harsh climate of the alpine, often leading to substantially warmer plant temperatures than air temperatures recorded by weather stations. Low atmospheric pressure is the most pervasive, fundamental, and unifying factor for alpine environments, but the resulting decrease in partial pressure of CO2 does not significantly limit carbon gain by alpine plants. Factors such as tree islands and topographic features create strong heterogeneous mosaics of microclimate and snow cover that are reflected in plant community composition. Factors affecting tree establishment and growth and formation of treeline are key to understanding alpine ecology. Carbohydrate and other carbon storage, rapid development in a short growing season, and physiological function at low temperature are prevailing attributes of alpine plants. A major contemporary research theme asks whether chilling at alpine-treeline affects the ability of trees to assimilate the growth resources and particularly carbon needed for growth or whether the growth itself is limited by the alpine environment. Alpine areas tend to be among the best conserved, globally, yet they are increasingly showing response to a range of anthropogenic impacts, such as atmospheric deposition.

  4. Cooccurrence patterns of plants and soil bacteria in the high-alpine subnival zone track environmental harshness

    Directory of Open Access Journals (Sweden)

    Andrew J. King

    2012-10-01

    Full Text Available Plants and soil microorganisms interact to play a central role in ecosystem functioning. To determine the potential importance of biotic interactions in shaping the distributions of these organisms in a high-alpine subnival landscape, we examine cooccurrence patterns between plant species and bulk-soil bacteria abundances. In this context, a cooccurrence relationship reflects a combination of several assembly processes: that both parties can disperse to the site, that they can survive the abiotic environmental conditions, and that interactions between the biota either facilitate survival or allow for coexistence. Across the entire landscape, 31% of the bacterial sequences in this dataset were significantly correlated to the abundance distribution of one or more plant species. These sequences fell into 14 clades, 6 of which are related to bacteria that are known to form symbioses with plants in other systems. Abundant plant species were more likely to have significant as well as stronger correlations with bacteria and these patterns were more prevalent in lower altitude sites. Conversely, correlations between plant species abundances and bacterial relative abundances were less frequent in sites near the snowline. Thus, plant-bacteria associations became more common as environmental conditions became less harsh and plants became more abundant. This pattern in cooccurrence strength and frequency across the subnival landscape suggests that plant-bacteria interactions are important for the success of life, both below- and above-ground, in an extreme environment.

  5. Alpine tourism

    Directory of Open Access Journals (Sweden)

    Andrea Macchiavelli

    2009-06-01

    Full Text Available The spectacular increase in tourism in the Alps in recent decades has been founded mainly on the boom in skiing, resulting in both strong real estate development and an increasing array of infrastructures and ski runs. Today the ski market seems to have virtually reached saturation point and the winter sports sector needs to diversify its offer through innovation. After a review of the main factors of change in mountain tourism, the paper presents a grid for interpreting the life cycle of alpine destinations, identifying the phases that characterize their evolution. The conditions that may favour innovation in alpine tourism are then identified, as well as the contradictions that frequently accompany them. In most cases, innovation is the result of a process that begins within the alpine community, frequently encouraged and supported by national and international institutions and with whose help structural difficulties are successfully overcome.La forte croissance qu’ont connue les pays alpins dans les dernières décennies a surtout été fondée sur l’offre des activités du ski, avec comme conséquence, un massif développement immobilier et la multiplication d’infrastructures et de pistes. Aujourd’hui, le marché du ski semble arriver à saturation, la Convention alpine a mis un frein à la poursuite du développement des domaines skiables et on observe donc avec intérêt la diversification de l’offre soutenue par l’innovation. Après avoir rappelé les facteurs de changement en cours les plus significatifs dans le tourisme montagnard, l’article présente une grille interprétative de l’évolution des destinations touristiques alpines, identifiant les phases qui ont caractérisé son développement. Ensuite, l’article propose une réflexion sur certaines conditions qui peuvent favoriser l’innovation dans le tourisme alpin, ainsi que sur les contradictions qui accompagnent souvent ces conditions. Dans la plupart des cas

  6. Modeling rates of life form cover change in burned and unburned alpine heathland subject to experimental warming.

    Science.gov (United States)

    Camac, James S; Williams, Richard J; Wahren, Carl-Henrik; Jarrad, Frith; Hoffmann, Ary A; Vesk, Peter A

    2015-06-01

    Elevated global temperatures are expected to alter vegetation dynamics by interacting with physiological processes, biotic relationships and disturbance regimes. However, few studies have explicitly modeled the effects of these interactions on rates of vegetation change, despite such information being critical to forecasting temporal patterns in vegetation dynamics. In this study, we build and parameterize rate-change models for three dominant alpine life forms using data from a 7-year warming experiment. These models allowed us to examine how the interactions between experimental warming, the abundance of bare ground (a measure of past disturbance) and neighboring life forms (a measure of life form interaction) affect rates of cover change in alpine shrubs, graminoids and forbs. We show that experimental warming altered rates of life form cover change by reducing the negative effects of neighboring life forms and positive effects of bare ground. Furthermore, we show that our models can predict the observed direction and rate of life form cover change at burned and unburned long-term monitoring sites. Model simulations revealed that warming in unburned vegetation is expected to result in increased forb and shrub cover and decreased graminoid cover. In contrast, in burned vegetation, warming is predicted to slow post-fire regeneration in both graminoids and forbs and facilitate rapid expansion in shrub cover. These findings illustrate the applicability of modeling rates of vegetation change using experimental data. Our results also highlight the need to account for both disturbance and the abundance of other life forms when examining and forecasting vegetation dynamics under climatic change.

  7. Alpine ecosystems

    Science.gov (United States)

    P.W. Rundel; C.I. Millar

    2016-01-01

    Alpine ecosystems are typically defined as those areas occurring above treeline, while recognizing that alpine ecosystems at a local scale may be found below this boundary for reasons including geology, geomorphology, and microclimate. The lower limit of the alpine ecosystems, the climatic treeline, varies with latitude across California, ranging from about 3500 m in...

  8. Velocity Structure of the Alpine Fault Zone, New Zealand: Laboratory and Log-Based Fault Rock Acoustic Properties at Elevated Pressures

    Science.gov (United States)

    Jeppson, T.; Graham, J. L., II; Tobin, H. J.; Paris Cavailhes, J.; Celerier, B. P.; Doan, M. L.; Nitsch, O.; Massiot, C.

    2015-12-01

    The elastic properties of fault zone rocks at seismogenic depth play a key role in rupture nucleation, propagation, and damage associated with fault slip. In order to understand the seismic hazard posed by a fault we need to both measure these properties and understand how they govern that particular fault's behavior. The Alpine Fault is the principal component of the active transpressional plate boundary through the South Island of New Zealand. Rapid exhumation along the fault provides an opportunity to study near-surface rocks that have experienced similar histories to those currently deforming at mid-crustal depths. In this study, we examine the acoustic properties of the Alpine Fault in Deep Fault Drilling Project (DFDP)-1 drill core samples and borehole logs from the shallow fault zone, DFDP-2 borehole logs from the hanging wall, and outcrop samples from a number of field localities along the central Alpine Fault. P- and S-wave velocities were measured at ultrasonic frequencies on saturated 2.5 cm-diameter core plugs taken from DFDP-1 core and outcrops. Sampling focused on mylonites, cataclasites, and fault gouge from both the hanging and foot walls of the fault in order to provide a 1-D seismic velocity transect across the entire fault zone. Velocities were measured over a range of effective pressures between 1 and 68 MPa to determine the variation in acoustic properties with depth and pore pressure. When possible, samples were cut in three orthogonal directions and S-waves were measured in two polarization directions on all samples to constrain velocity anisotropy. XRD and petrographic characterization were used to examine how fault-related alteration and deformation change the composition and texture of the rock, and to elucidate how these changes affect the measured velocities. The ultrasonic velocities were compared to sonic logs from DFDP to examine the potential effects of frequency dispersion, brittle deformation, and temperature on the measured

  9. Breathing Life Into Dead-Zones

    Directory of Open Access Journals (Sweden)

    Gressel Oliver

    2013-04-01

    Full Text Available The terrestrial planet formation regions of protoplanetary disks are generally sufficiently cold to be con- sidered non-magnetized and, consequently, dynamically inactive. However, recent investigations of these so-called “Dead-Zones” indicate the possibility that disks with strong mean radial temperature gradients can support instabilities associated with disk-normal gradients of the basic Keplerian shear profile. This process, known as the Goldreich-Schubert-Fricke (GSF instability, is the instability of short radial wavelength inertial modes and depends wholly on the presence of vertical gradients of the mean Keplerian (zonal flow. We report here high resolution fully nonlinear axisymmetric numerical studies of this instability and find a number of features including how, in the nonlinear saturated state, unstable discs become globally distorted, with strong vertical oscillations occurring at all radii due to local instability. We find that nonaxisymmetric numerical experiments are accompanied by significant amounts angular momentum transport (α ~ 0001. This instability should be operating in the Dead-Zones of protoplanetary disks at radii greater than 10-15 AU in minimum mass solar nebula models.

  10. Ecological half-life of 137Cs in lichens in an alpine region

    International Nuclear Information System (INIS)

    Machart, Peter; Hofmann, Werner; Tuerk, Roman; Steger, Ferdinand

    2007-01-01

    About 17 years after the Chernobyl accident, lichen samples were collected in an alpine region in Austria (Bad Gastein), which was heavily contaminated by the Chernobyl fallout. Measured 137 Cs activity concentrations in selected lichens (Cetraria islandica, Cetraria cucullata, and Cladonia arbuscula) ranged from 100 to 1100 Bq kg -1 dry weight, depending on lichen species and sampling site. Ecological half-lives for 137 Cs in different lichen samples, obtained by comparison with earlier measurements of the same lichen species at the same site, ranged from 2 to 6 years, with average values between 3 and 4 years. Comparison with earlier studies indicated that ecological half-lives hardly changed during the last 10 years, suggesting that ecological clearance mechanisms (e.g. washout or soil transfer) did not vary substantially at the selected sampling area

  11. Ecological half-life of 137Cs in lichens in an alpine region.

    Science.gov (United States)

    Machart, Peter; Hofmann, Werner; Türk, Roman; Steger, Ferdinand

    2007-01-01

    About 17 years after the Chernobyl accident, lichen samples were collected in an alpine region in Austria (Bad Gastein), which was heavily contaminated by the Chernobyl fallout. Measured 137Cs activity concentrations in selected lichens (Cetraria islandica, Cetraria cucullata, and Cladonia arbuscula) ranged from 100 to 1100 Bq kg(-1) dry weight, depending on lichen species and sampling site. Ecological half-lives for 137Cs in different lichen samples, obtained by comparison with earlier measurements of the same lichen species at the same site, ranged from 2 to 6 years, with average values between 3 and 4 years. Comparison with earlier studies indicated that ecological half-lives hardly changed during the last 10 years, suggesting that ecological clearance mechanisms (e.g. washout or soil transfer) did not vary substantially at the selected sampling area.

  12. Key role of Upper Mantle rocks in Alpine type orogens: some speculations derived from extensional settings for subduction zone processes and mountain roots

    Science.gov (United States)

    Müntener, Othmar

    2016-04-01

    Orogenic architecture and mountain roots are intrinsically related. Understanding mountain roots largely depends on geophysical methods and exhumed high pressure and high temperature rocks that might record snapshots of the temporal evolution at elevated pressure, temperatures and/or fluid pulses. If such high pressure rocks represent ophiolitic material they are commonly interpreted as exhumed remnants of some sort of 'mid-ocean ridge' processes. Mantle peridotites and their serpentinized counterparts thus play a key role in understanding orogenic architecture as they are often considered to track suture zones or ancient plate boundaries. The recognition that some mantle peridotites and their serpentinized counterparts are derived from ocean-continent transition zones (OCT's) or non-steady state (ultra-)slow plate separation systems question a series of 'common beliefs' that have been applied to understand Alpine-type collisional orogens in the framework of the ophiolite concept. Among these are: (i) the commonly held assumption of a simple genetic link between mantle melting and mafic (MORB-type) magmatism, (ii) the commonly held assumption that mélange zones represent deep subduction zone processes at the plate interface, (iii) that pre-collisional continental crust and oceanic crust can easily be reconstructed to their original thickness and used for reconstructions of the size of small subducted oceanic basins as geophysical data from rifted margins increasingly indicate that continental crust is thinned to much less than the average 30-35 kilometers over a large area that might be called the 'zone of hyperextension', and (iv) the lack of a continuous sheet of mafic oceanic crust and the extremely short time interval of formation results in a lack of 'eclogitization potential' during convergence and hence a lack of potential for subsequent slab pull and, perhaps, a lack of potential for 'slab-breakoff'. Here we provide a synopsis of mantle rocks from the

  13. Semenic Mountains’ alpine skiing area

    Directory of Open Access Journals (Sweden)

    Petru BANIAȘ

    2017-03-01

    Full Text Available The present paper presents, after a short history of alpine skiing which describes apparition, necessity, utility and universality of skiing during time, a comparative study referring to the alpine skiing domain in the Semenic Mountains area. In the paper are also presented general notions about alpine skiing methodology together with an ample description of the plateau area form Semenic Mountains, describing localization and touristic potential. Based on the SWOT analysis made for each slope, was realized a complex analysis of the entire skiing domain, an analysis which includes technical, financial, climatic and environmental aspects, along with an analysis of the marketing policy applied for the specific zone.

  14. Air pollution in the shore zone of a Large Alpine Lake - 1 - Road dust and urban aerosols at Lake Tahoe, California-Nevada

    Science.gov (United States)

    VanCuren, R.; Pederson, J.; Lashgari, A.; Dolislager, L.; McCauley, E.

    2012-01-01

    deposition calculations, even though particle size distributions were not directly measured in the LTADS baseline monitoring program, and that program was conducted at only a limited set of sites in the Tahoe basin. Two companion articles in this journal issue describe the overall findings of the LTADS study (Dolislager et al., "Overview of the Lake Tahoe Atmospheric Deposition Study") and the results of measurements taken on the lake itself (VanCuren et al., "Air Pollution in the Shore Zone of a Large Alpine Lake - 2 - Local and Regional Pollutant Distribution over Lake Tahoe California-Nevada").

  15. Plants assemble species specific bacterial communities from common core taxa in three arcto-alpine climate zones

    NARCIS (Netherlands)

    Kumar, Manoj; Brader, Guenter; Sessitsch, Angela; Maki, Anita; van Elsas, Jan D.; Nissinen, Riitta

    2017-01-01

    Evidence for the pivotal role of plant-associated bacteria to plant health and productivity has accumulated rapidly in the last years. However, key questions related to what drives plant bacteriomes remain unanswered, among which is the impact of climate zones on plant-associated microbiota. This is

  16. Restoring life to the dead zone: Addressing gulf hypoxia, a national problem

    Science.gov (United States)

    ,

    2000-01-01

    The hypoxic zone in the Gulf of Mexico, the so-called 'dead zone' lacking enough oxygen to support most marine life, is one of the largest environmental issues of the decade. Practical solutions, based on sound science, are needed.

  17. Le tourisme alpin

    Directory of Open Access Journals (Sweden)

    Andrea Macchiavelli

    2009-06-01

    Full Text Available La forte croissance qu’ont connue les pays alpins dans les dernières décennies a surtout été fondée sur l’offre des activités du ski, avec comme conséquence, un massif développement immobilier, la multiplication d’infrastructures et l’extension des domaines. Aujourd’hui, le marché du ski semble arriver à saturation, la Convention alpine a mis un frein à la poursuite du développement des domaines skiables et on observe donc avec intérêt la diversification de l’offre soutenue par l’innovation. Après avoir rappelé les facteurs de changement en cours les plus significatifs dans le tourisme montagnard, l’article présente une grille interprétative de l’évolution des destinations touristiques alpines, identifiant les phases qui ont caractérisé son développement. Puis il propose une réflexion sur certaines conditions qui peuvent favoriser l’innovation dans le tourisme alpin, ainsi que sur les contradictions qui les accompagnent souvent. Dans la plupart des cas l’innovation est le résultat d’un processus qui a été lancé et qui s’est développé au sein de la communauté alpine, souvent favorisé et soutenu par des institutions nationales et internationales, et grâce auquel les difficultés structurelles qui ont déjà été abordées précédemment ont pu être surmontées avec succès.The spectacular increase in tourism in the Alps in recent decades has been founded mainly on the boom in skiing, resulting in both strong real estate development and an increasing array of infrastructures and ski runs. Today the ski market seems to have virtually reached saturation point and the winter sports sector needs to diversify its offer through innovation. After a review of the main factors of change in mountain tourism, the paper presents a grid for interpreting the life cycle of alpine destinations, identifying the phases that characterize their evolution. The conditions that may favour innovation in alpine

  18. Consequences for selected high-elevation butterflies and moths from the spread of Pinus mugo into the alpine zone in the High Sudetes Mountains

    Czech Academy of Sciences Publication Activity Database

    Bílá, Karolína; Šipoš, Jan; Kindlmann, Pavel; Kuras, T.

    2016-01-01

    Roč. 4, JUN (2016), č. článku e2094. ISSN 2167-8359 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk LC06073 Institutional support: RVO:67179843 Keywords : hruby jesenik mts * erebia-epiphron * species richness * lepidoptera * population * europe * assemblages * vegetation * gradients * patterns * Afforestation * Alpine tundra * Lepidoptera * Dwarf pine * Postglacial development * Central European mountains * Biodiversity loss Subject RIV: EH - Ecology, Behaviour Impact factor: 2.177, year: 2016

  19. Alpine dams

    Directory of Open Access Journals (Sweden)

    Alain Marnezy

    2009-03-01

    Full Text Available Les barrages-réservoirs de montagne ont été réalisés initialement dans les Alpes pour répondre à la demande d’énergie en période hivernale. Une certaine diversification des usages de l’eau s’est ensuite progressivement développée, en relation avec le développement touristique des collectivités locales. Aujourd’hui, la participation des ouvrages d’Électricité De France à la production de neige de culture représente une nouvelle étape. Dans les régions où les aménagements hydroélectriques sont nombreux, les besoins en eau pour la production de neige peuvent être résolus par prélèvements à partir des adductions EDF. Les gestionnaires de stations échappent ainsi aux inconvénients liés à la construction et à la gestion des « retenues collinaires ». Cette évolution, qui concerne déjà quelques régions alpines comme la haute Maurienne ou le Beaufortin, apparaît comme une forme renouvelée d’intégration territoriale de la ressource en eau.Mountain reservoirs were initially built in the Alps to meet energy needs in the winter. A certain diversification in the uses of water then gradually developed, related to tourism development in the local communities. Today, the use of facilities belonging to EDF (French Electricity Authority to provide water for winter resorts to make artificial snow represents a new phase. By taking water from EDF resources to supply snow-making equipment, resort managers are thus able to avoid the problems related to the construction and management of small headwater dams. This new orientation in the use of mountain water resources already affects a number of alpine regions such as the Upper Maurienne valley and Beaufortain massif and represents a renewed form of the territorial integration of water resources.

  20. Alpine research today

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Brun

    2009-06-01

    Full Text Available Alpine research benefits from several international coordination networks, only one of which – ISCAR (the International Scientific Committee on Research in the Alps – works solely in the Alpine arc. The creation of ISCAR is a consequence of the input and involvement of various Alpine partners around the Alpine Convention. Alpine research now aims to promote an integrated vision of Alpine territories focusing on creating and maintaining spatial and temporal networks of sustainable relationships between humans and the other components of the ecosphere. It combines resource usage with conservation of the biological and cultural diversity that makes up the Alpine identity. This article aims to show: (1 how international Alpine research coordination is organised; (2 the role played by the Alpine Convention as a framework of reference for specifically Alpine research; and (3 the role that the ISCAR international commit-tee and the Interreg “Alpine Space” programmes play in uniting research around territorial challenges relating to biodiversity conservation and territorial development.La recherche sur les Alpes bénéficie de plusieurs réseaux de coordination internationaux dont un seul, le comité international recherche alpine (ISCAR, se consacre exclusivement à l’arc alpin. La création de l’ISCAR est une retombée de la mobilisation des divers partenaires alpins autour de la mise en place de la Convention alpine. Aujourd’hui, la recherche alpine vise à promouvoir une vision intégrée des territoires centrée sur la création et le maintien d’un réseau spatial et temporel de relations durables entre les hommes et les autres composantes de l’écosphère. Elle associe étroitement la mise en valeur des ressources et la conservation des diversités biologiques et culturelles qui constituent l’identité alpine. Cet article a pour ambition de montrer : (1 comment s’organise la coordination internationale des recherches sur les

  1. Alpine tourism

    OpenAIRE

    Macchiavelli, Andrea

    2009-01-01

    The spectacular increase in tourism in the Alps in recent decades has been founded mainly on the boom in skiing, resulting in both strong real estate development and an increasing array of infrastructures and ski runs. Today the ski market seems to have virtually reached saturation point and the winter sports sector needs to diversify its offer through innovation. After a review of the main factors of change in mountain tourism, the paper presents a grid for interpreting the life cycle of alp...

  2. Alpine Skiing With total knee ArthroPlasty (ASWAP): physical self-concept, pain, and life satisfaction.

    Science.gov (United States)

    Amesberger, G; Müller, E; Würth, S

    2015-08-01

    Physical self-concept in the elderly is assumed to be structured in terms of different domains and to contribute substantially to life satisfaction. However, little is known about the role of the physical self-concept in older persons that are engaged in physical activity while suffering from typical age-related impairments or chronic diseases. The present study aimed to investigate the structure of physical self-concept in a group of older persons with total knee arthroplasty (TKA), its development throughout a 12-week skiing intervention, and its importance to life satisfaction. Factor analyses of the present data reveal that the physical self-concept consists of four dimensions addressing strength, flexibility/coordination, endurance, and sportiness. One higher order factor extracted by hierarchical factor analyses reflects a global physical self-concept. The 12-week skiing intervention had no substantial impact in terms of an improvement of self-concept. Life satisfaction is best predicted by positive changes in the subjective ratings between pre- and post-test (i.e., global physical self-concept, flexibility and coordination, and perceived sportiness) and not by objective physical performance (isokinetic strength, endurance, or coordination). Results support the assumption that physical self-concept of older people with TKA is only marginally sensitive to a 12-week skiing intervention. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Preservation of Permian allanite within an Alpine eclogite facies shear zone at Mt Mucrone, Italy: Mechanical and chemical behaviour of allanite during mylonitization

    DEFF Research Database (Denmark)

    Cenki-Tok, Benedicte; Oliot, E.; Berger, Alfons

    2011-01-01

    This study addresses the mechanical and cehmical behavior of allanite during shear zone formation under high-pressure metamorphism. Understanding physico-chemical processes related to the retention or resetting of Pb isotopes in allanite during geological processes is essential for robust petroch...

  4. Life-Cycle Cost of Bridges on Seismic Zones for Risk Management

    OpenAIRE

    David De Leon

    2009-01-01

    In this paper the acceptable failure probability and the risk of important bridges, located on seismic zones, are calculated throughout the expected cost of failure consequences. Also, the bridge expected life-cycle cost is formulated in terms of the bridge seismic hazard and the potential consequences of failure. These consequences include aspects arising from the physical loss of the bridge to the human casualties and economical cost of the loss of service, which are estimated in monetary t...

  5. Inventory of the Alpine Flora of Haramosh and Bagrote Valleys (Karakoram Range) District Gilgit, Gilgit-Baltistan, Pakistan

    International Nuclear Information System (INIS)

    Khan, S. W.; Abbas, Q.; Khatoon, S.; Raza, G.; Hussain, A.

    2016-01-01

    Inventorying of plant biodiversity of Haramosh and Bugrote valleys (District Gilgit, Gilgit-Baltistan, Pakistan) was done for fourteen years from 2001- 2014. The fourteen years inventorying revealed a rich plant biodiversity consisting of 232 species belonging to 106 genera and 34 families of flowering plants. The Alpine zone had 18 genera with 4 or more species; Pedicularis with 10 species was the largest genus of this zone, followed by Potentilla and Carex (each with 9 species) and Draba (8 species). Genera containing 9 or 10 species occurred only in Alpine zone. In the Alpine zone, 15 of the larger families were represented by 189 species, forming 81.46 percent of the Alpine flora. Although the highest number of species belonging to these larger families was present in the subalpine zone, but in terms of percentage their contribution was the highest in the Alpine flora. Percentage-wise the contribution of these families gradually increased from Desert zone to Alpine zone, because of their particular distribution patterns. Although the total number of species was the highest in the Subalpine zone, but in the species specific to any one zone, the Alpine zone had the highest number, that is, 96 of the total 232 species of Alpine zone were exclusively found in this zone only. Out of these 96 species specific to the Alpine zone, 53 belonged to such 22 genera that were exclusively found in the Alpine zone only. The Alpine zone was characterized by herbs and low shrubs, with Potentilla species as the dominants. A clear trend of migration of certain species both from lower to higher latitudes and altitudes was observed. The species richness index of Alpine zone however showed increasing trend probably due to species migrations towards the alpine zone. The major threats to the plant biodiversity were recognized as the deforestation and habitat loss due to over-exploitation of species, over-grazing by livestock, and climate changes due to global warming, which were

  6. Area burned in alpine treeline ecotones reflects region-wide trends

    Science.gov (United States)

    C. Alina Cansler; Donald McKenzie; Charles B. Halpern

    2016-01-01

    The direct effects of climate change on alpine treeline ecotones – the transition zones between subalpine forest and non-forested alpine vegetation – have been studied extensively, but climate-induced changes in disturbance regimes have received less attention. To determine if recent increases in area burned extend to these higher-elevation landscapes, we analysed...

  7. Post-magmatic structural evolution of the Troodos Ophiolite Pillow Lavas revealed by microthermometry within vein precipitates, with application to Alpine-Mediterranean supra-subduction zone settings

    Science.gov (United States)

    Kurz, W.; Quandt, D.; Micheuz, P.; Krenn, K.

    2017-12-01

    The Troodos ophiolite, Cyprus, is one of the best preserved ophiolites. Based on geochemical data a supra-subduction zone (SSZ) setting was proposed. Microtextures and fluid inclusions of veins and vesicles within the Pillow Lavas record the post-magmatic structural and geochemical evolution of this SSZ beginning at 75 Ma. Three different vein types from the Upper and Lower Pillow Lavas are distinguished and imply vein precipitation under a dominant extensional regime: (1) syntaxial calcite-, quartz- and zeolite-bearing veins are interpreted as mineralized extension fractures that were pervaded by seawater. This advective fluid flow in an open system changed later into a closed system characterized by geochemical self-organization. (2) Blocky and (3) antitaxial fibrous calcite veins are associated with brecciation due to hydrofracturing and diffusion-crystallization processes, respectively. Based on aqueous fluid inclusion chemistry with seawater salinities in all studied vein types, representative fluid inclusion isochores crossed with calculated litho- and hydrostatic pressure conditions yield mineral precipitation temperatures between 180 and 210 °C, for veins and vesicles hosted in the Upper and Lower Pillow Lavas. This points to a heat source for the circulating seawater and implies that vein and vesicle minerals precipitated shortly after pillow lava crystallization under dominant isobaric cooling conditions. Compared to previous suggestions derived from secondary mineralization a less steep geothermal gradient of 200 °C from the Sheeted Dyke Complex to the Pillow Lavas of the Troodos SSZ is proposed. Further fossil and recent SSZ like the Mirdita ophiolite, Albania, the South-Anatolian ophiolites, Turkey, and the Izu-Bonin fore arc, respectively, reveal similar volcanic sequences. Vein samples recovered during International Ocean Discovery Program expedition 351 and 352 in the Izu-Bonin back and fore arc, respectively, indicate also seawater infiltration

  8. Detecting Markers of Intelligent Life In Habitable-Zone Earth-like Planets Orbiting White Dwarfs

    OpenAIRE

    Constantin, Ana-Maria

    2015-01-01

    The possibility of not being alone in the Universe and of finding another form of civilization has always been an interesting and controversial topic. In this paper we are developing a model for the detection of intelligent life-markers on Earth-like planets transiting white dwarfs, by analyzing their atmospheres. It has already been noted that white dwarfs have long-lived habitable zones that may be hosting planets (3 Gyr), which is why we are pointing towards them as a potential source for ...

  9. How cushion communities are maintained in alpine ecosystems: A review and case study on alpine cushion plant reproduction

    Directory of Open Access Journals (Sweden)

    Jianguo Chen

    2017-08-01

    Full Text Available Cushion species occur in nearly all alpine environments worldwide. In past decades, the adaptive and ecosystem-engineering roles of such highly specialized life forms have been well studied. However, the adaptive strategies responsible for cushion species reproductive success and maintenance in severe alpine habitats remain largely unclear. In this study, we reviewed the current understanding of reproductive strategies and population persistence in alpine cushion species. We then present a preliminary case study on the sexual reproduction of Arenaria polytrichoides (Caryophyllaceae, a typical cushion species inhabiting high elevations of the Himalaya Hengduan Mountains, which is a hotspot for diversification of cushion species. Finally, we highlight the limitations of our current understanding of alpine cushion species reproduction and propose future directions for study.

  10. Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life.

    Science.gov (United States)

    Morrison, Ian S; Gowanlock, Michael G

    2015-08-01

    Previous studies of the galactic habitable zone have been concerned with identifying those regions of the Galaxy that may favor the emergence of complex life. A planet is deemed habitable if it meets a set of assumed criteria for supporting the emergence of such complex life. In this work, we extend the assessment of habitability to consider the potential for life to further evolve to the point of intelligence--termed the propensity for the emergence of intelligent life, φI. We assume φI is strongly influenced by the time durations available for evolutionary processes to proceed undisturbed by the sterilizing effects of nearby supernovae. The times between supernova events provide windows of opportunity for the evolution of intelligence. We developed a model that allows us to analyze these window times to generate a metric for φI, and we examine here the spatial and temporal variation of this metric. Even under the assumption that long time durations are required between sterilizations to allow for the emergence of intelligence, our model suggests that the inner Galaxy provides the greatest number of opportunities for intelligence to arise. This is due to the substantially higher number density of habitable planets in this region, which outweighs the effects of a higher supernova rate in the region. Our model also shows that φI is increasing with time. Intelligent life emerged at approximately the present time at Earth's galactocentric radius, but a similar level of evolutionary opportunity was available in the inner Galaxy more than 2 Gyr ago. Our findings suggest that the inner Galaxy should logically be a prime target region for searches for extraterrestrial intelligence and that any civilizations that may have emerged there are potentially much older than our own.

  11. Water in the critical zone: soil, water and life from profile to planet

    Science.gov (United States)

    Kirkby, M. J.

    2016-12-01

    Earth is unique in the combination of abundant liquid water, plate tectonics and life, providing the broad context within which the critical zone exists, as the surface skin of the land. Global differences in the availability of water provide a major control on the balance of processes operating in the soil, allowing the development of environments as diverse as those dominated by organic soils, by salty deserts or by deeply weathered lateritic profiles. Within the critical zone, despite the importance of water, the complexity of its relationships with the soil material continue to provide many fundamental barriers to our improved understanding, at the scales of pore, hillslope and landscape. Water is also a vital resource for the survival of increasing human populations. Intensive agriculture first developed in semi-arid areas where the availability of solar energy could be combined with irrigation water from more humid areas, minimising the problems of weed control with primitive tillage techniques. Today the challenge to feed the world requires improved, and perhaps novel, ways to optimise the combination of solar energy and water at a sustainable economic and environmental cost.

  12. Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand : Implications for deep rupture propagation

    NARCIS (Netherlands)

    Niemeijer, A.R.; Boulton, C.; Toy, V.G.; Townend, J.; Sutherland, R.

    2016-01-01

    The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65–75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the

  13. Spatial distribution and environmental analysis of the alpine flora in the Pyrenees

    Directory of Open Access Journals (Sweden)

    D. Gómez

    2017-09-01

    Full Text Available On the basis of the digital edition of the “Atlas of the vascular flora of the Pyrenees” (www.florapyrenaea. org, the alpine flora of this mountain range is delimited in order to know its diversity and the different patterns of its spatial distribution, along with some other environmental characteristics. The Pyrenean alpine flora is made up of 645 taxa (630 species and 15 subspecies. All the administrative regions harbour more than 60% of the alpine plants, with Catalonia and Aragon reaching the highest values (around 90%. Along the altitudinal gradient, the highest plant diversity is found between 2300 and 2600 m. a. s. l., although 25% of the total alpine flora goes beyond 3000 m. On the other hand, a remarkable number of alpine plants live in the lowlands, and thus more than 300 alpine plants can be found below 1500 m. The average altitude range of the alpine plants is 1369 m, 300 m wider than that observed for the whole Pyrenean flora. Life-forms, habitat distribution and habitat naturalness of alpine plants are significantly different from those of the whole Pyrenean flora. Distribution of abundance categories also shows values of rarity significantly lower among alpine plants than for the whole flora. More than half the Pyrenean endemic plants are present in the alpine flora. High diversity and wide ecological amplitude of the alpine flora must be taken into account either when considering vulnerability of alpine plants facing “global change” or when addressing conservation policies for the whole Pyrenees from a common perspective.

  14. Life history of abyssal and hadal fishes from otolith growth zones and oxygen isotopic compositions

    Science.gov (United States)

    Gerringer, M. E.; Andrews, A. H.; Huss, G. R.; Nagashima, K.; Popp, B. N.; Linley, T. D.; Gallo, N. D.; Clark, M. R.; Jamieson, A. J.; Drazen, J. C.

    2018-02-01

    Hadal trenches are isolated habitats that cover the greatest ocean depths (6,500-11,000 m) and are believed to host high levels of endemism across multiple taxa. A group of apparent hadal endemics is within the snailfishes (Liparidae), found in at least five geographically separated trenches. Little is known about their biology, let alone the reasons for their success at hadal depths around the world. This study investigated the life history of hadal liparids using sagittal otoliths of two species from the Kermadec (Notoliparis kermadecensis) and Mariana (Pseudoliparis swirei) trenches in comparison to successful abyssal macrourids found at the abyssal-hadal transition zone. Otoliths for each species revealed alternating opaque and translucent growth zones that could be quantified in medial sections. Assuming these annuli represent annual growth, ages were estimated for the two hadal liparid species to be from five to 16 years old. These estimates were compared to the shallower-living snailfish Careproctus melanurus, which were older than described in previous studies, expanding the potential maximum age for the liparid family to near 25 years. Age estimates for abyssal macrourids ranged from eight to 29 years for Coryphaenoides armatus and six to 16 years for C. yaquinae. In addition, 18O/16O ratios (δ18O) were measured across the otolith using secondary ion mass spectrometry (SIMS) to investigate the thermal history of the three liparids, and two macrourids. Changes in δ18O values were observed across the otoliths of C. melanurus, C. armatus, and both hadal liparids, the latter of which may represent a change of >5 °C in habitat temperature through ontogeny. The results would indicate there is a pelagic larval stage for the hadal liparids that rises to a depth above 1000 m, followed by a return to the hadal environment as these liparids grow. This result was unexpected for the hadal liparids given their isolated environment and large eggs, and the biological

  15. Brittle fracture damage around the Alpine Fault, New Zealand

    Science.gov (United States)

    Williams, J. N.; Toy, V.; Smith, S. A. F.; Boulton, C. J.; Massiot, C.; Mcnamara, D. D.

    2017-12-01

    We use field and drill-core samples to characterize macro- to micro-scale brittle fracture networks within the hanging-wall of New Zealand's Alpine Fault, an active plate-boundary fault that is approaching the end of its seismic cycle. Fracture density in the hanging-wall is roughly constant for distances of up to 500 m from the principal slip zone gouges (PSZs). Fractures >160 m from the PSZs are typically open and parallel to the regional mylonitic foliation or host rock schistosity, and likely formed as unloading joints during rapid exhumation of the hanging-wall at shallow depths. Fractures within c. 160 m of the PSZs are broadly oriented shear-fractures filled with gouge or cataclasite, and are interpreted to constitute the hanging-wall damage zone of the Alpine Fault. This is comparable to the 60-200 m wide "geophysical damage zone" estimated from low seismic wave velocities surrounding the Alpine Fault. Veins are pervasive within the c. 20 m-thick hanging-wall cataclasites and are most commonly filled by calcite, chlorite, muscovite and K-feldspar. Notably, there is a set of intragranular clast-hosted veins, as well as a younger set of veins that cross-cut both clasts and cataclasite matrix. The intragranular veins formed prior to cataclasis or during synchronous cataclasis and calcite-silicate mineralisation. Broad estimates for the depth of vein formation indicate that the cataclasites formed a c. 20 m wide actively deforming zone at depths of c. 4-8 km. Conversely, the cross-cutting veins are interpreted to represent off-fault damage within relatively indurated cataclasites following slip localization onto the <10 cm wide smectite-bearing PSZ gouges at depths of <4 km. Our observations therefore highlight a strong depth-dependence of the width of the actively deforming zone within the brittle seismogenic crust around the Alpine Fault.

  16. Seed dormancy in alpine species

    OpenAIRE

    Schwienbacher, Erich; Navarro-Cano, Jose Antonio; Neuner, Gilbert; Erschbamer, Brigitta

    2011-01-01

    In alpine species the classification of the various mechanisms underlying seed dormancy has been rather questionable and controversial. Thus, we investigated 28 alpine species to evaluate the prevailing types of dormancy. Embryo type and water impermeability of seed coats gave an indication of the potential seed dormancy class. To ascertain the actual dormancy class and level, we performed germination experiments comparing the behavior of seeds without storage, after cold-dry storage, after c...

  17. International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System Keep Out Zone On-Orbit Problems

    Science.gov (United States)

    Williams, David E.

    2004-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system performance can be impacted by operations on ISS. This is especially important for the Temperature and Humidity Control (THC) and for the Fire Detection and Suppression (FDS) subsystems. It is also more important for Node 1 since it has become a convenient area for many crew tasks and for stowing hardware prior to Shuttle arrival. This paper will discuss the current requirements for ECLS keep out zones in Node 1; the issues with stowage in Node 1 during Increment 7 and how they impacted the keep out zone requirements; and the solution during Increment 7 and 8 for maintaining the keep out zones in Node 1.

  18. Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system

    Science.gov (United States)

    Szelepcsényi, Zoltán; Breuer, Hajnalka; Kis, Anna; Pongrácz, Rita; Sümegi, Pál

    2018-01-01

    In this paper, expected changes in the spatial and altitudinal distribution patterns of Holdridge life zone (HLZ) types are analysed to assess the possible ecological impacts of future climate change for the Carpathian Region, by using 11 bias-corrected regional climate model simulations of temperature and precipitation. The distribution patterns of HLZ types are characterized by the relative extent, the mean centre and the altitudinal range. According to the applied projections, the following conclusions can be drawn: (a) the altitudinal ranges are likely to expand in the future, (b) the lower and upper altitudinal limits as well as the altitudinal midpoints may move to higher altitudes, (c) a northward shift is expected for most HLZ types and (d) the magnitudes of these shifts can even be multiples of those observed in the last century. Related to the northward shifts, the HLZ types warm temperate thorn steppe and subtropical dry forest can also appear in the southern segment of the target area. However, a large uncertainty in the estimated changes of precipitation patterns was indicated by the following: (a) the expected change in the coverage of the HLZ type cool temperate steppe is extremely uncertain because there is no consensus among the projections even in terms of the sign of the change (high inter-model variability) and (b) a significant trend in the westward/eastward shift is simulated just for some HLZ types (high temporal variability). Finally, it is important to emphasize that the uncertainty of our results is further enhanced by the fact that some important aspects (e.g. seasonality of climate variables, direct CO2 effect, etc.) cannot be considered in the estimating process.

  19. Les barrages alpins

    Directory of Open Access Journals (Sweden)

    Alain Marnezy

    2009-03-01

    Full Text Available Les barrages-réservoirs de montagne ont été réalisés initialement dans les Alpes pour répondre à la demande d’énergie en période hivernale. Une certaine diversification des usages de l’eau s’est ensuite progressivement développée, en relation avec le développement touristique des collectivités locales. Aujourd’hui, la participation des ouvrages d’Électricité De France à la production de neige de culture représente une nouvelle étape. Dans les régions où les aménagements hydroélectriques sont nombreux, les besoins en eau pour la production de neige peuvent être résolus par prélèvements à partir des adductions EDF. Les gestionnaires de stations échappent ainsi aux inconvénients liés à la construction et à la gestion des « retenues collinaires ». Cette évolution, qui concerne déjà quelques régions alpines comme la haute Maurienne ou le Beaufortin, apparaît comme une forme renouvelée d’intégration territoriale de la ressource en eau.Mountain reservoirs were initially built in the Alps to meet energy needs in the winter. A certain diversification in the uses of water then gradually developed, related to tourism development in the local communities. Today, the use of facilities belonging to EDF (French Electricity Authority to provide water for winter resorts to make artificial snow represents a new phase. By taking water from EDF resources to supply snow-making equipment, resort managers are thus able to avoid the problems related to the construction and management of small headwater dams. This new orientation in the use of mountain water resources already affects a number of alpine regions such as the Upper Maurienne valley and Beaufortain massif and represents a renewed form of the territorial integration of water resources.

  20. Physiology of Alpine skiing.

    Science.gov (United States)

    Andersen, R E; Montgomery, D L

    1988-10-01

    Physiological profiles of elite Alpine skiers reveal the importance of muscular strength, anaerobic power, anaerobic endurance, aerobic endurance, coordination, agility, balance, and flexibility. On-hill snow training and dryland training programmes should focus on the elevation of these fitness components. Physical characteristics of elite skiers reveal an average height and body mass. Today, successful skiers are taller and heavier than their predecessors. Slalom skiers tend to be leaner than skiers in other events while the downhill racers are the heaviest. Elite skiers have strong legs when peak torque is measured during isometric and isokinetic conditions involving knee extension, which may be a specific adaptation since the skier is in a crouched position for a prolonged period when racing. Leg strength correlates significantly with performance in the downhill and giant slalom events. The glycolytic contribution in the slalom and giant slalom events is about 40% of the total energy cost. Following a race, blood lactate concentration averages 9 to 13 mmol/L. A muscle lactate concentration of 24 mmol/kg wet muscle tissue has been reported. Elite skiers have higher lactate values than advanced or novice skiers. The aerobic demands of competitive Alpine skiing may approach (90 to 95%) of the athlete's maximal aerobic power. Maximal heart rate is achieved during the latter part of the race. Elite skiers have a high VO2max. This may reflect their training programme and not the actual demands of the sport. When turning, muscular activity acts to impede blood flow and oxygen delivery. As a consequence, anaerobic metabolism is increased. Glycogen studies show significant utilisation from both slow and fast twitch muscle fibres. Skilled and unskilled skiers differ with respect to glycogen utilisation. Skilled skiers have greater glycogen depletion in the slow twitch fibres compared to unskilled skiers. Muscle glycogen decreases by about 32 mmol/kg wet muscle tissue

  1. Geobiology of the Critical Zone: the Hierarchies of Process, Form and Life provide an Integrated Ontology

    Science.gov (United States)

    Cotterill, Fenton P. D.

    2016-04-01

    complementary biotic indicators of the palaeoenviroments in which they evolved. This strategy extends into the critical zone, to track evolutionary tenures and turnovers of endemics "ecological prisoners" in vadosic and phreatic landforms. Moreover, geoecodynamics of the Critical Zone can logically exploit endemic biota at the microscale in regolith, and also extremophiles to extreme depths; all such populations hold fascinating potential as biotic indicators of otherwise encrypted events in Earth history. Geoecodynamics is an exciting area emerging in geobiology. It opens up with new lines of attack on challenges at the core of geomorphology and palaeoecology. In its abilities to quantify mesoscale phenomena, geoecodynamics injects new life into evolutionary geomorphology. Moreover, the means to quantify mesoscale process and form enables quantification of thresholds and tenures of landform dynamics; we can now scrutinize obscurities, including the scale-dependency of landscape events invoked to have shaped palimpsests (Brunsden D 1996 Zeitschrift für Geomorphologie NF, 40, 273- 288). Analogously, where accumulated packages of evidence survive, we should be able to map out key signals in the tempo and mode of the genomic record through the Critical Zone, and so scrutinize otherwise encrypted events that shaped the inherent emptiness of the Rock Record (Ager D 1993. The Nature of the Stratigraphical Record; Miall AD 2015. Strata and Time: Probing the Gaps in Our Understanding. Geological Society, London, Special Publications, 404, http://dx.doi.org/10.1144/SP404.4). Compared to, and notwithstanding, the episodic turnovers of sediments (and all allied events) that shaped evolving landscapes, the history of Life has been distinctly different; descent with modification links all clades and lineages of the Tree of Life with the present - even at deep nodes - though an unbroken chain of genomic connectivity. The complexity of niche space we see in landscapes reflects the diverse

  2. 'Life?': modernism and liminality in Douglas Livingstone’s A littoral zone

    Directory of Open Access Journals (Sweden)

    E. Terblanche

    2006-07-01

    Full Text Available In an attempt to find his place within nature in South Africa and in a global modern context, Douglas Livingstone returns strongly to modernist poetry in his 1991 volume A littoral zone. In contrast to his predecessors like Wallace Stevens in “The glass of water” and T.S. Eliot in The waste land, this volume at critical moments gets stuck in a liminal stage. Images and poems, and eventually the volume as a whole, despite the highlights they present, say that it no longer seems so possible to end up also within the postliminal stage, so as to complete a rite of passage. Yet modernist poems such as Stevens’s “The glass of water” have the ability to end up in postliminal affirmation through and beyond the liminal stage of the overall process. Here light becomes a thirsty lion that comes down to drink from the glass, with a resultant transcendence of the dualistic between-ness that characterises the liminal stage in the modernist poetic mode, while this further results in the incorporation of a deeper and refreshing, dynamic unity. Even more remarkable is that this poetic rite is not of a closing nature, but open, especially in the sense that it affirms all that is possible and greater than the individual ego or subject, this, while getting stuck within a liminal stage just short of the postliminal stage can be in the nature of closure, as Livingstone shows, for example, when he says in “Low tide at Station 20” that humanity is trapped in its inability to see the original power of unity with and within nature in order to live within it; and while humanity remains an ugly outgrowth on the gigantic spine of evolution. In provisional conclusion this article finds that it will be better to view Victor Turner’s 1979 celebration of what he terms the “liminoid” in the place of a “true liminality” critically. Although it is impossible to return to a collective catharsis in watching a play, one cannot feel too comfortable about

  3. UAS applications in high alpine, snow-covered terrain

    Science.gov (United States)

    Bühler, Y.; Stoffel, A.; Ginzler, C.

    2017-12-01

    Access to snow-covered, alpine terrain is often difficult and dangerous. Hence parameters such as snow depth or snow avalanche release and deposition zones are hard to map in situ with adequate spatial and temporal resolution and with spatial continuous coverage. These parameters are currently operationally measured at automated weather stations and by observer networks. However such isolated point measurements are not able to capture the information spatial continuous and to describe the high spatial variability present in complex mountain topography. Unmanned Aerial Systems (UAS) have the potential to fill this gap by frequently covering selected high alpine areas with high spatial resolution down to ground resolutions of even few millimeters. At the WSL Institute for Snow and Avalanche Research SLF we test different photogrammetric UAS with visual and near infrared bands. During the last three years we were able to gather experience in more than 100 flight missions in extreme terrain. By processing the imagery applying state-of-the-art structure from motion (SfM) software, we were able to accurately document several avalanche events and to photogrammetrically map snow depth with accuracies from 1 to 20 cm (dependent on the flight height above ground) compare to manual snow probe measurements. This was even possible on homogenous snow surfaces with very little texture. A key issue in alpine terrain is flight planning. We need to cover regions at high elevations with large altitude differences (up to 1 km) with high wind speeds (up to 20 m/s) and cold temperatures (down to - 25°C). Only a few UAS are able to cope with these environmental conditions. We will give an overview on our applications of UAS in high alpine terrain that demonstrate the big potential of such systems to acquire frequent, accurate and high spatial resolution geodata in high alpine, snow covered terrain that could be essential to answer longstanding questions in avalanche and snow hydrology

  4. La recherche alpine aujourd’hui

    Directory of Open Access Journals (Sweden)

    Jean-Jacques Brun

    2009-06-01

    Full Text Available Alpine research benefits from several international coordination networks, only one of which – ISCAR (the International Scientific Committee on Research in the Alps – works solely in the Alpine arc. The creation of ISCAR is a consequence of the input and involvement of various Alpine partners around the Alpine Convention. Alpine research now aims to promote an integrated vision of Alpine territories focusing on creating and maintaining spatial and temporal networks of sustainable relationships between humans and the other components of the ecosphere. It combines resource usage with conservation of the biological and cultural diversity that makes up the Alpine identity. This article aims to show: (1 how international Alpine research coordination is organised; (2 the role played by the Alpine Convention as a framework of reference for specifically Alpine research; and (3 the role that the ISCAR international commit-tee and the Interreg “Alpine Space” programmes play in uniting research around territorial challenges relating to biodiversity conservation and territorial development.La recherche sur les Alpes bénéficie de plusieurs réseaux de coordination internationaux dont un seul, le comité international recherche alpine (ISCAR, se consacre exclusivement à l’arc alpin. La création de l’ISCAR est une retombée de la mobilisation des divers partenaires alpins autour de la mise en place de la Convention alpine. Aujourd’hui, la recherche alpine vise à promouvoir une vision intégrée des territoires centrée sur la création et le maintien d’un réseau spatial et temporel de relations durables entre les hommes et les autres composantes de l’écosphère. Elle associe étroitement la mise en valeur des ressources et la conservation des diversités biologiques et culturelles qui constituent l’identité alpine. Cet article a pour ambition de montrer : (1 comment s’organise la coordination internationale des recherches sur les

  5. Development of a model to compute the extension of life supporting zones for Earth-like exoplanets.

    Science.gov (United States)

    Neubauer, David; Vrtala, Aron; Leitner, Johannes J; Firneis, Maria G; Hitzenberger, Regina

    2011-12-01

    A radiative convective model to calculate the width and the location of the life supporting zone (LSZ) for different, alternative solvents (i.e. other than water) is presented. This model can be applied to the atmospheres of the terrestrial planets in the solar system as well as (hypothetical, Earth-like) terrestrial exoplanets. Cloud droplet formation and growth are investigated using a cloud parcel model. Clouds can be incorporated into the radiative transfer calculations. Test runs for Earth, Mars and Titan show a good agreement of model results with observations.

  6. Thermo chronology by the fission track method of a passive marge (Ponta Grossa dome in south-eastern Brazil) and within a collision chain (external zone of the alpine arch in France)

    International Nuclear Information System (INIS)

    Medeiros Vignol Lelarge, M.L.

    1993-01-01

    The dating method by counting fission tracks on apatite (this rock is a geo-thermometer sensitive to weak temperature changes below 150 Celsius degrees) is an efficient tool for the thermal history of rocks. We have used this method in 2 different geological contexts: the Ponta Grossa dome in south-eastern Brazil and the alpine mountain in France. This dating method is based on the fact that some rocks like mica keep fossil remains of the passage of the fission products emitted during the simultaneous fission of uranium 238 present in the rock. This method requires the irradiation in a slow neutron flux of the sample because the initial quantity of uranium is unknown. The age t of the sample is given by the formula: t=(1/l 1 )*ln[1+(r s /r i )*(l 2 /l 1 )*F*σ*I] where: l 1 is the alpha decay constant of U 238 ; l 2 is the simultaneous fission decay constant of U 238 , r s is the number of fission tracks in the sample before the irradiation; r i is the number of fission tracks induced by the irradiation; F is the thermal neutron flux; σ is the thermal fission cross-section of U 235 ; and I is the isotopic rate U 235 /U 238 . This document is divided into 4 chapters. The first chapter presents the general principle of the method, the mechanisms capable of producing fission tracks and the techniques used to make these tracks visible with an optical microscope. The second chapter deals with the conditions of the irradiation and the calibration of the method. The 2 last chapters are dedicated to the applications to the 2 geological contexts. (A.C.)

  7. FATIGUE LIFE PREDICTION BASED ON MACROSCOPIC PLASTIC ZONE ON FRACTURE SURFACE OF AISI-SAE 1018 STEEL

    Directory of Open Access Journals (Sweden)

    G.M. Domínguez Almaraz

    2010-06-01

    Full Text Available This paper deals with rotating bending fatigue tests at high speed (150 Hz carried out on AISI-SAE 1018 steel with a high content of impurities (non metallic inclusions, for which the high experimental stress inside the specimen is close to the elastic limit of the material. Simulations of rotating loading are obtained by Visual NASTRAN software in order to determine the numerical stresse and strain distributions inside a hypothetical homogeneous specimen; later, this information is used for the experimental set up. A general description of experimental test machine and experimental conditions are developed and then, the experimental results are presented and discussed according the observed failure origin related to the non metallic inclusions and the associated high stress zones. Finally, a simple model is proposed to predict the fatigue life for this non homogeneous steel under high speed rotating bending fatigue tests close to the elastic limit, based on the rate between the visual macro-plastic deformation zone at fracture surface and the total fracture surface, together with the crack initiation inclusion (or inclusions located at this zone.

  8. Effects of climate and socio-economic changes on water availability, use and management at the regional scale - a case study in the dry inner-alpine zone of Switzerland

    Science.gov (United States)

    Weingartner, Rolf; Reynard, Emmanuel; Graefe, Olivier; Liniger, Hanspeter; Rist, Stephan; Schaedler, Bruno; Schneider, Flurina

    2014-05-01

    The research program NRP 61 "Sustainable Water Management" of the Swiss National Science Foundation had set the goal to provide a basis for sustainable water management in Switzerland. As part of this research program the effects of climate and socio-economic changes on water availability, water use and water management were investigated in the Crans-Montana-Sierre region, situated in the dry inner-alpine Valais (project MontanAqua). The project followed an inter- and trans-disciplinary approach; stakeholders were involved from the very beginning. We assessed the current water situation with quantitative and qualitative methods: A dense hydro-meteorological network was built-up, tracer experiments were conducted and communal water uses as well as the current water management system were analyzed. These investigations paved the way to develop models to simulate possible changes in the near and far future. For this purpose, we applied existing regional climate change scenarios and developed socio-economic scenarios together with the stakeholders. The findings of MontanAqua can be summarized into five messages, each with a short recommendation: 1 - The socio-economic changes have a greater impact on the water situation in 2050 than climate change: A territorial development that limits water needs is recommended. This requires important changes of current water- and land-management practices. 2 - The water quantities available now and in 2050 are generally sufficient. However, shortages are possible in some areas and seasonally: We recommend establishing a regional water management which goes beyond the development of technical infrastructure such as storage facilities or connections between water supply networks. This measure should be accompanied by a clarification and negotiation of water rights at the regional level. 3 - Water issues are primarily regional management problems: We advocate for better cooperation between the eleven municipalities of the region and

  9. Performance of Alpine Touring Boots When Used in Alpine Ski Bindings.

    Science.gov (United States)

    Campbell, Jeffrey R; Scher, Irving S; Carpenter, David; Jahnke, Bruce L; Ching, Randal P

    2017-10-01

    Alpine touring (AT) equipment is designed for ascending mountains and snow skiing down backcountry terrain. Skiers have been observed using AT boots in alpine (not made for Alpine Touring) ski bindings. We tested the effect on the retention-release characteristics of AT boots used in alpine bindings. Ten AT ski boots and 5 alpine ski boots were tested in 8 models of alpine ski bindings using an ASTM F504-05 (2012) apparatus. Thirty-one percent of the AT boots released appropriately when used in alpine ski bindings. One alpine binding released appropriately for all alpine and AT boots tested; 2 alpine ski bindings did not release appropriately for any AT boots. Altering the visual indicator settings on the bindings (that control the release torque of an alpine system) had little or no effect on the release torque when using AT boots in alpine ski bindings. Many combinations released appropriately in ski shop tests, but did not release appropriately in the more complex loading cases that simulated forward and backward falls; the simple tests performed by ski shops could produce a "false-negative" test result. These results indicate that using AT boots with alpine ski bindings could increase the likelihood of lower leg injuries.

  10. Response of alpine vegetation growth dynamics to snow cover phenology on the Tibetan Plateau

    Science.gov (United States)

    Wang, X.; Wu, C.

    2017-12-01

    Alpine vegetation plays a crucial role in global energy cycles with snow cover, an essential component of alpine land cover showing high sensitivity to climate change. The Tibetan Plateau (TP) has a typical alpine vegetation ecosystem and is rich of snow resources. With global warming, the snow of the TP has undergone significant changes that will inevitably affect the growth of alpine vegetation, but observed evidence of such interaction is limited. In particular, a comprehensive understanding of the responses of alpine vegetation growth to snow cover variability is still not well characterized on TP region. To investigate this, we calculated three indicators, the start (SOS) and length (LOS) of growing season, and the maximum of normalized difference vegetation index (NDVImax) as proxies of vegetation growth dynamics from the Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2000-2015. Snow cover duration (SCD) and melt (SCM) dates were also extracted during the same time frame from the combination of MODIS and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data. We found that the snow cover phenology had a strong control on alpine vegetation growth dynamics. Furthermore, the responses of SOS, LOS and NDVImax to snow cover phenology varied among plant functional types, eco-geographical zones, and temperature and precipitation gradients. The alpine steppes showed a much stronger negative correlation between SOS and SCD, and also a more evidently positive relationship between LOS and SCD than other types, indicating a longer SCD would lead to an earlier SOS and longer LOS. Most areas showed positive correlation between SOS and SCM, while a contrary response was also found in the warm but drier areas. Both SCD and SCM showed positive correlations with NDVImax, but the relationship became weaker with the increase of precipitation. Our findings provided strong evidences between vegetation growth and snow cover phenology, and changes in

  11. Effects of skiing and slope gradient on topsoil properties in an alpine environment

    Czech Academy of Sciences Publication Activity Database

    Hédl, Radim; Houška, J.; Banaš, M.; Zeidler, M.

    2012-01-01

    Roč. 60, č. 3 (2012), s. 491-501 ISSN 1505-2249 R&D Projects: GA ČR GA206/08/0389 Institutional support: RVO:67985939 Keywords : ski ing * soil * alpine zone Subject RIV: EF - Botanics Impact factor: 0.503, year: 2012

  12. Environmental zoning for service life prediction of building components in Malaysia

    International Nuclear Information System (INIS)

    Fathoni U; Rohayu C O; Zakaria C M

    2013-01-01

    Interactions between building materials and environment are very complex. More often than not, deterioration of building component is due to environmental loads with the result of reducing its durability. The environmental loads are less overlooked or underestimated in early design phase. Objective of this study is to distinguish the difference of environmental load for different area in Malaysia. The environmental data consist of climate and pollution data which extracted from the Malaysia Meteorology Department's data bank. From this study, six different environmental zones in Malaysia are distinguished. There are different characteristic of environmental parameters found where some of them dominant to others. This information can assist the engineer to justify the use of different technology, material or construction method in construction industry.

  13. Advanced Seismic Imaging Techniques Characterize the Alpine Fault at Whataroa (New Zealand)

    Science.gov (United States)

    Lay, V.; Buske, S.; Lukács, A.; Gorman, A. R.; Bannister, S. C.

    2015-12-01

    The plate-bounding Alpine Fault in New Zealand is a large transpressive continental fault zone that is late in its earthquake cycle. The Deep Fault Drilling Project (DFDP) aims to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth. We have acquired and processed reflection seismic data to image the subsurface around the drill site. The resulting velocity models and seismic images of the upper 5 km show complex subsurface structures around the Alpine Fault zone. The most prominent feature is a strong reflector at depths of 1.2-2.2 km with a dip of ~40° to the southeast below the DFDP-2 borehole, which we assume to be the main trace of the Alpine Fault. The reflector exhibits varying lateral reflectivity along its extent. Additionally, subparallel reflectors are imaged that we interpret as secondary branches of the main fault zone. The derived P-wave velocity models reveal a 400-600 m thick sedimentary layer with velocities of ~2.3 km/s above a schist basement with velocities of 4.5-5.5 km/s. A pronounced low-velocity layer with velocities of approximately 3.5 km/s can be observed within the basement at 0.8-2 km depth. Small-scale low-velocity anomalies appear at the top of the basement and can be correlated to the fault zone. The results provide a reliable basis for a seismic site characterization at the DFDP-2 drill site that can be used for further structural and geological investigations of the architecture of the Alpine Fault in this area.

  14. Current floristic composition, life form and productivity of the grasslands in the Hunting Zone of Djona (Benin)

    DEFF Research Database (Denmark)

    Ahoudji, Myrese C.; Teka, Oscar; Axelsen, Jørgen Aagaard

    2014-01-01

    Objectives: This paper addressed temporal changes in floristic composition, plant communities’ structures and productivity of grasslands. The study was conducted in the Hunting zone of Djona in the Transboundary Biosphere Reserve of W (TBRW) Benin. Methodology and Results: For these purpose 30...... plots of 900m² were used and “phytosociological relevés” were done following ecological uniformity, floristic homogeneity and samples representativeness to established plants communities. Biomass was estimated in 30 plots of 100 m². Results showed that the greatest productivity value (8320 ± 0.21 kg DM....../ha) was observed in Andropogon gayanus-Schizachyrium sanguineum grassland. The dominant life forms in all plants communities of the study area are the phanerophytes followed by therophytes. For chorological types, all plants communities are dominated by the species of the Sudanian base element and species...

  15. Inversion Tectonics in the Alpine Foreland, Eastern Alps (Austria)

    OpenAIRE

    Martínez Granado, Pablo

    2017-01-01

    [eng] In this thesis, the 3D structure and kinematics of the locally and mildly inverted Lower Austria Mesozoic Basin beneath the Alpine-Carpathian fold-and-thrust belt is described. This study has been carried out by the integrative interpretation of 2D and 3D seismic surveys, well and geophysical logs data and gravity maps. A basin-scale, 3D structural model has been carried out, focused on the sub-thrust and foreland zones. The Late Eocene to Early Miocene Alpine–Carpathian fold-and-thrus...

  16. Ethnobotany of medicinal plants among the communities of Alpine and Sub-alpine regions of Pakistan.

    Science.gov (United States)

    Kayani, Sadaf; Ahmad, Mushtaq; Sultana, Shazia; Khan Shinwari, Zabta; Zafar, Muhammed; Yaseen, Ghulam; Hussain, Manzoor; Bibi, Tahira

    2015-04-22

    To best of our knowledge it is first quantitative ethno-botanical study from Alpine and Sub-alpine, Western Himalaya of Pakistan. The study aims to report, compare the uses and highlight the ethno-botanical significance of medicinal plants for treatment of various diseases. A total of 290 (278 males and 12 females) informants including 14 Local Traditional Healers (LTHs) were interviewed. Information was collected using semi-structured interviews, analyzed and compared by quantitative ethno-botanical indices such as Informant Consensus Factor (ICF), Relative frequency of citation (RFC), use value (UV), Fidelity Level (FL) and Jaccard index (JI). A total of 125 plant species (Gymnosperms 7 species, Monocotyledons 2 and 116 Di-cotyledons) belonging to 41 families are collected, identified and ethno-botanically assessed. The most dominant family is Ranunculaceae (20 species) followed by Rosaceae (14 species). In diseases treated, gastrointestinal tract (GIT) diseases have highest proportion (27.5%) followed by respiratory diseases (20%) in the mountain communities. The most dominant life form of plants used is herbs (78%) followed by shrubs (19%) while the most commonly used plant parts are leaves (44 reports) followed by underground part, the roots (37 reports). The highest ICF (0.68) is found for ear, nose and eye disease category followed by respiratory disorders (0.46). There are 15 medicinal plants having 100% FL. Use value (UV) and Relative frequency of citation (RFC) range from 0.03 to 0.53 and 0.04 to 0.23 respectively. In comparison, maximum similarity index is found in the studies with JI 19.52 followed by 17.39. Similarity percentage of plant uses range from 1.69% to 19.52% while dissimilarity percentage varies from 0% to 20%. The Alpine and Sub-alpine regions of Pakistan are rich in medicinal plants and still need more research exploration. On the other hand, ethno-botanical knowledge in study areas is decreasing day by day due to high emigration rates

  17. Life in the Hive: Supporting Inquiry into Complexity Within the Zone of Proximal Development

    Science.gov (United States)

    Danish, Joshua A.; Peppler, Kylie; Phelps, David; Washington, Dianna

    2011-10-01

    Research into students' understanding of complex systems typically ignores young children because of misinterpretations of young children's competencies. Furthermore, studies that do recognize young children's competencies tend to focus on what children can do in isolation. As an alternative, we propose an approach to designing for young children that is grounded in the notion of the Zone of Proximal Development (Vygotsky 1978) and leverages Activity Theory to design learning environments. In order to highlight the benefits of this approach, we describe our process for using Activity Theory to inform the design of new software and curricula in a way that is productive for young children to learn concepts that we might have previously considered to be "developmentally inappropriate". As an illuminative example, we then present a discussion of the design of the BeeSign simulation software and accompanying curriculum which specifically designed from an Activity Theory perspective to engage young children in learning about complex systems (Danish 2009a, b). Furthermore, to illustrate the benefits of this approach, we will present findings from a new study where 40 first- and second-grade students participated in the BeeSign curriculum to learn about how honeybees collect nectar from a complex systems perspective. We conclude with some practical suggestions for how such an approach to using Activity Theory for research and design might be adopted by other science educators and designers.

  18. Land and OBS recordings of tectonic tremor on New Zealand's Alpine Fault

    Science.gov (United States)

    Wech, A.; Boese, C. M.; Stern, T. A.; Townend, J.; Sheehan, A. F.; Collins, J. A.

    2012-12-01

    Tectonic tremor is characterized by persistent, low-frequency seismic energy seen at major plate boundaries. Although predominantly associated with subduction zones, tremor also occurs along the deep extension of the strike-slip San Andreas Fault. Here we present the observations of tectonic tremor along New Zealand's Alpine Fault, a major transform boundary that is late in its earthquake cycle using a combination of land and ocean-bottom seismometers (OBS). We report tectonic tremor that occurred on the central section of the Alpine Fault on 12 days between March 2009 and October 2011. Tremor hypocenters concentrate in the lower crust at the downdip projection of the Alpine Fault; coincide with a zone of high P-wave attenuation (low Qp) and bright seismic reflections; occur in the 25-45 km depth range, below the seismogenic zone; and may define the deep plate boundary structure extending through the lower crust and into the upper mantle. We infer this tremor to represent slow slip on the deep extent of the Alpine Fault in a fluid-rich region marked by high attenuation and reflectivity. These observations provide the first indication of present-day displacement on the lower crustal portion of the Australia-Pacific transform plate boundary. Furthermore, the offshore observations—ground-truthed by onshore shallow borehole seismometers—demonstrate the potential utility of OBS experiments in better characterizing plate boundary processes.

  19. Seeds of alpine plants are short lived: implications for long-term conservation.

    Science.gov (United States)

    Mondoni, Andrea; Probert, Robin J; Rossi, Graziano; Vegini, Emanuele; Hay, Fiona R

    2011-01-01

    Alpine plants are considered one of the groups of species most sensitive to the direct and indirect threats to ecosystems caused by land use and climate change. Collecting and banking seeds of plant species is recognized as an effective tool for providing propagating material to re-establish wild plant populations and for habitat repair. However, seeds from cold wet environments have been shown to be relatively short lived in storage, and therefore successful long-term seed conservation for alpine plants may be difficult. Here, the life spans of 69 seed lots representing 63 related species from alpine and lowland locations from northern Italy are compared. Seeds were placed into experimental storage at 45 °C and 60 % relative humidity (RH) and regularly sampled for germination. The time taken in storage for viability to fall to 50 % (p(50)) was determined using probit analysis and used as a measure of relative seed longevity between seed lots. Across species, p(50) at 45 °C and 60 % RH varied from 4·7 to 95·5 d. Seed lots from alpine populations/species had significantly lower p(50) values compared with those from lowland populations/species; the lowland seed lots showed a slower rate of loss of germinability, higher initial seed viability, or both. Seeds were progressively longer lived with increased temperature and decreased rainfall at the collecting site. Seeds of alpine plants are short lived in storage compared with those from lowland populations/related taxa. The lower resistance to ageing in seeds of alpine plants may arise from low selection pressure for seed resistance to ageing and/or damage incurred during seed development due to the cool wet conditions of the alpine climate. Long-term seed conservation of several alpine species using conventional seed banking methods will be problematic.

  20. Staying 'in the zone' but not passing the 'point of no return': embodiment, gender and drinking in mid-life.

    Science.gov (United States)

    Lyons, Antonia C; Emslie, Carol; Hunt, Kate

    2014-02-01

    Public health approaches have frequently conceptualised alcohol consumption as an individual behaviour resulting from rational choice. We argue that drinking alcohol needs to be understood as an embodied social practice embedded in gendered social relationships and environments. We draw on data from 14 focus groups with pre-existing groups of friends and work colleagues in which men and women in mid-life discussed their drinking behaviour. Analysis demonstrated that drinking alcohol marked a transitory time and space that altered both women's and men's subjective embodied experience of everyday gendered roles and responsibilities. The participants positioned themselves as experienced drinkers who, through accumulated knowledge of their own physical bodies, could achieve enjoyable bodily sensations by reaching a desired level of intoxication (being in the zone). These mid-life adults, particularly women, discussed knowing when they were approaching their limit and needed to stop drinking. Experiential and gendered embodied knowledge was more important in regulating consumption than health promotion advice. These findings foreground the relational and gendered nature of drinking and reinforce the need to critically interrogate the concept of alcohol consumption as a simple health behaviour. Broader theorising around notions of gendered embodiment may be helpful for more sophisticated conceptualisations of health practices. © 2014 The Authors. Sociology of Health & Illness © 2014 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd.

  1. Frictional properties of DFDP-1 Alpine Fault rocks under hydrothermal conditions and high shear strain

    Science.gov (United States)

    Niemeijer, André R.; Boulton, Carolyn; Toy, Virginia; Townend, John; Sutherland, Rupert

    2015-04-01

    The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65-75% of the total relative motion between the Australian and Pacific plates. Paleoseismic evidence of large-displacement surface-rupturing events, as well as an absence of measurable contemporary surface deformation, indicates that the fault slips mostly in quasi-periodic large-magnitude earthquakes (architecture and rupture of the Alpine Fault, New Zealand, Geology,40, 1143-1146, doi:10.1130/G33614.1. Toy, V.G., Craw, D., Cooper, A.F., and R.J. Norris (2010), Thermal regime in the central Alpine Fault zone, New Zealand: Constraints from microstructures, biotite chemistry and fluid inclusion data, Tectonophysics, doi:10.1016/j.tecto.2009.12.013

  2. Climate change and alpine stream biology

    DEFF Research Database (Denmark)

    Hotaling, Scott; Finn, Debra S.; Joseph Giersch, J.

    2017-01-01

    In alpine regions worldwide, climate change is dramatically altering ecosystems and affecting biodiversity in many ways. For streams, receding alpine glaciers and snowfields, paired with altered precipitation regimes, are driving shifts in hydrology, species distributions, basal resources......, and threatening the very existence of some habitats and biota. Alpine streams harbour substantial species and genetic diversity due to significant habitat insularity and environmental heterogeneity. Climate change is expected to affect alpine stream biodiversity across many levels of biological resolution from...... micro- to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism-focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call...

  3. Changes in the Alpine environment

    Directory of Open Access Journals (Sweden)

    Philippe Schoeneich

    2009-03-01

    Full Text Available L’évolution de l’environnement alpin au XXIe siècle sera conditionnée par le changement climatique. Celui-ci pourrait conduire à des climats inconnus à ce jour dans les Alpes, avec comme conséquence une crise environnementale majeure et durable. Face à ces défis, les financements de recherche restent insuffisants pour la recherche appliquée aux milieux de montagne. Les financements nationaux privilégient souvent la recherche polaire au détriment des hautes altitudes, alors que les financements de type Interreg prennent insuffisamment en compte les besoins de recherche fondamentale, préalable nécessaire à l’élaboration de scénarios. Une évolution se dessine depuis deux ou trois ans vers des projets en réseau à l’échelle alpine. Le présent article fait le point sur les principaux enjeux qui attendent la recherche environnementale alpine et sur la capacité des programmes de recherche à répondre aux besoins. La première partie sur les changements climatiques est fondée sur les rapports récents : rapport de synthèse IPCC 2007 (IPCC 2007, rapport IPCC sur l’Europe (Alcamo et al. 2007, rapport de synthèse du programme ClimChAlp (Prudent-Richard et al., 2008. On y trouvera des bibliographies complètes et circonstanciées. La deuxième partie se base sur une analyse des appels d’offres récents ou en cours, et des projets soumis et financés.The way the Alpine environment will evolve in the 21st century depends upon climate change. This could lead to climates never before seen in the Alps, resulting in a major and lasting environmental crisis. In the face of these challenges, funding is still insufficient for specialised research on mountain environments. State funding often prioritises polar research at the expense of high altitude areas, whereas funding schemes from bodies such as Interreg do not sufficiently address the need for fundamental research, which is nevertheless a necessary first step prior to

  4. EFFECT OF METALLICITY ON THE EVOLUTION OF THE HABITABLE ZONE FROM THE PRE-MAIN SEQUENCE TO THE ASYMPTOTIC GIANT BRANCH AND THE SEARCH FOR LIFE

    International Nuclear Information System (INIS)

    Danchi, William C.; Lopez, Bruno

    2013-01-01

    During the course of stellar evolution, the location and width of the habitable zone changes as the luminosity and radius of the star evolves. The duration of habitability for a planet located at a given distance from a star is greatly affected by the characteristics of the host star. A quantification of these effects can be used observationally in the search for life around nearby stars. The longer the duration of habitability, the more likely it is that life has evolved. The preparation of observational techniques aimed at detecting life would benefit from the scientific requirements deduced from the evolution of the habitable zone. We present a study of the evolution of the habitable zone around stars of 1.0, 1.5, and 2.0 M ☉ for metallicities ranging from Z = 0.0001 to Z = 0.070. We also consider the evolution of the habitable zone from the pre-main sequence until the asymptotic giant branch is reached. We find that metallicity strongly affects the duration of the habitable zone for a planet as well as the distance from the host star where the duration is maximized. For a 1.0 M ☉ star with near solar metallicity, Z = 0.017, the duration of the habitable zone is >10 Gyr at distances 1.2-2.0 AU from the star, whereas the duration is >20 Gyr for high-metallicity stars (Z = 0.070) at distances of 0.7-1.8 AU, and ∼4 Gyr at distances of 1.8-3.3 AU for low-metallicity stars (Z = 0.0001). Corresponding results have been obtained for stars of 1.5 and 2.0 solar masses.

  5. On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection.

    Science.gov (United States)

    Molson, J W; Frind, E O

    2012-01-01

    Protection and sustainability of water supply wells requires the assessment of vulnerability to contamination and the delineation of well capture zones. Capture zones, or more generally, time-of-travel zones corresponding to specific contaminant travel times, are most commonly delineated using advective particle tracking. More recently, the capture probability approach has been used in which a probability of capture of P=1 is assigned to the well and the growth of a probability-of-capture plume is tracked backward in time using an advective-dispersive transport model. This approach accounts for uncertainty due to local-scale heterogeneities through the use of macrodispersion. In this paper, we develop an alternative approach to capture zone delineation by applying the concept of mean life expectancy E (time remaining before being captured by the well), and we show how life expectancy E is related to capture probability P. Either approach can be used to delineate time-of-travel zones corresponding to specific travel times, as well as the ultimate capture zone. The related concept of mean groundwater age A (time since recharge) can also be applied in the context of defining the vulnerability of a pumped aquifer. In the same way as capture probability, mean life expectancy and groundwater age account for local-scale uncertainty or unresolved heterogeneities through macrodispersion, which standard particle tracking neglects. The approach is tested on 2D and 3D idealized systems, as well as on several watershed-scale well fields within the Regional Municipality of Waterloo, Ontario, Canada. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Participative Spatial Scenario Analysis for Alpine Ecosystems.

    Science.gov (United States)

    Kohler, Marina; Stotten, Rike; Steinbacher, Melanie; Leitinger, Georg; Tasser, Erich; Schirpke, Uta; Tappeiner, Ulrike; Schermer, Markus

    2017-10-01

    Land use and land cover patterns are shaped by the interplay of human and ecological processes. Thus, heterogeneous cultural landscapes have developed, delivering multiple ecosystem services. To guarantee human well-being, the development of land use types has to be evaluated. Scenario development and land use and land cover change models are well-known tools for assessing future landscape changes. However, as social and ecological systems are inextricably linked, land use-related management decisions are difficult to identify. The concept of social-ecological resilience can thereby provide a framework for understanding complex interlinkages on multiple scales and from different disciplines. In our study site (Stubai Valley, Tyrol/Austria), we applied a sequence of steps including the characterization of the social-ecological system and identification of key drivers that influence farmers' management decisions. We then developed three scenarios, i.e., "trend", "positive" and "negative" future development of farming conditions and assessed respective future land use changes. Results indicate that within the "trend" and "positive" scenarios pluri-activity (various sources of income) prevents considerable changes in land use and land cover and promotes the resilience of farming systems. Contrarily, reductions in subsidies and changes in consumer behavior are the most important key drivers in the negative scenario and lead to distinct abandonment of grassland, predominantly in the sub-alpine zone of our study site. Our conceptual approach, i.e., the combination of social and ecological methods and the integration of local stakeholders' knowledge into spatial scenario analysis, resulted in highly detailed and spatially explicit results that can provide a basis for further community development recommendations.

  7. Participative Spatial Scenario Analysis for Alpine Ecosystems

    Science.gov (United States)

    Kohler, Marina; Stotten, Rike; Steinbacher, Melanie; Leitinger, Georg; Tasser, Erich; Schirpke, Uta; Tappeiner, Ulrike; Schermer, Markus

    2017-10-01

    Land use and land cover patterns are shaped by the interplay of human and ecological processes. Thus, heterogeneous cultural landscapes have developed, delivering multiple ecosystem services. To guarantee human well-being, the development of land use types has to be evaluated. Scenario development and land use and land cover change models are well-known tools for assessing future landscape changes. However, as social and ecological systems are inextricably linked, land use-related management decisions are difficult to identify. The concept of social-ecological resilience can thereby provide a framework for understanding complex interlinkages on multiple scales and from different disciplines. In our study site (Stubai Valley, Tyrol/Austria), we applied a sequence of steps including the characterization of the social-ecological system and identification of key drivers that influence farmers' management decisions. We then developed three scenarios, i.e., "trend", "positive" and "negative" future development of farming conditions and assessed respective future land use changes. Results indicate that within the "trend" and "positive" scenarios pluri-activity (various sources of income) prevents considerable changes in land use and land cover and promotes the resilience of farming systems. Contrarily, reductions in subsidies and changes in consumer behavior are the most important key drivers in the negative scenario and lead to distinct abandonment of grassland, predominantly in the sub-alpine zone of our study site. Our conceptual approach, i.e., the combination of social and ecological methods and the integration of local stakeholders' knowledge into spatial scenario analysis, resulted in highly detailed and spatially explicit results that can provide a basis for further community development recommendations.

  8. On the importance of sublimation to an alpine snow mass balance in the Canadian Rocky Mountains

    Directory of Open Access Journals (Sweden)

    M. K. MacDonald

    2010-07-01

    Full Text Available A modelling study was undertaken to evaluate the contribution of sublimation to an alpine snow mass balance in the Canadian Rocky Mountains. Snow redistribution and sublimation by wind, snowpack sublimation and snowmelt were simulated for two winters over an alpine ridge transect located in the Canada Rocky Mountains. The resulting snowcover regimes were compared to those from manual snow surveys. Simulations were performed using physically based blowing snow (PBSM and snowpack ablation (SNOBAL models. A hydrological response unit (HRU-based spatial discretization was used rather than a more computationally expensive fully-distributed one. The HRUs were set up to follow an aerodynamic sequence, whereby eroded snow was transported from windswept, upwind HRUs to drift accumulating, downwind HRUs. That snow redistribution by wind can be adequately simulated in computationally efficient HRUs over this ridge has important implications for representing snow transport in large-scale hydrology models and land surface schemes. Alpine snow sublimation losses, in particular blowing snow sublimation losses, were significant. Snow mass losses to sublimation as a percentage of cumulative snowfall were estimated to be 20–32% with the blowing snow sublimation loss amounting to 17–19% of cumulative snowfall. This estimate is considered to be a conservative estimate of the blowing snow sublimation loss in the Canadian Rocky Mountains because the study transect is located in the low alpine zone where the topography is more moderate than the high alpine zone and windflow separation was not observed. An examination of the suitability of PBSM's sublimation estimates in this environment and of the importance of estimating blowing snow sublimation on the simulated snow accumulation regime was conducted by omitting sublimation calculations. Snow accumulation in HRUs was overestimated by 30% when neglecting blowing snow sublimation calculations.

  9. Can We Model the Scenic Beauty of an Alpine Landscape?

    Directory of Open Access Journals (Sweden)

    Erich Tasser

    2013-03-01

    Full Text Available During the last decade, agriculture has lost its importance in many European mountain regions and tourism, which benefits from attractive landscapes, has become a major source of income. Changes in landscape patterns and elements might affect scenic beauty and therefore the socio-economic welfare of a region. Our study aimed at modeling scenic beauty by quantifying the influence of landscape elements and patterns in relationship to distance. Focusing on Alpine landscapes in South and North Tyrol, we used a photographic questionnaire showing different landscape compositions. As mountain landscapes offer long vistas, we related scenic beauty to different distance zones. Our results indicate that the near zone contributes by 64% to the valuation of scenic beauty, the middle zone by 22%, and the far zone by 14%. In contrast to artificial elements, naturalness and diversity increased scenic beauty. Significant differences between different social groups (origin, age, gender, cultural background occurred only between the local population and tourists regarding great landscape changes. Changes towards more homogenous landscapes were perceived negatively, thus political decision makers should support the conservation of the cultural landscape.

  10. Alien roadside species more easily invade alpine than lowland plant communities in a subarctic mountain ecosystem.

    Directory of Open Access Journals (Sweden)

    Jonas J Lembrechts

    Full Text Available Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.

  11. Recent crustal movements and geophysical interpretation of geodynamic processes in the Alpine mountain belt

    Science.gov (United States)

    Gubler, E.; Kahle, H. G.

    It is a well-known fact that the surface phenomena of global plate tectonics are most convincingly seen and felt along the boundaries of the moving lithospheric plates. These boundaries are morphologically expressed as mild-ocean ridges or as subduction zones such as deep sea trenches or Himalayan/Alpine fold belts, the latter of which are the subject of this paper. On a global scale, there are kinematic models giving an idea of what kind of rates can be expected. This is due to the fact that magnetic sea floor spreading anomalies are missing in the Alpine environment. On the other hand, the structure and kinematics of the Apulian microplate are of major interest to Switzerland because its northern boundary seems to be formed by the Alpine chain. In Switzerland there are some 14 special study groups actively working in this field of geodynamics. This paper is restricted to the geodetic and gravity studies. With emphasis on the assumed northern boundary of the Apulian microplate, the kinematics of relative plate movements in the Alpine area were investigated. A simplified tectonic map of this region is shown.

  12. A SIMPLE EVOLUTIONAL MODEL OF THE UV HABITABLE ZONE AND THE POSSIBILITY OF PERSISTENT LIFE EXISTENCE: THE EFFECTS OF MASS AND METALLICITY

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Midori; Kamaya, Hideyuki [Department of Earth and Ocean Sciences, School of Applied Sciences, National Defense Academy of Japan Yokosuka, 239-8686 (Japan)

    2016-12-20

    In addition to the habitable zone (HZ), the UV habitable zone (UV-HZ) is important when considering the existence of persistent life in the universe. The UV-HZ is defined as the area where the UV radiation field from a host star is moderate for persistent life existence. This is because UV is necessary for the synthesis of biochemical compounds. The UV-HZ must overlap the HZ when life appears and evolves. In this paper, following our previous study of the HZ, we examine the UV-HZ in cases with a stellar mass range from 0.08 to 4.00 M {sub ☉} with various metallicities during the main sequence phase. This mass range was chosen because we are interested in an environment similar to that of Earth. The effect of metallicity is reflected in the spectrum of the host stars, and we reexamine it in the context of the UV-HZ. The present work shows the effect of metallicity when that in the UV-HZ is less than that in the HZ. Furthermore, we find that the chance of persistent life existence declines as the metallicity decreases, as long as the UV radiation is not protected and/or boosted by any mechanisms. This is because the overlapped region of a persistent HZ and UV-HZ decreases. We find that the most appropriate stellar mass for the persistence of life existence is from 1.0 to 1.5 M {sub ☉} with metallicity Z  = 0.02, and only about 1.2 M {sub ☉} with Z  = 0.002. When Z  = 0.0002, the chance of persistent life existence is very low, assuming that the ocean does not protect the life from UV radiation.

  13. Horn growth patterns in Alpine chamois.

    Science.gov (United States)

    Corlatti, Luca; Gugiatti, Alessandro; Imperio, Simona

    2015-06-01

    The analysis of horn growth may provide important information about the allocation of metabolic resources to secondary sexual traits. Depending on the selective advantages offered by horn size during intra- and inter-specific interactions, ungulates may show different investment in horn development, and growth variations within species may be influenced by several parameters, such as sex, age, or resource availability. We investigated the horn growth patterns in two hunted populations of Alpine chamois (Rupicapra r. rupicapra) in the Central Italian Alps. We tested the role of individual heterogeneity on the growth pattern and explored the variation in annulus length as a function of different factors (sex, age, hunting location, cohort). We then investigated the mechanisms underlying horn growth trajectories to test for the occurrence of compensatory or recovery growth and their potential differences between sexes and populations. Annulus length varied as a function of sex, age of individuals and, marginally, hunting location; no effect of cohort or individual heterogeneity was detected. Male and female chamois showed compensatory horn growth within the first 5½ years of life, though the partial convergence of horn trajectories in chamois suggests that this mechanisms would best be described as 'recovery growth'. Compensation rates were greater in males than in females, while only compensatory growth rates up to 2½ years of age were different in the two populations. Besides confirming the sex- and age-dependent pattern of horn development, our study suggests that the mechanism of recovery growth supports the hypothesis of horn size as a weakly selected sexual trait in male and female chamois. Furthermore, the greater compensation rates in horn growth shown by male chamois possibly suggest selective effects of hunting on age at first reproduction, while different compensation rates between populations may suggest the occurrence of some plasticity in resource

  14. Larch dwarf mistletoe not found on alpine larch

    Science.gov (United States)

    Robert L. Mathiasen; Brian W. Geils; Clinton E. Carlson; Frank G. Hawksworth

    1995-01-01

    Reports of larch dwarf mistletoe parasitizing alpine larch are based on two collections of this host/parasite combination made by J.R. Weir in Montana during the early 1900s. Examination of host material from these collections indicates that the host is western larch, not alpine larch as previously reported. Attempts to locate larch dwarf mistletoe on alpine larch were...

  15. Clay mineral formation and fabric development in the DFDP-1B borehole, central Alpine Fault, New Zealand

    International Nuclear Information System (INIS)

    Schleicher, A.M.; Sutherland, R.; Townend, J.; Toy, V.G.; Van der Pluijm, B.A.

    2015-01-01

    Clay minerals are increasingly recognised as important controls on the state and mechanical behaviour of fault systems in the upper crust. Samples retrieved by shallow drilling from two principal slip zones within the central Alpine Fault, South Island, New Zealand, offer an excellent opportunity to investigate clay formation and fluid-rock interaction in an active fault zone. Two shallow boreholes, DFDP-1A (100.6 m deep) and DFDP-1B (151.4 m) were drilled in Phase 1 of the Deep Fault Drilling Project (DFDP-1) in 2011. We provide a mineralogical and textural analysis of clays in fault gouge extracted from the Alpine Fault. Newly formed smectitic clays are observed solely in the narrow zones of fault gouge in drill core, indicating that localised mineral reactions are restricted to the fault zone. The weak preferred orientation of the clay minerals in the fault gouge indicates minimal strain-driven modification of rock fabrics. While limited in extent, our results support observations from surface outcrops and faults systems elsewhere regarding the key role of clays in fault zones and emphasise the need for future, deeper drilling into the Alpine Fault in order to understand correlative mineralogies and fabrics as a function of higher temperature and pressure conditions. (author).

  16. Snow, ice and water in alpine regions

    International Nuclear Information System (INIS)

    Baumgartner, H.

    2009-01-01

    This article takes a look at how climate change will have a deep impact on alpine regions. The findings discussed at a conference organised by the Swiss Hydrologic Commission are presented and discussed. Flooding incidents that occurred 'once in a century' are now becoming more frequent and were considered at the conference as being an indicator of climate change. Changing hydrological factors are also discussed and the influence of climate factors in alpine regions on the water quantities in the rivers are looked at. Also, the spontaneous emptying of glacial lakes as has already happened in Switzerland and the consequences to be drawn from such incidences are discussed.

  17. Testing the niche-breadth-range-size hypothesis: habitat specialization vs. performance in Australian alpine daisies.

    Science.gov (United States)

    Hirst, Megan J; Griffin, Philippa C; Sexton, Jason P; Hoffmann, Ary A

    2017-10-01

    Relatively common species within a clade are expected to perform well across a wider range of conditions than their rarer relatives, yet experimental tests of this "niche-breadth-range-size" hypothesis remain surprisingly scarce. Rarity may arise due to trade-offs between specialization and performance across a wide range of environments. Here we use common garden and reciprocal transplant experiments to test the niche-breadth-range-size hypothesis, focusing on four common and three rare endemic alpine daisies (Brachyscome spp.) from the Australian Alps. We used three experimental contexts: (1) alpine reciprocal seedling experiment, a test of seedling survival and growth in three alpine habitat types differing in environmental quality and species diversity; (2) warm environment common garden, a test of whether common daisy species have higher growth rates and phenotypic plasticity, assessed in a common garden in a warmer climate and run simultaneously with experiment 1; and (3) alpine reciprocal seed experiment, a test of seed germination capacity and viability in the same three alpine habitat types as in experiment 1. In the alpine reciprocal seedling experiment, survival of all species was highest in the open heathland habitat where overall plant diversity is high, suggesting a general, positive response to a relatively productive, low-stress environment. We found only partial support for higher survival of rare species in their habitats of origin. In the warm environment common garden, three common daisies exhibited greater growth and biomass than two rare species, but the other rare species performed as well as the common species. In the alpine reciprocal seed experiment, common daisies exhibited higher germination across most habitats, but rare species maintained a higher proportion of viable seed in all conditions, suggesting different life history strategies. These results indicate that some but not all rare, alpine endemics exhibit stress tolerance at the

  18. Bedrock Geology of the DFDP-2B Drill-Site, Central Alpine Fault, New Zealand

    Science.gov (United States)

    Toy, Virginia; Sutherland, Rupert; Townend, John

    2017-04-01

    Bedrock was encountered at drilled depths (MD) of 238.5-893.2 m (vertical depths of 238.4-818.0 m) in DFDP-2B, Whataroa River, Westland, New Zealand. Continuous sampling and onsite description of whole cuttings samples and thin sections allowed identification that the borehole terminated within amphibolite facies, Torlesse Composite Terrane-derived mylonites >200-400 m above the Alpine Fault principal slip zone (PSZ). The most diagnostic macro-and micro-structural features were the occurrence of shear bands and reduction in mean quartz grain sizes toward the Alpine Fault. Onsite optical microscopy and subsequent offsite electron microscopy both demonstrate: (i) reduction in grain size and (ii) change in composition to greater mica:quartz+feldspar, most markedly at 720 m MD (vertical depth of 695 m), inferred to result from either heterogeneous sampling due to variations in drilling parameters, or a change in rock type across a minor fault. Major oxide variations suggest the Alpine Fault alteration zone, as defined during DFDP-1, was not sampled.

  19. Functional traits and root morphology of alpine plants.

    Science.gov (United States)

    Pohl, Mandy; Stroude, Raphaël; Buttler, Alexandre; Rixen, Christian

    2011-09-01

    Vegetation has long been recognized to protect the soil from erosion. Understanding species differences in root morphology and functional traits is an important step to assess which species and species mixtures may provide erosion control. Furthermore, extending classification of plant functional types towards root traits may be a useful procedure in understanding important root functions. In this study, pioneer data on traits of alpine plant species, i.e. plant height and shoot biomass, root depth, horizontal root spreading, root length, diameter, tensile strength, plant age and root biomass, from a disturbed site in the Swiss Alps are presented. The applicability of three classifications of plant functional types (PFTs), i.e. life form, growth form and root type, was examined for above- and below-ground plant traits. Plant traits differed considerably among species even of the same life form, e.g. in the case of total root length by more than two orders of magnitude. Within the same root diameter, species differed significantly in tensile strength: some species (Geum reptans and Luzula spicata) had roots more than twice as strong as those of other species. Species of different life forms provided different root functions (e.g. root depth and horizontal root spreading) that may be important for soil physical processes. All classifications of PFTs were helpful to categorize plant traits; however, the PFTs according to root type explained total root length far better than the other PFTs. The results of the study illustrate the remarkable differences between root traits of alpine plants, some of which cannot be assessed from simple morphological inspection, e.g. tensile strength. PFT classification based on root traits seems useful to categorize plant traits, even though some patterns are better explained at the individual species level.

  20. Paleomagnetism and the alpine tectonics of Eurasia

    NARCIS (Netherlands)

    Raven, Th.

    1964-01-01

    The following paper by Gregor and Zijderveld is the first of a series planned to report results of paleomagnetic investigations in the Alpine area from Italy to the Himalayas. These investigations are carried out in close collaboration between the well-equipped paleomagnetic laboratory of

  1. Evaluating the Contributions of Atmospheric Deposition of Carbon and Other Nutrients to Nitrification in Alpine Environments

    Science.gov (United States)

    Oldani, K. M.; Mladenov, N.; Williams, M. W.

    2013-12-01

    The Colorado Front Range of the Rocky Mountains contains undeveloped, barren soils, yet in this environment there is strong evidence for a microbial role in increased nitrogen (N) export. Barren soils in alpine environments are severely carbon-limited, which is the main energy source for microbial activity and sustenance of life. It has been shown that atmospheric deposition can contain high amounts of organic carbon (C). Atmospheric pollutants, dust events, and biological aerosols, such as bacteria, may be important contributors to the atmospheric organic C load. In this stage of the research we evaluated seasonal trends in the chemical composition and optical spectroscopic (fluorescence and UV-vis absorbance) signatures of snow, wet deposition, and dry deposition in an alpine environment at Niwot Ridge in the Rocky Mountains of Colorado to obtain a better understanding of the sources and chemical character of atmospheric deposition. Our results reveal a positive trend between dissolved organic carbon concentrations and calcium, nitrate and sulfate concentrations in wet and dry deposition, which may be derived from such sources as dust and urban air pollution. We also observed the presence of seasonally-variable fluorescent components that may be attributed to fluorescent pigments in bacteria. These results are relevant because atmospheric inputs of carbon and other nutrients may influence nitrification in barren, alpine soils and, ultimately, the export of nitrate to alpine watersheds.

  2. Modulation of flagellum attachment zone protein FLAM3 and regulation of the cell shape in Trypanosoma brucei life cycle transitions

    Czech Academy of Sciences Publication Activity Database

    Sunter, J.C.; Benz, C.; Andre, L.; Whipple, S.; McKean, P.G.; Gull, K.; Ginger, M. L.; Lukeš, Julius

    2015-01-01

    Roč. 128, č. 16 (2015), s. 3117-3130 ISSN 0021-9533 R&D Projects: GA MŠk(CZ) EE2.3.30.0032; GA MŠk LH12104 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : Trypanosomes * Morphogenesis * Flagellum attachment zone Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.706, year: 2015

  3. Characterising hydrological behaviour of springs draining different alpine formations

    Science.gov (United States)

    Volze, N.; Smoorenburg, M.; Kienzler, P.; Naef, F.; Rabenstein, L.; Kinzelbach, W.

    2012-04-01

    The project SACflood (Susceptibility of alpine catchment flood runoff to changes in meteorological boundary conditions) concentrates on alpine areas and wants to identify catchments that show a damped reaction to runoff but may react unexpectedly strong to increased precipitation as observed in 2005 in the Schächen. The catchment showed a delayed and damped behaviour for smaller precipitation events but reacted with strongly increased discharge when a threshold amount of rainfall was reached, causing a flood with high damages. This is attributed to the complex interaction of storage and drainage mechanisms that are not yet well enough understood. Typical alpine geomorphic formations are identified that are likely to be associated with large storages which could considerably delay runoff reaction but still contribute to flow within a timescale relevant for flood formation. From these geomorphic formations deep drainage is measured as outflow from several springs. In addition natural tracers are measured in the springs. On a steep hill slope, associated to one of the observed springs, ground water levels are observed. Geoelectric profiles were recorded to depict the structure of the underground. Discharge measurements from the springs show remarkable differences between the sites. After long dry periods certain springs do not react to rainfall immediately but need considerable amounts of rain to increase discharge. Even steep slopes as well as large talus areas can substantially delay runoff. Observations of the groundwater levels reveal an unexpected picture of the underground. The water table is not as often assumed above the bedrock but at a depth of several meters within the highly fractured bedrock material. This can result in a much higher storage capacity of such slopes despite the steepness of the surface. On the basis of the results from field work conceptual ideas are developed. The influence of parameters such as the depth of the unsaturated zone and the

  4. Fracturing, fluid-rock interaction and mineralisation during the seismic cycle along the Alpine Fault

    Science.gov (United States)

    Williams, Jack N.; Toy, Virginia G.; Smith, Steven A. F.; Boulton, Carolyn

    2017-10-01

    The Alpine Fault has a Energy Dispersive Spectroscopy and X-ray diffraction, we document the habitat and mineralising phases of macro- and micro-fractures within the alteration zone using samples derived from outcrop and the Deep Fault Drilling Project. Veins predominantly contain calcite, chlorite, K-feldspar or muscovite. Gouge-filled fractures are also observed and reflect filling from mechanical wear and chlorite mineralisation. CL imaging suggests that each calcite vein was opened and sealed in one episode, possibly corresponding to a single seismic cycle. The thermal stability of mineralising phases and their mutually cross-cutting relationships indicates a cyclic history of fracture opening and mineralisation that extends throughout the seismogenic zone. Cataclasites contain intragranular veins that are hosted within quartzofeldspathic clasts, as well as veins that cross-cut clasts and the surrounding matrix. Intragranular calcite veins formed prior to or during cataclasis. Cross-cutting veins are interpreted to have formed by fracturing of relatively indurated cataclasites after near-surface slip localisation within the Alpine Fault's principal slip zone gouges (PSZs). These observations clearly demonstrate that shear strain is most localised in the shallowest part of the seismogenic zone.

  5. A key to the adult Costa Rican "helicopter" damselflies (Odonata: Pseudostigmatidae with notes on their phenology and life zone preferences

    Directory of Open Access Journals (Sweden)

    Ingemar Hedström

    2001-12-01

    Full Text Available We present a key to the Costa Rican species of Pseudostigmatidae, comprising three genera with the following species: Megaloprepus caerulatus, Mecistogaster linearis, M. modesta, M. ornata and Pseudostigma aberrans. Pseudostigma accedens, which may occur in the region, is also included. For each species we give a brief account of morphology, phenology and life zone preferences, including distributional maps based on more than 270 records. These are not all of the known specimens from the area, but a high enough number to give a relatively good picture of the distribution and status of the species. We found M. caerulatus to be active during the first half of the year in seasonal, tropical semidry lowland forest and tropical moist forest at mid-elevation, but like M. linearis, M. caerulatus was active all year round in non-seasonal, tropical wet lowland forest and tropical moist forest at mid-elevation. Mecistogaster modesta also flew year round in non-seasonal, tropical wet lowland forest and tropical moist evergreen forest at mid-elevation, and likewise in seasonal and non-seasonal, tropical premontane moist forest. Only a few findings, however, have been made of M. modesta in seasonal, tropical semi-dry decidu-ous forest and seasonal, tropical moist evergreen forest. Mecistogaster ornata was missing entirely from non-sea-sonal, tropical wet lowland forest and non-seasonal, tropical moist forest at mid- elevation, while this species was active year round in seasonal, tropical dry lowland forest and tropical semi-dry forest, as well as in seasonal, tropical moist evergreen forest and tropical premontane moist forest, both at mid-elevation. Pseudostigma aberrans has so far been found too few times in Costa Rica for any indication of flight time preferenceSe presenta una clave de las especies de Pseudostigmatidae de Costa Rica. Esta familia está representada en este país por tres géneros con las siguientes especies: Megaloprepus caerulatus

  6. Satisfaction with economic and social rights and quality of life in a post-disaster zone in China: evidence from earthquake-prone Sichuan.

    Science.gov (United States)

    Liang, Ying

    2015-04-01

    This study explored the influence of satisfaction with economic and social rights (ESR) on the quality of life (QOL) of people in post-disaster zones in Sichuan, China. Data from a survey conducted in 2013 in the 5 hardest hit counties in the earthquake-prone area of Sichuan were used. QOL was measured by use of the brief version of the World Health Organization Quality of Life questionnaire (WHOQOL-BREF). Structural equation models were developed to determine the specific features of the influence of satisfaction with ESR on QOL. The mean values of both the WHOQOL-BREF scale and the ESR satisfaction scale were lower than the midpoint of the scales. Satisfaction with ESR had a significant effect on psychological health, social relationships, and environment, apart from physical health. Satisfaction with the right to food had the greatest effect on QOL, followed by the rights to education, work, health, social security, and housing. Satisfaction with ESR had a significant positive influence on the QOL of people in a post-disaster zone, particularly satisfaction with the right to food. Policies on food and education guarantees and mental health intervention are highlighted.

  7. The life cycle of Prosorhynchoides carvajali (Trematoda: Bucephalidae) involving species of bivalve and fish hosts in the intertidal zone of central Chile.

    Science.gov (United States)

    Muñoz, G; Valdivia, I; López, Z

    2015-09-01

    We describe the life cycle of the bucephalid Prosorhynchoides carvajali from the intertidal rocky zone of central Chile. To elucidate the life cycle of this digenean, two mytilid bivalves, Semimytilus algosus and Perumytilus purpuratus, and ten intertidal fish species belonging to the families Blenniidae, Tripterygiidae, Labrisomidae, Kyphosidae and Gobiesocidae were analysed for natural infections. In addition, experimental infections of fish were undertaken and molecular analyses were performed of several developmental stages of the digeneans in various host species. Experimental infections of fish were made from infected mytilids to determine which fish species were suitable for the metacercarial stage of Prosorhynchoides. We also determined the abundance and prevalence of metacercariae in natural infections in fish and found that they were lower than in the experimental infections. A molecular analysis showed that sporocysts from S. algosus were identical to metacercariae from five fish species and P. carvajali adults. Sporocysts isolated from P. purpuratus were similar to metacercaria found in one fish species only (G. laevifrons) but were different from P. carvajali, with 1.9-2.0% genetic divergence. Therefore, the complete life cycle of P. carvajali consists of the mytilid species S. algosus as the first intermediate host, at least five intertidal fish species as second intermediate hosts (Scartichthys viridis, Auchenionchus microcirrhis, Hypsoblennius sordidus, Helcogrammoides chilensis and Gobiesox marmoratus), two carnivorous fish as definitive hosts (Auchenionchus microcirrhis and A. variolosus) and one occasional definitive host (Syciases sanguineus). This is the second description of a life cycle of a marine digenean from Chile.

  8. Pleistocene colonization of afro-alpine 'sky islands' by the arctic-alpine Arabis alpina.

    Science.gov (United States)

    Assefa, A; Ehrich, D; Taberlet, P; Nemomissa, S; Brochmann, C

    2007-08-01

    The afro-alpine region comprises the high mountains of Ethiopia and tropical East Africa, which represent biological 'sky islands' with high level of endemism. However, some primarily arctic-alpine plants also occur in the afro-alpine mountains. It has been suggested that these plants are Tertiary relicts, but a recent worldwide study of Arabis alpina suggests that this species colonized the region twice during the Pleistocene. Here we investigate the detailed colonization history of A. alpina in the afro-alpine region based on chloroplast DNA sequences from 11 mountain systems. The results confirm the twice-into-Africa scenario. The Asian lineage is confined to the mountains closest to the Arabian Peninsula, on opposite sides of the Rift Valley (Simen Mts and Gara Muleta in Ethiopia), suggesting long-distance dispersal of this lineage. The African lineage is divided into two phylogeographic groups with distinct geographic distribution. The observed pattern is consistent with isolation of the African lineage in at least two interglacial refugia, located on separated highlands, followed by range expansion in cooler period(s), when the afro-alpine habitat extended further down the mountains. Several long-distance dispersal events, also across the Rift Valley, are suggested by single haplotypes observed outside the area occupied by the phylogeographic groups they belonged to.

  9. Contexts for change in alpine tundra

    Science.gov (United States)

    Malanson, George P.; Rose, Jonathan P.; Schroeder, P. Jason; Fagre, Daniel B.

    2011-01-01

    Because alpine tundra is responding to climate change, a need exists to understand the meaning of observed changes. To provide context for such interpretation, the relevance of niche and neutral theories of biogeography and the continuum and classification approaches to biogeographic description are assessed. Two extensive studies of alpine tundra, from the Indian Peaks area, Colorado and Glacier National Park, Montana, are combined. The data are ordinated to describe relations. The pattern that emerges is one of a continuum of vegetation, but with the distinctions one might expect from distant sites. The relationships of the similarity of vegetation on all possible pairs of sites to the environmental differences and geographic distances are analyzed using Mantel correlations. Because distance and environmental differences in climate between the two sites are correlated, partial correlations are weak but still significant. More advanced analyses are suggested for this environment prior to interpretation of monitoring efforts such as GLORIA.

  10. Dispersal and microsite limitation of a rare alpine plant

    OpenAIRE

    Frei, Eva S.; Scheepens, J. F.; Stöcklin, Jürg

    2012-01-01

    Knowledge on the limitation of plant species’ distributions is important for preserving alpine biodiversity, particularly when the loss of alpine habitats because of global warming or land use changes is faster than colonization of new habitats. We investigated the potential of the rare alpine plant Campanula thyrsoides L. to colonize grassland sites of different suitability on a small mountain plateau in the Swiss Alps. A total of 15 experimental sites were selected according to their differ...

  11. Phosphate sorption characteristics of European alpine soils

    Czech Academy of Sciences Publication Activity Database

    Kaňa, Jiří; Kopáček, Jiří; Camarero, L.; Garcia-Pausas, J.

    2011-01-01

    Roč. 75, č. 3 (2011), s. 862-870 ISSN 0361-5995 R&D Projects: GA ČR(CZ) GA526/09/0567; GA AV ČR(CZ) KJB600960907 Grant - others:EU EMERGE(CZ) EVK1-CT-1999-00032 Institutional research plan: CEZ:AV0Z60170517 Keywords : phosphate sorption * alpine soils * acidification Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.979, year: 2011

  12. Alpine Fault, New Zealand, SRTM Shaded Relief and Colored Height

    Science.gov (United States)

    2005-01-01

    The Alpine fault runs parallel to, and just inland of, much of the west coast of New Zealand's South Island. This view was created from the near-global digital elevation model produced by the Shuttle Radar Topography Mission (SRTM) and is almost 500 kilometers (just over 300 miles) wide. Northwest is toward the top. The fault is extremely distinct in the topographic pattern, nearly slicing this scene in half lengthwise. In a regional context, the Alpine fault is part of a system of faults that connects a west dipping subduction zone to the northeast with an east dipping subduction zone to the southwest, both of which occur along the juncture of the Indo-Australian and Pacific tectonic plates. Thus, the fault itself constitutes the major surface manifestation of the plate boundary here. Offsets of streams and ridges evident in the field, and in this view of SRTM data, indicate right-lateral fault motion. But convergence also occurs across the fault, and this causes the continued uplift of the Southern Alps, New Zealand's largest mountain range, along the southeast side of the fault. Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast (image top to bottom) direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data

  13. Tomography images of the Alpine roots and surrounding upper mantle

    Science.gov (United States)

    Plomerova, Jaroslava; Babuska, Vladislav

    2017-04-01

    Teleseismic body-wave tomography represents powerful tool to study regional velocity structure of the upper mantle and to image velocity anomalies, such as subducted lithosphere plates in collisional zones. In this contribution, we recapitulate 3D models of the upper mantle beneath the Alps, which developed at a collision zone of the Eurasian and African plates. Seismic tomography studies indicate a leading role of the rigid mantle lithosphere that functioned as a major stress guide during the plate collisions. Interactions of the European lithosphere with several micro-plates in the south resulted in an arcuate shape of this mountain range on the surface and in a complicated geometry of the Alpine subductions in the mantle. Early models with one bended lithosphere root have been replaced with more advanced models showing two separate lithosphere roots beneath the Western and Eastern Alps (Babuska et al., Tectonophysics 1990; Lippitsch et al., JGR 2003). The standard isotropic velocity tomography, based on pre-AlpArray data (the currently performed passive seismic experiment in the Alps and surroundings) images the south-eastward dipping curved slab of the Eurasian lithosphere in the Western Alps. On the contrary, beneath the Eastern Alps the results indicate a very steep northward dipping root that resulted from the collision of the European plate with the Adriatic microplate. Dando et al. (2011) interpret high-velocity heterogeneities at the bottom of their regional tomographic model as a graveyard of old subducted lithospheres. High density of stations, large amount of rays and dense ray-coverage of the volume studied are not the only essential pre-requisites for reliable tomography results. A compromise between the amount of pre-processed data and the high-quality of the tomography input (travel-time residuals) is of the high importance as well. For the first time, the existence of two separate roots beneath the Alps has been revealed from carefully pre

  14. Alpine Soils as long-term Bioindicators

    Science.gov (United States)

    Nestroy, O.

    2009-04-01

    Alpine soils as long-term bioindicators The introductory words concern the definitions and peculiarities of alpine soils and their position in the Austrian Soil Classification 2000 in comparison with the World Reference Base for Soil Resources 2006. The important parameters for genesis and threats for these soils in steep and high positions are discussed. It must be emphasized that the main threats are the very different kinds of erosion e.g. by water, wind and snow, and also by skiing (end of season) as well as and mountain-biking (mainly summer-sport). Due the very slow regeneration and - in this connection - due to the very slow changes of the soil entities, these soils give an utmost importance as a long-time bioindicator. With regard to the climate change one can assume an increase in the content of organic matter on site, but also an increase of erosion and mass movement on the other site, e. g. in kind of "plaiken" (soil slide) as result of an increasing intensity of rainfall. It lies partly in our hands to diminish the number and the intensity of the threats, we can influence the soil development, but the result to reach a new ecological equilibrium is very long - in case of alpine soil more than two generations.

  15. Glucose homeostasis and cardiovascular disease biomarkers in older alpine skiers

    DEFF Research Database (Denmark)

    Dela, F; Niederseer, David; Patsch, Wolfgang

    2011-01-01

    Alpine skiing and ski training involves elements of static and dynamic training, and may therefore improve insulin sensitivity. Healthy men and women who where beginners/intermediate level of alpine skiing, were studied before (Pre) and immediately after (Post) 12 weeks of alpine ski training...... a continued decrease was seen in IG (Ret vs Post, Ptraining in IG, while no effect was seen in CG. HOMA2 index for insulin resistance decreased (P..., and did not change. Alpine ski training improves glucose homeostasis and insulin sensitivity in healthy, elderly individuals....

  16. The Use of a Geographic Information System and Remote Sensing Technology for Monitoring Land Use and Soil Carbon Change in the Subtropical Dry Forest Life Zone of Puerto Rico

    Science.gov (United States)

    Velez-Rodriguez, Linda L. (Principal Investigator)

    1996-01-01

    Aerial photography, one of the first form of remote sensing technology, has long been an invaluable means to monitor activities and conditions at the Earth's surface. Geographic Information Systems or GIS is the use of computers in showing and manipulating spatial data. This report will present the use of geographic information systems and remote sensing technology for monitoring land use and soil carbon change in the subtropical dry forest life zone of Puerto Rico. This research included the south of Puerto Rico that belongs to the subtropical dry forest life zone. The Guanica Commonwealth Forest Biosphere Reserve and the Jobos Bay National Estuarine Research Reserve are studied in detail, because of their location in the subtropical dry forest life zone. Aerial photography, digital multispectral imagery, soil samples, soil survey maps, field inspections, and differential global positioning system (DGPS) observations were used.

  17. [Ecological distribution of arbuscular mycorrhizal fungi in alpine grasslands of Tibet Plateau].

    Science.gov (United States)

    Cai, Xiao-bu; Peng, Yue-lin; Gai, Jing-ping

    2010-10-01

    Seventy soil samples with the roots of 37 dominant or common plant species on the grasslands in south and north Tibet Plateau were collected to study the ecological distribution of arbuscular mycorrhizal (AM) fungi in the investigation area. A total of 35 AM fungi species belonging to 5 genera were isolated, among which, 18 species belonged to Glomus, 9 species belonged to Acaulospora, 6 species belonged to Scutellospora, 1 species belonged to Entrophospora, and 1 species belonged to Paraglomus. There were 23 AM fungi species belonging to 4 genera isolated from south Tibet, and 22 species belonging to 4 genera from north Tibet. The Shannon diversity index of AM fungi in south and north Tibet Plateau was 2.31 and 2.75, respectively, and the spore density and species richness were significantly higher in north Tibet than in south Tibet. In different ecological zones, lesser AM fungi common species were found, species distribution was more site-specific, and different dominant species were observed. In alpine grassland, mountain meadow, and alpine meadow, the Shannon index of AM fungi was 1.91, 1.83, and 1.80, respectively; while in severely degraded temperate grassland, this index was only 1.64. The highest species richness of AM fungi occurred at the altitude of 4000-4600 m, but the highest Shannon index and species evenness occurred at the altitude of 4600-5220 m, with the values being 2.42 and 0.79, respectively. At all altitudes, Glomus was the dominant genus, and its relative abundance was higher when the altitude was below 4000 m. Acaulospora was mainly observed at the altitudes higher than 4000 m, Scutellospora was mainly distributed at the altitude 3500-5220 m, Paraglomus mainly occurred in the north alpine meadow with an altitude of 4000-5220 m and occasionally in the alpine steppe, whereas Entrophospora was only found in the south temperate grassland with an altitude of 3500-3700 m.

  18. Within-season variability of fighting behaviour in an Australian alpine grasshopper.

    Science.gov (United States)

    Muschett, Giselle; Umbers, Kate D L; Herberstein, Marie E

    2017-01-01

    Throughout the breeding season, changing environmental and biological conditions can lead to variation in the reproductive landscape of many species. In alpine environments temperature is a key driver of behaviour for small ectotherms such as insects, but variable biotic factors such as mate quality and availability can also influence behaviour. Kosicuscola tristis is a small semelparous grasshopper of the Australian alpine region. In a rare behaviour among grasshoppers, K. tristis males engage in vigorous fights over access to females, involving mandible displays, kicking, biting and grappling. In this study we describe the variation in fighting behaviour of K. tristis throughout the breeding season and test several hypotheses related to temperature, body size, mating behaviour, and female quality. We show that K. tristis males are more aggressive toward each other at the end of the breeding season than at the beginning. This increased aggression is associated with decreased daily average temperatures (from ~20°C to ~9°C), decreased mating activity, increased female fecundity, and an unexpected trend toward an increase in female-to-male aggression. These results suggest that K. tristis is likely under increased selective pressure to time key life cycle events with favourable biological and climatic conditions. The stochastic nature of alpine environments combined with a relatively short life span and breeding season, as well as limited mating opportunities toward the end of the season may have contributed to the evolution of this extraordinary mating system.

  19. Within-season variability of fighting behaviour in an Australian alpine grasshopper.

    Directory of Open Access Journals (Sweden)

    Giselle Muschett

    Full Text Available Throughout the breeding season, changing environmental and biological conditions can lead to variation in the reproductive landscape of many species. In alpine environments temperature is a key driver of behaviour for small ectotherms such as insects, but variable biotic factors such as mate quality and availability can also influence behaviour. Kosicuscola tristis is a small semelparous grasshopper of the Australian alpine region. In a rare behaviour among grasshoppers, K. tristis males engage in vigorous fights over access to females, involving mandible displays, kicking, biting and grappling. In this study we describe the variation in fighting behaviour of K. tristis throughout the breeding season and test several hypotheses related to temperature, body size, mating behaviour, and female quality. We show that K. tristis males are more aggressive toward each other at the end of the breeding season than at the beginning. This increased aggression is associated with decreased daily average temperatures (from ~20°C to ~9°C, decreased mating activity, increased female fecundity, and an unexpected trend toward an increase in female-to-male aggression. These results suggest that K. tristis is likely under increased selective pressure to time key life cycle events with favourable biological and climatic conditions. The stochastic nature of alpine environments combined with a relatively short life span and breeding season, as well as limited mating opportunities toward the end of the season may have contributed to the evolution of this extraordinary mating system.

  20. Favourable changes of the risk-benefit ratio in alpine skiing.

    Science.gov (United States)

    Burtscher, Martin; Ruedl, Gerhard

    2015-05-29

    During the past five decades recreational alpine skiing has become increasingly safer. The numerous annual media reports on ski injuries have to be interpreted on the basis of the tremendous numbers of skiers. These favourable changes seem primarily be due to the introduction of short carving skis, more rigid and comfortable ski boots, the use of protective gear like helmets, and the optimized preparation of ski slopes. The associated health benefits from skiing, especially arising from its association with a healthier life style, and possibly also from effects related to hypoxia preconditioning and increasing subjective vitality by natural elements clearly outweigh the health hazards. Technical improvements will likely help further reducing the injury risk. At least hypothetically, each individual skier could help to prevent injuries by the development of an appropriate physical fitness and responsible behaviour on ski slopes thereby optimizing the risk-benefit ratio of alpine skiing.

  1. Favourable Changes of the Risk-Benefit Ratio in Alpine Skiing

    Directory of Open Access Journals (Sweden)

    Martin Burtscher

    2015-05-01

    Full Text Available During the past five decades recreational alpine skiing has become increasingly safer. The numerous annual media reports on ski injuries have to be interpreted on the basis of the tremendous numbers of skiers. These favourable changes seem primarily be due to the introduction of short carving skis, more rigid and comfortable ski boots, the use of protective gear like helmets, and the optimized preparation of ski slopes. The associated health benefits from skiing, especially arising from its association with a healthier life style, and possibly also from effects related to hypoxia preconditioning and increasing subjective vitality by natural elements clearly outweigh the health hazards. Technical improvements will likely help further reducing the injury risk. At least hypothetically, each individual skier could help to prevent injuries by the development of an appropriate physical fitness and responsible behaviour on ski slopes thereby optimizing the risk-benefit ratio of alpine skiing.

  2. Mechanical ventilators in the hot zone: effects of a CBRN filter on patient protection and battery life.

    Science.gov (United States)

    Blakeman, Thomas C; Toth, Peter; Rodriquez, Dario; Branson, Richard D

    2010-09-01

    In a contaminated environment, respiratory protection for ventilator dependent patients can be achieved by attaching a chemical, biological, radiological, or nuclear (CBRN) filter to the air intake port of a portable ventilator. We evaluated the effect of the filter on battery performance of four portable ventilators in a laboratory setting. Each ventilator was attached to a test lung. Ventilator settings were: assist control (AC) mode, respiratory rate 35 bpm, tidal volume 450 ml, positive end-expiratory pressure (PEEP) 10 cm H(2)O, inspiratory time 0.8 s, and FIO(2) 0.21. Ventilators were operated until the battery was fully discharged. We also evaluated the ventilators' ability to deliver all the gas through the CBRN filter and analyzed the pressures required to breathe through the anti-asphyxiation valve of a failed device. The range of battery life varied widely across different ventilator models (99.8-562.6 min). There was no significant difference in battery life (pventilator dependent patients when environmental contamination is present, although conditions exist where all gas does not pass through the filter with some ventilators under normal operating conditions. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau.

    Science.gov (United States)

    Liu, Shuli; Zhang, Fawei; Du, Yangong; Guo, Xiaowei; Lin, Li; Li, Yikang; Li, Qian; Cao, Guangmin

    2016-01-01

    The alpine grassland ecosystem can sequester a large quantity of carbon, yet its significance remains controversial owing to large uncertainties in the relative contributions of climate factors and grazing intensity. In this study we surveyed 115 sites to measure ecosystem carbon storage (both biomass and soil) in alpine grassland over the Qinghai Plateau during the peak growing season in 2011 and 2012. Our results revealed three key findings. (1) Total biomass carbon density ranged from 0.04 for alpine steppe to 2.80 kg C m-2 for alpine meadow. Median soil organic carbon (SOC) density was estimated to be 16.43 kg C m-2 in alpine grassland. Total ecosystem carbon density varied across sites and grassland types, from 1.95 to 28.56 kg C m-2. (2) Based on the median estimate, the total carbon storage of alpine grassland on the Qinghai Plateau was 5.14 Pg, of which 94% (4.85 Pg) was soil organic carbon. (3) Overall, we found that ecosystem carbon density was affected by both climate and grazing, but to different extents. Temperature and precipitation interaction significantly affected AGB carbon density in winter pasture, BGB carbon density in alpine meadow, and SOC density in alpine steppe. On the other hand, grazing intensity affected AGB carbon density in summer pasture, SOC density in alpine meadow and ecosystem carbon density in alpine grassland. Our results indicate that grazing intensity was the primary contributing factor controlling carbon storage at the sites tested and should be the primary consideration when accurately estimating the carbon storage in alpine grassland.

  4. Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau.

    Directory of Open Access Journals (Sweden)

    Shuli Liu

    Full Text Available The alpine grassland ecosystem can sequester a large quantity of carbon, yet its significance remains controversial owing to large uncertainties in the relative contributions of climate factors and grazing intensity. In this study we surveyed 115 sites to measure ecosystem carbon storage (both biomass and soil in alpine grassland over the Qinghai Plateau during the peak growing season in 2011 and 2012. Our results revealed three key findings. (1 Total biomass carbon density ranged from 0.04 for alpine steppe to 2.80 kg C m-2 for alpine meadow. Median soil organic carbon (SOC density was estimated to be 16.43 kg C m-2 in alpine grassland. Total ecosystem carbon density varied across sites and grassland types, from 1.95 to 28.56 kg C m-2. (2 Based on the median estimate, the total carbon storage of alpine grassland on the Qinghai Plateau was 5.14 Pg, of which 94% (4.85 Pg was soil organic carbon. (3 Overall, we found that ecosystem carbon density was affected by both climate and grazing, but to different extents. Temperature and precipitation interaction significantly affected AGB carbon density in winter pasture, BGB carbon density in alpine meadow, and SOC density in alpine steppe. On the other hand, grazing intensity affected AGB carbon density in summer pasture, SOC density in alpine meadow and ecosystem carbon density in alpine grassland. Our results indicate that grazing intensity was the primary contributing factor controlling carbon storage at the sites tested and should be the primary consideration when accurately estimating the carbon storage in alpine grassland.

  5. Characterization of an alpine tree line using airborne LiDAR data and physiological modeling.

    Science.gov (United States)

    Coops, Nicholas C; Morsdorf, Felix; Schaepman, Michael E; Zimmermann, Niklaus E

    2013-12-01

    Understanding what environmental drivers control the position of the alpine tree line is important for refining our understanding of plant stress and tree development, as well as for climate change studies. However, monitoring the location of the tree line position and potential movement is difficult due to cost and technical challenges, as well as a lack of a clear boundary. Advanced remote sensing technologies such as Light Detection and Ranging (LiDAR) offer significant potential to map short individual tree crowns within the transition zone despite the lack of predictive capacity. Process-based forest growth models offer a complementary approach by quantifying the environmental stresses trees experience at the tree line, allowing transition zones to be defined and ultimately mapped. In this study, we investigate the role remote sensing and physiological, ecosystem-based modeling can play in the delineation of the alpine tree line. To do so, we utilize airborne LiDAR data to map tree height and stand density across a series of altitudinal gradients from below to above the tree line within the Swiss National Park (SNP), Switzerland. We then utilize a simple process-based model to assess the importance of seasonal variations on four climatically related variables that impose non-linear constraints on photosynthesis. Our results indicate that all methods predict the tree line to within a 50 m altitudinal zone and indicate that aspect is not a driver of significant variations in tree line position in the region. Tree cover, rather than tree height is the main discriminator of the tree line at higher elevations. Temperatures in fall and spring are responsible for the major differences along altitudinal zones, however, changes in evaporative demand also control plant growth at lower altitudes. Our results indicate that the two methods provide complementary information on tree line location and, when combined, provide additional insights into potentially endangered

  6. A benthic quality index for European alpine lakes

    Directory of Open Access Journals (Sweden)

    Bruno Rossaro

    2012-10-01

    Full Text Available The development of benthic quality indices for European lakes is hindered by the lack of information concerning many national lake types and pressures. Most information is from north European lakes stressed by acidification and from deep lakes subjected to eutrophication; for other lake types (the ones included in the Mediterranean areas for example and for other pressures (hydro-morphological alteration, toxic stress there is practically no information about the response of benthic macro-invertebrates; this hinders the possibility of an intercalibration of the indices among the member states (MS in the EU. In the present communication three benthic quality indices are proposed considering the littoral, sublittoral and profundal zone in 5 reference and 7 non reference lakes from the Alpine region in response to eutrophication. The sensitivity values of the 177 species found in these lakes were calculated taking a weighted average of the values of environmental variables from lakes in which the species were present. The indicator taxa which prevailed in these lakes were Chironomids and Oligochaetes. A coinertia analysis emphasized the importance of trophic variables (transparency, nitrates, total phosphorous in explaining the species distribution, but geographic (altitude and morphometric (depth, volume variables were also important. The indices enabeled a separation of reference from non-reference lakes and to assign the non-reference lakes to different quality classes in agreement with the Water Framework Directive.doi: 10.5324/fn.v31i0.1364.Published online: 17 October 2012. 

  7. The biodiversity and stability of alpine meadow plant communities in ...

    African Journals Online (AJOL)

    The biodiversity and stability of alpine meadow plant communities in relation to altitude gradient in three headwater resource regions. ... with the help of the degree of stability. Key words: Alpine meadow, Yangtze, Yellow and Yalu Tsangpo river source region, altitude gradient, species diversity, membership functions.

  8. Anterior cruciate ligament injury/reinjury in alpine ski racing

    DEFF Research Database (Denmark)

    Jordan, Matthew J; Aagaard, Per; Herzog, Walter

    2017-01-01

    The purpose of the present review was to: 1) provide an overview of the current understanding on the epidemiology, etiology, risk factors, and prevention methods for anterior cruciate ligament (ACL) injury in alpine ski racing; and 2) provide an overview of what is known pertaining to ACL reinjury...... and return to sport after ACL injury in alpine ski racing. Given that most of the scientific studies on ACL injuries in alpine ski racing have been descriptive, and that very few studies contributed higher level scientific evidence, a nonsystematic narrative review was employed. Three scholarly databases...... were searched for articles on ACL injury or knee injury in alpine ski racing. Studies were classified according to their relevance in relation to epidemiology, etiology, risk factors, and return to sport/reinjury prevention. Alpine ski racers (skiers) were found to be at high risk for knee injuries...

  9. Inferring hydraulic properties of alpine aquifers from the propagation of diurnal snowmelt signals

    Science.gov (United States)

    Kurylyk, Barret L.; Hayashi, Masaki

    2017-05-01

    Alpine watersheds source major rivers throughout the world and supply essential water for irrigation, human consumption, and hydroelectricity. Coarse depositional units in alpine watersheds can store and transmit significant volumes of groundwater and thus augment stream discharge during the dry season. These environments are typically data scarce, which has limited the application of physically based models to investigate hydrologic sensitivity to environmental change. This study focuses on a coarse alpine talus unit within the Lake O'Hara watershed in the Canadian Rockies. We investigate processes controlling the hydrologic functioning of the talus unit using field observations and a numerical groundwater flow model driven with a distributed snowmelt model. The model hydraulic parameters are adjusted to investigate how these properties influence the propagation of snowmelt-induced diurnal signals. The model results expectedly demonstrate that diurnal signals at the talus outlet are progressively damped and lagged with lower hydraulic conductivity and higher specific yield. The simulations further indicate that the lag can be primarily controlled by a higher hydraulic conductivity upper layer, whereas the damping can be strongly influenced by a lower hydraulic conductivity layer along the base of the talus. The simulations specifically suggest that the talus slope can be represented as a two layer system with a high conductivity zone (0.02 m s-1) overlying a 10 cm thick lower conductivity zone (0.002 m s-1). This study demonstrates that diurnal signals can be used to elucidate the hydrologic functioning and hydraulic properties of shallow aquifers and thus aid in the parameterization of hydrological models.

  10. Late Alpine evolution of the central Menderes Massif, western Turkey

    Science.gov (United States)

    Bozkurt, Erdin

    2001-03-01

    The central Menderes Massif (western Turkey) is characterized by an overall dome-shaped Alpine foliation pattern and a N-NNE-trending stretching lineation. A section through the southern flank of the central submassif along the northern margin of Büyük Menderes graben has been studied. There, asymmetric non-coaxial fabrics indicate that the submassif has experienced two distinct phases of Alpine deformation: a top-to-the N-NNE contractional phase and a top-to-the S-SSW extensional event. The former fabrics are coeval with a regional prograde Barrovian-type metamorphism at greenschist to upper-amphibolite facies conditions. This event, known as the main Menderes metamorphism, is thought to be the result of internal imbrication of the Menderes Massif rocks along south-verging thrust sheets during the collision of the Sakarya continent in the north and the Anatolide-Tauride platform in the south across the İzmir-Ankara suture during the (?)Palaeocene-Eocene. Top-to-the S-SSW fabrics, represented by a well-developed ductile shear band foliation associated with inclined and/or curved foliation, asymmetric boudins, and cataclasites, were clearly superimposed on earlier contractional fabrics. These fabrics are interpreted to be related to a low-grade (greenschist?) retrogressive metamorphism and a continuum of deformation from ductile to brittle in the footwall rocks of a south-dipping, presently low-angle normal fault that accompanied Early Miocene orogenic collapse and continental extension in western Turkey. A similar tectono-metamorphic history has been documented for the northern flank of the dome along the southern margin of the Gediz graben with top-to-the N-NNE extensional fabrics. The exhumation of the central Menderes Massif can therefore be attributed to a model of symmetric gravity collapse of the previously thickened crust in the submassif area. The central submassif is thus interpreted as a piece of ductile lower-middle crust that was exhumed along two

  11. Lateral groundwater inflows into alluvial aquifers of main alpine valleys

    Science.gov (United States)

    Burger, Ulrich

    2015-04-01

    In alpine regions the topography is mainly characterised by deep incised valleys, mountain slopes and ridges. Usually the main valleys contain aquifers in alluvial soft rock. Lateral these aquifers are confined by mountainous hard rock slopes covered by heterogeneous sediments with different thickness. The slopes can be incised by lateral valleys. Numerical models for the main alluvial aquifers ask for lateral hydrogeological boundaries. Usually no flow boundaries or Constant head Boundaries are used, even if the lateral inflows to the main aquifers are rarely known. In this example a data set for a detailed investigated and monitored area is studied to give an answer on the location and the quantification of these lateral subsurface inflows. The study area is a typical main alpine valley with a thick alluvial aquifer (appr. 120m thick), lateral confined by granite, covered at the base of the steep slopes by quaternary sediments (Burger at al. 2012). The study consists of several steps 1.) Analytical calculation of the inflows on the base of investigated and monitored 2d profiles along fault zones (Perello et al 2013) which pinch out in the main valley 2.) Analytical models along typical W-dipping slopes with monitored slope springs 3.) Evaluating temperature and electrical conductivity profiles measured in approx. 30 groundwater wells in the alluvial aquifers and along the slopes to locate main lateral subsurface inflows 4.) Output of a regional model used for the hydrogeological back analyses of the excavation of a tunnel (Baietto et al. 2014) 5.) Output of a local numerical model calibrated with a monitoring dataset and results of a pumping test of big scale (450l/s for 10days) Results of these analyses are shown to locate and quantify the lateral groundwater inflows in the main alluvial aquifer. References Baietto A., Burger U., Perello P. (2014): Hydrogeological modelling applications in tunnel excavations: examples from tunnel excavations in granitic rocks

  12. Laboratory Permeability and Seismic velocity anisotropy measurements across the Alpine Fault, New Zealand

    Science.gov (United States)

    Faulkner, D.; Allen, M. J.; Tatham, D.; Mariani, E.; Boulton, C. J.

    2015-12-01

    The Alpine Fault, a transpressional plate boundary between the Australia-Pacific plates, is known to rupture periodically (200-400yr) with large magnitude earthquakes (Mw~8) and is currently nearing the end of its latest interseismic period. The hydraulic and elastic properties of fault zones influence the nature and style of earthquake rupture and associated processes; investigating these properties in Alpine Fault rocks yields insights into conditions late in the seismic cycle. We present a suite of laboratory permeability and P (Vp) and S (Vs) wave velocity measurements preformed on diverse fault rock lithologies recovered during the first phase of the Deep Fault Drilling Project (DFDP-1). DFDP-1 drilled two boreholes reaching depths of 100.6m and 151.4m and retrieved fault rocks from both the hanging wall and footwall, including ultramylonites, ultracomminuted gouges and variably foliated and unfoliated cataclasites. Drilling revealed a typical shallow fault structure: localised principal slip zones (PSZ) of gouge nested within a damage zone overprinted by a zone of alteration, a record of enhanced fluid-rock interaction. Core material was tested in three orthogonal directions, orientated relative to the down core axis and, when present, foliation. Measurements were conducted with pore pressure held at 5MPa over an effective pressure (Peff) range of 5-105MPa, equivalent to pressure conditions down to ~7km depth. Using the Pulse Transient technique permeabilities at Peff=5MPa range from 10-17 to 10-20m2, decreasing to 10-18 to 10-21m2 at Peff=105MPa. Vp and Vs decrease with increased proximity to the PSZ with Vp in the hanging wall spanning 4500-5900m/s, dropping to 3900-4200m/s at the PSZ and then increasing to 4400-5600m/s in the foot wall. Wave velocities and permeability are enhanced parallel to tectonic fabrics e.g. foliation defined by aligned phyllosillicates and quartz- feldspar clasts. These measurements constrain interseismic conditions within the

  13. 137Cs in alpine tundra habitats

    International Nuclear Information System (INIS)

    Allen, D.J.

    1976-01-01

    An experiment is reported that was carried out to determine the relative importance of physical habitat factors such as snow cover, wind, soil contamination and moisture, and certain plant characteristics (gross morphology and specialized morphology) in the contamination of alpine perennial, tundra vegetation by 137 Cs from worldwide fallout. The accumulations of 137 Cs and 40 K found among species of plants and soil samples in major ecological habitats of alpine tundra in Rocky Mountain National Park are shown tabulated. From this study it would appear that the 'scrubbing-out' action of precipitation and moisture in general may have enhanced direct deposition from the air and influenced foliar absorption rate. However, morphology, physiology, longevity, plant-soil interface distance, and species differences seem to play a more dominant role in radionuclide accumulation. It is difficult to accurately predict fallout behavior by monitoring vegetation 137 Cs levels. The soil (habitat) is seemingly a better indicator of 137 Cs fallout accumulation than plant species, especially when 'spot-check' sampling is employed. (U.K.)

  14. Metabolic Profiling of Alpine and Ecuadorian Lichens

    Directory of Open Access Journals (Sweden)

    Verena K. Mittermeier

    2015-10-01

    Full Text Available Non-targeted 1H-NMR methods were used to determine metabolite profiles from crude extracts of Alpine and Ecuadorian lichens collected from their natural habitats. In control experiments, the robustness of metabolite detection and quantification was estimated using replicate measurements of Stereocaulon alpinum extracts. The deviations in the overall metabolite fingerprints were low when analyzing S. alpinum collections from different locations or during different annual and seasonal periods. In contrast, metabolite profiles observed from extracts of different Alpine and Ecuadorian lichens clearly revealed genus- and species-specific profiles. The discriminating functions determining cluster formation in principle component analysis (PCA were due to differences in the amounts of genus-specific compounds such as sticticin from the Sticta species, but also in the amounts of ubiquitous metabolites, such as sugar alcohols or trehalose. However, varying concentrations of these metabolites from the same lichen species e.g., due to different environmental conditions appeared of minor relevance for the overall cluster formation in PCA. The metabolic clusters matched phylogenetic analyses using nuclear ribosomal DNA (nrDNA internal transcribed spacer (ITS sequences of lichen mycobionts, as exemplified for the genus Sticta. It can be concluded that NMR-based non-targeted metabolic profiling is a useful tool in the chemo-taxonomy of lichens. The same approach could also facilitate the discovery of novel lichen metabolites on a rapid and systematical basis.

  15. Ellis-van Creveld Syndrome in Grey Alpine Cattle: Morphologic, Immunophenotypic, and Molecular Characterization.

    Science.gov (United States)

    Muscatello, L V; Benazzi, C; Dittmer, K E; Thompson, K G; Murgiano, L; Drögemüller, C; Avallone, G; Gentile, A; Edwards, J F; Piffer, C; Bolcato, M; Brunetti, B

    2015-09-01

    Ellis-van Creveld (EvC) syndrome is a human autosomal recessive disorder caused by a mutation in either the EVC or EVC2 gene, and presents with short limbs, polydactyly, and ectodermal and heart defects. The aim of this study was to understand the pathologic basis by which deletions in the EVC2 gene lead to chondrodysplastic dwarfism and to describe the morphologic, immunohistochemical, and molecular hallmarks of EvC syndrome in cattle. Five Grey Alpine calves, with a known mutation in the EVC2 gene, were autopsied. Immunohistochemistry was performed on bone using antibodies to collagen II, collagen X, sonic hedgehog, fibroblast growth factor 2, and Ki67. Reverse transcription polymerase chain reaction was performed to analyze EVC1 and EVC2 gene expression. Autopsy revealed long bones that were severely reduced in length, as well as genital and heart defects. Collagen II was detected in control calves in the resting, proliferative, and hypertrophic zones and in the primary and secondary spongiosa, with a loss of labeling in the resting zone of 2 dwarfs. Collagen X was expressed in hypertrophic zone in the controls but was absent in the EvC cases. In affected calves and controls, sonic hedgehog labeled hypertrophic chondrocytes and primary and secondary spongiosa similarly. FGF2 was expressed in chondrocytes of all growth plate zones in the control calves but was lost in most EvC cases. The Ki67 index was lower in cases compared with controls. EVC and EVC2 transcripts were detected. Our data suggest that EvC syndrome of Grey Alpine cattle is a disorder of chondrocyte differentiation, with accelerated differentiation and premature hypertrophy of chondrocytes, and could be a spontaneous model for the equivalent human disease. © The Author(s) 2015.

  16. Life histories, salinity zones, and sublethal contributions of contaminants to pelagic fish declines illustrated with a case study of San Francisco Estuary, California, USA

    Science.gov (United States)

    Brooks, Marjorie L.; Fleishman, Erica; Brown, Larry R.; Lehman, Peggy W.; Werner, Inge; Scholz, Nathaniel; Michelmore, Carys; Loworn, James R.; Johnson, Michael L.; Schlenk, Daniel

    2012-01-01

    Human effects on estuaries are often associated with major decreases in abundance of aquatic species. However, remediation priorities are difficult to identify when declines result from multiple stressors with interacting sublethal effects. The San Francisco Estuary offers a useful case study of the potential role of contaminants in declines of organisms because the waters of its delta chronically violate legal water quality standards; however, direct effects of contaminants on fish species are rarely observed. Lack of direct lethality in the field has prevented consensus that contaminants may be one of the major drivers of coincident but unexplained declines of fishes with differing life histories and habitats (anadromous, brackish, and freshwater). Our review of available evidence indicates that examining the effects of contaminants and other stressors on specific life stages in different seasons and salinity zones of the estuary is critical to identifying how several interacting stressors could contribute to a general syndrome of declines. Moreover, warming water temperatures of the magnitude projected by climate models increase metabolic rates of ectotherms, and can hasten elimination of some contaminants. However, for other pollutants, concurrent increases in respiratory rate or food intake result in higher doses per unit time without changes in the contaminant concentrations in the water. Food limitation and energetic costs of osmoregulating under altered salinities further limit the amount of energy available to fish; this energy must be redirected from growth and reproduction toward pollutant avoidance, enzymatic detoxification, or elimination. Because all of these processes require energy, bioenergetics methods are promising for evaluating effects of sublethal contaminants in the presence of other stressors, and for informing remediation. Predictive models that evaluate the direct and indirect effects of contaminants will be possible when data become

  17. Role of the Western Anatolia Shear Zone (WASZ) in Neotectonics Evolution of the Western Anatolia Extended Terrain, Turkey

    Science.gov (United States)

    Cemen, I.; Gogus, O. H.; Hancer, M.

    2013-12-01

    The Neotectonics period in western Anatolia Extended Terrain, Turkey (WAET) may have initiated in late Oligocene following the Eocene Alpine collision which produced the Izmir-Ankara suture zone. The Western Anatolia Shear Zone (WASZ) bounds the WAET to the east. The shear zone contains mostly normal faults in the vicinity of the Gulf of Gokova. However, its movement is mostly oblique slip from the vicinity of Tavas towards the Lake of Acigol where it makes a northward bend and possibly joins the Eskisehir fault zone to the north of the town of Afyon. The shear zone forms the southern and eastern margins of the Kale-Tavas, Denizli and Acigol basins. The shear zone is similar in its structural/tectonics setting to the Eastern California Shear zone (ECSZ) of the Basins and Ranges of North America Extended terrain which is also composed of many normal to oblique-slip faults and separates two extended terrains with different rates of extension. Western Anatolia experienced many devastating earthquakes within the last 2000 years. Many of the ancient Greek/Roman city states, including Ephesus, Troy, and Hierapolis were destroyed by large historical earthquakes. During the second half of the 20th century, the region experienced two major large earthquake giving normal fault focal mechanism solutions. They are the 1969, M=6.9 Alasehir and the 1970, M=7.1 Gediz earthquakes. These earthquakes had caused substantial damage and loss of life in the region. Therefore, a comprehensive understanding of the kinematics of the Cenozoic extensional tectonics and earthquake potential of the WASZ in the region, is very important, especially since the fault zone is very close to the major towns in eastern part of western Turkey, such as Mugla, Denizli, Sandikli, Dinar and Afyon.

  18. Effects of pollination by bats on the mating system of Ceiba pentandra (Bombacaceae) populations in two tropical life zones in Costa Rica.

    Science.gov (United States)

    Lobo, Jorge A; Quesada, Mauricio; Stoner, Kathryn E

    2005-02-01

    The identity and behavior of pollinators are among the main factors that determine the reproductive success and mating system of plants; however, few studies have directly evaluated the relationship between pollinators and the breeding system of the plants they pollinate. It is important to document this relationship because the global decline in pollinators may significantly affect the breeding systems of many animal-pollinated plants, particularly specialized systems. Ceiba pentandra is a tropical tree that has chiropterophilic flowers and a variable breeding system throughout its distribution, ranging from fully self-incompatible, to a mixed system with different degrees of selfing. To determine if regional differences in pollinators may result in regional differences in the outcrossing rate of this species, we used systematic observations of pollinator behavior in two tropical life zones and high-resolution genetic analysis of the breeding system of populations from these two regions using microsatellites. We found a predominantly self-incompatible system in regions with high pollinator visitation, while in environments with low pollinator visitation rates, C. pentandra changed to a mixed mating system with high levels of self-pollination.

  19. Associations between pycnogonids and hydroids from the Buenos Aires littoral zone, with observations on the semi-parasitic life cycle of Tanystylum orbiculare(Ammotheiidae

    Directory of Open Access Journals (Sweden)

    Gabriel N. Genzano

    2002-03-01

    Full Text Available Abundance and seasonality of Tanystylum orbiculare Wilson, 1878 populations (Pycnogonida; Ammotheidae associated with Sarsia sarsii (Loven, 1836 and Tubularia crocea (Agassiz, 1862 (Hydrozoa; Anthomedusae are analysed and the semi-parasitic life cycle of this species is described. In the analysed population, the first larval stages were found exclusively as parasites of S. sarsii. During the attachment to the hydranths, protonymphon larvae of T. orbiculare feed by sucking the hydranths of the cnidarian. Change of host is not obligatory; juveniles and adults were found both on S. sarsii as on T. crocea, and adults were also observed on other invertebrates. In the Mar del Plata intertidal, Tanystylum orbiculare was the most common pycnogonid species on colonies of T. crocea and S. sarsii. Anoplodactylus petiolatus was less abundant on both species and A. assimilis was found only on T. crocea. Endeis spinosa is absent on hydroids from the Mar del Plata intertidal zone but ectoparasitic larvae and adults were found on Obelia longissima colonies from Mar del Plata harbour together with adults of T. orbiculare and A. petiolatus. Endoparasitic larvae of A. petiolatus were found associated with colonies of Bougainvillidae.

  20. 3-D P- and S-wave velocity structure along the central Alpine Fault, South Island, New Zealand

    Science.gov (United States)

    Guo, B.; Thurber, C. H.; Roecker, S. W.; Townend, J.; Rawles, C.; Chamberlain, C. J.; Boese, C. M.; Bannister, S.; Feenstra, J.; Eccles, J. D.

    2017-05-01

    The Deep Fault Drilling Project (DFDP) on the central Alpine Fault, South Island, New Zealand, has motivated a broad range of geophysical and geological studies intended to characterize the fault system in the locality of the drill site at various scales. In order to better understand the structural features of the central Alpine Fault, we have developed 3-D P- and S-wave velocity (VP and VS) models of the region by double-difference tomography using data sets from multiple seismic networks. In previous work, the quality of the S-wave model has been poor due to the small number of available S-wave picks. We have utilized a new high-accuracy automatic S-wave picker to increase the number of usable S-wave arrivals by more than a factor of two, thereby substantially improving the VS model. Compared to previous studies, our new higher-resolution VP model based on more observations shows a clear VP contrast (higher VP on the southeast hanging wall side) at depths of 5-10 km near the DFDP drill sites. With our better resolved VS model, in the same region, we detect a sharply defined high VS body (VS > 3.7 km s-1) within the hanging wall. Our earthquake relocations reveal the presence of clusters within and around low-velocity zones in the hanging wall southeast of the Alpine Fault. Together with the improved earthquake locations, the P- and S-wave tomography results reveal the Alpine Fault to be marked by a velocity contrast throughout most of the study region. The fault dips southeastwards at about 50° from 5 to 15 km depth, as inferred from the velocity structure, seismicity and observations of fault zone guided waves.

  1. Increasing alpine transit traffic through Switzerland will considerably enhance high altitude alpine pollutant levels

    Energy Technology Data Exchange (ETDEWEB)

    Prevot, A.S.H.; Dommen, J.; Furger, M.; Graber, W.K. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Within the EU-Project VOTALP (Vertical Ozone Transports in the Alps), we have shown that deep alpine valleys like the Mesolcina Valley very efficiently transport air out of the polluted valley up to altitudes between 2000 and near 4000 m asl (above sea level). Pollutants emitted in these valleys are very efficiently transported up to high altitudes. (author) 2 figs., 1 tab., 2 refs.

  2. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions

    Science.gov (United States)

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y.

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia. In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. PMID:27402618

  3. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions.

    Science.gov (United States)

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  4. Encounters between Alpine ibex, Alpine chamois and domestic sheep in the Swiss Alps

    Directory of Open Access Journals (Sweden)

    Marie-Pierre Ryser-Degiorgis

    2002-12-01

    Full Text Available Abstract Information regarding spatio-temporal relationships and encounters of sympatric domestic sheep, Alpine ibex (Capra ibex ibex and Alpine chamois (Rupicapra rupicapra rupicapra in the Swiss Alps were systematically registered to evaluate the possibility of an interspecific transmission of infectious agents on pastures. Observations were performed in alpine regions of four Swiss cantons during the 1997 and 1998 mountain summer grazing season. In the main study area, Val Chamuera (canton of Grisons, a consistent reduction in the number of ibexes was observed after the arrival of sheep on the pasture. Some ibexes remained for a longer time in the area, but in general, ibexes and sheep did not use the same compartments of the area simultaneously. However, a salt lick for sheep attracted the ibexes, and several encounters were recorded in the compartments close to this salt lick. Several encounters registered in other areas of the Swiss Alps also occurred in the neighbourhood of a salt lick; however, in other cases different species were attracted by rich pastures. The study indicates that encounters (0-50 m between free-ranging individuals of different Caprinae species, domestic and wild, are not uncommon events in the Alps. Therefore, encounters can be considered to be a predisposing factor for interspecific transmission of infectious agents such as Mycoplasma conjunctivae, causing keratoconjunctivitis in chamois, ibex, domestic sheep and goats.

  5. Nocardia otitidiscaviarum pneumonia in an Alpine chamois (Rupicapra rupicapra rupicapra).

    Science.gov (United States)

    Domenis, L; Pecoraro, P; Spedicato, R; Corvonato, M; Peletto, S; Zuccon, F; Acutis, P

    2009-07-01

    Nocardia otitidiscaviarum was cultured from the lung of an Alpine chamois (Rupicapra rupicapra rupicapra) with suppurative bronchopneumonia. This is the first report of both nocardiosis and Nocardia otitidiscaviarum in this wild ungulate species.

  6. Small lakes in big landscape: Multi-scale drivers of littoral ecosystem in alpine lakes.

    Science.gov (United States)

    Zaharescu, Dragos G; Burghelea, Carmen I; Hooda, Peter S; Lester, Richard N; Palanca-Soler, Antonio

    2016-05-01

    In low nutrient alpine lakes, the littoral zone is the most productive part of the ecosystem, and it is a biodiversity hotspot. It is not entirely clear how the scale and physical heterogeneity of surrounding catchment, its ecological composition, and larger landscape gradients work together to sustain littoral communities. A total of 113 alpine lakes from the central Pyrenees were surveyed to evaluate the functional connectivity between littoral zoobenthos and landscape physical and ecological elements at geographical, catchment and local scales, and to ascertain how they affect the formation of littoral communities. At each lake, the zoobenthic composition was assessed together with geolocation, catchment hydrodynamics, geomorphology and topography, riparian vegetation composition, the presence of trout and frogs, water pH and conductivity. Multidimensional fuzzy set models integrating benthic biota and environmental variables revealed that at geographical scale, longitude unexpectedly surpassed altitude and latitude in its effect on littoral ecosystem. This reflects a sharp transition between Atlantic and Mediterranean climates and suggests a potentially high horizontal vulnerability to climate change. Topography (controlling catchment type, snow coverage and lakes connectivity) was the most influential catchment-scale driver, followed by hydrodynamics (waterbody size, type and volume of inflow/outflow). Locally, riparian plant composition significantly related to littoral community structure, richness and diversity. These variables, directly and indirectly, create habitats for aquatic and terrestrial stages of invertebrates, and control nutrient and water cycles. Three benthic associations characterised distinct lakes. Vertebrate predation, water conductivity and pH had no major influence on littoral taxa. This work provides exhaustive information from relatively pristine sites, and unveils a strong connection between littoral ecosystem and catchment

  7. Analysis of streamflow variability in Alpine catchments at multiple spatial and temporal scales

    Science.gov (United States)

    Pérez Ciria, T.; Chiogna, G.

    2017-12-01

    Alpine watersheds play a pivotal role in Europe for water provisioning and for hydropower production. In these catchments, temporal fluctuations of river discharge occur at multiple temporal scales due to natural as well as anthropogenic driving forces. In the last decades, modifications of the flow regime have been observed and their origin lies in the complex interplay between construction of dams for hydro power production, changes in water management policies and climatic changes. The alteration of the natural flow has negative impacts on the freshwater biodiversity and threatens the ecosystem integrity of the Alpine region. Therefore, understanding the temporal and spatial variability of river discharge has recently become a particular concern for environmental protection and represents a crucial contribution to achieve sustainable water resources management in the Alps. In this work, time series analysis is conducted for selected gauging stations in the Inn and the Adige catchments, which cover a large part of the central and eastern region of the Alps. We analyze the available time series using the continuous wavelet transform and change-point analyses for determining how and where changes have taken place. Although both catchments belong to different climatic zones of the Greater Alpine Region, streamflow properties share some similar characteristics. The comparison of the collected streamflow time series in the two catchments permits detecting gradients in the hydrological system dynamics that depend on station elevation, longitudinal location in the Alps and catchment area. This work evidences that human activities (e.g., water management practices and flood protection measures, changes in legislation and market regulation) have major impacts on streamflow and should be rigorously considered in hydrological models.

  8. Palinspastic reconstruction of the Alpine thrust belt at the Alpine-Carpathian transition - A geological Sudoku

    Science.gov (United States)

    Beidinger, A.; Decker, K.; Zamolyi, A.; Hölzel, M.; Hoprich, M.; Strauss, P.

    2009-04-01

    The palinspastic reconstruction of the Austroalpine thrust belt is part of the project Karpatian Tectonics, which is funded by OMV Austria. The objective is to reconstruct the evolution of the thrust belt through the Early to Middle Miocene in order to obtain information on the palaeogeographic position of the Northern Calcareous Alps (NCA) in the region of the present Vienna Basin. A particular goal of the study is to constrain the position of reservoir rocks within the Rhenodanubic Flysch units and the NCA with respect to the autochthonous Malmian source rocks overlying the European basement below the Alpine-Carpathian thrust wedge, and to constrain the burial history of these source rocks. Reconstruction uses regional 2D seismic lines crossing from the European foreland into the fold-thrust belt, 3D seismic data covering the external thrust sheets, and lithostratigraphic data from a total of 51 selected wells, which were drilled and provided by OMV Austria. The main criterion, whether a well was suitable for palinspastic reconstruction or not, was its penetration of Alpine thrust sheets down to the Autochthonous Molasse of the foreland. Additional wells, which do not penetrate the entire Alpine thrust complex but include the Allochthonous Molasse or the external Alpine-Carpathian nappes (Waschberg and Roseldorf thrust unit, Rhenodanubic Flysch nappes) in their well path, were also taken into account. The well data in particular comprise stratigraphic information on the youngest overthrust sediments of the different thrust units and the underlying Autochthonous foreland Molasse. These data allow constraining the timing of thrust events in the allochthonous thrust units and overthrusting of the Autochthonous Molasse. In the particular case of overthrust Autochthonous Molasse, additionally to the timing of overthrusting, which can be derived from the youngest overthrust sediments, the palaeogeographic position of the Alpine Carpathian thrust front could directly be

  9. The relationship between soil physical properties and alpine plant diversity on Qinghai-Tibet Plateau

    Directory of Open Access Journals (Sweden)

    Lin Tang

    2015-04-01

    Full Text Available Through a large-scale research, we examined the heterogeneity of soil properties and plant diversity, as well as their relationships across alpine grassland types on Qinghai-Tibet Plateau. The soil pH and EC value increased with the constant deepening of the soil in all the three alpine grassland types which in order of absolute value in every soil layer were alpine desert steppe, alpine steppe and alpine meadow. Among the three grassland types, the alpine meadow possessed the highest SM but the lowest SBD. For plant diversity, alpine meadow was the highest, alpine desert steppe ranked the second and alpine steppe was the last. SM and SBD were the highest influential soil physical properties to species richness, but with opposite effects.

  10. INFLUENCE OF MOTOR ABILITIES ON LEARNING OF ALPINE SKI TECHNIQUE

    OpenAIRE

    Igor Božić; Nikola Prlenda; Vjekoslav Cigrovski

    2012-01-01

    The research determined influence of motor abilities on alpine ski learning. Moreover, the aim was also to estimate the contribution of some morphological characteristics to acquisition of ski knowledge. At the beginning of the study, participants were tested by tests evaluating balance, agility, explosive and static strength, movement frequency and flexibility. After evaluation of motor abilities, basic morphological characteristics were noted and then participants entered a seven days alpin...

  11. Psychological Well-Being in Italian Families: An Exploratory Approach to the Study of Mental Health Across the Adult Life Span in the Blue Zone.

    Science.gov (United States)

    Hitchcott, Paul Kenneth; Fastame, Maria Chiara; Ferrai, Jessica; Penna, Maria Pietronilla

    2017-08-01

    Self-reported measures of psychological well-being and depressive symptoms were examined across differently aged family members, while controlling for the impact of marital status and personal satisfaction about family and non-family relations. Twenty-one grandchildren (i.e., ages 21-36 years) were recruited with their parents (i.e., 48-66 years old) and grandparents (i.e., 75-101 years of age) in the 'blue zone' of Ogliastra, an Italian area known for the longevity of its inhabitants. Each participant was individually presented a battery of questionnaires assessing their lifestyle and several perceived mental health indices, including the Warwick-Edinburgh Mental Well-Being Scale (WEMWBS, Tennant et al., 2007), and the Center for Epidemiologic Studies Depression Scale (i.e., CES-D, Radloff, 1977). After assessing the level of concordance among adults sharing the same context, the Hierarchical Linear Modeling (HLM) approach was used to assess the nested dataset. It was found that family membership (i.e., grandchildren versus parents and grandparents) predicted the WEMWBS score but not the CES-D when the impact of marital status and personal satisfaction about social (i.e., family and non-family) ties was controlled for. Moreover, two separate repeated-measure Analyses of Variance (ANOVAs) documented similar level of personal satisfaction about social relationships across the three family groups. In conclusions, satisfying social ties with friends and family members together with an active socially oriented life style seems to contribute to the promotion of mental health in adult span.

  12. Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars.

    Science.gov (United States)

    Kasting, James F; Kopparapu, Ravikumar; Ramirez, Ramses M; Harman, Chester E

    2014-09-02

    The habitable zone (HZ) around a star is typically defined as the region where a rocky planet can maintain liquid water on its surface. That definition is appropriate, because this allows for the possibility that carbon-based, photosynthetic life exists on the planet in sufficient abundance to modify the planet's atmosphere in a way that might be remotely detected. Exactly what conditions are needed, however, to maintain liquid water remains a topic for debate. In the past, modelers have restricted themselves to water-rich planets with CO2 and H2O as the only important greenhouse gases. More recently, some researchers have suggested broadening the definition to include arid, "Dune" planets on the inner edge and planets with captured H2 atmospheres on the outer edge, thereby greatly increasing the HZ width. Such planets could exist, but we demonstrate that an inner edge limit of 0.59 AU or less is physically unrealistic. We further argue that conservative HZ definitions should be used for designing future space-based telescopes, but that optimistic definitions may be useful in interpreting the data from such missions. In terms of effective solar flux, S(eff), the recently recalculated HZ boundaries are: recent Venus--1.78; runaway greenhouse--1.04; moist greenhouse--1.01; maximum greenhouse--0.35; and early Mars--0.32. Based on a combination of different HZ definitions, the frequency of potentially Earth-like planets around late K and M stars observed by Kepler is in the range of 0.4-0.5.

  13. The superposed orogenesis of the alpine-mediterranean edifice; Las orogenesis superpuestas del edificio alpino-mediterraneo

    Energy Technology Data Exchange (ETDEWEB)

    Argyriadis, I.

    2016-10-01

    The circum-Mediterranean chains must be considered as the result of two distinct orogenies. The apparent unity of the present structure is of formal order, due to the latest deformations. Since the Hercynian time there have been two periods of paroxysmal deformation; the younger fits the definition of the alpine orogeny; the older occured during the Cretaceous and may correspond to the first great convergent relative drift of the Eurasiatic and African blocks. The Cretaceous or Mesogean orogeny is independent from the Alpine orogeny stricto sensu (Oligo-Miocene) and cannot be considered as its prefiguration. Being independent in time, it is independent in space as well. Even if this Mesogean orogeny can appear locally restricted to the internal parts of the Alpine chains (Central Mediterranean area, Carpathes, Dinarides) this cannot be taken as a rule: towards the west, the Cretaceous deformations cross the axis of the western Alps and extend (new investigations) over Provence to the Betic chains and the Pyrenean area. Towards the east, the deformations of this period cross the Hellenides (new observations) and spread over the external area in a spectacular way, interesting areas which have never been tectonised again (Cyprus, south-eastern Anatolia, northern Syria, Oman). As a whole, this large Cretaceous orogenic zone is part of a wider domain which extends over central Iran towards the Himalayas and eastern Asia, and has its equivalent on the western side of the Atlantic Ocean, in the Caribbean islands, Mexico and the Americas. (Author)

  14. Feed selection and radiocaesium intake by reindeer, sheep and goats grazing alpine summer habitats in southern Norway

    International Nuclear Information System (INIS)

    Staaland, H.; Garmo, T.H.; Hove, K.; Pedersen, O.

    1995-01-01

    Radiocaesium concentrations ( 137 Cs) were measured in extrusa from oesophageally fistulated sheep, goats and reindeer grazing alpine summer vegetation in Griningsdalen, Southern Norway in the period 1987-1989. The experiments with sheep and goats were conducted in different sub-alpine areas. The reindeer were, in addition, grazed in three areas in the low alpine zone. Grazing bouts lasted for 10-20 min and bite selections were recorded every 15 s through the grazing bout. Reindeer and goats had the most diverse food selection whereas sheep fed mainly on grasses, forbs and to some extent, on leaves of willow. The reindeer extrusa had the highest radiocaesium activity, apparently to a large extent caused by intake of lichens in areas where this type of plants were present. Depending on the type of vegetation in the grazed areas the transfer of radiocaesium from soil to grazed vegetation (Bq kg -1 dry extrusa/Bq m -2 soil) was estimated to 0.02-0.04 in sheep, 0.02-0.05 in goats and 0.02-0.43 in reindeer for 1987. (author)

  15. Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation.

    Science.gov (United States)

    Niemeijer, A R; Boulton, C; Toy, V G; Townend, J; Sutherland, R

    2016-02-01

    The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65-75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP-1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity-strengthening behavior to velocity-weakening behavior occurs at a temperature of T  = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity-weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low-velocity shearing ( V  Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle-plastic transition for quartzofeldspathic compositions.

  16. Analysis of microseismic activity detected by the WIZARD array, Alpine Fault, New Zealand

    Science.gov (United States)

    Feenstra, J. P.; Roecker, S. W.; Thurber, C. H.; Lord, N.; O'Brien, G.; Pesicek, J. D.; Townend, J.; Bannister, S. C.

    2012-12-01

    A primary goal for the UW-Madison-RPI WIZARD array is the characterization of background seismicity around the Deep Fault Drilling Project (DFDP) site on the Alpine Fault, South Island, New Zealand. The WIZARD array consists of 20 stations, half broadband, deployed for a planned 2-year period around the Whataroa Valley DFDP-2 drill site. Two neighboring arrays, SAMBA (Victoria University of Wellington) to the southwest and ALFA'12 (GNS Science) to the northeast, along with several GeoNet permanent stations, provide broad coverage of the region. The earthquakes that are detected will (1) help to define the geometry of the Alpine Fault and other active faults at depth, (2) provide data for seismic imaging, focal mechanisms, and shear-wave splitting analysis, and (3) enable the assessment of possible changes in seismic activity induced by future fault zone drilling. We are currently analyzing data from the first 2 months of the deployment. Dozens of nearby earthquakes (S-P time of up to a few seconds) have been detected, far more than are in the New Zealand GeoNET catalog. This is expected because the magnitude completion level of the GeoNet seismometer network is around 2.5 in the Whataroa region, due to a relatively sparse station coverage. In this presentation, we report on earthquake location results for 8 months of WIZARD data, along with focal mechanisms for selected larger events.

  17. A metagenomic snapshot of taxonomic and functional diversity in an alpine glacier cryoconite ecosystem

    International Nuclear Information System (INIS)

    Edwards, Arwyn; Pachebat, Justin A; Swain, Martin; Hegarty, Matt; Rassner, Sara M E; Hodson, Andrew J; Irvine-Fynn, Tristram D L; Sattler, Birgit

    2013-01-01

    Cryoconite is a microbe–mineral aggregate which darkens the ice surface of glaciers. Microbial process and marker gene PCR-dependent measurements reveal active and diverse cryoconite microbial communities on polar glaciers. Here, we provide the first report of a cryoconite metagenome and culture-independent study of alpine cryoconite microbial diversity. We assembled 1.2 Gbp of metagenomic DNA sequenced using an Illumina HiScanSQ from cryoconite holes across the ablation zone of Rotmoosferner in the Austrian Alps. The metagenome revealed a bacterially-dominated community, with Proteobacteria (62% of bacterial-assigned contigs) and Bacteroidetes (14%) considerably more abundant than Cyanobacteria (2.5%). Streptophyte DNA dominated the eukaryotic metagenome. Functional genes linked to N, Fe, S and P cycling illustrated an acquisitive trend and a nitrogen cycle based upon efficient ammonia recycling. A comparison of 32 metagenome datasets revealed a similarity in functional profiles between the cryoconite and metagenomes characterized from other cold microbe–mineral aggregates. Overall, the metagenomic snapshot reveals the cryoconite ecosystem of this alpine glacier as dependent on scavenging carbon and nutrients from allochthonous sources, in particular mosses transported by wind from ice-marginal habitats, consistent with net heterotrophy indicated by productivity measurements. A transition from singular snapshots of cryoconite metagenomes to comparative analyses is advocated. (letter)

  18. Spatial considerations of snow chemistry as a non-point contamination source in Alpine watersheds

    International Nuclear Information System (INIS)

    Elder, K.; Williams, M.; Dozier, J.

    1991-01-01

    Alpine watersheds act as a temporary storage basin for large volumes of precipitation as snow. Monitoring these basins for the presence and effects of acid precipitation is important because these areas are often weakly buffered and sensitive to acidification. Study of these sensitive areas may provide early detection of trends resulting form anthropogenic atmospheric inputs. In an intensive study of an alpine watershed in the Sierra Nevada in 1987 and 1988, the authors carefully monitored snow distribution and chemistry through space and time. They found that the volume-weighted mean ionic concentrations within the snowpack did not vary greatly over the basin at peak accumulation. However, the distribution of total snow water equivalence (SWE) was highly variable spatially. Coefficients of variation (CV) for SWE lead to a corresponding high spatial variance in the chemical loading of their study basin. Their results show that to obtain accurate estimates of chemical loading they must measure the chemical and physical snow parameters at a resolution proportional to their individual variances. It is therefore necessary to combine many SWE measurements with fewer carefully obtained chemistry measurements. They used a classification method based on physical parameters to partition the basin into similar zones for estimation of SWE distribution. This technique can also be used for sample design

  19. Reconstructing geomorphic patterns and forcing factors from Alpine Lake Sediment

    Science.gov (United States)

    Arnaud, Fabien; Poulenard, Jérôme; Giguet-Covex, Charline; Wilhelm, Bruno; Révillon, Sidonie; Jenny, Jean-Philippe; Revel, Marie; Enters, Dirk; Bajard, Manon; Fouinat, Laurent; Doyen, Elise; Simonneau, Anaëlle; Pignol, Cécile; Chapron, Emmanuel; Vannière, Boris; Sabatier, Pierre

    2017-04-01

    In this paper we review the scientific efforts that were led over the last decades to reconstruct geomorphic patterns from continuous alpine lake sediment records. Whereas our results point a growing importance of humans as erosion forcing factors, we will focus here on climate-related processes. Our main dataset is made of a regional approach which was led without any a priori regarding erosion forcing factors. We hence integrated a set of sediment sequences from various environment along an altitudinal gradient from 200 up to 2400m asl in Northern French Alps. Altogether our data point climate change as one of the main factor of erosion variability. In particular, the last two cold spells that occurred during the early middle age (Dark Age) and between the 14th and the 20th century AD (Little Ice Age) appear to be outstanding compared to any other periods of enhanced erosion along the Holocene. The climatic forcing of those erosion phases is supported by an increase in the contribution of glacier-eroded material at a regional scale. At local scales, our data also point the growing importance, since at least the mid Bronze Age (ca. 3500 cal. BP) of human activities as a major erosion factor. This influence peaked during the late Iron Age and Antiquity periods (200 BC - 400 AD) when we record a regional generalised period of enhanced erosion in response to the development of pasturing activities. Thanks to provenance and weathering markers, we evidenced a strong relationship between the changes in ecosystems, soil development and erosion patterns. We hence showed the vegetal colonisation of bared soil led to a period of intense weathering while new soils were under formation between 11,000 and 8,000 cal. BP. Soils then knew an optimum until the onset of the Neoglacial at ca. 4,500 cal. BP prior to decline under both climate and human pressures. Altogether our data point the complexity of processes that affected the Earth critical zone along the Holocene. However

  20. Estimating Forest Carbon Stock in Alpine and Arctic Ecotones of the Urals

    Directory of Open Access Journals (Sweden)

    V. A. Usoltsev

    2014-10-01

    Full Text Available This paper reports on measured carbon stocks in the forests of two tree line ecotones of the Ural region where climate change might improve growing conditions. The first is an alpine ecotone that is represented by an altitudinal gradient of the spruce-dominated forests on the Western slope of the Tylaiskii Kamen Mountain (Western part of the Konzhakovskii-Tylaiskii-Serebryanskii Mountain system, 59°30′N, 59°00′E, at the alpine timber line that has risen from 864 to 960 m above sea level in the course of the last 100 years. The second is an arctic ecotone in larch-dominated forests at the lower course of the Pur river (67°N, 78°E, at the transition zone between closed floodplain forests and open or island-like communities of upland forests on tundra permafrost. According to our results, there are large differences in the carbon of the aboveground biomass of both ecotones across environmental gradients. In the alpine tree line ecotone, a 19-fold drop of the carbon stocks was detected between the lower and higher altitudinal levels. In the arctic ecotone the aboveground biomass carbon stock of forests of similar densities (1300 to 1700 trees per ha was 7 times as much in the river flood bed, and 5 times as much in mature, dense forests as the low density forests at higher elevations. Twelve regression equations describing dependencies of the aboveground tree biomass (stems, branches, foliage, total aboveground part upon stem diameter of the tree are proposed, which can be used to estimating the biological productivity (carbon of spruce and larch forests on Tylaiskii Kamen Mountain and the lower Pur river and on surrounding areas on the base of traditional forest mensuration have been proposed. In order to reduce the labor intensity of a coming determination of forest biomass the average values of density and dry matter content in the biomass fractions are given that were obtained by taking our sample trees.The results can be useful in

  1. Ecological networks in the Alpine Arc

    Directory of Open Access Journals (Sweden)

    Thomas Scheurer

    2009-07-01

    Full Text Available In response to decreasing biodiversity and new phenomena such as climate change, the number of initiatives aimed at creating ecological networks is increasing. Research and activities based on the theme of ecological connectivity are generating a completely new perception of methods of protecting the natural environment: there is a shift from a conservationist approach to natural systems to one that is more functional. The place and role of protected areas within their regions are being redefined. Such areas are now situated in a wider territorial context and new cooperative arrangements are encouraged with local actors. The alpine approach adopted in establishing a transalpine ecological network, illustrated by several examples, underlines the importance of both an international framework for such activities and the need to extend them to include not only the classic actors in the protection of the natural environment, but also other sectors that until now have seldom been involved.Face au constat d’une perte accrue de biodiversité et de phénomènes nouveaux, tels le changement climatique, les initiatives de mise en place de réseaux écologiques se multiplient. Les réflexions et les actions conduites autour de la thématique de la connectivité écologique font naître une perception complètement nouvelle des pratiques de la protection de la nature : un changement d’une conception patrimoniale conservatrice vers une approche plus fonctionnelle des systèmes naturels. La place et le rôle des espaces protégés au sein de leur région sont redéfinis, les situant  dans un contexte territorial plus large et engendrant de nouvelles collaborations entre acteurs locaux. L’approche alpine pour la réalisation d’un réseau écologique transalpin, illustrée par différents exemples, souligne l’importance d’un cadre international pour ces démarches et d’une ouverture sur l’ensemble du territoire impliquant en plus des acteurs

  2. Large-displacement, hydrothermal frictional properties of DFDP-1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation

    Science.gov (United States)

    Niemeijer, A. R.; Boulton, C.; Toy, V. G.; Townend, J.; Sutherland, R.

    2016-02-01

    The Alpine Fault, New Zealand, is a major plate-bounding fault that accommodates 65-75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP-1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity-strengthening behavior to velocity-weakening behavior occurs at a temperature of T = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity-weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low-velocity shearing (V rate-and-state friction, earthquake nucleation is most likely at an intermediate temperature of T = 300°C. The velocity-strengthening nature of the Alpine Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle-plastic transition for quartzofeldspathic compositions.

  3. Large‐displacement, hydrothermal frictional properties of DFDP‐1 fault rocks, Alpine Fault, New Zealand: Implications for deep rupture propagation

    Science.gov (United States)

    Boulton, C.; Toy, V. G.; Townend, J.; Sutherland, R.

    2016-01-01

    Abstract The Alpine Fault, New Zealand, is a major plate‐bounding fault that accommodates 65–75% of the total relative motion between the Australian and Pacific plates. Here we present data on the hydrothermal frictional properties of Alpine Fault rocks that surround the principal slip zones (PSZ) of the Alpine Fault and those comprising the PSZ itself. The samples were retrieved from relatively shallow depths during phase 1 of the Deep Fault Drilling Project (DFDP‐1) at Gaunt Creek. Simulated fault gouges were sheared at temperatures of 25, 150, 300, 450, and 600°C in order to determine the friction coefficient as well as the velocity dependence of friction. Friction remains more or less constant with changes in temperature, but a transition from velocity‐strengthening behavior to velocity‐weakening behavior occurs at a temperature of T = 150°C. The transition depends on the absolute value of sliding velocity as well as temperature, with the velocity‐weakening region restricted to higher velocity for higher temperatures. Friction was substantially lower for low‐velocity shearing (V < 0.3 µm/s) at 600°C, but no transition to normal stress independence was observed. In the framework of rate‐and‐state friction, earthquake nucleation is most likely at an intermediate temperature of T = 300°C. The velocity‐strengthening nature of the Alpine Fault rocks at higher temperatures may pose a barrier for rupture propagation to deeper levels, limiting the possible depth extent of large earthquakes. Our results highlight the importance of strain rate in controlling frictional behavior under conditions spanning the classical brittle‐plastic transition for quartzofeldspathic compositions. PMID:27610290

  4. Quantifying instantaneous performance in alpine ski racing.

    Science.gov (United States)

    Federolf, Peter Andreas

    2012-01-01

    Alpine ski racing is a popular sport in many countries and a lot of research has gone into optimising athlete performance. Two factors influence athlete performance in a ski race: speed and the chosen path between the gates. However, to date there is no objective, quantitative method to determine instantaneous skiing performance that takes both of these factors into account. The purpose of this short communication was to define a variable quantifying instantaneous skiing performance and to study how this variable depended on the skiers' speed and on their chosen path. Instantaneous skiing performance was defined as time loss per elevation difference dt/dz, which depends on the skier's speed v(z), and the distance travelled per elevation difference ds/dz. Using kinematic data collected in an earlier study, it was evaluated how these variables can be used to assess the individual performance of six ski racers in two slalom turns. The performance analysis conducted in this study might be a useful tool not only for athletes and coaches preparing for competition, but also for sports scientists investigating skiing techniques or engineers developing and testing skiing equipment.

  5. Aortic Dissection Type A in Alpine Skiers

    Directory of Open Access Journals (Sweden)

    Thomas Schachner

    2013-01-01

    Full Text Available Patients and Methods. 140 patients with aortic dissection type A were admitted for cardiac surgery. Seventy-seven patients experienced their dissection in the winter season (from November to April. We analyzed cases of ascending aortic dissection associated with alpine skiing. Results. In 17 patients we found skiing-related aortic dissections. Skiers were taller (180 (172–200 cm versus 175 (157–191 cm, and heavier (90 (68–125 kg versus 80 (45–110 kg, than nonskiers. An extension of aortic dissection into the aortic arch, the descending thoracic aorta, and the abdominal aorta was found in 91%, 74%, and 69%, respectively, with no significant difference between skiers and nonskiers. Skiers experienced RCA ostium dissection requiring CABG in 17.6% while this was true for 5% of nonskiers (. Hospital mortality of skiers was 6% versus 13% in nonskiers (. The skiers live at an altitude of 170 (0–853 m.a.s.l. and experience their dissection at 1602 (1185–3105; m.a.s.l. In 82% symptom start was during recreational skiing without any trauma. Conclusion. Skiing associated aortic dissection type A is usually nontraumatic. The persons affected live at low altitudes and practice an outdoor sport at unusual high altitude at cold temperatures. Postoperative outcome is good.

  6. Aortic Dissection Type A in Alpine Skiers

    Science.gov (United States)

    Schachner, Thomas; Fischler, Nikolaus; Dumfarth, Julia; Bonaros, Nikolaos; Krapf, Christoph; Schobersberger, Wolfgang; Grimm, Michael

    2013-01-01

    Patients and Methods. 140 patients with aortic dissection type A were admitted for cardiac surgery. Seventy-seven patients experienced their dissection in the winter season (from November to April). We analyzed cases of ascending aortic dissection associated with alpine skiing. Results. In 17 patients we found skiing-related aortic dissections. Skiers were taller (180 (172–200) cm versus 175 (157–191) cm, P = 0.008) and heavier (90 (68–125) kg versus 80 (45–110) kg, P = 0.002) than nonskiers. An extension of aortic dissection into the aortic arch, the descending thoracic aorta, and the abdominal aorta was found in 91%, 74%, and 69%, respectively, with no significant difference between skiers and nonskiers. Skiers experienced RCA ostium dissection requiring CABG in 17.6% while this was true for 5% of nonskiers (P = 0.086). Hospital mortality of skiers was 6% versus 13% in nonskiers (P = 0.399). The skiers live at an altitude of 170 (0–853) m.a.s.l. and experience their dissection at 1602 (1185–3105; P < 0.001) m.a.s.l. In 82% symptom start was during recreational skiing without any trauma. Conclusion. Skiing associated aortic dissection type A is usually nontraumatic. The persons affected live at low altitudes and practice an outdoor sport at unusual high altitude at cold temperatures. Postoperative outcome is good. PMID:23971024

  7. Zealandozetes southensis gen. nov., sp. nov. (Acari, Oribatida, Maudheimiidae) from alpine cushions plant in New Zealand.

    Science.gov (United States)

    Ermilov, Sergey G; Minor, Maria A; Behan-Pelletier, Valerie M

    2015-10-01

    A new oribatid mite genus, Zealandozetes gen. nov. (Oribatida, Maudheimiidae), with type species Zealandozetes southensis sp. nov., is proposed and described based on adult and juvenile instars. It inhabits the soil under and around cushion-forming plants in the high-altitude alpine zone of two mountain ranges (the Pisa Range and The Remarkables) in the South Island of New Zealand. It is distinguished from species of Maudheimia by having pteromorphs reduced to pleural carinae, notogastral saccules, small pedotecta I, and both postanal porose area and Ah expressed as complex saccules. Juveniles are similar to those of Maudheimia, except the humeral organ of Z. southensis is cupule-like and gastronotic microsclerites are lacking. We give a revised diagnosis for Maudheimiidae and discuss both supportive and contradictory evidence for inclusion of Zealandozetes. Finally, we discuss endemism of Zealandozetes with reference to the knowledge of New Zealand biogeography and its oribatid fauna.

  8. Human behaviour towards climatic change during the 4th millennium BC in the Swiss Alpine forelands

    DEFF Research Database (Denmark)

    Karg, Sabine

    Human behaviour towards climatic change during the 4th millennium BC in the Swiss Alpine forelands.......Human behaviour towards climatic change during the 4th millennium BC in the Swiss Alpine forelands....

  9. Alpine plant functional group responses to fertiliser addition depend on abiotic regime and community composition.

    NARCIS (Netherlands)

    Onipchenko, V.G.; Makarov, M.I.; Akmetzhanova, A.A.; Soudzilovskaia, N.A.; Aibazova, F.U.; Elkanova, M.K.; Stogova, A.V.; Cornelissen, J.H.C.

    2012-01-01

    Background and aims: We ask how productivity responses of alpine plant communities to increased nutrient availability can be predicted from abiotic regime and initial functional type composition. Methods: We compared four Caucasian alpine plant communities (lichen heath, Festuca varia grassland,

  10. Minimal erosion of Arctic alpine topography during late Quaternary glaciation

    Science.gov (United States)

    Gjermundsen, Endre F.; Briner, Jason P.; Akçar, Naki; Foros, Jørn; Kubik, Peter W.; Salvigsen, Otto; Hormes, Anne

    2015-10-01

    The alpine topography observed in many mountainous regions is thought to have formed during repeated glaciations of the Quaternary period. Before this time, landscapes had much less relief. However, the spatial patterns and rates of Quaternary exhumation at high latitudes--where cold-based glaciers may protect rather than erode landscapes--are not fully quantified. Here we determine the exposure and burial histories of rock samples from eight summits of steep alpine peaks in northwestern Svalbard (79.5° N) using analyses of 10Be and 26Al concentrations. We find that the summits have been preserved for at least the past one million years. The antiquity of Svalbard’s alpine landscape is supported by the preservation of sediments older than one million years along a fjord valley, which suggests that both mountain summits and low-elevation landscapes experienced very low erosion rates over the past million years. Our findings support the establishment of northwestern Svalbard’s alpine topography during the early Quaternary. We suggest that, as the Quaternary ice age progressed, glacial erosion in the Arctic became inefficient and confined to ice streams, and high-relief alpine landscapes were preserved by minimally erosive glacier armour.

  11. Brittle deformation during Alpine basal accretion and the origin of seismicity nests above the subduction interface

    Science.gov (United States)

    Menant, Armel; Angiboust, Samuel; Monié, Patrick; Oncken, Onno; Guigner, Jean-Michel

    2018-04-01

    Geophysical observations on active subduction zones have evidenced high seismicity clusters at 20-40 km depth in the fore-arc region whose origin remains controversial. We report here field observations of pervasive pseudotachylyte networks (interpreted as evidence for paleo-seismicity) in the now-exhumed Valpelline continental unit (Dent Blanche complex, NW. Alps, Italy), a tectonic sliver accreted to the upper plate at c. 30 km depth during the Paleocene Alpine subduction. Pre-alpine granulite-facies paragneiss from the core of the Valpelline unit are crosscut by widespread, mm to cm-thick pseudotachylyte veins. Co-seismic heating and subsequent cooling led to the formation of Ti-rich garnet rims, ilmenite needles, Ca-rich plagioclase, biotite microliths and hercynite micro-crystals. 39Ar-40Ar dating yields a 51-54 Ma age range for these veins, thus suggesting that frictional melting events occurred near peak burial conditions while the Valpelline unit was already inserted inside the duplex structure. In contrast, the base of the Valpelline unit underwent synchronous ductile and brittle, seismic deformation under water-bearing conditions followed by a re-equilibration at c. 40 Ma (39Ar-40Ar on retrograded pseudotachylyte veins) during exhumation-related deformation. Calculated rheological profiles suggest that pseudotachylyte veins from the dry core of the granulite unit record upper plate micro-seismicity (Mw 2-3) formed under very high differential stresses (>500 MPa) while the sheared base of the unit underwent repeated brittle-ductile deformation at much lower differential stresses (<40 MPa) in a fluid-saturated environment. These results demonstrate that some of the seismicity clusters nested along and above the plate interface may reflect the presence of stiff tectonic slivers rheologically analogous to the Valpelline unit acting as repeatedly breaking asperities in the basal accretion region of active subduction zones.

  12. Transfer of radiocesium in pre-alpine forest ecosystems

    International Nuclear Information System (INIS)

    Drissner, J.; Fluegel, V.; Klemt, E.; Miller, R.; Schick, G.; Zibold, G.

    1996-01-01

    Radiocesium aggregated in forest soils is available for plants. A direct measure for this availability is the aggregated transfer factor, T ag , (specific cesium activity of the plant divided by the total activity inventory of the soil). At spruce stands spread over South-West Germany, T ag varies by a factor of ten for different plants on one site, being highest for fern (up to 0.5 m 2 /kg) and lowest for blackberry. For one species on different sites, T ag can vary by two orders of magnitude. The quantities kind of humus, thickness and pH-value of the organic horizons are used for a radioecological mapping of pre-alpine forest soils. In accordance with this complex transfer behaviour of radiocesium, and with roe deer specific habits, the surveillance of the contamination of more than 5700 roe deer revealed characteristic regional and seasonal structures. The specific 137 Cs activity decreases slowly in time and is superimposed by periodic maxima in autumn which correlate with the mushroom season in forests. Calculated T ag 's soil - roe deer follow a log-normal distribution showing a geometric mean of 0.011 m 2 /kg(fw) and an ecological half-life of 3.5 a. Fertilization of a spruce stand area in 1984 mainly with CaCO 3 resulted even in 1995 in a reduction of T ag soil-plant by a factor of 3 to 5. This finding can be understood in terms of increasing pH-value and/or enhanced concentration of competing cations

  13. The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow.

    Science.gov (United States)

    Zhang, Yuguang; Liu, Xiao; Cong, Jing; Lu, Hui; Sheng, Yuyu; Wang, Xiulei; Li, Diqiang; Liu, Xueduan; Yin, Huaqun; Zhou, Jizhong; Deng, Ye

    2017-07-01

    Land-cover change has long been recognized as having marked effect on the amount of soil organic carbon (SOC). However, the microbially mediated processes and mechanisms on SOC are still unclear. In this study, the soil samples in a degenerative succession from alpine meadow to alpine steppe meadow in the Qinghai-Tibetan Plateau were analysed using high-throughput technologies, including Illumina sequencing and geochip functional gene arrays. The soil microbial community structure and diversity were significantly (p the microbial ɑ-diversity in alpine steppe meadow was significantly (p the microbial community structure in alpine steppe meadow was more complex and tighter than in the alpine meadow. The relative abundance of soil microbial labile carbon degradation genes (e.g., pectin and hemicellulose) was significantly higher in alpine steppe meadow than in alpine meadow, but the relative abundance of soil recalcitrant carbon degradation genes (e.g., chitin and lignin) showed the opposite tendency. The Biolog Ecoplate experiment showed that microbially mediated soil carbon utilization was more active in alpine steppe meadow than in alpine meadow. Consequently, more soil labile carbon might be decomposed in alpine steppe meadow than in alpine meadow. Therefore, the degenerative succession of alpine meadow because of climate change or anthropogenic activities would most likely decrease SOC and nutrients medicated by changing soil microbial community structure and their functional potentials for carbon decomposition. © 2017 John Wiley & Sons Ltd.

  14. Photochemistry and aerosol in alpine region: mixing and transport

    International Nuclear Information System (INIS)

    Chaxel, E.

    2006-11-01

    The Alpine arc deeply interacts with general circulation of atmosphere. By studying configurations in summer and winter over various Alpine areas, this work explains how mixing and transport of airborne pollutants happen, both gaseous and particulate matter, from their emission sources to free troposphere. Using observational results and a comprehensive Eulerian modelling system, one focuses on mechanisms of pollution by ozone in summer and by particulate matter and benzene in winter. After having validated the modelling system using datasets from field experiments POVA, GRENOPHOT and ESCOMPTE, it is applied on two periods with principal interest in the Grenoble area: one is the heat-wave August 2003 and the other is a long episode of thermal inversion in February 2005. Uncertainties are also calculated. One finishes by applying the modelling chain to understand how a stratospheric intrusion following a tropopause fold affected the Alpine region in July 2004. (author)

  15. Ecophysiological variation in two provenances of Pinus flexilis seedlings across an elevation gradient from forest to alpine.

    Science.gov (United States)

    Reinhardt, Keith; Castanha, Cristina; Germino, Matthew J; Kueppers, Lara M

    2011-06-01

    Climate change is predicted to cause upward shifts in forest tree distributions, which will require seedling recruitment beyond current forest boundaries. However, predicting the likelihood of successful plant establishment beyond current species' ranges under changing climate is complicated by the interaction of genetic and environmental controls on seedling establishment. To determine how genetics and climate may interact to affect seedling establishment, we transplanted recently germinated seedlings from high- and low-elevation provenances (HI and LO, respectively) of Pinus flexilis in common gardens arrayed along an elevation and canopy gradient from subalpine forest into the alpine zone and examined differences in physiology and morphology between provenances and among sites. Plant dry mass, projected leaf area and shoot:root ratios were 12-40% greater in LO compared with HI seedlings at each elevation. There were no significant changes in these variables among sites except for decreased dry mass of LO seedlings in the alpine site. Photosynthesis, carbon balance (photosynthesis/respiration) and conductance increased >2× with elevation for both provenances, and were 35-77% greater in LO seedlings compared with HI seedlings. There were no differences in dark-adapted chlorophyll fluorescence (Fv/Fm) among sites or between provenances. Our results suggest that for P. flexilis seedlings, provenances selected for above-ground growth may outperform those selected for stress resistance in the absence of harsh climatic conditions, even well above the species' range limits in the alpine zone. This indicates that forest genetics may be important to understanding and managing species' range adjustments due to climate change.

  16. Transient thermal effects in Alpine permafrost

    Directory of Open Access Journals (Sweden)

    J. Noetzli

    2009-04-01

    Full Text Available In high mountain areas, permafrost is important because it influences the occurrence of natural hazards, because it has to be considered in construction practices, and because it is sensitive to climate change. The assessment of its distribution and evolution is challenging because of highly variable conditions at and below the surface, steep topography and varying climatic conditions. This paper presents a systematic investigation of effects of topography and climate variability that are important for subsurface temperatures in Alpine bedrock permafrost. We studied the effects of both, past and projected future ground surface temperature variations on the basis of numerical experimentation with simplified mountain topography in order to demonstrate the principal effects. The modeling approach applied combines a distributed surface energy balance model and a three-dimensional subsurface heat conduction scheme. Results show that the past climate variations that essentially influence present-day permafrost temperatures at depth of the idealized mountains are the last glacial period and the major fluctuations in the past millennium. Transient effects from projected future warming, however, are likely larger than those from past climate conditions because larger temperature changes at the surface occur in shorter time periods. We further demonstrate the accelerating influence of multi-lateral warming in steep and complex topography for a temperature signal entering the subsurface as compared to the situation in flat areas. The effects of varying and uncertain material properties (i.e., thermal properties, porosity, and freezing characteristics on the subsurface temperature field were examined in sensitivity studies. A considerable influence of latent heat due to water in low-porosity bedrock was only shown for simulations over time periods of decades to centuries. At the end, the model was applied to the topographic setting of the Matterhorn

  17. Alpine ski bindings and injuries. Current findings.

    Science.gov (United States)

    Natri, A; Beynnon, B D; Ettlinger, C F; Johnson, R J; Shealy, J E

    1999-07-01

    In spite of the fact that the overall incidence of alpine ski injuries has decreased during the last 25 years, the incidence of serious knee sprains usually involving the anterior cruciate ligament (ACL) has risen dramatically since the late 1970s. This trend runs counter to a dramatic reduction in lower leg injuries that began in the early 1970s and to date has lowered the risk of injury below the knee by almost 90%. One of the primary design objectives of modern ski boots and bindings has been to protect the skier from tibia and ankle fractures. So, in that sense, they have done an excellent job. However, despite advances in equipment design, modern ski bindings have not protected the knee from serious ligament trauma. At the present time, we are unaware of any binding design, settings or function that can protect both the knee and lower extremities from serious ligament sprains. No innovative change in binding design appears to be on the horizon that has the potential to reduce the risk of these severe knee injuries. Indeed, only 1 study has demonstrated a means to help reduce this risk of serious knee sprains, and this study involved education of skiers, not ski equipment. Despite the inability of bindings to reduce the risk of severe knee injuries there can be no doubt that improvement in ski bindings has been the most important factor in the marked reduction in incidence of lower leg and ankle injuries during the last 25 years. The authors strongly endorse the application of present International Standards Organisation (ISO) and American Society for Testing and Materials (ASTM) standards concerning mounting, setting and maintaining modern 'state of the art' bindings.

  18. Alpine Skiing With total knee ArthroPlasty (ASWAP)

    DEFF Research Database (Denmark)

    Narici, Marco; Conte, M; Salvioli, Stefano

    2015-01-01

    This study investigated features of skeletal muscle ageing in elderly individuals having previously undergone unilateral total knee arthroplasty (TKA) and whether markers of sarcopenia could be mitigated by a 12-week alpine skiing intervention. Novel biomarkers agrin, indicative of neuromuscular....... Notably, sarcopenia was strongly associated with the expression of p53, which seems to confirm its validity as a biomarker of muscle atrophy. Training did not significantly modify any of these biomarkers. In view of the lack of accretion of muscle mass in response to the alpine skiing intervention, we...

  19. Alpine Skiing With total knee ArthroPlasty (ASWAP)

    DEFF Research Database (Denmark)

    Kristensen, M.; Pötzelsberger, B.; Scheiber, P.

    2015-01-01

    We investigated the effect of alpine skiing for 12 weeks on skeletal muscle characteristics and biomarkers of glucose homeostasis and cardiovascular risk factors. Twenty-three patients with a total knee arthroplasty (TKA) were studied 2.9 ± 0.9 years (mean ± SD) after the operation. Fourteen...... I fibers increased with skiing in IG with no change in CG. Inflammatory biomarkers, plasma lipids, and mitochondrial proteins and activity did not change. Alpine skiing is metabolically beneficial and can be used as a training modality by elderly people with TKA....

  20. Switching deformation mode and mechanisms during subduction of continental crust: a case study from Alpine Corsica

    Directory of Open Access Journals (Sweden)

    G. Molli

    2017-07-01

    Full Text Available The switching in deformation mode (from distributed to localized and mechanisms (viscous versus frictional represent a relevant issue in the frame of crustal deformation, being also connected with the concept of the brittle–ductile transition and seismogenesis. In a subduction environment, switching in deformation mode and mechanisms and scale of localization may be inferred along the subduction interface, in a transition zone between the highly coupled (seismogenic zone and decoupled deeper aseismic domain (stable slip. However, the role of brittle precursors in nucleating crystal-plastic shear zones has received more and more consideration being now recognized as fundamental in some cases for the localization of deformation and shear zone development, thus representing a case in which switching deformation mechanisms and scale and style of localization (deformation mode interact and relate to each other. This contribution analyses an example of a millimetre-scale shear zone localized by brittle precursor formed within a host granitic protomylonite. The studied structures, developed in ambient pressure–temperature (P–T conditions of low-grade blueschist facies (temperature T of ca. 300 °C and pressure P ≥ 0. 70 GPa during involvement of Corsican continental crust in the Alpine subduction. We used a multidisciplinary approach by combining detailed microstructural and petrographic analyses, crystallographic preferred orientation by electron backscatter diffraction (EBSD, and palaeopiezometric studies on a selected sample to support an evolutionary model and deformation path for subducted continental crust. We infer that the studied structures, possibly formed by transient instability associated with fluctuations of pore fluid pressure and episodic strain rate variations, may be considered as a small-scale example of fault behaviour associated with a cycle of interseismic creep and coseismic rupture or a new analogue for

  1. Switching deformation mode and mechanisms during subduction of continental crust: a case study from Alpine Corsica

    Science.gov (United States)

    Molli, Giancarlo; Menegon, Luca; Malasoma, Alessandro

    2017-07-01

    The switching in deformation mode (from distributed to localized) and mechanisms (viscous versus frictional) represent a relevant issue in the frame of crustal deformation, being also connected with the concept of the brittle-ductile transition and seismogenesis. In a subduction environment, switching in deformation mode and mechanisms and scale of localization may be inferred along the subduction interface, in a transition zone between the highly coupled (seismogenic zone) and decoupled deeper aseismic domain (stable slip). However, the role of brittle precursors in nucleating crystal-plastic shear zones has received more and more consideration being now recognized as fundamental in some cases for the localization of deformation and shear zone development, thus representing a case in which switching deformation mechanisms and scale and style of localization (deformation mode) interact and relate to each other. This contribution analyses an example of a millimetre-scale shear zone localized by brittle precursor formed within a host granitic protomylonite. The studied structures, developed in ambient pressure-temperature (P-T) conditions of low-grade blueschist facies (temperature T of ca. 300 °C and pressure P ≥ 0. 70 GPa) during involvement of Corsican continental crust in the Alpine subduction. We used a multidisciplinary approach by combining detailed microstructural and petrographic analyses, crystallographic preferred orientation by electron backscatter diffraction (EBSD), and palaeopiezometric studies on a selected sample to support an evolutionary model and deformation path for subducted continental crust. We infer that the studied structures, possibly formed by transient instability associated with fluctuations of pore fluid pressure and episodic strain rate variations, may be considered as a small-scale example of fault behaviour associated with a cycle of interseismic creep and coseismic rupture or a new analogue for episodic tremors and slow

  2. Photochemistry and aerosol in alpine region: mixing and transport; Photochimie et aerosol en region alpine: melange et transport

    Energy Technology Data Exchange (ETDEWEB)

    Chaxel, E

    2006-11-15

    The Alpine arc deeply interacts with general circulation of atmosphere. By studying configurations in summer and winter over various Alpine areas, this work explains how mixing and transport of airborne pollutants happen, both gaseous and particulate matter, from their emission sources to free troposphere. Using observational results and a comprehensive Eulerian modelling system, one focuses on mechanisms of pollution by ozone in summer and by particulate matter and benzene in winter. After having validated the modelling system using datasets from field experiments POVA, GRENOPHOT and ESCOMPTE, it is applied on two periods with principal interest in the Grenoble area: one is the heat-wave August 2003 and the other is a long episode of thermal inversion in February 2005. Uncertainties are also calculated. One finishes by applying the modelling chain to understand how a stratospheric intrusion following a tropopause fold affected the Alpine region in July 2004. (author)

  3. Focal mechanisms and inter-event times of low-frequency earthquakes reveal quasi-continuous deformation and triggered slow slip on the deep Alpine Fault

    Science.gov (United States)

    Baratin, Laura-May; Chamberlain, Calum J.; Townend, John; Savage, Martha K.

    2018-02-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the stresses acting on a major transpressive margin prior to an anticipated great (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault late in its typical ∼300-yr seismic cycle. We analyse a continuous seismic dataset recorded between 2009 and 2016 using a network of 10-13 short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine, allowing the detection of similar signals corresponding to LFE families sharing common locations. This yields an 8-yr catalogue containing 10,000 LFEs that are combined for each of the 14 LFE families using phase-weighted stacking to produce signals with the highest possible signal-to-noise ratios. We show that LFEs occur almost continuously during the 8-yr study period and highlight two types of LFE distributions: (1) discrete behaviour with an inter-event time exceeding 2 min; (2) burst-like behaviour with an inter-event time below 2 min. We interpret the discrete events as small-scale frequent deformation on the deep extent of the Alpine Fault and LFE bursts (corresponding in most cases to known episodes of tremor or large regional earthquakes) as brief periods of increased slip activity indicative of slow slip. We compute improved non-linear earthquake locations using a 3-D velocity model. LFEs occur below the seismogenic zone at depths of 17-42 km, on or near the hypothesised deep extent of the Alpine Fault. The first estimates of LFE focal mechanisms associated with continental faulting, in conjunction with recurrence intervals, are consistent with quasi-continuous shear faulting on the deep extent of the Alpine Fault.

  4. Changes in the balance performance of polish recreational skiers after seven days of alpine skiing.

    Science.gov (United States)

    Wojtyczek, Beata; Pasławska, Małgorzata; Raschner, Christian

    2014-12-09

    Alpine skiing is one of the most popular leisure time winter sporting activities. Skiing imposes high requirements concerning physical fitness, particularly regarding balance abilities. The main objective of this study was to evaluate the changes in balance performance of recreational skiers after a seven-day ski camp. A total of 78 students - 24 women and 54 men - participated in the study. The ski course was held in accordance with the official program of the Polish Ski Federation. The study sample was comprised of 43 beginners and 35 intermediate skiers. All students were tested with the MFT S3-Check, the day before and the day after the ski camp. The test system consisted of an unstable uniaxial platform, with an integrated sensor and corresponding software. Changes in balance performance (sensory and stability index) were evaluated using paired t-tests. Additionally, changes in sensory and stability categories, which were based on the norm data, were analyzed. Female and male participants showed significantly better sensory and stability indices after skiing. Considerable changes from weak or very weak to average or good balance categories could be seen after skiing for both sexes. Regarding skiing experience, both beginners and intermediate skiers improved their sensory and stability indices significantly after skiing. Hence, recreational alpine skiing resulted in better balance performance regardless of sex or skiing experience. Skiing as an outdoor activity offers the opportunity to improve balance performance with a positive impact on everyday life activities.

  5. Rock glaciers in crystalline catchments: Hidden permafrost-related threats to alpine headwater lakes.

    Science.gov (United States)

    Ilyashuk, Boris P; Ilyashuk, Elena A; Psenner, Roland; Tessadri, Richard; Koinig, Karin A

    2018-04-01

    A global warming-induced transition from glacial to periglacial processes has been identified in mountainous regions around the world. Degrading permafrost in pristine periglacial environments can produce acid rock drainage (ARD) and cause severe ecological damage in areas underlain by sulfide-bearing bedrock. Limnological and paleolimnological approaches were used to assess and compare ARDs generated by rock glaciers, a typical landform of the mountain permafrost domain, and their effects on alpine headwater lakes with similar morphometric features and underlying bedrock geology, but characterized by different intensities of frost action in their catchments during the year. We argue that ARD and its effects on lakes are more severe in the alpine periglacial belt with mean annual air temperatures (MAAT) between -2°C and +3°C, where groundwater persists in the liquid phase for most of the year, in contrast to ARD in the periglacial belt where frost action dominates (MAAT nature and the frequency of chironomid morphological deformities was significantly higher during the Little Ice Age (LIA) than during pre- or post-LIA periods, suggesting that lower water temperatures may increase the adverse impacts of ARD on aquatic invertebrates. This highlights that temperature-mediated modulations of the metabolism and life cycle of aquatic organisms should be considered when reconstructing long-term trends in the ecotoxicological state of lakes. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  6. Changes in the Balance Performance of Polish Recreational Skiers after Seven Days of Alpine Skiing

    Directory of Open Access Journals (Sweden)

    Wojtyczek Beata

    2014-12-01

    Full Text Available Alpine skiing is one of the most popular leisure time winter sporting activities. Skiing imposes high requirements concerning physical fitness, particularly regarding balance abilities. The main objective of this study was to evaluate the changes in balance performance of recreational skiers after a seven-day ski camp. A total of 78 students - 24 women and 54 men - participated in the study. The ski course was held in accordance with the official program of the Polish Ski Federation. The study sample was comprised of 43 beginners and 35 intermediate skiers. All students were tested with the MFT S3-Check, the day before and the day after the ski camp. The test system consisted of an unstable uniaxial platform, with an integrated sensor and corresponding software. Changes in balance performance (sensory and stability index were evaluated using paired t-tests. Additionally, changes in sensory and stability categories, which were based on the norm data, were analyzed. Female and male participants showed significantly better sensory and stability indices after skiing. Considerable changes from weak or very weak to average or good balance categories could be seen after skiing for both sexes. Regarding skiing experience, both beginners and intermediate skiers improved their sensory and stability indices significantly after skiing. Hence, recreational alpine skiing resulted in better balance performance regardless of sex or skiing experience. Skiing as an outdoor activity offers the opportunity to improve balance performance with a positive impact on everyday life activities.

  7. A process-based hierarchical framework for monitoring glaciated alpine headwaters

    Science.gov (United States)

    Weekes, Anne A.; Torgersen, Christian E.; Montgomery, David R.; Woodward, Andrea; Bolton, Susan M.

    2012-01-01

    Recent studies have demonstrated the geomorphic complexity and wide range of hydrologic regimes found in alpine headwater channels that provide complex habitats for aquatic taxa. These geohydrologic elements are fundamental to better understand patterns in species assemblages and indicator taxa and are necessary to aquatic monitoring protocols that aim to track changes in physical conditions. Complex physical variables shape many biological and ecological traits, including life history strategies, but these mechanisms can only be understood if critical physical variables are adequately represented within the sampling framework. To better align sampling design protocols with current geohydrologic knowledge, we present a conceptual framework that incorporates regional-scale conditions, basin-scale longitudinal profiles, valley-scale glacial macroform structure, valley segment-scale (i.e., colluvial, alluvial, and bedrock), and reach-scale channel types. At the valley segment- and reach-scales, these hierarchical levels are associated with differences in streamflow and sediment regime, water source contribution and water temperature. Examples of linked physical-ecological hypotheses placed in a landscape context and a case study using the proposed framework are presented to demonstrate the usefulness of this approach for monitoring complex temporal and spatial patterns and processes in glaciated basins. This approach is meant to aid in comparisons between mountain regions on a global scale and to improve management of potentially endangered alpine species affected by climate change and other stressors.

  8. Changes in the Balance Performance of Polish Recreational Skiers after Seven Days of Alpine Skiing

    Science.gov (United States)

    Wojtyczek, Beata; Pasławska, Małgorzata; Raschner, Christian

    2014-01-01

    Alpine skiing is one of the most popular leisure time winter sporting activities. Skiing imposes high requirements concerning physical fitness, particularly regarding balance abilities. The main objective of this study was to evaluate the changes in balance performance of recreational skiers after a seven-day ski camp. A total of 78 students - 24 women and 54 men - participated in the study. The ski course was held in accordance with the official program of the Polish Ski Federation. The study sample was comprised of 43 beginners and 35 intermediate skiers. All students were tested with the MFT S3-Check, the day before and the day after the ski camp. The test system consisted of an unstable uniaxial platform, with an integrated sensor and corresponding software. Changes in balance performance (sensory and stability index) were evaluated using paired t-tests. Additionally, changes in sensory and stability categories, which were based on the norm data, were analyzed. Female and male participants showed significantly better sensory and stability indices after skiing. Considerable changes from weak or very weak to average or good balance categories could be seen after skiing for both sexes. Regarding skiing experience, both beginners and intermediate skiers improved their sensory and stability indices significantly after skiing. Hence, recreational alpine skiing resulted in better balance performance regardless of sex or skiing experience. Skiing as an outdoor activity offers the opportunity to improve balance performance with a positive impact on everyday life activities. PMID:25713663

  9. The 'Alpine Windharvest' project - Overview; Projekt Alpine Windharvest - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Kunz, S. [Suisse Eole, Meteotest, Berne (Switzerland)

    2005-07-01

    This short introduction forms part of a final report for the Swiss Federal Office of Energy (SFOE) that presents the results of a project carried out by the Swiss wind-energy organisation 'Suisse Eole' and the meteorology specialists of the company METEOTEST. The project investigated the use of digital relief-analysis and formed part of a European wind-energy project that investigated the technical, legal and socio-economical aspects of the use of wind energy. The work-package 7 included the identification of wind-energy areas using comparative Geographic Information System (GIS) methods. An overview is provided of the wind-energy potential in the whole of the alpine region and five areas in which measurements are to be made, including GIS analyses, are defined.

  10. Assessing the effects of abiotic stress and livestock grazing disturbance on an alpine grassland with CSR model

    Science.gov (United States)

    Wang, Jun; Luo, Peng; Mou, Chengxiang; Yang, Hao; Mo, Li; Luo, Chuan; Kattge, Jens

    2016-04-01

    How the abiotic factors represented by cold environment and biotic factors represented by livestock grazing will affect the vegetation structure of alpine grassland is a core issue in understanding the cause of biodiversity change on Tibetan Plateau. Past studies on changes of floristic composition, growth forms did not adequately answer question. Given the fact that the response of plant to environment change depend on its life strategy, a synthetical method that based on plant life strategy may deepen our understanding of the mechanism. Using Grime's concept of CSR plant classification, we carried out a vegetation survey along a gradient (three levels) of graze intensity on the south-east of Tibet Plateau, in order to evaluate the role and mechanism of abiotic stress and grazing disturbance in driving plant diversity change, by analyzing the plant life strategy compositions in each of the community and by comparing the characteristic of the strategy compositions along the graze gradient. When the graze intensity was relative low, the dominant plant life strategy gathered in the stress tolerance corner, which conformed the theory of environmental filter, indicating that the ideal top plant community may be dominated by the species with stress tolerant strategy. We also found that the response of strategy dominance to graze intensity increase is positively correlated with the competitive capacity (R 2=0.671; PCSR plant strategy be a useful tool to evaluate the effects of abiotic and biotic factors on plant community assembly of alpine grassland, which may contribute to predict the impacts of climate change and human activity on alpine grassland plant diversity and ecosystem service function related.

  11. Floristic and community diversity of sub-alpine and alpine grasslands and grazed dwarf-shrub heaths in the Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    Coldea, Gheorghe

    1998-12-01

    Full Text Available Floristic diversity at community level and community diversity at landscape level are presented for the main grassland and dwarf-shrub communities in the sub-alpine and alpine zones in five mountain ranges of the Romanian Carpathians. The 30 plant communities studied had their floristic composition and distribution determined by geological substratum and pedo-climatic factors. The most diverse grasslands (Oxytropido-Elynetum, Seslerio haynaldianae-Caricetun were on calcareous substratum and on the mountain slopes (Festucetum pictae, whilst the lowest diversity was in the oligo-mesotrophic sub-alpine grasslands (Scorzonero- Festucetum nigricantis, Alchemillo-Poetum alpinae, Violo-Nardetum. The Shannon-Weaver diversity index for the communities increased almost linearly with the number of species per community, whilst community diversity in the five mountain ranges was a function of the number of communities per mountain range.

    [fr] Nous présentons dans ce travail la diversité floristique au niveau de la communauté et la diversité de communautés au niveau du paysage pour les principaux types de pâturages et de communautés à petits arbustes des étages subalpin et alpin de cinq chaînes montagneuses des Carpathes en Roumanie. Aussi bien la composition floristique que la distribution des 30 communautés étudiées dépendent de la nature géologique du terrain et des facteurs édapho-climatiques. Les pâturages les plus riches en diversité (Oxytropido-Elynetum, Seslerio haynaldianae- Caricetun se développent sur substrat calcaire et sur les versants des montagnes (Testucetum pictae; par contre la plus faible diversité a été rencontrée dans les pâturages oligo-mesotrophes subalpins (Scorzonero-Festucetum nigricantis, Alchemillo-Poetum alpinae, Violo-Nardetum. L'index de diversité de Shannon- Weaver augmente quasi linéairement avec le nombre d'espèces de chaque communauté, tandis que

  12. Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai–Tibetan Plateau

    International Nuclear Information System (INIS)

    Yi Shuhua; Zhou Zhaoye; Ren Shilong; Xu Ming; Qin Yu; Chen Shengyun; Ye Baisheng

    2011-01-01

    Permafrost on the Qinghai–Tibetan Plateau (QTP) has degraded over the last few decades. Its ecological effects have attracted great concern. Previous studies focused mostly at plot scale, and hypothesized that degradation of permafrost would cause lowering of the water table and drying of shallow soil and then degradation of alpine grassland. However, none has been done to test the hypothesis at basin scale. In this study, for the first time, we investigated the relationships between land surface temperature (LST) and fractional vegetation cover (FVC) in different types of permafrost zone to infer the limiting condition (water or energy) of grassland growth on the source region of Shule River Basin, which is located in the north-eastern edge of the QTP. LST was obtained from MODIS Aqua products at 1 km resolution, while FVC was upscaled from quadrat (50 cm) to the same resolution as LST, using 30 m resolution NDVI data of the Chinese HJ satellite. FVC at quadrat scale was estimated by analyzing pictures taken with a multi-spectral camera. Results showed that (1) retrieval of FVC at quadrat scale using a multi-spectral camera was both more accurate and more efficient than conventional methods and (2) the limiting factor of vegetation growth transitioned from energy in the extreme stable permafrost zone to water in the seasonal frost zone. Our study suggested that alpine grassland would respond differently to permafrost degradation in different types of permafrost zone. Future studies should consider overall effects of permafrost degradation, and avoid the shortcomings of existing studies, which focus too much on the adverse effects.

  13. Australian Alps: Kosciuszko, Alpine and Namadgi National Parks (Second Edition

    Directory of Open Access Journals (Sweden)

    Nicole Porter

    2017-02-01

    Full Text Available Reviewed: Australian Alps: Kosciuszko, Alpine and Namadgi National Parks (Second Edition By Deidre Slattery. Clayton South, Australia: CSIRO Publishing, 2015. xvii + 302 pp. AU$ 45.00, US$ 35.95. ISBN 978-1-486-30171-3.

  14. Quantitative ecological relationships in the alpine grassland of ...

    African Journals Online (AJOL)

    A survey, based on 56 000 points at 102 sampling sites in the Tsehlanyane valley of the Oxbow (Madibamatso) Dam catchment in the alpine grassland of Lesotho, indicates that the area is generally in good condition. Physiographic and floristic criteria were measured and the association between pairs of criteria statistically ...

  15. Alpine glacial topography and the rate of rock column uplift

    DEFF Research Database (Denmark)

    Pedersen, Vivi Kathrine; Egholm, D.L.; Nielsen, S.B.

    2010-01-01

    The present study investigates the influence of alpine glacial erosion on the morphology and relief distribution of mountain regions associated with varying rock column uplift rates. We take a global approach and analyse the surface area distribution of all mountain regions affected by glacial...

  16. Classification of the eastern alpine vegetation of Lesotho | Morris ...

    African Journals Online (AJOL)

    Five vegetation communities in the alpine catchment of Lesotho were identified by hierarchical classification of the botanical composition data. Discriminant analysis indicated that these communities occupy particular topographic positions. The community-environmental relationships identified in this study were similar to ...

  17. Progressive dysarthria and ataxia | McAlpine | South Sudan Medical ...

    African Journals Online (AJOL)

    South Sudan Medical Journal. Journal Home · ABOUT · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 1 (2015) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Progressive dysarthria and ataxia. Lynsey McAlpine, Fiona Cran, Eluzai Hakim ...

  18. 77 FR 48950 - Alpine County Resource Advisory Committee

    Science.gov (United States)

    2012-08-15

    ... committee is authorized under the Secure Rural Schools and Community Self-Determination Act (Pub. L. 112-141... held at the Alpine Early Learning Center, 100 Foothill Road, Markleeville, CA. Written comments may be... interpreting, assistive listening devices or other reasonable accommodation for access to the meeting please...

  19. Resistance and resilience of alpine lake fauna to fish introductions

    Science.gov (United States)

    R.A. Knapp; K.R. Matthews; O. Sarnelle

    2001-01-01

    Abstract. This paper reports on the response by amphibians, benthic macroinvertebrates, and zooplankton in naturally fishless alpine lakes to fish introductions and subsequent fish disappearance. We assessed resistance (the degree to which a system is altered when the environment changes) by comparing faunal distribution and abundance in lakes that have never been...

  20. [Fine root nitrogen contents and morphological adaptations of alpine plants].

    NARCIS (Netherlands)

    Salpagarova, F.S.; van Logtestijn, R. S.; Onipchenko, Vladimir G.; Akhmetzhanova, A.A.; Agafonov, V. A.

    Nitrogen and carbon contents of fine roots were studied for 92 alpine plant species in the Northwest Caucasus. Nitrogen content ranged from 0.43% (Bromus variegatus) to 3.75% (Corydalis conorhiza) with mean value 1.3%. Carbon content ranged from 40.3% (Corydalis conorhiza) to 51.7% (Empetrum nigrum)

  1. Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonites

    Science.gov (United States)

    Adam, L.; Frehner, M.; Sauer, K. M.; Toy, V.; Guerin-Marthe, S.; Boulton, C. J.

    2017-12-01

    Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonitesLudmila Adam1, Marcel Frehner2, Katrina Sauer3, Virginia Toy3, Simon Guerin-Marthe4, Carolyn Boulton5(1) University of Auckland, New Zealand, (2) ETH Zurich, Switzerland, (3) University of Otago, New Zealand (4) Durham University, Earth Sciences, United Kingdom (5) Victoria University of Wellington, New Zealand Quartzo-feldspathic mylonites and schists are the main contributors to seismic wave anisotropy in the vicinity of the Alpine Fault (New Zealand). We must determine how the physical properties of rocks like these influence elastic wave anisotropy if we want to unravel both the reasons for heterogeneous seismic wave propagation, and interpret deformation processes in fault zones. To study such controls on velocity anisotropy we can: 1) experimentally measure elastic wave anisotropy on cores at in-situ conditions or 2) estimate wave velocities by static (effective medium averaging) or dynamic (finite element) modelling based on EBSD data or photomicrographs. Here we compare all three approaches in study of schist and mylonite samples from the Alpine Fault. Volumetric proportions of intrinsically anisotropic micas in cleavage domains and comparatively isotropic quartz+feldspar in microlithons commonly vary significantly within one sample. Our analysis examines the effects of these phases and their arrangement, and further addresses how heterogeneity influences elastic wave anisotropy. We compare P-wave seismic anisotropy estimates based on millimetres-scale ultrasonic waves under in situ conditions, with simulations that account for micrometre-scale variations in elastic properties of constitutent minerals with the MTEX toolbox and finite-element wave propagation on EBSD images. We observe that the sorts of variations in the distribution of micas and quartz+feldspar within any one of our real core samples can change the elastic wave anisotropy by 10

  2. Sound Zones

    DEFF Research Database (Denmark)

    Møller, Martin Bo; Olsen, Martin

    2017-01-01

    Sound zones, i.e. spatially confined regions of individual audio content, can be created by appropriate filtering of the desired audio signals reproduced by an array of loudspeakers. The challenge of designing filters for sound zones is twofold: First, the filtered responses should generate...... an acoustic separation between the control regions. Secondly, the pre- and post-ringing as well as spectral deterioration introduced by the filters should be minimized. The tradeoff between acoustic separation and filter ringing is the focus of this paper. A weighted L2-norm penalty is introduced in the sound...

  3. Contribution of physical modelling to climate-driven landslide hazard mapping: an alpine test site

    Science.gov (United States)

    Vandromme, R.; Desramaut, N.; Baills, A.; Hohmann, A.; Grandjean, G.; Sedan, O.; Mallet, J. P.

    2012-04-01

    The aim of this work is to develop a methodology for integrating climate change scenarios into quantitative hazard assessment and especially their precipitation component. The effects of climate change will be different depending on both the location of the site and the type of landslide considered. Indeed, mass movements can be triggered by different factors. This paper describes a methodology to address this issue and shows an application on an alpine test site. Mechanical approaches represent a solution for quantitative landslide susceptibility and hazard modeling. However, as the quantity and the quality of data are generally very heterogeneous at a regional scale, it is necessary to take into account the uncertainty in the analysis. In this perspective, a new hazard modeling method is developed and integrated in a program named ALICE. This program integrates mechanical stability analysis through a GIS software taking into account data uncertainty. This method proposes a quantitative classification of landslide hazard and offers a useful tool to gain time and efficiency in hazard mapping. However, an expertise approach is still necessary to finalize the maps. Indeed it is the only way to take into account some influent factors in slope stability such as heterogeneity of the geological formations or effects of anthropic interventions. To go further, the alpine test site (Barcelonnette area, France) is being used to integrate climate change scenarios into ALICE program, and especially their precipitation component with the help of a hydrological model (GARDENIA) and the regional climate model REMO (Jacob, 2001). From a DEM, land-cover map, geology, geotechnical data and so forth the program classifies hazard zones depending on geotechnics and different hydrological contexts varying in time. This communication, realized within the framework of Safeland project, is supported by the European Commission under the 7th Framework Programme for Research and Technological

  4. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China.

    Science.gov (United States)

    Wang, Siyuan; Wang, Xiaoyue; Chen, Guangsheng; Yang, Qichun; Wang, Bin; Ma, Yuanxu; Shen, Ming

    2017-09-01

    Snow cover dynamics are considered to play a key role on spring phenological shifts in the high-latitude, so investigating responses of spring phenology to snow cover dynamics is becoming an increasingly important way to identify and predict global ecosystem dynamics. In this study, we quantified the temporal trends and spatial variations of spring phenology and snow cover across the Tibetan Plateau by calibrating and analyzing time series of the NOAA AVHRR-derived normalized difference vegetation index (NDVI) during 1983-2012. We also examined how snow cover dynamics affect the spatio-temporal pattern of spring alpine vegetation phenology over the plateau. Our results indicated that 52.21% of the plateau experienced a significant advancing trend in the beginning of vegetation growing season (BGS) and 34.30% exhibited a delaying trend. Accordingly, the snow cover duration days (SCD) and snow cover melt date (SCM) showed similar patterns with a decreasing trend in the west and an increasing trend in the southeast, but the start date of snow cover (SCS) showed an opposite pattern. Meanwhile, the spatial patterns of the BGS, SCD, SCS and SCM varied in accordance with the gradients of temperature, precipitation and topography across the plateau. The response relationship of spring phenology to snow cover dynamics varied within different climate, terrain and alpine plant community zones, and the spatio-temporal response patterns were primarily controlled by the long-term local heat-water conditions and topographic conditions. Moreover, temperature and precipitation played a profound impact on diverse responses of spring phenology to snow cover dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Riparian vegetation in the alpine connectome: Terrestrial-aquatic and terrestrial-terrestrial interactions.

    Science.gov (United States)

    Zaharescu, Dragos G; Palanca-Soler, Antonio; Hooda, Peter S; Tanase, Catalin; Burghelea, Carmen I; Lester, Richard N

    2017-12-01

    Alpine regions are under increased attention worldwide for their critical role in early biogeochemical cycles, their high sensitivity to environmental change, and as repositories of natural resources of high quality. Their riparian ecosystems, at the interface between aquatic and terrestrial environments, play important geochemical functions in the watershed and are biodiversity hotspots, despite a harsh climate and topographic setting. With climate change rapidly affecting the alpine biome, we still lack a comprehensive understanding of the extent of interactions between riparian surface, lake and catchment environments. A total of 189 glacial - origin lakes were surveyed in the Central Pyrenees to test how key elements of the lake and terrestrial environments interact at different scales to shape riparian plant composition. Secondly, we evaluated how underlying ecotope features drive the formation of natural communities potentially sensitive to environmental change and assessed their habitat distribution. At the macroscale, vegetation composition responded to pan-climatic gradients altitude and latitude, which captured in a narrow geographic area the transition between large European climatic zones. Hydrodynamics was the main catchment-scale factor connecting riparian vegetation with major water fluxes, followed by topography and geomorphology. Lake sediment Mg and Pb, and water Mn and Fe contents reflected local influences from mafic bedrock and soil water saturation. Community analysis identified four keystone ecosystems: (i) damp ecotone, (ii) snow bed-silicate bedrock, (iii) wet heath, and (iv) calcareous substrate. These communities and their connections with ecotope elements could be at risk from a number of environmental change factors including warmer seasons, snow line and lowland species advancement, increased nutrient/metal input and water level fluctuations. The results imply important natural terrestrial-aquatic linkages in the riparian environment

  6. Microstructures imply cataclasis and authigenic mineral formation control geomechanical properties of New Zealand's Alpine Fault

    Science.gov (United States)

    Schuck, B.; Janssen, C.; Schleicher, A. M.; Toy, V. G.; Dresen, G.

    2018-05-01

    The Alpine Fault is capable of generating large (MW > 8) earthquakes and is the main geohazard on South Island, NZ, and late in its 250-291-year seismic cycle. To minimize its hazard potential, it is indispensable to identify and understand the processes influencing the geomechanical behavior and strength-evolution of the fault. High-resolution microstructural, mineralogical and geochemical analyses of the Alpine Fault's core demonstrate wall rock fragmentation, assisted by mineral dissolution, and cementation resulting in the formation of a fine-grained principal slip zone (PSZ). A complex network of anastomosing and mutually cross-cutting calcite veins implies that faulting occurred during episodes of dilation, slip and sealing. Fluid-assisted dilatancy leads to a significant volume increase accommodated by vein formation in the fault core. Undeformed euhedral chlorite crystals and calcite veins that have cut footwall gravels demonstrate that these processes occurred very close to the Earth's surface. Microstructural evidence indicates that cataclastic processes dominate the deformation and we suggest that powder lubrication and grain rolling, particularly influenced by abundant nanoparticles, play a key role in the fault core's velocity-weakening behavior rather than frictional sliding. This is further supported by the absence of smectite, which is reasonable given recently measured geothermal gradients of more than 120 °C km-1 and the impermeable nature of the PSZ, which both limit the growth of this phase and restrict its stability to shallow depths. Our observations demonstrate that high-temperature fluids can influence authigenic mineral formation and thus control the fault's geomechanical behavior and the cyclic evolution of its strength.

  7. Origin and Distribution of Methane Entrapped in Calcareous Alpine Proglacial Soil

    Science.gov (United States)

    Zhu, Biqing; Schroth, Martin H.; Henneberger, Ruth; Kübler, Manuel; Zeyer, Josef

    2017-04-01

    Methane (CH4) is an important greenhouse gas. The atmospheric methane concentration has been increasing in recent years, which is caused by imbalance between sources and sinks. Methane has been recently discovered to be entrapped in calcareous Swiss Alpine proglacial soil. This CH4 can be released upon mechanical impact and acidification. However, the amount, distribution and environmental fate of this entrapped CH4 in proglacial environment remain unknown. The entrapped CH4 in proglacial soil may be of modern or ancient origin. Modern origin includes ongoing or recent microbial CH4 production (methanogenesis) in subglacial or proglacial environments. An ancient origin mainly refers to CH4 produced thermogenically. This soil entrapped CH4 might be a common phenomenon along the entire glacial forefield, or it might only be present at few locations and depth. We present results of studies from two Swiss Alpine Glacier catchments, Wildstrubel Glacier (Canton Valais) and the Griessfirn Glacier (Canton Uri). Our main goals were 1) to assess the origin of CH4 entrapped in various glacial environments (subglacial, proglacial and supraglacial, soil and bedrocks) using geochemical and microbiological evidence; 2) to assess the spatial distribution of entrapped CH4. We performed geochemical analysis (CH4 content, gas wetness ([C1]/[C2-C3] alkane ratio), CH4 stable 13C- and 2H-isotopes, TOC) on subglacial, proglacial, and supraglacial soil samples collected from well-aerated and water-logged locations. Geochemical analysis was also selectively conducted on pore-water samples and on rock samples collected from different geological formations along the catchments. We also performed batch incubations on soil samples collected from subglacial, proglacial water-logged and supraglacial zones. In addition, for the aforementioned three types of samples, we also performed molecular analyses targeting the mcrA gene, which encodes the α-subunit of the enzyme methyl-coenzyme M reductase

  8. Des broussailles dans les prairies alpines

    Directory of Open Access Journals (Sweden)

    Olivier Camacho

    2009-03-01

    Full Text Available Landscape closing due to the decline in agricultural activity is considered to be a major problem in the Alps. Abondance Valley provides a good example of this phenomenon and is also representative of a paradox commonly found in the Northern French Alps: the mountainsides and alpine pastures are still used, whereas they are becoming increasingly afforested. Environmental conditions play a major role in the localisation of agricultural land uses, but they are not sufficient to explain why pastures still in use are being invaded by shrub. Even if cutting makes it possible to effectively control the encroachment by woody species, this is not true for uncut pastures where grazing is not able to keep up with grass production. This situation is repeated every year and is the likely cause of the colonisation by woody species. To ensure their forage system and to simplify their work, farmers tend to establish grazing units that are oversized in relation to the needs of their animals. They implement compensatory practices that consist of mechanical maintenance as a complement to grazing to limit the dynamics of woody species. These labour-intensive practices are not used on all of the pastures. The analysis of farmers’ practices by agronomists is therefore a useful complement to studies of physical and socio-economic environments, at the level of the grazed field as well as at that of the valley as a whole.La dégradation des paysages par suite du recul de l’activité agricole est considérée comme un enjeu majeur dans les Alpes. La vallée d’Abondance illustre bien ce phénomène de fermeture de l’espace mais elle est en outre représentative d’un paradoxe assez répandu dans les Alpes du nord françaises : les versants et les alpages sont encore exploités et pourtant ils se boisent progressivement. Les conditions de milieux jouent un rôle majeur sur la localisation des usages agricoles de l'espace, mais elles ne peuvent pas suffire pour

  9. Quantifying the role of mantle forcing, crustal shortening and exogenic forcing on exhumation of the North Alpine Foreland Basin

    Science.gov (United States)

    von Hagke, C.; Luijendijk, E.; Hindle, D.

    2017-12-01

    In contrast to the internal zones of orogens, where the stacking of thrust sheets can overwhelm more subtle signals, foreland basins can record long-wavelength subsidence or uplift signals caused by mantle processes. We use a new and extensive compilation of geological and thermochronology data from the North Alpine Foreland Basin to understand the dynamics of foreland basins and their interaction with surface and geodynamic processes. We quantify cooling and exhumation rates in the basin by combining published and new vitrinite reflectance, apatite fission track and U-Th/He data with a new inverse burial and thermal history model, pybasin. No correlation is obvious between inferred cooling and exhumation rates and elevation, relief or tectonics. Uncertainty analysis shows that thermochronometers can be explained by cooling starting as early as the Miocene or as late as the Pleistocene. We compare derived temperature histories to exhumation estimates based on the retro-deformation of Molasse basin and the Jura mountains, and to exhumation caused by drainage reorganization and incision. Drainage reorganization can explain at most 25% of the observed cooling rates in the basin. Tectonic transport of the basin's sediments over the inclined basement of the alpine foreland as the Jura mountains shortened can explain part of the cooling signal in the western part of the basin. However, overall a substantial amount of cooling and exhumation remains unexplained by known tectonic and surface processes. Our results document basin wide exhumation that may be related to slab roll-back or other lithospheric processes. We suggest that new (U-Th)/He data from key areas close to the Alpine front may provide better constraints on the timing of exhumation.

  10. Effects of experimentally modified soil temperatures and nutrient availability on growth and mycorrhization of Pinus cembra at the alpine treeline

    Science.gov (United States)

    Gruber, Andreas; Peintner, Ursula; Wieser, Gerhard; Oberhuber, Walter

    2015-04-01

    Soil temperature affects litter decomposition, nutrient uptake, root growth and respiration and it is suggested that soil temperature has direct impact on tree growth at the alpine treeline. We have evaluated the impact of experimentally modified soil temperatures and nutrient availability on growth and mycorrhization of Pinus cembra at the treeline in the Central Eastern Alps (c. 2150 m a.s.l., Tyrol, Austria). Soil temperature in the rooting zone of naturally grown c. 25 year old trees (n=6 trees per treatment) was altered by shading and heat-trapping using non-transparent and glasshouse foils mounted c. 20 cm above soil surface. Additional trees were selected for a nitrogen fertilisation treatment and as controls. During the study period, mean soil temperatures at 10 cm depth were reduced by c. 3°C at the cooled vs. warmed plots. Soil moisture was not influenced due to soil water transport along the slope. Results revealed that changed soil temperatures did not significantly affect tree growth, gas exchange, needle nutrient content and specific leaf area. We also found no significant difference in degree of mycorrhization or number of mycorrhized root tips between treatments. On the other hand, nitrogen fertilization and a reduction of interspecific root competition led to significantly raised radial stem growth. Results indicate that tree growth at the selected study area was not limited by soil temperature, while interspecific competition for nutrients among trees and low stature vegetation (dwarf shrubs, grasses) had significant impact. Therefore, we suggest that root competition with alpine grassland and dwarf-shrub communities will hamper temperature driven advance of alpine treeline in the course of climate warming. Acknowledgements This work was funded by the Austrian Science Fund (FWF Project No. P22836-B16, 'Growth response of Pinus cembra to experimentally modified soil temperatures at the treeline').

  11. Low-frequency earthquakes reveal punctuated slow slip on the deep extent of the Alpine Fault, New Zealand

    Science.gov (United States)

    Chamberlain, Calum J.; Shelly, David R.; Townend, John; Stern, T.A.

    2014-01-01

    We present the first evidence of low-frequency earthquakes (LFEs) associated with the deep extension of the transpressional Alpine Fault beneath the central Southern Alps of New Zealand. Our database comprises a temporally continuous 36 month-long catalog of 8760 LFEs within 14 families. To generate this catalog, we first identify 14 primary template LFEs within known periods of seismic tremor and use these templates to detect similar events in an iterative stacking and cross-correlation routine. The hypocentres of 12 of the 14 LFE families lie within 10 km of the inferred location of the Alpine Fault at depths of approximately 20–30 km, in a zone of high P-wave attenuation, low P-wave speeds, and high seismic reflectivity. The LFE catalog consists of persistent, discrete events punctuated by swarm-like bursts of activity associated with previously and newly identified tremor periods. The magnitudes of the LFEs range between ML – 0.8 and ML 1.8, with an average of ML 0.5. We find that the frequency-magnitude distribution of the LFE catalog both as a whole and within individual families is not consistent with a power law, but that individual families' frequency-amplitude distributions approximate an exponential relationship, suggestive of a characteristic length-scale of failure. We interpret this LFE activity to represent quasi-continuous slip on the deep extent of the Alpine Fault, with LFEs highlighting asperities within an otherwise steadily creeping region of the fault.

  12. Innovation in the plural of the alpine cre-actors

    Directory of Open Access Journals (Sweden)

    Andréa Finger-Stich

    2009-06-01

    Full Text Available The capacity to innovate for a sustainable development of alpine territories cannot depend only on economic, legal and political conditions defined by the State at national and international levels. It depends also on local conditions that situate historically and geographically the actors in a continuity of social and ecological relationships. This approach highlights the collective – thus organisational – dimensions of the innovation process, including the imagination, the development, the implementation and even the diffusion of a new practice. Our point of view is that for contributing to the sustainable development of the Alps, innovations need to change the ecological, political, social and cultural relationships engaging the actors in these territories. This change affects as much the object territory as the subject actor of the territory. This is why innovating in the Alps means also innovating the Alps and the alpine actors (Cosalp, 2008. Based on a research about local people’s participation in the management of alpine communal forests, the article shows the importance of local interactions involving actors of diverse occupation, gender, age and origins1.La capacité d’innovation pour un développement durable des territoires alpins ne peut dépendre uniquement de conditions économiques, légales et politiques définies par les Etats aux échelles nationale et internationale. Elle dépend aussi de conditions locales, qui situent historiquement et géographiquement les acteurs dans une continuité de relations sociales et écologiques. Cette perspective accentue l’importance de la dimension collective, donc organisationnelle, du processus d’innovation, allant de l’imagination, puis au développement, à la réalisation – voire la diffusion – d’une nouvelle pratique. Le point de vue de cet article est qu’une innovation, pour contribuer au développement durable des Alpes, doit changer les relations

  13. How shrub encroachment under climate change could threaten pollination services for alpine wildflowers: A case study using the alpine skypilot,Polemonium viscosum.

    Science.gov (United States)

    Kettenbach, Jessica A; Miller-Struttmann, Nicole; Moffett, Zoë; Galen, Candace

    2017-09-01

    Under climate change, shrubs encroaching into high altitude plant communities disrupt ecosystem processes. Yet effects of encroachment on pollination mutualisms are poorly understood. Here, we probe potential fitness impacts of interference from encroaching Salix (willows) on pollination quality of the alpine skypilot, Polemonium viscosum . Overlap in flowering time of Salix and Polemonium is a precondition for interference and was surveyed in four extant and 25 historic contact zones. Pollinator sharing was ascertained from observations of willow pollen on bumble bees visiting Polemonium flowers and on Polemonium pistils. We probed fitness effects of pollinator sharing by measuring the correlation between Salix pollen contamination and seed set in naturally pollinated Polemonium . To ascertain whether Salix interference occurred during or after pollination, we compared seed set under natural pollination, conspecific pollen addition, and Salix pollen addition. In current and past contact zones Polemonium and Salix overlapped in flowering time. After accounting for variance in flowering date due to latitude, Salix and Polemonium showed similar advances in flowering under warmer summers. This trend supports the idea that sensitivity to temperature promotes reproductive synchrony in both species. Salix pollen is carried by bumble bees when visiting Polemonium flowers and accounts for up to 25% of the grains on Polemonium pistils. Salix contamination correlates with reduced seed set in nature and when applied experimentally. Postpollination processes likely mediate these deleterious effects as seed set in nature was not limited by pollen delivery. As willows move higher with climate change, we predict that they will drive postpollination interference, reducing the fitness benefits of pollinator visitation for Polemonium and selecting for traits that reduce pollinator sharing.

  14. Seismotectonic zoning of Azerbaijan territory

    Science.gov (United States)

    Kangarli, Talat; Aliyev, Ali; Aliyev, Fuad; Rahimov, Fuad

    2017-04-01

    Studying of the space-time correlation and consequences effect between tectonic events and other geological processes that have created modern earth structure still remains as one of the most important problems in geology. This problem is especially important for the East Caucasus-South Caspian geodynamic zone. Being situated at the eastern part of the Caucasian strait, this zone refers to a center of Alpine-Himalayan active folded belt, and is known as a complex tectonic unit with jointing heterogeneous structural-substantial complexes arising from different branches of the belt (Doburja-Caucasus-Kopetdag from the north and Pyrenean-Alborz from the south with Kura and South Caspian zone). According to GPS and precise leveling data, activity of regional geodynamic processes shows intensive horizontal and vertical movements of the Earth's crust as conditioned by collision of the Arabian and Eurasian continental plates continuing since the end of Miocene. So far studies related to the regional of geology-geophysical data, periodically used for the geological and tectonic modeling of the environment mainly based on the fixing ideology. There still remains a number of uncertainties in solution of issues related to regional geology, tectonics and magmatism, structure and interrelation of different structural zones, space-time interrelations between onshore and offshore complexes, etc. At the same time large dataset produced by surface geological surveys, deep geological mapping of on- and offshore areas with the use of seismic and electrical reconnaissance and geophysical field zoning methods, deep well drilling and remote sensing activities. Conducted new studies produced results including differentiation of formerly unknown nappe complexes of the different ages and scales within the structure of mountain-fold zones, identification of new zones containing ophiolites in their section, outlining of currently active faulting areas, geophysical interpretation of the deep

  15. Alpine endemic spiders shed light on the origin and evolution of subterranean species.

    Science.gov (United States)

    Mammola, Stefano; Isaia, Marco; Arnedo, Miquel A

    2015-01-01

    We designed a comparative study to unravel the phylogeography of two Alpine endemic spiders characterized by a different degree of adaptation to subterranean life: Troglohyphantes vignai (Araneae, Linyphiidae) and Pimoa rupicola (Araneae, Pimoidae), the latter showing minor adaptation to hypogean life. We sampled populations of the model species in caves and other subterranean habitats across their known geographical range in the Western Alps. By combining phylogeographic inferences and Ecological Niche Modeling techniques, we inferred the biogeographic scenario that led to the present day population structure of the two species. According to our divergent time estimates and relative uncertainties, the isolation of T. vignai and P. rupicola from their northern sister groups was tracked back to Middle-Late Miocene. Furthermore, the fingerprint left by Pleistocene glaciations on the population structure revealed by the genetic data, led to the hypothesis that a progressive adaptation to subterranean habitats occurred in T. vignai, followed by strong population isolation. On the other hand, P. rupicola underwent a remarkable genetic bottleneck during the Pleistocene glaciations, that shaped its present population structure. It seems likely that such shallow population structure is both the result of the minor degree of specialization to hypogean life and the higher dispersal ability characterizing this species. The simultaneous study of overlapping spider species showing different levels of adaptation to hypogean life, disclosed a new way to clarify patterns of biological diversification and to understand the effects of past climatic shift on the subterranean biodiversity.

  16. Coastal zone

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on the coastal zone focuses on the impact of climate change on Canada's marine and Great Lakes coasts with tips on how to deal with the impacts associated with climate change in sensitive environments. This report is aimed at the sectors that will be most affected by adaptation decisions in the coastal zone, including fisheries, tourism, transportation and water resources. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The Intergovernmental Panel on Climate Change projects global average sea level will rise between 9 and 88 centimetres between 1990 to 2100, but not all areas of Canada will experience the same rate of future sea level change. The main physical impact would be shoreline change that could result in a range of biophysical and socio-economic impacts, some beneficial, some negative. The report focuses on issues related to infrastructure and communities in coastal regions. It is noted that appropriate human adaptation will play a vital role in reducing the extent of potential impacts by decreasing the vulnerability of average zone to climate change. The 3 main trends in coastal adaptation include: (1) increase in soft protection, retreat and accommodation, (2) reliance on technology such as geographic information systems to manage information, and (3) awareness of the need for coastal adaptation that is appropriate for local conditions. 61 refs., 7 figs

  17. Impact of climatic change on alpine ecosystems: inference and prediction

    Directory of Open Access Journals (Sweden)

    Nigel G. Yoccoz

    2011-01-01

    Full Text Available Alpine ecosystems will be greatly impacted by climatic change, but other factors, such as land use and invasive species, are likely to play an important role too. Climate can influence ecosystems at several levels. We describe some of them, stressing methodological approaches and available data. Climate can modify species phenology, such as flowering date of plants and hatching date in insects. It can also change directly population demography (survival, reproduction, dispersal, and therefore species distribution. Finally it can effect interactions among species – snow cover for example can affect the success of some predators. One characteristic of alpine ecosystems is the presence of snow cover, but surprisingly the role played by snow is relatively poorly known, mainly for logistical reasons. Even if we have made important progress regarding the development of predictive models, particularly so for distribution of alpine plants, we still need to set up observational and experimental networks which properly take into account the variability of alpine ecosystems and of their interactions with climate.Les écosystèmes alpins vont être grandement influencés par les changements climatiques à venir, mais d’autres facteurs, tels que l’utilisation des terres ou les espèces invasives, pourront aussi jouer un rôle important. Le climat peut influencer les écosystèmes à différents niveaux, et nous en décrivons certains, en mettant l’accent sur les méthodes utilisées et les données disponibles. Le climat peut d’abord modifier la phénologie des espèces, comme la date de floraison des plantes ou la date d’éclosion des insectes. Il peut ensuite affecter directement la démographie des espèces (survie, reproduction, dispersion et donc à terme leur répartition. Il peut enfin agir sur les interactions entre espèces – le couvert neigeux par exemple modifie le succès de certains prédateurs. Une caractéristique des

  18. MILK COAGULATION PROPERTIES OF CATTLE BREEDS REARED IN ALPINE AREA

    Directory of Open Access Journals (Sweden)

    Giulio Visentin

    2015-09-01

    Full Text Available The aim of the present study was to apply mid-infrared spectroscopy prediction models developed for milk coagulation properties (MCP to a spectral dataset of 123,240 records collected over a 2-year period in the Alpine area, and to investigate sources of variation of the predicted MCP. Mixed linear models included fixed effects of breed, month and year of sampling, days in milk, parity, and the interactions between the main effects. Random effects were herd nested within breed, cow nested within breed, and the residual. All fixed effects were significant (P<0.05 in explaining the variation of MCP. In particular, milk clotting characteristics varied significantly among breeds, and local Alpine Grey breed exhibited the most favourable processing characteristics. Milk coagulation properties varied across lactation and were at their worst after the peak.

  19. Hydrologic response to valley-scale structure in alpine headwaters

    Science.gov (United States)

    Weekes, Anne A.; Torgersen, Christian E.; Montgomery, David R.; Woodward, Andrea; Bolton, Susan M.

    2015-01-01

    Few systematic studies of valley-scale geomorphic drivers of streamflow regimes in complex alpine headwaters have compared response between catchments. As a result, little guidance is available for regional-scale hydrological research and monitoring efforts that include assessments of ecosystem function. Physical parameters such as slope, elevation range, drainage area and bedrock geology are often used to stratify differences in streamflow response between sampling sites within an ecoregion. However, these metrics do not take into account geomorphic controls on streamflow specific to glaciated mountain headwaters. The coarse-grained nature of depositional features in alpine catchments suggests that these landforms have little water storage capacity because hillslope runoff moves rapidly just beneath the rock mantle before emerging in fluvial networks. However, recent studies show that a range of depositional features, including talus slopes, protalus ramparts and 'rock-ice' features may have more storage capacity than previously thought.

  20. A New GLORIA (Global Research Initiative in Alpine Environments Site in Southwestern Montana

    Science.gov (United States)

    Apple, M. E.; Warden, J. E.; Apple, C. J.; Pullman, T. Y.; Gallagher, J. H.

    2008-12-01

    Global climate change is predicted to have a major impact on the alpine environments and plants of western North America. Alpine plant species and treelines may migrate upwards due to warmer temperatures. Species composition, vegetation cover, and the phenology of photosynthesis, flowering, pollination, and seed dispersal may change. The Global Research Initiative in Alpine Environments (GLORIA) is a network of alpine sites established with the goal of understanding the interactions between climate change and alpine plants. The Continental Divide traverses Southwestern Montana, where the flora contains representative species from both sides of the divide. In the summer of 2008, we established a GLORIA site in southwestern Montana east of the Continental Divide with the objective of determining whether the temperature changes at the site, and if so, how temperature changes influence alpine plants. We are monitoring soil temperature along with species composition and percent cover of alpine plants at four sub-summits along an ascending altitudinal gradient. We placed the treeline, lower alpine, and upper alpine sites on Mt. Fleecer (45°49'36.06"N, 112°48'08.18"W, 2886.2 m (9469 ft)) and the highest sub-summit on Keokirk Mountain, (45°35'37.94"N, 112°57'03.89"W, 2987.3 m (9801 ft)) in the Pioneer Range. Interesting species on these mountains include Lewisia pygmaea, the Pygmy Bitterroot, Silene acaulis, the Moss Campion, Eritrichium nanum, the Alpine Forget-Me-Not, Lloydia serotina, the Alpine Lily, and Pinus albicaulis, the Whitebark Pine. This new site will remain in place indefinitely. Baseline and subsequent data from this site will be linked with the global network of GLORIA sites with which we will assess changes in alpine flora.

  1. The P-T-t History of the Alpine Schist, New Zealand: Constraining Tectonic Processes During the Late Stages of Gondwana Breakup

    Science.gov (United States)

    Briggs, S. I.; Smit, M. A.; Cottle, J. M.; Hagen-Peter, G.

    2015-12-01

    Separation of the microcontinent Zealandia from the Marie Byrd Land sector of Antarctica in the Late Cretaceous marked the final stage in the breakup of Gondwana. Two contrasting ideas for the Late Cretaceous rifting of Zealandia from Gondwana have been proposed. One is that subduction at the paleo-Pacific - Gondwana convergent margin ceased after the last pulse of batholith emplacement at ~100 Ma, followed by a rapid transition to extension and seafloor spreading at 82 Ma. The other hypothesis is that convergence continued along Zealandia simultaneously with back-arc extension until ~85 M. This hypothesis is based on recently reported Late Cretaceous ages from the Alpine Schist, a metamorphosed accretionary wedge assemblage. Without accompanying pressure-temperature (P-T) information, the significance of Late Cretaceous ages from the Alpine Schist in terms of the orogenic processes that occurred during cessation of subduction at the paleo-Pacific - Gondwana margin remains unclear. In this study, Lu-Hf geochronology of Alpine Schist garnet is paired with phase equilibria modelling to elucidate the P-T-t history of the orogen and clarify the mechanisms behind Zealandia-Gondwana rifting. Garnet Lu-Hf dates have been obtained from 9 samples ranging in bulk composition from quartzo-feldspathic schists to mafic amphibolites. Garnet yields Early Cretaceous ages from the southern Alpine Schist, whereas northern Alpine Schist garnet yields Late Cretaceous ages. Garnet textures and major and trace element compositional zoning suggest that an additional, later period of garnet growth or recrystallization may be recorded in the northern samples. P-T-t data from each dated sample is supplemented with thermobarometric analysis from an adjacent sample of different lithology, with the advantage of providing more complete local P-T-t paths. The P-T-t paths define whether garnet grew during increasing P-T (prograde early), decreasing P and increasing T (prograde late), and

  2. Elevational sensitivity in an Asian 'hotspot': moth diversity across elevational gradients in tropical, sub-tropical and sub-alpine China.

    Science.gov (United States)

    Ashton, L A; Nakamura, A; Burwell, C J; Tang, Y; Cao, M; Whitaker, T; Sun, Z; Huang, H; Kitching, R L

    2016-05-23

    South-western China is widely acknowledged as a biodiversity 'hotspot': there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China's biodiversity and can be used to monitor future changes to herbivore assemblages in a 'hotspot' of biodiversity.

  3. Elevational sensitivity in an Asian ‘hotspot’: moth diversity across elevational gradients in tropical, sub-tropical and sub-alpine China

    Science.gov (United States)

    Ashton, L. A.; Nakamura, A.; Burwell, C. J.; Tang, Y.; Cao, M.; Whitaker, T.; Sun, Z.; Huang, H.; Kitching, R. L.

    2016-01-01

    South-western China is widely acknowledged as a biodiversity ‘hotspot’: there are high levels of diversity and endemism, and many environments are under significant anthropogenic threats not least climate warming. Here, we explore diversity and compare response patterns of moth assemblages among three elevational gradients established within different climatic bioregions - tropical rain forest, sub-tropical evergreen broad-leaved forest and sub-alpine coniferous forest in Yunnan Province, China. We hypothesised that tropical assemblages would be more elevationally stratified than temperate assemblages, and tropical species would be more elevationally restricted than those in the temperate zone. Contrary to our hypothesis, the moth fauna was more sensitive to elevational differences within the temperate transect, followed by sub-tropical and tropical transects. Moths in the cooler and more seasonal temperate sub-alpine gradient showed stronger elevation-decay beta diversity patterns, and more species were restricted to particular elevational ranges. Our study suggests that moth assemblages are under threat from future climate change and sub-alpine rather than tropical faunas may be the most sensitive to climate change. These results improve our understanding of China’s biodiversity and can be used to monitor future changes to herbivore assemblages in a ‘hotspot’ of biodiversity. PMID:27211989

  4. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, Northeast Qinghai–Tibet Plateau, China

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huawu, E-mail: wuhuawu416@163.com [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Li, Xiao-Yan, E-mail: xyli@bnu.edu.cn [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875 (China); College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China); Jiang, Zhiyun; Chen, Huiying; Zhang, Cicheng; Xiao, Xiong [College of Resources Science and Technology, Beijing Normal University, Beijing 100875 (China)

    2016-01-15

    Plant water use patterns reflect the complex interactions between different functional types and environmental conditions in water-limited ecosystems. However, the mechanisms underlying the water use patterns of plants in the alpine desert of the Qinghai–Tibet Plateau remain poorly understood. This study investigated seasonal variations in the water sources of herbs (Carex moorcroftii, Astragalus adsurgens) and shrubs (Artemisia oxycephala, Hippophae rhamnoides) using stable oxygen-18 isotope methods. The results indicated that the native herbs (C. moorcroftii, A. adsurgens) and one of the shrubs (A. oxycephala) mainly relied on water from the shallow layer (0–30 cm) throughout the growing season, while the introduced shrub (H. rhamnoides) showed plasticity in switching between water from shallow and deep soil layers depending on soil water availability. All studied plants primarily depended on water from shallow soil layers early in the season. The differences of water use patterns between the introduced and native plants are closely linked with the range of active root zones when competing for water. Our findings will facilitate the mechanistic understanding of plant–soil–water relations in alpine desert ecosystems and provide information for screening introduced species for sand fixation. - Highlights: • Stable oxygen-18 in soil water experienced great evaporation enrichment. • H. rhamnoides experiences a flexible plasticity to switch between shallow and deep soil water. • Native plants mostly relied on shallow and middle soil water. • Water-use patterns by introduced-native plants are controlled by root characteristics.

  5. Mapping alpine soils using color positive and color infrared photographs

    Science.gov (United States)

    Burns, S.

    1980-01-01

    During a soil survey of the Indian Peaks area of the Colorado Front Range, it was found that large scale color positive photographs taken in the autumn were extremely useful for mapping alpine soils. Smaller scale color infrared photos were also helpful for delineation of mapping units. The soil mapping units were deduced on the basis of landforms and snow accumulation which is reflected in patterns of vegetational communities.

  6. Injuries among male and female World Cup alpine skiers.

    Science.gov (United States)

    Flørenes, T W; Bere, T; Nordsletten, L; Heir, S; Bahr, R

    2009-12-01

    Limited knowledge exists on injuries among professional alpine skiers. To describe the risk of injury and the injury pattern among competitive World Cup alpine skiers during the competitive season. Retrospective interviews were performed with all World Cup athletes from 10 nations at the end of the 2006-7 and 2007-8 winter seasons, and all acute injuries occurring during the 4.5-month competitive season were recorded. If the athlete was not present, their coaches or medical personnel were interviewed. A total of 191 acute injuries were recorded among 521 World Cup alpine skiers. As many as 86 injuries (45%) occurred during World Cup/World Ski Championship competitions, corresponding to an injury rate of 9.8 injuries per 1000 runs (95% CI 7.8 to 11.9). The injury rate was found to increase with increasing speed (slalom 4.9 injuries per 1000 runs, 95% CI 2.5 to 7.4--giant slalom 9.2, 5.1 to 13.3--super-G 11.0, 5.2 to 16.8--downhill 17.2, 11.6 to 22.7). The most frequently injured body part was the knee, with 68 injuries (36%), and 37 of these were severe. The overall injury rate was higher in males than in females, but not for knee injuries. The risk of injury among World Cup athletes in alpine skiing is even higher than previously reported. The knee is the most commonly injured body part and with many severe injuries. Injury rate increased with a higher speed and was higher among males than in females.

  7. Cellulose Dynamics during Foliar Litter Decomposition in an Alpine Forest Meta-Ecosystem

    Directory of Open Access Journals (Sweden)

    Kai Yue

    2016-08-01

    Full Text Available To investigate the dynamics and relative drivers of cellulose degradation during litter decomposition, a field experiment was conducted in three individual ecosystems (i.e., forest floor, stream, and riparian zone of an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Four litter species (i.e., willow: Salix paraplesia, azalea: Rhododendron lapponicum, cypress: Sabina saltuaria, and larch: Larix mastersiana that had varying initial litter chemical traits were placed separately in litterbags and then incubated on the soil surface of forest floor plots or in the water of the stream and riparian zone plots. Litterbags were retrieved five times each year during the two-year experiment, with nine replicates each time for each treatment. The results suggested that foliar litter lost 32.2%–89.2% of the initial dry mass depending on litter species and ecosystem type after two-year’s incubation. The cellulose lost 60.1%–96.8% of the initial mass with degradation rate in the order of stream > riparian zone > forest floor. Substantial cellulose degradation occurred at the very beginning (i.e., in the first pre-freezing period of litter decomposition. Litter initial concentrations of phosphorus (P and lignin were found to be the dominant chemical traits controlling cellulose degradation regardless of ecosystems type. The local-scale environmental factors such as temperature, pH, and nutrient availability were important moderators of cellulose degradation rate. Although the effects of common litter chemical traits (e.g., P and lignin concentrations on cellulose degradation across different individual ecosystems were identified, local-scale environmental factors such as temperature and nutrient availability were found to be of great importance for cellulose degradation. These results indicated that local-scale environmental factors should be considered apart from litter quality for generating a reliable predictive framework for the drivers

  8. Tourism and Water: Themes of the Alpine Convention

    Science.gov (United States)

    Imhof, R.

    2012-04-01

    1) The contribution reflects the personal opinion of the author and does not necessarily reflect the point of view of the Permanent Secretariat. The Alpine Convention is a multilateral framework treaty signed in 1991 by the eight states of the Alpine bow as well as the European Community. Its main objectives are the sustainable development of the Alpine territory and the safeguarding of the interests of the people living within it, embracing the environmental, social and economic dimensions in the broadest sense. In order to achieve its objectives, over the years the Framework Convention has been equipped with a large number of thematic protocols, e.g. on tourism. The overall objective of the Protocol on Tourism, which first came into force in 2002, is to contribute to sustainable development in the Alpine region within the existing institutional framework, by encouraging environmentally-friendly tourism through specific measures and recommendations which take the interests of both the local population and tourists into account. The provisions of the Protocol on Tourism primarily concern tourism management and controlling tourist flows, structural developments such as ski lifts and ski slopes, accommodation and the balanced development of economically weak areas. Guidelines, development plans, sectoral plans have to be adopted at the appropriate territorial level in order to enable to assess the impact of tourism development on, inter alia, water. This extends also to ski slopes developments. For example the production of artificial snow production may be authorized only if the location's hydrological, climatic and ecological conditions allow. Water is listed among the twelve themes in relation to which the Contracting Parties are supposed to take measures and coordinate their policies (Article 2 of the Framework Convention). The Alpine Convention aims to preserve and re-establish healthy water systems, especially keeping waters clean and protecting the natural

  9. Distance and environmental difference in alpine plant communities

    Science.gov (United States)

    Malanson, George P.; Zimmerman, Dale L.; Fagre, Daniel B.

    2017-01-01

    Differences in plant communities are a response to the abiotic environment, species interactions, and dispersal. The role of geographic distance relative to the abiotic environment is explored for alpine tundra vegetation from 319 plots of four regions along the Rocky Mountain cordillera in the USA. The site by species data were ordinated using nonmetric multidimensional scaling to produce dependent variables for use in best-subsets regression. For independent variables, observations of local topography and microtopography were used as environmental indicators. Two methods of including distance in studies of vegetation and environment are used and contrasted. The relative importance of geographic distance in accounting for the pattern of alpine tundra similarity indicates that location is a factor in plant community composition. Mantel tests provide direct correlations between difference and distance but have known weaknesses. Moran spatial eigenvectors used in regression based approaches have greater geographic specificity, but require another step, ordination, in creating a vegetation variable. While the spatial eigenvectors are generally preferable, where species–environment relations are weak, as seems to be the case for the alpine sites studied here, the fewer abstractions of the Mantel test may be useful.

  10. Effects of eccentric cycle ergometry in alpine skiers.

    Science.gov (United States)

    Gross, M; Lüthy, F; Kroell, J; Müller, E; Hoppeler, H; Vogt, M

    2010-08-01

    Eccentric cycling, where the goal is to resist the pedals, which are driven by a motor, increases muscle strength and size in untrained subjects. We hypothesized that it could also be beneficial for athletes, particularly in alpine skiing, which involves predominantly eccentric contractions at longer muscle lengths. We investigated the effects of replacing part of regular weight training with eccentric cycling in junior male alpine skiers using a matched-pair design. Control subjects ( N=7) executed 1-h weight sessions 3 times per week, which included 4-5 sets of 4 leg exercises. The eccentric group ( N=8) performed only 3 sets, followed by continuous sessions on the eccentric ergometer for the remaining 20 min. After 6 weeks, lean thigh mass increased significantly only in the eccentric group. There was a groupxtime effect on squat-jump height favouring the eccentric group, which also experienced a 6.5% improvement in countermovement-jump height. The ability to finely modulate muscle force during variable eccentric cycling improved 50% (p=0.004) only in the eccentric group. Although eccentric cycling did not significantly enhance isometric leg strength, we believe it is beneficial for alpine skiers because it provides an efficient means for hypertrophy while closely mimicking the type of muscle actions encountered while skiing. (c) Georg Thieme Verlag KG Stuttgart . New York.

  11. Prevalence of low back pain in alpine ski instructors.

    Science.gov (United States)

    Peacock, Nola; Walker, James A; Fogg, Reed; Dudley, Kurt

    2005-02-01

    Mailed survey to random sample of a specific population. To examine the lifetime and point prevalence of low back pain among alpine ski instructors. The lifetime prevalence for back pain is up to 60% among some athletes. Published literature documents back pain among athletes participating in many sports. However, the prevalence of low back pain among alpine ski instructors has not been established. Surveys were mailed to 500 randomly selected members of the Professional Ski Instructors of America. The lifetime and point prevalence were determined by respondents' report regarding history of low back pain and current back pain. Two hundred four (75% of the 272 respondents) reported a history of low back pain. Eighty-five of those who responded (31%) reported current back pain. Over 9% of respondents missed 10 or more days of work because of back pain. The lifetime prevalence of back pain among respondents was similar to the general population. The respondents reported more lifetime prevalence of back pain than athletes of many other sports. The high prevalence of back pain among ski instructors may increase cost and decrease revenue for the employer. Prevention training in this population may decrease the prevalence of back pain and lessen costs to the employer and the alpine ski instructor.

  12. Aspects on muscle properties and use in competitive Alpine skiing.

    Science.gov (United States)

    Tesch, P A

    1995-03-01

    This brief report describes the physiological demands in competitive Alpine skiing as well as the physiological profile of elite skiers. Maximal heart rate is typically attained by the end of either of the four Alpine ski disciplines. The giant slalom probably calls for the largest reliance upon aerobic energy metabolism and oxygen uptake may increase to 75%-100% of maximal aerobic power. Although high caliber skiers typically show increased maximal aerobic power, it is unlikely that this is an important factor determining success in skiing. Also, anaerobic energy provision accounts for more than half of the total energy yield. Accordingly, plasma and muscle lactate accumulation is substantial after a single race. Similarly, during skiing there is a high rate of glycogen utilization that eventually may result in depletion of muscle glycogen stores by the end of a day of intense skiing. Muscles of Alpine skiers do not possess a distinct fiber type composition and, if anything, skiers tend to show a preponderance of slow twitch fibers. This concords with the recruitment of both muscle fiber types during slalom or giant slalom. Elite skiers show increased knee extensor strength. This seems warranted because there is great reliance upon slow and forceful eccentric muscle actions when performing turns in the giant slalom or slalom.

  13. Study on the Design of Garbage Removal Products for Alpine Scenic Spots

    Science.gov (United States)

    Sun, Wenling; Zhao, Junqi; Lyu, Jianhua

    2018-01-01

    Due to the constraints of the alpine terrain and other objective factors, at present, the garbage collection and removal in China's alpine scenic areas are in a relatively backward situation, which makes the garbage removal more difficult, thus leading to the high risk and difficulty for the sanitation workers to operate. By using the unique ropeway facilities in alpine scenic areas, the article makes a tentative plan for the improvement of the garbage removal facilities in alpine scenic areas, and gives the design verification based on the relevant knowledge of mechanical principle and Theory of mechanics.

  14. Alpine biodiversity and assisted migration: The case of the American pika (Ochotona princeps)

    Science.gov (United States)

    Wilkening, Jennifer L.; Ray, Chris; Ramsay, Nathan G.; Klingler, Kelly

    2015-01-01

    Alpine mammals are predicted to be among the species most threatened by climate change, due to the projected loss and further fragmentation of alpine habitats. As temperature or precipitation regimes change, alpine mammals may also be faced with insurmountable barriers to dispersal. The slow rate or inability to adjust to rapidly shifting environmental conditions may cause isolated alpine species to become locally extirpated, resulting in reduced biodiversity. One proposed method for mitigating the impacts of alpine species loss is assisted migration. This method, which involves translocating a species to an area with more favourable climate and habitat characteristics, has become the subject of debate and controversy in the conservation community. The uncertainty associated with climate change projections, coupled with the thermal sensitivity of many alpine mammals, makes it difficult to a priori assess the efficacy of this technique as a conservation management tool. Here we present the American pika (Ochotona princeps) as a case study. American pikas inhabit rocky areas throughout the western US, and populations in some mountainous areas have become locally extirpated in recent years. We review known climatic and habitat requirements for this species, and also propose protocols designed to reliably identify favourable relocation areas. We present data related to the physiological constraints of this species and outline specific requirements which must be addressed for translocation of viable populations, including wildlife disease and genetic considerations. Finally, we discuss potential impacts on other alpine species and alpine communities, and overall implications for conserving alpine biodiversity in a changing climate.

  15. Multi-stage origin of the Coast Range ophiolite, California: Implications for the life cycle of supra-subduction zone ophiolites

    Science.gov (United States)

    Shervais, J.W.; Kimbrough, D.L.; Renne, P.; Hanan, B.B.; Murchey, B.; Snow, C.A.; Zoglman, Schuman M.M.; Beaman, J.

    2004-01-01

    The Coast Range ophiolite of California is one of the most extensive ophiolite terranes in North America, extending over 700 km from the northernmost Sacramento Valley to the southern Transverse Ranges in central California. This ophiolite, and other ophiolite remnants with similar mid-Jurassic ages, represent a major but short-lived episode of oceanic crust formation that affected much of western North America. The history of this ophiolite is important for models of the tectonic evolution of western North America during the Mesozoic, and a range of conflicting interpretations have arisen. Current petrologic, geochemical, stratigraphic, and radiometric age data all favor the interpretation that the Coast Range ophiolite formed to a large extent by rapid extension in the forearc region of a nascent subduction zone. Closer inspection of these data, however, along with detailed studies of field relationships at several locales, show that formation of the ophiolite was more complex, and requires several stages of formation. Our work shows that exposures of the Coast Range ophiolite preserve evidence for four stages of magmatic development. The first three stages represent formation of the ophiolite above a nascent subduction zone. Rocks associated with the first stage include ophiolite layered gabbros, a sheeted complex, and volcanic rocks vith arc tholeiitic or (roore rarely) low-K calc-alkaline affinities. The second stage is characterized by intrusive wehrlite-clinopyroxenite complexes, intrusive gabbros, Cr-rich diorites, and volcanic rocks with high-Ca boninitic or tholeiitic ankaramite affinities. The third stage includes diorite and quartz diorite plutons, felsic dike and sill complexes, and calc-alkaline volcanic rocks. The first three stages of ophiolite formation were terminated by the intrusion of mid-ocean ridge basalt dikes, and the eruption of mid-ocean ridge basalt or ocean-island basalt volcanic suites. We interpret this final magmatic event (MORB

  16. The 'Guetsch' Alpine wind power test site; Alpine Test Site Guetsch. Handbuch und Fachtagung

    Energy Technology Data Exchange (ETDEWEB)

    Cattin, R.

    2008-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the influence of icing-up on the operation of wind turbines in mountainous areas. Within the Swiss research project 'Alpine Test Site Guetsch', extensive icing studies were carried out at the Guetsch site near Andermatt, Switzerland. This document deals with the following subjects: Information about ice formation on structures, in particular with respect to wind turbines, standards and international research activities, wind measurements under icing-up conditions, estimation of the frequency of icing-up conditions, effects of icing-up on wind turbines, ice detection, measures available for de-icing and anti-icing as well as ice throw. A list of factors to be taken into account by the planners and operators of wind turbines in alpine environments is presented.

  17. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.

    Science.gov (United States)

    Kimball, Kenneth D; Davis, Michael L; Weihrauch, Douglas M; Murray, Georgia L D; Rancourt, Kenneth

    2014-09-01

    • Most alpine plants in the Northeast United States are perennial and flower early in the growing season, extending their limited growing season. Concurrently, they risk the loss of reproductive efforts to late frosts. Quantifying long-term trends in northeastern alpine flower phenology and late-spring/early-summer frost risk is limited by a dearth of phenology and climate data, except for Mount Washington, New Hampshire (1916 m a.s.l.).• Logistic phenology models for three northeastern US alpine species (Diapensia lapponica, Carex bigelowii and Vaccinium vitis-idaea) were developed from 4 yr (2008-2011) of phenology and air temperature measurements from 12 plots proximate to Mount Washington's long-term summit meteorological station. Plot-level air temperature, the logistic phenology models, and Mount Washington's climate data were used to hindcast model yearly (1935-2011) floral phenology and frost damage risk for the focal species.• Day of year and air growing degree-days with threshold temperatures of -4°C (D. lapponica and C. bigelowii) and -2°C (V. vitis-idaea) best predicted flowering. Modeled historic flowering dates trended significantly earlier but the 77-yr change was small (1.2-2.1 d) and did not significantly increase early-flowering risk from late-spring/early-summer frost damage.• Modeled trends in phenological advancement and sensitivity for three northeastern alpine species are less pronounced compared with lower elevations in the region, and this small shift in flower timing did not increase risk of frost damage. Potential reasons for limited earlier phenological advancement at higher elevations include a slower warming trend and increased cloud exposure with elevation and/or inadequate chilling requirements. © 2014 Botanical Society of America, Inc.

  18. Environmental effects on fine-scale spatial genetic structure in four Alpine keystone forest tree species.

    Science.gov (United States)

    Mosca, Elena; Di Pierro, Erica A; Budde, Katharina B; Neale, David B; González-Martínez, Santiago C

    2018-02-01

    Genetic responses to environmental changes take place at different spatial scales. While the effect of environment on the distribution of species' genetic diversity at large geographical scales has been the focus of several recent studies, its potential effects on genetic structure at local scales are understudied. Environmental effects on fine-scale spatial genetic structure (FSGS) were investigated in four Alpine conifer species (five to eight populations per species) from the eastern Italian Alps. Significant FSGS was found for 11 of 25 populations. Interestingly, we found no significant differences in FSGS across species but great variation among populations within species, highlighting the importance of local environmental factors. Interannual variability in spring temperature had a small but significant effect on FSGS of Larix decidua, probably related to species-specific life history traits. For Abies alba, Picea abies and Pinus cembra, linear models identified spring precipitation as a potentially relevant climate factor associated with differences in FSGS across populations; however, models had low explanatory power and were strongly influenced by a P. cembra outlier population from a very dry site. Overall, the direction of the identified effects is according to expectations, with drier and more variable environments increasing FSGS. Underlying mechanisms may include climate-related changes in the variance of reproductive success and/or environmental selection of specific families. This study provides new insights on potential changes in local genetic structure of four Alpine conifers in the face of environmental changes, suggesting that new climates, through altering FSGS, may also have relevant impacts on plant microevolution. © 2017 John Wiley & Sons Ltd.

  19. Gulf of Mexico dead zone - the last 150 years

    Science.gov (United States)

    Osterman, Lisa; Swarzenski, P.W.; Poore, R.Z.

    2006-01-01

    'Gulf of Mexico Dead Zone-The Last 150 Years' discusses the dead zone that forms seasonally in the northern Gulf of Mexico when subsurface waters become depleted in dissolved oxygen and cannot support most life.

  20. Alpine ibex males grow large horns at no survival cost for most of their lifetime.

    Science.gov (United States)

    Toïgo, Carole; Gaillard, Jean-Michel; Loison, Anne

    2013-12-01

    Large horns or antlers require a high energy allocation to produce and carry both physiological and social reproductive costs. Following the principle of energy allocation that implies trade-offs among fitness components, growing large weapons early in life should thus reduce future growth and survival. Evidence for such costs is ambiguous, however, partly because individual heterogeneity can counterbalance trade-offs. Individuals with larger horns or antlers may be of better quality and thus have a greater capacity to survive. We investigated trade-offs between male early horn growth and future horn growth, baseline mortality, onset of actuarial senescence, and rate of ageing in an Alpine ibex (Capra ibex ibex) population. Horn growth of males in early life was positively correlated to their horn length throughout their entire life. Cohort variation and individual heterogeneity both accounted for among-individual variation in horn length, suggesting both long-lasting effects of early life conditions and individual-specific horn growth trajectories. Early horn growth did not influence annual survival until 12 years of age, indicating that males do not invest in horn growth at survival costs over most of their lifetime. However, males with fast-growing horns early in life tended to have lower survival at very old ages. Individual heterogeneity, along with the particular life-history tactic of male ibex (weak participation to the rut until an old age after which they burn out in high mating investment), are likely to explain why the expected trade-off between horn growth and survival does not show up, at least until very old ages.

  1. New Constraints for Tectono-Thermal Alpine Evolution of the Pyrenees: Combining Zircon Fission-Track and (U-Th)/He Analyses with Raman Spectrometry and In-Situ K-Ar Geochronology

    Science.gov (United States)

    Waldner, M.; Bellahsen, N.; Mouthereau, F.; Pik, R.; Bernet, M.; Scaillet, S.; Rosenberg, C.

    2017-12-01

    The pyrenean range was formed by the convergence of European and Iberian plates following the inversion of the Mesozoic rifting in the north of Pyrenees. In the Axial Zone, the collision caused an antiformal nappe-stacking of tectonic units. Recent studies pointed out the importance of pre-collision structural and thermal inheritance that may play a major role for orogeny such as: 1) Paleozoic Variscan inheritance; 2) Mesozoic rift-related high geothermal gradients, which are maintained during the onset of convergence in the North Pyrenean Zone. From a mineralogical point of view, pre-collision feldspars have been destabilized and influenced the development of alpine phyllonite in brittle-ductile conditions which suggests a weak crustal behavior during the formation of the orogenic wedge. Our aim is to get a better understanding of alpine deformation and exhumation by coupling different thermochronological, geochronological and thermometric methods. We document the thermal evolution of each tectonic unit by using low-temperature thermochronometers (Zircon Fission Tracks, U-Th/He on zircons including laser ablation profiles). Our data on vertical profiles combined to existing dataset on apatite allows to model alpine exhumation across the Axial zone. Structural observations through alpine thrusts coupled to geochronology (in situ K/Ar on phengites), Raman and chlorite-phengite thermo(baro)metry provide new key data to unravel the alpine evolution of the Pyrenees. According to preliminary ZFT results on granite massifs in the central part of Pyrenean Axial zone (near ECORS profile), exhumation ages potentially indicates a migration of exhumation towards the south. Exhumation ages of the northern massifs seems to have preserved the North Pyrenean Cretaceous rift evolution. Further south, the onset of exhumation is as old as Paleocene, which precedes the Eocene ages of the literature. The low burial estimated in the northern massifs may indicate a high thermal gradient

  2. Polyhalite microfabrics in an Alpine evaporite mélange: Hallstatt, Eastern Alps.

    Science.gov (United States)

    Schorn, Anja; Neubauer, Franz; Bernroider, Manfred

    2013-01-01

    In the Hallstatt salt mine (Austria), polyhalite rocks occur in 0.5-1 m thick and several metre long tectonic lenses within the protocataclasite to protomylonite matrix of the Alpine Haselgebirge Fm.. Thin section analysis of Hallstatt polyhalites reveals various fabric types similar to metamorphic rocks of crust-forming minerals, e.g. quartz and feldspar. Polyhalite microfabrics from Hallstatt include: (1) polyhalite mylonites, (2) metamorphic reaction fabrics, (3) vein-filling, fibrous polyhalite and (4) cavity-filling polyhalite. The polyhalite mylonites contain a wide range of shear fabrics commonly known in mylonitic quartzo-feldspathic shear zones within the ductile crust and developed from a more coarse-grained precursor rock. The mylonites are partly overprinted by recrystallised, statically grown polyhalite grains. Metamorphic reaction fabrics of polyhalite fibres between blödite (or astrakhanite) [Na 2 Mg(SO 4 ) 2 .4H 2 O] and anhydrite have also been found. According to previous reports, blödite may occur primarily as nodules or intergrown with löweite. Reaction fabrics may have formed by exsolution, (re-)crystallisation, parallel growth or replacement. This fabric type was only found in one sample in relation with the decomposition of blödite at ca. 61 °C in the presence of halite or slightly above, testifying, therefore, a late stage prograde fabric significantly younger than the main polyhalite formation.

  3. Correlation of the seasonal isotopic amplitude of precipitation with annual evaporation and altitude in alpine regions

    Energy Technology Data Exchange (ETDEWEB)

    Jódar, J., E-mail: jjb.aquageo@gmail.com [Department of Civil Engineering and Environment, Technical University of Catalonia (UPC), Barcelona (Spain); Custodio, E., E-mail: emilio.custodio@upc.edu [Department of Civil Engineering and Environment, Technical University of Catalonia (UPC), Barcelona (Spain); Liotta, M., E-mail: marcello.liotta@unina2.it [Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Seconda Università di Napoli, Caserta (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Palermo, Palermo (Italy); Lambán, L.J., E-mail: javier.lamban@igme.es [Geological Institute of Spain (IGME) (Spain); Herrera, C., E-mail: cherrera@ucn.cl [Departamento de Ciencias Geológicas, Universidad Católica del Norte UCN, Antofagasta (Chile); Centro para el Desarrollo de Tecnologías de Explotación Sustentable de Recursos Hídricos en Zonas Áridas (CEITSAZA), Antofagasta (Chile); Martos-Rosillo, S., E-mail: s.martos@igme.es [Geological Institute of Spain (IGME) (Spain); Sapriza, G., E-mail: gsapriza@gmail.com [Departamento del Agua, Centro Universitario Región Litoral Norte, Universidad de la República del Uruguay, Salto (Uruguay); Rigo, T., E-mail: tomeur@meteo.cat [Meteorological Service of Catalonia, Barcelona (Spain)

    2016-04-15

    The time series of stable water isotope composition relative to IAEA-GNIP meteorological stations located in alpine zones are analyzed in order to study how the amplitude of the seasonal isotopic composition of precipitation (A{sub δ}) varies along a vertical transect. A clear relationship between A{sub δ} and local evaporation is obtained, with slopes of − 0.87 ‰/100 mm/yr and − 7.3 ‰/100 mm/yr for A{sub δ{sup 1}{sup 8}O} and A{sub δ{sup 2}H}, respectively. When all sampling points of the vertical transect receive the same moisture sources, then a linear relationship between A{sub δ} and elevation is obtained, with vertical gradients of 0.16 ‰/100 mm/yr and 1.46 ‰/100 mm/yr for A{sub δ{sup 1}{sup 8}O} and A{sub δ{sup 2}H}, respectively. - Highlights: • Amplitude of seasonal isotopic composition of rainfall depends on local evaporation. • Isotopic amplitude depends on elevation if the air moisture sources are common. • Local evaporation is controlled by atmospheric local and synoptic conditions.

  4. Correlation of the seasonal isotopic amplitude of precipitation with annual evaporation and altitude in alpine regions

    International Nuclear Information System (INIS)

    Jódar, J.; Custodio, E.; Liotta, M.; Lambán, L.J.; Herrera, C.; Martos-Rosillo, S.; Sapriza, G.; Rigo, T.

    2016-01-01

    The time series of stable water isotope composition relative to IAEA-GNIP meteorological stations located in alpine zones are analyzed in order to study how the amplitude of the seasonal isotopic composition of precipitation (A δ ) varies along a vertical transect. A clear relationship between A δ and local evaporation is obtained, with slopes of − 0.87 ‰/100 mm/yr and − 7.3 ‰/100 mm/yr for A δ 18 O and A δ 2 H , respectively. When all sampling points of the vertical transect receive the same moisture sources, then a linear relationship between A δ and elevation is obtained, with vertical gradients of 0.16 ‰/100 mm/yr and 1.46 ‰/100 mm/yr for A δ 18 O and A δ 2 H , respectively. - Highlights: • Amplitude of seasonal isotopic composition of rainfall depends on local evaporation. • Isotopic amplitude depends on elevation if the air moisture sources are common. • Local evaporation is controlled by atmospheric local and synoptic conditions.

  5. Frictional properties of exhumed fault gouges in DFDP-1 cores, Alpine Fault, New Zealand

    Science.gov (United States)

    Boulton, Carolyn; Moore, Diane E.; Lockner, David A.; Toy, Virginia G.; Townend, John; Southerland, Rupert

    2014-01-01

    Principal slip zone gouges recovered during the Deep Fault Drilling Project (DFDP-1), Alpine Fault, New Zealand, were deformed in triaxial friction experiments at temperatures, T, of up to 350°C, effective normal stresses, σn′, of up to 156 MPa, and velocities between 0.01 and 3 µm/s. Chlorite/white mica-bearing DFDP-1A blue gouge, 90.62 m sample depth, is frictionally strong (friction coefficient, μ, 0.61–0.76) across all experimental conditions tested (T = 70–350°C, σn′ = 31.2–156 MPa); it undergoes a transition from positive to negative rate dependence as T increases past 210°C. The friction coefficient of smectite-bearing DFDP-1B brown gouge, 128.42 m sample depth, increases from 0.49 to 0.74 with increasing temperature and pressure (T = 70–210°C, σn′ = 31.2–93.6 MPa); the positive to negative rate dependence transition occurs as T increases past 140°C. These measurements indicate that, in the absence of elevated pore fluid pressures, DFDP-1 gouges are frictionally strong under conditions representative of the seismogenic crust.

  6. The crustal velocity field mosaic of the Alpine Mediterranean area (Italy): Insights from new geodetic data

    Science.gov (United States)

    Farolfi, Gregorio; Del Ventisette, Chiara

    2016-04-01

    A new horizontal crustal velocity field of Alpine Mediterranean area was determined by continuous long time series (6.5 years) of 113 Global Navigation Satellite System (GNSS) permanent stations. The processing was performed using state-of-the-art absolute antenna phase center correction model and recomputed precise IGS orbits available since April 2014. Moreover, a new more accurate tropospheric mapping function for geodetic applications was adopted. Results provide a new detailed map of the kinematics throughout the entire study area. This area is characterized by a complex tectonic setting driven by the interaction of Eurasian and African plates. The eastern Alps, Corsica, Sardinia and the Tyrrhenian Sea (which is covered only by interpolation data) show small velocity residuals with respect to the Eurasian plate. The whole Apennines axis discriminates two different velocity patterns, the Adriatic and the Tyrrhenian area. The area around Messina Strait, which separates peninsular Italy and Sicily, represents a poorly understood region. Results identify an important boundary zone between two different domains, Calabria and Sicily, which are characterized by different crustal motions. The northeastern part of Sicily and Calabria move like Adriatic area, whilst the rest of Sicily, Malta and Lampedusa are dominated by African motion.

  7. Adjustment of spatio-temporal precipitation patterns in a high Alpine environment

    Science.gov (United States)

    Herrnegger, Mathew; Senoner, Tobias; Nachtnebel, Hans-Peter

    2018-01-01

    This contribution presents a method for correcting the spatial and temporal distribution of precipitation fields in a mountainous environment. The approach is applied within a flood forecasting model in the Upper Enns catchment in the Central Austrian Alps. Precipitation exhibits a large spatio-temporal variability in Alpine areas. Additionally the density of the monitoring network is low and measurements are subjected to major errors. This can lead to significant deficits in water balance estimation and stream flow simulations, e.g. for flood forecasting models. Therefore precipitation correction factors are frequently applied. For the presented study a multiplicative, stepwise linear correction model is implemented in the rainfall-runoff model COSERO to adjust the precipitation pattern as a function of elevation. To account for the local meteorological conditions, the correction model is derived for two elevation zones: (1) Valley floors to 2000 m a.s.l. and (2) above 2000 m a.s.l. to mountain peaks. Measurement errors also depend on the precipitation type, with higher magnitudes in winter months during snow fall. Therefore, additionally, separate correction factors for winter and summer months are estimated. Significant improvements in the runoff simulations could be achieved, not only in the long-term water balance simulation and the overall model performance, but also in the simulation of flood peaks.

  8. Imaging the Alpine Fault: preliminary results from a detailed 3D-VSP experiment at the DFDP-2 drill site in Whataroa, New Zealand

    Science.gov (United States)

    Lay, Vera; Bodenburg, Sascha; Buske, Stefan; Townend, John; Kellett, Richard; Savage, Martha; Schmitt, Douglas; Constantinou, Alexis; Eccles, Jennifer; Lawton, Donald; Hall, Kevin; Bertram, Malcolm; Gorman, Andrew

    2017-04-01

    The plate-bounding Alpine Fault in New Zealand is an 850 km long transpressive continental fault zone that is late in its earthquake cycle. The Deep Fault Drilling Project (DFDP) aims to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth. Previously analysed 2D reflection seismic data image the main Alpine Fault reflector at a depth of 1.5-2.2 km with a dip of approximately 48° to the southeast below the DFDP-2 borehole. Additionally, there are indications of a more complex 3D fault structure with several fault branches which have not yet been clearly imaged in detail. For that reason we acquired a 3D-VSP seismic data set at the DFDP-2 drill site in January 2016. A zero-offset VSP and a walk-away VSP survey were conducted using a Vibroseis source. Within the borehole, a permanently installed "Distributed Acoustic Fibre Optic Cable" (down to 893 m) and a 3C Sercel slimwave tool (down to 400 m) were used to record the seismic wavefield. In addition, an array of 160 three-component receivers with a spacing of 10 m perpendicular and 20 m parallel to the main strike of the Alpine Fault was set up and moved successively along the valley to record reflections from the main Alpine Fault zone over a broad depth range and to derive a detailed 3D tomographic velocity model in the hanging wall. We will show a detailed 3D velocity model derived from first-arrival traveltime tomography. Subsets of the whole data set were analysed separately to estimate the corresponding ray coverage and the reliability of the observed features in the obtained velocity model. By testing various inversion parameters and starting models, we derived a detailed near-surface velocity model that reveals the significance of the old glacial valley structures. Hence, this new 3D model improves the velocity model derived previously from a 2D seismic profile line in that area. Furthermore, processing of the dense 3C data

  9. Milk yield and quality of Aosta cattle breeds in Alpine pasture

    Directory of Open Access Journals (Sweden)

    M. Bianchi

    2010-01-01

    Full Text Available Alpine breeding systems are an example of sustainable integration between land management and productive processes; the inherent forage exploitation has characterized and modified landscape and environment. Moreover, alpine pasture has increased its importance for the multifunctional features attributed in the recent years to mountain productive activities (Agabriel et al., 2001.

  10. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador

    NARCIS (Netherlands)

    Bader, M.; Geloof, van I.; Rietkerk, M.

    2007-01-01

    Many tropical alpine treelines lie below their climatic potential, because of natural or anthropogenic causes. Forest extension above the treeline depends on the ability of trees to establish in the alpine environment. This ability may be limited by different factors, such as low temperatures,

  11. High solar radiation hinders tree regeneration above the alpine treeline in northern Ecuador

    NARCIS (Netherlands)

    Bader, M.Y.; Geloof, I. van; Rietkerk, M.G.

    2007-01-01

    Many tropical alpine treelines lie below their climatic potential, because of natural or anthropogenic causes. Forest extension above the treeline depends on the ability of trees to establish in the alpine environment. This ability may be limited by different factors, such as low

  12. A simple spatial model exploring positive feedbacks at tropical alpine treelines

    NARCIS (Netherlands)

    Bader, M.; Rietkerk, M.; Bregt, A.K.

    2008-01-01

    Climate change could cause alpine treelines to shift in altitude or to change their spatial pattern, but little is known about the drivers of treeline dynamics and patterning. The position and patterns of tropical alpine treelines are generally attributed to land use, especially burning. Species

  13. Intermediate and long-term anaerobic performance of elite Alpine skiers.

    Science.gov (United States)

    Bacharach, D W; von Duvillard, S P

    1995-03-01

    Physiological requirements of Alpine skiing, demanding power from both aerobic and anaerobic sources, were first reported in 1965 by Bengt Saltin and coworkers. An update on the physiology of Alpine skiing was presented by Karlsson and colleagues in 1978, and their work remains a benchmark for most current research dealing with Alpine skiers. These works have identified muscular strength and complex motor skill abilities as essential to the competitive ski racer. The energy demands of Alpine ski racing dominate the range between 45 and 2 min. Since the late 1970s, many researchers have reported a variety of tests that associate test scores to skiing performance. Traditionally, short tests of anaerobic power such as the 30-s Wingate test have been used to reflect anaerobic capacity. Only recently have researchers and coaches begun to question whether a test that is shorter in duration than most skiing performances can estimate anaerobic power as it relates to Alpine ski racing. This study reviews current literature relative to physiological requirements for Alpine skiing as well as relating 18 nationally ranked male (N = 10) and female (N = 8) Alpine ski racers' USSA national points lists for slalom and giant slalom to power measures from 30-s and 90-s Wingate cycle ergometer tests. Further directions of physiological research in Alpine skiing are also offered.

  14. Dairy cattle on Norwegian alpine rangelands – grazing preferences and milk quality

    NARCIS (Netherlands)

    Sickel, H; Abrahamsen, R K; Eldegard, K; Lunnan, T; Norderhaug, A; Petersen, M.A.; Sickel, M.; Steenhuisen, F.; Ohlson, M.

    2014-01-01

    The results from the study ‘Effects of vegetation and grazing preferences on the quality of alpine dairy products’ will be presented. The main objective of the project was to investigate the connections bet - ween alpine rangeland vegetation, landscape use and grazing preferences of free ranging

  15. Crustal structure and composition to the S of the Spanish Central System: Effect of Alpine reactivation in an internal Variscan domain

    Science.gov (United States)

    Ayarza, Puy; Carbonell, Ramón; Ehsan, Siddique; Martí, David; Palomeras, Immaculada; Martínez Poyatos, David

    2016-04-01

    The ALCUDIA Project has acquired vertical incidence and wide-angle reflection seismic data in the Variscan Central Iberian Zone of Spain. The NE-SW, ~300 km long profiles sample an area going from the suture between the Variscan Central Iberian and the Ossa-Morena Zones in the S to the boundary between the former and the Alpine Central System to the N. Although crustal thickness appears to be fairly constant along most of the Central Iberian Zone, a gradual increase of 3-5 km in the northern half of the profile is clearly imaged by the wide-angle data. This increase in the Moho depth is accompanied by a decrease in the thickness of the layered lower crust from the Toledo Anatectic Complex to the N. Right in this area, the amount of Variscan metasediments diminish and the surface geology is characterized by granites, migmatites and by the Madrid Basin, a foreland basin of the Alpine Central System that is part of the bigger Tagus Basin. The increase in crustal thickness identified in the neighborhood of the Central System is also accompanied by a slight increase in the Poisson ratio values, which even though still below 0.25, they are higher than those observed in the southern part of the profile, far from the influence of the late Variscan melting episode and of that of the Alpine tectonics. Two scenarios are considered to take part in the Moho deepening near the Central System: Firstly, the Alpine reactivation causing this mountain belt has increased the crustal load giving rise to a foreland basin and a moderate crustal thickening. Also, a gradual change in crustal composition to the N, incorporating denser and more basic rocks, might also play a role in the average crustal density and contribute to Moho deepening by isostatic readjustment. The importance of each of these process is, as yet, unknown. However, the next acquisition of the CIMDEF project wide-angle reflection dataset across the central part of the Iberian Peninsula, crossing the Central System, will

  16. Estimation of gene flow into fragmented populations of Bursera simaruba (Burseraceae) in the dry-forest life zone of Puerto Rico.

    Science.gov (United States)

    Dunphy, Brian K; Hamrick, James L

    2007-11-01

    We examined the impact of habitat fragmentation on gene flow in populations of the neotropical tree Bursera simaruba. In particular, we compared the effectiveness of three common techniques to estimate gene flow in the context of a highly disturbed system. Paternity analysis on emerging seedlings from eight small (N = 3 to 9) stands of trees showed that between 45% and 100% of seedlings were sired from outside their stand, indicating pollen moved readily over the isolation distances examined. Based on six populations of 21-24 trees each, estimates of allozyme genetic diversity (P(s) = 73.3%; H(e) = 0.244) were higher than those reported for species with similar life history traits. Indirect, F(ST)-based gene flow estimates for these six populations yielded an estimate of 3.57 migrants per generation, although possible violations of model assumptions limit the reliability of the estimate. A twogener analysis showed pollen moved either 320 m or 361 m and that there were only 2.46 effective pollen donors per maternal tree. Despite the potential for long-distance pollen movement, seed abortion was high, especially in stands with fewer than four trees. Population size, rather than isolation distance, appears to limit reproduction in the populations examined.

  17. The application of refraction seismics in alpine permafrost studies

    Science.gov (United States)

    Draebing, Daniel

    2017-04-01

    Permafrost studies in alpine environments focus on landslides from permafrost-affected rockwalls, landslide deposits or periglacial sediment dynamics. Mechanical properties of soils or rocks are influenced by permafrost and changed strength properties affect these periglacial processes. To assess the effects of permafrost thaw and degradation, monitoring techniques for permafrost distribution and active-layer thaw are required. Seismic wave velocities are sensitive to freezing and, therefore, refraction seismics presents a valuable tool to investigate permafrost in alpine environments. In this study, (1) laboratory and field applications of refraction seismics in alpine environments are reviewed and (2) data are used to quantify effects of rock properties (e.g. lithology, porosity, anisotropy, saturation) on p-wave velocities. In the next step, (3) influence of environmental factors are evaluated and conclusions drawn on permafrost differentiation within alpine periglacial landforms. This study shows that p-wave velocity increase is susceptible to porosity which is pronounced in high-porosity rocks. In low-porosity rocks, p-wave velocity increase is controlled by anisotropy decrease due to ice pressure (Draebing and Krautblatter, 2012) which enables active-layer and permafrost differentiation at rockwall scale (Krautblatter and Draebing, 2014; Draebing et al., 2016). However, discontinuity distribution can result in high anisotropy effects on seismic velocities which can impede permafrost differentiation (Phillips et al., 2016). Due to production or deposition history, porosity can show large spatial differences in deposited landforms. Landforms with large boulders such as rock glaciers and moraines show highest p-wave velocity differences between active-layer and permafrost which facilitates differentiation (Draebing, 2016). Saturation with water is essential for the successful application of refraction seismics for permafrost detection and can be controlled at

  18. [Recreational and competitive alpine skiing. Typical injury patterns and possibilities for prevention].

    Science.gov (United States)

    Brucker, P U; Katzmaier, P; Olvermann, M; Huber, A; Waibel, K; Imhoff, A B; Spitzenpfeil, P

    2014-01-01

    Alpine skiing is the most popular winter sport discipline in Germany and is performed by more than 4 million recreational sportsmen and ski racing athletes. Compared to other sports, however, the injury rate in alpine skiing is quite high. Especially the knee joint is the most commonly injured area of the musculoskeletal system. Knee injuries are classified as severe in a high percentage of cases. In this review article, epidemiologic data and typical injury patterns in recreational alpine skiing and in competitive alpine ski racing are compared. In addition, the potentials of preventive methods in alpine skiing are presented and evaluated with a special focus on orthotic devices and protection wear as injury prevention equipment.

  19. Protection of large alpine infrastructures against natural hazards

    Science.gov (United States)

    Robl, Jörg; Scheikl, Manfred; Hergarten, Stefan

    2013-04-01

    Large infrastructures in alpine domains are threatened by a variety of natural hazards like debris flows, rock falls and snow avalanches. Especially linear infrastructure including roads, railway lines, pipe lines and power lines passes through the entire mountain range and the impact of natural hazards can be expected along a distance over hundreds of kilometers. New infrastructure projects like storage power plants or ski resorts including access roads are often located in remote alpine domains without any historical record of hazardous events. Mitigation strategies against natural hazards require a detailed analysis on the exposure of the infrastructure to natural hazards. Following conventional concepts extensive mapping and documentation of surface processes over hundreds to several thousand km² of steep alpine domain is essential but can be hardly performed. We present a case study from the Austrian Alps to demonstrate the ability of a multi-level concept to describe the impact of natural hazards on infrastructure by an iterative process. This includes new state of the art numerical models, modern field work and GIS-analysis with an increasing level of refinement at each stage. A set of new numerical models for rock falls, debris flows and snow avalanches was designed to operate with information from field in different qualities and spatial resolutions. Our analysis starts with simple and fast cellular automata for rockfalls and debrisflows to show the exposure of the infrastructure to natural hazards in huge domains and detects "high risk areas" that are investigated in more detail in field in the next refinement level. Finally, sophisticated 2D- depth averaged fluid dynamic models for all kinds of rapid mass movements are applied to support the development of protection structures.

  20. A molecular phylogeny of Alpine subterranean Trechini (Coleoptera: Carabidae)

    Science.gov (United States)

    2013-01-01

    Background The Alpine region harbours one of the most diverse subterranean faunas in the world, with many species showing extreme morphological modifications. The ground beetles of tribe Trechini (Coleoptera, Carabidae) are among the best studied and widespread groups with abundance of troglobionts, but their origin and evolution is largely unknown. Results We sequenced 3.4 Kb of mitochondrial (cox1, rrnL, trnL, nad1) and nuclear (SSU, LSU) genes of 207 specimens of 173 mostly Alpine species, including examples of all subterranean genera but two plus a representation of epigean taxa. We applied Bayesian methods and maximum likelihood to reconstruct the topology and to estimate divergence times using a priori rates obtained for a related ground beetle genus. We found three main clades of late Eocene-early Oligocene origin: (1) the genus Doderotrechus and relatives; (2) the genus Trechus sensu lato, with most anisotopic subterranean genera, including the Pyrenean lineage and taxa from the Dinaric Alps; and (3) the genus Duvalius sensu lato, diversifying during the late Miocene and including all subterranean isotopic taxa. Most of the subterranean genera had an independent origin and were related to epigean taxa of the same geographical area, but there were three large monophyletic clades of exclusively subterranean species: the Pyrenean lineage, a lineage including subterranean taxa from the eastern Alps and the Dinarides, and the genus Anophthalmus from the northeastern Alps. Many lineages have developed similar phenotypes independently, showing extensive morphological convergence or parallelism. Conclusions The Alpine Trechini do not form a homogeneous fauna, in contrast with the Pyrenees, and show a complex scenario of multiple colonisations of the subterranean environment at different geological periods and through different processes. Examples go from populations of an epigean widespread species going underground with little morphological modifications to

  1. Psychological Well-Being in Italian Families: An Exploratory Approach to the Study of Mental Health Across the Adult Life Span in the Blue Zone

    Directory of Open Access Journals (Sweden)

    Paul Kenneth Hitchcott

    2017-08-01

    Full Text Available Self-reported measures of psychological well-being and depressive symptoms were examined across differently aged family members, while controlling for the impact of marital status and personal satisfaction about family and non-family relations. Twenty-one grandchildren (i.e., ages 21-36 years were recruited with their parents (i.e., 48-66 years old and grandparents (i.e., 75-101 years of age in the ‘blue zone’ of Ogliastra, an Italian area known for the longevity of its inhabitants. Each participant was individually presented a battery of questionnaires assessing their lifestyle and several perceived mental health indices, including the Warwick-Edinburgh Mental Well-Being Scale (WEMWBS, Tennant et al., 2007, and the Center for Epidemiologic Studies Depression Scale (i.e., CES-D, Radloff, 1977. After assessing the level of concordance among adults sharing the same context, the Hierarchical Linear Modeling (HLM approach was used to assess the nested dataset. It was found that family membership (i.e., grandchildren versus parents and grandparents predicted the WEMWBS score but not the CES-D when the impact of marital status and personal satisfaction about social (i.e., family and non-family ties was controlled for. Moreover, two separate repeated-measure Analyses of Variance (ANOVAs documented similar level of personal satisfaction about social relationships across the three family groups. In conclusions, satisfying social ties with friends and family members together with an active socially oriented life style seems to contribute to the promotion of mental health in adult span.

  2. Psychological Well-Being in Italian Families: An Exploratory Approach to the Study of Mental Health Across the Adult Life Span in the Blue Zone

    Science.gov (United States)

    Hitchcott, Paul Kenneth; Fastame, Maria Chiara; Ferrai, Jessica; Penna, Maria Pietronilla

    2017-01-01

    Self-reported measures of psychological well-being and depressive symptoms were examined across differently aged family members, while controlling for the impact of marital status and personal satisfaction about family and non-family relations. Twenty-one grandchildren (i.e., ages 21-36 years) were recruited with their parents (i.e., 48-66 years old) and grandparents (i.e., 75-101 years of age) in the ‘blue zone’ of Ogliastra, an Italian area known for the longevity of its inhabitants. Each participant was individually presented a battery of questionnaires assessing their lifestyle and several perceived mental health indices, including the Warwick-Edinburgh Mental Well-Being Scale (WEMWBS, Tennant et al., 2007), and the Center for Epidemiologic Studies Depression Scale (i.e., CES-D, Radloff, 1977). After assessing the level of concordance among adults sharing the same context, the Hierarchical Linear Modeling (HLM) approach was used to assess the nested dataset. It was found that family membership (i.e., grandchildren versus parents and grandparents) predicted the WEMWBS score but not the CES-D when the impact of marital status and personal satisfaction about social (i.e., family and non-family) ties was controlled for. Moreover, two separate repeated-measure Analyses of Variance (ANOVAs) documented similar level of personal satisfaction about social relationships across the three family groups. In conclusions, satisfying social ties with friends and family members together with an active socially oriented life style seems to contribute to the promotion of mental health in adult span. PMID:28904594

  3. Climate change and tourism in the alpine regions of Switzerland

    OpenAIRE

    Bürki, R; Abegg, B; Elsasser, H

    2007-01-01

    For many alpine areas in Switzerland, winter tourism is the most important source of income, and snow-reliability is one of the key elements of the offers made by tourism in the Alps. 85% of Switzerland’s current ski resorts can be designated as snow-reliable. If climate change occurs, the level of snow-reliability will rise from 1200 m up to 1800 m over the next few decades. Only 44% of the ski resorts wouldthen still be snow-reliable. While some regions may be able to maintain their winter ...

  4. Carboxylic acids in high elevation Alpine glacier snow

    Science.gov (United States)

    Maupetit, FrançOis; Delmas, Robert J.

    1994-08-01

    Fresh-snow samples were collected on an event basis on the Glacier de la Girose (3360 m above sea level (asl)) in the southern French Alps, during winters and early springs 1990 and 1991. In addition, a 13-m firn core was recovered in 1991 at the Col du Dôme (4250 m asl), a cold glacier in the northern French Alps, offering the complete seasonal record of alpine precipitation during 3.5 years. All samples were analyzed for total formate and acetate and for major ions using ion chromatography. The acidity-alkalinity was accurately measured using a titration technique. An almost perfect ion balance was achieved for this data set. In absence of Saharan dust transport, the high alpine snow is slightly acid (H+ ˜ 2-20 μEq L-1). HCOOT and CH3COOT are generally present in alpine acid snow at very low concentrations: 0.3-0.6 μEq L-1 in winter (January to February) and 0.6-2 μEq L-1 in early spring (March to April). At Col du Dôme, total acetate concentrations of ˜1 μEq L-1 are observed in summer. It remains unclear from our results what the major sources of carboxylic acids are, and in particular of acetic acid, in the wintertime continental free troposphere, while it appears that formic and acetic acids are presumably mainly derived from natural sources in spring and summer. The total contribution of formic and acetic acids to free acidity is, on average, less than 15-20%. Contrary to major ions which are present in wider concentration ranges and show large variations from one snowfall to the other, HCOOT and CH3COOT are surprisingly stable in acid alpine snow. The only significant deviation of HCOOT and CH3COOT from their mean values (up to 9 and 5 μEq L-1, respectively) are observed in case of Saharan dust transport, when precipitation pH is shifted from acid toward alkaline conditions. These observations suggest a pH partitioning effect between the aqueous and gas phases, formic and acetic acids being dissolved and neutralized as salts in alkaline cloudwater

  5. Forests and Open Woodlands of Alpine-Taiga Landscapes of the Bureya Mountains (Diversity, Structure, and Dynamics

    Directory of Open Access Journals (Sweden)

    S. V. Osipov

    2015-02-01

    Full Text Available Many of classic questions of vegetation and forest sciences do not lose their relevance because they are basic knowledge for solving a large number of scientific and practical tasks. The aims of this paper are to describe the coenotic diversity, structure, catastrophic and successional changes of forests and open woodlands in alpine-taiga landscapes of the Bureya Mountains, and to consider some of the approaches that are promising for solving such problems. The analysis of some important characteristics of forest and open woodland vegetation is executed. It is shown that the peculiarities of woodland vegetation are not always reflected in the classification schemes. Contrasting approaches to the classification of woodland vegetation are considered. The main diversity of forest and woodland communities, micro-, meso - and macrocomplexes of alpine-taiga landscapes of the Bureya Mountains is revealed. The main forest forming species of trees are the Ajan spruce (Picea ajanensis and Cajander larch (Larix cajanderi. The ecological-phytocoenological classification of forest and woodland vegetation is developed. A concept of the life form of vegetation is used as a common basis for the classification of vegetation of different structural types. The concept is considered as the multidimensional and multilevel characteristic of vegetation, which consists of at least three components: structural, dynamic and ecological-phytocoenotic types of vegetation. The scheme of vegetation cover zonality of alpine-taiga landscapes of the Bureya Mountains is revised on the basis of concepts of the zonal vegetation and the zonal habitats. Forest and open woodland vegetation form three subbelts: subalpine larch and spruce open woodlands, subalpine spruce and larch forests, taiga spruce and larch forests. The main disturbance factor in vegetation cover of the territory under consideration is fires. Main pyrogenic catastrophic changes and post-fire demutation successions

  6. Physiological response to etho-ecological stressors in male Alpine chamois: timescale matters!

    Science.gov (United States)

    Corlatti, Luca; Palme, Rupert; Lovari, Sandro

    2014-07-01

    From a life history perspective, glucocorticoids secreted by the neuroendocrine system, integrating different sources of stress through an adaptive feedback mechanism, may have important consequences on individual fitness. Although stress responses have been the object of several investigations, few studies have explored the role of proximate mechanisms responsible for the potential trade-offs between physiological stress and life history traits integrating social and environmental stressors. In 2011 and 2012, we collected data on faecal cortisol metabolites (FCM) in a marked male population of Alpine chamois, within the Gran Paradiso National Park (Italy). Using a model selection approach we analysed the effect of potential etho-ecological stressors such as age, social status (territorial vs. non-territorial males), minimum temperature, snow depth and precipitation on FCM variation. To correctly interpret environmentally and socially induced stress responses, we conducted model selections over multiple temporal scales defined a priori: year, cold months, spring, warm months, mating season. Over the year, FCM levels showed a negative relationship with minimum temperature, but altogether, climatic stressors had negligible effects on glucocorticoid secretion, possibly owing to good adaptations of chamois to severe weather conditions. Age was negatively related to FCM during the rut, possibly due to greater experience of older males in agonistic contests. Social status was an important determinant of FCM excretion: while both the `stress of subordination' and the `stress of domination' hypotheses received some support in spring and during the mating season, respectively, previous data suggest that only the latter may have detrimental fitness consequences on male chamois.

  7. What are the most crucial soil factors for predicting the distribution of alpine plant species?

    Science.gov (United States)

    Buri, A.; Pinto-Figueroa, E.; Yashiro, E.; Guisan, A.

    2017-12-01

    Nowadays the use of species distribution models (SDM) is common to predict in space and time the distribution of organisms living in the critical zone. The realized environmental niche concept behind the development of SDM imply that many environmental factors must be accounted for simultaneously to predict species distributions. Climatic and topographic factors are often primary included, whereas soil factors are frequently neglected, mainly due to the paucity of soil information available spatially and temporally. Furthermore, among existing studies, most included soil pH only, or few other soil parameters. In this study we aimed at identifying what are the most crucial soil factors for explaining alpine plant distributions and, among those identified, which ones further improve the predictive power of plant SDMs. To test the relative importance of the soil factors, we performed plant SDMs using as predictors 52 measured soil properties of various types such as organic/inorganic compounds, chemical/physical properties, water related variables, mineral composition or grain size distribution. We added them separately to a standard set of topo-climatic predictors (temperature, slope, solar radiation and topographic position). We used ensemble forecasting techniques combining together several predictive algorithms to model the distribution of 116 plant species over 250 sites in the Swiss Alps. We recorded the variable importance for each model and compared the quality of the models including different soil proprieties (one at a time) as predictors to models having only topo-climatic variables as predictors. Results show that 46% of the soil proprieties tested become the second most important variable, after air temperature, to explain spatial distribution of alpine plants species. Moreover, we also assessed that addition of certain soil factors, such as bulk soil water density, could improve over 80% the quality of some plant species models. We confirm that soil p

  8. Alpine Plant Monitoring for Global Climate Change; Analysis of the Four California GLORIA Target Regions

    Science.gov (United States)

    Dennis, A.; Westfall, R. D.; Millar, C. I.

    2007-12-01

    The Global Observation Research Initiative in Alpine Environments (GLORIA) is an international research project with the goal to assess climate-change impacts on vegetation in alpine environments worldwide. Standardized protocols direct selection of each node in the network, called a Target Region (TR), which consists of a set of four geographically proximal mountain summits at elevations extending from treeline to the nival zone. For each summit, GLORIA specifies a rigorous mapping and sampling design for data collection, with re-measurement intervals of five years. Whereas TRs have been installed in six continents, prior to 2004 none was completed in North America. In cooperation with the Consortium for Integrated Climate Research in Western Mountains (CIRMOUNT), California Native Plant Society, and the White Mountain Research Station, four TRs have been installed in California: two in the Sierra Nevada and two in the White Mountains. We present comparative results from analyses of baseline data across these four TRs. The number of species occurring in the northern Sierra (Tahoe) TR was 35 (16 not found in other TRs); in the central Sierra (Dunderberg) TR 65 species were found. In the White Mountains, 54 species were found on the granitic/volcanic soils TR and 46 (19 not found in other TRs) on the dolomitic soils TR. In all, we observed 83 species in the Sierra Nevada range TRs and 75 in the White Mountain TRs. Using a mixed model ANOVA of percent cover from summit-area-sections and quadrat data, we found primary differences to be among mountain ranges. Major soil differences (dolomite versus non-dolomite) also contribute to floristic differentiation. Aspect did not seem to contribute significantly to diversity either among or within target regions. Summit floras in each target region comprised groups of two distinct types of species: those with notably broad elevational ranges and those with narrow elevational ranges. The former we propose to be species that

  9. Analytical solutions for recession analyses of sloping aquifers - applicability on relict rock glaciers in alpine catchments

    Science.gov (United States)

    Pauritsch, Marcus; Birk, Steffen; Hergarten, Stefan; Kellerer-Pirklbauer, Andreas; Winkler, Gerfried

    2014-05-01

    Rock glaciers as aquifer systems in alpine catchments may strongly influence the hydrological characteristics of these catchments. Thus, they have a high impact on the ecosystem and potential natural hazards such as for example debris flow. Therefore, knowledge of the hydrodynamic processes, internal structure and properties of these aquifers is important for resource management and risk assessment. The investigation of such aquifers often turns out to be expensive and technically complicated because of their strongly limited accessibility. Analytical solutions of discharge recession provide a quick and easy way to estimate aquifer parameters. However, due to simplifying assumptions the validity of the interpretation is often questionable. In this study we compared results of an analytical solution of discharge recessions with results based on a numerical model. This was done in order to analyse the range of uncertainties and the applicability of the analytical method in alpine catchment areas. The research area is a 0.76 km² large catchment in the Seckauer Tauern Range, Austria. The dominant aquifer in this catchment is a rock glacier, namely the Schöneben Rock Glacier. This relict rock glacier (i.e. containing no permafrost at present) covers an area of 0.11 km² and is drained by one spring at the rock glacier front. The rock glacier consists predominantly of gneissic sediments (mainly coarse-grained, blocky at the surface) and extends from 1720 to 1905 m a.s.l.. Discharge of the rock glacier spring is automatically measured since 2002. Electric conductivity and water temperature is monitored since 2008. An automatic weather station was installed in 2011 in the central part of the catchment. Additionally data of geophysical surveys (refraction seismic and ground penetrating radar) have been used to analyse the base slope and inner structure of the rock glacier. The measured data are incorporated into a numerical model implemented in MODFLOW. The numerical

  10. Ecological implications of reduced pollen deposition in alpine plants: a case study using a dominant cushion plant species.

    Science.gov (United States)

    Reid, Anya; Hooper, Robyn; Molenda, Olivia; Lortie, Christopher J

    2014-01-01

    The reproductive assurance hypothesis states that self-incompatible female plants must produce twice the number of seeds relative to their self-compatible hermaphroditic counterparts to persist in gynodioecious populations. This is a viable life-history strategy, provided that pollination rates are sufficiently high. However, reduced pollination rates in alpine plants are likely due to climate induced plant-pollinator mismatches and general declines in pollinators. Using a gynodioecious population of the dominant plant Silene acaulis (Caryophyllaceae), we tested the reproductive assurance hypothesis and also the stress gradient hypothesis with a series of pollinator exclusion trials and extensive measurements of subsequent reproductive output (gender ratio, plant size, percent fruit-set, fruit weight, seeds per fruit, total seeds, seed weight, and seed germination). The reproductive assurance hypothesis was supported with female plants being more sensitive to and less likely to be viable under reductions in pollination rates. These findings are the first to show that the stress gradient hypothesis is also supported under a gradient of pollen supply instead of environmental limitations. Beneficiary abundance was negatively correlated to percent fruit-set under current pollen supply, but became positive under reduced pollen supply suggesting that there are important plant-plant-pollinator interactions related to reproduction in these alpine plant species.

  11. Crustal-scale alpine tectonic evolution of the western Pyrenees - eastern Cantabrian Mountains (N Spain) from integration of structural data, low-T thermochronology and seismic constraint

    Science.gov (United States)

    DeFelipe, I.; Pedreira, D.; Pulgar, J. A.; Van der Beek, P.; Bernet, M.; Pik, R.

    2017-12-01

    The Pyrenean-Cantabrian Mountain belt extends in an E-W direction along the northern border of Spain and resulted from the convergence between the Iberian and European plates from the Late Cretaceous to the Miocene, in the context of the Alpine orogeny. The main aim of this work is to characterize the tectonic evolution at a crustal-scale of the transition zone from the Pyrenees to the Cantabrian Mountains, in the eastern Basque-Cantabrian Basin (BCB). We integrate structural work, thermochronology (apatite fission track and zircon (U-Th)/He) and geophysical information (shallow seismic reflection profiles, deep seismic refraction/wide-angle reflection profiles and seismicity distribution) to propose an evolutionary model since the Jurassic to the present. During the Albian, hyperextension related to the opening of the Bay of Biscay yielded to mantle unroofing to the base of the BCB. This process was favored by a detachment fault that connected the mantle in its footwall with the base of a deep basin in its hanging wall. During this process, the basin experienced HT metamorphism and fluid circulation caused the serpentinization of the upper part of the mantle. There is no evidence of seafloor mantle exhumation before the onset of the Alpine orogeny. The thermochronological study points to a N-vergent phase of contractional deformation in the late Eocene represented by the thin-skinned Leiza fault system followed in the early Oligocene by the S-vergent, thick-skinned, Ollín thrust. Exhumation rates for the late Eocene-early Oligocene are of 0.2-0.7 km/Myr. After that period, deformation continues southwards until the Miocene. The crustal-scale structure resultant of the Alpine orogeny consists of an Iberian plate that subducts below the European plate. The crust is segmented into four blocks separated by three S-vergent crustal faults inherited from the Cretaceous extensional period. The P-wave velocities in this transect show anomalous values (7.4 km/s) in the

  12. Carbon dioxide concentration in caves and soils in an alpine setting: implications for speleothem fabrics and their palaeoclimate significance

    Science.gov (United States)

    Borsato, Andrea; Frisia, Silvia; Miorandi, Renza

    2015-04-01

    Carbon dioxide concentration in soils controls carbonate dissolution, soil CO2 efflux to the atmosphere, and CO2 transfer to the subsurface that lead, ultimately, to speleothem precipitation. Systematic studies on CO2 concentration variability in soil and caves at regional scale are, however, few. Here, the systematic investigation of CO2 concentration in caves and soils in a temperate, Alpine region along a 2,100 m altitudinal range transect, which corresponds to a mean annual temperature (MAT) range of 12°C is presented. Soil pCO2 is controlled by the elevation and MAT and exhibits strong seasonality, which follows surface air temperature with a delay of about a month. The aquifer pCO2, by contrast, is fairly constant throughout the year, and it is primarily influenced by summer soil pCO2. Cave CO2 concentration is a balance between the CO2 influx and CO2 efflux, where the efflux is controlled by the cave ventilation, which is responsible for low pCO2 values recorded in most of the caves with respect to soil levels. Carbon dioxide in the innermost part of the studied caves exhibits a clear seasonal pattern. Thermal convection is the most common mechanism causing higher ventilation and low cave air pCO2 levels during the winter season: this promotes CO2 degassing and higher supersaturation in the drip water and, eventually, higher speleothem growth rates during winter. The combined influence of three parameters - dripwater pCO2, dripwater Ca content, and cave air pCO2 - all related to the infiltration elevation and MAT directly controls calcite supersaturation in dripwater. Four different altitudinal belts are then defined, which reflect temperature-dependent saturation state of dripwaters. These belts broadly correspond to vegetation zones: the lower montane (100 to 800 m asl), the upper montane (800 to 1600 m asl), the subalpine (1600 to 2200 m asl) and the Alpine (above 2200 m asl). Each altitudinal belt is characterised by different calcite fabrics, which can

  13. Recent Relationships of Tree Establishment and Climate in Alpine Treelines of the Rocky Mountains

    Science.gov (United States)

    Germino, M. J.; Graumlich, L. J.; Maher, E. J.

    2007-12-01

    Changes in the forest structure of alpine-forest or treeline boundaries may be a significant climate response of mountainous regions in the near future. A particularly important point of climate sensitivity for treelines is the initial survival and establishment of tree seedlings - a demographic bottleneck that may be particularly suited to early detection of treeline responses to climate change. However, concise information on climate sensitivity of seedling establishment has come primarily from direct observations of seedlings over short time periods encompassing a few years. Dendrochronological approaches have revealed tree establishment patterns at more extensive time scales of decades to millenia, but at coarser temporal resolutions. Climate variations that most directly affect initial tree seedling establishment occur at annual or smaller time scales, and climate for seedlings is modulated by landscape factors such as neighboring plant cover. Our objective was to assess climate sensitivity of tree establishment at treeline at these finer temporal and spatial scales, with consideration of treeline features that alter the climate for seedlings. Our approach combined direct observations of seedling emergence and survival with dendrochronology of older seedlings and saplings that were still small and young enough (less than 25 years and 20 cm height) to allow detecting the year of establishment and associated factors. Surveys for subject seedlings and saplings were performed for 2 years across the gradient from forest into treeline alpine in the Beartooth, Teton, and Medicine Bow mountains of Wyoming USA. No seedlings or saplings were detected above the highest elevation adult trees or krummholz, but there were up to 0.3 seedlings per square meter in subalpine meadows close to forest (within the timberline zone) where changes in tree abundance appear possible in future decades. Correlations of establishment and summer temperature ranged from weak in whitebark

  14. Ameloblastic fibroma in an alpine chamois (Rupicapra rupicapra).

    Science.gov (United States)

    Scaglione, F E; Iussich, S; Grande, D; Carpignano, M; Chiappino, L; Sereno, A; Ferroglio, E; Bollo, E

    2015-04-01

    Spontaneous odontogenic tumors are neoplasms characterized by a mixed odontogenic ectomesenchymal and odontogenic epithelial origin; they are rare in both humans and animals. A 3-year-old male Alpine Chamois (Rupicapra rupicapra) was found dead in north-west Italy, and was referred for the necropsy to the Department of Veterinary Sciences of the University of Turin (Italy). At the external examination a 10 × 8 cm, exophytic, red-pink, smooth, firm and ulcerated mass was observed on the inferior lip. Histologically the tumor was characterized by spindle shaped cells arranged in bundles in an abundant hyaline matrix. Multifocal and rare chords of odontogenic epithelium mixed with rare melanocytes that penetrate the neoplasia were visible. Immunohistochemistry showed a clear cytokeratin positivity of epithelial clusters. Macroscopical, histological and immunohistochemical findings were consistent with a diagnosis of locally infiltrative ameloblastic fibroma. To our best knowledge, this is the first report of this tumor in a wild ungulate and in Alpine Chamois. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Impact of the Chernobyl fallout in the alpine environment

    International Nuclear Information System (INIS)

    Gastberger, M.; Lettner, H.; Hofmann, W.; Pohl-Rueling, J.; Steinhaeusler, N.F.; Hubmer, A.

    1997-01-01

    In Austria the alpine regions received the highest fallout contamination, showing a very inhomogeneous spatial distribution of the surface deposition. About half of the national territory is within alpine regions, which are very different in times of underlying bedrock and soil characteristic. Since this is the controlling factor for the radionuclide uptake of the vegetation, it is crucial for the long-term effects of radioactive fallout. Different studies have been carried out in the Province of Salzburg (area: 7154 km 2 ) over the past ten years, addressing a broad spectrum of issues, such as: measurement of the spatial distribution of the fallout, research in monitoring techniques comparison of theoretical calculations with actual in vivo-measurements of nuclide uptake by man for different population groups, and the investigation of biological effects. When considering the radioecological effects of the Chernobyl fallout a distinction has to be made between the short-term effects immediately following the fallout and the long-term effects. While the short term effects are controlled by the physical characteristics of the fallout, similar for the whole region, the long-term effects are more determined by the radioecological properties of the environments affected which are much more variable than the fallout-characteristics

  16. Estimation of Alpine Skier Posture Using Machine Learning Techniques

    Science.gov (United States)

    Nemec, Bojan; Petrič, Tadej; Babič, Jan; Supej, Matej

    2014-01-01

    High precision Global Navigation Satellite System (GNSS) measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skier's neck. A key issue is how to estimate other more relevant parameters of the skier's body, like the center of mass (COM) and ski trajectories. Previously, these parameters were estimated by modeling the skier's body with an inverted-pendulum model that oversimplified the skier's body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skier's body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing. PMID:25313492

  17. Estimation of alpine skier posture using machine learning techniques.

    Science.gov (United States)

    Nemec, Bojan; Petrič, Tadej; Babič, Jan; Supej, Matej

    2014-10-13

    High precision Global Navigation Satellite System (GNSS) measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skier's neck. A key issue is how to estimate other more relevant parameters of the skier's body, like the center of mass (COM) and ski trajectories. Previously, these parameters were estimated by modeling the skier's body with an inverted-pendulum model that oversimplified the skier's body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skier's body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing.

  18. Erosion of the French Alpine foreland controlled by crustal thickening

    Science.gov (United States)

    Schwartz, Stéphane; Gautheron, Cécile; Audin, Laurence; Nomade, Jérôme; Dumont, Thierry; Barbarand, Jocelyn; Pinna-Jamme, Rosella; van der Beek, Peter

    2017-04-01

    In alpine-type collision belts, deformation of the foreland may occur as a result of forward propagation of thrusting and is generally associated with thin-skinned deformation mobilizing the sedimentary cover in fold-and-thrust belts. Locally, foreland deformation can involve crustal-scale thrusting and produce large-scale exhumation of crystalline basement resulting in significant relief generation. In this study, we investigate the burial and exhumation history of Tertiary flexural basins located in the western Alpine foreland, at the front of the Digne thrust-sheet (SE France), using low-temperature apatite fission-track (AFT) and (U-Th)/He (AHe) thermochronology. Based on the occurrence of partially to totally reset apatite grain ages, we document 3.3 to 4.0 km burial of these basins remnants between 12-6 Ma, related to thin-skinned thrust-sheet emplacement without major relief generation. The onset of exhumation is dated at 6 Ma and is linked to erosion associated with subsequent relief development. This evolution does not appear controlled by major climate changes (Messinian crisis) or by European slab breakoff. Rather, we propose that the erosional history of the Digne thrust-sheet corresponds to basement involvement in foreland deformation, leading to crustal thickening and the incipient formation of a new external crystalline massif. Our study highlights the control of deep-crustal tectonic processes on foreland relief development and its erosional response at mountain fronts.

  19. Estimation of Alpine Skier Posture Using Machine Learning Techniques

    Directory of Open Access Journals (Sweden)

    Bojan Nemec

    2014-10-01

    Full Text Available High precision Global Navigation Satellite System (GNSS measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skier’s neck. A key issue is how to estimate other more relevant parameters of the skier’s body, like the center of mass (COM and ski trajectories. Previously, these parameters were estimated by modeling the skier’s body with an inverted-pendulum model that oversimplified the skier’s body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skier’s body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing.

  20. Investigating the Impact of UV Radiation on High-Altitude Shallow Lake Habitats, Life Diversity, and Life Survival Strategies: Clues for Mars' Past Habitability Potential?

    Science.gov (United States)

    Cabrol, A.; Grin, E. A.; Hock, A.; Kiss, A.; Borics, G.; Kiss, K.; Acs, E.; Kovacs, G.; Chong, G.; Demergasso, C.

    2004-01-01

    We present data and results from an ongoing project of astrobiological high-altitude expeditions investigating the highest and least explored perennial lakes on Earth in the Bolivian and Chilean Andes, including several volcanic crater lakes nearing and beyond 6,000 m in elevation. In the next five years, they will provide the first integrated long-term astrobiological characterization and monitoring of lacustrine environments and their biology for such altitude. These extreme lakes are natural laboratories. They provide the field data missing beyond 4,000 m to complete our understanding of terrestrial lakes and biota. Research on the effects of UV has been performed in lower altitude lakes and models of UV flux over time are being developed. Lakes showing a high content of dissolved organic material (DOM) shield organisms from UV. DOM acts as a natural sunscreen as it influences the water transparency, therefore is a determinant of photic zone depth. In sparsely vegetated alpine areas, lakes are clearer and offer less protection from UV to organisms living in the water. Transparent water and high UV irradiance may maximize the penetration and effect of UV radiation. Shallow-water communities in these lakes are particularly sensitive to UV radiation. The periphyton can live on various susbtrates. While on rocks, it includes immobile species that cannot seek low UV refuges unlike sediment-dwelling periphyton or alpine phytoflagellates which undergo vertical migration. Inhibition of algal photosynthesis by UV radiation has been documented in laboratory and showed that phytoplankton production is reduced by formation of nucleic acid lesions or production of peroxides and free oxygen radicals. of peroxides and free oxygen radicals. Our project is providing the field data that is missing from natural laboratories beyond 4,000 m and will complement the vision of the effects of UV on life and its adaptation modes (or lack thereof).

  1. Frictional, Hydraulic, and Acoustic Properties of Alpine Fault DFDP-1 Core

    Science.gov (United States)

    Carpenter, B. M.; Ikari, M.; Kitajima, H.; Kopf, A.; Marone, C.; Saffer, D. M.

    2012-12-01

    The Alpine Fault, a transpressional plate-boundary fault transecting the South Island of New Zealand, is the current focus of the Deep Fault Drilling Project (DFDP), a major fault zone drilling initiative. Phase 1 of this project included 2 boreholes that penetrated the active fault at depths of ˜100 m and ˜150 m, and provided a suite of core samples crossing the fault. Here, we report on laboratory measurements of frictional strength and constitutive behavior, permeability, and ultrasonic velocities for a suite of the recovered core samples We conducted friction experiments on powdered samples in a double-direct shear configuration at room temperature and humidity. Our results show that over a range of effective normal stresses from 10-100 MPa, friction coefficients are ~0.60-0.70, and are similar for all of the materials we tested. Rate-stepping tests document velocity-weakening behavior in the majority of wall rock samples, whereas the principal slip surface (PSS) and an adjacent clay-rich cataclasite exhibit velocity-strengthening behavior. We observe significant rates of frictional healing in all of our samples, indicating that that the fault easily regains its strength during interseismic periods. Our results indicate that seismic slip is not likely to nucleate in the clay-rich PSS at shallow depths, but might nucleate and propagate on the gouge/wall rock interface. We measured permeability using a constant head technique, on vertically oriented cylindrical mini-cores (i.e. ˜45 degrees to the plane of the Alpine Fault). We conducted these tests in a triaxial configuration, under isotropic stress conditions and effective confining pressures from ~2.5 - 63.5 MPa. We conducted ultrasonic wavespeed measurements concurrently with the permeability measurements to determine P- and S-wave velocities from time-of-flight. The permeability of all samples decreases systematically with increasing effective stress. The clay-rich cataclasite (1.37 x 10-19 m2) and PSS (1

  2. Évolution de l’environnement alpin

    Directory of Open Access Journals (Sweden)

    Philippe Schoeneich

    2009-03-01

    Full Text Available L’évolution de l’environnement alpin au XXIe siècle sera conditionnée par le changement climatique. Celui-ci pourrait conduire à des climats inconnus à ce jour dans les Alpes, avec comme conséquence une crise environnementale majeure et durable. Face à ces défis, les financements de recherche restent insuffisants pour la recherche appliquée aux milieux de montagne. Les financements nationaux privilégient souvent la recherche polaire au détriment des hautes altitudes, alors que les financements de type Interreg prennent insuffisamment en compte les besoins de recherche fondamentale, préalable nécessaire à l’élaboration de scénarios. Une évolution se dessine depuis deux ou trois ans vers des projets en réseau à l’échelle alpine. Le présent article fait le point sur les principaux enjeux qui attendent la recherche environnementale alpine et sur la capacité des programmes de recherche à répondre aux besoins. La première partie sur les changements climatiques est fondée sur les rapports récents : rapport de synthèse IPCC 2007 (IPCC 2007, rapport IPCC sur l’Europe (Alcamo et al. 2007, rapport de synthèse du programme ClimChAlp (Prudent-Richard et al., 2008. On y trouvera des bibliographies complètes et circonstanciées. La deuxième partie se base sur une analyse des appels d’offres récents ou en cours, et des projets soumis et financés.The way the Alpine environment will evolve in the 21st century depends upon climate change. This could lead to climates never before seen in the Alps, resulting in a major and lasting environmental crisis. In the face of these challenges, funding is still insufficient for specialised research on mountain environments. State funding often prioritises polar research at the expense of high altitude areas, whereas funding schemes from bodies such as Interreg do not sufficiently address the need for fundamental research, which is nevertheless a necessary first step prior to

  3. Project SHARE Sustainable Hydropower in Alpine Rivers Ecosystems

    Science.gov (United States)

    Mammoliti Mochet, Andrea

    2010-05-01

    SHARE - Sustainable Hydropower in Alpine Rivers Ecosystems is a running project early approved and co funded by the European regional development fund in the context of the European Territorial Cooperation Alpine Space programme 2007 - 2013: the project is formally ongoing from August 2009 and it will end July 2012. Hydropower is the most important renewable resource for electricity production in alpine areas: it has advantages for the global CO2 balance but creates serious environmental impacts. RES-e Directives require renewable electricity enhance but, at the same time, the Water Framework Directive obliges member States to reach or maintain a water bodies "good" ecological status, intrinsically limiting the hydropower exploitation. Administrators daily face an increasing demand of water abstraction but lack reliable tools to rigorously evaluate their effects on mountain rivers and the social and economical outputs on longer time scale. The project intends to develop, test and promote a decision support system to merge on an unprejudiced base, river ecosystems and hydropower requirements. This approach will be led using existing scientific tools, adjustable to transnational, national and local normative and carried on by permanent panel of administrators and stakeholders. Scientific knowledge related to HP & river management will be "translated" by the communication tools and spent as a concrete added value to build a decision support system. In particular, the Multicriteria Analysis (MCA) will be applied to assess different management alternatives where a single-criterion approach (such as cost-benefit analysis) falls short, especially where environmental, technical, economic and social criteria can't be quantified by monetary values. All the existing monitoring databases will be used and harmonized with new information collected during the Pilot case studies. At the same time, all information collected will be available to end users and actors of related

  4. Short term soil erosion dynamics in alpine grasslands - Results from a Fallout Radionuclide repeated-sampling approach

    Science.gov (United States)

    Arata, Laura; Meusburger, Katrin; Zehringer, Markus; Ketterer, Michael E.; Mabit, Lionel; Alewell, Christine

    2016-04-01

    Improper land management and climate change has resulted in accelerated soil erosion rates in Alpine grasslands. To efficiently mitigate and control soil erosion and reduce its environmental impact in Alpine grasslands, reliable and validated methods for comprehensive data generation on its magnitude and spatial extent are mandatory. The use of conventional techniques (e.g. sediment traps, erosion pins or rainfall simulations) may be hindered by the extreme topographic and climatic conditions of the Alps. However, the application of the Fallout Radionuclides (FRNs) as soil tracers has already showed promising results in these specific agro-ecosystems. Once deposited on the ground, FRNs strongly bind to fine particles at the surface soil and move across the landscape primarily through physical processes. As such, they provide an effective track of soil and sediment redistribution. So far, applications of FRN in the Alps include 137Cs (half-life: 30.2 years) and 239+240Pu (239Pu [half-life = 24110 years] and 240Pu [half-life = 6561 years]). To investigate short term (4-5 years) erosion dynamics in the Swiss Alps, the authors applied a FRNs repeated sampling approach. Two study areas in the central Swiss Alps have been investigated: the Urseren Valley (Canton Uri), where significant land use changes occurred in the last centuries, and the Piora Valley (Canton Ticino), where land use change plays a minor role. Soil samples have been collected at potentially erosive sites along the valleys over a period of 4-5 years and measured for 137Cs and 239+240Pu activity. The inventory change between the sampling years indicates high erosion and deposition dynamics at both valleys. High spatial variability of 137Cs activities at all sites has been observed, reflecting the heterogeneous distribution of 137Cs fallout after the Chernobyl power plant accident in 1986. Finally, a new modelling technique to convert the inventory changes to quantitative estimates of soil erosion has

  5. Comparison of Standard and Newer Balance Tests in Recreational Alpine Skiers and Ski Novices

    Directory of Open Access Journals (Sweden)

    Vjekoslav Cigrovski

    2017-03-01

    Full Text Available Alpine skiers should physically prepare for skiing due to the specific body movements it requires. As balance is essential for the success of competitive alpine skiers, we investigated its importance during preparation for alpine skiing in recreational skiers. We included 24 male participants; twelve recreational skiers just after 10 days of alpine skiing, and twelve alpine ski novices. All participants were tested with two balance tests (BAL40 and GYKO. Participants of the two groups did not differ significantly in the results of the BAL40 standard balance test. In contrast, we found significant differences in four out of six variables measured with the GYKO test performed on BOSU trainer during the two-feet stand. Participants specifically differed in the variables overall average body tilt (p=0.02, overall average deviation of body tilt (p=0.00, overall medio-lateral average body tilt (p=0.01, and overall medio-lateral average deviation of body tilt (0.00. Average results were lower for participants of the group of recreational skiers than for participants of the novice alpine ski group, suggesting that balance is important for recreational skiers, either as an acquired trait during skiing, or the result of conditioning training in the preparation period for skiing. According to the results, we would advise recreational skiers as well as people planning to be involved in alpine skiing as a new recreational activity to include balance exercises in the preparation period.

  6. Differences in Sensation Seeking Between Alpine Skiers, Snowboarders and Ski Tourers

    Directory of Open Access Journals (Sweden)

    Martin Kopp, Mirjam Wolf, Gerhard Ruedl, Martin Burtscher

    2016-03-01

    Full Text Available Despite different injury rates and injury patterns previous personality related research in the field of downhill winter sports did not subdivide between different alpine slope users. In this study, we tried to find out whether the personality trait sensation seeking differs between skiers, snowboarders and ski tourers. In a cross-sectional survey 1185 persons (726 alpine skiers, 321 snowboarders and 138 ski tourers comparable in age and sex were electronically questioned with the sensation seeking scale (SSS-V comprising the four factors thrill and adventure seeking, experiences seeking, disinhibition and boredom susceptibility. Kruskal-Wallis Tests revealed a significantly higher total score of the SSS-V for snowboarders in comparison to alpine skiers and ski tourers (H(2 = 41.5, p < 0.001. Ski tourers and snowboarders scored significantly higher in the dimensions “thrill- and adventure-seeking” and “experience-seeking” than alpine skiers. Furthermore, snowboarders showed higher scores in “disinhibition” related to alpine skiers and ski tourers and “boredom susceptibility” compared to alpine skiers. Data show differences in the personality trait sensation seeking in people practising different winter sports. As snowboarders showed higher SS-scores compared to alpine skiers and ski tourers prevention and information programs might benefit from a selective approach focusing on special characteristics of the respective group.

  7. Origin of microbial life hypothesis: a gel cytoplasm lacking a bilayer membrane, with infrared radiation producing exclusion zone (EZ) water, hydrogen as an energy source and thermosynthesis for bioenergetics.

    Science.gov (United States)

    Trevors, J T; Pollack, G H

    2012-01-01

    The hypothesis is proposed that pre-biotic bacterial cell(s) and the first cells capable of growth/division did not require a cytoplasmic membrane. A gel-like microscopic structure less than a cubic micrometer may have had a dual role as both an ancient pre-cytoplasm and a boundary layer to the higher-entropy external environment. The gel pre-cytoplasm exposed to radiant energy, especially in the infrared (IR) region of the EM spectrum resulted in the production of an exclusion zone (EZ) with a charge differential (-100 to -200 mV) and boundary that may have been a possible location for the latter organization of the first cytoplasmic membrane. Pre-biotic cells and then-living cells may have used hydrogen as the universal energy source, and thermosynthesis in their bioenergetic processes. These components will be discussed as to how they are interconnected, and their hypothesized roles in the origin of life. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  8. Spatial and temporal variability of soil moisture in a restored reach of an Alpine river

    Science.gov (United States)

    Luster, Jörg

    2010-05-01

    In order to assess the effects of river restoration on water quality, the biogeochemical functions of restored river reaches have to be quantified, and soil moisture is a key environmental variable controlling this functionality. Restored sections of rivers often are characterized by a dynamic mosaic of riparian zones with varying exposure to flooding. In this presentation, the spatial and temporal variability of soil moisture in riparian soils of a restored reach of the Alpine river Thur in northeastern Switzerland is shown. The study was part of the interdisciplinary project cluster RECORD, which was initiated to advance the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The studied river reach comprised the following three functional processing zones (FPZ) representing a lateral successional gradient with decreasing hydrological connectivity (i.e. decreasing flooding frequency and duration). (i) The grass zone developed naturally on a gravel bar after restoration of the channelized river section (mainly colonized by canary reed grass Phalaris arundinacae). The soil is loamy sand to sandy loam composed of up to 80 cm thick fresh sediments trapped and stabilized by the grass roots. (ii) The bush zone is composed of young willow trees (Salix viminalis) planted during restoration to stabilize older overbank deposits with a loamy fine earth. (iii) The mixed forest is a mature riparian hardwood forest with ash and maple as dominant trees developed on older overbank sediments with a silty loamy fine earth. The study period was between spring 2009 and winter 2009/2010 including three flood events in June, July and December 2009. The first and third flood inundated the grass zone and lower part of the bush zone while the second flood was bigger and swept through all the FPZs. Water contents in several soil depths were measured continuously in 30 minute intervals using Decagon EC-5 and EC-TM sensors. There were six spatial

  9. Evolutionary diversification of cryophilic Grylloblatta species (Grylloblattodea: Grylloblattidae in alpine habitats of California

    Directory of Open Access Journals (Sweden)

    Roderick George K

    2010-06-01

    Full Text Available Abstract Background Climate in alpine habitats has undergone extreme variation during Pliocene and Pleistocene epochs, resulting in repeated expansion and contraction of alpine glaciers. Many cold-adapted alpine species have responded to these climatic changes with long-distance range shifts. These species typically exhibit shallow genetic differentiation over a large geographical area. In contrast, poorly dispersing organisms often form species complexes within mountain ranges, such as the California endemic ice-crawlers (Grylloblattodea: Grylloblattidae: Grylloblatta. The diversification pattern of poorly dispersing species might provide more information on the localized effects of historical climate change, the importance of particular climatic events, as well as the history of dispersal. Here we use multi-locus genetic data to examine the phylogenetic relationships and geographic pattern of diversification in California Grylloblatta. Results Our analysis reveals a pattern of deep genetic subdivision among geographically isolated populations of Grylloblatta in California. Alpine populations diverged from low elevation populations and subsequently diversified. Using a Bayesian relaxed clock model and both uncalibrated and calibrated measurements of time to most recent common ancestor, we reconstruct the temporal diversification of alpine Grylloblatta populations. Based on calibrated relaxed clock estimates, evolutionary diversification of Grylloblatta occurred during the Pliocene-Pleistocene epochs, with an initial dispersal into California during the Pliocene and species diversification in alpine clades during the middle Pleistocene epoch. Conclusions Grylloblatta species exhibit a high degree of genetic subdivision in California with well defined geographic structure. Distinct glacial refugia can be inferred within the Sierra Nevada, corresponding to major, glaciated drainage basins. Low elevation populations are sister to alpine populations

  10. Biomechanical factors influencing the performance of elite Alpine ski racers.

    Science.gov (United States)

    Hébert-Losier, Kim; Supej, Matej; Holmberg, Hans-Christer

    2014-04-01

    Alpine ski racing is a popular international winter sport that is complex and challenging from physical, technical, and tactical perspectives. Despite the vast amount of scientific literature focusing on this sport, including topical reviews on physiology, ski-snow friction, and injuries, no review has yet addressed the biomechanics of elite alpine ski racers and which factors influence performance. In World Cup events, winning margins are often mere fractions of a second and biomechanics may well be a determining factor in podium place finishes. The aim of this paper was to systematically review the scientific literature to identify the biomechanical factors that influence the performance of elite alpine ski racers, with an emphasis on slalom, giant slalom, super-G, and downhill events. Four electronic databases were searched using relevant medical subject headings and key words, with an additional manual search of reference lists, relevant journals, and key authors in the field. Articles were included if they addressed human biomechanics, elite alpine skiing, and performance. Only original research articles published in peer-reviewed journals and in the English language were reviewed. Articles that focused on skiing disciplines other than the four of primary interest were excluded (e.g., mogul, ski-cross and freestyle skiing). The articles subsequently included for review were quality assessed using a modified version of a validated quality assessment checklist. Data on the study population, design, location, and findings relating biomechanics to performance in alpine ski racers were extracted from each article using a standard data extraction form. A total of 12 articles met the inclusion criteria, were reviewed, and scored an average of 69 ± 13% (range 40-89%) upon quality assessment. Five of the studies focused on giant slalom, four on slalom, and three on downhill disciplines, although these latter three articles were also relevant to super-G events

  11. Detailed hydrogeological investigation and conceptual modelling of an Alpine Main Valley crossed by the Brenner Bases tunnel

    Science.gov (United States)

    Burger, Ulrich; San Nicolo, Lorenz; Zurlo, Raffaele

    2014-05-01

    The Brenner Base Tunnel (BBT) will cross the Isarco Valley near the village of Fortezza (BZ) at a depth of approximately 20 m below the riverbed of the Isarco river. The design of this roughly 1 km long stretch through alluvial sediments and below groundwater level required detailed knowledge of the prevailing hydrogeological conditions. In particular, it was necessary to determine if dewatering procedures were feasible and what the impacts on natural water flows in the aquifer after completion of the infrastructure will be. The study area is a typical Alpine valley, filled with alluvial sediments to a maximum depth of approximately 120m. The valley is bounded by granitic rocks with regional, water saturated main fault zones. In addition to the Isarco River, the area is shaped by two lateral rivers. The deposits of these lateral rivers form main alluvial fans. The aim of the study was to study the geological structure and the hydrogeological behaviour of this alpine valley. Therefor a detailed geological and hydrogeological investigation program was carried out, including a geological detailed mapping, construction of 40 boreholes (max. depth 120m; 35 are equipped to groundwater monitoring wells) and 5 large wells (55m - 87m). In order to determine the hydrodynamic characteristics of the aquifer in the valley, several pumping tests were carried out in different study stages: Stage 1: preliminary hydrogeological characterization of the area based on a pumping test carried out in the first well (100l/s pumping for 14 days). Stage 2: individual step tests and constant rate tests in additional four wells Stage 3: main pumping test including all the five wells with a maximum pumping rate of 450l/s for 14 days. The main topics oh the presentation are: - Overview of the BBT-project, the investigation area and investigation program - Description of the validated geological model of the main alpine valley - Results of the various hydraulic tests performed in the individual

  12. Alpine Windharvest: development of information base regarding potentials and the necessary technical, legal and socio-economic conditions for expanding wind energy in the Alpine Space - Alpine Space wind map - Modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, B.; Remund, J. [Meteotest, Berne (Switzerland)

    2005-07-01

    This report presents describes the development work carried out by the Swiss meteorology specialists of the company METEOTEST as part of a project carried out together with the Swiss wind-energy organisation 'Suisse Eole'. The framework for the project is the EU Interreg IIIB Alpine Space Programme, a European Community Initiative Programme funded by the European Regional Development Fund. The project investigated the use of digital relief-analysis. The series of reports describes the development and use of a basic information system to aid the investigation of the technical, legal and socio-economical conditions for the use of wind energy in the alpine area. This report discusses two modelling approaches investigated for use in the definition of a wind map for the alpine area. The method chosen and its application are discussed. The various sources of information for input to the model are listed and discussed.

  13. Temperature signal in suspended sediment export from an Alpine catchment

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Stutenbecker, Laura; Bakker, Maarten; Silva, Tiago A.; Schlunegger, Fritz; Lane, Stuart N.; Loizeau, Jean-Luc; Girardclos, Stéphanie

    2018-01-01

    Suspended sediment export from large Alpine catchments ( > 1000 km2) over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation-deactivation of different sediment sources (proglacial areas, hillslopes, etc.), transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation). Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity), and the activation of different potential sources of fine sediment (sediment supply) in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment concentration through

  14. Crossing thresholds: Analysis of hazardous tipping points in alpine catchments

    Science.gov (United States)

    Lutzmann, Silke; Sass, Oliver

    2016-04-01

    Steep mountain channels or torrents in small alpine catchments are characterized by high geomorphic activity with sediment dynamics being inherently nonlinear and threshold-mediated. Localized, high intensity rainstorms can drive torrential systems past a tipping point resulting in a sudden onset of hazardous events like (flash-) flooding, heavy bedload transport or debris flows. Such responses exhibit an abrupt switch in the fluvial system's mode (e.g. transport / supply limited). Changes in functional connectivity may persist beyond the tipping point. Torrential hazards cause costly damage in the densely populated Alpine Region. Thus, there is a rising interest in potential effects of climate change on torrential sediment dynamics. Understanding critical conditions close to tipping points is important to reduce uncertainty in predicting sediment fluxes. In this study we aim at (i) establishing threshold precipitation characteristics for the Eastern Alps of Austria. Precipitation is hypothesized to be the main forcing factor of torrential events. (ii) How do thresholds vary in space and time? (iii) The effect of external triggers is strongly mediated by the internal disposition of catchments to respond. Which internal conditions are critical for susceptibility? (iv) Is there a change in magnitude or frequency in the recent past and what can be expected for the future? The 71 km2 catchment of the river Schöttlbach in the East Alpine Region of Styria (Austria) is monitored since a heavy precipitation event resulted in a catastrophic flood in July 2011. Sediment mobilization from slopes as well as within-channel storage and bedload transport are regularly measured using photogrammetric methods and sediment impact sensors. Thus, detailed knowledge exists on magnitude and spatial propagation of sediment waves through the catchment. The associated hydro-meteorological (pre-) conditions can be inferred from a dense station network. Changing bedload transport rates and

  15. Field and petrological study of metasomatism and high-pressure carbonation from lawsonite eclogite-facies terrains, Alpine Corsica

    Science.gov (United States)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Ague, Jay J.

    2018-04-01

    This study presents new field and petrological data on carbonated metasomatic rocks from the lawsonite-eclogite units of Alpine Corsica. These rocks form along major, slab-scale lithological boundaries of the subducted Alpine Tethys plate. Our results indicate that a large variety of rocks ranging from metamafic/ultramafic to metafelsic can react with carbon-bearing fluids, leading to carbon sequestration at high-pressure conditions. The process of carbonation includes both replacement of silicates by high-pressure carbonate, and carbonate veining. The field, microstructural and mineralogical data strongly suggest that the metasomatism was mediated by the infiltration of external fluids of mixed origin, including both mafic/ultramafic and metasedimentary sources. Our results support the following three-step evolution: (i) Release of aqueous fluids by lawsonite and/or antigorite breakdown at depth; (ii) Fluid channelization along the base of the metasedimentary pile of the subducted lithospheric plate and related reactive fluid flow leading to carbonate mineral dissolution; (iii) Further interactions of the resulting carbon-bearing fluids with slab-forming rocks at depths of ca. 70 km and carbonation of pre-existing silicate-rich lithologies. This study highlights the importance of carbonate-bearing fluids evolving along down-T, down-P paths, such as along slab-parallel lithological boundaries, for the sequestration of carbon in subduction zones, and suggests that similar processes may also operate in collisional settings. Fig. S2: Petrogenetic grid in the CaFMASH+CO2 system for the antigorite and clinopyroxene carbonation reactions, together with grossular forming reaction during decarbonation. Reactions are written with the high T assemblage to the right of the = sign.

  16. Application of agriculture-developed demographic analysis for the conservation of the Hawaiian alpine wekiu bug.

    Science.gov (United States)

    Eiben, Jesse; Rubinoff, Daniel

    2014-08-01

    Insects that should be considered for conservation attention are often overlooked because of a lack of data. The detailed information necessary to assess population growth, decline, and maximum range is particularly difficult to acquire for rare and cryptic species. Many of these difficulties can be overcome with the use of life table analyses and heat energy accumulation models common in agriculture. The wekiu bug (Nysius wekiuicola), endemic to the summit of one volcanic mountain in Hawaii, is a rare insect living in an environmentally sensitive alpine stone desert, where field-based population assessments would be inefficient or potentially detrimental to natural and cultural resources. We conducted laboratory experiments with the insects by manipulating rearing temperatures of laboratory colonies and made detailed observations of habitat conditions to develop life tables representing population growth parameters and environmental models for wekiu bug phenology and demographic change. Wekiu bugs developed at temperatures only found in its environment on sunny days and required the thermal buffer found on cinder cones for growth and population increase. Wekiu bugs required approximately 3.5 months to complete one generation. The bug developed optimally from 26 to 30 °C, temperatures that are much higher than the air temperature attains in its elevational range. The developmental temperature range of the species confirmed a physiological reason why the wekiu bug is only found on cinder cones. This physiology information can help guide population monitoring and inform habitat restoration and conservation. The wekiu bug was a candidate for listing under the U.S. Endangered Species Act, and the developmental parameters we quantified were used to determine the species would not be listed as endangered or threatened. The use of developmental threshold experiments, life table analyses, and degree day modeling can directly inform otherwise unobservable habitat needs and

  17. Critical Zone Experimental Design to Assess Soil Processes and Function

    Science.gov (United States)

    Banwart, Steve

    2010-05-01

    experimental design studies soil processes across the temporal evolution of the soil profile, from its formation on bare bedrock, through managed use as productive land to its degradation under longstanding pressures from intensive land use. To understand this conceptual life cycle of soil, we have selected 4 European field sites as Critical Zone Observatories. These are to provide data sets of soil parameters, processes and functions which will be incorporated into the mathematical models. The field sites are 1) the BigLink field station which is located in the chronosequence of the Damma Glacier forefield in alpine Switzerland and is established to study the initial stages of soil development on bedrock; 2) the Lysina Catchment in the Czech Republic which is representative of productive soils managed for intensive forestry, 3) the Fuchsenbigl Field Station in Austria which is an agricultural research site that is representative of productive soils managed as arable land and 4) the Koiliaris Catchment in Crete, Greece which represents degraded Mediterranean region soils, heavily impacted by centuries of intensive grazing and farming, under severe risk of desertification.

  18. Spread and genotype of Toxoplasma gondii in naturally infected alpine chamois (Rupicapra r. rupicapra).

    Science.gov (United States)

    Formenti, Nicoletta; Gaffuri, Alessandra; Trogu, Tiziana; Viganò, Roberto; Ferrari, Nicola; Lanfranchi, Paolo

    2016-05-01

    The complex life cycle of Toxoplasma gondii involves many animal species, raising zoonotic, economic, and conservation issues. This complexity is reflected in the molecular structure of T. gondii, whose different genotypes differ in pathogenicity. Among the intermediate hosts of T. gondii, wild ungulates may be a source of human infection. Despite intense hunting activity and the consumption of raw or undercooked meat, little information is available on the spread of T. gondii and the distribution of its genotypes in these species, including the alpine chamois (Rupicapra r. rupicapra). Ninety-three sera and 50 brain tissues from chamois were sampled (1) to investigate the spread of T. gondii with serological and molecular analyses, and (2) to genotype the strains with a restriction fragment length polymorphism analysis of the SAG2 locus. The prevalence of T. gondii was low on both serological (3.2 %) and molecular (2 %) analyses, and infections were concentrated in individuals >1 year old. These findings demonstrate the sporadic presence of the protozoan in this species on consistent diagnostic tests. Horizontal transmission seems to be the main route of infection, and cats are the only definitive host in the study area. This prevalence suggests that the environment of the chamois is less contaminated with oocysts than environments close to human settlements. The SAG2 type II genotype was detected in this species for the first time. Although this genotype is predominant in human toxoplasmosis, these results suggest that the chamois is a minor source of human infection.

  19. Perceived traffic air pollution, associated behavior and health in an alpine area.

    Science.gov (United States)

    Lercher, P; Schmitzberger, R; Kofler, W

    1995-07-08

    The relationship of traffic air pollution, perception of exhaust fumes/soot and behavioral impact or symptoms/illnesses was investigated in two surveys (adults: aged 25-65, N = 1989, 62% participation; children: aged 8-12, N = 796, 85% participation) in 13 small alpine communities (Tyrol/Austria) by means of questionnaire responses and air pollution measurements. Although pollutant levels complied with current WHO guidelines, adult respondents felt annoyed by odourous traffic fumes (39.7%) or visible dust/soot (26.9%). Logistic regression analysis revealed that accompanying noise annoyance, rated impairment of life quality, protesting behaviour, noise- and odour-sensitivity was directly associated with perceived air quality, while age above 45 years, smoking, and social support was inversely associated with perceived air quality. Among the symptoms, feelings of fatigue/exhaustion/low mood/nervousness and irritation of the eyes and stomach aches showed a significant association with rated air quality. Children in the traffic exposed areas spend less time outdoors and reported perception of car fumes was significantly associated with recurrent colds, chronic bronchitis and an index of hyperreactive airways. Measured indices of pollution (traffic counts, NO2) were not associated with any of the children's reported illnesses.

  20. REPLACEMENT OF GOAT MILK BY CHEESE WHEY IN THE FEED OF ALPINE KIDS

    Directory of Open Access Journals (Sweden)

    Roberto Germano Costa

    2009-06-01

    Full Text Available This study was conducted to evaluate the replacement of goat milk by different levels of bovine cheese whey in the feed of Alpine kids. The animals were distributed in a completely randomized design, with 4 x 2 factorial arrangement (four levels of goat milk / cheese whey replacements: 0, 15, 30 and 45% and two sexes. The inclusion of cheese whey did not affect (P> 0.05 the weight gain of kids from 7 to 42 days of life. Kids fed with whole goat milk presented higher final weights, around 13.0 kg; consumed 490 liters of whole goat milk and obtained average gain of 137.5 g / day. In treatments with 15, 30 and 45% of cheese whey, the final weights were 11.1, 9.88 and 10.27 kg, the goat milk consumption was 416.5, 343.0 and 269, 0 liters; the cheese whey consumption was 70.35, 147.0 and 220.5 liters, and weight gains of 122.2, 100.8 and 99.5 g / day, respectively. The effect of sex (P

  1. Detours of Trans-alpine Goods Transport by Road

    Directory of Open Access Journals (Sweden)

    Flavio V. Ruffini

    2009-03-01

    Full Text Available La question des détours dans le transport transalpin de marchandises sur route figure constamment parmi les priorités des politiques de circulation. La pléthore de critères relatifs à la définition d’un détour a donné naissance à des points de vue divergents au sein des différents pays alpins, rendant le débat d’autant plus complexe. Le présent article propose des critères relatifs à la définition d’un détour ainsi qu’une analyse des détours faits en 2004 par les poids lourds franchissant les Alpes autrichiennes et suisses. L’analyse des détours faits par les poids lourds tend à démontrer qu’ils n’empruntent que rarement les itinéraires les plus courts. Il est intéressant de souligner que très peu de détours sont faits par le col du Saint-Gotthard. Mais suivant le mode de calcul choisi, jusqu’à 740 000 poids lourds sur 1 996 000 font un détour de plus de 60 km par le col de Brenner alors que 18,1 % des véhicules pourraient emprunter un itinéraire plus court en passant par le col du Saint-Gothard et 11,5 % en passant par le col du San Bernardino. En théorie, la déviation vers des itinéraires plus courts des véhicules qui font un détour de plus de 60 km générerait une hausse de la circulation de 38 % au col du Saint-Gothard et de 149 % au col du San Bernardino. Aux cols de Brenner et de Tauern, la circulation diminuerait de 31 % et 16 % respectivement.Detours of trans-alpine freight transport by road are a constant issue on the traffic-policy agenda. A plethora of criteria regarding the definition of detours leads to diverging opinions prevailing in the individual Alpine countries and serves to complicate the discussion even further. This paper presents criteria regarding the definition of traffic detours as well as an analysis of the detours taken by heavy goods vehicles (trucks at the Austrian and Swiss Alpine crossings in the year 2004. The analysis of routes taken goes to show that

  2. Decadal changes of weather types in the alpine region

    Energy Technology Data Exchange (ETDEWEB)

    Stefanicki, G.; Talkner, P.; Weber, R.O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The annual occurrence of different weather types of Schuepp`s synoptic classification in the Alpine region has changed since the beginning of its recording 1945. The annual frequency (number of days) of convective types has increased and that of advective types has decreased. In parallel the number of long-lasting convective episodes rose and the number of long-lasting advective episodes lessened. Most of the change took place in winter. The frequencies of different weather types and the annual mean of certain meteorological parameters are significantly correlated. Moreover, there is a strong interdependence between the subclass of high pressure types and the North Atlantic Oscillation (NAO) index. (author) 3 figs., 3 refs.

  3. Canalization of freeze tolerance in an alpine grasshopper.

    Science.gov (United States)

    Hawes, Timothy C

    2015-10-01

    In the Rock and Pillar Range, New Zealand, the alpine grasshopper, Sigaus australis Hutton, survives equilibrium freezing (EF) all-year round. A comparison of freeze tolerance (FT) in grasshoppers over four austral seasons for a 1 year period finds that: (a) the majority (>70%) of the sample population of grasshoppers survive single freeze-stress throughout the year; (b) exposure to increased freeze stress (multiple freeze-stress events) does not lead to a loss of freeze tolerance; and (c) responses to increased freeze stress reveal seasonal tuning of the FT adaptation to environmental temperatures. The Rock and Pillar sample population provides a clear example of the canalization of the FT adaptation. Seasonal variability in the extent of tolerance of multiple freezing events indicates that physiology is modulated to environmental temperatures by phenotypic plasticity - i.e. the FT adaptation is permanent and adjustable. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. National alpine ski team career and education survey.

    Science.gov (United States)

    Salmoni, A W; Rogers, R J

    1988-12-01

    Past and current National Alpine Ski Team (NAST) members were surveyed via a mailed questionnaire regarding their educational progress and attainment, career path, parental education and income, as well as their perceptions as to the effect of skiing on dimensions of personal development. The questionnaire was completed by 86% of the total possible (64 of 74) respondents. Although it was found that educational progress was retarded by involvement in elite level skiing, this conclusion could only be drawn if it was assumed that in skiers between 13 and 21 years of age, each one year change in chronological age is 'normally' accompanied by similar academic progress. It was found that upon retirement from NAST 78% of the skiers continued their formal education, with a high level of success. These results were compared to other studies concerning educational attainment.

  5. Statistical Downscaling Of Local Climate In The Alpine Region

    Science.gov (United States)

    Kaspar, Severin; Philipp, Andreas; Jacobeit, Jucundus

    2016-04-01

    The impact of climate change on the alpine region was disproportional strong in the past decades compared to the surrounding areas, which becomes manifest in a higher increase in surface air temperature. Beside the thermal changes also implications for the hydrological cycle may be expected, acting as a very important factor not only for the ecosystem but also for mankind, in the form of water security or considering economical aspects like winter tourism etc. Therefore, in climate impact studies, it is necessary to focus on variables with high influence on the hydrological cycle, for example temperature, precipitation, wind, humidity and radiation. The aim of this study is to build statistical downscaling models which are able to reproduce temperature and precipitation at the mountainous alpine weather stations Zugspitze and Sonnblick and to further project these models into the future to identify possible changes in the behavior of these climate variables and with that in the hydrological cycle. Beside facing a in general very complex terrain in this high elevated regions, we have the advantage of a more direct atmospheric influence on the meteorology of the exposed weather stations from the large scale circulation. Two nonlinear statistical methods are developed to model the station-data series on a daily basis: On the one hand a conditional classification approach was used and on the other hand a model based on artificial neural networks (ANNs) was built. The latter is in focus of this presentation. One of the important steps of developing a new model approach is to find a reliable predictor setup with e.g. informative predictor variables or adequate location and size of the spatial domain. The question is: Can we include synoptic background knowledge to identify an optimal domain for an ANN approach? The yet developed ANN setups and configurations show promising results in downscaling both, temperature (up to 80 % of explained variance) and precipitation (up

  6. Close-Range Sensing Techniques in Alpine Terrain

    Science.gov (United States)

    Rutzinger, M.; Höfle, B.; Lindenbergh, R.; Oude Elberink, S.; Pirotti, F.; Sailer, R.; Scaioni, M.; Stötter, J.; Wujanz, D.

    2016-06-01

    Early career researchers such as PhD students are a main driving force of scientific research and are for a large part responsible for research innovation. They work on specialized topics within focused research groups that have a limited number of members, but might also have limited capacity in terms of lab equipment. This poses a serious challenge for educating such students as it is difficult to group a sufficient number of them to enable efficient knowledge transfer. To overcome this problem, the Innsbruck Summer School of Alpine Research 2015 on close-range sensing techniques in Alpine terrain was organized in Obergurgl, Austria, by an international team from several universities and research centres. Of the applicants a group of 40 early career researchers were selected with interest in about ten types of specialized surveying tools, i.e. laser scanners, a remotely piloted aircraft system, a thermal camera, a backpack mobile mapping system and different grade photogrammetric equipment. During the one-week summer school, students were grouped according to their personal preference to work with one such type of equipment under guidance of an expert lecturer. All students were required to capture and process field data on a mountain-related theme like landslides or rock glaciers. The work on the assignments lasted the whole week but was interspersed with lectures on selected topics by invited experts. The final task of the summer school participants was to present and defend their results to their peers, lecturers and other colleagues in a symposium-like setting. Here we present the framework and content of this summer school which brought together scientists from close-range sensing and environmental and geosciences.

  7. Aerodynamic drag modeling of alpine skiers performing giant slalom turns.

    Science.gov (United States)

    Meyer, Frédéric; Le Pelley, David; Borrani, Fabio

    2012-06-01

    Aerodynamic drag plays an important role in performance for athletes practicing sports that involve high-velocity motions. In giant slalom, the skier is continuously changing his/her body posture, and this affects the energy dissipated in aerodynamic drag. It is therefore important to quantify this energy to understand the dynamic behavior of the skier. The aims of this study were to model the aerodynamic drag of alpine skiers in giant slalom simulated conditions and to apply these models in a field experiment to estimate energy dissipated through aerodynamic drag. The aerodynamic characteristics of 15 recreational male and female skiers were measured in a wind tunnel while holding nine different skiing-specific postures. The drag and the frontal area were recorded simultaneously for each posture. Four generalized and two individualized models of the drag coefficient were built, using different sets of parameters. These models were subsequently applied in a field study designed to compare the aerodynamic energy losses between a dynamic and a compact skiing technique. The generalized models estimated aerodynamic drag with an accuracy of between 11.00% and 14.28%, and the individualized models estimated aerodynamic drag with an accuracy between 4.52% and 5.30%. The individualized model used for the field study showed that using a dynamic technique led to 10% more aerodynamic drag energy loss than using a compact technique. The individualized models were capable of discriminating different techniques performed by advanced skiers and seemed more accurate than the generalized models. The models presented here offer a simple yet accurate method to estimate the aerodynamic drag acting upon alpine skiers while rapidly moving through the range of positions typical to turning technique.

  8. Signatures of Late Pleistocene fluvial incision in an Alpine landscape

    Science.gov (United States)

    Leith, Kerry; Fox, Matthew; Moore, Jeffrey R.

    2018-02-01

    Uncertainty regarding the relative efficacy of fluvial and glacial erosion has hindered attempts to quantitatively analyse the Pleistocene evolution of alpine landscapes. Here we show that the morphology of major tributaries of the Rhone River, Switzerland, is consistent with that predicted for a landscape shaped primarily by multiple phases of fluvial incision following a period of intense glacial erosion after the mid-Pleistocene transition (∼0.7 Ma). This is despite major ice sheets reoccupying the region during cold intervals since the mid-Pleistocene. We use high-resolution LiDAR data to identify a series of convex reaches within the long-profiles of 18 tributary channels. We propose these reaches represent knickpoints, which developed as regional uplift raised tributary bedrock channels above the local fluvial baselevel during glacial intervals, and migrated upstream as the fluvial system was re-established during interglacial periods. Using a combination of integral long-profile analysis and stream-power modelling, we find that the locations of ∼80% of knickpoints in our study region are consistent with that predicted for a fluvial origin, while the mean residual error over ∼100 km of modelled channels is just 26.3 m. Breaks in cross-valley profiles project toward the elevation of former end-of-interglacial channel elevations, supporting our model results. Calculated long-term uplift rates are within ∼15% of present-day measurements, while modelled rates of bedrock incision range from ∼1 mm/yr for low gradient reaches between knickpoints to ∼6-10 mm/yr close to retreating knickpoints, typical of observed rates in alpine settings. Together, our results reveal approximately 800 m of regional uplift, river incision, and hillslope erosion in the lower half of each tributary catchment since 0.7 Ma.

  9. Mortality rates of the Alpine Chamois : the influence of snow-meteorological factors

    NARCIS (Netherlands)

    Jonas, T.; Geiger, F.; Jenny, H.

    2008-01-01

    Especially for animals inhabiting alpine areas, winter environmental conditions can be limiting. Cold temperatures, hampered food availability and natural perils are just three of many potential threats that mountain ungulates face in winter. Understanding their sensitivity to climate variability is

  10. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils

    Czech Academy of Sciences Publication Activity Database

    Siles, J. A.; Cajthaml, Tomáš; Minerbi, S.; Margesin, R.

    2016-01-01

    Roč. 92, č. 3 (2016), fiw008 ISSN 0168-6496 Institutional support: RVO:61388971 Keywords : Alpine soil s * forest * altitude Subject RIV: EE - Microbiology, Virology Impact factor: 3.720, year: 2016

  11. A Retrospective Analysis of Concurrent Pathology in ACL-Reconstructed Knees of Elite Alpine Ski Racers

    DEFF Research Database (Denmark)

    Jordan, Matthew J; Doyle-Baker, Patricia; Heard, Mark

    2017-01-01

    BACKGROUND: Anterior cruciate ligament (ACL) tear is the most frequent injury in alpine ski racing, and there is a high prevalence of ACL reinjury. Limited data exist on the concurrent pathology with primary ACL tears in elite alpine ski racers and the magnitude of injury progression after primary...... ACL reconstruction (ACLR). PURPOSE: To evaluate (1) the involvement of intra-articular and multiligament pathologies at the time of primary ACLR, (2) the subsequent progression in meniscal/chondral injuries, and (3) the occurrence of ACL reinjury in elite alpine ski racers. STUDY DESIGN: Case series......; Level of evidence, 4. METHODS: Primary ACLR operative reports (n = 28) were obtained for 32 elite alpine ski racers along with the reports of 20 operative procedures that occurred subsequent to primary ACLR. Operative reports were evaluated to identify the presence/location of multiligament injury...

  12. Collembola at three alpine subarctic sites resistant to twenty years of experimental warming

    Czech Academy of Sciences Publication Activity Database

    Alatalo, J.M.; Jägerbrand, A.K.; Čuchta, Peter

    2015-01-01

    Roč. 5, December (2015), s. 18161 ISSN 2045-2322 Institutional support: RVO:60077344 Keywords : Collembola * alpine subarctic sites * experimental warming Subject RIV: EH - Ecology, Behaviour Impact factor: 5.228, year: 2015

  13. The role of competition along productivity gradients: experimental comparison of four alpine communities in the Caucasus.

    NARCIS (Netherlands)

    Onipchenko, V.G.; Blinnikov, M.S.; Gerasimova, M.A.; Volkova, E.V.; Cornelissen, J.H.C.

    2009-01-01

    Question. Competitive and facilitative interactions among plant species in different abiotic environments potentially link productivity, vegetation structure, species composition and functional diversity. We investigated these interactions among four alpine communities along an environmental

  14. EXPLORING THE POTENTIAL OF AERIAL PHOTOGRAMMETRY FOR 3D MODELLING OF HIGH-ALPINE ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    K. Legat

    2016-03-01

    Based on the very promising results, some general recommendations for aerial photogrammetry processing in high-alpine areas are made to achieve best possible accuracy of the final 3D-, 2.5D- and 2D products.

  15. Ontogenetic niche shifts in three Vaccinium species on a sub-alpine mountain side

    DEFF Research Database (Denmark)

    Auffret, Alistair G.; Meineri, Eric; Bruun, Hans Henrik

    2010-01-01

    Background: Climate warming in arctic and alpine regions is expected to result in the altitudinal migration of plant species, but current predictions neglect differences between species' regeneration niche and established niche. Aims: To examine potential recruitment of Vaccinium myrtillus, V...

  16. Alpine treeline and timberline dynamics during the Holocene in the Northern Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    Anca GEANTĂ

    2014-11-01

    Full Text Available High altitude environments (treeline and alpine communities are particularly sensitive to climate changes, disturbances and land-use changes due to their limited tolerance and adaptability range, habitat fragmentation and habitat restriction. The current and future climate warming is anticipated to shift the tree- and timberlines upwards thus affecting alpine plant communities and causing land-cover change and fragmentation of alpine habitats. An upslope movement of some trees, shrubs and cold adapted alpine herbs as a response to the current climate warming has already been noted in many montane and subalpine regions.Four Holocene peat and lacustrine sediment sequences located between 1670 and 1918 m a.s.l. (Fig.1, in the Rodna Mountains (Northern Romania, Eastern Carpathians are used with the aim to determine: i the sensitivity of high mountain habitats to climate, fire and land use changes; ii tree- and timberline shifts: and iii the influence of landscape topography on trees and shrubs.

  17. Pathogenic Yersinia enterocolitica O:3 isolated from a hunted wild alpine ibex.

    Science.gov (United States)

    Joutsen, S; Sarno, E; Fredriksson-Ahomaa, M; Cernela, N; Stephan, R

    2013-03-01

    Occurrence of Yersinia spp. in wild ruminants was studied and the strains were characterized to get more information on the epidemiology of enteropathogenic Yersinia in the wildlife. In total, faecal samples of 77 red deer, 60 chamois, 55 roe deer and 27 alpine ibex were collected during 3 months of the hunting season in 2011. The most frequently identified species was Y. enterocolitica found in 13%, 10%, 4% and 2% of roe deer, red deer, alpine ibex and chamois, respectively. Interestingly, one Y. enterocolitica O:3 strain, isolated from an alpine ibex, carried the important virulence genes located on the virulence plasmid (yadA and virF) and in the chromosome (ail, hreP, myfA and ystA). Most of the Y. enterocolitica strains belonged to biotype 1A of which 14 were ystB positive. Further studies are needed to clarify the importance of alpine ibex as a reservoir of pathogenic Y. enterocolitica.

  18. Evaluating the importance of surface soil contributions to reservoir sediment in alpine environments: a combined modelling and fingerprinting approach in the Posets-Maladeta Natural Park

    Science.gov (United States)

    Palazón, L.; Gaspar, L.; Latorre, B.; Blake, W. H.; Navas, A.

    2014-09-01

    Soil in alpine environments plays a key role in the development of ecosystem services and in order to maintain and preserve this important resource, information is required on processes that lead to soil erosion. Similar to other mountain alpine environments, the Benasque catchment is characterised by temperatures below freezing that can last from November to April, intense rainfall events, typically in spring and autumn, and rugged topography which makes assessment of erosion challenging. Indirect approaches to soil erosion assessment, such as combined model approaches, offer an opportunity to evaluate soil erosion in such areas. In this study (i) the SWAT (Soil and Water Assessment Tool) hydrological and erosion model and (ii) sediment fingerprinting procedures were used in parallel to assess the viability of a combined modelling and tracing approach to evaluate soil erosion processes in the area of the Posets-Maladeta Natural Park (central Spanish Pyrenees). Soil erosion rates and sediment contribution of potential sediment sources defined by soil type (Kastanozems/Phaeozems; Fluvisols and Cambisols) were assessed. The SWAT model suggested that, with the highest specific sediment yields, Cambisols are the main source of sediment in the Benasque catchment and Phaeozems and Fluvisols were identified as the lowest sediment contributors. Spring and winter model runs gave the highest and lowest specific sediment yield, respectively. In contrast, sediment fingerprinting analysis identified Fluvisols, which dominate the riparian zone, as the main sediment source at the time of sampling. This indicates the importance of connectivity as well as potential differences in the source dynamic of material in storage versus that transported efficiently from the system at times of high flow. The combined approach enabled us to better understand soil erosion processes in the Benasque alpine catchment, wherein SWAT identified areas of potential high sediment yield in large flood

  19. Sr isotope geochemistry of East Alpine mineral deposits and mass spectrometric analyses of fluid inclusions

    International Nuclear Information System (INIS)

    Grum, W.

    1995-05-01

    Strontium isotope geochemistry and deformational history of selected carbonate-hosted deposits from different tectonic positions in the Eastern Alps were studied. In this context an equipment has been constructed to analyze the composition of volatile components of fluid inclusions (FI). Based on the results of Sr-isotopic investigations two groups of deposits are discriminated: Deposits formed by formation waters and/or metamorphogenic fluids: Tux (magnesite, scheelite), Otterzug (barite), Lassing (magnesite), Rabenwald (talc), Laussa and Mooseck (fluorite). The mineralizing fluids are derived from different sedimentary rock series and therefore 87 Sr/ 86 Sr-ratios vary between 0.707 and 0.719. Deposits situated along fault zones: Lassing (talc), Gasteiner Tal (Silberpfennig area; gold), Schlaining (stibnite) and Waldenstein (specularite). Sr isotope ratios of the mineralizing fluids from Lassing, Waldenstein and Schlaining ranges from 0.7112 to 0.7127 and are therefore thought to have scavenged the East Alpine crystalline. The mineralizing solutions of the Gasteiner Tal deposit may either have equilibrated with low radiogenic sedimentary or with (ultra-)basic rocks. A cracking chamber has been constructed in order to open FI by cracking for mass spectrometric analysis of volatile components. Gases are analysed using a quadrupole mass spectrometer. The desorption of gas from metal and sample surfaces during cracking can be neglected. The amount of gas released from the mineral lattices was studied. With that fast method ore bearing from barren host rocks have been distinguished by different composition of the FI at the Brixlegg barite mineralization (Eastern Alps). Within the Galway fluorite deposit (Ireland) different fluids were involved and mass spectrometric analysis were carried out to characterize these different fluids and to identify their origin. (author)

  20. Tracking snowmelt in the subsurface: time-lapse electrical resistivity imaging on an alpine hill slope.

    Science.gov (United States)

    Thayer, D.; Parsekian, A.; Hyde, K.; Beverly, D.; Speckman, H. N.; Ewers, B. E.

    2015-12-01

    In the mountain West region the winter snowpack provides more than 70% of our annual water supply. Modeling and predicting the timing and magnitude of snowmelt-driven water yield is difficult due to the complexities of hydrologic systems that move meltwater from snow to rivers. Particular challenges are understanding the temporal and spatial domain of subsurface hydraulic processes at relevant scales, which range from points to catchments. Subsurface characterization often requires borehole instrumentation, which is expensive and extremely difficult to install in remote, rugged terrain. Advancements in non-invasive geophysical methods allow us to monitor changes in geophysical parameters over time and infer changes in hydraulic processes. In the No-Name experimental catchment in the Medicine Bow National Forest in Wyoming, we are conducting a multi-season, time-lapse electrical resistivity imaging survey on a sub-alpine hill slope. This south-facing, partially forested slope ranges from 5 degrees to 35 degrees in steepness and consists of a soil mantle covering buried glacial talus deposits of unknown depth. A permanent grid of down-slope and cross-slope electrode arrays is monitored up to four times a day. The arrays span the entire vertical distance of the slope, from an exposed bedrock ridge to a seasonal drainage below, and cover treed and non-treed areas. Geophysical measurements are augmented by temperature and moisture time-series instrumented below the surface in a contiguous 3 meter borehole. A time-series of multiple resistivity models each day from May to July shows the changing distribution of subsurface moisture during a seasonal drying sequence punctuated by isolated rain events. Spatial patterns of changing moisture indicate that soil and gravel in the top two meters drain into a saturated layer parallel to the slope which overlies less saturated material. These results suggest that water from snowmelt and rain events tends to move down-slope beneath

  1. What Do the IUCN Categories Really Protect? A Case Study of the Alpine Regions in Spain

    Directory of Open Access Journals (Sweden)

    Lorena Muñoz

    2013-05-01

    Full Text Available Protected area (PA coverage is used as an indicator of biodiversity protection worldwide. The effectiveness of using PAs as indicators has been questioned due to the diversity of categories encompassed by such designations, especially in PAs established for purposes other than biodiversity protection. Although international standards have been developed by the International Union for Conservation of Nature (IUCN, the policies on the ground have been developed independently of the IUCN categories, thus making the IUCN categories dubious measures of biodiversity conservation. Management plans are crucial for the effective management of parks and for guidance on how biodiversity maintenance should be prioritized relative to other goals. We therefore analyzed the aims and regulations of the management plans of alpine PAs in Spain as a first step in evaluating conservation performance. We used content analysis and correspondence analysis of instrumental variables (CAiv to assess how aims and regulations vary in relation to three explanatory factors: IUCN categories, vegetation zones and autonomous communities. We found that the aims of many parks were vague, without clear indications of how to prioritize biodiversity goals. Furthermore, only 50% of the parks studied had any management plan, which strengthens our argument concerning the lack of clear guidance in PA management. Although certain aims were correlated with the IUCN categories, the regulations showed no clear relationship to international policies, which indicates that these aims do not necessarily influence management practices. Devolution to autonomous communities could be one explanation for the large variation in management practices among parks. Further studies are needed to evaluate the impact of such management policies on biodiversity.

  2. Dynamics of Chytridiomycosis during the Breeding Season in an Australian Alpine Amphibian.

    Directory of Open Access Journals (Sweden)

    Laura A Brannelly

    Full Text Available Understanding disease dynamics during the breeding season of declining amphibian species will improve our understanding of how remnant populations persist with endemic infection, and will assist the development of management techniques to protect disease-threatened species from extinction. We monitored the endangered Litoria verreauxii alpina (alpine treefrog during the breeding season through capture-mark-recapture (CMR studies in which we investigated the dynamics of chytridiomycosis in relation to population size in two populations. We found that infection prevalence and intensity increased throughout the breeding season in both populations, but infection prevalence and intensity was higher (3.49 and 2.02 times higher prevalence and intensity, respectively at the site that had a 90-fold higher population density. This suggests that Bd transmission is density-dependent. Weekly survival probability was related to disease state, with heavily infected animals having the lowest survival. There was low recovery from infection, especially when animals were heavily infected with Bd. Sympatric amphibian species are likely to be reservoir hosts for the disease and can play an important role in the disease ecology of Bd. Although we found 0% prevalence in crayfish (Cherax destructor, we found that a sympatric amphibian (Crinia signifera maintained 100% infection prevalence at a high intensity throughout the season. Our results demonstrate the importance of including infection intensity into CMR disease analysis in order to fully understand the implications of disease on the amphibian community. We recommend a combined management approach to promote lower population densities and ensure consistent progeny survival. The most effective management strategy to safeguard the persistence of this susceptible species might be to increase habitat area while maintaining a similar sized suitable breeding zone and to increase water flow and area to reduce drought.

  3. [Anglo-russian terminological glossary for freestyle skiing, alpine skiing, snowboard and ski jumping

    OpenAIRE

    2014-01-01

    Ce glossaire contient les traductions des mots les plus utiles en russe et en anglais pour les sports du ski acrobatique, ski alpin, snowboard et saut à ski dans le contexte des Jeux Olympiques et Paralympiques d'hiver à Sochi 2014. This glossary contains translations of the most useful words in Russian and English for the sports of freestyle skiing, alpine skiing, snowboard and ski jumping within the context of the 2014 Olympic Winter Games and Paralympic Winter Games in Sochi.

  4. Expert – Non-expert differences in visual behaviour during alpine slalom skiing

    OpenAIRE

    Decroix, Marjolein; Wazir, Mohd Rozilee Wazir Norjali; Zeuwts, Linus; Deconinck, Frederik; Lenoir, Matthieu; Vansteenkiste, Pieter

    2017-01-01

    The aim of this study was to investigate visual behaviour of expert and non-expert ski athletes during an alpine slalom. Fourteen non-experts and five expert slalom skiers completed an alpine slalom course in an indoor ski slope while wearing a head-mounted eye tracking device. Experts completed the slalom clearly faster than non-experts, but no significant difference was found in timing and position of the turn initiation. Although both groups already looked at future obstacles approximately...

  5. Experimental warming increases herbivory by leaf-chewing insects in an alpine plant community

    OpenAIRE

    Birkemoe, Tone; Bergmann, Saskia; Hasle, Toril Elisabet; Klanderud, Kari

    2016-01-01

    Abstract Climate warming is predicted to affect species and trophic interactions worldwide, and alpine ecosystems are expected to be especially sensitive to changes. In this study, we used two ongoing climate warming (open?top chambers) experiments at Finse, southern Norway, to examine whether warming had an effect on herbivory by leaf?chewing insects in an alpine Dryas heath community. We recorded feeding marks on the most common vascular plant species in warmed and control plots at two expe...

  6. Providing plastic zone extrusion

    Science.gov (United States)

    Manchiraju, Venkata Kiran; Feng, Zhili; David, Stan A.; Yu, Zhenzhen

    2017-04-11

    Plastic zone extrusion may be provided. First, a compressor may generate frictional heat in stock to place the stock in a plastic zone of the stock. Then, a conveyer may receive the stock in its plastic zone from the compressor and transport the stock in its plastic zone from the compressor. Next, a die may receive the stock in its plastic zone from the conveyer and extrude the stock to form a wire.

  7. Energy Consumption and Greenhouse Gas Emissions Resulting From Tourism Travel in an Alpine Setting

    Directory of Open Access Journals (Sweden)

    Rainer Unger

    2016-11-01

    Full Text Available Tourism—with its social, economic, and ecological dimensions—can be an important driver of sustainable development of alpine communities. Tourism is essential for local people's incomes and livelihoods, but it can also have a major impact on the local environment, landscape aesthetics, and (mainly through tourist transport global climate change. A project currently underway is developing the Austrian mountain municipality of Alpbach into a role model for competitive and sustainable year-round alpine tourism using an integrated and spatially explicit approach that considers energy demand and supply related to housing, infrastructure, and traffic in the settlement and the skiing area. As the first outcome of the project, this article focuses on the development of the Model of Alpine Tourism and Transportation, a geographic information system–based tool for calculating, in detail, energy consumption and greenhouse gas emissions resulting from travel to a single alpine holiday destination. Analysis results show that it is crucial to incorporate both direct and indirect energy use and emissions as each contributes significantly to the climate impact of travel. The study fills a research gap in carbon impact appraisal studies of tourism transport in the context of alpine tourism at the destination level. Our findings will serve as a baseline for the development of comprehensive policies and agendas promoting the transformation toward sustainable alpine tourism.

  8. Is grazing exclusion effective in restoring vegetation in degraded alpine grasslands in Tibet, China?

    Directory of Open Access Journals (Sweden)

    Yan Yan

    2015-06-01

    Full Text Available Overgrazing is considered one of the key disturbance factors that results in alpine grassland degradation in Tibet. Grazing exclusion by fencing has been widely used as an approach to restore degraded grasslands in Tibet since 2004. Is the grazing exclusion management strategy effective for the vegetation restoration of degraded alpine grasslands? Three alpine grassland types were selected in Tibet to investigate the effect of grazing exclusion on plant community structure and biomass. Our results showed that species biodiversity indicators, including the Pielou evenness index, the Shannon–Wiener diversity index, and the Simpson dominance index, did not significantly change under grazing exclusion conditions. In contrast, the total vegetation cover, the mean vegetation height of the community, and the aboveground biomass were significantly higher in the grazing exclusion grasslands than in the free grazed grasslands. These results indicated that grazing exclusion is an effective measure for maintaining community stability and improving aboveground vegetation growth in alpine grasslands. However, the statistical analysis showed that the growing season precipitation (GSP plays a more important role than grazing exclusion in which influence on vegetation in alpine grasslands. In addition, because the results of the present study come from short term (6–8 years grazing exclusion, it is still uncertain whether these improvements will be continuable if grazing exclusion is continuously implemented. Therefore, the assessments of the ecological effects of the grazing exclusion management strategy on degraded alpine grasslands in Tibet still need long term continued research.

  9. The Supergalactic Habitable Zone

    Science.gov (United States)

    Mason, Paul

    2018-01-01

    Habitability in the local universe is examined. Constrained by metal abundance and exposure to sterilizing events, life as we know it requires significantly long periods of stable environmental conditions. Planets within galaxies undergoing major mergers, active AGN, starburst episodes, and merging black holes pose serious threats to long-term habitability. Importantly, the development of several layers of protection from high-energy particles such as a thick atmosphere, a strong planetary magnetic field, an astrosphere, and a galactic magnetic field is of great benefit. Factors such as star type and activity, planet type and composition, the location of a planet within its host galaxy, and even the location within a supercluster of galaxies can affect the potential habitability of planets. We discuss the concept of the Supergalactic Habitable Zone introduced by Mason and Biermann in terms of habitability in the local universe and find that galaxies near the center of the Virgo cluster, for example, have a much lower probability for the development of life as we know it as compared to locations in the Milky Way.

  10. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers

    DEFF Research Database (Denmark)

    Edwards, Arwyn; Mur, Luis A. J.; Girdwood, Susan E.

    2014-01-01

    Cryoconite holes are known as foci of microbial diversity and activity on polar glacier surfaces, but are virtually unexplored microbial habitats in alpine regions. In addition, whether cryoconite community structure reflects ecosystem functionality is poorly understood. Terminal restriction...... revealed Proteobacteria were particularly abundant, with Cyanobacteria likely acting as ecosystem engineers in both alpine and Arctic cryoconite communities. However, despite these generalities, significant differences in bacterial community structures, compositions and metabolomes are found between alpine...

  11. Focusing of relative plate motion at a continental transform fault: Cenozoic dextral displacement >700 km on New Zealand's Alpine Fault, reversing >225 km of Late Cretaceous sinistral motion

    Science.gov (United States)

    Lamb, Simon; Mortimer, Nick; Smith, Euan; Turner, Gillian

    2016-03-01

    The widely accepted ˜450 km Cenozoic dextral strike-slip displacement on New Zealand's Alpine Fault is large for continental strike-slip faults, but it is still less than 60% of the Cenozoic relative plate motion between the Australian and Pacific plates through Zealandia, with the remaining motion assumed to be taken up by rotation and displacement on other faults in a zone up to 300 km wide. We show here that the 450 km total displacement across the Alpine Fault is an artifact of assumptions about the geometry of New Zealand's basement terranes in the Eocene, and the actual Cenozoic dextral displacement across the active trace is greater than 665 km, with more than 700 km (and 94%) of the relative plate motion in the last 25 Ma at an average rate in excess of 28 mm/yr. It reverses more than 225 km (and Zealandia in the Late Cretaceous, when Zealandia lay on the margin of Gondwana, providing a direct constraint on the kinematics of extension between East and West Antarctica at this time.

  12. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai‐Tibetan Plateau

    OpenAIRE

    Guo, Yanjun; Guo, Na; He, Yuji; Gao, Jianhua

    2015-01-01

    Abstract Alpine meadow ecosystems are susceptible to climate changes. Still, climate impact on cuticular wax in alpine meadow plants is poorly understood. Assessing the variations of cuticular wax in alpine meadow plants across different latitudes might be useful for predicting how they may respond to climate change. We studied nine alpine meadows in a climate gradient in the east side of Qinghai‐Tibetan Plateau, with mean annual temperature ranging from −7.7 to 3.2°C. In total, 42 plant spec...

  13. Temperature signal in suspended sediment export from an Alpine catchment

    Directory of Open Access Journals (Sweden)

    A. Costa

    2018-01-01

    Full Text Available Suspended sediment export from large Alpine catchments ( >  1000 km2 over decadal timescales is sensitive to a number of factors, including long-term variations in climate, the activation–deactivation of different sediment sources (proglacial areas, hillslopes, etc., transport through the fluvial system, and potential anthropogenic impacts on the sediment flux (e.g. through impoundments and flow regulation. Here, we report on a marked increase in suspended sediment concentrations observed near the outlet of the upper Rhône River Basin in the mid-1980s. This increase coincides with a statistically significant step-like increase in basin-wide mean air temperature. We explore the possible explanations of the suspended sediment rise in terms of changes in water discharge (transport capacity, and the activation of different potential sources of fine sediment (sediment supply in the catchment by hydroclimatic forcing. Time series of precipitation and temperature-driven snowmelt, snow cover, and ice melt simulated with a spatially distributed degree-day model, together with erosive rainfall on snow-free surfaces, are tested to explore possible reasons for the rise in suspended sediment concentration. We show that the abrupt change in air temperature reduced snow cover and the contribution of snowmelt, and enhanced ice melt. The results of statistical tests show that the onset of increased ice melt was likely to play a dominant role in the suspended sediment concentration rise in the mid-1980s. Temperature-driven enhanced melting of glaciers, which cover about 10 % of the catchment surface, can increase suspended sediment yields through an increased contribution of sediment-rich glacial meltwater, increased sediment availability due to glacier recession, and increased runoff from sediment-rich proglacial areas. The reduced extent and duration of snow cover in the catchment are also potential contributors to the rise in suspended sediment

  14. Identification of mineral dust layers in high alpine snow packs

    Science.gov (United States)

    Greilinger, Marion; Kau, Daniela; Schauer, Gerhard; Kasper-Giebl, Anne

    2017-04-01

    Deserts serve as a major source for aerosols in the atmosphere with mineral dust as a main contributor to primary aerosol mass. Especially the Sahara, the largest desert in the world, contributes roughly half of the primarily emitted aerosol mass found in the atmosphere [1]. The eroded Saharan dust is episodically transported over thousands of kilometers with synoptic wind patterns towards Europe [2] and reaches Austria about 20 to 30 days per year. Once the Saharan dust is removed from the atmosphere via dry or wet deposition processes, the chemical composition of the precipitation or the affected environment is significantly changed. Saharan dust serves on the one hand as high ionic input leading to an increase of ionic species such as calcium, magnesium or sulfate. On the other hand Saharan dust provides a high alkaline input neutralizing acidic components and causing the pH to increase [3]. Based on these changes in the ion composition, the pH and cross plots of the ion and conductivity balance [4] we tried to develop a method to identify Saharan dust layers in high alpine snow packs. We investigated seasonal snow packs of two high alpine sampling sites situated on the surrounding glaciers of the meteorological Sonnblick observatory serving as a global GAW (Global Atmospheric Watch) station located in the National Park Hohe Tauern in the Austrian Alps. Samples with 10 cm resolution representing the whole winter accumulation period were taken just prior to the start of snow melt at the end of April 2016. In both snow packs two layers with clearly different chemical behavior were observed. In comparison with the aerosol data from the Sonnblick observatory, these layers could be clearly identified as Saharan dust layers. Identified Saharan dust layers in the snow pack allow calculations of the ecological impact of deposited ions, with and without Saharan dust, during snow melt. Furthermore the chemical characteristics for the identification of Saharan dust layers

  15. Drones application on snow and ice surveys in alpine areas

    Science.gov (United States)

    La Rocca, Leonardo; Bonetti, Luigi; Fioletti, Matteo; Peretti, Giovanni

    2015-04-01

    First results from Climate change are now clear in Europe, and in Italy in particular, with the natural disasters that damaged irreparably the territory and the habitat due to extreme meteorological events. The Directive 2007/60/EC highlight that an "effective natural hazards prevention and mitigation that requires coordination between Member States above all on natural hazards prevention" is necessary. A climate change adaptation strategy is identified on the basis of the guidelines of the European Community program 2007-2013. Following the directives provided in the financial instrument for civil protection "Union Civil Protection Mechanism" under Decision No. 1313/2013 / EU of the European Parliament and Council, a cross-cutting approach that takes into account a large number of implementation tools of EU policies is proposed as climate change adaptation strategy. In last 7 years a network of trans-Alpine area's authorities was created between Italy and Switzerland to define an adaptive strategy on climate change effects on natural enviroment based on non structural remedies. The Interreg IT - CH STRADA Project (STRategie di ADAttamento al cambiamento climatico) was born to join all the non structural remedies to climate change effects caused by snow and avalanches, on mountain sources, extreme hydrological events and to manage all transnational hydrological resources, involving all stakeholders from Italy and Switzerland. The STRADA project involved all civil protection authorities and all research centers in charge of snow, hydrology end civil protection. The Snow - meteorological center of the Regional Agency for Environment Protection (CNM of ARPA Lombardia) and the Civil Protection of Lombardy Region created a research team to develop tools for avalanche prediction and to observe and predict snow cover on Alpine area. With this aim a lot of aerial photo using Drone as been performed in unusual landscape. Results of all surveys were really interesting on a

  16. Reconstruction of head impacts in FIS World Cup alpine skiing.

    Science.gov (United States)

    Steenstrup, Sophie Elspeth; Mok, Kam-Ming; McIntosh, Andrew S; Bahr, Roald; Krosshaug, Tron

    2017-11-25

    Prior to the 2013/2014 season, the International Ski Federation (FIS) increased the helmet testing speed from 5.4 to 6.8 m/s for alpine downhill, super-G and giant slalom. Whether this increased testing speed reflects head impact velocities in real head injury situations on snow is unclear. We therefore investigated the injury mechanisms and gross head impact biomechanics in seven real head injury situations among World Cup (WC) alpine skiers. We analysed nine head impacts from seven head injury videos from the FIS Injury Surveillance System, throughout nine WC seasons (2006-2015) in detail. We used commercial video-based motion analysis software to estimate head impact kinematics in two dimensions, including directly preimpact and postimpact, from broadcast video. The sagittal plane angular movement of the head was also measured using angle measurement software. In seven of nine head impacts, the estimated normal to slope preimpact velocity was higher than the current FIS helmet rule of 6.8 m/s (mean 8.1 (±SD 0.6) m/s, range 1.9±0.8 to 12.1±0.4 m/s). The nine head impacts had a mean normal to slope velocity change of 9.3±1.0 m/s, range 5.2±1.1 to 13.5±1.3 m/s. There was a large change in sagittal plane angular velocity (mean 43.3±2.9 rad/s (range 21.2±1.5 to 64.2±3.0 rad/s)) during impact. The estimated normal to slope preimpact velocity was higher than the current FIS helmet rule of 6.8 m/s in seven of nine head impacts. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Snow multivariable data assimilation for hydrological predictions in Alpine sites

    Science.gov (United States)

    Piazzi, Gaia; Thirel, Guillaume; Campo, Lorenzo; Gabellani, Simone; Stevenin, Hervè

    2017-04-01

    Snowpack dynamics (snow accumulation and ablation) strongly impacts on hydrological processes in Alpine areas. During the winter season the presence of snow cover (snow accumulation) reduces the drainage in the basin with a resulting lower watershed time of concentration in case of possible rainfall events. Moreover, the release of the significant water volume stored in winter (snowmelt) considerably contributes to the total discharge during the melting period. Therefore when modeling hydrological processes in snow-dominated catchments the quality of predictions deeply depends on how the model succeeds in catching snowpack dynamics. The integration of a hydrological model with a snow module allows improving predictions of river discharges. Besides the well-known modeling limitations (uncertainty in parameterizations; possible errors affecting both meteorological forcing data and initial conditions; approximations in boundary conditions), there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine several independent snow-related data sources (model simulations, ground-based measurements and remote sensed observations) in order to obtain the most likely estimate of snowpack state. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model strengthened by a multivariable DA framework for hydrological purposes. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity

  18. Global Research Initiative in Alpine Environments: A New GLORIA Site in Southwestern Montana

    Science.gov (United States)

    Apple, M. E.; Pullman, T. Y.; Mitman, G. G.

    2007-12-01

    Global climate change is expected to have pronounced effects on the alpine environments and thus the alpine plants of western North America. Predicted responses include an upward migration of treelines, altered species compositions, changes in the percentage of land covered by vegetation, and a change in the phenology of alpine plants. To determine the effects of climate change on the alpine flora of southwestern Montana, we are installing a GLORIA (Global Research Initiative in Alpine Environments) site in order to monitor temperature, species composition, and percent cover of vascular plants, lichens, and mosses along an ascending altitudinal gradient. We are including lichens and mosses because of their importance as ecological indicator species. The abundance and spatial distribution of lichens and mosses provides essential baseline data for long-term monitoring of local and global impacts on the environment. Mt. Fleecer (9250 ft.), which is west of the continental divide and semi-isolated from other peaks in the Anaconda-Pintlar Range, is currently the most likely location for the southwestern Montana GLORIA site. Mt. Fleecer is accessible because it does not have the steep and hazardous glaciated talus cirques that characterize many of the neighboring, higher peaks. However, if an accessible and suitable higher summit is found, then it will be included as the highest summit in the GLORIA site. Interesting species at Mt. Fleecer include the whitebark pine, Pinus albicaulis, which is a keystone species in high mountain ecosystems of the western United States and Canada, the green gentian, Frasera speciosa, and the shooting star, Dodecatheon pulchellum. Data from this site will become part of a global network of GLORIA sites with which we will assess changes in alpine flora. Information gained from this GLORIA site can also be used as a link between studies of alpine climate change and related investigations on the timing of snowmelt and its influence on

  19. Differences in Sensation Seeking Between Alpine Skiers, Snowboarders and Ski Tourers.

    Science.gov (United States)

    Kopp, Martin; Wolf, Mirjam; Ruedl, Gerhard; Burtscher, Martin

    2016-03-01

    Despite different injury rates and injury patterns previous personality related research in the field of downhill winter sports did not subdivide between different alpine slope users. In this study, we tried to find out whether the personality trait sensation seeking differs between skiers, snowboarders and ski tourers. In a cross-sectional survey 1185 persons (726 alpine skiers, 321 snowboarders and 138 ski tourers comparable in age and sex) were electronically questioned with the sensation seeking scale (SSS-V) comprising the four factors thrill and adventure seeking, experiences seeking, disinhibition and boredom susceptibility. Kruskal-Wallis Tests revealed a significantly higher total score of the SSS-V for snowboarders in comparison to alpine skiers and ski tourers (H(2) = 41.5, p Ski tourers and snowboarders scored significantly higher in the dimensions "thrill- and adventure-seeking" and "experience-seeking" than alpine skiers. Furthermore, snowboarders showed higher scores in "disinhibition" related to alpine skiers and ski tourers and "boredom susceptibility" compared to alpine skiers. Data show differences in the personality trait sensation seeking in people practising different winter sports. As snowboarders showed higher SS-scores compared to alpine skiers and ski tourers prevention and information programs might benefit from a selective approach focusing on special characteristics of the respective group. Key pointsIt is the very first research trying to identify differences between different types of winter sport slope usersObtained results show higher sensation seeking scores in snowboardersThese results might stimulate new approaches in educational campaigns to reduce accident rates in winter sports.

  20. Introgression from domestic goat generated variation at the major histocompatibility complex of Alpine ibex.

    Directory of Open Access Journals (Sweden)

    Christine Grossen

    2014-06-01

    Full Text Available The major histocompatibility complex (MHC is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex. At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2, Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus. We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8% to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection.

  1. Volatile organic compounds in alpine valleys: sources, evolutions and transformations; Les composes organiques volatils dans les vallees alpines: sources, evolutions et transformations

    Energy Technology Data Exchange (ETDEWEB)

    Colomb, A.

    2002-12-01

    Dynamic and chemical specificity in alpine valleys was the principal goal during the POVA project (Pollution des Vallees Alpines). Volatile Organic Compounds emissions in troposphere have important impacts on animal lives and environment. Then, the aim of this work was the improvement of the biogenic or anthropogenic VOC sources determination, of VOC transformation and evolution in mountain areas. During this project, the realisation of a daily continuous measurements campaign of a few chemical compounds allowed the understanding of the seasonal variations of these compounds. The goals of intensive field campaigns, realised in August 2000 and January 2001, were to understand photochemical process in a temporal and geographic small scale and to follow diurnal variation of different pollutants in summer and winter. Moreover, the VOC data would be used to develop and validate coupled atmospheric dynamic/chemical model. Therefore, these VOC measures give answer to two lacks of knowledge in alpine valleys about: - Biogenic and anthropogenic VOC respective part, and their main sources, - VOC photochemical reactions in alpine valleys, according to seasonal and diurnal cycles. Finally, we presented two atypical days results, in Maurienne valley during a Saharan episode in August 2000. This episode permitted to understand mass air transport mechanism in mountain region. (author)

  2. The return of the property question in the development of Alpine tourist resorts in Switzerland

    Directory of Open Access Journals (Sweden)

    Christophe Clivaz

    2010-09-01

    Full Text Available This contribution demonstrates how the issues and current problems regarding real estate management in Swiss Alpine tourist resorts emerge, for an important part, from the inconsistencies of the Federal land management system set in place at the end of the 1970s, system based on zoning scheme and excluding virtually any estate instrument, including the capital-gain levy. In these very favourable conditions for landowners, who also see land ownership strengthened by its introduction in the Federal Constitution at the end of the 1960s, the "growth coalitions" structuring the local power in many tourist towns usually planned oversized building areas (and often badly located which have facilitated the development of second homes industry to the detriment of productive estate home industry. Faced with the failure of planning and zoning to limit these trends whose negative effects on the development of tourism seriously begin to be felt in the 1990s, we encounter, now in recent years, the post-eradication of the real estate question in discussions concerning the development of tourist resorts particularly in implementing real estate instruments, such as quota systems, moratoriums or taxes, intervening so much more directly than only zoning on land and real estate owners, contingency arrangements initially excluded from spatial planning policy.Cette contribution montre dans quelle mesure les enjeux et les problèmes actuels en matière de gestion foncière et immobilière dans les stations touristiques des Alpes suisses découlent pour une part importante des incohérences du régime fédéral de l’aménagement du territoire mis en place à la fin des années 1970, régime fondé sur le zonage et excluant quasiment tout instrument foncier, notamment le prélèvement de la plus-value. Dans ces conditions très favorables aux propriétaires fonciers, qui voient par ailleurs la garantie de la propriété foncière encore renforcée par son inscription

  3. Controls on piezometric response at the hillslope scale in an alpine catchment

    Science.gov (United States)

    Penna, D.; Mantese, N.; Gobbi, A.; Borga, M.

    2011-12-01

    Runoff generation in humid watersheds with steep slopes and shallow soils is often strongly affected by the activation of transient lateral subsurface flow. Possible development of preferential subsurface flow paths and potential connection between hillslopes and riparian zone can significantly increase the total runoff at the outlet. Groundwater dynamics have been frequently reported in the literature as highly variable in time and space and often associated to threshold and non-linear effects. Such a variability is even enhanced by the marked physiographic and climatic heterogeneities characterizing mountain catchments. Therefore, the analysis of the dominant factors controlling the triggering of piezometric response and the spatio-temporal dynamics of subsurface flow patterns in alpine areas represents a crucial step towards a better description and conceptualization of the catchment's hydrological behaviour. Data collected during the snow-free months (approximately May-October) in 2008, 2009 and 2010 in the Bridge Creek Catchment (0.14 km2, Eastern Italian Alps) were used to investigate the main controls determining the spatial and temporal variability of piezometric response at the hillslope scale. The catchment, ranging in elevation between 1932 and 2515 m asl, has an alpine climate, with approximately half of the mean annual precipitation (1220 mm) falling as snow. In addition to precipitation, discharge and soil moisture measurements, shallow water table variations were monitored on two steep hillslopes with similar size (approximately 0.5 ha) but contrasting relief shape (divergent-convex and relatively planar). A net of 21 piezometric wells (8 + 13) equipped with capacitance rods was installed at depths ranging between 65 and 140 cm from the soil surface. Results highlighted the extreme variability of piezometric response even at the small spatial scale. Despite the marked morphologic relief, no topographic factor was found to act as dominant control on

  4. CHANGES IN QUADRICEPS MUSCLE ACTIVITY DURING SUSTAINED RECREATIONAL ALPINE SKIING

    Directory of Open Access Journals (Sweden)

    Josef Kröll

    2011-03-01

    Full Text Available During a day of skiing thousands of repeated contractions take place. Previous research on prolonged recreational alpine skiing show that physiological changes occur and hence some level of fatigue is inevitable. In the present paper the effect of prolonged skiing on the recruitment and coordination of the muscle activity was investigated. Six subjects performed 24 standardized runs. Muscle activity during the first two (PREskiing and the last two (POSTskiing runs was measured from the vastus lateralis (VL and rectus femoris (RF using EMG and quantified using wavelet and principal component analysis. The frequency content of the EMG signal shifted in seven out of eight cases significantly towards lower frequencies with highest effects observed for RF on outside leg. A significant pronounced outside leg loading occurred during POSTskiing and the timing of muscle activity peaks occurred more towards turn completion. Specific EMG frequency changes were observed at certain time points throughout the time windows and not over the whole double turn. It is suggested that general muscular fatigue, where additional specific muscle fibers have to be recruited due to the reduced power output of other fibers did not occur. The EMG frequency decrease and intensity changes for RF and VL are caused by altered timing (coordination within the turn towards a most likely more uncontrolled skiing technique. Hence, these data provide evidence to suggest recreational skiers alter their skiing technique before a potential change in muscle fiber recruitment occurs

  5. Competitive and seasonal oxidative stress in elite alpine ski racers.

    Science.gov (United States)

    Schippinger, G; Fankhauser, F; Abuja, P M; Winklhofer-Roob, B M; Nadlinger, K; Halwachs-Baumann, G; Wonisch, W

    2009-04-01

    We investigated competitive- and long-term oxidative stress during a competition season in eight top-ranked members of the Austrian Men's Alpine Ski Team. Serum total peroxides, antibody titers against oxidized LDL (oLAb) and lag time of the degradation of the fluorophore 1-palmitoyl-2-((2-(4-(6-phenyl-trans-1,3,5-hexatrienyl)phenyl)ethyl)-carbonyl)-sn-glycero-3-phosphocholine were measured, along with plasma concentrations of ascorbate, alpha- and gamma-tocopherol, beta-carotene, uric acid and the lipid status. Competitive stress was indicated through an increased post-race uric acid level (286 +/- 50 microM pre-race vs 456 +/- 77 microM post-race, P<0.001) in December. Long-term effects were already apparent in November, with the highest concentrations of total peroxides (680 +/- 458 microM H(2)O(2) equivalents vs December 47 +/- 58 microM H(2)O(2) equivalents and January 15 +/- 28 microM H(2)O(2) equivalents, P<0.001) and a concomitant decrease in oLAb titers with an antibody trough in December (439 +/- 150 mU/mL vs baseline 1036 +/- 328 mU/mL; P=0.003). In January, after recovery, they attained nearly pre-season levels of oxidative stress biomarkers. This study indicates midseason oxidative stress in top-level skiers, which was associated with the performance in these athletes.

  6. Optimization of the thermal performances of the Alpine Pixel Detector

    CERN Document Server

    Zhang, Zhan; Di Ciaccio, Lucia

    The ATLAS (A Toroidal LHC ApparatuS) detector is the largest detector of the Large Hadron Collider (LHC). One of the most important goals of ATLAS was to search for the missing piece of the Standard Model, the Higgs boson that had been found in 2012. In order to keep looking for the unknowns, it is planned to upgrade the LHC. The High Luminosity LHC (HL-LHC) is a novel configuration of the accelerator, aiming at increasing the luminosity by a factor five or more above the nominal LHC design. In parallel with the accelerator upgrade also the ATLAS will be upgraded to cope with detector aging and to achieve the same or better performance under increased event rate and radiation dose expected at the HL-LHC. This thesis discusses a novel design for the ATLAS Pixel Detector called the "Alpine" layout for the HL-LHC. To support this design, a local support structure is proposed, optimized and tested with an advanced CO2 evaporative cooling system. A numerical program called “CoBra” simulating the twophase heat ...

  7. Solar-thermic sewage sludge treatment in extreme alpine environments.

    Science.gov (United States)

    Becker, W; Schoen, M A; Wett, B

    2007-01-01

    In the framework of a program for environmental protection conducted by the German mountaineers' club (DAV) problems emerging from residual solids accumulating in on-site wastewater treatment plants of mountain refuges were investigated. To handle these problems in an ecologically and economically reasonable way two devices for solar-supported treatment of sludge and bio-solids have been developed. These units support gravity-filtration and evaporation of liquid sludge as well as thermal acceleration of composting processes. Two solar sludge dryers were installed and operated without external energy supply at alpine refuges treating primary and secondary sludge, respectively. Batch-filling during the season could increase load capacity and a total solids concentration of up to 40% could be achieved before discharge at the beginning of the next season. The promising results from the solar sludge dryer encouraged for the development of a solar composter. The period of temperature levels suitable for composting biosolids in mountain areas can be extended considerably by application of this technology--measured temperature distribution indicated no freezing at all.

  8. Carnivore fecal chemicals suppress feeding by Alpine goats (Capra hircus).

    Science.gov (United States)

    Weldon, P J; Graham, D P; Mears, L P

    1993-12-01

    The efficacy of carnivore and ungulate fecal chemicals in suppressing the feeding behavior of Alpine goats (Capra hircus) was examined. In the first four experiments, goats were offered food covered with paper strips treated with fecal extracts of the Bengal tiger, Siberian tiger, African lion, and brown bear, respectively; food covered with solvent-treated and untreated (plain) papers served as controls in each experiment. Goats made fewer head entries into, and ate less food from, buckets containing fecal extracts. In the fifth experiment, goats were offered food covered with paper strips treated with fecal extracts of the puma, Dorcas gazelle, white-bearded gnu, and conspecifics; food covered with solvent-treated and plain papers again served as controls. The amounts of food consumed from buckets containing puma, gazelle, gnu, and solvent treatments were statistically indistinguishable, but less food was consumed from them than from buckets containing the goat-scented or plain papers. No significant differences among treatments were detected with respect to head entries. Field experiments are needed on the use of predator-derived chemicals to reduce damage by goats to vegetation.

  9. HEMATOLOGICAL PARAMETERS IN THE ALPINE GOATS DURING LACTATION

    Directory of Open Access Journals (Sweden)

    Zvonko Antunović

    2013-06-01

    Full Text Available The aim of this paper is to present haematological parameters in the Alpine goats during lactation. The study included 15 goats average age of 5 years in the 4th lactation. The blood sampling of goats was conducted on the 30th, 60th, 90th and 120th days of lactation. In the blood of goats, significant decrease in the number of red blood cells was determined, as lactation progressed, and their growth in the latter measure, but with no significant difference. Also, a significant decrease was found in the number of leukocytes as lactation progressed, whereas the 120th day of lactation showed their increase compared to the 90th day. A similar trend was found out for the content of hemoglobin and hematocrit. The mean volume of red blood cells and a significant proportion of monocytes were declining as lactation advance, while the mean concentration of hemoglobin significantly increased, and in the end of the study significantly decreased, compared to the measurement of 90th day. The above mentioned changes in hematological parameters indicate the quality of recovery and adjustment of goats in lactation.

  10. Microzonages sismiques dans les vallées alpines et déclinaison locale des règles d’urbanisme

    Directory of Open Access Journals (Sweden)

    Stéphane Cartier

    2009-03-01

    Full Text Available Confrontées au risque sismique, les vallées sédimentaires alpines testent différentes solutions politiques pour transcrire en règles d’urbanisme les connaissances apportées par les micro-zonages. France, Italie, Slovénie et Suisse composent avec leur tradition politique et l’adoption de codes européens pour améliorer la sécurité selon la vulnérabilité et la géologie locales.Management of earthquake risks in the sedimentary valleys of the Alps depends on the ability to transcribe scientific knowledge obtained from micro-zoning into urban planning regulations. France, Italy, Slovenia and Switzerland are working with new European codes, and within their respective political contexts, to improve earthquake safety on the basis of enhanced input on local geological conditions and vulnerability levels.

  11. The Structural Architecture and Tectonic Inheritance of the Vlora-Elbasan Transfer Zone in Albanides-Albania

    Science.gov (United States)

    Abus, E. D.; Dilek, Y.

    2014-12-01

    The Albanides in the Balkan Peninsula are part of the Alpine orogenic belt and host one of the most significant oil fields in SE Europe. The late Mesozoic-Cenozoic evolution of the Albanides has been strongly controlled by the relative movements of Adria or Apulia, a microcontinent with a West Gondwana affinity with respect to Eurasia. In northeastern Albania, the Internal Albanides consist of Paleozoic - Jurassic basement rocks, which involved subduction zone tectonics of the Pindos-Mirdita ocean basin. The External Albanides, on the other hand, represent a fold-and-thrust belt with deformation in a broad zone of oblique convergence. This tectonic domain is divided, from east to west, into five major structural zones: the Krasta-Cukali Zone, the Kruja Zone, the Peri-Adriatic Depression, the Ionian Zone, and the Sazani Zone, which is represented by the Apulian platform carbonates. The zone is characterized by NW-SE-running and SW-verging thrust fault systems that involve a thick series of Mesozoic - Tertiary passive margin carbonates, unconformably overlain by Oligocene clastic units. These two tectonic zones are dissected by the NE-SW-striking Vlora-Elbasan Transfer Zone, which extends eastwards into the Internal Albanides, affecting the structural architecture and the tectonic evolution of the entire mountain belt. This fault zone that has been tectonically active from the Triassic to recent have display diapiric structures along it.

  12. Europe's battery: The making of the Alpine energy landscape, 1870-1955

    Science.gov (United States)

    Landry, Marc D., II

    This study examines the environmental history of hydropower development in the Alps from the mid-nineteenth to the mid-twentieth centuries. Analyzing government archival files, associational journals, conference proceedings, and published contemporary material from several Alpine countries, it seeks to determine how and why Europeans modified the Alpine landscape to generate hydropower, and to explore the consequences of these decisions. I argue that during this time period, Europeans thoroughly transformed the Alpine environment, creating what I call "Europe's Battery": a gigantic system for storing hydropower and distributing it on a continental scale. This study shows how nineteenth-century innovations in energy technology contributed to a dramatic shift in the perception of the Alps as a landscape of "white coal." It demonstrates how at the outset of electrification, Europeans modified Alpine waterways on an unprecedented scale in order to tap into the power of flowing Alpine water. I show how after the turn of the twentieth century, Europeans took advantage of the unique mountain environment to store water, first by converting existing lakes into reservoirs. The practice countered what was perceived to be the greatest disadvantage of white coal: its climate-influenced inconstancy. This study shows the importance of war, and especially the First World War, in the forging of the new Alpine landscape. Finally, this study illustrates how from the interwar period to the aftermath of the Second World War, Europeans put the finishing touches on the new Alpine energy landscape by creating large reservoirs behind dams and feeding Alpine hydroelectricity into a burgeoning European electricity grid. By 1955 the Alps had become one of the most important energy landscapes in Europe. This history of the Alpine energy landscape contributes to a number of historiographical fields. It represents an important chapter in the environmental history of one of the world's most

  13. Biomechanical aspects of new techniques in alpine skiing and ski-jumping.

    Science.gov (United States)

    Müller, Erich; Schwameder, Hermann

    2003-09-01

    There have been considerable changes in equipment design and movement patterns in the past few years both in alpine skiing and ski-jumping. These developments have been matched by methods of analysing movements in field conditions. They have yielded new insights into the skills of these specific winter sports. Analytical techniques have included electromyography, kinetic and kinematic methods and computer simulations. Our aim here is to review biomechanical research in alpine skiing and ski-jumping. We present in detail the techniques currently used in alpine skiing (carving technique) and ski-jumping (V-technique), primarily using data from the authors' own research. Finally, we present a summary of the most important results in biomechanical research both in alpine skiing and ski-jumping. This includes an analysis of specific conditions in alpine skiing (type of turn, terrain, snow, speed, etc.) and the effects of equipment, materials and individual-specific abilities on performance, safety and joint loading in ski-jumping.

  14. Relation between extinction and assisted colonization of plants in the arctic-alpine and boreal regions.

    Science.gov (United States)

    Pykälä, Juha

    2017-06-01

    Assisted colonization of vascular plants is considered by many ecologists an important tool to preserve biodiversity threatened by climate change. I argue that assisted colonization may have negative consequences in arctic-alpine and boreal regions. The observed slow movement of plants toward the north has been an argument for assisted colonization. However, these range shifts may be slow because for many plants microclimatic warming (ignored by advocates of assisted colonization) has been smaller than macroclimatic warming. Arctic-alpine and boreal plants may have limited possibilities to disperse farther north or to higher elevations. I suggest that arctic-alpine species are more likely to be driven to extinction because of competitive exclusion by southern species than by increasing temperatures. If so, the future existence of arctic-alpine and boreal flora may depend on delaying or preventing the migration of plants toward the north to allow northern species to evolve to survive in a warmer climate. In the arctic-alpine region, preventing the dispersal of trees and shrubs may be the most important method to mitigate the negative effects of climate change. The purported conservation benefits of assisted colonization should not be used to promote the migration of invasive species by forestry. © 2016 Society for Conservation Biology.

  15. Seedling recruitment of forb species under experimental microhabitats in alpine grassland

    International Nuclear Information System (INIS)

    Li, S. S.; Yu, L.; Lin, W. G.; Pingi, T. F.

    2015-01-01

    Which factors limit plant seedling recruitment in alpine meadow of the Qinghai-Tibetan Plateau (QTP), China? This study examined the relative influence of seed mass and microsites (resulted from grazing disturbance) on field seedling emergence and survival of nineteen alpine herbaceous species with a range of traits in QTP. Seed mass had significant effects on seedling emergence and survival eliminating influence of light and nutrient variances among these species. The larger-seed species had more advantageous than the smaller-seed species in seedling survival, but it was disadvatage for seedling emergence, especially under high nutrient availability and low light intensity conditions. Light had obvious effects on seedling survival, but less effects on seedling emergence for these species. Moreover, nutrient and light treatments altered the regression relationships of seed mass and seedling emergence and survival and the order of significances was L25>L50>L100>L10>L4. These results suggested that seed mass may restrict seedling recruitment processes, however, light and nutrient availability all have significant effects on seedling emergence and survival for these alpine species. Moderate light intensity was propitious to seedling emergence and survival in alpine grassland. This suggests that ecological factors in alpine grassland provide a stochastic influence on different seed-mass species. These trends may help to explain why many small-seeded species of Asteraceae and Gramineae tend to be more abundant in disturbed habitats. (author)

  16. Experiences of returning to elite alpine skiing after ACL injury and ACL reconstruction.

    Science.gov (United States)

    Nordahl, Birgitta; Sjöström, Rita; Westin, Maria; Werner, Suzanne; Alricsson, Marie

    2014-01-01

    To explore the experiences of alpine skiing at the elite level after anterior cruciate ligament (ACL) injury and reconstruction. A qualitative approach where semi-structured interviews were conducted, and an analysis of the manifest content was performed. Five ski high school students, two male and three female skiers, who had suffered ACL injuries and undergone ACL reconstructions. Seven categories were identified. The participants described their perceived opportunities with regard to returning to alpine skiing after ACL injury and reconstruction as something positive to do with self-belief, being mentally and physically prepared, regaining confidence in their own ability, being given time and using active strategies. In contrast, perceived barriers to a return to elite alpine skiing gave rise to negative feelings, for example, fear, disheartenment, a total lack of or ambivalent confidence in their own ability and the use of passive strategies. The two male skiers returned to alpine skiing. They reported confidence in their own ability, active strategies and support on all levels, as well as enhanced physical ability. The female skiers did not return to their pre-injury level of competitive alpine skiing. They stated a lack of support on all levels, deterioration in their physical ability and two out of three reported passive strategies and no or ambivalent confidence in their own ability. The most important factors were family support, support on all levels, access to a physiotherapist and time given.

  17. Relations of biomotor structures and performance of technical elements of alpine skiing in Croatian ski instructors.

    Science.gov (United States)

    Males, Boris; Franjko, Ivica; Kuna, Danijela

    2013-05-01

    With the aim of identifying the factors of alpine skiers' biomotor status in predicting their specific skills, three variable sets were used, comprised of the total of 24 measures (9 variables for assessing anthropometric characteristics, 8 variables for assessing motor abilities and 7 variables for assessing specific ski skills of alpine skiing), on a sample of 79 ski instructor candidates. After preliminary analysis procedures which included descriptive operations and factorization of each separate space, relations between the obtained latent dimensions were established by correlation analysis. The extracted varimax factors were defined as follows - three factors in the morphology space: V1 - Voluminosity and transverse dimensionality of the skeleton, V2 - Longitudinal dimensionality of the skeleton, V3 - Subcutaneous fat tissue; 2 factors in the space of motor abilities: V1 - Agility and explosive power, V2 - Static strength and balance; while a general factor of Specific motor skills of alpine skiing was isolated in the space of motor skills. Statistically significant positive correlation was found between agility and explosive power and general factor of skiing skills, which means that agility and explosive power are the basis for quality performance of advanced and cbmpetitive techniques in alpine skiing. Namely, in realization of advanced and competitive techniques of alpine skiing, which imply a high level of skiing skills acquisition and full automatization of performance, all actions are performed by fast and explosive movement direction changes.

  18. Ungulate herbivory on alpine willow in the Sangre de Cristo Mountains of Colorado

    Science.gov (United States)

    Zeigenfuss, L.C.; Schoenecker, K.A.; Amburg, L.K.V.

    2011-01-01

    In many areas of the Rocky Mountains, elk (Cervus elaphus) migrate from low-elevation mountain valleys during spring to high-elevation subalpine and alpine areas for the summer. Research has focused on the impacts of elk herbivory on winter-range plant communities, particularly on woody species such as willow and aspen; however, little information is available on the effects of elk herbivory on alpine willows. In the Sangre de Cristo Mountains of south central Colorado, select alpine areas appear to receive high levels of summer elk herbivory, while other areas are nearly unbrowsed. In 2005 and 2008, we measured willow height, cover, and utilization on sites that appeared to be used heavily by elk, as well as on sites that appeared to be used lightly, to determine differences between these communities over time. We found less willow cover and shorter willows at sites that received higher levels of browsing compared to those that had lower levels of browsing. Human recreational use was greater at lightly browsed sites than at highly browsed sites. From 2005 to 2008, willow utilization declined, and willow cover and height increased at sites with heavy browsing, likely owing to ownership change of adjacent valley land which led to (1) removal of grazing competition from, cattle at valley locations and (2) increased human use in alpine areas, which displaced elk. We discuss the implications of increased human use and climate change on elk use of these alpine habitats. ?? 2011.

  19. U-Pb thermochronology of rutile from Alpine Corsica: constraints on the thermal evolution of the European margin during Jurassic continental breakup

    Science.gov (United States)

    Ewing, T. A.; Beltrando, M.; Müntener, O.

    2017-12-01

    U-Pb thermochronology of rutile can provide valuable temporal constraints on the exhumation history of the lower crust, given its moderate closure temperature and the occurrence of rutile in appropriate lithologies. We present an example from Alpine Corsica, in which we investigate the thermal evolution of the distal European margin during Jurassic continental rifting that culminated in the opening of the Alpine Tethys ocean. The Belli Piani unit of the Santa Lucia nappe (Corsica) experienced minimal Alpine overprint and bears a striking resemblance to the renowned Ivrea Zone lower crustal section (Italy). At its base, a 2-4 km thick gabbroic complex contains slivers of granulite facies metapelites that represent Permian lower crust. Zr-in-rutile temperatures and U-Pb ages were determined for rutile from three metapelitic slivers from throughout the Mafic Complex. High Zr-in-rutile temperatures of 850-950 °C corroborate textural evidence for rutile formation during Permian granulite facies metamorphism. Lower Zr-in-rutile temperatures of 750-800 °C in a few grains are partly associated with elongate strings of rutile within quartz ribbons, which record recrystallisation of some rutile during high-temperature shearing. Zr thermometry documents that both crystallisation and re-crystallisation of rutile occurred above the closure temperature of Pb in rutile, such that the U-Pb system can be expected to record cooling ages uncomplicated by re-crystallisation. Our new high-precision single-spot LA-ICPMS U-Pb dates are highly consistent between and within samples. The three samples gave ages from 160 ± 1 Ma to 161 ± 2 Ma, with no other age populations detected. The new data indicate that the Santa Lucia lower crust last cooled through 550-650 °C at 160 Ma, coeval with the first formation of oceanic crust in the Tethys. The new data are compared to previous depth profiling rutile U-Pb data for the Belli Piani unit1, and exploited to cast light on the tectonothermal

  20. Deeply subducted continental fragments - Part 1: Fracturing, dissolution-precipitation, and diffusion processes recorded by garnet textures of the central Sesia Zone (western Italian Alps)

    Science.gov (United States)

    Giuntoli, Francesco; Lanari, Pierre; Engi, Martin

    2018-02-01

    Contiguous continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. The approach we chose is to investigate, in detail, the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses in high-pressure conditions. We analysed local textures and garnet compositional patterns, which turned out remarkably complex. By combining these with thermodynamic modelling, we could unravel and quantify repeated fluid-rock interaction processes. Garnet shows low-Ca porphyroclastic cores that were stable under (Permian) granulite facies conditions. The series of rims that surround these cores provide insight into the subsequent evolution: the first garnet rim that surrounds the pre-Alpine granulite facies core in one sample indicates that pre-Alpine amphibolite facies metamorphism followed the granulite facies event. In all samples documented, cores show lobate edges and preserve inner fractures, which are sealed by high-Ca garnet that reflects high-pressure Alpine conditions. These observations suggest that during early stages of subduction, before hydration of the granulites, brittle failure of garnet occurred, indicating high strain rates that may be due to seismic failure. Several Alpine rims show conspicuous textures indicative of interaction with hydrous fluid: (a) resorption-dominated textures produced lobate edges, at the expense of the outer part of the granulite core; (b) peninsulas and atoll garnet are the result of replacement reactions; and (c) spatially limited resorption and enhanced transport

  1. Deeply subducted continental fragments – Part 1: Fracturing, dissolution–precipitation, and diffusion processes recorded by garnet textures of the central Sesia Zone (western Italian Alps

    Directory of Open Access Journals (Sweden)

    F. Giuntoli

    2018-02-01

    Full Text Available Contiguous continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. The approach we chose is to investigate, in detail, the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps. These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses in high-pressure conditions. We analysed local textures and garnet compositional patterns, which turned out remarkably complex. By combining these with thermodynamic modelling, we could unravel and quantify repeated fluid–rock interaction processes. Garnet shows low-Ca porphyroclastic cores that were stable under (Permian granulite facies conditions. The series of rims that surround these cores provide insight into the subsequent evolution: the first garnet rim that surrounds the pre-Alpine granulite facies core in one sample indicates that pre-Alpine amphibolite facies metamorphism followed the granulite facies event. In all samples documented, cores show lobate edges and preserve inner fractures, which are sealed by high-Ca garnet that reflects high-pressure Alpine conditions. These observations suggest that during early stages of subduction, before hydration of the granulites, brittle failure of garnet occurred, indicating high strain rates that may be due to seismic failure. Several Alpine rims show conspicuous textures indicative of interaction with hydrous fluid: (a resorption-dominated textures produced lobate edges, at the expense of the outer part of the granulite core; (b peninsulas and atoll garnet are the result of replacement reactions; and (c spatially limited resorption and

  2. An Embedded Sensor Network for Measuring Elevation Effects on Temperature, Humidity, and Evapotranspiration Within a Tropical Alpine Valley

    Science.gov (United States)

    Hellstrom, R. A.; Mark, B. G.

    2006-12-01

    Conditions of glacier recession in the seasonally dry tropical Peruvian Andes motivates research to better constrain the hydrological balance in alpine valleys. Studies suggest that glaciers in the tropical Andes are particularly sensitive to seasonal humidity flux due to the migration of the Intertropical Convergence Zone. However, there is an outstanding need to better measure and model the spatiotemporal variability of energy and water budgets within pro-glacial valleys. In this context, we introduce a novel embedded network of low- cost, discrete temperature and humidity microloggers and an automatic weather station installed in the Llanganuco valley of the Cordillera Blanca. This paper presents data recorded over a full annual cycle (2004- 2005) and reports on network design and results during the dry and wet seasons. The transect of sensors ranging from about 3500 to 4700 m reveal seasonally characteristic diurnal fluctuations in up-valley lapse rate. A process-based water balance model (Brook90) examines the influence of meteorological forcing on evapotranspiration (ET) rates in the valley. The model results suggest that cloud-free daylight conditions enhances ET during the wet season. ET was insignificant throughout the dry season. In addition, we report on the effects of elevation on ET.

  3. Gas accumulations in Oligocene-Miocene reservoirs in the Alpine Foreland Basin (Austria): evidence for gas mixing and gas degradation

    Science.gov (United States)

    Pytlak, L.; Gross, D.; Sachsenhofer, R. F.; Bechtel, A.; Linzer, H.-G.

    2017-09-01

    Two petroleum systems are present in the eastern (Austrian) sector of the Alpine Foreland Basin. Whereas oil and thermogenic gas in Mesozoic and Eocene reservoir rocks have been generated beneath the Alps in Lower Oligocene source rocks, relative dry gas in Oligocene-Miocene clastic rocks deposited in the deep marine basin-axial channel system (Puchkirchen Channel) is interpreted as microbial in origin. Detailed investigations of the molecular and isotope composition of 87 gas samples from 86 wells, representing all producing fields with Oligocene and Miocene reservoir rocks, suggest that the presence of pure microbial gas is rare and limited mainly to the northern basin flank (e.g., KK field). All other fields contain varying amounts of thermogenic gas, which has been generated from a source rock with oil-window maturity. A relation with the underlying thermogenic petroleum system is obvious. Upward migration occurred along discrete fault zones (e.g., H field) or through low-permeability caprocks. Local erosion of Lower Oligocene sediments, the principal seal for the thermogenic petroleum system, as well as a high percentage of permeable rocks within the Puchkirchen Channel favored upward migration and mixing of thermogenic and microbial gas. All gas samples in Oligocene-Miocene reservoirs are biodegraded. Biodegradation and the formation of secondary microbial gas resulted in gas drying. Therefore, the gas samples analyzed in this study are relative dry, despite significant contributions of thermogenic hydrocarbons. Biodegradation probably continues at present time. The degree of biodegradation, however, decreases with depth.

  4. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    Science.gov (United States)

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-01-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many high elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidizer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  5. Alpine meteorology: translations of classic contributions by A. Wagner, E. Ekhart, and F. Defant

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, C.D.; Dreiseitl, E. (eds.)

    1984-06-01

    The English translations of four classic research papers in Alpine meteorology, originally published in German and French in the 1930s and 1940s are presented in this report. The papers include: A. Wagner's 1938 paper entitled Theory and Observation of Periodic Mountain Winds; E. Ekhart's 1944 paper entitled Contributions to Alpine Meteorology; E. Ekhart's 1948 paper entitled On the Thermal Structure of the Mountain Atmosphere; and F. Defant's 1949 paper entitled A Theory of Slope Winds, Along with Remarks on the Theory of Mountain Winds and Valley Winds. A short introduction to these translations summarizes four recent Alpine meteorology field experients, emphasizing ongoing research that extends the research of Wagner, Ekhart, and Defant. The four experiments include the Innsbruck Slope Wind Experiment of 1978, the MESOKLIP Experiment of 1979, the DISKUS Experiment of 1980, and the ALPEX/MERKUR Experiment of 1982.

  6. Exploring the patterns of alpine vegetation of Eastern Bhutan: a case study from the Merak Himalaya.

    Science.gov (United States)

    Jamtsho, Karma; Sridith, Kitichate

    2015-01-01

    A survey was conducted from March to September 2012 along the altitudinal gradient of the Jomokungkhar trail in the Merak Himalaya of Sakteng Wildlife Sanctuary to study the floristic compositions and the patterns of alpine vegetation of Eastern Bhutan. The vegetation of the sampled plots is classified into five types of communities based on the hierarchical cluster analysis at similarity index 63% viz., (1) Riverine Community; (2) Abies-Rhododendron Woodland Community; (3) Juniperus Scrub Community; (4) Rhododendron Krummholz and (5) Alpine Meadow, based on the floristic compositions. In addition, it was noticed that the fragile alpine environment of the Merak Himalaya has high plant diversity and important plants that are susceptible to the anthropogenic pressures.

  7. Interactive effects of nitrogen deposition and fire on plant and soil chemistry in an alpine heathland

    International Nuclear Information System (INIS)

    Britton, A.J.; Helliwell, R.C.; Fisher, J.M.; Gibbs, S.

    2008-01-01

    The response of alpine heathland vegetation and soil chemistry to N additions of 0, 10, 20 and 50 kg N ha -1 year -1 in combination with simulated accidental fire (+/-) was monitored over a 5-year period. N addition caused rapid and significant increases in plant tissue N content and N:P and N:K of Calluna vulgaris, suggesting increasing phosphorus and potassium limitation of growth. Soil C:N declined significantly with N addition, indicating N saturation and increasing likelihood of N leakage. Fire further decreased soil C:N and reduced potential for sequestration of additional N. This study shows that alpine heathlands, which occupy the headwaters of many rivers, have limited potential to retain deposited N and may rapidly become N saturated, leaking N into downstream communities and surface waters. - N deposition on alpine heathland causes a rapid shift towards P limitation and subsequent N saturation of vegetation and soil

  8. Gravel bar thermal variability and its potential consequences for CO2 evasion from Alpine coldwater streams

    Science.gov (United States)

    Boodoo, Kyle; Battin, Tom; Schelker, Jakob

    2017-04-01

    Gravel bars (GB) are ubiquitous in-stream structures with relatively large exposed surfaces, capable of absorbing heat and possibly acting as a heat source to the underlying hyporheic zone (HZ). The distinctive mixing of groundwater and surface water within their HZ largely determines its characteristic physical and biogeochemical properties, including temperature distribution. To study thermal variability within GBs and its possible consequences for CO2 evasion fluxes we analysed high frequency spatio-temporal data for a range of stream and atmospheric physical parameters including the vertical GB temperature, in an Alpine cold water stream (Oberer Seebach, Austria) over the course of a year. We found the vertical temperature profiles within the GB to vary seasonally and with discharge. We extended our study to 13 other gravel bars of varying physical characteristics within the surrounding Ybbs and Erlauf catchments, conducting diurnal spot samplings in summer 2016. Temperatures within the observed permanently wetted hyporheic zone (-56 to -100cm depth below GB surface) of the OSB, were warmer than both end members, surface water and groundwater >18% of the year, particularly during summer. There was a general increase in exceedance within the periodically wetted gravel bar sediment toward the gravel bar surface, further evidencing downward heat transfer to the wetted HZ. Average CO2 flux from the GB was significantly higher than that of streamwater during summer and winter, with significantly higher temperatures and CO2 outgassing rates occurring at the GB tail as compared to streamwater and the head and mid of the GB throughout the year. Higher cumulative (over 6 h) GB seasonal temperatures were associated with increased CO2 evasion fluxes within the OSB, particularly during summer. This enhanced CO2 flux may result from the input of warmer CO2-rich groundwater into the HZ in autumn, while downward heat transfer in summer may enhance GB metabolism and therefore

  9. Sex-specific selection for MHC variability in Alpine chamois

    Directory of Open Access Journals (Sweden)

    Schaschl Helmut

    2012-02-01

    Full Text Available Abstract Background In mammals, males typically have shorter lives than females. This difference is thought to be due to behavioural traits which enhance competitive abilities, and hence male reproductive success, but impair survival. Furthermore, in many species males usually show higher parasite burden than females. Consequently, the intensity of selection for genetic factors which reduce susceptibility to pathogens may differ between sexes. High variability at the major histocompatibility complex (MHC genes is believed to be advantageous for detecting and combating the range of infectious agents present in the environment. Increased heterozygosity at these immune genes is expected to be important for individual longevity. However, whether males in natural populations benefit more from MHC heterozygosity than females has rarely been investigated. We investigated this question in a long-term study of free-living Alpine chamois (Rupicapra rupicapra, a polygynous mountain ungulate. Results Here we show that male chamois survive significantly (P = 0.022 longer if heterozygous at the MHC class II DRB locus, whereas females do not. Improved survival of males was not a result of heterozygote advantage per se, as background heterozygosity (estimated across twelve microsatellite loci did not change significantly with age. Furthermore, reproductively active males depleted their body fat reserves earlier than females leading to significantly impaired survival rates in this sex (P Conclusions Increased MHC class II DRB heterozygosity with age in males, suggests that MHC heterozygous males survive longer than homozygotes. Reproductively active males appear to be less likely to survive than females most likely because of the energetic challenge of the winter rut, accompanied by earlier depletion of their body fat stores, and a generally higher parasite burden. This scenario renders the MHC-mediated immune response more important for males than for females

  10. Flash floods in small Alpine catchments in a changing climate

    Science.gov (United States)

    Breinl, Korbinian; Di Baldassarre, Giuliano

    2017-04-01

    Climate change is expected to increase the frequency and intensity of hazardous meteorological and hydrological events in numerous mountainous areas. The mountain environment is becoming more and more important for urbanization and the tourism-based economy. Here we show new and innovative methodologies for assessing intensity and frequency of flash floods in small Alpine catchments, in South Tyrol (Italy), under climate change. This research is done within the STEEP STREAMS project, whereby we work closely with decision makers in Italian authorities, and the final goal is to provide them with clear guidelines on how to adapt current structural solutions for mitigating hazardous events under future climate conditions. To this end, we develop a coupled framework of weather generation (i.e. extrapolation of observations and trained with climate projections), time series disaggregation and hydrological modelling using the conceptual HBV model. One of the key challenges is the transfer of comparatively coarse RCM projections to small catchments, whose sizes range from only about 10km2 to 100km2. We examine different strategies to downscale the RCM data from e.g. the EURO-CORDEX dataset using our weather generator. The selected projections represent combinations of warmer, milder, drier and wetter conditions. In general, our main focus is to develop an improved understanding of the impact of the multiple sources of uncertainty in this modelling framework, and make these uncertainties tangible. The output of this study (i.e. discharge with a return period and associated uncertainty) will allow hydraulic and sediment transport modelling of flash floods and debris flows.

  11. Water erosion and climate change in a small alpine catchment

    Science.gov (United States)

    Berteni, Francesca; Grossi, Giovanna

    2017-04-01

    WATER EROSION AND CLIMATE CHANGE IN A SMALL ALPINE CATCHMENT Francesca Berteni, Giovanna Grossi A change in the mean and variability of some variables of the climate system is expected to affect the sediment yield of mountainous areas in several ways: for example through soil temperature and precipitation peak intensity change, permafrost thawing, snow- and ice-melt time shifting. Water erosion, sediment transport and yield and the effects of climate change on these physical phenomena are the focus of this work. The study area is a small mountainous basin, the Guerna creek watershed, located in the Central Southern Alps. The sensitivity of sediment yield estimates to a change of condition of the climate system may be investigated through the application of different models, each characterized by its own features and limits. In this preliminary analysis two different empirical mathematical models are considered: RUSLE (Revised Universal Soil Loss Equation; Renard et al., 1991) and EPM (Erosion Potential Method; Gavrilovic, 1988). These models are implemented in a Geographical Information System (GIS) supporting the management of the territorial database used to estimate relevant geomorphological parameters and to create different thematic maps. From one side the geographical and geomorphological information is required (land use, slope and hydrogeological instability, resistance to erosion, lithological characterization and granulometric composition). On the other side the knowledge of the weather-climate parameters (precipitation and temperature data) is fundamental as well to evaluate the intensity and variability of the erosive processes and estimate the sediment yield at the basin outlet. Therefore different climate change scenarios were considered in order to tentatively assess the impact on the water erosion and sediment yield at the small basin scale. Keywords: water erosion, sediment yield, climate change, empirical mathematical models, EPM, RUSLE, GIS

  12. Ultra-sensitive Alpine lakes and climate change

    Directory of Open Access Journals (Sweden)

    Roland SCHMIDT

    2005-08-01

    Full Text Available Global warming is one of the major issues with which mankind is being confronted, having vital ecological and economic consequences. Ice-cover, snow-cover and water temperatures in alpine catchments are controlled by air temperatures, and so are very susceptible to shifts in climate. Local factors such as wind exposure, shading, and snow patches that persist during cold summers can, however, modify the sensitivities of the relationships to air temperature. Thermistors exposed in 45 mountain lakes of the central Austrian Alps (Niedere Tauern measured water temperatures during 1998 – 2003 at two or four hourly intervals. Degree-day and exponential smoothing models tuned with this data suggest we can anticipate extremely large temperature rises in some of the Niedere Tauern lakes in the coming century. Lakes at around 1500 to 2000 m altitude are found to be ultra-sensitive as they lie in the elevation range where changes in both ice-cover and snow-cover duration will be particularly pronounced. In the more extreme cases, our impact models predict a summer-epilimnion water-temperature rise of over 10 degrees. One example of a lake most at risk to future climate change is Moaralmsee. This lake is located at 1825 m a.s.l. on the northern slopes of the Niedere Tauern; its water temperature is likely to rise by 12 degrees. The projected water discharge, ice-cover duration and water temperature changes for the Tauern catchments in the coming century far exceed the variations experienced at any stage during the last ten thousand years.

  13. Seasonal variation of allochthonous and autochthonous energy inputs in an alpine stream

    Directory of Open Access Journals (Sweden)

    Stefano Fenoglio

    2014-10-01

    Full Text Available Despite the enormous importance of alpine streams, information about many aspects of their ecology is still insufficient. Alpine lotic systems differ in many environmental characteristics from those lower down, for example because above tree line streams drain catchments where terrestrial vegetation is scarce and allochthonous organic input is expected to be small. The main objectives of this study were to examine seasonal variation of autochthonous and allochthonous energetic inputs and their relationship with macroinvertebrate communities in the Po river, an alpine non-glacial stream (NW Italy. For one year, samplings were monthly performed in a homogeneous 100 m stream reach for discharge, autochthonous energy input (benthic chlorophyll a, allochthonous energy input (coarse particulate organic matter, abundance and structure of benthic macroinvertebrate community. Chlorophyll a concentrations were in the range of what reported for other alpine streams, but presented a time-lag with respect to what has been reported for glacial-fed mountain rivers. CPOM amounts were lower than those in lowland, forested streams of the same area but exhibited an intriguing, different seasonal variability, probably reported for the first time, with a maximum in spring and a minimum in winter. We collected 29,950 macroinvertebrates belonging to 13 families and 10 orders. Benthic communities were essentially dominated by Ephemeroptera, Plecoptera and Diptera. Scrapers was the most important FFG, but also Shredders were well represented. Relationships between chlorophyll a concentrations, CPOM availability and macroinvertebrate community characteristics were analysed and discussed considering the existence of different top-down or bottom-up regulation mechanisms. This study confirms that benthic algae constitute an essential resource for macroinvertebrates in alpine streams above the tree line but also underlines the importance of terrestrial organic input, a

  14. Anterior cruciate ligament injury/reinjury in alpine ski racing: a narrative review.

    Science.gov (United States)

    Jordan, Matthew J; Aagaard, Per; Herzog, Walter

    2017-01-01

    The purpose of the present review was to: 1) provide an overview of the current understanding on the epidemiology, etiology, risk factors, and prevention methods for anterior cruciate ligament (ACL) injury in alpine ski racing; and 2) provide an overview of what is known pertaining to ACL reinjury and return to sport after ACL injury in alpine ski racing. Given that most of the scientific studies on ACL injuries in alpine ski racing have been descriptive, and that very few studies contributed higher level scientific evidence, a nonsystematic narrative review was employed. Three scholarly databases were searched for articles on ACL injury or knee injury in alpine ski racing. Studies were classified according to their relevance in relation to epidemiology, etiology, risk factors, and return to sport/reinjury prevention. Alpine ski racers (skiers) were found to be at high risk for knee injuries, and ACL tears were the most frequent diagnosis. Three primary ACL injury mechanism were identified that involved tibial internal rotation and anteriorly directed shear forces from ski equipment and the environment. While trunk muscle strength imbalance and genetics were found to be predictive of ACL injuries in development-level skiers, there was limited scientific data on ACL injury risk factors among elite skiers. Based on expert opinion, research on injury risk factors should focus on equipment design, course settings/speed, and athlete factors (eg, fitness). While skiers seem to make a successful recovery following ACL injury, there may be persistent neuromuscular deficits. Future research efforts should be directed toward prospective studies on ACL injury/reinjury prevention in both male and female skiers and toward the effects of knee injury on long-term health outcomes, such as the early development of osteoarthritis. International collaborations may be necessary to generate sufficient statistical power for ACL injury/reinjury prevention research in alpine ski racing.

  15. Anterior cruciate ligament injury/reinjury in alpine ski racing: a narrative review

    Science.gov (United States)

    Jordan, Matthew J; Aagaard, Per; Herzog, Walter

    2017-01-01

    The purpose of the present review was to: 1) provide an overview of the current understanding on the epidemiology, etiology, risk factors, and prevention methods for anterior cruciate ligament (ACL) injury in alpine ski racing; and 2) provide an overview of what is known pertaining to ACL reinjury and return to sport after ACL injury in alpine ski racing. Given that most of the scientific studies on ACL injuries in alpine ski racing have been descriptive, and that very few studies contributed higher level scientific evidence, a nonsystematic narrative review was employed. Three scholarly databases were searched for articles on ACL injury or knee injury in alpine ski racing. Studies were classified according to their relevance in relation to epidemiology, etiology, risk factors, and return to sport/reinjury prevention. Alpine ski racers (skiers) were found to be at high risk for knee injuries, and ACL tears were the most frequent diagnosis. Three primary ACL injury mechanism were identified that involved tibial internal rotation and anteriorly directed shear forces from ski equipment and the environment. While trunk muscle strength imbalance and genetics were found to be predictive of ACL injuries in development-level skiers, there was limited scientific data on ACL injury risk factors among elite skiers. Based on expert opinion, research on injury risk factors should focus on equipment design, course settings/speed, and athlete factors (eg, fitness). While skiers seem to make a successful recovery following ACL injury, there may be persistent neuromuscular deficits. Future research efforts should be directed toward prospective studies on ACL injury/reinjury prevention in both male and female skiers and toward the effects of knee injury on long-term health outcomes, such as the early development of osteoarthritis. International collaborations may be necessary to generate sufficient statistical power for ACL injury/reinjury prevention research in alpine ski racing

  16. The lithospheric-scale 3D structural configuration of the North Alpine Foreland Basin constrained by gravity modelling and the calculation of the 3D load distribution

    Science.gov (United States)

    Przybycin, Anna M.; Scheck-Wenderoth, Magdalena; Schneider, Michael

    2014-05-01

    The North Alpine Foreland Basin is situated in the northern front of the European Alps and extends over parts of France, Switzerland, Germany and Austria. It formed as a wedge shaped depression since the Tertiary in consequence of the Euro - Adriatic continental collision and the Alpine orogeny. The basin is filled with clastic sediments, the Molasse, originating from erosional processes of the Alps and underlain by Mesozoic sedimentary successions and a Paleozoic crystalline crust. For our study we have focused on the German part of the basin. To investigate the deep structure, the isostatic state and the load distribution of this region we have constructed a 3D structural model of the basin and the Alpine area using available depth and thickness maps, regional scale 3D structural models as well as seismic and well data for the sedimentary part. The crust (from the top Paleozoic down to the Moho (Grad et al. 2008)) has been considered as two-parted with a lighter upper crust and a denser lower crust; the partition has been calculated following the approach of isostatic equilibrium of Pratt (1855). By implementing a seismic Lithosphere-Asthenosphere-Boundary (LAB) (Tesauro 2009) the crustal scale model has been extended to the lithospheric-scale. The layer geometry and the assigned bulk densities of this starting model have been constrained by means of 3D gravity modelling (BGI, 2012). Afterwards the 3D load distribution has been calculated using a 3D finite element method. Our results show that the North Alpine Foreland Basin is not isostatically balanced and that the configuration of the crystalline crust strongly controls the gravity field in this area. Furthermore, our results show that the basin area is influenced by varying lateral load differences down to a depth of more than 150 km what allows a first order statement of the required compensating horizontal stress needed to prevent gravitational collapse of the system. BGI (2012). The International

  17. Late Burdigalian sea retreat from the North Alpine Foreland Basin: new magnetostratigraphic age constraints

    Science.gov (United States)

    Sant, K.; Kirscher, U.; Reichenbacher, B.; Pippèrr, M.; Jung, D.; Doppler, G.; Krijgsman, W.

    2017-05-01

    Accurate reconstruction of the final sea retreat from the North Alpine Foreland Basin (NAFB) during the Burdigalian (Early Miocene) is hampered by a lack of reliable age constraints. In this high resolution magnetostratigraphic study we try to solve a significant age bias for the onset of the Upper Freshwater Molasse (OSM) deposition in the neighboring S-German and Swiss Molasse Basins. We measured > 550 samples from eleven drill cores covering the transition from marine to brackish to freshwater environments in the S-German Molasse Basin. Based on combined bio-, litho- and magnetostratigraphic constraints, the composite magnetostratigraphic pattern of these cores provides two reasonable age correlation options (model 1 and 2). In model 1, the base of the brackish succession lies within Chron C5Cr ( 16.7-17.2 Ma), and the onset of OSM deposition has an age of 16.5 Ma. Correlation model 2 suggests the transition to brackish conditions to be within C5Dr.1r ( 17.7-17.5 Ma), and yields an age around 16.7 Ma for the shift to the OSM. Most importantly, both models confirm a much younger age for the OSM base in the study area than previously suggested. Our results demonstrate a possible coincidence of the last transgressive phase (Kirchberg Fm) with the Miocene Climatic Optimum (model 1), or with the onset of this global warming event (model 2). In contrast, the final retreat of the sea from the study area is apparently not controlled by climate change. Supplementary material B. Profiles of the eleven studied drill cores including lithologies, all magnetostratigraphic data (inclinations), interpreted polarity pattern (this study and Reichenbacher et al., 2013) and magnetic susceptibility (this study). Legend for graphs on page 1. Samples without a stable direction above 200 °C or 20 mT are depicted as +-signs and plotted at 0° inclination. The interpreted normal (black), reversed (white) and uncertain (grey) polarity zones in the polarity columns are based on at least

  18. The Alpine nappe stack in western Austria: A crustal-scale cross-section

    Science.gov (United States)

    Pomella, Hannah; Bertrand, Audrey; Ortner, Hugo; Zerlauth, Michael; Fügenschuh, Bernhard

    2013-04-01

    A N-S oriented crustal-scale cross-section was constructed east of the Rhine valley in Vorarlberg, western Austria addressing the central Alps-eastern Alps boundary. The construction was based on published data, surface geology, drillings, as well as on reinterpreted seismic lines. The general architecture of the examined area can be described as a typical foreland fold-and-thrust belt, comprising the tectonic units of the Subalpine Molasse, (Ultra-)Helvetic, Penninic, and Austroalpine nappes. These units overthrusted the autochthonous Molasse along the south-dipping listric Alpine basal thrust. The thermotectonic evolution of this nappe stack is adressed by Bertrand et al. (this session). The Subalpine Molasse is multiply stacked, forming a triangle-zone (Müller et al. 1984). The shortening within the Subalpine Molasse in the cross section has been calculated using the Lower Marine Molasse as a reference and amounts to approx. 46 km, (~70%). Towards east the shortening within the Subalpine Molasse decreases dramatically as shown by Ortner et al. (this session). A well-defined seismic feature in the research area is the European basement together with its autochthonous cover, with a moderate southward dip from about 3500m BSL to approx. 6500m BSL along the ca. 50km long section. Several seismic sections show fault structures offsetting the top of the European basement as well as autochthonous cover. Another discontinuous double reflector that can be identified in several seismic sections is interpreted as the base of the Helvetic nappe complex (approx. at 5000m BSL in the southernmost parts). The internal structure of the Helvetic nappe stack could hardly be resolved. The assumed hinterland dipping duplex-structure of the Helvetic nappes results from surface and borehole-data. However, there are at least two Helvetic nappes needed to fill the available space. The deeper one, termed "Hohenemse nappe" (Wyssling, 1985), is overlain by the superficially exposed

  19. INTERACT Management planning for arctic and northern alpine stations - Examples of good practices

    DEFF Research Database (Denmark)

    and northern alpine research stations. In this book station managers share their knowledge and experience gained frommanaging a set of very diverse research stations in very different environmental and climatic settings. The book covers issues like management planning, policies, permit issues, handling...... of visitors, outreach, science plans, data management and education. The target audience for the book is mainly managers of research stations in arctic and alpine areas, but it is our hope that it will also be a useful tool for others being involved in science coordination and logistics....

  20. Les Nouvelles Traversées Alpines : la “cité-Europe” à l’épreuve de l’acceptabilité alpine ? The New alpine crossings : The “city-Europe” faces up to the alpine acceptability

    Directory of Open Access Journals (Sweden)

    Kevin Sutton

    2012-12-01

    Full Text Available La pensée des traversées alpines est indissociable de celle des réseaux urbains alpins et, au-delà, européens. La nouvelle phase de percée des tunnels de base le réaffirme : les “Nouvelles Traversées Alpines” se retrouvent au coeur de l’enjeu de connexion des réseaux ferroviaires européens à grande vitesse. L’invention de la “cité-Europe” passe ainsi par la réinvention d’un pacte alpin autour du dessein de franchissement entre les villes de piedmonts et les communautés montagnardes traversées. Ces dernières ont, en effet, la capacité de bloquer un projet par leur refus. L’exemple du projet Lyon-Turin l’illustre, en contre-point de la réussite du tunnel de base du Lötschberg. La réussite suisse semble tenir à la capacité de conjuguer les inventions technique et sociale du tunnel, ne niant pas la dimension territoriale de cet objet réticulaire.It is impossible to think about the alpine crossings without thinking about the alpine and European urban nets. The construction of the basis tunnels recalls it: the “New Alpine Crossings” are the kernel of the connection issue between the European high-speed railways nets. The invention of a “city-Europe” needs a reinvented pact, between the cities of the plains and the alpine communities, based on the reaffirmation of a common crossing destiny. The alpine communities can thwart the project by refusing it, as the example of the Lyon-Turin project shows, in contrast to the successful Lötschberg basis tunnel. The Swiss success seems to come from the capacity to mix technical and social inventions, replacing the territorial dimension in the reticular fundament.

  1. Evaluation of Alpine Skiing Injuries in Terms of Personal Precautions: Erciyes Sample

    Directory of Open Access Journals (Sweden)

    Emrah Yılmaz

    2018-03-01

    Conclusion: As a result of the research, ski equipment usage of the injured skiers was at an optimum rate, but helmet-usage rate was considerably low. In the context of individual precautions in alpine skiing injuries, the importance of protective helmets in alpine skiing should be explained to the skiers, to increase helmet-usage rates. In addition, our findings indicate that the number of injured cases decreased proportionately with increasing skill and experience level. Therefore, more support should be given about skiing injury and individual precautions for beginner and intermediate level skiers.

  2. Hydrologic and Isotopic Sensitivity of Alpine Lakes to Climate Change in the Medicine Bow Mountains, Wyoming

    Science.gov (United States)

    Liefert, D. T.; Shuman, B. N.; Mercer, J.; Parsekian, A.; Williams, D. G.

    2017-12-01

    Climate reconstructions show that global average temperatures were 0.5°C higher than today during the mid-Holocene, falling well within projections for increases in global average temperature presented in the latest Intergovernmental Panel on Climate Change report. Despite the consensus for the prediction of a warmer climate, however, it is unclear how snowmelt from high-elevation watersheds will be affected by such a change. Snowmelt contributes substantially to major rivers in the western United States, and much of the water flows through lakes in the highest-elevation watersheds. Our water balance models show that modern alpine lakes with seasonably unstable water levels can desiccate primarily through groundwater outflow, resulting in increased groundwater storage that likely sustains baseflow in mountain streams once snowmelt has subsided in late summer. However, contribution of freshwater from alpine lakes to streams may vary over time as changes in climate alters snowpack, rates of evaporation, and the abundance of snowmelt-fed lakes. As such, alpine lakes with seasonally unstable water levels today may have dried out entirely during the mid-Holocene warm period and may dry out in the future as temperatures increase. To investigate the response of alpine lakes to temperatures of the mid-Holocene, we collected 9 sediment cores from closed-basin alpine lakes in the Medicine Bow Mountains of southern Wyoming that lose most their volumes each summer. We use radiocarbon-dating of charcoal in basal sediments to determine lake formation age, abundance of conifer needles to infer relative forest cover, and a δ18O carbonate record to determine changes in the ratio of evaporation to precipitation in an alpine lake that existed throughout the Holocene. Warming likely changed watershed hydrology through a) decreased snowpack and earlier snowmelt, b) increased evaporation, and c) increased transpiration associated with expanded forest cover and longer growing seasons

  3. Winter streamflow analysis in frozen, alpine catchments to quantify groundwater contribution and properties

    Science.gov (United States)

    Stoelzle, Michael; Weiler, Markus

    2016-04-01

    Alpine catchments are often considered as quickly responding systems where streamflow contributions from subsurface storages (groundwater) are mostly negligible due to the steep topography, low permeable bedrock and the absence of well-developed soils. Many studies in high altitude catchments have hence focused on water stored in snowpack and glaciers or on rainfall-runoff processes as the dominant streamflow contributions. Interestingly less effort has been devoted to winter streamflow analysis when melt- or rainfall-driven contributions are switched off due to the frozen state of the catchment. Considering projected changes in the alpine cryosphere (e.g. snow, glacier, permafrost) quantification of groundwater storage and contribution to streamflow is crucial to assess the social and ecological implications for downstream areas (e.g. water temperature, drought propagation). In this study we hypothesize that groundwater is the main streamflow contribution during winter and thus being responsible for the perennial regime of many alpine catchments. The hypothesis is investigated with well-known methods based on recession and breakpoint analysis of the streamflow regimes and temperature data to determine frozen periods. Analyzing nine catchments in Switzerland with mean elevation between 1000 and 2400 m asl, we found that above a mean elevation of 1800 m asl winter recessions are sufficient long and persistent enough to quantify groundwater contribution to streamflow and to characterize the properties of subsurface storage. The results show that groundwater in alpine catchment is the dominant streamflow contribution for nearly half a year and accountable for several hundred millimeter of annual streamflow. In sub-alpine catchments, driven by a mix of snowmelt and rainfall, a clear quantification of groundwater contributions is rather challenging due to discontinuous frozen periods in winter. We found that the inter-annual variability of different streamflow

  4. Customization of a hydrological model for the estimation of water resources in an alpine karstified catchment with sparse data

    Science.gov (United States)

    Kauzlaric, Martina; Schädler, Bruno; Weingartner, Rolf

    2014-05-01

    The main objective of the MontanAqua transdisciplinary project is to develop strategies moving towards a more sustainable water resources management in the Crans-Montana-Sierre region (Valais, Switzerland) in view of global change. Therefore, a detailed assessment of the available water resources in the study area today and in the future is needed. The study region is situated in the inner alpine zone, with strong altitudinal precipitation gradients: from the precipitation rich alpine ridge down to the dry Rhône plain. A typical plateau glacier on top of the ridge is partly drained through the karstic underground formations and linked to various springs to either side of the water divide. The main anthropogenic influences on the system are reservoirs and diversions to the irrigation channels. Thus, the study area does not cover a classical hydrological basin as the water flows frequently across natural hydrographic boundaries. This is a big challenge from a hydrological point of view, as we cannot easily achieve a closed, measured water balance. Over and above, a lack of comprehensive historical data in the catchment reduces the degree of process conceptualization possible, as well as prohibits usual parameter estimation procedures. The Penn State Integrated Hydrologic Model (PIHM) (Kumar, 2009) has been selected to estimate the available natural water resource for the whole study area. It is a semi-discrete, physically-based model which includes: channel routing, overland flow, subsurface saturated and unsaturated flow, rainfall interception, snow melting and evapotranspiration. Its unstructured mesh decomposition offers a flexible domain decomposition strategy for efficient and accurate integration of the physiographic, climatic and hydrographic watershed. The model was modified in order to be more suitable for a karstified mountainous catchment: it now includes the possibility to punctually add external sources, and the temperature-index approach for estimating

  5. Changes in Biomass and Quality of Alpine Steppe in Response to N & P Fertilization in the Tibetan Plateau

    Science.gov (United States)

    Dong, Junfu; Cui, Xiaoyong; Wang, Shuping; Wang, Fang; Pang, Zhe; Xu, Ning; Zhao, Guoqiang; Wang, Shiping

    2016-01-01

    In the alpine steppe zone on the Central Tibetan Plateau, a large amount of area has been degraded due to natural and artificial factors. N & P fertilization is widely accepted to recover degraded pastures in other regions all over the world. However, it is not clear how alpine steppe communities respond to N & P fertilization, and what is the optimal application rate, in the perspective of forage production. To attempt to explore these questions, in July 2013, two fencing sites were designed in Baingoin County with 12 treatments of different levels of nitrogen (N0: 0; N1: 7.5 g m-2 yr-1; N2: 15 g m-2 yr-1) & phosphate (P0: 0; P1: 7.5 gP2O5 m-2 yr-1; P2: 15 gP2O5 m-2 yr-1; P3: 30 gP2O5 m-2 yr-1). The results indicated N&P addition was capable to ameliorate the quality of the two sites in the Tibetan Plateau steppe. Increasing N application level resulted in significant increment in Gramineae and total biomass in the two sites. P addition significantly improved the quantity of Compositae, total biomass and the biomasss of other species in site II, while it only significantly improved the total biomass in site I. Gramineae was much more sensitive to N-induced changes than P-induced changes, and this indicated N addition was better to ameliorate the quality of plateau steppe than P-induced changes. No strong evidence was found for critical threshold within 15 g N m-2 yr-1, and there was decreasing tendency when P addition rate was above 15 g m-2 yr-1. N&P has the potential to accelerate soil acidification, which improved the content of available K, likely as a result of nonsignificant correlation between biomass and soil moisture. This work highlights the the tradeoffs that exist in N and P addition in recovering degraded steppe. PMID:27223104

  6. Topographic Patterns of Mortality and Succession in the Alpine Treeline Ecotone Suggest Hydrologic Controls on Post-Fire Tree Establishment

    Science.gov (United States)

    McCaffrey, D. R.; Hopkinson, C.

    2017-12-01

    Alpine Treeline Ecotone (ATE), the transition zone between closed canopy forest and alpine tundra, is a prominent vegetation pattern in mountain regions. At continental scales, the elevation of ATE is negatively correlated with latitude and is generally explained by thermal limitations. However, at landscape scales, precipitation and moisture regimes can suppress ATE elevation below thermal limits, causing variability and patterning in ATE position. Recent studies have investigated the relative effects of hydroclimatic variables on ATE position at multiple scales, but less attention has been given to interactions between hydroclimatic variables and disturbance agents, such as fire. Observing change in the ATE at sufficient spatial resolution and temporal extent to identify correlations between topographic variables and disturbance agents has proved challenging. Recent advances in monoplotting have enabled the extraction of canopy cover information from oblique photography, at a resolution of 20 m. Using airborne lidar and repeat photography from the Mountain Legacy Project, we observed canopy cover change in West Castle Watershed (Alberta, Canada; 103 km2; 49.3° N, 114.4° W) over a 92-year period (i.e. 1914-2006). Two wildfires, occurring 1934 and 1936, affected 63% of the watershed area, providing an opportunity to contrast topographic patterns of mortality and succession in the ATE, while factoring by exposure to fire. Slope aspect was a strong predictor of mortality and succession: the frequency of mortality was four times higher in fire-exposed areas, with 72% of all mortality occurring on south- and east-facing slope aspects; the frequency of succession was balanced between fire-exposed and unexposed areas, with 66% of all succession occurred on north- and east-facing slope aspects. Given previous experiments have demonstrated that moisture limitation inhibits tree establishment, suppressing elevation of ATE below thermal growth boundaries, we hypothesize

  7. Microstructures Indicate Large Influence of Temperature and Fluid Pressure on the Reactivation of the Alpine Fault, New Zealand

    Science.gov (United States)

    Schuck, B.; Janssen, C.; Schleicher, A.; Toy, V.; Dresen, G.

    2017-12-01

    The transpressional Alpine Fault within New Zealand's South Island is the major structure that accommodates relative motion between the Pacific and the Australian Plates. It has been intensively studied, because it is late in its 291-year seismic cycle (Cochran et al., 2017; doi: 10.1016/j.epsl.2017.02.026), is likely to generate large (i.e. MW > 8) earthquakes, thus presents the biggest seismic hazard in the region. However, because it is severely misoriented in the present-day stress field for reactivation (Boese et al., 2013; doi: 10.1016/j.epsl.2013.06.030), supra-lithostatic fluid-pressures are required for rupture nucleation. We have analyzed microstructures (SEM and TEM), geochemistry (ICP-OES) and mineralogy (XRD) of outcrop samples of the fault core to investigate the influence of fluids on the geomechanical behavior of the fault. Fluid-related alteration is pervasive within 20 m of the principal slip zone (PSZ) (Sutherland et al., 2012; doi: 10.1130/G33614.1), which is an incohesive, cemented and repeatedly reworked fault gouge mostly consisting of a fine-grained matrix composed of comminuted detrital quartz and feldspar as well as authigenic chlorite and calcite. Authigenic phases seal the PSZ for interseismic cross-fault fluid flow and enable fluid pressure to build-up. Notable, smectite, previously considered to significantly influence propagation of Alpine Fault ruptures, is not present in these samples. Undeformed, euhedral chlorite grains suggest that the processes leading to fault sealing are not only active at greater depths but also close to the surface. The absence of smectite and the presence of undeformed chlorite at very shallow depths can be attributed to the fault's high geothermal gradient of > 120 °C km-1 (Sutherland et al., 2012; doi:10.1038/nature22355), which gives temperature conditions unfavorable for smectite to be stable and fostering chlorite growth. A pervasive network of anastomosing calcite veins in the fault core, depicting

  8. Isotopic Composition of the Neolithic Alpine Iceman's Tooth Enamel and Clues to his Origin

    Science.gov (United States)

    Muller, W.; Muller, W.; Halliday, A. N.

    2001-12-01

    Five small enamel fragments from three teeth of the upper right jaw from the mummy of the Neolithic Alpine Iceman have been investigated for their isotopic composition in order to shed light on his geographic origins. Soils from approximately contemporaneous sites were sampled for comparison. Tooth enamel forms ontogenetically very early and is not re-mineralized during later lifetime (unlike with bone material). Therefore, unique insights into the Iceman's childhood can be acquired. Enamel also is the densest tissue of a human body and is thus less susceptible to post-mortem alteration. Both radiogenic (Sr, Pb, Nd) and stable isotopes (O, C) are investigated. Radiogenic isotopes allow reconstruction of the local geological background, because humans incorporate Sr, Pb and Nd from their local environment by eating local food. Stable isotopes provide information about altitude and/or position relative to the main Alpine watershed. High spatial-resolution laser-ablation ICPMS profiles reveal that most elements are distributed in a manner that is essentially similar to modern human teeth except of that La, Ce, Nd (LREE) show up to a 100-fold enrichment towards the outer enamel surface. These uptake-profiles may reflect interaction with melt water, consistent with data for the composition of samples of the Iceman's skin. Biogenic apatites (enamel, bone) have very low in-vivo LREE concentrations, but take up LREEs post-mortem from the burial environment. Ice core samples from the finding site show concentrations up to 400 ppt Ce. Such high uptake of the LREEs precludes the derivation of an in-vivo Nd isotopic signal, but both other radiogenic tracers, Sr and Pb, show pristine (in-vivo) concentrations of 87 ppm and 0.1 ppm, respectively. Strontium isotopic compositions were determined on fragments from the canine, the first and second premolar (1 - 9 mg) and two hip bone samples, utilizing three sequential leaching steps for each sample to detect possible alteration

  9. Safe delivery, Service utilization, Metekel Zone

    African Journals Online (AJOL)

    magnitude of safe delivery and influencing factors are not well assessed in Benishangul Gumuz region in general and in Metekel Zone ... Therefore providing information, education and communication on delivery service utilization with special emphasis to Gumuz .... encountered at least one abortion in their life time. One.

  10. How can geological datasets help us to choose between rheological behaviours suggested by experimental measurements? Examples from the Alpine Fault and the Japan Trench.

    Science.gov (United States)

    Toy, V.; Boulton, C. J.; Coffey, G.; Denys, P. H.; McCaffrey, R.

    2015-12-01

    Laboratory measurements of fault rock rheology are commonly performed on individual components of complex natural systems. Textural and structural inferences from outcrop observations provide one means to constrain the co-operative behaviour of multi-component natural fault systems. For example, the principal slip zone (PSZ) of New Zealand's central Alpine Fault comprises a 1-10 cm thick sandwich of impermeable smectite-bearing ultracataclasite/gouge layers between higher permeability hanging wall cataclasite and footwall gravel (Boulton et al., 2012, doi: 10.1029/2011GC003872). Based solely on measured mechanical properties we expect earthquake ruptures to nucleate and propagate in the cataclasites rather than the PSZ. However, the PSZ gouge was preferentially comminuted so it must localise slip, and injection veins penetrate from it into the surrounding formation. This suggests that the gouge experiences coseismic pressurization and weakening, possible if slip is confined to one layer within the impermeable (thus undrained) gouge. On the southern Alpine Fault a clear PSZ is not well-developed; instead a wide shear zone crops out (Barth et al., 2013, doi: 10.1002/tect.20041). Mechanical data again demonstrate frictionally weak, velocity strengthening, low permeability materials, compatible with a creeping shear zone, but PSZ materials display velocity weakening behaviour at high slip rates if undrained, from which we infer seismic slip is possible in nature. Extensive paleoseismic records suggest the structure has accommodated regularly repeating earthquakes for the last 17 kyr (Berryman et al., 2013, doi: 10.1126/science.1218959). Our newly gathered geodetic datasets may resolve this apparent slip rate paradox. In situ measurements from active fault systems can also help interpret experimental data. For example, in material recovered from around the active slip zone of the 2011 Tohoku-oki earthquake, experiments suggest lower frictional strength for undrained

  11. A Proposal submitted to Biological Systems Science Division of DOE requesting Participant Support Costs for the Fifth International Conference on Polar and Alpine Microbiology

    Energy Technology Data Exchange (ETDEWEB)

    Priscu, John [Montana State Univ., Bozeman, MT (United States)

    2012-11-20

    The 5th International Conference on Polar and Alpine Microbiology (PAM5) was held in Big Sky, Montana (USA) from 8-12 September 2013. This meeting is a continuation of the highly successful meetings previously held in Rovaniemi, Finland (2004), Innsbruck, Austria (2006), Banff, Canada (2008) and Ljubljana, Slovenia (2011), which brought together leading international researchers and students in this field. The objectives of the Big Sky meeting were to bring together scientists, students and professionals to discuss all aspects of cold-adapted microorganisms and the roles they play in polar and alpine environments, to understand the role of these organisms in our search for life on other icy worlds, to address recent developments, and to exchange ideas and experiences on an international scale. The conference provided a multi-disciplinary forum to explore emerging areas in the field and as always, will have a wealth of opportunities for the exchange of ideas and building of collaborations. Funds were requested to help defray registration fees and travel costs of 13 early career scientists. Distribution of the funds were based on the quality of the abstracts submitted.

  12. Spatial and temporal variability of nitrate sinks and sources in riparian soils of a restored reach of an Alpine river

    Science.gov (United States)

    Luster, Jörg; Huber, Benjamin; Shrestha, Juna; Samaritani, Emanuela; Niklaus, Pascal A.

    2010-05-01

    In order to assess the effects of river restoration on water quality, the biogeochemical functions of restored river reaches have to be quantified. Of particular interest is the ability of riparian functional processing zones (FPZ) to remove nitrate from infiltrating river water or agricultural runoff. Processes involved are removal of nitrate by denitrification and immobilisation of nitrogen in plant or microbial biomass. On the other hand, mineralisation followed by nitrification can lead to an increase in leachable nitrate. The latter process is fueled by the frequent input of fresh dissolved or particle bound organic matter, characteristic for temporarily flooded riparian zones. The objective of this study was to characterize the spatial and temporal variability of nitrate concentrations in the soil solution of a restored reach of the Alpine river Thur in northeastern Switzerland. The study was part of the interdisciplinary project cluster RECORD, which was initiated to advance the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The studied river reach comprised the following three FPZ representing a lateral successional gradient with decreasing hydrological connectivity (i.e. decreasing flooding frequency and duration). (i) The grass zone developed naturally on a gravel bar after restoration of the channelized river section (mainly colonized by canary reed grass Phalaris arundinacae). The soil is composed of up to 80 cm thick fresh sediments trapped and stabilized by the grass roots. (ii) The bush zone is composed of young willow trees (Salix viminalis) planted during restoration to stabilize older overbank deposits. (iii) The mixed forest is a mature riparian hardwood forest developed on older overbank sediments with ash and maple as dominant trees. The study period was between summer 2008 and winter 2009/2010 including three flood events in August 2008, June 2009 and July 2009. The second flood inundated the

  13. Sensitivity of subalpine tree seedlings and alpine plants to natural and manipulated climate variation: Initial results from an Alpine Treeline Warming Experiment (Invited)

    Science.gov (United States)

    Kueppers, L. M.

    2010-12-01

    Niche models and paleoecological studies indicate that future climate change will alter the geographic distributions of plant species. Changes in temperature, snowmelt timing, or moisture conditions at one edge of a species’ range may have different consequences for recruitment, carbon exchange, phenology, and survival than changes at another edge. Similarly, local genetic adaptation may constrain species and community responses to climate change. We have established a new experiment to investigate potential shifts in the distribution of subalpine tree species, and the alpine species they might replace. We are asking how tree species recruitment and alpine species growth and reproduction vary within their current ranges, and in response to temperature and soil moisture manipulations. We are also examining whether genetic provenance and ecosystem processes constrain tree seedling and alpine herb responses. Our Alpine Treeline Warming Experiment is located across three sites at Niwot Ridge, CO, ranging from near the lower limit of subalpine forest to alpine tundra. We use infrared heaters to raise growing season surface soil temperatures by 4-5°C, and to lengthen the growing season. The warming treatment is crossed with a soil moisture manipulation to distinguish effects due to higher temperatures from those due to drier soil. Each plot is a common garden sown with high and low elevation provenances of limber pine (Pinus flexilis) and Engelmann spruce (Picea engelmannii). We established an additional set of experimental plots to examine treatment effects on alpine species phenology, growth and reproduction. Under ambient conditions in 2009, tree seedling germination rate, lifespan, and first season survival was higher within the species’ current range than in the alpine, and for Engelmann spruce, was higher at the low elevation limit than the high elevation limit. Source population (low vs. high elevation) was a significant factor explaining natural variation in

  14. TASK 2: QUENCH ZONE SIMULATION

    Energy Technology Data Exchange (ETDEWEB)

    Fusselman, Steve

    2015-09-30

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. A key feature of the AR gasifier design is the transition from the gasifier outlet into the quench zone, where the raw syngas is cooled to ~ 400°C by injection and vaporization of atomized water. Earlier pilot plant testing revealed a propensity for the original gasifier outlet design to accumulate slag in the outlet, leading to erratic syngas flow from the outlet. Subsequent design modifications successfully resolved this issue in the pilot plant gasifier. In order to gain greater insight into the physical phenomena occurring within this zone, AR developed a cold flow simulation apparatus with Coanda Research & Development with a high degree of similitude to hot fire conditions with the pilot scale gasifier design, and capable of accommodating a scaled-down quench zone for a demonstration-scale gasifier. The objective of this task was to validate similitude of the cold flow simulation model by comparison of pilot-scale outlet design performance, and to assess demonstration scale gasifier design feasibility from testing of a scaled-down outlet design. Test results did exhibit a strong correspondence with the two pilot scale outlet designs, indicating credible similitude for the cold flow simulation device. Testing of the scaled-down outlet revealed important considerations in the design and operation of the demonstration scale gasifier, in particular pertaining to the relative momentum between the downcoming raw syngas and the sprayed quench water and associated impacts on flow patterns within the quench zone. This report describes key findings from the test program, including assessment of pilot plant configuration simulations relative to actual

  15. Assessing and comparing climatic control on distribution and reproduction of alpine and lowland species in the subalpine habitat of western Norway

    Energy Technology Data Exchange (ETDEWEB)

    Meineri, Eric

    2012-02-15

    Aims and background: Species range shift is among the most well-documented responses to climate change. As a result, a growing number of studies model species climatic niches to predict how species ranges may displace in space and time (SDM studies). These studies are criticised because they do not include reproduction in their predictions. Other studies use empirical data to assess climatic control on reproductive life-stages. However, the climatic niche of reproductive life-stages may not determine the climatic niche of species, limiting the ability of both types of studies to assess the effect of climate change. In this synthesis, I compare the results of a SDM study (Paper I) with the results of two empirical studies focussing on flowering performance (Paper II) and seedling emergence (Paper III). The research focuses on the leading and rear altitudinal edges of lowland and alpine species ranges, respectively, as those are the two delimiting fronts that are expected to be specifically vulnerable to climate change. Reproduction response to climate is a complex process because it involves several sub-stages that can be affected by climate in several ways. Therefore, the results included in this synthesis integrate several direct and size-dependent climatic effects on flowering performance and report on the importance of both the climate conditions occurring at the recruitment sites and those experienced by the source populations for seedling emergence. Study area and species: This thesis makes use of the sub-alpine and alpine landscapes of western Norway to investigate climatic control on species occurrence and reproduction. This study area was chosen because it includes the leading altitudinal edge of lowland species ranges and the rear altitudinal edge of alpine species ranges. The research uses Viola biflora (alpine), Viola palustris (lowland), Veronica alpina (alpine), and Veronica officinalis (lowland) as study cases because these species are common in the

  16. Sex-specific selection for MHC variability in Alpine chamois.

    Science.gov (United States)

    Schaschl, Helmut; Suchentrunk, Franz; Morris, David L; Ben Slimen, Hichem; Smith, Steve; Arnold, Walter

    2012-02-15

    In mammals, males typically have shorter lives than females. This difference is thought to be due to behavioural traits which enhance competitive abilities, and hence male reproductive success, but impair survival. Furthermore, in many species males usually show higher parasite burden than females. Consequently, the intensity of selection for genetic factors which reduce susceptibility to pathogens may differ between sexes. High variability at the major histocompatibility complex (MHC) genes is believed to be advantageous for detecting and combating the range of infectious agents present in the environment. Increased heterozygosity at these immune genes is expected to be important for individual longevity. However, whether males in natural populations benefit more from MHC heterozygosity than females has rarely been investigated. We investigated this question in a long-term study of free-living Alpine chamois (Rupicapra rupicapra), a polygynous mountain ungulate. Here we show that male chamois survive significantly (P = 0.022) longer if heterozygous at the MHC class II DRB locus, whereas females do not. Improved survival of males was not a result of heterozygote advantage per se, as background heterozygosity (estimated across twelve microsatellite loci) did not change significantly with age. Furthermore, reproductively active males depleted their body fat reserves earlier than females leading to significantly impaired survival rates in this sex (P < 0.008). This sex-difference was even more pronounced in areas affected by scabies, a severe parasitosis, as reproductively active males were less likely to survive than females. However, we did not find evidence for a survival advantage associated with specific MHC alleles in areas affected by scabies. Increased MHC class II DRB heterozygosity with age in males, suggests that MHC heterozygous males survive longer than homozygotes. Reproductively active males appear to be less likely to survive than females most likely

  17. Personal UV exposure in high albedo alpine sites

    Science.gov (United States)

    Siani, A. M.; Casale, G. R.; Diémoz, H.; Agnesod, G.; Kimlin, M. G.; Lang, C. A.; Colosimo, A.

    2008-07-01

    Mountain sites experience enhanced UV radiation levels due to the concurrent effects of shorter radiation path-length, low aerosol load and high reflectivity of the snow surfaces. This study was encouraged by the possibility to collect original data of personal dose on a specific anatomical site (erythemally effective UV dose on the forehead) of two groups of volunteers (ski instructors and skiers) in the mountainous areas of Italy (the Alpine site of La Thuile-Les Suches in Valle d'Aosta region). Personal doses were assessed using polysulphone dosimetry. Exposure Ratio (ER), defined as the ratio between the personal dose and the corresponding ambient dose (i.e. erythemally weighted dose received by a horizontal surface) during the same exposure period was taken into account. In addition measuring skin colours as biological markers of individual response to UV exposure, was also carried out on the forearm and cheek of each volunteer before and after exposure. The median ER, taking into account the whole sample, is 0.60 in winter, with a range of 0.29 to 1.46, and 1.02 in spring, ranging from 0.46 to 1.72. No differences in ERs were found between skiers and instructors in spring while in winter skiers experienced lower values. Regarding skin colorimetric parameters the main result was that both skiers and instructors had on average significantly lower values of luminance after exposure i.e.~they became darker. It was found that the use of sunscreen and individual skin photo-type did not produce significant variations in ER across instructor/skier group by day and by seasons (p>0.05). It seems that sunscreen use only at the beginning of the exposure or in a few cases a couple of times during exposure (at difference with the specific instructions sheets), was not sufficient to change significantly skin colorimetric parameters across participants. In conclusion UV personal doses on the ski-fields are often significantly higher than those on horizontal surfaces and

  18. Personal UV exposure in high albedo alpine sites

    Directory of Open Access Journals (Sweden)

    A. M. Siani

    2008-07-01

    Full Text Available Mountain sites experience enhanced UV radiation levels due to the concurrent effects of shorter radiation path-length, low aerosol load and high reflectivity of the snow surfaces. This study was encouraged by the possibility to collect original data of personal dose on a specific anatomical site (erythemally effective UV dose on the forehead of two groups of volunteers (ski instructors and skiers in the mountainous areas of Italy (the Alpine site of La Thuile-Les Suches in Valle d'Aosta region. Personal doses were assessed using polysulphone dosimetry. Exposure Ratio (ER, defined as the ratio between the personal dose and the corresponding ambient dose (i.e. erythemally weighted dose received by a horizontal surface during the same exposure period was taken into account. In addition measuring skin colours as biological markers of individual response to UV exposure, was also carried out on the forearm and cheek of each volunteer before and after exposure.

    The median ER, taking into account the whole sample, is 0.60 in winter, with a range of 0.29 to 1.46, and 1.02 in spring, ranging from 0.46 to 1.72. No differences in ERs were found between skiers and instructors in spring while in winter skiers experienced lower values.

    Regarding skin colorimetric parameters the main result was that both skiers and instructors had on average significantly lower values of luminance after exposure i.e.~they became darker. It was found that the use of sunscreen and individual skin photo-type did not produce significant variations in ER across instructor/skier group by day and by seasons (p>0.05. It seems that sunscreen use only at the beginning of the exposure or in a few cases a couple of times during exposure (at difference with the specific instructions sheets, was not sufficient to change significantly skin colorimetric parameters across participants.

    In conclusion UV personal doses on the ski-fields are often

  19. Hemoglobin/myoglobin oxygen desaturation during Alpine skiing.

    Science.gov (United States)

    Szmedra, L; Im, J; Nioka, S; Chance, B; Rundell, K W

    2001-02-01

    To investigate muscle blood volume (BV) change and hemoglobin/myoglobin oxygen desaturation (OD) during simulated giant slalom (GS) and slalom (SL) Alpine ski racing. Joint angle, BV, OD, and heart rate (HR) were evaluated during GS and SL events in 30 junior elite skiers ages 9--17 yr (13.5 +/- 2.3). Subjects were stratified by ski class and age: group I, J1 and J2, ages 15--18 yr (16.8 +/- 0.8); group II, J3, 13--14 yr (13.6 +/- 0.7); and group III, J4 and J5, 9--12 yr (11.5 +/- 1.2). Near-infrared spectrophotometry (NIRS) was used to measure BV and OD in the capillary bed of the vastus lateralis during trials. Maximal OD was determined during thigh cuff ischemia (CI). Quadriceps cross-sectional area (CSA) was estimated by skin-fold and thigh circumference. Joint angles were smaller (P < 0.05) during GS than SL for ankle (83.8 +/- 11.9 degrees; 98.6 +/- 15.7 degrees ), knee (107.4 +/- 14.9 degrees; 118.3 +/- 18.0 degrees ), and hip (98.8 +/- 14.3 degrees; 107.5 +/- 16.2 degrees ). BV reduction from rest to peak exercise (Delta BV) was 30% greater (P < 0.05) during the GS than SL, whereas Delta OD was 33% greater (P < 0.05) during GS. Delta OD, relative to CI OD, was greater for all subjects during GS (79.2 +/- 3.7%) than SL (65.7 +/- 4.4%). This pattern continued within groups; group II displayed the greatest relative desaturation (82.9 +/- 7.6%). CSA was larger in older skiers (92.5 +/- 21.6; 72.5 +/- 12.3; 65.3 +/- 21.2 cm(2)) and correlated with Delta OD (P < 0.05). The larger reduction in BV (Delta BV change) and greater OD when skiers assumed lower posture during GS than SL may be related to greater effective static load secondary to higher percent of maximal voluntary contraction and is consistent with compromised blood flow to working muscle.

  20. Molecular phylogeography of the Andean alpine plant, Gunnera magellanica

    Science.gov (United States)

    Shimizu, M.; Fujii, N.; Ito, M.; Asakawa, T.; Nishida, H.; Suyama, C.; Ueda, K.

    2015-12-01

    To clarify the evolutionary history of Gunnera magellanica (Gunneraceae), an alpine plant of the Andes mountains, we performed molecular phylogeographic analyses based on the sequences of an internal transcribed spacer (ITS) of nuclear ribosomal DNA and four non-coding regions (trnH-psbA, trnL-trnF, atpB-rbcL, rpl16 intron) of chloroplast DNA. We investigated 3, 4, 4 and 11 populations in, Ecuador, Bolivia, Argentina, and Chile, respectively, and detected six ITS genotypes (Types A-F) in G. magellanica. Five genotypes (Types A-E) were observed in the northern Andes population (Ecuador and Bolivia); only one ITS genotype (Type F) was observed in the southern Andes population (Chile and Argentina). Phylogenetic analyses showed that the ITS genotypes of the northern and southern Andes populations form different clades with high bootstrap probability. Furthermore, network analysis, analysis of molecular variance, and spatial analysis of molecular variance showed that there were two major clusters (the northern and southern Andes populations) in this species. Furthermore, in chloroplast DNA analysis, three major clades (northern Andes, Chillan, and southern Andes) were inferred from phylogenetic analyses using four non-coding regions, a finding that was supported by the above three types of analysis. The Chillan clade is the northernmost population in the southern Andes populations. With the exception of the Chillan clade (Chillan population), results of nuclear DNA and chloroplast DNA analyses were consistent. Both markers showed that the northern and southern Andes populations of G. magellanica were genetically different from each other. This type of clear phylogeographical structure was supported by PERMUT analysis according to Pons & Petit (1995, 1996). Moreover, based on our preliminary estimation that is based on the ITS sequences, the northern and southern Andes clades diverged ~0.63-3 million years ago, during a period of upheaval in the Andes. This suggests

  1. Investigating Aquatic Dead Zones

    Science.gov (United States)

    Testa, Jeremy; Gurbisz, Cassie; Murray, Laura; Gray, William; Bosch, Jennifer; Burrell, Chris; Kemp, Michael

    2010-01-01

    This article features two engaging high school activities that include current scientific information, data, and authentic case studies. The activities address the physical, biological, and chemical processes that are associated with oxygen-depleted areas, or "dead zones," in aquatic systems. Students can explore these dead zones through both…

  2. Work zone safety analysis.

    Science.gov (United States)

    2013-11-01

    This report presents research performed analyzing crashes in work zones in the state of New Jersey so as to : identify critical areas in work zones susceptible to crashes and key factors that contribute to these crashes. A field : data collection on ...

  3. Iowa Work Zone Fatalities

    Science.gov (United States)

    2011-01-01

    From March through November, the Iowa DOT may have up to 500 road construction work zones, and each of the department's maintenance garages may establish one or more short-term work zones per day. Couple that with the work of cities and counties, and...

  4. Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China.

    Science.gov (United States)

    Wen, Lu; Dong, Shikui; Li, Yuanyuan; Li, Xiaoyan; Shi, Jianjun; Wang, Yanlong; Liu, Demei; Ma, Yushou

    2013-01-01

    The deterioration of alpine grassland has great impact on ecosystem services in the alpine region of Qinghai-Tibetan Plateau. However, the effect of grassland degradation on ecosystem services and the consequence of grassland deterioration on economic loss still remains a mystery. So, in this study, we assessed four types of ecosystem services following the Millennium Ecosystem Assessment classification, along a degradation gradient. Five sites of alpine grassland at different levels of degradation were investigated in Guoluo Prefecture of Qinghai Province, China. The species composition, aboveground biomass, soil total organic carbon (TOC), and soil total nitrogen (TN) were tested to evaluate major ecological services of the alpine grassland. We estimated the value of primary production, carbon storage, nitrogen recycling, and plant diversity. The results show the ecosystem services of alpine grassland varied along the degradation gradient. The ecosystem services of degraded grassland (moderate, heavy and severe) were all significantly lower than non-degraded grassland. Interestingly, the lightly degraded grassland provided more economic benefit from carbon maintenance and nutrient sequestration compared to non-degraded. Due to the destruction of the alpine grassland, the economic loss associated with decrease of biomass in 2008 was $198/ha. Until 2008, the economic loss caused by carbon emissions and nitrogen loss on severely degraded grassland was up to $8 033/ha and $13 315/ha, respectively. Urgent actions are required to maintain or promote the ecosystem services of alpine grassland in the Qinghai-Tibetan Plateau.

  5. A deposition record of inorganic ions from a high-alpine glacier

    Energy Technology Data Exchange (ETDEWEB)

    Huber, T. [Bern Univ. (Switzerland); Bruetsch, S.; Gaeggeler, H.W.; Schotterer, U.; Schwikowski, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The lowest five metres of an ice core from a high-alpine glacier (Colle Gnifetti, Monte Rosa massif, 4450m a.s.l., Switzerland) were analysed for ammonium, calcium, chloride, magnesium, nitrate, potassium, sodium, and sulphate by ion chromatography. (author) 1 fig., 3 refs.

  6. Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas

    NARCIS (Netherlands)

    Namgail, T.; Rawat, G.S.; Mishra, C.; Wieren, van S.E.; Prins, H.H.T.

    2012-01-01

    A non-linear relationship between phytodiversity and altitude has widely been reported, but the relationship between phytomass and altitude remains little understood.We examined the phytomass and diversity of vascular plants along altitudinal gradients on the dry alpine rangelands of Ladakh, western

  7. Climate change links fate of glaciers and an endemic alpine invertebrate

    Science.gov (United States)

    Muhlfeld, Clint C.; Giersch, J. Joseph; Hauer, F. Richard; Pederson, Gregory T.; Luikart, Gordon; Peterson, Douglas P.; Downs, Christopher C.; Fagre, Daniel B.

    2011-01-01

    Climate warming in the mid- to high-latitudes and high-elevation mountainous regions is occurring more rapidly than anywhere else on Earth, causing extensive loss of glaciers and snowpack. However, little is known about the effects of climate change on alpine stream biota, especially invertebrates. Here, we show a strong linkage between regional climate change and the fundamental niche of a rare aquatic invertebrate—themeltwater stonefly Lednia tumana—endemic toWaterton- Glacier International Peace Park, Canada and USA. L. tumana has been petitioned for listing under the U.S. Endangered Species Act due to climate-change-induced glacier loss, yet little is known on specifically how climate impacts may threaten this rare species and many other enigmatic alpine aquatic species worldwide. During 14 years of research, we documented that L. tumana inhabits a narrow distribution, restricted to short sections (∼500 m) of cold, alpine streams directly below glaciers, permanent snowfields, and springs. Our simulation models suggest that climate change threatens the potential future distribution of these sensitive habitats and persistence of L. tumana through the loss of glaciers and snowfields. Mountaintop aquatic invertebrates are ideal early warning indicators of climate warming in mountain ecosystems. Research on alpine invertebrates is urgently needed to avoid extinctions and ecosystem change.

  8. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests

    NARCIS (Netherlands)

    Rigling, A.; Bigler, C.; Eilmann, B.; Feldmeyer-Christe, E.; Gimmi, U.; Ginzler, C.

    2013-01-01

    An increasing number of studies have reported on forest declines and vegetation shifts triggered by drought. In the Swiss Rhone valley (Valais), one of the driest inner-Alpine regions, the species composition in low elevation forests is changing: The sub-boreal Scots pine (Pinus sylvestris L.)

  9. Relationship between alpine tourism demand and hot summer air temperatures associated with climate change

    Science.gov (United States)

    Rebetez, M.; Serquet, G.

    2010-09-01

    We quantified the impacts of hot summer air temperatures on tourism in the Swiss Alps by analyzing the relationship between temperature and overnight stays in 40 Alpine resorts. Several temperature and insolation thresholds were tested to detect their relationship to summer tourism. Our results reveal significant correlations between the number of nights spent in mountain resorts and hot temperatures at lower elevations. Alpine resorts nearest to cities are most sensitive to hot temperatures. This is probably because reactions to hot episodes take place on a short-term basis as heat waves remain relatively rare. The correlation in June is stronger compared to the other months, probably because school holidays and the peak domestic tourist demand in summer usually takes place in July and August. Our results suggest that alpine tourist resorts could benefit from hotter temperatures at lower elevations under future climates. Tourists already react on a short-term basis to hot days and spend more nights in hotels in mountain resorts. If heat waves become more regular, it seems likely that tourists choose to stay at alpine resorts more frequently and for longer periods.

  10. The Ghomarides Nappes, Rif Coastal Range, Morocco: A Variscan chip in the Alpine Belt

    Science.gov (United States)

    Chalouan, Ahmed; Michard, André

    1990-12-01

    The Ghomarides nappes are the uppermost basement nappes in the Rifan Alpine belt. Paleozoic rocks constitute the prominent part of these nappes, together with Triassic and younger cover sediments. Four nappes are distinguished, each one with a distinct stratigraphical sequence, especially for the Devonian and Carboniferous periods. Sedimentological and structural arguments plead for an initial location on the northern margin of the African continent. The main folding and metamorphic events are shown to be Eo-Variscan (late Acadian). Tectonic vergence was to the north (present coordinates). Late Variscan (Hercynian) shortening gave upright, NW-SE trending folds. Alpine ductile overprints are scarce except at the base of the lowest nappe where K/Ar phengite ages are about 25 Ma. The Ghomarides nappes correlate with the Malaguides nappes (Betic Cordilleras, southern Spain), the Kabylian (northern Algeria) and Calabrian (southern Italy) Paleozoic nappes, the Tuscan-South-Alpine basement and the Upper Austro-Alpine nappes. The proposed correlations allow us to restaure the southern margin of the Hercynian belt along northwestern Africa.

  11. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units

    NARCIS (Netherlands)

    Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.C.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K.

    2008-01-01

    A correlation of tectonic units of the Alpine-Carpathian-Dinaridic system of orogens, including the substrate of the Pannonian and Transylvanian basins, is presented in the form of a map. Combined with a series of crustal-scale cross sections this correlation of tectonic units yields a clearer

  12. Freshwater Pea Clams Pisidium C. Pfeiffer (Mollusca, Bivalvia From The Alpine Areas of Bulgaria

    Directory of Open Access Journals (Sweden)

    Dilian G. Georgiev

    2016-12-01

    Full Text Available Distributional data for 3 Pisidium species was provided from 19 alpine lakes and 1 dam in Rila and Pirin Mts. (Bulgaria. Most widely distributed was P. casertanum. The species P. globulare and P. obtusale are new records to the area.

  13. Feeding strategies of primates in temperate and alpine forests: comparison of Asian macaques and colobines.

    Science.gov (United States)

    Tsuji, Yamato; Hanya, Goro; Grueter, Cyril C

    2013-07-01

    We analyzed regional variation in the diets of two primate clades, Asian macaques and colobines, whose distributions include temperate-alpine forests. We addressed feeding strategies that enabled them to adapt to harsh environments characterized by relatively low mean temperatures and strong seasonality in both temperature and food availability. Macaques in tropical-lowland forests feed mainly on fruit and animal matter whereas populations in temperate-alpine forests feed more on foliage and on such items as bark and fungi. In comparison, colobines in tropical-lowland forests feed more on fruit and foliage whereas populations in temperate-alpine forests feed less on flowers and more on lichens. Annual precipitation and mean temperature, both of which reflect primary production, had the most significant effects on the feeding behavior of the macaques, whereas only mean temperature had a significant effect on that of colobines. We found two behavioral strategies used by both clades to cope with severe environmental conditions in temperate-alpine forests--shifting to other food items and adjusting feeding plasticity for fruit and foliage. Macaques responded to latitudinal changes by use of both strategies whereas the colobines adapted by using the latter only. By contrast, changes in altitude resulted in the macaques' using the latter strategy and colobines' using both. The different current distributions of Asian macaques and colobines could be attributed to differences in their feeding strategies originating in their digestive systems.

  14. Geomorphic determinants of species composition of alpine tundra, Glacier National Park, U.S.A.

    Science.gov (United States)

    George P. Malanson,; Bengtson, Lindsey E.; Fagre, Daniel B.

    2012-01-01

    Because the distribution of alpine tundra is associated with spatially limited cold climates, global warming may threaten its local extent or existence. This notion has been challenged, however, based on observations of the diversity of alpine tundra in small areas primarily due to topographic variation. The importance of diversity in temperature or moisture conditions caused by topographic variation is an open question, and we extend this to geomorphology more generally. The extent to which geomorphic variation per se, based on relatively easily assessed indicators, can account for the variation in alpine tundra community composition is analyzed versus the inclusion of broad indicators of regional climate variation. Visual assessments of topography are quantified and reduced using principal components analysis (PCA). Observations of species cover are reduced using detrended correspondence analysis (DCA). A “best subsets” regression approach using the Akaike Information Criterion for selection of variables is compared to a simple stepwise regression with DCA scores as the dependent variable and scores on significant PCA axes plus more direct measures of topography as independent variables. Models with geographic coordinates (representing regional climate gradients) excluded explain almost as much variation in community composition as models with them included, although they are important contributors to the latter. The geomorphic variables in the model are those associated with local moisture differences such as snowbeds. The potential local variability of alpine tundra can be a buffer against climate change, but change in precipitation may be as important as change in temperature.

  15. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall.

    Science.gov (United States)

    Li, Ruicheng; Luo, Tianxiang; Mölg, Thomas; Zhao, Jingxue; Li, Xiang; Cui, Xiaoyong; Du, Mingyuan; Tang, Yanhong

    2016-02-09

    The alpine meadow on the Tibetan Plateau is the highest and largest pasture in the world, and its formation and distribution are mainly controlled by Indian summer monsoon effects. However, little is known about how monsoon-related cues may trigger spring phenology of the vast alpine vegetation. Based on the 7-year observations with fenced and transplanted experiments across lower to upper limits of Kobresia meadows in the central plateau (4400-5200 m), we found that leaf unfolding dates of dominant sedge and grass species synchronized with monsoon onset, regardless of air temperature. We also found similar patterns in a 22-year data set from the northeast plateau. In the monsoon-related cues for leaf unfolding, the arrival of monsoon rainfall is crucial, while seasonal air temperatures are already continuously above 0 °C. In contrast, the early-emerging cushion species generally leafed out earlier in warmer years regardless of precipitation. Our data provide evidence that leaf unfolding of dominant species in the alpine meadows senses the arrival of monsoon-season rainfall. These findings also provide a basis for interpreting the spatially variable greening responses to warming detected in the world's highest pasture, and suggest a phenological strategy for avoiding damages of pre-monsoon drought and frost to alpine plants.

  16. Eulamprotes libertinella auctt. – ein Komplex kryptischer alpiner „Kleinschmetterlinge“ (Lepidoptera, Gelechiidae)?

    DEFF Research Database (Denmark)

    Huemer, Peter; Karsholt, Ole

    2011-01-01

    . occidentella n. sp. from the south-western Alps of France and Italy (Cottian Alps) where both taxa may occur syntopically. A lectotype of Gelechia (Argyritis) libertinella ZELLER 1872 is designated. E. libertinella in a strict sense is recorded in four genetic lines on an alpine scale, a situation which...

  17. The importance of nitrogen and carbohydrate storage for plant growth of the alpine herb Veratrum album

    DEFF Research Database (Denmark)

    Kleijn, David; Treier, Urs; Müller-Schärer, Heinz

    2005-01-01

    We examined whether nitrogen (N) and carbohydrates reserves allow Veratrum album, an alpine forb, to start spring growth earlier than the neighbouring vegetation and to survive unpredictable disturbances resulting in loss of above-ground biomass.Seasonal dynamics of plant reserves, soil N...

  18. Distribution and diversity of Arctic-Alpine species in the Balkans

    DEFF Research Database (Denmark)

    Stevanovic, Vladimir; Vukojicic, Snezana; Sinzar-Sekulic, Jasmina

    2009-01-01

    The distributions of 77 Arctic-Alpine species in the Balkans are mapped and the centers of their richness and diversity presented. Within the Dinaric Alps these are Mts Vranica, Durmitor, and Prokletije; in the Scardo-Pindhic mountains, Šarplanina-Rudoka-Korab form a continuous chain; in the Rhod......The distributions of 77 Arctic-Alpine species in the Balkans are mapped and the centers of their richness and diversity presented. Within the Dinaric Alps these are Mts Vranica, Durmitor, and Prokletije; in the Scardo-Pindhic mountains, Šarplanina-Rudoka-Korab form a continuous chain......; in the Rhodope-Rila mountain system there are Mts Vitoša, Rila, and Pirin; while in the Balkan mountain system there are the West and Central part of Stara planina. A comparison of floristic richness and distribution of Arctic-Alpine flora in relation to altitude, geographical location, and geological substrate...... is made. Correlations between floristic richness and geographical distance of the Balkan mountains from the two main centers of Arctic-Alpine flora in Central Europe are also provided....

  19. Nitrogen:phosphorous supply ratio and allometry in five alpine plant species

    DEFF Research Database (Denmark)

    Luo, Xi; Mazer, Susan J.; Guo, Hui

    2016-01-01

    altered the levels of N, P, and the N:P supply ratio (from 1.7:1 to 135:1) provided to five alpine species representing two functional groups (grasses and composite forbs) under greenhouse conditions; we then measured the effects of these treatments on plant morphology and tissue content (SLA, leaf area...

  20. Geochemistry and petrography of the MacAlpine Hills lunar meteorites

    Science.gov (United States)

    Lindstrom, Marilyn M.; Mckay, David S.; Wentworth, Susan J.; Martinez, Rene R.; Mittlefehldt, David W.; Wang, Ming-Sheng; Lipschutz, Michael E.

    1991-01-01

    MacAlpine Hills 88104 and 88105, anorthositic lunar meteorites recovered form the same area in Antartica, are characterized. Petrographic studies show that MAC88104/5 is a polymict breccia dominated by impact melt clasts. It is better classified as a fragmental breccia than a regolith breccia. The bulk composition is ferroan and highly aluminous (Al2O3-28 percent).

  1. Growth responses of low-alpine dwarf-shrub heath species to nitrogen deposition and management

    International Nuclear Information System (INIS)

    Britton, Andrea J.; Fisher, Julia M.

    2008-01-01

    Nitrogen deposition is a continuing problem in European alpine regions. We hypothesised that, despite climatic limitations, low-alpine Calluna heathland would respond to nitrogen addition with increased shoot growth and flowering and that fire and grazing would modify responses. In a five-year study, 0-50 kg N ha -1 y -1 were added, combined with burning (+/-) and clipping (+/-). Calluna vulgaris responded with increased shoot extension, but effects on flowering were variable. Burning enhanced the positive effect of nitrogen addition and negative effects of clipping. Sub-dominant shrubs generally did not respond to nitrogen. C. vulgaris shoot extension was stimulated by nitrogen addition of 10 kg N ha -1 y -1 (above background) supporting suggestions that alpine heathlands are sensitive to low levels of nitrogen deposition. Increased C. vulgaris growth could negatively impact on important lichen components of this vegetation through increased shading and competition. Climatic factors constrain productivity in this community, but do not prevent rapid responses to nitrogen deposition by some species. - Low levels of N deposition increase productivity in alpine dwarf-shrub heath despite strong climatic constraints

  2. Fragile areas in the Alpine region: a reading between innovation and marginality

    Directory of Open Access Journals (Sweden)

    Federica Corrado

    2010-05-01

    Full Text Available The paper proposes a reading and description of fragile Alpine areas that overturns the conventional standpoint, according to which marginality is often synonymous with handicap. The paper starts form a different point of view, able to recognize specific local potentialities that can still be activated with a specific creative effort. The reading regards fragile Alpine areas in the Provinces of Turin and Cuneo and is based on an empirical analysis of the actions underlying current micro-territorial innovative development trends.Cet article propose une lecture et une description des territoires alpins fragiles, en jetant un autre regard, où le concept de fragilité est associé à celui de handicap, c’est-à-dire un autre regard sur l’identification des potentiels locaux spécifiques qui peuvent être encore activés à travers une force créatrice propre aux Alpes. La lecture est effectuée en fonction des territoires alpins fragiles qui font partie des provinces de Turin et Coni et se base sur une analyse empirique des initiatives qui enclenchent en quelque façon des dynamiques micro-territoriales de développement innovant.

  3. Design of Ski Boots for Alpine Ski Racing Based on Leg Frame of the Skier

    Science.gov (United States)

    Suzuki, Soichiro; Hayashi, Sueyoshi

    A ski boot is important to make progress in ski turning technique as an interface between a skier and a ski. Especially in alpine ski races, suitability of design of the boots for racers becomes more important to achieve accurate and quick lean of the leg in ski turns. This study is aimed at building a new design concept of a ski boot that can improve the results of alpine ski races. In this paper, new design of an upper shell of a ski boot that was adjusted to the features of the frame of alpine ski racers was experimentally examined. As a result, it was demonstrated that a front and a rear part of the upper shell of a ski boot should be separately adjusted to the length of a shank of each player for well-balanced quick lean of the leg in the ski turn. Finally, the effect of new design of an upper shell was examined in giant slalom and slalom tests by Japanese alpine ski racers of the first rank. Consequently, the results showed that lean angle during turns was increased and finish time was shortened when the skiers wore the newly designed boots.

  4. THE FORECAST OF VALUES FOR EVALUATION IN COORDINATIVE CAPACITY AT ALPINE SKIERS BEGINNERS

    Directory of Open Access Journals (Sweden)

    Elena Rată

    2009-06-01

    Full Text Available The paper proposes itself to present some methods of forecasting the values of coordinative capacities,evaluated through equilibrium and motor memory tests, during training programs of alpine skiers in the beginner class. These studies have lead to new methods and techniques of mathematical approximation of data usingpolynomial functions of result apportionment for the analyzed groups.

  5. The correlation between anterior cruciate ligament injury in elite alpine skiers and their parents.

    Science.gov (United States)

    Westin, Maria; Reeds-Lundqvist, Sandra; Werner, Suzanne

    2016-03-01

    The aim of this study was to investigate whether a familiar correlation with anterior cruciate ligament (ACL) injury exists between competitive alpine skiers and their parents. All 593 (293 males, 300 females) elite alpine skiers who have studied at a Swedish alpine Ski High School during 2006 and 2012 answered a questionnaire whether they or their parents had suffered an ACL injury. A total of 418 skiers (70%) answered the questionnaire. Twenty-nine per cent (n = 19) out of the 65 ACL-injured skiers reported that they had a parent (mother or father) who have had an ACL injury. In skiers without an ACL injury (n = 353), the result was 18% (n = 64). An odds ratio of 1.95 (95% confidence interval 1.04-3.65) was found to suffer an ACL injury if you have a parent who has had an ACL injury compared with if you have a parent without any ACL injury. The findings of the current study demonstrated a family history to tear the ACL between alpine skiers who had studied at a Swedish Ski High School and ACL injuries of their parents. III.

  6. Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand

    NARCIS (Netherlands)

    Toy, Virginia Gail; Sutherland, Rupert; Townend, John; Allen, Michael John; Becroft, Leeza; Boles, Austin; Boulton, Carolyn; Carpenter, Brett M.; Cooper, Alan; Cox, Simon C.; Daube, Christopher; Faulkner, Daniel R.; Halfpenny, Angela; Kato, Naoki; Keys, Stephen; Kirilova, Martina; Kometani, Yusuke; Little, Timothy; Mariani, Elisabetta; Melosh, Benjamin; Menzies, Catriona D.; Morales, Luiz; Morgan, Chance; Mori, Hiroshi; Niemeijer, André|info:eu-repo/dai/nl/370832132; Norris, Richard; Prior, David J.; Sauer, Katrina; Schleicher, Anja M.; Shigematsu, Norio; Teagle, Damon A H; Tobin, Harold; Valdez, Robert; Williams, Jack; Yeo, Samantha; Baratin, Laura May; Barth, Nicolas; Benson, Adrian; Boese, Carolin; Célérier, Bernard; Chamberlain, Calum J.; Conze, Ronald; Coussens, Jamie; Craw, Lisa; Doan, Mai Linh; Eccles, Jennifer; Grieve, Jason; Grochowski, Julia; Gulley, Anton; Howarth, Jamie; Jacobs, Katrina; Janku-Capova, Lucie; Jeppson, Tamara; Langridge, Robert; Mallyon, Deirdre; Marx, Ray; Massiot, Cécile; Mathewson, Loren; Moore, Josephine; Nishikawa, Osamu; Pooley, Brent; Pyne, Alex; Savage, Martha K.; Schmitt, Doug; Taylor-Offord, Sam; Upton, Phaedra; Weaver, Konrad C.; Wiersberg, Thomas; Zimmer, Martin

    2017-01-01

    During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5–893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock

  7. Alpins and thibos vectorial astigmatism analyses: proposal of a linear regression model between methods

    Directory of Open Access Journals (Sweden)

    Giuliano de Oliveira Freitas

    2013-10-01

    Full Text Available PURPOSE: To determine linear regression models between Alpins descriptive indices and Thibos astigmatic power vectors (APV, assessing the validity and strength of such correlations. METHODS: This case series prospectively assessed 62 eyes of 31 consecutive cataract patients with preoperative corneal astigmatism between 0.75 and 2.50 diopters in both eyes. Patients were randomly assorted among two phacoemulsification groups: one assigned to receive AcrySof®Toric intraocular lens (IOL in both eyes and another assigned to have AcrySof Natural IOL associated with limbal relaxing incisions, also in both eyes. All patients were reevaluated postoperatively at 6 months, when refractive astigmatism analysis was performed using both Alpins and Thibos methods. The ratio between Thibos postoperative APV and preoperative APV (APVratio and its linear regression to Alpins percentage of success of astigmatic surgery, percentage of astigmatism corrected and percentage of astigmatism reduction at the intended axis were assessed. RESULTS: Significant negative correlation between the ratio of post- and preoperative Thibos APVratio and Alpins percentage of success (%Success was found (Spearman's ρ=-0.93; linear regression is given by the following equation: %Success = (-APVratio + 1.00x100. CONCLUSION: The linear regression we found between APVratio and %Success permits a validated mathematical inference concerning the overall success of astigmatic surgery.

  8. Bacteria and pelagic food webs in Pristine alpine lakes (Retezat Mountains, Romania)

    Czech Academy of Sciences Publication Activity Database

    Straškrábová, Viera; Cogalniceanu, D.; Nedoma, Jiří; Parpala, L.; Postolache, C.; Tudorancea, C.; Vadineanu, A.; Valcu, C. M.; Zinevici, V.

    2006-01-01

    Roč. 3, - (2006), s. 1-10 ISSN 1841-7051 Grant - others:EC(XE) EVK1-CT-1999-00032; EC(XE) GOCE-CT-2003-505298 Institutional research plan: CEZ:AV0Z60170517 Keywords : alpine lakes * pelagic bacteria * chlorophyll * zooplankton Subject RIV: EH - Ecology, Behaviour

  9. Controls and variability of solute and sedimentary fluxes in Alpine / Mountain Environments

    Science.gov (United States)

    Beylich, Achim A.

    2015-04-01

    The effects of projected climate change will change surface environments in Alpine / Mountain environments and will alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated geomorphic process monitoring and analysis to understand the sensitivity of these Earth surface environments is acute. This existing key knowledge gap is addressed for the global cold climate environments in the SEDIBUD book, and in this presentation an overview of findings from several selected SEDIBUD key test sites in Alpine / Mountain environments is provided. The applied approach of integrating comparable and longer-term field datasets on contemporary solute and sedimentary fluxes from selected Alpine / Mountain catchment geosystems for better understanding (i) the environmental drivers and rates of contemporary denudational surface processes and (ii) possible effects of projected climate change has proven to be successful and provides new key findings. Special attention is given to the direct comparison of drainage basin systems showing current differences in (i) hydro-climate, (ii) glacier coverage, (iii) lithology, (iv) relief and landscape morphometry, (v) vegetation cover, (vi) sediment production, storage and availability, (vi) hillslope-channel coupling, and (vii) landscape connectivity. Largely undisturbed Alpine / Mountain environments can provide baseline data for modeling the effects of environmental change.

  10. Generic Regional Development Strategies from Local Stakeholders' Scenarios - an Alpine Village Experience

    Directory of Open Access Journals (Sweden)

    Wolfgang Loibl

    2010-09-01

    Full Text Available The article discusses the participatory elaboration of strategies for sustainable regional development in an Alpine tourist region in Austria to cope with global change effects evolving locally, considering climate change, economic change as well as (local societal change. Local stakeholders in an Alpine village in the Montafon region contributed in workshops to achieve the final results: participant teams conducted system analyses of the regional system to explore key elements of the region. Narrative scenarios described possible positive and negative development trends and indicated the critical issues controlling future development; 3D-images of landscape transition simulations show the consequences of certain development directions. Alternative development directions supported the local stakeholders to elaborate regional development strategies. In the end, the scientist team derived generic strategies for Alpine regions based on the locally developed strategy bundle. The article presents the intention, progress and outcome of the participatory approach and elaborates the potential to derive generic strategies from local ones and discusses the possibly occurring conflicts regarding cross-scale transfers of these local strategies. Overall, tourism was seen as a key element for future regional development, which can on the one hand derogate Alpine regions and is on the other hand threatened by climate change and diminution of landscape attractiveness. The suggested development strategies will help to cope with global change issues mitigating the negative consequences on the local society and environment.

  11. Spatio-temporal patterns of major bacterial groups in alpine waters.

    Directory of Open Access Journals (Sweden)

    Remo Freimann

    Full Text Available Glacial alpine landscapes are undergoing rapid transformation due to changes in climate. The loss of glacial ice mass has directly influenced hydrologic characteristics of alpine floodplains. Consequently, hyporheic sediment conditions are likely to change in the future as surface waters fed by glacial water (kryal become groundwater dominated (krenal. Such environmental shifts may subsequently change bacterial community structure and thus potential ecosystem functioning. We quantitatively investigated the structure of major bacterial groups in glacial and groundwater-fed streams in three alpine floodplains during different hydrologic periods. Our results show the importance of several physico-chemical variables that reflect local geological characteristics as well as water source in structuring bacterial groups. For instance, Alpha-, Betaproteobacteria and Cytophaga-Flavobacteria were influenced by pH, conductivity and temperature as well as by inorganic and organic carbon compounds, whereas phosphorous compounds and nitrate showed specific influence on single bacterial groups. These results can be used to predict future bacterial group shifts, and potential ecosystem functioning, in alpine landscapes under environmental transformation.

  12. [Microbial community structure of the alpine meadow under different grazing styles in Naqu prefecture of Tibet].

    Science.gov (United States)

    Niu, Lei; Liu, Ying-hui; Li, Yue; Ouyang, Sheng-nan

    2015-08-01

    To clarify the effects of grazing styles on the soil microbial community in the alpine meadow, we explored the changes of soil microbial community structure in the alpine meadow located in Naqu district of Tibet Autonomous Region by analyzing the soil chemical properties and phospholipid fatty acids (PLFAs). The results showed that the contents of soil total organic carbon, total phosphate and nitrate nitrogen under the different grazing styles followed the trend of 7-year rest grazing > free grazing > grazing prohibition. Except for the ratio of fungal PLFAs/bacterial PLFAs, total PLFAs, the bacterial PLFAs, the fungal PLFAs, the gram negative bacterial and the gram positive bacterial PLFAs over the different grazing types were in the order of 7-year rest grazing > 5-year grazing prohibition > 7-year and 9-year grazing prohibition. The principal component analysis (PCA) presented that the first principal component (PC1 = 74.6%) was mainly composed of monounsaturated fatty acids, polyunsaturated fatty acids and branched fatty acids, and the second principal component (PC2 = 13.2%) was mainly composed of saturated fatty acids and some monounsaturated fatty acids. Total PLFAs content was significantly positively correlated with microbial biomass carbon content. Compared with grazing prohibition, fallow grazing was best for the alpine meadow in Naqu district, and free grazing with light intensity was good for the alpine meadow.

  13. Linking Up the Alps: How Networks of Local Political Actors Build the Pan-Alpine Region

    Directory of Open Access Journals (Sweden)

    Clive H. Church

    2017-05-01

    Full Text Available Reviewed: Linking Up the Alps: How Networks of Local Political Actors Build the Pan-Alpine Region By Cristina Del Biaggio. Bern, Switzerland: Peter Lang, 2016. 370 pp. €52.50. ISBN 978-3-0343-1630-9.

  14. Soil nematodes in alpine meadows of the Tatra National Park (Slovak Republic)

    Czech Academy of Sciences Publication Activity Database

    Háněl, Ladislav

    2017-01-01

    Roč. 54, č. 1 (2017), s. 48-67 ISSN 0440-6605 R&D Projects: GA ČR(CZ) GA14-09231S Institutional support: RVO:60077344 Keywords : soil nematodes * diversity * maturity * soil food web * alpine meadow Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 0.472, year: 2016

  15. Hydrologic linkages drive spatial structuring of bacterial assemblages and functioning in alpine floodplains

    OpenAIRE

    Freimann, Remo; Bürgmann, Helmut; Findlay, Stuart E.G.; Robinson, Christopher T.

    2015-01-01

    Microbial community assembly and microbial functions are affected by a number of different but coupled drivers such as local habitat characteristics, dispersal rates, and species interactions. In groundwater systems, hydrological flow can introduce spatial structure and directional dependencies among these drivers. We examined the importance of hydrology in structuring bacterial communities and their function within two alpine floodplains during different hydrological states. Piezometers were...

  16. Root biomass along subtropical to alpine gradients: global implication from Tibetan transect studies

    Science.gov (United States)

    Tianxiang Luo; Sandra Brown; Yude Pan; Peili Shi; Hua Ouyang; Zhenliang Yu; Huazhong Zhu

    2005-01-01

    Much uncertainty in estimating root biomass density (RBD, root mass per unit area) of all roots regionally exists because of methodological difficulties and little knowledge about the effects of biotic and abiotic factors on the magnitude and distribution pattern of RBD. In this study, we collected field data of RBD from 22 sites along the Tibetan Alpine Vegetation...

  17. Functional traits drive plant community and ecosystem response to global change across arctic and alpine environments

    DEFF Research Database (Denmark)

    Chisholm, Chelsea Lee

    elevation. In summary, my research stresses the importance of including information on functional identity in studies at scales of the individual, community and ecosystem. I found strong links between functional trait identity and ecosystem functioning across alpine meadows and treeline ecotones. A common...

  18. Linking sheep density and grazing frequency to persistence of herb species in an alpine environment

    Czech Academy of Sciences Publication Activity Database

    Lanta, V.; Austrheim, G.; Evju, M.; Klimešová, Jitka; Mysterud, A.

    2014-01-01

    Roč. 29, č. 3 (2014), s. 411-420 ISSN 0912-3814 R&D Projects: GA ČR GA526/09/0963 Institutional support: RVO:67985939 Keywords : sheep grazing * alpine pastures * Norway Subject RIV: EH - Ecology, Behaviour Impact factor: 1.296, year: 2014

  19. Alpine treeline of western North America: linking organism-to-landscape dynamics.

    Science.gov (United States)

    George P. Malanson; David R. Butler; Daniel B. Fagre; Stephen J. Walsh; Diana F. Tomback; Lori D. Daniels; Lynn M. Resler; William K. Smith; Daniel J. Weiss; David L. Peterson; Andrew G. Bunn; Christopher A. Hiemstra; Daniel Liptzin; Patrick S. Bourgeron; Zehao Shen; Constance I. Millar

    2007-01-01

    Although the ecological dynamics of the alpine treeline ecotone are influenced by climate, it is an imperfect indicator of climate change. Mechanistic processes that shape the ecotone—seed rain, seed germination, seedling establishment and subsequent tree growth form, or, conversely tree diebackdepend on microsite patterns. Growth forms affect wind...

  20. Assessment of Hyperspectral Remote Sensing for Analyzing the Impact of Human Trampling on Alpine Swards

    Directory of Open Access Journals (Sweden)

    Marlena Kycko

    2017-02-01

    Full Text Available Tourist traffic has been observed to cause changes in vegetation cover, particularly in alpine areas. These changes can be monitored using remote-sensing methods. This paper presents an analysis of the condition of the dominant sward species surrounding the most frequented alpine tourist trails in the Tatra National Park, one of the most visited natural mountain parks in Poland and a UNESCO Man and the Biosphere Reserve. Hyperspectral measurements of interactions between the electromagnetic spectrum and the morphology and physiology of plants were presented. The spectral properties of plants and remote-sensing vegetation indices could be used at a later date for monitoring, for example from the air. The results identified the species' sensitivity and resistance to trampling and allowed an assessment of their physiological condition. Differences were observed in the conditions of trampled and control plants. The alpine swards in the Tatra National Park were assessed as being in good condition, with only small areas located close to the most popular trails showing damage. The proposed method for analyzing the condition of alpine swards could be a useful tool for the future management of protected areas.

  1. A tale of two single mountain alpine endemics: Packera franciscana and Erigeron mancus

    Science.gov (United States)

    James F. Fowler; Carolyn H. Sieg; Brian M. Casavant; Addie E. Hite

    2012-01-01

    Both the San Francisco Peaks ragwort, Packera franciscana and the La Sal daisy, Erigeron mancus are endemic to treeline/alpine habitats of the single mountain they inhabit. There is little habitat available for these plant species to migrate upward in a warming climate scenario. For P. franciscana, 2008 estimates indicate over 18,000 ramets in a 4 m band along a...

  2. Value of different precipitation data for flood prediction in an alpine catchment: A Bayesian approach

    Science.gov (United States)

    Sikorska, A. E.; Seibert, J.

    2018-01-01

    Flooding induced by heavy precipitation is one of the most severe natural hazards in alpine catchments. To accurately predict such events, accurate and representative precipitation data are required. Estimating catchment precipitation is, however, difficult due to its high spatial, and, in the mountains, elevation-dependent variability. These inaccuracies, together with runoff model limitations, translate into uncertainty in runoff estimates. Thus, in this study, we investigate the value of three precipitation datasets, commonly used in hydrological studies, i.e., station network precipitation (SNP), interpolated grid precipitation (IGP) and radar-based precipitation (RBP), for flood predictions in an alpine catchment. To quantify their effects on runoff simulations, we perform a Bayesian uncertainty analysis with an improved description of model systematic errors. By using periods of different lengths for model calibration, we explore the information content of these three datasets for runoff predictions. Our results from an alpine catchment showed that using SNP resulted in the largest predictive uncertainty and the lowest model performance evaluated by the Nash-Sutcliffe efficiency. This performance improved from 0.674 to 0.774 with IGP, and to 0.829 with RBP. The latter two datasets were also much more informative than SNP, as half as many calibration data points were required to obtain a good model performance. Thus, our results show that the various types of precipitation data differ in their value for flood predictions in an alpine catchment and indicate RBP as the most useful dataset.

  3. The use of invertebrates as indicators of environmental change in alpine rivers and lakes

    International Nuclear Information System (INIS)

    Khamis, K.; Hannah, D.M.; Brown, L.E.; Tiberti, R.; Milner, A.M.

    2014-01-01

    In alpine regions climatic change will alter the balance between water sources (rainfall, ice-melt, snowmelt, and groundwater) for aquatic systems, particularly modifying the relative contributions of meltwater, groundwater and rain to both rivers and lakes. While these changes are expected to have implications for alpine aquatic ecosystems, little is known about potential ecological tipping points and associated indicator taxa. We examined changes in biotic communities along a gradient of glacier influence for two study systems: (1) a stream network in the French Pyrénées; and (2) a network of lakes in the Italian Alps, with the aim of identifying potential indicator taxa (macroinvertebrates and zooplankton) of glacier retreat in these environments. To assess parallels in biotic responses across streams and lakes, both primary data and findings from other publications were synthesised. Using TITAN (Threshold Indicator Taxa ANalysis) changes in community composition of river taxa were identified at thresholds of < 5.1% glacier cover and < 66.6% meltwater contribution. Below these thresholds the loss of cold stenothermic benthic invertebrate taxa, Diamesa spp. and the Pyrenean endemic Rhyacophila angelieri was apparent. Some generalist taxa including Protonemura sp., Perla grandis, Baetis alpinus, Rhithrogena loyolaea and Microspectra sp. increased when glacier cover was < 2.7% and < 52% meltwater. Patterns were not as distinct for the alpine lakes, due to fewer sampling sites; however, Daphnia longispina grp. and the benthic invertebrate groups Plectopera and Planaria were identified as potential indicator taxa. While further work is required to assess potential indicator taxa for alpine lake systems, findings from alpine river systems were consistent between methods for assessing glacier influence (meltwater contribution/glacier cover). Hence, it is clear that TITAN could become a useful management tool, enabling: (i) the identification of taxa particularly

  4. Exploring the Potential of Aerial Photogrammetry for 3d Modelling of High-Alpine Environments

    Science.gov (United States)

    Legat, K.; Moe, K.; Poli, D.; Bollmannb, E.

    2016-03-01

    High-alpine areas are subject to rapid topographic changes, mainly caused by natural processes like glacial retreat and other geomorphological processes, and also due to anthropogenic interventions like construction of slopes and infrastructure in skiing resorts. Consequently, the demand for highly accurate digital terrain models (DTMs) in alpine environments has arisen. Public administrations often have dedicated resources for the regular monitoring of glaciers and natural hazard processes. In case of glaciers, traditional monitoring encompasses in-situ measurements of area and length and the estimation of volume and mass changes. Next to field measurements, data for such monitoring programs can be derived from DTMs and digital ortho photos (DOPs). Skiing resorts, on the other hand, require DTMs as input for planning and - more recently - for RTK-GNSS supported ski-slope grooming. Although different in scope, the demand of both user groups is similar: high-quality and up-to-date terrain data for extended areas often characterised by difficult accessibility and large elevation ranges. Over the last two decades, airborne laser scanning (ALS) has replaced photogrammetric approaches as state-of-the-art technology for the acquisition of high-resolution DTMs also in alpine environments. Reasons include the higher productivity compared to (manual) stereo-photogrammetric measurements, canopy-penetration capability, and limitations of photo measurements on sparsely textured surfaces like snow or ice. Nevertheless, the last few years have shown strong technological advances in the field of aerial camera technology, image processing and photogrammetric software which led to new possibilities for image-based DTM generation even in alpine terrain. At Vermessung AVT, an Austrian-based surveying company, and its subsidiary Terra Messflug, very promising results have been achieved for various projects in high-alpine environments, using images acquired by large-format digital

  5. The use of invertebrates as indicators of environmental change in alpine rivers and lakes

    Energy Technology Data Exchange (ETDEWEB)

    Khamis, K.; Hannah, D.M. [School of Geography Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT (United Kingdom); Brown, L.E. [School of Geography/water@leeds, University of Leeds, Woodhouse Lane, Leeds LS2 9JT (United Kingdom); Tiberti, R. [DSTA, Dipartimento di Scienze della Terra e dell' Ambiente, University of Pavia, Via Ferrata 9, 27100 Pavia (Italy); Alpine Wildlife Research Centre, Gran Paradiso National Park, Degioz 11, I-1101 Valsavarenche, Aosta (Italy); Milner, A.M., E-mail: a.m.milner@bham.ac.uk [School of Geography Earth and Environmental Science, University of Birmingham, Birmingham B15 2TT (United Kingdom); Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775 (United States)

    2014-09-15

    In alpine regions climatic change will alter the balance between water sources (rainfall, ice-melt, snowmelt, and groundwater) for aquatic systems, particularly modifying the relative contributions of meltwater, groundwater and rain to both rivers and lakes. While these changes are expected to have implications for alpine aquatic ecosystems, little is known about potential ecological tipping points and associated indicator taxa. We examined changes in biotic communities along a gradient of glacier influence for two study systems: (1) a stream network in the French Pyrénées; and (2) a network of lakes in the Italian Alps, with the aim of identifying potential indicator taxa (macroinvertebrates and zooplankton) of glacier retreat in these environments. To assess parallels in biotic responses across streams and lakes, both primary data and findings from other publications were synthesised. Using TITAN (Threshold Indicator Taxa ANalysis) changes in community composition of river taxa were identified at thresholds of < 5.1% glacier cover and < 66.6% meltwater contribution. Below these thresholds the loss of cold stenothermic benthic invertebrate taxa, Diamesa spp. and the Pyrenean endemic Rhyacophila angelieri was apparent. Some generalist taxa including Protonemura sp., Perla grandis, Baetis alpinus, Rhithrogena loyolaea and Microspectra sp. increased when glacier cover was < 2.7% and < 52% meltwater. Patterns were not as distinct for the alpine lakes, due to fewer sampling sites; however, Daphnia longispina grp. and the benthic invertebrate groups Plectopera and Planaria were identified as potential indicator taxa. While further work is required to assess potential indicator taxa for alpine lake systems, findings from alpine river systems were consistent between methods for assessing glacier influence (meltwater contribution/glacier cover). Hence, it is clear that TITAN could become a useful management tool, enabling: (i) the identification of taxa particularly

  6. Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China

    Directory of Open Access Journals (Sweden)

    W. Genxu

    2009-03-01

    Full Text Available Alpine meadow is one of the most widespread grassland types in the permafrost regions of the Qinghai-Tibet Plateau, and the transmission of coupled soil water heat is one of the most crucial processes influencing cyclic variations in the hydrology of frozen soil regions, especially under different vegetation covers. The present study assesses the impact of changes in vegetation cover on the coupling of soil water and heat in a permafrost region. Soil moisture (θv, soil temperature (Ts, soil heat content, and differences in θvTs coupling were monitored on a seasonal and daily basis under three different vegetation covers (30, 65, and 93% on both thawed and frozen soils. Regression analysis of θv vs. Ts plots under different levels of vegetation cover indicates that soil freeze-thaw processes were significantly affected by the changes in vegetation cover. The decrease in vegetation cover of an alpine meadow reduced the difference between air temperature and ground temperature (ΔTa−s, and it also resulted in a decrease in Ts at which soil froze, and an increase in the temperature at which it thawed. This was reflected in a greater response of soil temperature to changes in air temperature (Ta. For ΔTa−s outside the range of −0.1 to 1.0°C, root zone soil-water temperatures showed a significant increase with increasing ΔTa−s; however, the magnitude of this relationship was dampened with increasing vegetation cover. At the time of maximum water content in the thawing season, the soil temperature decreased with increasing vegetation. Changes in vegetation cover also led to variations in θvTs coupling. With the increase in vegetation cover, the surface heat flux decreased. Soil heat storage at 20 cm in

  7. A survey of Canadian Alpine ski racing coaches regarding spinal protective devices for their athletes.

    Science.gov (United States)

    Stainsby, Brynne; Law, Jeremy; Mackinnon, Amy

    2014-12-01

    Spinal protective devices are a recent addition to the protective equipment worn by competitive and recreational alpine skiers and snowboarders. Their rate of use is not documented at the time of publication. The objective of this study was to examine the current attitudes and recommendations of Canadian alpine ski racing coaches towards spinal protective devices. A convenience sample of alpine ski racing coaches across Canada were contacted in each provincial sport governing body in the ski racing community. A ten question online survey was attached to the initial email. Descriptive statistical analysis was utilized. A total of 29 Canadian alpine ski racing coaches completed the study survey. All participants were familiar with spinal protective devices and 51.7% of respondents reported that they do not actively enforce spinal protective device use with their ski racing athletes. 80% of respondents reported that their Canadian ski racing club did not have guidelines or policies regarding spinal protective device use. 86.2% of respondents were unaware if their provincial sport organization had a policy regarding their use. The majority of coaches reporting training athletes aged 10-15, which may help to explain why only half of those surveyed enforce the use of spinal protective devices. This group of athletes may not participate in speed events as frequently as older athletes, where the use of spinal protective devices is more common. The majority of Canadian Alpine ski coaches report a belief that spinal protective device use is important, however, far fewer enforce their use, or work in an environment with a policy requiring it. Further research is required to determine the differences in beliefs and practice.

  8. Head injury mechanisms in FIS World Cup alpine and freestyle skiers and snowboarders.

    Science.gov (United States)

    Steenstrup, Sophie Elspeth; Bakken, Arnhild; Bere, Tone; Patton, Declan Alexander; Bahr, Roald

    2018-01-01

    Head injuries represent a concern in skiing and snowboarding, with traumatic brain injuries being the most common cause of death. To describe the mechanisms of head and face injuries among World Cup alpine and freestyle skiers and snowboarders. We performed a qualitative analysis of videos obtained of head and face injuries reported through the International Ski Federation Injury Surveillance System during 10 World Cup seasons (2006-2016). We analysed 57 head impact injury videos (alpine n=29, snowboard n=13, freestyle n=15), first independently and subsequently in a consensus meeting. During the crash sequence, most athletes (84%) impacted the snow with the skis or board first, followed by the upper or lower extremities, buttocks/pelvis, back and, finally, the head. Alpine skiers had sideways (45%) and backwards pitching falls (35%), with impacts to the rear (38%) and side (35%) of the helmet. Freestyle skiers and snowboarders had backwards pitching falls (snowboard 77%, freestyle 53%), mainly with impacts to the rear of the helmet (snowboard 69%, freestyle 40%). There were three helmet ejections among alpine skiers (10% of cases), and 41% of alpine skiing injuries occurred due to inappropriate gate contact prior to falling. Athletes had one (47%) or two (28%) head impacts, and the first impact was the most severe (71%). Head impacts were mainly on snow (83%) on a downward slope (63%). This study has identified several characteristics of the mechanisms of head injuries, which may be addressed to reduce risk. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

    Science.gov (United States)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang; Chen, Shiji

    2017-07-01

    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau (TP) are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ˜0.128 and 0.47 m, and ˜0.223 and 0.01 m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47 × 10-2 and 7.13 × 10-3, and 2.91 × 10-3 and 1.96 × 10-3, for banana plantation and alpine meadow areas, respectively.

  10. Snowmelt runoff from northern alpine tundra hillslopes: major processes and methods of simulation

    Directory of Open Access Journals (Sweden)

    W. L. Quinton

    2004-01-01

    Full Text Available In northern alpine tundra, large slope gradients, late-lying snow drifts and shallow soils overlying impermeable substrates all contribute to large hillslope runoff volumes during the spring freshet. Understanding the processes and pathways of hillslope runoff in this environment is, therefore, critical to understanding the water cycle within northern alpine tundra ecosystems. This study: (a presents the results of a field study on runoff from a sub-alpine tundra hillslope with a large snow drift during the spring melt period; (b identifies the major runoff processes that must be represented in simulations of snowmelt runoff from sub-alpine tundra hillslopes; (c describes how these processes can be represented in a numerical simulation model; and d compares field measurements with modelled output to validate or refute the conceptual understanding of runoff generation embodied in the process simulations. The study was conducted at Granger Creek catchment, 15 km south of Whitehorse, Yukon Territory, Canada, on a north-facing slope below a late-lying snow drift. For the freshet period, the major processes to be represented in a runoff model include the rate of meltwater release from the late-lying snowdrift, the elevation and thickness of the saturated layer, the magnitude of the soil permeability and its variation with depth. The daily cycle of net all-wave radiation was observed to drive the diurnal pulses of melt water from the drift; this, in turn, was found to control the daily pulses of flow through the hillslope subsurface and in the stream channel. The computed rate of frost table lowering fell within the observed values; however, there was wide variation among the measured frost table depths. Spatial variability in frost table depth would result in spatial variabilities in saturated layer depth and thickness, which would, in turn, produce variations in subsurface flow rates over the slope, including preferential flowpaths. Keywords

  11. A comparative phylogeographic study reveals discordant evolutionary histories of alpine ground beetles (Coleoptera, Carabidae).

    Science.gov (United States)

    Weng, Yi-Ming; Yang, Man-Miao; Yeh, Wen-Bin

    2016-04-01

    Taiwan, an island with three major mountain ranges, provides an ideal topography to study mountain-island effect on organisms that would be diversified in the isolation areas. Glaciations, however, might drive these organisms to lower elevations, causing gene flow among previously isolated populations. Two hypotheses have been proposed to depict the possible refugia for alpine organisms during glaciations. Nunatak hypothesis suggests that alpine species might have stayed in situ in high mountain areas during glaciations. Massif de refuge, on the other hand, proposes that alpine species might have migrated to lower ice-free areas. By sampling five sympatric carabid species of Nebria and Leistus, and using two mitochondrial genes and two nuclear genes, we evaluated the mountain-island effect on alpine carabids and tested the two proposed hypotheses with comparative phylogeographic method. Results from the phylogenetic relationships, network analysis, lineage calibration, and genetic structure indicate that the deep divergence among populations in all L. smetanai, N. formosana, and N. niitakana was subjected to long-term isolation, a phenomenon in agreement with the nunatak hypothesis. However, genetic admixture among populations of N. uenoiana and some populations of L. nokoensis complex suggests that gene flow occurred during glaciations, as a massif de refuge depicts. The speciation event in N. niitakana is estimated to have occurred before 1.89 million years ago (Mya), while differentiation among isolated populations in N. niitakana, N. formosana, L. smetanai, and L. nokoensis complex might have taken place during 0.65-1.65 Mya. While each of the alpine carabids arriving in Taiwan during different glaciation events acquired its evolutionary history, all of them had confronted the existing mountain ranges.

  12. Applying A Multi-Objective Based Procedure to SWAT Modelling in Alpine Catchments

    Science.gov (United States)

    Tuo, Y.; Disse, M.; Chiogna, G.

    2017-12-01

    In alpine catchments, water management practices can lead to conflicts between upstream and downstream stakeholders, like in the Adige river basin (Italy). A correct prediction of available water resources plays an important part, for example, in defining how much water can be stored for hydropower production in upstream reservoirs without affecting agricultural activities downstream. Snow is a crucial hydrological component that highly affects seasonal behavior of streamflow. Therefore, a realistic representation of snow dynamics is fundamental for water management operations in alpine catchments. The Soil and Water Assessment Tool (SWAT) model has been applied in alpine catchments worldwide. However, during model calibration of catchment scale applications, snow parameters were generally estimated based on streamflow records rather than on snow measurements. This may lead to streamflow predictions with wrong snow melt contribution. This work highlights the importance of considering snow measurements in the calibration of the SWAT model for alpine hydrology and compares various calibration methodologies. In addition to discharge records, snow water equivalent time series of both subbasin scale and monitoring station were also utilized to evaluate the model performance by comparing with the SWAT subbasin and elevation band snow outputs. Comparing model results obtained calibrating the model using discharge data only and discharge data along with snow water equivalent data, we show that the latter approach allows us to improve the reliability of snow simulations while maintaining good estimations of streamflow. With a more reliable representation of snow dynamics, the hydrological model can provide more accurate references for proposing adequate water management solutions. This study offers to the wide SWAT user community an effective approach to improve streamflow predictions in alpine catchments and hence support decision makers in water allocation.

  13. Population dynamics and clonal growth of Spartocytisus supranubius (Fabaceae), a dominant shrub in the alpine zone of Tenerife, Canary Islands

    Czech Academy of Sciences Publication Activity Database

    Kyncl, Tomáš; Suda, J.; Wild, Jan; Wildová, Radka; Herben, Tomáš

    2006-01-01

    Roč. 186, - (2006), s. 97-108 ISSN 1385-0237 R&D Projects: GA ČR(CZ) GA206/00/1445 Institutional research plan: CEZ:AV0Z60050516 Keywords : dendrochronology * isozymes * population projection matrix Subject RIV: EF - Botanics Impact factor: 1.383, year: 2006

  14. Airborne geophysical survey of the catastrophic landslide at Stože, Log pod Mangrtom, as a test of an innovative approach for landslide mapping in steep alpine terrains

    Directory of Open Access Journals (Sweden)

    I. Baroň

    2013-10-01

    Full Text Available Airborne geophysics is a promising method for investigating landslides. Here we present a case study of multisensor airborne geophysical survey at the catastrophic landslide Stože near Log pod Mangrtom in Slovenia, which was conducted in the framework of the European FP7th Project "SafeLand". Based on the survey itself and achieved results, we discuss applicability, limits, and benefits and costs of the method for investigating landslides in steep alpine terrains. Despite of several operational constraints, the airborne electromagnetic survey of the area well presented the lithological pattern and water saturation. The high resistivity regions mostly indicated drained slope scree and landslide mass, drained and loosened material of the moraine deposit in the tension zone of the landslide with present cracks and cavities. The minima of the resistivity pattern were attributed to the outcrop of marls rich in clay, to water-saturated moraine deposit above impermeable marls in the tension zone, and to water-saturated porous alluvial gravel and landslide scree along the Koritnica River. The magnetic survey proved to be inapplicable for such a small and rough area. The Potassium and Thorium maps, on the other hand, both well identified the regions of tension inside the landslide zone, outcrops of marls and dolomite, clay-rich colluvium, weathered zones along a regional tectonic fault, and alluvial deposits and deposits of debris flows, and the minima of the 137Cs clearly revealed the zones of material removal due to recent mass movements.

  15. Phosphorus and Defoliation Interact and Improve the Growth and Composition of the Plant Community and Soil Properties in an Alpine Pasture of Qinghai-Tibet Plateau.

    Science.gov (United States)

    Qi, Juan; Nie, Zhongnan; Jiao, Ting; Zhang, Degang

    2015-01-01

    Pasture degradation caused by overgrazing and inappropriate fertiliser management is a major production and environmental threat in Qinghai-Tibet Plateau. Previous research has focused on the effects of mixed nitrogen (N) and phosphorus (P) fertiliser and reduced grazing pressure on the plant community of the grassland; however, the role of P and how it interacts with various defoliation (the process of the complete or partial removal of the above-ground parts of plants by grazing or cutting) intensities on the plant and soil of the grassland ecosystem have not been quantified. A field experiment was conducted to quantify how P application in combination of defoliation pressure could impact the dynamic change of the plant and soil in a native alpine grassland ecosystem of the Qinghai-Tibet Plateau, China, from May 2012 to September 2014. A split-plot design with 4 replicates and repeated measures was used to determine the growth and composition of plant community and soil physical and chemical properties under various levels of P fertiliser and defoliation intensity. The results showed that applying 20 kg P/ha increased the herbage yield of Melissitus ruthenica by 68% and total pasture yield by 25%. Close defoliation favoured the growth and plant frequency of the shorter species, whereas lax defoliation favoured that of the taller plant species. Medium P rate and cutting to 3 cm above ground gave an overall best outcome in pasture yield, quality and frequency and soil moisture and nutrient concentration. Application of P fertiliser with a moderate defoliation pressure to promote legume growth and N fixation has the potential to achieve multiple benefits in increasing pasture and livestock production and improving environmental sustainability in the alpine pasture of Qinghai-Tibet Plateau, a fragile and P-deficient ecosystem zone in China and its western neighbouring countries.

  16. Monitoring soil moisture patterns in alpine meadows using ground sensor networks and remote sensing techniques

    Science.gov (United States)

    Bertoldi, Giacomo; Brenner, Johannes; Notarnicola, Claudia; Greifeneder, Felix; Nicolini, Irene; Della Chiesa, Stefano; Niedrist, Georg; Tappeiner, Ulrike

    2015-04-01

    Soil moisture content (SMC) is a key factor for numerous processes, including runoff generation, groundwater recharge, evapotranspiration, soil respiration, and biological productivity. Understanding the controls on the spatial and temporal variability of SMC in mountain catchments is an essential step towards improving quantitative predictions of catchment hydrological processes and related ecosystem services. The interacting influences of precipitation, soil properties, vegetation, and topography on SMC and the influence of SMC patterns on runoff generation processes have been extensively investigated (Vereecken et al., 2014). However, in mountain areas, obtaining reliable SMC estimations is still challenging, because of the high variability in topography, soil and vegetation properties. In the last few years, there has been an increasing interest in the estimation of surface SMC at local scales. On the one hand, low cost wireless sensor networks provide high-resolution SMC time series. On the other hand, active remote sensing microwave techniques, such as Synthetic Aperture Radars (SARs), show promising results (Bertoldi et al. 2014). As these data provide continuous coverage of large spatial extents with high spatial resolution (10-20 m), they are particularly in demand for mountain areas. However, there are still limitations related to the fact that the SAR signal can penetrate only a few centimeters in the soil. Moreover, the signal is strongly influenced by vegetation, surface roughness and topography. In this contribution, we analyse the spatial and temporal dynamics of surface and root-zone SMC (2.5 - 5 - 25 cm depth) of alpine meadows and pastures in the Long Term Ecological Research (LTER) Area Mazia Valley (South Tyrol - Italy) with different techniques: (I) a network of 18 stations; (II) field campaigns with mobile ground sensors; (III) 20-m resolution RADARSAT2 SAR images; (IV) numerical simulations using the GEOtop hydrological model (Rigon et al

  17. The effects of a carbohydrate-protein gel supplement on alpine slalom ski performance.

    Science.gov (United States)

    Seifert, John G; Kipp, Ronald W; Bacharach, David W

    2012-01-01

    Alpine slalom ski racing is a high intensity, complex sport in which racers execute turns every second. Acute fatigue can make the difference in not finishing a run (DNF) or finishing out of contention. The quantity and quality of training often dictates racing success. It is not known if nutritional supplementation can improve performance in this high intensity, short duration activity. The objective of this study was to determine if ingesting a carbohydrate-protein energy gel (GEL) improves finishing success and number of gates completed during 2 hr slalom sessions on two consecutive days of training. Twenty-four racers were matched; one group ingested the GEL, the second group received a liquid placebo (PLA). Total carbohy-drate, protein, and water ingested by the GEL group were 60g, 15g, and 450 mL, while the PLA group ingested 450 mL of PLA. The GEL group had significantly fewer DNF's (7/48 vs. 18/48; p = 0.02) on both days, completed a greater number of training gates on Day 2 (260.3 ± 20.1 vs. 246.3 ± 17.5 gates; p = 0.03), and had a lower RPE (3.9 ± 1.2 vs. 5.3 ± 1.2 on Day 2 (p = 0.004) vs. PLA. The statistical analysis of combined finishing times was not possible due to the high number of DNF's in the PLA group. High intensity slalom performance can be im-proved by the ingestion of an energy gel. The GEL allowed the athletes to improve training quantity and quality and their per-ception of effort was less than skiers who ingested a placebo. Key pointsNutritional supplementation with a carbohydrate/protein sports gel during high intensity ski training improved training volume as measured by the number gates completed.Supplementation also reduced the number of DNF's during training.Racers' perception of effort was significantly lower with the supplement ingestion compared to a non-caloric placebo.This applied study was conducted under real life field conditions and training environments.

  18. VT Data - Zoning 20081203, Norwich

    Data.gov (United States)

    Vermont Center for Geographic Information — BASE DISTRICTS. Models a municipality’s zoning zones and related information. Final boundary determinations must be obtained from the town Zoning Administrator. All...

  19. VT Data - Zoning 20170710, Woodstock

    Data.gov (United States)

    Vermont Center for Geographic Information — BASE DISTRICTS. Models a municipality’s zoning zones and related information. Final boundary determinations must be obtained from the town Zoning Administrator. All...

  20. VT Data - Zoning 20170227, Fairlee

    Data.gov (United States)

    Vermont Center for Geographic Information — BASE DISTRICTS. Models a municipality’s zoning zones and related information. Final boundary determinations must be obtained from the town Zoning Administrator. All...

  1. VT Data - Zoning 20120709, Huntington

    Data.gov (United States)

    Vermont Center for Geographic Information — Zoning district data for the Town of Huntington, Vermont. For details regarding each zoning district refer to the current zoning regulations on town of Huntington's...

  2. VT Data - Zoning 20170727, Westford

    Data.gov (United States)

    Vermont Center for Geographic Information — Zoning District data for Westford, Vermont. Data corresponds to the zoning regulations adopted by the Town of Westford. For details and descriptions of all zoning...

  3. Predictive Analysis of Geochemical Controls in an Alpine Stream

    Science.gov (United States)

    Jochems, A. P.; Sherson, L. R.; Crossey, L. J.; Karlstrom, K. E.

    2010-12-01

    Alpine watersheds are increasingly relied upon for use in the American West, necessitating a more complete understanding of annual hydrologic patterns and geologic influences on water chemistry. The Jemez River is a fifth order stream in central New Mexico that flows from its source in the Jemez Mountains to its confluence with the Rio Grande north of the town of Bernalillo. Designated uses of the Jemez River include domestic water supply, recreation, and agriculture. Geothermal uses are currently being considered as well. The river recharges shallow aquifer waters used by several communities, including tribal lands of the Jemez Pueblo. The hydrogeology of the Jemez system is characterized by geothermal inputs from the Baca hydrothermal system associated with the 1.2Ma Valles caldera, as well as groundwater and surface water interactions. Freshwater input from the Rio Guadalupe and several ephemeral tributaries also influences the water chemistry of the Jemez system. Fifteen sites along a 35 km reach of the river were sampled between 2006 and 2010. Discharge of the Jemez River ranged from 10-876 cfs over the study period. The annual hydrograph is affected by annual snowmelt in the Jemez Mountains as well as surges due to monsoonal rains in July and August. Geochemical data collected over this period include temperature, conductivity, pH, dissolved oxygen (D.O.), major ions, trace elements, and stable isotopes. Continuous records of temperature, conductivity, pH, D.O. and turbidity data were collected from a water quality sonde installed in March 2010. Geochemical modeling and time series analysis were performed using PHREEQC, Geochemist’s Workbench, and MATLAB. Empirical data collected during this study gave rise to several models describing the hydrology and geochemistry of the Jemez system. Our data suggest that springs are the primary contributors to dissolved load, and that solute loading from geothermal inputs is intensified by low flows observed on

  4. A first attempt to derive soil erosion rates from 137Cs airborne gamma measurements in two Alpine valleys

    Science.gov (United States)

    Arata, Laura; Meusburger, Katrin; Bucher, Benno; Mabit, Lionel; Alewell, Christine

    2016-04-01

    The application of fallout radionuclides (FRNs) as soil tracers is currently one of the most promising and effective approach for evaluating soil erosion magnitudes in mountainous grasslands. Conventional assessment or measurement methods are laborious and constrained by the topographic and climatic conditions of the Alps. The 137Cs (half-life = 30.2 years) is the most frequently used FRN to study soil redistribution. However the application of 137Cs in alpine grasslands is compromised by the high heterogeneity of the fallout due to the origin of 137Cs fallout in the Alps, which is linked to single rain events occurring just after the Chernobyl accident when most of the Alpine soils were still covered by snow. The aim of this study was to improve our understanding of the 137Cs distribution in two study areas in the Central Swiss Alps: the Ursern valley (Canton Uri), and the Piora valley (Canton Ticino). In June 2015, a helicopter equipped with a NaI gamma detector flew over the two study sites and screened the 137Cs activity of the top soil. The use of airborne gamma measurements is particularly efficient in case of higher 137Cs concentration in the soil. Due to their high altitude and high precipitation rates, the Swiss Alps are expected to be more contaminated by 137Cs fallout than other parts of Switzerland. The airborne gamma measurements have been related to several key parameters which characterize the areas, such as soil properties, slopes, expositions and land uses. The ground truthing of the airborne measurements (i.e. the 137Cs laboratory measurements of the soil samples collected at the same points) returned a good fit. The obtained results offer an overview of the 137Cs concentration in the study areas, which allowed us to identify suitable reference sites, and to analyse the relationship between the 137Cs distribution and the above cited parameters. The authors also derived a preliminary qualitative and a quantitative assessment of soil redistribution

  5. Denitrification capacity and greenhouse gas emissions of soils in channelized and restored reaches along an Alpine river corridor

    Science.gov (United States)

    Shrestha, Juna; Niklaus, Pascal; Samaritani, Emanuela; Frossard, Emmanuel; Tockner, Klement; Luster, Jörg

    2010-05-01

    In order to assess the effects of river restoration on water and air quality, the biogeochemical functions of channelized and restored river reaches have to be quantified. The objective of this study was to compare denitrification potential and greenhouse gas emissions of functional processing zones (FPZ) in a channelized and a recently restored reach of the alpine river Thur in north-eastern Switzerland. The study was part of the project cluster RECORD of the ETH domain, Switzerland, which was initiated to increase the mechanistic understanding of coupled hydrological and ecological processes in river corridors. The denitrification potential represents an important aspect of the soil filter function related to water quality. Besides, it also contributes to the emission of greenhouse gases. Extensively used pasture growing on a sandy loam is the characteristic FPZ of the channelized section. The restored section encompasses five FPZ: (i) bare gravel bars sparsely colonized by plants, (ii) gravel bars densely colonized by grass (mainly canary reed grass with up to 80 cm sandy deposits), (iii) mixed forest dominated by ash and maple, (iv) riparian forest dominated by willow (Salix alba), (v) older overbank sediments stabilized during restoration with young willows separating the forests from the river-gravel bar system (willow bush). The FPZ were sampled in January, April, August and October 2009. In addition, in June and July 2009 two flood events were monitored in the restored section with more frequent samplings. At each date, topsoil samples were collected in each FPZ (four replicates per samples) and analyzed for denitrifier enzyme activity (DEA). In addition, gas samples were taken in-situ using the closed chamber technique to measure soil respiration as well as N2O and CH4 fluxes. In all FPZ, the denitrification potential was mainly governed by soil moisture. It was highest in the willow forest exhibiting low spatial variability. The DEA in pasture, grass zone

  6. Speeds in school zones.

    Science.gov (United States)

    2009-02-01

    School speed zones are frequently requested traffic controls for school areas, based on the common belief : that if the transportation agency would only install a reduced speed limit, then drivers would no longer : speed through the area. This resear...

  7. Promise Zones for Applicants

    Data.gov (United States)

    Department of Housing and Urban Development — This tool assists applicants to HUD's Promise Zone initiative prepare data to submit with their application by allowing applicants to draw the exact location of the...

  8. Buffer Zone Fact Sheets

    Science.gov (United States)

    New requirements for buffer zones and sign posting contribute to soil fumigant mitigation and protection for workers and bystanders. The buffer provides distance between the pesticide application site and bystanders, reducing exposure risk.

  9. Optimal exploration target zones

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2008-09-01

    Full Text Available This research describes a quantitative methodology for deriving optimal exploration target zones based on a probabilistic mineral prospectivity map. In order to arrive at out objective, we provide a plausible answer to the following question: "Which...

  10. Strain and shape-fabric variations associated with ductile shear zones

    Science.gov (United States)

    Simpson, Carol

    The foliated and compositionally-banded granitic orthogneisses in the central core of the Maggia Nappe, a Lower Pennine basement nappe of the Central Swiss Alps, are shown to be the sheared equivalent of late-Hercynian age granitic intrusions. These ductile shear zones show mineral assemblages in amphibolite facies, are Alpine in age and form an anastomosing network enclosing remnant lozenge-shaped pods of relatively undeformed rock. The foliation developed within the shear zones concomitantly with a change in shape of quartz grain aggregates from initially equidimensional, through 'tear-drop' shapes, to ribbon-like aggregates. These shape changes occurred by intracrystalline glide together with intercrystalline slip on deformation-induced planar surfaces.

  11. 76 FR 42048 - Safety Zones; Swimming Events in Captain of the Port Boston Zone

    Science.gov (United States)

    2011-07-18

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety