WorldWideScience

Sample records for alpha7 integrin-expressing myoblasts

  1. Lymphocyte integrin expression differences between SIRS and sepsis patients.

    Science.gov (United States)

    Heffernan, D S; Monaghan, S F; Ayala, Alfred

    2016-10-31

    Systemic Inflammatory Response Syndrome (SIRS) and sepsis remain leading causes of death. Despite many similarities, the two entities are very distinct clinically and immunologically. T-Lymphocytes play a key pivotal role in the pathogenesis and ultimately outcome following both SIRS and sepsis. Integrins are essential in the trafficking and migration of lymphocytes. They also serve vital roles in efficient wound healing and clearance of infections. Here, we investigate whether integrin expression, specifically β1 (CD29) and β2 (CD18), are disrupted in SIRS and sepsis, and assess differences in integrin expression between these two critically ill clinical categories. T-Lymphocytes were isolated from whole blood collected from ICU patients exhibiting SIRS or sepsis. Samples were analyzed for CD18 (β2) and CD29 (β1) on CD3(+) T cells through flow cytometry. Septic patients were stratified into either exclusively abdominal or non-abdominal sources of sepsis. CD18 was almost ubiquitously expressed on CD3(+) T cells irrespective of clinical condition. However, CD29 (β1 integrin) was lowest in SIRS patients (20.4% of CD3(+) T cells) when compared with either septic patients (35.5%) or healthy volunteers (54.1%). Furthermore, there was evidence of compartmentalization in septic patients, where abdominal sources had a greater percentage of CD3(+)CD29(+) T cells (41.7%) when compared with those with non-abdominal sources (29.5%). Distinct differences in T-cell integrin expression exists between patients in SIRS versus sepsis, as well as relative to the source of sepsis. Further work is needed to understand cause and effect relative to the progression from SIRS into sepsis.

  2. Alterations in integrin expression modulates invasion of pancreatic cancer cells.

    LENUS (Irish Health Repository)

    Walsh, Naomi

    2009-01-01

    BACKGROUND: Factors mediating the invasion of pancreatic cancer cells through the extracellular matrix (ECM) are not fully understood. METHODS: In this study, sub-populations of the human pancreatic cancer cell line, MiaPaCa-2 were established which displayed differences in invasion, adhesion, anoikis, anchorage-independent growth and integrin expression. RESULTS: Clone #3 displayed higher invasion with less adhesion, while Clone #8 was less invasive with increased adhesion to ECM proteins compared to MiaPaCa-2. Clone #8 was more sensitive to anoikis than Clone #3 and MiaPaCa-2, and displayed low colony-forming efficiency in an anchorage-independent growth assay. Integrins beta 1, alpha 5 and alpha 6 were over-expressed in Clone #8. Using small interfering RNA (siRNA), integrin beta1 knockdown in Clone #8 cells increased invasion through matrigel and fibronectin, increased motility, decreased adhesion and anoikis. Integrin alpha 5 and alpha 6 knockdown also resulted in increased motility, invasion through matrigel and decreased adhesion. CONCLUSION: Our results suggest that altered expression of integrins interacting with different extracellular matrixes may play a significant role in suppressing the aggressive invasive phenotype. Analysis of these clonal populations of MiaPaCa-2 provides a model for investigations into the invasive properties of pancreatic carcinoma.

  3. Clinical Response to Vedolizumab in Ulcerative Colitis Patients Is Associated with Changes in Integrin Expression Profiles.

    Science.gov (United States)

    Fuchs, Friederike; Schillinger, Daniela; Atreya, Raja; Hirschmann, Simon; Fischer, Sarah; Neufert, Clemens; Atreya, Imke; Neurath, Markus F; Zundler, Sebastian

    2017-01-01

    Despite large clinical success, deeper insights into the immunological effects of vedolizumab therapy for inflammatory bowel diseases are scarce. In particular, the reasons for differential clinical response in individual patients, the precise impact on the equilibrium of integrin-expressing T cell subsets, and possible associations between these issues are not clear. Blood samples from patients receiving clinical vedolizumab therapy were sequentially collected and analyzed for expression of integrins and chemokine receptors on T cells. Moreover, clinical and laboratory data from the patients were collected, and changes between homing marker expression and clinical parameters were analyzed for possible correlations. While no significant correlation of changes in integrin expression and changes in outcome parameters were identified in Crohn's disease (CD), increasing α4β7 levels in ulcerative colitis (UC) seemed to be associated with favorable clinical development, whereas increasing α4β1 and αEβ7 correlated with negative changes in outcome parameters. Changes in α4β1 integrin expression after 6 weeks were significantly different in responders and non-responders to vedolizumab therapy as assessed after 16 weeks with a cutoff of +4.2% yielding 100% sensitivity and 100% specificity in receiver-operator-characteristic analysis. Our data show that clinical response to vedolizumab therapy in UC but not in CD is associated with specific changes in integrin expression profiles opening novel avenues for mechanistic research and possibly prediction of response to therapy.

  4. Clinical Response to Vedolizumab in Ulcerative Colitis Patients Is Associated with Changes in Integrin Expression Profiles

    Directory of Open Access Journals (Sweden)

    Friederike Fuchs

    2017-07-01

    Full Text Available BackgroundDespite large clinical success, deeper insights into the immunological effects of vedolizumab therapy for inflammatory bowel diseases are scarce. In particular, the reasons for differential clinical response in individual patients, the precise impact on the equilibrium of integrin-expressing T cell subsets, and possible associations between these issues are not clear.MethodsBlood samples from patients receiving clinical vedolizumab therapy were sequentially collected and analyzed for expression of integrins and chemokine receptors on T cells. Moreover, clinical and laboratory data from the patients were collected, and changes between homing marker expression and clinical parameters were analyzed for possible correlations.ResultsWhile no significant correlation of changes in integrin expression and changes in outcome parameters were identified in Crohn’s disease (CD, increasing α4β7 levels in ulcerative colitis (UC seemed to be associated with favorable clinical development, whereas increasing α4β1 and αEβ7 correlated with negative changes in outcome parameters. Changes in α4β1 integrin expression after 6 weeks were significantly different in responders and non-responders to vedolizumab therapy as assessed after 16 weeks with a cutoff of +4.2% yielding 100% sensitivity and 100% specificity in receiver-operator-characteristic analysis.DiscussionOur data show that clinical response to vedolizumab therapy in UC but not in CD is associated with specific changes in integrin expression profiles opening novel avenues for mechanistic research and possibly prediction of response to therapy.

  5. THE TMEFF2 TUMOR SUPPRESSOR MODULATES INTEGRIN EXPRESSION, RHOA ACTIVATION AND MIGRATION OF PROSTATE CANCER CELLS

    Science.gov (United States)

    Chen, Xiaofei; Corbin, Joshua M.; Tipton, Greg J.; Yang, Li V.; Asch, Adam S.; Ruiz-Echevarría, Maria J.

    2014-01-01

    Cell adhesion and migration play important roles in physiological and pathological states, including embryonic development and cancer invasion and metastasis. The type I transmembrane protein with epidermal growth factor and two follistatin motifs 2 (TMEFF2) is expressed mainly in brain and prostate and its expression is deregulated in prostate cancer. We have previously shown that TMEFF2 can function as a tumor suppressor by inhibiting cell migration and invasion of prostate cells. However, the molecular mechanisms involved in this inhibition are not clear. In this study we demonstrate that TMEFF2 affects cell adhesion and migration of prostate cancer cells and that this effect correlates with changes in integrin expression and RhoA activation. Deletion of a 13 basic-rich amino acid region in the cytoplasmic domain of TMEFF2 prevented these effects. Overexpression of TMEFF2 reduced cell attachment and migration on vitronectin and caused a concomitant decrease in RhoA activation, stress fiber formation and expression of αv, β1 and β3 integrin subunits. Conversely, TMEFF2 interference in 22Rv1 prostate cancer cells resulted in increased integrin expression. Results obtained with a double TRAMP/TMEFF2 transgenic mouse also indicated that TMEFF2 expression reduced integrin expression in the mouse prostate. In summary, the data presented here indicate an important role of TMEFF2 in regulating cell adhesion and migration that involves integrin signaling and is mediated by its cytoplasmic domain. PMID:24632071

  6. Human myoblast genome therapy

    Institute of Scientific and Technical Information of China (English)

    Peter K Law; Leo A Bockeria; Choong-Chin Liew; Danlin M Law; Ping Lu; Eugene KW Sim; Khawja H Haider; Lei Ye; Xun Li; Margarita N Vakhromeeva; Ilia I Berishvili

    2006-01-01

    Human Myoblast Genome Therapy (HMGT) is a platform technology of cell transplantation, nuclear transfer, and tissue engineering. Unlike stem cells, myoblasts are differentiated, immature cells destined to become muscles. Myoblasts cultured from satellite cells of adult muscle biopsies survive, develop, and function to revitalize degenerative muscles upon transplantation. Injection injury activates regeneration of host myofibers that fuse with the engrafted myoblasts, sharing their nuclei in a common gene pool of the syncytium. Thus, through nuclear transfer and complementation, the normal human genome can be transferred into muscles of patients with genetic disorders to achieve phenotype repair or disease prevention. Myoblasts are safe and efficient gene transfer vehicles endogenous to muscles that constitute 50% of body weight. Results of over 280 HMGT procedures on Duchenne Muscular Dystrophy (DMD) subjects in the past 15 years demonstrated absolute safety. Myoblast-injected DMD muscles showed improved histology.Strength increase at 18 months post-operatively averaged 123%. In another application of HMGT on ischemic cardiomyopathy, the first human myoblast transfer into porcine myocardium revealed that it was safe and effective. Clinical trials on approximately 220 severe cardiomyopathy patients in 15 countries showed a <10% mortality. Most subjects received autologous cells implanted on the epicardial surface during coronory artery bypass graft, or injected on the endomyocardial surface percutaneously through guiding catheters. Significant increases in left ventricular ejection fraction, wall thickness, and wall motion have been reported, with reduction in perfusion defective areas, angina, and shortness of breath. As a new modality of treatment for disease in the skeletal muscle or myocardium, HMGT emerged as safe and effective. Large randomized multi-center trials are under way to confirm these preliminary results. The future of HMGT is bright and exciting

  7. Differential integrin expression regulates cell sensing of the matrix nanoscale geometry.

    Science.gov (United States)

    Di Cio, Stefania; Bøggild, Thea M L; Connelly, John; Sutherland, Duncan S; Gautrot, Julien E

    2017-03-01

    The nanoscale geometry and topography of the extra-cellular matrix (ECM) is an important parameter controlling cell adhesion and phenotype. Similarly, integrin expression and the geometrical maturation of adhesions they regulate have been correlated with important changes in cell spreading and phenotype. However, how integrin expression controls the nanoscale sensing of the ECM geometry is not clearly understood. Here we develop a new nanopatterning technique, electrospun nanofiber lithography (ENL), which allows the production of a quasi-2D fibrous nanopattern with controlled dimensions (250-1000nm) and densities. ENL relies on electrospun fibres to act as a mask for the controlled growth of protein-resistant polymer brushes. SEM, AFM and immunofluorescence imaging were used to characterise the resulting patterns and the adsorption of the extra-cellular matrix protein fibronectin to the patterned fibres. The control of adhesion formation was studied, as well as the remodelling and deposition of novel matrix. Cell spreading was found to be regulated by the size of fibres, similarly to previous observations made on circular nanopatterns. However, cell shape and polarity were more significantly affected. These changes correlated with important cytoskeleton reorganisation, with a gradual decrease in stress fibre formation as the pattern dimensions decrease. Finally, the differential expression of αvβ3 and α5β1 integrins in engineered cell lines was found to be an important mediator of cell sensing of the nanoscale geometry of the ECM. The novel nanofiber patterns developed in this study, via ENL, mimic the geometry and continuity of natural matrices found in the stroma of tissues, whilst preserving a quasi-2D character (to facilitate imaging and for comparison with other 2D systems such as micropatterned monolayers and circular nanopatches generated by colloidal lithography). These results demonstrate that the nanoscale geometry of the ECM plays an important role

  8. The physical interaction of myoblasts with the microenvironment during remodeling of the cytoarchitecture.

    Directory of Open Access Journals (Sweden)

    Daniel J Modulevsky

    Full Text Available Integrins, focal adhesions, the cytoskeleton and the extracellular matrix, form a structural continuum between the external and internal environment of the cell and mediate the pathways associated with cellular mechanosensitivity and mechanotransduction. This continuum is important for the onset of muscle tissue generation, as muscle precursor cells (myoblasts require a mechanical stimulus to initiate myogenesis. The ability to sense a mechanical cue requires an intact cytoskeleton and strong physical contact and adhesion to the microenvironment. Importantly, myoblasts also undergo reorientation, alignment and large scale remodeling of the cytoskeleton when they experience mechanical stretch and compression in muscle tissue. It remains unclear if such dramatic changes in cell architecture also inhibit physical contact and adhesion with the tissue microenvironment that are clearly important to myoblast physiology. In this study, we employed interference reflection microscopy to examine changes in the close physical contact of myoblasts with a substrate during induced remodeling of the cytoarchitecture (de-stabilization of the actin and microtubule cytoskeleton and inhibition of acto-myosin contractility. Our results demonstrate that while each remodeling pathway caused distinct effects on myoblast morphology and sub-cellular structure, we only observed a ~13% decrease in close physical contact with the substrate, regardless of the pathway inhibited. However, this decrease did not correlate well with changes in cell adhesion strength. On the other hand, there was a close correlation between cell adhesion and β1-integrin expression and the presence of cell-secreted fibronectin, but not with the presence of intact focal adhesions. In this study, we have shown that myoblasts are able to maintain a large degree of physical contact and adhesion to the microenvironment, even during shot periods (<60 min of large scale remodeling and physiological

  9. Myoblast fusion in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Haralalka, Shruti [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Abmayr, Susan M., E-mail: sma@stowers.org [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160 (United States)

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  10. PET Radiopharmaceuticals for Imaging Integrin Expression: Tracers in Clinical Studies and Recent Developments

    Directory of Open Access Journals (Sweden)

    Roland Haubner

    2014-01-01

    Full Text Available Noninvasive determination of integrin expression has become an interesting approach in nuclear medicine. Since the discovery of the first 18F-labeled cyclic RGD peptide as radiotracer for imaging integrin αvβ3 expression in vivo, there have been carried out enormous efforts to develop RGD peptides for PET imaging. Moreover, in recent years, additional integrins, including α5β1 and αvβ6, came into the focus of pharmaceutical radiochemistry. This review will discuss the tracers already evaluated in clinical trials and summarize the preliminary outcome. It will also give an overview on recent developments to further optimize the first-generation compounds such as [18F]Galacto-RGD. This includes recently developed 18F-labeling strategies and also new approaches in 68Ga-complex chemistry. Furthermore, the approaches to develop radiopharmaceuticals targeting integrin α5β1 and αvβ6 will be summarized and discussed.

  11. The impact of quercetin on wound healing relates to changes in αV and β1 integrin expression.

    Science.gov (United States)

    Doersch, Karen M; Newell-Rogers, M Karen

    2017-08-01

    Overly fibrotic wound healing can lead to excess scar formation, causing functional impairment and undesirable cosmetic results. However, there are few successful treatments available to prevent or remediate scars. This study sought to explore the molecular mechanisms by which quercetin, a naturally-occurring antifibrotic agent, diminishes scar formation. Using both mice and fibroblast cells, we examined quercetin's impact on fibrosis and the wound healing rate, and potential molecular mechanisms underlying the quercetin-mediated reduction of fibrosis. While cultured fibroblasts demonstrated normal growth in response to quercetin, quercetin increased surface αV integrin and decreased β1 integrin. These changes in surface integrin expression may impact factors that contribute to fibrosis including cell migration, proliferation, and extracellular matrix production. In both quercetin-treated and control mice, wounds healed in about 14 days. Masson's trichrome stain revealed diminished fibrosis at the wound site in quercetin-treated animals despite the normal healing rate, indicating the potential for better cosmetic results without delaying healing. An in vitro scratch wound model using cells plated on an artificial extracellular matrix demonstrated delayed closure following quercetin treatment. The extracellular matrix also ameliorated quercetin's effect on αV integrin. Thus, αV integrin recruitment in response to quercetin treatment may promote the quercetin-mediated decrease extracellular matrix because cells require less extracellular matrix to migrate into a wound. With added extracellular matrix, β1 integrin remained diminished in response to quercetin, indicating that quercetin's effect on β1 integrin expression is independent of extracellular matrix -mediated signaling and is likely driven by inhibition of the intracellular mechanisms driving β1 expression. These findings suggest that quercetin could alter the cells' interactions with the extracellular

  12. Altered stress fibers and integrin expression in the Malpighian epithelium of Drosophila type IV collagen mutants

    Directory of Open Access Journals (Sweden)

    András A. Kiss

    2016-06-01

    Full Text Available Basement membranes (BMs are highly specialized extracellular matrices (ECMs that provide support and polarization cues for epithelial cells. Proper adhesion to the BM is pivotal in epithelial cell function and survival. Type IV collagens are the predominant components of all types of BMs, that form an irregular, polygonal lattice and serve as a scaffold for numerous other BM components and BM-associated cells. Mutations in the ubiquitous human BM components COL4A1 and COL4A2 cause a multisystem disorder involving nephropathy. Affected patients develop renal dysfunction and chronic kidney failure with or without hematuria. Mouse Col4a1 and Col4a2 mutants recapitulate the human symptoms. In vertebrates, excretion is accomplished by the kidneys and by the Malpighian tubules in insects, including the fruit fly Drosophila. Our present results with dominant, temperature-sensitive mutation of the Drosophila col4a1 gene demonstrate altered integrin expression and amplified effects of mechanical stress on the Malpighian epithelial cytoskeleton.

  13. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    Directory of Open Access Journals (Sweden)

    Ana Carolina Irioda

    2016-01-01

    Full Text Available Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d, colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d, cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.

  14. DioxolaneA3-phosphatidylethanolamines are generated by human platelets and stimulate neutrophil integrin expression

    Directory of Open Access Journals (Sweden)

    Maceler Aldrovandi

    2017-04-01

    Full Text Available Activated platelets generate an eicosanoid proposed to be 8-hydroxy-9,10-dioxolane A3 (DXA3. Herein, we demonstrate that significant amounts of DXA3 are rapidly attached to phosphatidylethanolamine (PE forming four esterified eicosanoids, 16:0p, 18:0p, 18:1p and 18:0a/DXA3-PEs that can activate neutrophil integrin expression. These lipids comprise the majority of DXA3 generated by platelets, are formed in ng amounts (24.3±6.1 ng/2×108 and remain membrane bound. Pharmacological studies revealed DXA3-PE formation involves cyclooxygenase-1 (COX, protease-activated receptors (PAR 1 and 4, cytosolic phospholipase A2 (cPLA2, phospholipase C and intracellular calcium. They are generated primarily via esterification of newly formed DXA3, but can also be formed in vitro via co-oxidation of PE during COX-1 co-oxidation of arachidonate. All four DXA3-PEs were detected in human clots. Purified platelet DXA3-PE activated neutrophil Mac-1 expression, independently of its hydrolysis to the free eicosanoid. This study demonstrates the structures and cellular synthetic pathway for a family of leukocyte-activating platelet phospholipids generated on acute activation, adding to the growing evidence that enzymatic PE oxidation is a physiological event in innate immune cells.

  15. Integrin expression in stem cells from bone marrow and adipose tissue during chondrogenic differentiation.

    Science.gov (United States)

    Goessler, Ulrich Reinhart; Bugert, Peter; Bieback, Karen; Stern-Straeter, Jens; Bran, Gregor; Hörmann, Karl; Riedel, Frank

    2008-03-01

    The use of adult mesenchymal stem cells (MSC) in cartilage tissue engineering offers new perspectives in the generation of transplants for reconstructive surgery. The extracelular matrix (ECM) plays a key role in modulating the function and phenotype of the embedded cells and contains the integrins as adhesion receptors mediating cell-cell and cell-matrix interactions. In our study, characteristic changes in integrin expression during the course of chondrogenic differentiation of MSC from bone marrow and adipose tissue were compared. MSC were isolated from bone marrow biopsies and adipose tissue. During cell culture, chondrogenic differentiation was performed. The expression of integrins and their signaling components were analysed with microarray and immunohistochemistry in freshly isolated MSC and after chondrogenic differentiation. The fibronectin receptor (integrin alpha5beta1) was expressed by undifferentiated MSC, and expression rose during chondrogenic differentiation in both types of MSC. The components of the vitronectin/osteopontin receptors (alphavbeta5) were not expressed by freshly isolated MSC, and expression rose with ongoing differentiation. Receptors for the collagens (alpha1beta1, alpha2beta1, alpha3beta1) were weakly expressed by undifferentiated MSC and were activated during differentiation. Intracellular signaling components integrin-linked kinase (ILK) and CD47 showed increased expression with ongoing differentiation. For all integrins, no significant differences were be found in the 2 types of MSC. Integrin-mediated signaling appeared to play an important role in the generation and maintenance of the chondrocytic phenotype during chondrogenic differentiation. Particularly, the receptors for fibronectin, vitronectin, osteopontin and the collagens may be involved in the generation of the ECM. Intracellularly, their signals might be transduced by ILK and CD47. To fully harness the potential of these cells, future studies should be directed to

  16. Cardiac αVβ3 integrin expression following acute myocardial infarction in humans.

    Science.gov (United States)

    Jenkins, William S A; Vesey, Alex T; Stirrat, Colin; Connell, Martin; Lucatelli, Christophe; Neale, Anoushka; Moles, Catriona; Vickers, Anna; Fletcher, Alison; Pawade, Tania; Wilson, Ian; Rudd, James H F; van Beek, Edwin J R; Mirsadraee, Saeed; Dweck, Marc R; Newby, David E

    2017-04-01

    Maladaptive repair contributes towards the development of heart failure following myocardial infarction (MI). The αvβ3 integrin receptor is a key mediator and determinant of cardiac repair. We aimed to establish whether αvβ3 integrin expression determines myocardial recovery following MI. (18)F-Fluciclatide (a novel αvβ3-selective radiotracer) positron emission tomography (PET) and CT imaging and gadolinium-enhanced MRI (CMR) were performed in 21 patients 2 weeks after ST-segment elevation MI (anterior, n=16; lateral, n=4; inferior, n=1). CMR was repeated 9 months after MI. 7 stable patients with chronic total occlusion (CTO) of a major coronary vessel and nine healthy volunteers underwent a single PET/CT and CMR. (18)F-Fluciclatide uptake was increased at sites of acute infarction compared with remote myocardium (tissue-to-background ratio (TBRmean) 1.34±0.22 vs 0.85±0.17; pinfarction in patients with CTO, with activity similar to the myocardium of healthy volunteers (TBRmean 0.71±0.06 vs 0.70±0.03, p=0.83). (18)F-Fluciclatide uptake occurred at sites of regional wall hypokinesia (wall motion index≥1 vs 0; TBRmean 0.93±0.31 vs 0.80±0.26 respectively, pinfarction. Importantly, although there was no correlation with infarct size (r=0.03, p=0.90) or inflammation (C reactive protein, r=-0.20, p=0.38), (18)F-fluciclatide uptake was increased in segments displaying functional recovery (TBRmean 0.95±0.33 vs 0.81±0.27, p=0.002) and associated with increase in probability of regional recovery. (18)F-Fluciclatide uptake is increased at sites of recent MI acting as a biomarker of cardiac repair and predicting regions of recovery. NCT01813045; Post-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Schizophrenia and the alpha7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Martin, Laura F; Freedman, Robert

    2007-01-01

    In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia.

  18. Photon-induced cell migration and integrin expression promoted by DNA integration of HPV16 genome

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Stefan; Simon, Florian; Habermehl, Daniel; Dittmar, Jan Oliver; Combs, Stephanie E.; Weber, Klaus; Debus, Juergen; Lindel, Katja [University Hospital of Heidelberg, Department of Radiation Therapy and Radiation Oncology, Heidelberg (Germany)

    2014-10-15

    Persistent human papilloma virus 16 (HPV16) infections are a major cause of cervical cancer. The integration of the viral DNA into the host genome causes E2 gene disruption which prevents apoptosis and increases host cell motility. In cervical cancer patients, survival is limited by local infiltration and systemic dissemination. Surgical control rates are poor in cases of parametrial infiltration. In these patients, radiotherapy (RT) is administered to enhance local control. However, photon irradiation itself has been reported to increase cell motility. In cases of E2-disrupted cervical cancers, this phenomenon would impose an additional risk of enhanced tumor cell motility. Here, we analyze mechanisms underlying photon-increased migration in keratinocytes with differential E2 gene status. Isogenic W12 (intact E2 gene status) and S12 (disrupted E2 gene status) keratinocytes were analyzed in fibronectin-based and serum-stimulated migration experiments following single photon doses of 0, 2, and 10 Gy. Quantitative FACS analyses of integrin expression were performed. Migration and adhesion are increased in E2 gene-disrupted keratinocytes. E2 gene disruption promotes attractability by serum components, therefore, effectuating the risk of local infiltration and systemic dissemination. In S12 cells, migration is further increased by photon RT which leads to enhanced expression of fibronectin receptor integrins. HPV16-associated E2 gene disruption is a main predictor of treatment-refractory cancer virulence. E2 gene disruption promotes cell motility. Following photon RT, E2-disrupted tumors bear the risk of integrin-related infiltration and dissemination. (orig.) [German] Persistierende Infektionen mit humanen Papillomaviren 16 (HPV16) sind ein Hauptausloeser des Zervixkarzinoms. Die Integration der viralen DNS in das Wirtszellgenom fuehrt zum Integritaetsverlust des E2-Gens, wodurch in der Wirtszelle Apoptose verhindert und Motilitaet gesteigert werden. In

  19. Prostaglandin E2 stimulates β1-integrin expression in hepatocellular carcinoma through the EP1 receptor/PKC/NF-κB pathway.

    Science.gov (United States)

    Bai, Xiaoming; Wang, Jie; Guo, Yan; Pan, Jinshun; Yang, Qinyi; Zhang, Min; Li, Hai; Zhang, Li; Ma, Juan; Shi, Feng; Shu, Wei; Wang, Yipin; Leng, Jing

    2014-10-07

    Prostaglandin E2 (PGE2) has been implicated in cell invasion in hepatocellular carcinoma (HCC), via increased β1-integrin expression and cell migration; however, the mechanism remains unclear. PGE2 exerts its effects via four subtypes of the E prostanoid receptor (EP receptor 1-4). The present study investigated the effect of EP1 receptor activation on β1-integrin expression and cell migration in HCC. Cell migration increased by 60% in cells treated with 17-PT-PGE2 (EP1 agonist), which was suppressed by pretreatment with a β1-integrin polyclonal antibody. PGE2 increased β1-integrin expression by approximately 2-fold. EP1 receptor transfection or treatment with 17-PT-PGE2 mimicked the effect of PGE2 treatment. EP1 siRNA blocked PGE2-mediated β1-integrin expression. 17-PT-PGE2 treatment induced PKC and NF-κB activation; PKC and NF-κB inhibitors suppressed 17-PT-PGE2-mediated β1-integrin expression. FoxC2, a β1-integrin transcription factor, was also upregulated by 17-PT-PGE2. NF-κB inhibitor suppressed 17-PT-PGE2-mediated FoxC2 upregulation. Immunohistochemistry showed p65, FoxC2, EP1 receptor and β1-integrin were all highly expressed in the HCC cases. This study suggested that PGE2 upregulates β1-integrin expression and cell migration in HCC cells by activating the PKC/NF-κB signaling pathway. Targeting PGE2/EP1/PKC/NF-κB/FoxC2/β1-integrin pathway may represent a new therapeutic strategy for the prevention and treatment of this cancer.

  20. Andrographolide Ameliorates Abdominal Aortic Aneurysm Progression by Inhibiting Inflammatory Cell Infiltration through Downregulation of Cytokine and Integrin Expression.

    Science.gov (United States)

    Ren, Jun; Liu, Zhenjie; Wang, Qiwei; Giles, Jasmine; Greenberg, Jason; Sheibani, Nader; Kent, K Craig; Liu, Bo

    2016-01-01

    Abdominal aortic aneurysm (AAA), characterized by exuberant inflammation and tissue deterioration, is a common aortic disease associated with a high mortality rate. There is currently no established pharmacological therapy to treat this progressive disease. Andrographolide (Andro), a major bioactive component of the herbaceous plant Andrographis paniculata, has been found to exhibit potent anti-inflammatory properties by inhibiting nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) activity in several disease models. In this study, we investigated the ability of Andro to suppress inflammation associated with aneurysms, and whether it may be used to block the progression of AAA. Whereas diseased aortae continued to expand in the solvent-treated group, daily administration of Andro to mice with small aneurysms significantly attenuated aneurysm growth, as measured by the diminished expansion of aortic diameter (165.68 ± 15.85% vs. 90.62 ± 22.91%, P Andro decreased infiltration of monocytes/macrophages and T cells. Mechanistically, Andro inhibited arterial NF-κB activation and reduced the production of proinflammatory cytokines [CCL2, CXCL10, tumor necrosis factor α, and interferon-γ] in the treated aortae. Furthermore, Andro suppressed α4 integrin expression and attenuated the ability of monocytes/macrophages to adhere to activated endothelial cells. These results indicate that Andro suppresses progression of AAA, likely through inhibition of inflammatory cell infiltration via downregulation of NF-κB-mediated cytokine production and α4 integrin expression. Thus, Andro may offer a pharmacological therapy to slow disease progression in patients with small aneurysms.

  1. Integrin expression profiling identifies integrin alpha5 and beta1 as prognostic factors in early stage non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    van Suylen Robert-Jan

    2010-06-01

    Full Text Available Abstract Background Selection of early stage non-small cell lung cancer patients with a high risk of recurrence is warranted in order to select patients who will benefit from adjuvant treatment strategies. We evaluated the prognostic value of integrin expression profiles in a retrospective study on frozen primary tumors of 68 patients with early stage non-small cell lung cancer. Methods A retrospective study was performed on frozen primary tumors of 68 early stage non-small cell lung cancer patients with a follow up of at least 10 years. From all tumor tissues, RNA was isolated and reverse transcribed into cDNA. qPCR was used to generate mRNA expression profiles including integrins alpha1, 2, 3, 4, 5, 6, 7, 11, and V as well as integrins beta1, 3, 4, 5, 6, and 8. Results The expression levels of integrins alpha5, beta1 and beta3 predicted overall survival and disease free survival in early stage NSCLC patients. There was no association between integrin expression and lymph node metastases. Comparison between the histological subtypes revealed a distinct integrin signature for squamous cell carcinoma while the profiles of adenocarcinoma and large cell carcinoma were largely the same. Conclusion Integrin expression in NSCLC is important for the development and behavior of the tumor and influences the survival of the patient. Determining the integrin expression profile might serve as a tool in predicting the prognosis of individual patients.

  2. Syncytin-1 in differentiating human myoblasts

    DEFF Research Database (Denmark)

    Bjerregard, Bolette; Ziomkiewicz, Iwona; Schulz, Alexander

    2014-01-01

    induced to fuse. Additionally, we have compared the localization of syncytin with the localization of caveolin-3 and of myogenin, which are also involved in myoblast fusion and maturation. Syncytin was localized to areas of the cell membrane and to filopodial structures connecting myoblasts to each other...... myogenin-positive and myogenin-negative cells. Antisense treatment downmodulated syncytin-1 expression and inhibited myoblast cell fusions. Importantly, syncytin-1 antisense significantly decreased the frequency of multinucleated myotubes demonstrating that the treatment inhibited secondary myoblast...... fusions. Thus, syncytin is involved in human myoblast fusions and is localized in areas of contact between fusing cells. Moreover, syncytin and caveolin-3 might interact at the level of the sarcolemma....

  3. Myoblast transplantation can repair heart damage

    Institute of Scientific and Technical Information of China (English)

    Jonathan Dinsmore; Nabil Dib

    2006-01-01

    Myocardial regeneration is an exciting new frontier for the treatment of heart disease. Many approaches are currently being tested. The use of autologous skeletal myoblasts has been the earliest, with over 10 years of research having been conducted.Current progress in the area of skeletal myoblasts for cardiac regeneration is presented. Reviewed is work from both pre-clinical and clinical studies. Work in this area continues to progress and definitive studies to assess efficacy of myoblasts for heart failure either have been initiated or will be initiated shortly. One result that is clear is that myoblasts can survive and form myotubes and myofibers in the area of myocardial infarction. In the early clinical trials, arrhythmia was a concern. However, further studies have shown that the risk was assumed prematurely based on limited human studies. Myoblasts, therefore, provide a highly promising treatment for heart disease. (J Geriatr Cardiol 2006;3 :168-70.)

  4. LKB1 destabilizes microtubules in myoblasts and contributes to myoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Isma Mian

    Full Text Available BACKGROUND: Skeletal muscle myoblast differentiation and fusion into multinucleate myotubes is associated with dramatic cytoskeletal changes. We find that microtubules in differentiated myotubes are highly stabilized, but premature microtubule stabilization blocks differentiation. Factors responsible for microtubule destabilization in myoblasts have not been identified. FINDINGS: We find that a transient decrease in microtubule stabilization early during myoblast differentiation precedes the ultimate microtubule stabilization seen in differentiated myotubes. We report a role for the serine-threonine kinase LKB1 in both microtubule destabilization and myoblast differentiation. LKB1 overexpression reduced microtubule elongation in a Nocodazole washout assay, and LKB1 RNAi increased it, showing LKB1 destabilizes microtubule assembly in myoblasts. LKB1 levels and activity increased during myoblast differentiation, along with activation of the known LKB1 substrates AMP-activated protein kinase (AMPK and microtubule affinity regulating kinases (MARKs. LKB1 overexpression accelerated differentiation, whereas RNAi impaired it. CONCLUSIONS: Reduced microtubule stability precedes myoblast differentiation and the associated ultimate microtubule stabilization seen in myotubes. LKB1 plays a positive role in microtubule destabilization in myoblasts and in myoblast differentiation. This work suggests a model by which LKB1-induced microtubule destabilization facilitates the cytoskeletal changes required for differentiation. Transient destabilization of microtubules might be a useful strategy for enhancing and/or synchronizing myoblast differentiation.

  5. Differential Influence of Components Resulting from Atmospheric-Pressure Plasma on Integrin Expression of Human HaCaT Keratinocytes

    Directory of Open Access Journals (Sweden)

    Beate Haertel

    2013-01-01

    Full Text Available Adequate chronic wound healing is a major problem in medicine. A new solution might be non-thermal atmospheric-pressure plasma effectively inactivating microorganisms and influencing cells in wound healing. Plasma components as, for example, radicals can affect cells differently. HaCaT keratinocytes were treated with Dielectric Barrier Discharge plasma (DBD/air, DBD/argon, ozone or hydrogen peroxide to find the components responsible for changes in integrin expression, intracellular ROS formation or apoptosis induction. Dependent on plasma treatment time reduction of recovered cells was observed with no increase of apoptotic cells, but breakdown of mitochondrial membrane potential. DBD/air plasma increased integrins and intracellular ROS. DBD/argon caused minor changes. About 100 ppm ozone did not influence integrins. Hydrogen peroxide caused similar effects compared to DBD/air plasma. In conclusion, effects depended on working gas and exposure time to plasma. Short treatment cycles did neither change integrins nor induce apoptosis or ROS. Longer treatments changed integrins as important for influencing wound healing. Plasma effects on integrins are rather attributed to induction of other ROS than to generation of ozone. Changes of integrins by plasma may provide new solutions of improving wound healing, however, conditions are needed which allow initiating the relevant influence on integrins without being cytotoxic to cells.

  6. Differential influence of components resulting from atmospheric-pressure plasma on integrin expression of human HaCaT keratinocytes.

    Science.gov (United States)

    Haertel, Beate; Straßenburg, Susanne; Oehmigen, Katrin; Wende, Kristian; von Woedtke, Thomas; Lindequist, Ulrike

    2013-01-01

    Adequate chronic wound healing is a major problem in medicine. A new solution might be non-thermal atmospheric-pressure plasma effectively inactivating microorganisms and influencing cells in wound healing. Plasma components as, for example, radicals can affect cells differently. HaCaT keratinocytes were treated with Dielectric Barrier Discharge plasma (DBD/air, DBD/argon), ozone or hydrogen peroxide to find the components responsible for changes in integrin expression, intracellular ROS formation or apoptosis induction. Dependent on plasma treatment time reduction of recovered cells was observed with no increase of apoptotic cells, but breakdown of mitochondrial membrane potential. DBD/air plasma increased integrins and intracellular ROS. DBD/argon caused minor changes. About 100 ppm ozone did not influence integrins. Hydrogen peroxide caused similar effects compared to DBD/air plasma. In conclusion, effects depended on working gas and exposure time to plasma. Short treatment cycles did neither change integrins nor induce apoptosis or ROS. Longer treatments changed integrins as important for influencing wound healing. Plasma effects on integrins are rather attributed to induction of other ROS than to generation of ozone. Changes of integrins by plasma may provide new solutions of improving wound healing, however, conditions are needed which allow initiating the relevant influence on integrins without being cytotoxic to cells.

  7. Autologous platelet-derived wound healing factor promotes angiogenesis via alphavbeta3-integrin expression in chronic wounds.

    Science.gov (United States)

    Herouy, Y; Mellios, P; Bandemir, E; Stetter, C; Dichmann, S; Idzko, M; Hofmann, C; Vanscheidt, W; Schopf, E; Norgauer, J

    2000-11-01

    Healing of venous leg ulcers depends on the adhesive interaction and formation of new vascular cells. Angiogenesis on the surface of angiogenic blood vessels requires the vascular integrin alphavbeta3 also known as the vitronectin receptor. Autologous platelet-derived wound healing factor (autologous PDWHF) has been described to regulate the wound healing process by forming granulation tissue in the early healing phase. Here we analysed the influence of autologous PDWHF on the expression of the alphavbeta3 integrin in tissue specimen of venous leg ulcers in comparison with placebo treated controls by using reverse transcriptase-polymerase chain reaction and immunohistochemistry. Our investigations provide evidence that mRNA and protein expression of alphavbeta3 were significantly increased in healing venous leg ulcers after 96 h treatment (pgranulation tissue. Placebo controlled patients displayed no altered expression of the alphavbeta3 integrin in biopsy specimen. These findings suggest that topical autologous platelet-derived wound healing factor influences the process of angiogenesis/revascularization via alphavbeta3 integrin-expression hereby promoting granulation tissue formation in healing leg ulcers.

  8. Regulation of α5 and αV Integrin Expression by GDF-5 and BMP-7 in Chondrocyte Differentiation and Osteoarthritis

    Science.gov (United States)

    Garciadiego-Cázares, David; Aguirre-Sánchez, Hilda I.; Abarca-Buis, René F.; Kouri, Juan B.; Velasquillo, Cristina; Ibarra, Clemente

    2015-01-01

    The Integrin β1 family is the major receptors of the Extracellular matrix (ECM), and the synthesis and degradation balance of ECM is seriously disrupted during Osteoarthritis (OA). In this scenario, integrins modify their pattern expression and regulate chondrocyte differen-tiation in the articular cartilage. Members of the Transforming growth factor beta (Tgf-β) Su-perfamily, such as Growth differentiation factor 5 (Gdf-5) and Bone morphogenetic protein 7 (Bmp-7), play a key role in joint formation and could regulate the integrin expression during chondrocyte differentiation and osteoarthritis progression in an experimental OA rat model. Decrease of α5 integrin expression in articular cartilage was related with chondrocyte dedif-ferentiation during OA progression, while increase of α1, α2, and α3 integrin expression was related with fibrous areas in articular cartilage during OA. Hypertrophic chondrocytes expressedαV integrin and was increased in the articular cartilage of rats with OA. Integrin expression during chondrocyte differentiation was also analyzed in a micromass culture system of mouse embryo mesenchymal cells, micromass cultures was treated with Gdf-5 or Bmp-7 for 4 and 6 days, respectively. Gdf-5 induced the expression of theα5 sub-unit, while Bmp-7 induced the expression of the αV sub-unit. This suggests a switch in signaling for prehypertrophic chondrocyte differentiation towards hypertrophy, where Gdf-5 could maintain the articular chondrocyte phenotype and Bmp-7 would induce hypertrophy. Decrease of Ihh expression during late stages of OA in rat model suggest that the ossification in OA rat knees and endochondral ossification could be activated by Bmp-7 and αV integrin in absence of Ihh. Thus, chondrocyte phenotype in articular cartilage is similar to prehypetrophic chondrocyte in growth plate, and is preserved due to the presence of Indian hedgehog (Ihh), Gdf-5 and α5 integrin to maintain articular cartilage and prevent hy

  9. Tumor cell adhesion to endothelial cells is increased by endotoxin via an upregulation of beta-1 integrin expression.

    LENUS (Irish Health Repository)

    Andrews, E J

    2012-02-03

    BACKGROUND: Recent studies have demonstrated that metastatic disease develops from tumor cells that adhere to endothelial cells and proliferate intravascularly. The beta-1 integrin family and its ligand laminin have been shown to be important in tumor-to-endothelial cell adhesion. Lipopolysaccharide (LPS) has been implicated in the increased metastatic tumor growth that is seen postoperatively. We postulated that LPS increases tumor cell expression of beta-1 integrins and that this leads to increased adhesion. METHODS: The human metastatic colon cancer cell line LS174T was labeled with an enhanced green fluorescent protein (eGFP) using retroviral transfection. Cell cultures were treated with LPS for 1, 2, and 4 h (n = 6 each) and were subsequently cocultured for 30 or 120 min with confluent human umbilical vein endothelial cells (HUVECs), to allow adherence. Adherent tumor cells were counted using fluorescence microscopy. These experiments were carried out in the presence or absence of a functional blocking beta-1 integrin monoclonal antibody (4B4). Expression of beta-1 integrin and laminin on tumor and HUVECs was assessed using flow cytometric analysis. Tumor cell NF-kappaB activation after incubation with LPS was measured. RESULTS: Tumor cell and HUVEC beta-1 integrin expression and HUVEC expression of laminin were significantly (P < 0.05) enhanced after incubation with LPS. Tumor cell adhesion to HUVECs was significantly increased. Addition of the beta-1 integrin blocking antibody reduced tumor cell adhesion to control levels. LPS increased tumor cell NF-kappaB activation. CONCLUSIONS: Exposure to LPS increases tumor cell adhesion to the endothelium through a beta-1 integrin-mediated pathway that is NF-kappaB dependent. This may provide a target for immunotherapy directed at reducing postoperative metastatic tumor growth.

  10. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B

    2010-01-01

    Agonists and positive allosteric modulators of the alpha(7) nicotinic acetylcholine receptor (nAChR) are currently being developed for the treatment of cognitive disturbances in patients with schizophrenia or Alzheimer's disease. This review describes the neurobiological properties of the alpha n......AChR and the cognitive effects of alpha(7) nAChR activation, focusing on the translational aspects in the development of these drugs. The functional properties and anatomical localization of the alpha(7) nAChR makes it well suited to modulate cognitive function. Accordingly, systemic administration of alpha(7) n......AChR agonists improves learning, memory, and attentional function in variety of animal models, and pro-cognitive effects of alpha(7) nAChR agonists have recently been demonstrated in patients with schizophrenia or Alzheimer's disease. The alpha(7) nAChR desensitizes rapidly in vitro, and this has been a major...

  11. Nicotinic receptor Alpha7 expression during tooth morphogenesis reveals functional pleiotropy.

    Directory of Open Access Journals (Sweden)

    Scott W Rogers

    Full Text Available The expression of nicotinic acetylcholine receptor (nAChR subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP; alpha7GFP or IRES-Cre (alpha7Cre. The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5-E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre×ROSA26-LoxP(diphtheria toxin A strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process. The function of ameloblasts in alpha7KO mice is altered relative to controls. High resolution micro-computed tomography analysis of adult mandibular incisors revealed enamel volume of the alpha7KO was significantly reduced and the organization of enamel rods was altered relative to controls. These results demonstrate distinct and varied spatiotemporal expression of alpha7 during tooth development, and they suggest that dysfunction of this receptor would have diverse impacts upon the adult organ.

  12. Nicotinic Receptor Alpha7 Expression during Tooth Morphogenesis Reveals Functional Pleiotropy

    Science.gov (United States)

    Rogers, Scott W.; Gahring, Lorise C.

    2012-01-01

    The expression of nicotinic acetylcholine receptor (nAChR) subtype, alpha7, was investigated in the developing teeth of mice that were modified through homologous recombination to express a bi-cistronic IRES-driven tau-enhanced green fluorescent protein (GFP); alpha7GFP) or IRES-Cre (alpha7Cre). The expression of alpha7GFP was detected first in cells of the condensing mesenchyme at embryonic (E) day E13.5 where it intensifies through E14.5. This expression ends abruptly at E15.5, but was again observed in ameloblasts of incisors at E16.5 or molar ameloblasts by E17.5–E18.5. This expression remains detectable until molar enamel deposition is completed or throughout life as in the constantly erupting mouse incisors. The expression of alpha7GFP also identifies all stages of innervation of the tooth organ. Ablation of the alpha7-cell lineage using a conditional alpha7Cre×ROSA26-LoxP(diphtheria toxin A) strategy substantially reduced the mesenchyme and this corresponded with excessive epithelium overgrowth consistent with an instructive role by these cells during ectoderm patterning. However, alpha7knock-out (KO) mice exhibited normal tooth size and shape indicating that under normal conditions alpha7 expression is dispensable to this process. The function of ameloblasts in alpha7KO mice is altered relative to controls. High resolution micro-computed tomography analysis of adult mandibular incisors revealed enamel volume of the alpha7KO was significantly reduced and the organization of enamel rods was altered relative to controls. These results demonstrate distinct and varied spatiotemporal expression of alpha7 during tooth development, and they suggest that dysfunction of this receptor would have diverse impacts upon the adult organ. PMID:22666322

  13. Distinct neural pathways mediate alpha7 nicotinic acetylcholine receptor-dependent activation of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hay-Schmidt, Anders; Hansen, Henrik H

    2010-01-01

    alpha(7) nicotinic acetylcholine receptor (nAChR) agonists are candidates for the treatment of cognitive deficits in schizophrenia. Selective alpha(7) nAChR agonists, such as SSR180711, activate neurons in the medial prefrontal cortex (mPFC) and nucleus accumbens shell (ACCshell) in rats, regions...

  14. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  15. Binding-gating coupling in a nondesensitizing alpha7 nicotinic receptor A single channel pharmacological study.

    Science.gov (United States)

    Bernal, José Antonio; Mulet, José; Castillo, Mar; Criado, Manuel; Sala, Salvador; Sala, Francisco

    2009-02-01

    The highly conserved alphaLys145 has been suggested to play an important role in the early steps of activation of the nicotinic acetylcholine receptor (nAChR) by acetylcholine. Both macroscopic and single channel currents were recorded in the slowly desensitizing mutants L248T- and K145A-L248T-alpha7 receptors expressed in Xenopus oocytes. On ACh-evoked currents, substitution of Lys145 by alanine showed the same effects that in wild type receptors: moderately decreased gating function and a more-than-expected loss of ACh potency, thus validating the experimental model. Single channel analysis quantitatively agreed with macroscopic data and revealed that impaired gating function in the double mutant alpha7K145A/L248T is the consequence of a slower opening rate, beta. Several nicotinic agonists were also studied, showing important features. Particularly, dimethylphenylpiperazinium (DMPP), acting as an antagonist in alpha7K145A, became a full agonist in alpha7K145A/L248T. Single channel analysis of DMPP-evoked currents showed effects of Lys145 removal similar to those observed with ACh. Data suggest that alpha7Lys145 facilitates the early steps of channel activation. Moreover, the slowly desensitizing mutant alpha7L248T could be an interesting tool for the study of channel activation in alpha7 receptors. Nevertheless, its extensively altered pharmacology precludes the simple extrapolation of pharmacological data obtained in singly mutated alpha7 receptors.

  16. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B

    2010-01-01

    AChR agonists improves learning, memory, and attentional function in variety of animal models, and pro-cognitive effects of alpha(7) nAChR agonists have recently been demonstrated in patients with schizophrenia or Alzheimer's disease. The alpha(7) nAChR desensitizes rapidly in vitro, and this has been a major...... concern in the development of alpha(7) nAChR agonists as putative drugs. Our review of the existing literature shows that development of tolerance to the behavioral effects of alpha(7) nAChR agonists does not occur in animal models or humans. However, the long-term memory-enhancing effects seen in animal...... models are not mimicked in healthy humans and schizophrenic patients, where attentional improvement predominates. This discrepancy may result from inherent differences in testing methods or from species differences in the level of expression of alpha(7) nAChRs in limbic brain regions, and may hamper...

  17. Exercise promotes alpha7 integrin gene transcription and protection of skeletal muscle.

    Science.gov (United States)

    Boppart, Marni D; Volker, Sonja E; Alexander, Nicole; Burkin, Dean J; Kaufman, Stephen J

    2008-11-01

    The alpha7beta1 integrin is increased in skeletal muscle in response to injury-producing exercise, and transgenic overexpression of this integrin in mice protects against exercise-induced muscle damage. The present study investigates whether the increase in the alpha7beta1 integrin observed in wild-type mice in response to exercise is due to transcriptional regulation and examines whether mobilization of the integrin at the myotendinous junction (MTJ) is a key determinant in its protection against damage. A single bout of downhill running exercise selectively increased transcription of the alpha7 integrin gene in 5-wk-old wild-type mice 3 h postexercise, and an increased alpha7 chain was detected in muscle sarcolemma adjacent to tendinous tissue immediately following exercise. The alpha7B, but not alpha7A isoform, was found concentrated and colocalized with tenascin-C in muscle fibers lining the MTJ. To further validate the importance of the integrin in the protection against muscle damage following exercise, muscle injury was quantified in alpha7(-/-) mice. Muscle damage was extensive in alpha7(-/-) mice in response to both a single and repeated bouts of exercise and was largely restricted to areas of high MTJ concentration and high mechanical force near the Achilles tendon. These results suggest that exercise-induced muscle injury selectively increases transcription of the alpha7 integrin gene and promotes a rapid change in the alpha7beta integrin at the MTJ. These combined molecular and cellular alterations are likely responsible for integrin-mediated attenuation of exercise-induced muscle damage.

  18. The role of palmitoylation in functional expression of nicotinic alpha7 receptors.

    Science.gov (United States)

    Drisdel, Renaldo C; Manzana, Ehrine; Green, William N

    2004-11-17

    Neuronal alpha-bungarotoxin receptors (BgtRs) are nicotinic receptors that require as yet unidentified post-translational modifications to achieve functional expression. In this study, we examined the role of protein palmitoylation in BgtR expression. BgtR alpha7 subunits are highly palmitoylated in neurons from brain and other cells capable of BgtR expression, such as pheochromocytoma 12 (PC12) cells. In PC12 cells, alpha7 subunits are palmitoylated with a stoichiometry of approximately one palmitate per subunit, and inhibition of palmitoylation blocks BgtR expression. In cells incapable of BgtR expression, such as human embryonic kidney cells, alpha7 subunits are not significantly palmitoylated. However, in these same cells, chimeric subunits with the N-terminal half of alpha7 fused to the C-terminal half of serotonin-3A receptor (alpha7/5-HT3A) subunits form functional BgtRs that are palmitoylated to an extent similar to that of BgtRalpha7 subunits in PC12 cells. Palmitoylation of PC12 and alpha7/5-HT3A BgtRs occurred during assembly in the endoplasmic reticulum (ER). In conclusion, our data indicate a function for protein palmitoylation in which palmitoylation of assembling alpha7 subunits in the ER has a role in the formation of functional BgtRs.

  19. Prostaglandin E2 upregulates β1 integrin expression via the E prostanoid 1 receptor/nuclear factor κ-light-chain-enhancer of activated B cells pathway in non-small-cell lung cancer cells.

    Science.gov (United States)

    Bai, Xiaoming; Yang, Qinyi; Shu, Wei; Wang, Jie; Zhang, Li; Ma, Juan; Xia, Shukai; Zhang, Min; Cheng, Shanyu; Wang, Yipin; Leng, Jing

    2014-05-01

    The prostaglandin E2 (PGE2) E prostanoid (EP)1 receptor shown to be associated with lung cancer cell invasion. However, the mechanism of EP1 receptor-mediated cell migration remains to be elucidated. β1 integrin is an essential regulator of the tumorigenic properties of non-small-cell lung carcinoma (NSCLC) cells. To date, little is known regarding the association between the EP1 receptor and β1 integrin expression. The present study investigated the effect of EP1 receptor activation on β1 integrin expression and cell migration in NSCLC cells. A total of 34 patients with clinical diagnosis of NSCLC and 10 patients with benign disease were recruited for the present study. The expression levels of the EP1 receptor and β1 integrin expression were studied in resected lung tissue using immunohistochemistry. A statistical analysis was performed using Stata se12.0 software. The effects of PGE2, EP1 agonist 17-phenyl trinor-PGE2 (17-PT-PGE2) and the nuclear factor κ-B (NF-κB) inhibitor on β1 integrin expression were investigated on A549 cells. The expression of β1 integrin and the phosphorylation of NF-κB‑p65 Ser536 was investigated by western blot analysis. Cell migration was assessed by a transwell assay. The results demonstrated that β1 integrin and EP1 receptor expression exhibited a positive correlation of evident significance in the 44 samples. The in vitro migration assay revealed that cell migration was increased by 30% when the cells were treated with 5 µM 17-PT-PGE2 and that the pre-treatment of β1 integrin monoclonal antibody inhibited 17-PT-PGE2‑mediated cell migration completely. PGE2 and 17-PT-PGE2 treatment increased β1 integrin expression. RNA interference against the EP1 receptor blocked the PGE2-mediated β1 integrin expression in A549 cells. Treatment with 17-PT-PGE2 induced NF-κB activation, and the selective NF-κB inhibitor pyrrolidinedithiocarbamate inhibited 17-PT-PGE2-mediated β1 integrin expression. In conclusion, the present

  20. Nootropic alpha7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators.

    Science.gov (United States)

    Ng, Herman J; Whittemore, Edward R; Tran, Minhtam B; Hogenkamp, Derk J; Broide, Ron S; Johnstone, Timothy B; Zheng, Lijun; Stevens, Karen E; Gee, Kelvin W

    2007-05-08

    Activation of brain alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of alpha7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective alpha7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-alpha-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at alpha7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of alpha7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction.

  1. In vitro analysis of integrin expression during chondrogenic differentiation of mesenchymal stem cells and chondrocytes upon dedifferentiation in cell culture.

    Science.gov (United States)

    Goessler, Ulrich Reinhart; Bieback, Karen; Bugert, Peter; Heller, Tobias; Sadick, Haneen; Hörmann, Karl; Riedel, Frank

    2006-02-01

    Tissue engineering represents a promising method for generating chondrogenic grafts for reconstructive surgery. In cultured chondrocytes, the dedifferentiation of cells seems unavoidable for multiplication. Stem cells, however, displaying unlimited self-renewal and the capacity to differentiate towards chondrocytes, might be usable after further characterization. As the interactions between the extracellular matrix and the cellular compartment can alter the cellular behaviour, we investigated the expression of integrins using microarray analysis during chondrogenic differentiation of human mesenchymal stem cells (MSC) in comparison with de-differentiating human chondrocytes (HC) harvested during septoplasty. During chondrogenic differentiation of MSC, the fibronectin-receptor (Integrin beta1alpha5), fibronectin and the GPIIb/IIIa-receptor were downregulated. The components of the vitronectin-receptor (Integrin alphavbeta3) and CD47 were constantly expressed and ILK was downregulated. Vitronectin and osteopontin were not expressed by the cells. In HC, Integrin beta1alpha5 in conjunction with the ligand fibronectin were upregulated during dedifferentiation, Integrin alphavbeta3 as well as the GBIIb/IIIa-receptor were activated on day 21 but neither vitronectin nor osteopontin were expressed by the cells. The integrins, beta2, beta4, beta6, beta8 and alpha2, alpha4, alpha6, alpha7, alpha11, were not expressed at any time. ILK, CD47, and ICAP were activated with ongoing dedifferentiation. In conclusion, a candidate for signal-transmission is the fibronectin receptor (integrin alpha5beta1) in conjunction with its ligand fibronectin. Other receptors, e.g. for vitronectin and osteopontin (alphavbeta3), or their ligands do not seem to be involved in signal transmission for dedifferentiation. The GPIIb/IIIa-receptor might assist the process of dedifferentiation. Intracellularly, ILK, ICAP1 and CD47 might be involved in the transduction of integrin-dependent signals.

  2. Cyclooxygenase-2 enhances alpha2beta1 integrin expression and cell migration via EP1 dependent signaling pathway in human chondrosarcoma cells.

    Science.gov (United States)

    Liu, Ju-Fang; Fong, Yi-Chin; Chang, Chih-Shiang; Huang, Chun-Yin; Chen, Hsien-Te; Yang, Wei-Hung; Hsu, Chin-Jung; Jeng, Long-Bin; Chen, Chih-Yi; Tang, Chih-Hsin

    2010-02-23

    Cyclooxygenase (COX)-2, the inducible isoform of prostaglandin (PG) synthase, has been implicated in tumor metastasis. Interaction of COX-2 with its specific EP receptors on the surface of cancer cells has been reported to induce cancer invasion. However, the effects of COX-2 on migration activity in human chondrosarcoma cells are mostly unknown. In this study, we examined whether COX-2 and EP interaction are involved in metastasis of human chondrosarcoma. We found that over-expression of COX-2 or exogenous PGE2 increased the migration of human chondrosarcoma cells. We also found that human chondrosarcoma tissues and chondrosarcoma cell lines had significant expression of the COX-2 which was higher than that in normal cartilage. By using pharmacological inhibitors or activators or genetic inhibition by the EP receptors, we discovered that the EP1 receptor but not other PGE receptors is involved in PGE2-mediated cell migration and alpha2beta1 integrin expression. Furthermore, we found that human chondrosarcoma tissues expressed a higher level of EP1 receptor than normal cartilage. PGE2-mediated migration and integrin up-regulation were attenuated by phospholipase C (PLC), protein kinase C (PKC) and c-Src inhibitor. Activation of the PLCbeta, PKCalpha, c-Src and NF-kappaB signaling pathway after PGE2 treatment was demonstrated, and PGE2-induced expression of integrin and migration activity were inhibited by the specific inhibitor, siRNA and mutants of PLC, PKC, c-Src and NF-kappaB cascades. Our results indicated that PGE2 enhances the migration of chondrosarcoma cells by increasing alpha2beta1 integrin expression through the EP1/PLC/PKCalpha/c-Src/NF-kappaB signal transduction pathway.

  3. Myoblast fusion: Experimental systems and cellular mechanisms.

    Science.gov (United States)

    Schejter, Eyal D

    2016-12-01

    Fusion of myoblasts gives rise to the large, multi-nucleated muscle fibers that power and support organism motion and form. The mechanisms underlying this prominent form of cell-cell fusion have been investigated by a variety of experimental approaches, in several model systems. The purpose of this review is to describe and discuss recent progress in the field, as well as point out issues currently unresolved and worthy of further investigation. Following a description of several new experimental settings employed in the study of myoblast fusion, a series of topics relevant to the current understanding of the process are presented. These pertain to elements of three major cellular machineries- cell-adhesion, the actin-based cytoskeleton and membrane-associated elements- all of which play key roles in mediating myoblast fusion. Among the issues raised are the diversity of functions ascribed to different adhesion proteins (e.g. external cell apposition and internal recruitment of cytoskeleton regulators); functional significance of fusion-associated actin structures; and discussion of alternative mechanisms employing single or multiple fusion pore formation as the basis for muscle cell fusion.

  4. The regulation of myoblast plasticity and its mechanism

    Institute of Scientific and Technical Information of China (English)

    Peng ZHANG; Xiao-ping CHEN

    2012-01-01

    The development of skeletal muscle is a highly regulated,multi-step process in which pluripotent mesodermal cells give rise to myoblasts that subsequently withdraw from the cell cycle and differentiate into myotubes as well as myofibers.The plasticity of myoblasts plays a critical role in maintaining skeletal muscle structure and function by myoblast activation,migration,adhesion,membrane reorganization,nuclear fusion,finally forming myotubes/myofibers.Our studies demonstrate that the local hypoxic microenvironment,a great diversity of regulatory factors such as IL-6 superfamily factors (IL-6,LIF,CNTF) and TGF-β1 could regulate the myoblast plasticity.The aim of this paper is to review the previous studies focused on the regulation of myoblast plasticity and its mechanism in our laboratory.Knowledge about the microenvironment or factors involved in regulating the myoblast plasticity will help develop the prevention and cure measures of skeletal muscle diseases.

  5. BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons.

    Science.gov (United States)

    Massey, Kerri A; Zago, Wagner M; Berg, Darwin K

    2006-12-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing alpha7 subunits (alpha7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of alpha7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABA(A) receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased alpha7-nAChR clusters were most prominent on interneuron subtypes known to directly innervate excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling alpha7-nAChR levels.

  6. Differential regulation of alpha7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers.

    Science.gov (United States)

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G; Freedman, Robert; Leonard, Sherry

    2010-01-01

    The alpha7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the alpha7* receptor, as measured by [(125)I]alpha-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene expression in schizophrenic hippocampus. We examined the effects of smoking on CHRNA7 expression in the same tissue and find that smoking differentially regulates expression of both mRNA and protein for this gene. CHRNA7 mRNA and protein levels are significantly lower in schizophrenic nonsmokers compared to control nonsmokers and are brought to control levels in schizophrenic smokers. Sufficient protein but low surface expression of the alpha7* receptor, seen in the autoradiographic studies, suggests aberrant assembly or trafficking of the receptor.

  7. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Gharagozloo, Parviz; Birdsall, Nigel J M

    2006-01-01

    of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain...... of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization...... of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight...

  8. Force transmission, compliance, and viscoelasticity are altered in the alpha7-integrin-null mouse diaphragm.

    Science.gov (United States)

    Lopez, M A; Mayer, U; Hwang, W; Taylor, T; Hashmi, M A; Jannapureddy, S R; Boriek, Aladin M

    2005-02-01

    Alpha7beta1 integrin is a transmembrane structural and receptor protein of skeletal muscles, and the absence of alpha7-integrin causes muscular dystrophy. We hypothesized that the absence of alpha7-integrin alters compliance and viscoelasticity and disrupts the mechanical coupling between passive transverse and axial contractile elements in the diaphragm. In vivo the diaphragm is loaded with pressure, and therefore axial and transverse length-tension relationships are important in assessing its function. We determined diaphragm passive length-tension relationships and the viscoelastic properties of its muscle in 1-month-old alpha7-integrin-null mice and age-matched controls. Furthermore, we measured the isometric contractile properties of the diaphragm from mutant and normal mice in the absence and presence of passive force applied in the transverse direction to fibers in 1-month-old and 5-month-old mutant mice. We found that compared with controls, the diaphragm direction of alpha7-integrin-null mutants showed 1) a significant decrease in muscle extensibility in 1-year-old mice, whereas muscle extensibility increased in the 1-month-old mice; 2) altered muscle viscoelasticity in the transverse direction of the muscle fibers of 1-month-old mice; 3) a significant increase in force-generating capacity in the diaphragms of 1-month-old mice, whereas in 5-month-old mice muscle contractility was depressed; and 4) significant reductions in mechanical coupling between longitudinal and transverse properties of the muscle fibers of 1-month-old mice. These findings suggest that alpha7-integrin serves an important mechanical function in the diaphragm by contributing to passive compliance, viscoelasticity, and modulation of its muscle contractile properties.

  9. Three-photon-annihilation contributions to positronium energies at order $m \\alpha^7$

    CERN Document Server

    Adkins, Gregory S; Parsons, Christian; Fell, Richard N

    2015-01-01

    Positronium spectroscopy (n=1 hyperfine splitting, n=2 fine structure, and the 1S-2S interval) has reached a precision of order 1 MHz. Vigorous ongoing efforts to improve the experimental results motivate the calculation of the positronium energy levels at order $m \\alpha^7$. In this work we present the result for a complete class of such contributions--those involving virtual annihilation of positronium to three photons in an intermediate state. We find an energy shift of $2.6216(11) m \\alpha^7/(n \\pi)^3$ for the spin-triplet S state with principal quantum number n.

  10. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA.

    Science.gov (United States)

    Burtea, Carmen; Laurent, Sophie; Murariu, Oltea; Rattat, Dirk; Toubeau, Gérard; Verbruggen, Alfons; Vansthertem, David; Vander Elst, Luce; Muller, Robert N

    2008-04-01

    The integrin alpha v beta3 is highly expressed in atherosclerotic plaques by medial and intimal smooth muscle cells and by endothelial cells of angiogenic microvessels. In this study, we have assessed non-invasive molecular magnetic resonance imaging (MRI) of plaque-associated alpha v beta3 integrin expression on transgenic ApoE-/- mice with a low molecular weight peptidomimetic of Arg-Gly-Asp (mimRGD) grafted to gadolinium diethylenetriaminepentaacetate (Gd-DTPA-g-mimRGD). The analogous compound Eu-DTPA-g-mimRGD was employed for an in vivo competition experiment and to confirm the molecular targeting. The specific interaction of mimRGD conjugated to Gd-DTPA or to 99mTc-DTPA with alpha v beta3 integrin was furthermore confirmed on Jurkat T lymphocytes. The mimRGD was synthesized and conjugated to DTPA. DTPA-g-mimRGD was complexed with GdCl3.6H2O, EuCl3.6H2O, or with [99mTc(CO)3(H2O)3]+. MRI evaluation was performed on a 4.7 T Bruker imaging system. Blood pharmacokinetics of Gd-DTPA-g-mimRGD were assessed in Wistar rats and in c57bl/6j mice. The presence of angiogenic blood vessels and the expression of alpha v beta3 integrin were confirmed in aorta specimens by immunohistochemistry. Gd-DTPA-g-mimRGD produced a strong enhancement of the external structures of the aortic wall and of the more profound layers (possibly tunica media and intima). The aortic lumen seemed to be restrained and distorted. Pre-injection of Eu-DTPA-g-mimRGD diminished the Gd-DTPA-g-mimRGD binding to atherosclerotic plaque and confirmed the specific molecular targeting. A slower blood clearance was observed for Gd-DTPA-g-mimRGD, as indicated by a prolonged elimination half-life and a diminished total clearance. The new compound is potentially useful for the diagnosis of vulnerable atherosclerotic plaques and of other pathologies characterized by alpha v beta3 integrin expression, such as cancer and inflammation. The delayed blood clearance, the significant enhancement of the signal

  11. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology

    DEFF Research Database (Denmark)

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B;

    2010-01-01

    Agonists and positive allosteric modulators of the alpha(7) nicotinic acetylcholine receptor (nAChR) are currently being developed for the treatment of cognitive disturbances in patients with schizophrenia or Alzheimer's disease. This review describes the neurobiological properties of the alpha n...

  12. BMP-7 enhances cell migration and αvβ3 integrin expression via a c-Src-dependent pathway in human chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Jui-Chieh Chen

    Full Text Available Bone morphogenic protein (BMP-7 is a member of the transforming growth factor (TGF-beta superfamily, which is originally identified based on its ability to induce cartilage and bone formation. In recent years, BMP-7 is also defined as a potent promoter of cell motility, invasion, and metastasis. However, there is little knowledge of the role of BMP-7 and its cellular function in chondrosarcoma cells. In the present study, we investigated the biological impact of BMP-7 on cell motility using transwell assay. In addition, the intracellular signaling pathways were also investigated by pharmacological and genetic approaches. Our results demonstrated that treatment with exogenous BMP-7 markedly increased cell migration by activating c-Src/PI3K/Akt/IKK/NF-κB signaling pathway, resulting in the transactivation of αvβ3 integrin expression. Indeed, abrogation of signaling activation, by chemical inhibition or expression of a kinase dead form of the protein attenuated BMP-7-induced expression of integrin αvβ3 and cell migration. These findings may provide a useful tool for diagnostic/prognostic purposes and even therapeutically in late-stage chondrosarcoma as an anti-metastatic agent.

  13. Repeated administration of alpha7 nicotinic acetylcholine receptor (nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Mikkelsen, Jens D; Hansen, Henrik H;

    2010-01-01

    -induced phosphorylation of Erk2 in the prefrontal cortex occurs following acute, but not repeated administration. Our results demonstrate that repeated agonist administration increases the number of alpha7 nAChRs in the brain, and leads to coupling versus uncoupling of specific intracellular signaling....... Here we investigate the effects of repeated agonism on alpha7 nAChR receptor levels and responsiveness in vivo in rats. Using [(125)I]-alpha-bungarotoxin (BTX) autoradiography we show that acute or repeated administration with the selective alpha7 nAChR agonist A-582941 increases the number of alpha7 n......-120596 and NS1738 do not increase [(125)I]-BTX binding. Furthermore, A-582941-induced increase in Arc and c-fos mRNA expression in the prefrontal cortex is enhanced and unaltered, respectively, after repeated administration, demonstrating that the alpha7 nAChRs remain responsive. Contrarily, A-582941...

  14. alpha(7) Nicotinic acetylcholine receptor activation prevents behavioral and molecular changes induced by repeated phencyclidine treatment

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Christensen, Ditte Z; Hansen, Henrik H;

    2009-01-01

    , and administration of the NMDA-antagonist phencyclidine (PCP) in rodents is a well validated model of such cognitive deficits. Here we show that repeated PCP treatment (10 mg/kg/day for 10 days) decreased the expression of parvalbumin and synaptophysin mRNA in the mouse PFC, which corresponds to changes seen...... in patients with schizophrenia. In addition, PCP increased the basal mRNA expression in the PFC of the activity-regulated cytoskeleton-associated protein (Arc), a molecule involved in synaptic plasticity. These molecular changes produced by PCP were accompanied by a behavioral impairment as determined...... in a modified Y-maze test. Polymorphisms in the alpha(7) nicotinic acetylcholine receptor (nAChR) gene have been linked to schizophrenia. Here we demonstrate that acute administration of the selective alpha(7) nAChR partial agonist SSR180711 dose-dependently reversed the behavioral impairment induced by PCP...

  15. Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0144 TITLE: Dual Modulators of GABA-A and Alpha 7 Nicotinic Receptors for Treating Autism PRINCIPAL INVESTIGATOR...Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for public release; distribution...searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send

  16. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Jensen, Anders A; Gharagozloo, Parviz; Birdsall, Nigel J M; Zlotos, Darius P

    2006-06-06

    Strychnine and brucine from the plant Strychnos nux vomica have been shown to have interesting pharmacological effects on several neurotransmitter receptors, including some members of the superfamily of ligand-gated ion channels. In this study, we have characterised the pharmacological properties of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain of the 5-HT3A serotonin receptor. Although the majority of the analogues displayed significantly increased Ki values at the glycine receptors compared to strychnine and brucine, a few retained the high antagonist potencies of the parent compounds. However, mirroring the pharmacological profiles of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight into the structure-activity relationships for strychnine and brucine analogues at these ligand-gated ion channels.

  17. Compatibility of hyaluronic acid hydrogel and skeletal muscle myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei; Zhang Li; Sun Liang; Wang Chengyue [Jinzhou Central Hospital, Jinzhou 121000 (China); Fan Ming; Liu Shuhong, E-mail: Weiwang_Ly@yahoo.com.c [Institute of Basic Medical Sciences, Academy of Military Medical Science, Beijing 100850 (China)

    2009-04-15

    Compatibility of hyaluronic acid hydrogel (HAH) and skeletal muscle myoblasts has been investigated for the first time in the present paper. Skeletal muscle myoblasts were separated from skeletons of rats and incubated with a HAH-containing culture medium. Cell morphology, hydrophilicity and cell adhesion of the HAH scaffold were investigated using optical microscopy, scanning electron microscopy, Hoechest33258 fluorescent staining, the immunocytochemistry method and water adsorption rate measurement. It was found that at a proper concentration (around 0.5%) of hyaluronic acid, the hydrogel possessed good compatibility with skeletal muscle myoblasts. The hydrogel can create a three-dimensional structure for the growth of skeletal muscle myoblasts and benefit cell attachment to provide a novel scaffold material for the tissue engineering of skeletal muscle.

  18. In vitro study of intracellular IL-1beta production and beta1 integrins expression in stimulated chondrocytes--effect of rhein.

    Science.gov (United States)

    Gigant-Huselstein, C; Dumas, D; Payan, E; Muller, S; Bensoussan, D; Netter, P; Stoltz, J F

    2002-01-01

    The purpose of the present study was to investigate the intracellular IL-1beta production and beta1 integrins (alpha4/beta1 and alpha5/beta1) expression on chondrocytes. Chondroytes monolayer (human chondrosarcoma cell line HEM-C55) were incubated for 12, 24 and 48 hours in the presence of Tumor Necrosis Factor-alpha (TNF-alpha, Sigma, France) or recombinant human IL-1alpha (rh-IL1alpha, Becton Dickinson, France). After direct immunolabelling, cells were either analyzed on FACScan flow cytometer (Becton Dickinson, France), or observed under an epi-fluorescence inverted microscope equipped with the CellScan EPR optical scanning acquisition system (IPLab-Scanalytics, USA). We found that the IL-1beta mean fluorescence intensity in flow cytometry and in 3D microscopy was increased in the presence of TNF-alpha or rh-IL-1alpha, and alpha4/beta1 or alpha5/beta1 expression was higher on stimulated cells than on control cells. On the other hand, we have evaluated the in vitro effects of rhein (10(-5) M, Negma, France), an active metabolite of diacerein, on the intracellular IL-1beta and beta1 integrins expressed by stimulated or no-stimulated chondrocytes. The results indicated that rhein leads to a reduction of IL-1beta synthesis whereas a weak decrease of beta1 integrins receptors expression is observed. From this study, it seems that rhein partially reduce cytokine-induced intracellular IL-1beta production, and it has a weak action on alpha4/beta1 or alpha5/beta1 receptors.

  19. Reversal of Myoblast Aging by Tocotrienol Rich Fraction Posttreatment

    Directory of Open Access Journals (Sweden)

    Jing Jye Lim

    2013-01-01

    Full Text Available Skeletal muscle satellite cells are heavily involved in the regeneration of skeletal muscle in response to the aging-related deterioration of the skeletal muscle mass, strength, and regenerative capacity, termed as sarcopenia. This study focused on the effect of tocotrienol rich fraction (TRF on regenerative capacity of myoblasts in stress-induced premature senescence (SIPS. The myoblasts was grouped as young control, SIPS-induced, TRF control, TRF pretreatment, and TRF posttreatment. Optimum dose of TRF, morphological observation, activity of senescence-associated β-galactosidase (SA-β-galactosidase, and cell proliferation were determined. 50 μg/mL TRF treatment exhibited the highest cell proliferation capacity. SIPS-induced myoblasts exhibit large flattened cells and prominent intermediate filaments (senescent-like morphology. The activity of SA-β-galactosidase was significantly increased, but the proliferation capacity was significantly reduced as compared to young control. The activity of SA-β-galactosidase was significantly reduced and cell proliferation was significantly increased in the posttreatment group whereas there was no significant difference in SA-β-galactosidase activity and proliferation capacity of pretreatment group as compared to SIPS-induced myoblasts. Based on the data, we hypothesized that TRF may reverse the myoblasts aging through replenishing the regenerative capacity of the cells. However, further investigation on the mechanism of TRF in reversing the myoblast aging is needed.

  20. Mechanical stimuli on C2C12 myoblasts affect myoblast differentiation, focal adhesion kinase phosphorylation and galectin-1 expression

    DEFF Research Database (Denmark)

    Grossi, Alberto Blak; Lametsch, Rene; Karlsson, Anders H;

    2011-01-01

    to specific receptors on the cell surface. We showed that mechanical stimuli promote an increase of FAK phosphorylation. In order to further shed light in the process of myoblast induced differentiation by mechanical stimuli, we performed a proteomic analysis. Thirteen proteins were found to be affected...... by mechanical stimulation including Galectin-1, Annexin III, and RhoGDI. In this study we demonstrate how the combination of this method of mechanical stimuli and proteomic analysis can be a powerful tool to detect proteins that are potentially interacting in biochemical pathways or complex cellular mechanisms...... during the process of myoblast differentiation. We determined an increase in expression and changes in cellular localization of Galectin-1, in mechanically stimulated myoblasts. A potential involvement of Galectin-1 in myoblast differentiation is presented....

  1. Myoblast transplantation for heart failure – From bench to bedside

    Directory of Open Access Journals (Sweden)

    Eugene K.W. Sim

    2005-07-01

    Full Text Available Heart failure causes morbidity and mortality. Cell transplantation using skeletal muscle myoblast is promising for myocardial repair as it can regenerate and repair the injury. Skeletal myoblasts are unipotent progenitor cells that can be expanded and genetically modified to deliver angiogenic cytokines and growth factors to encourage angiomyogenesis. Myoblast transplantation inhibits ventricular remodelling, decreases left ventricular diastolic dimension, increases myocardial wall thickness and minimizes global ventricular dilatation in animals. Ongoing trials with skeletal myoblast transplantation show improvement in perfusion and metabolic activity. Time constraints and the problem of generating autologous skeletal myoblasts for every patient can be overcome if allogeneic skeletal myoblasts from healthy young donors can be made available. Myoblast transplantation is confronted with the problem of donor cell survival post-transplantation. Its safety and feasibility have been documented during animal and phase I studies. The only serious postoperative adverse event related to the procedure was ventricular arrhythmias. The results of phase I studies are still preliminary. Endpoint measurements highlight improvement in quality of life, reduced nitroglycerine consumption, enhanced exercise tolerance, improvement in NYHA Class and wall motion by echocardiography, and significantly reduced perfusion defects. Future directions include concerted collaborative efforts, strict inclusion and exclusion criteria, better establishment of target population. Further work needs to be done on the ideal cell type, optimal number of cells and route of administration. The most suitable time for cell transplantation after ischemic injury and optimal mode of cell delivery are evaluated. The use of cell-based techniques to assist with cardiac regeneration holds promise for the treatment of heart failure.

  2. Novel (64)Cu- and (68)Ga-labeled RGD conjugates show improved PET imaging of α(ν)β(3) integrin expression and facile radiosynthesis.

    Science.gov (United States)

    Dumont, Rebecca A; Deininger, Friederike; Haubner, Roland; Maecke, Helmut R; Weber, Wolfgang A; Fani, Melpomeni

    2011-08-01

    PET with (18)F-labeled arginine-glycine-aspartic acid (RGD) peptides can visualize and quantify α(ν)β(3) integrin expression in patients, but radiolabeling is complex and image contrast is limited in some tumor types. The development of (68)Ga-RGD peptides would be of great utility given the convenience of (68)Ga production and radiolabeling, and (64)Cu-RGD peptides allow for delayed imaging with potentially improved tumor-to-background ratios. We used the chelators DOTA,1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA), and 4,11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (CB-TE2A) to radiolabel the cyclic pentapeptide c(RGDfK) with (68)Ga or (64)Cu. NODAGA-c(RGDfK) was labeled at room temperature with both radionuclides within 10 min. Incubation at 95°C for up to 30 min was used for the other conjugates. The affinity profile of the metallopeptides was evaluated by a cell-based receptor-binding assay. Small-animal PET studies and biodistribution studies were performed in nude mice bearing subcutaneous U87MG glioblastoma xenografts. The conjugates were labeled with a radiochemical purity greater than 97% and specific activities of 15-20 GBq/μmol. The affinity profile was similar for all metallopeptides and comparable to the reference standard c(RGDfV). In the biodistribution studies, all compounds demonstrated a relatively similar tumor and normal organ uptake at 1 h after injection that was comparable to published data on (18)F-labeled RGD peptides. At 18 h after injection, however, (64)Cu-NODAGA-c(RGDfK) and (64)Cu-CB-TE2A-c(RGDfK) showed up to a 20-fold increase in tumor-to-organ ratios. PET studies demonstrated high-contrast images of the U87MG tumors at 18 h, confirming the biodistribution data. The ease of radiolabeling makes (68)Ga-NODAGA-c(RGDfK) an attractive alternative to (18)F-labeled RGD peptides. The high tumor-to-background ratios of (64)Cu-NODAGA-c(RGDfK) and (64)Cu-CB-TE2A-c(RGDfK) at 18 h warrant testing of (64

  3. Bovine myoblast cell production in a microcarriers-based system.

    Science.gov (United States)

    Verbruggen, Sanne; Luining, Daan; van Essen, Anon; Post, Mark J

    2017-05-03

    For several tissue engineering applications, in particular food products, scaling up culture of mammalian cells is a necessary task. The prevailing method for large scale cell culture is the stirred tank bioreactor where anchor dependent cells are grown on microcarriers suspended in medium. We use a spinner flask system with cells grown on microcarriers to optimize the growth of bovine myoblasts. Freshly isolated primary cells were seeded on microcarriers (Synthemax(®), CellBIND(®) and Cytodex(®) 1 MCs). In this study, we provide proof of principle that bovine myoblasts can be cultured on microcarriers. No major differences were observed between the three tested microcarriers, except that sparsely populated beads were more common with CellBIND(®) and Synthemax(®) II beads suggesting a slower initiation of exponential growth than on Cytodex(®). We also provide direct evidence that bovine myoblasts display bead-to-bead transfer. A remarkable pick up of growth was observed by adding new MCs. Bovine myoblasts seem to behave like human mesenchymal stem cells. Thus, our results provide valuable data to further develop and scale-up the production of bovine myoblasts as a prerequisite for efficient and cost-effective development of cultured meat. Applicability to other anchorage dependent cells can extend the importance of these results to cell culture for medical tissue engineering or cell therapy.

  4. Tracing myoblast fusion in Drosophila embryos by fluorescent actin probes.

    Science.gov (United States)

    Haralalka, Shruti; Abmayr, Susan M

    2015-01-01

    Myoblast fusion in the Drosophila embryo is a highly elaborate process that is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs). It occurs through an asymmetric event in which actin foci assemble in the FCMs at points of cell-cell contact and direct the formation of membrane protrusions that drive fusion. Herein, we describe the approach that we have used to image in living embryos the highly dynamic actin foci and actin-rich projections that precede myoblast fusion. We discuss resources currently available for imaging actin and myogenesis, and our experience with these resources if available. This technical report is not intended to be comprehensive on providing instruction on standard microscopy practices or software utilization. However, we discuss microscope parameters that we have used in data collection, and our experience with image processing tools in data analysis.

  5. The critical role of myostatin in differentiation of sheep myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chenxi [College of Life Science and Technology, Xinjiang University, Urumqi (China); Xinjiang Laboratory of Animal Biotechnology, Urumqi (China); Li, Wenrong; Zhang, Xuemei; Zhang, Ning; He, Sangang; Huang, Juncheng [Xinjiang Laboratory of Animal Biotechnology, Urumqi (China); Laboratory of Grass-fed Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Urumqi (China); Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi (China); Ge, Yubin [The State Engineering Laboratory of AIDS Vaccine, College of Life Science, Jilin University, Changchun (China); Liu, Mingjun, E-mail: xjlmj2004@yahoo.com.cn [Xinjiang Laboratory of Animal Biotechnology, Urumqi (China); Laboratory of Grass-fed Animal Genetics, Breeding and Reproduction of Ministry of Agriculture, Urumqi (China); Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi (China)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Identification of the effective and specific shRNA to knockdown MSTN. Black-Right-Pointing-Pointer Overexpression of MSTN reversibly suppressed myogenic differentiation. Black-Right-Pointing-Pointer shRNA knockdown of endogenous MSTN promoted ovine myoblast differentiation. Black-Right-Pointing-Pointer MSTN inhibits myogenic differentiation through down-regulation of MyoD and Myogenin and up-regulation of Smad3. Black-Right-Pointing-Pointer Provides a promise for the generation of transgenic sheep to improve meat productivity. -- Abstract: Myostatin [MSTN, also known as growth differentiation factor 8 (GDF8)], is an inhibitor of skeletal muscle growth. Blockade of MSTN function has been reported to result in increased muscle mass in mice. However, its role in myoblast differentiation in farm animals has not been determined. In the present study, we sought to determine the role of MSTN in the differentiation of primary sheep myoblasts. We found that ectopic overexpression of MSTN resulted in lower fusion index in sheep myoblasts, which indicated the repression of myoblast differentiation. This phenotypic change was reversed by shRNA knockdown of the ectopically expressed MSTN in the cells. In contrast, shRNA knockdown of the endogenous MSTN resulted in induction of myogenic differentiation. Additional studies revealed that the induction of differentiation by knocking down the ectopically or endogenously expressed MSTN was accompanied by up-regulation of MyoD and myogenin, and down-regulation of Smad3. Our results demonstrate that MSTN plays critical role in myoblast differentiation in sheep, analogous to that in mice. This study also suggests that shRNA knockdown of MSTN could be a potentially promising approach to improve sheep muscle growth, so as to increase meat productivity.

  6. File list: Oth.Myo.10.AllAg.Myoblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.10.AllAg.Myoblasts hg19 TFs and others Muscle Myoblasts SRX668234,SRX107284...,SRX341010,SRX1470542,SRX1470544,SRX107285 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Myo.10.AllAg.Myoblasts.bed ...

  7. File list: InP.Myo.05.AllAg.Myoblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.05.AllAg.Myoblasts mm9 Input control Muscle Myoblasts SRX029148,SRX150190,S...RX766227,SRX497480,SRX497484,SRX497485,SRX497481 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.05.AllAg.Myoblasts.bed ...

  8. File list: His.Myo.10.AllAg.Myoblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Myo.10.AllAg.Myoblasts mm9 Histone Muscle Myoblasts SRX766228,SRX766229,SRX7662...25,SRX766226 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Myo.10.AllAg.Myoblasts.bed ...

  9. File list: InP.Myo.20.AllAg.Myoblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.20.AllAg.Myoblasts mm9 Input control Muscle Myoblasts SRX497480,SRX029148,S...RX497481,SRX150190,SRX497484,SRX766227,SRX497485 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.20.AllAg.Myoblasts.bed ...

  10. File list: Oth.Myo.20.AllAg.Myoblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.20.AllAg.Myoblasts hg19 TFs and others Muscle Myoblasts SRX668234,SRX107284...,SRX1470542,SRX1470544,SRX107285,SRX341010 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Myo.20.AllAg.Myoblasts.bed ...

  11. File list: InP.Myo.50.AllAg.Myoblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.50.AllAg.Myoblasts hg19 Input control Muscle Myoblasts SRX1470545,SRX147054...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Myo.50.AllAg.Myoblasts.bed ...

  12. File list: InP.Myo.05.AllAg.Myoblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.05.AllAg.Myoblasts hg19 Input control Muscle Myoblasts SRX1470545,SRX147054...3 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Myo.05.AllAg.Myoblasts.bed ...

  13. File list: InP.Myo.50.AllAg.Myoblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.50.AllAg.Myoblasts mm9 Input control Muscle Myoblasts SRX029148,SRX497481,S...RX497480,SRX766227,SRX150190,SRX497485,SRX497484 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.50.AllAg.Myoblasts.bed ...

  14. File list: ALL.Myo.05.AllAg.Myoblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.05.AllAg.Myoblasts hg19 All antigens Muscle Myoblasts SRX668234,SRX107284,S...RX341010,SRX1470542,SRX1470544,SRX1470545,SRX1470543,SRX107285 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Myo.05.AllAg.Myoblasts.bed ...

  15. File list: Oth.Myo.20.AllAg.Myoblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Myo.20.AllAg.Myoblasts mm9 TFs and others Muscle Myoblasts SRX030143,SRX497478,...4,SRX029143,SRX227233,SRX227231,SRX227229,SRX984580 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Myo.20.AllAg.Myoblasts.bed ...

  16. File list: InP.Myo.10.AllAg.Myoblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Myo.10.AllAg.Myoblasts mm9 Input control Muscle Myoblasts SRX029148,SRX150190,S...RX497480,SRX497481,SRX497484,SRX497485,SRX766227 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Myo.10.AllAg.Myoblasts.bed ...

  17. File list: ALL.Myo.10.AllAg.Myoblasts [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Myo.10.AllAg.Myoblasts hg19 All antigens Muscle Myoblasts SRX668234,SRX107284,S...RX341010,SRX1470542,SRX1470544,SRX1470543,SRX1470545,SRX107285 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Myo.10.AllAg.Myoblasts.bed ...

  18. Induced Differentiation of Adipose-derived Stromal Cells into Myoblasts

    Institute of Scientific and Technical Information of China (English)

    吴桂珠; 郑秀; 江忠清; 王金华; 宋岩峰

    2010-01-01

    This study aimed to induce the differentiation of isolated and purified adipose-derived stromal cells(ADSCs) into myoblasts,which may provide a new strategy for tissue engineering in patients with stress urinary incontinence(SUI).ADSCs,isolated and cultured ex vivo,were identified by flow cytometry and induced to differentiate into myoblasts in the presence of an induction solution consisting of DMEM supplemented with 5-azacytidine(5-aza),5% FBS,and 5% horse serum.Cellular morphology was observed under an i...

  19. Nicotine acts on growth plate chondrocytes to delay skeletal growth through the alpha7 neuronal nicotinic acetylcholine receptor.

    Directory of Open Access Journals (Sweden)

    Atsuo Kawakita

    Full Text Available BACKGROUND: Cigarette smoking adversely affects endochondral ossification during the course of skeletal growth. Among a plethora of cigarette chemicals, nicotine is one of the primary candidate compounds responsible for the cause of smoking-induced delayed skeletal growth. However, the possible mechanism of delayed skeletal growth caused by nicotine remains unclarified. In the last decade, localization of neuronal nicotinic acetylcholine receptor (nAChR, a specific receptor of nicotine, has been widely detected in non-excitable cells. Therefore, we hypothesized that nicotine affect growth plate chondrocytes directly and specifically through nAChR to delay skeletal growth. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the effect of nicotine on human growth plate chondrocytes, a major component of endochondral ossification. The chondrocytes were derived from extra human fingers. Nicotine inhibited matrix synthesis and hypertrophic differentiation in human growth plate chondrocytes in suspension culture in a concentration-dependent manner. Both human and murine growth plate chondrocytes expressed alpha7 nAChR, which constitutes functional homopentameric receptors. Methyllycaconitine (MLA, a specific antagonist of alpha7 nAChR, reversed the inhibition of matrix synthesis and functional calcium signal by nicotine in human growth plate chondrocytes in vitro. To study the effect of nicotine on growth plate in vivo, ovulation-controlled pregnant alpha7 nAChR +/- mice were given drinking water with or without nicotine during pregnancy, and skeletal growth of their fetuses was observed. Maternal nicotine exposure resulted in delayed skeletal growth of alpha7 nAChR +/+ fetuses but not in alpha7 nAChR -/- fetuses, implying that skeletal growth retardation by nicotine is specifically mediated via fetal alpha7 nAChR. CONCLUSIONS/SIGNIFICANCE: These results suggest that nicotine, from cigarette smoking, acts directly on growth plate chondrocytes to decrease

  20. The Protective Effect of Alpha 7 Nicotinic Acetylcholine Receptor Activation on Critical Illness and Its Mechanism

    Science.gov (United States)

    REN, Chao; TONG, Ya-lin; LI, Jun-cong; LU, Zhong-qiu; YAO, Yong-ming

    2017-01-01

    Critical illnesses and injuries are recognized as major threats to human health, and they are usually accompanied by uncontrolled inflammation and dysfunction of immune response. The alpha 7 nicotinic acetylcholine receptor (α7nAchR), which is a primary receptor of cholinergic anti-inflammatory pathway (CAP), exhibits great benefits for critical ill conditions. It is composed of 5 identical α7 subunits that form a central pore with high permeability for calcium. This putative structure is closely associated with its functional states. Activated α7nAChR exhibits extensive anti-inflammatory and immune modulatory reactions, including lowered pro-inflammatory cytokines levels, decreased expressions of chemokines as well as adhesion molecules, and altered differentiation and activation of immune cells, which are important in maintaining immune homeostasis. Well understanding of the effects and mechanisms of α7nAChR will be of great value in exploring effective targets for treating critical diseases. PMID:28123345

  1. Characterization of the retina in the alpha7 nicotinic acetylcholine receptor knockout mouse

    Science.gov (United States)

    Smith, Marci L.

    Acetylcholine receptors (AChRs) are involved in visual processing and are expressed by inner retinal neurons in all species studied to date (Keyser et al., 2000; Dmitrieva et al., 2007; Liu et al., 2009), but their distribution in the mouse retina remains unknown. Reductions in alpha7 nicotinic AChRs (nAChRs) are thought to contribute to memory and visual deficits observed in Alzheimer's and schizophrenia (Coyle et al., 1983; Nordberg et al., 1999; Leonard et al., 2006). However, the alpha7 nAChR knockout (KO) mouse has a mild phenotype (Paylor et al., 1998; Fernandes et al., 2006; Young et al., 2007; Origlia et al., 2012). The purpose of this study was to determine the expression of AChRs in wildtype (WT) mouse retina and to assess whether up-regulation of other AChRs in the alpha7 nAChR KO retina may explain the minimal deficits described in the KO mouse. Reverse-transcriptase PCR (RT-PCR) showed that mRNA transcripts for alpha2-7, alpha 9, alpha10, beta2-4 nAChR subunits and m1-m5 muscarinic AChR (mAChR) subtypes were present in WT murine retina. Western blot analysis confirmed the presence of alpha3-5, alpha9, and m1-m5 AChR proteins and immunohistochemical analysis demonstrated nAChR and mAChR proteins expressed by subsets of bipolar, amacrine and ganglion cells. This is the first reported expression of alpha9 and alpha10 nAChR transcripts and alpha9 nAChR proteins in the retina of any species. Quantitative RT-PCR (qPCR) showed changes in AChR transcript expression in the alpha7 nAChR KO mouse retina relative to WT. Within whole retina alpha2, alpha9, alpha10, beta4, m1 and m4 AChR transcripts were up-regulated, while alpha5 nAChR transcripts were down-regulated. However, cell populations showed subtle differences; m4 mAChR transcripts were up-regulated in the ganglion cell layer and outer portion of the inner nuclear layer (oINL),while beta4 nAChR transcript up-regulation was limited to the oINL. Surprisingly, alpha2, alpha9, beta4, m2 and m4 transcripts were

  2. Evaluation of alpha7 nicotinic acetylcholine receptor agonists and positive allosteric modulators using the parallel oocyte electrophysiology test station.

    Science.gov (United States)

    Malysz, John; Grønlien, Jens H; Timmermann, Daniel B; Håkerud, Monika; Thorin-Hagene, Kirsten; Ween, Hilde; Trumbull, Jonathan D; Xiong, Yongli; Briggs, Clark A; Ahring, Philip K; Dyhring, Tino; Gopalakrishnan, Murali

    2009-08-01

    Neuronal acetylcholine receptors (nAChRs) of the alpha7 subtype are ligand-gated ion channels that are widely distributed throughout the central nervous system and considered as attractive targets for the treatment of various neuropsychiatric and neurodegenerative diseases. Both agonists and positive allosteric modulators (PAMs) are being developed as means to enhance the function of alpha7 nAChRs. The in vitro characterization of alpha7 ligands, including agonists and PAMs, relies on multiple technologies, but only electrophysiological measurements assess the channel activity directly. Traditional electrophysiological approaches utilizing two-electrode voltage clamp or patch clamp in isolated cells have very low throughput to significantly impact drug discovery. Abbott (Abbott Park, IL) has developed a two-electrode voltage clamp-based system, the Parallel Oocyte Electrophysiology Test Station (POETs()), that allows for the investigation of ligand-gated ion channels such as alpha7 nAChRs in a higher-throughput manner. We describe the utility of this technology in the discovery of selective alpha7 agonists and PAMs. With alpha7 agonists, POETs experiments involved both single- and multiple-point concentration-response testing revealing diverse activation profiles (zero efficacy desensitizing, partial, and full agonists). In the characterization of alpha7 PAMs, POETs testing has served as a reliable primary or secondary screen identifying compounds that fall into distinct functional types depending on the manner in which current potentiation occurred. Type I PAMs (eg, genistein, NS1738, and 5-hydroxyindole) increase predominantly the peak amplitude response, type II PAMs affect the peak current and current decay (eg, PNU-120,596 and 4-(naphthalen-1-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide), and anothertype slowing the current decay kinetics in the absence of increases in the peak current. In summary, POETs technology allows for significant

  3. The selective alpha7 nicotinic acetylcholine receptor agonist A-582941 activates immediate early genes in limbic regions of the forebrain

    DEFF Research Database (Denmark)

    Thomsen, M S; Mikkelsen, J D; Timmermann, D B

    2008-01-01

    Due to the cognitive-enhancing properties of alpha7 nicotinic acetylcholine receptor (alpha7 nAChR) agonists, they have attracted interest for the treatment of cognitive disturbances in schizophrenia. Schizophrenia typically presents in late adolescence or early adulthood. It is therefore important...... to study whether alpha7 nAChR stimulation activates brain regions involved in cognition in juvenile as well as adult individuals. Here, we compared the effects of the novel and selective alpha7 nAChR agonist 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) in the juvenile...... in the mPFC, VO/LO, and shell of the nucleus accumbens, in both juvenile and adult rats. The A-582941-induced c-Fos protein expression was significantly greater in the mPFC and VO/LO of juvenile compared with adult rats. These data indicate that A-582941-induced alpha7 nAChR stimulation activates brain...

  4. Effects of alpha-7 nicotinic acetylcholine receptor positive allosteric modulator on lipopolysaccharide-induced neuroinflammatory pain in mice.

    Science.gov (United States)

    Abbas, Muzaffar; Rahman, Shafiqur

    2016-07-15

    Evidence indicates that microglial activation contributes to the pathophysiology and maintenance of neuroinflammatory pain involving central nervous system alpha-7 nicotinic acetylcholine receptors. The objective of the present study was to determine the effects of 3a,4,5,9b-Tetrahydro-4-(1-naphthalenyl)-3H-cyclopentan[c]quinoline-8-sulfonamide (TQS), an alpha-7 nicotinic acetylcholine receptor positive allosteric modulator (PAM), on tactile allodynia and thermal hyperalgesia following lipopolysaccharide (LPS)-induced microglial activation in hippocampus, a neuroinflammatory pain model in mice. In addition, we examined the effects of TQS on microglial activation marker, an ionized calcium-binding adapter molecule 1 (Iba-1), in the hippocampus may be associated with neuroinflammatory pain. Pretreatment of TQS (4mg/kg) significantly reduced LPS (1mg/kg)-induced tactile allodynia and thermal hyperalgesia. Moreover, pretreatment of methyllycaconitine (3mg/kg) significantly reversed TQS-induced antiallodynic and antihyperalgesic responses indicating the involvement of alpha-7 nicotinic acetylcholine receptor. Pretreatment of TQS significantly decreased LPS-induced increased in hippocampal Iba-1 expression. Overall, these results suggest that TQS reduces LPS-induced neuroinflammatory pain like symptoms via modulating microglial activation likely in the hippocampus and/or other brain region by targeting alpha-7 nicotinic acetylcholine receptor. Therefore, alpha-7 nicotinic acetylcholine receptor PAM such as TQS could be a potential drug candidate for the treatment of neuroinflammatory pain.

  5. A conserved role for calpains during myoblast fusion.

    Science.gov (United States)

    Buffolo, Marcio; Batista Possidonio, Ana Claudia; Mermelstein, Claudia; Araujo, Helena

    2015-07-01

    Myoblast fusion is a key step during skeletal muscle differentiation as it enables the formation of contractile fibers. Calpains have been implicated in some aspects of myogenesis in mammals, but whether they exert a conserved function during myoblast fusion has not been investigated. Here, we studied Calpain function in two models of myogenesis: in vitro analysis of chick myogenic cultures and in vivo analysis of Drosophila melanogaster muscle development. First we showed that Calpain A is important for fly muscle function. In addition, Calpain A knockdown reduced lateral body wall muscle length and width, as well as the number of nuclei in dorsal oblique muscles, consistent with fewer cells fusing to form fibers. Treatment of chick cultures with a selective Calpain inhibitor led to the formation of thinner myotubes containing a reduced number of nuclei, consistent with decreased myoblast fusion. Dynamic changes in IκBα labeling and transfection with a dominant-negative IκBα suggest a role for the NFκB pathway during chick myogenesis and a possible role of Calpains in attenuating NFκB signals that restrict myoblast fusion. Our data suggest that different model organisms may be used to study the role of Calpains in regular myogenesis and Calpain-related muscular degenerative disorders.

  6. Neuroprotective and memory-related actions of novel alpha-7 nicotinic agents with different mixed agonist/antagonist properties.

    Science.gov (United States)

    Meyer, E M; Tay, E T; Zoltewicz, J A; Meyers, C; King, M A; Papke, R L; De Fiebre, C M

    1998-03-01

    The goals of this study were to develop compounds that were selective and highly efficacious agonists at alpha-7 receptors, while varying in antagonist activity; and to test the hypothesis that these compounds had memory-related and neuroprotective actions associated with both agonist and antagonist alpha-7 receptor activities. Three compounds were identified; E,E-3-(cinnamylidene)anabaseine (3-CA), E,E-3-(2-methoxycinnamylidene) anabaseine (2-MeOCA) and E,E-3-(4-methoxycinnamylidene) anabaseine (4-MeOCA) each displaced [125I]alpha-bungarotoxin binding from rat brain membranes and activated rat alpha-7 receptors in a Xenopus oocyte expression system fully efficaciously. The potency series for binding and receptor activation was 2-MeOCA > 4-MeOCA = 3-CA and 2-MeOCA = 3-CA > 4-MeOCA, respectively. No compound significantly activated oocyte-expressed alpha-4beta-2 receptors. Although each cinnamylidene-anabaseine caused a long-term inhibition of alpha-7 receptors, as measured by ACh-application 5 min later, this inhibition ranged considerably, from less than 20% (3-CA) to 90% (2-MeOCA) at an identical concentration (10 microM). These compounds improved passive avoidance behavior in nucleus basalis lesioned rats, with 2-MeOCA most potent in this respect. In contrast, only 3-CA was neuroprotective against neurite loss during nerve growth factor deprivation in differentiated rat pheochromocytoma (PC12) cells. Choline, an efficacious alpha-7 agonist without antagonist activity, was also protective in this model. These results suggest that the neurite-protective action of alpha-7 receptor agonists may be more sensitive to potential long-term antagonist properties than acute behavioral actions are.

  7. Antiamnestic effect of alpha7-nicotinic receptor agonist RJR-2403 in middle-aged ovariectomized rats with Alzheimer type dementia.

    Science.gov (United States)

    Sapronov, N S; Fedotova, Yu O; Kuznetsova, N N

    2006-12-01

    The effects of chronic combined treatment with alpha7-nicotinic cholinergic receptor agonist RJR-2403 (1.0 mg/kg intraperitoneally) or alpha7-nicotinic cholinergic receptor antagonist mecamylamine (1.0 mg/kg intraperitoneally) and 17beta-estradiol (0.5 microg per rat intramuscularly) for 10 days on passive avoidance retention were studied in middle-aged (15 months) ovariectomized rats with experimental Alzheimer type dementia. Chronic treatment with RJR-2403 and 17beta-estradiol had a pronounced antiamnestic effect under conditions of Alzheimer type dementia in middle-aged ovariectomized rats.

  8. 68Ga-TRAP-(RGD)3 Hybrid Imaging for the In Vivo Monitoring of αvß3-Integrin Expression as Biomarker of Anti-Angiogenic Therapy Effects in Experimental Breast Cancer

    Science.gov (United States)

    Kazmierczak, Philipp M.; Todica, Andrei; Gildehaus, Franz-Josef; Hirner-Eppeneder, Heidrun; Brendel, Matthias; Eschbach, Ralf S.; Hellmann, Magdalena; Nikolaou, Konstantin; Reiser, Maximilian F.; Wester, Hans-Jürgen; Kropf, Saskia; Rominger, Axel; Cyran, Clemens C.

    2016-01-01

    Objectives To investigate 68Ga-TRAP-(RGD)3 hybrid imaging for the in vivo monitoring of αvß3-integrin expression as biomarker of anti-angiogenic therapy effects in experimental breast cancer. Materials and Methods Human breast cancer (MDA-MB-231) xenografts were implanted orthotopically into the mammary fat pads of n = 25 SCID mice. Transmission/emission scans (53 min to 90 min after i.v. injection of 20 MBq 68Ga-TRAP-(RGD)3) were performed on a dedicated small animal PET before (day 0, baseline) and after (day 7, follow-up) a 1-week therapy with the VEGF antibody bevacizumab or placebo (imaging cohort n = 13; therapy n = 7, control n = 6). The target-to-background ratio (TBR, VOImaxtumor/VOImeanmuscle) served as semiquantitative measure of tumor radiotracer uptake. Unenhanced CT data sets were subsequently acquired for anatomic coregistration and morphology-based tumor response assessments (CT volumetry). The imaging results were validated by multiparametric ex vivo immunohistochemistry (αvß3-integrin, microvascular density–CD31, proliferation–Ki-67, apoptosis–TUNEL) conducted in a dedicated immunohistochemistry cohort (n = 12). Results 68Ga-TRAP-(RGD)3 binding was significantly reduced under VEGF inhibition and decreased in all bevacizumab-treated animals (ΔTBRfollow-up/baseline: therapy -1.07±0.83, control +0.32±1.01, p = 0.022). No intergroup difference in tumor volume development between day 0 and day 7 was observed (Δvolumetherapy 134±77 μL, Δvolumecontrol 132±56 μL, p = 1.000). Immunohistochemistry revealed a significant reduction of αvß3-integrin expression (308±135 vs. 635±325, p = 0.03), microvascular density (CD31, 168±108 vs. 432±70, p = 0.002), proliferation (Ki-67, 5,195±1,002 vs. 7,574±418, p = 0.004) and significantly higher apoptosis (TUNEL, 14,432±1,974 vs. 3,776±1,378, p = 0.002) in the therapy compared to the control group. Conclusions 68Ga-TRAP-(RGD)3 hybrid imaging allows for the in vivo assessment of αvß3

  9. Repeated administration of alpha7 nicotinic acetylcholine receptor (nAChR) agonists, but not positive allosteric modulators, increases alpha7 nAChR levels in the brain

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Mikkelsen, Jens D; Hansen, Henrik H;

    2010-01-01

    The alpha7 nicotinic acetylcholine receptor (nAChR) is an important target for treatment of cognitive deficits in schizophrenia and Alzheimer's disease. However, the receptor desensitizes rapidly in vitro, which has led to concern regarding its applicability as a clinically relevant drug target...

  10. Voltage- and temperature-dependent allosteric modulation of alpha7 nicotinic receptors by PNU120596

    Directory of Open Access Journals (Sweden)

    Fabrio eSitzia

    2011-12-01

    Full Text Available Alpha7 nicotinic receptors (a7nAChR are widely distributed throughout the central nervous system (CNS and are found at particularly high levels in the hippocampus and cortex. Several lines of evidence indicate that pharmacological enhancement of a7nAChRs function could be a potential therapeutic route to alleviate disease-related cognitive deficits. A recent pharmacological approach adopted to increase a7nAChR activity has been to identify selective positive allosteric modulators (PAMs. a7nAChR PAMs have been divided into two classes: type I PAMs increase agonist potency with only subtle effects on kinetics, whereas type II agents produce additional dramatic effects on desensitization and deactivation kinetics. Here we report novel observations concerning the pharmacology of the canonical type II PAM, PNU120596. Using patch clamp analysis of acetylcholine (ACh-mediated currents through recombinant rat a7nAChR we show that positive allosteric modulation measured in two different ways is greatly attenuated when the temperature is raised to near physiological levels. Furthermore, PNU120596 largely removes the strong inward rectification usually exhibited by a7nAChR-mediated responses.

  11. The role of alpha-7 nicotinic receptors in food intake behaviors

    Directory of Open Access Journals (Sweden)

    Kristina L. McFadden

    2014-06-01

    Full Text Available Nicotine alters appetite and energy expenditure, leading to changes in body weight. While the exact mechanisms underlying these effects are not fully established, both central and peripheral involvement of the alpha-7 nicotinic acetylcholine receptor (α7nAChR has been suggested. Centrally, the α7nAChR modulates activity of hypothalamic neurons involved in food intake regulation, including proopiomelanocortin (POMC and neuropeptide Y (NPY. α7nAChRs also modulate glutamatergic and dopaminergic systems controlling reward processes that affect food intake. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, a key contributor to health problems in obesity. This review focuses on nicotinic cholinergic effects on eating behaviors, specifically those involving the α7nAChR, with the hypothesis that α7nAChR agonism leads to appetite suppression. Recent studies are highlighted that identify links between α7nAChR expression and obesity, insulin resistance, and diabetes and describe early findings showing an α7nAChR agonist to be associated with reduced weight gain in a mouse model of diabetes. Given these effects, the α7nAChR may be a useful therapeutic target for strategies to treat and manage obesity.

  12. Alpha7 Nicotinic Acetylcholine Receptor Is a Target in Pharmacology and Toxicology

    Directory of Open Access Journals (Sweden)

    Miroslav Pohanka

    2012-02-01

    Full Text Available Alpha7 nicotinic acetylcholine receptor (α7 nAChR is an important part of the cholinergic nerve system in the brain. Moreover, it is associated with a cholinergic anti-inflammatory pathway in the termination of the parasympathetic nervous system. Antagonists of α7 nAChR are a wide group represented by conotoxin and bungarotoxin. Even Alzheimer’s disease drug memantine acting as an antagonist in its side pathway belongs in this group. Agonists of α7 nAChR are suitable for treatment of multiple cognitive dysfunctions such as Alzheimer’s disease or schizophrenia. Inflammation or even sepsis can be ameliorated by the agonistic acting compounds. Preparations RG3487, SEN34625/WYE-103914, SEN12333, ABT-107, Clozapine, GTS-21, CNI-1493, and AR-R17779 are representative examples of the novel compounds with affinity toward the α7 nAChR. Pharmacological, toxicological, and medicinal significance of α7 nAChR are discussed throughout this paper.

  13. Sensory gating and alpha-7 nicotinic receptor gene allelic variants in schizoaffective disorder, bipolar type.

    Science.gov (United States)

    Martin, Laura F; Leonard, Sherry; Hall, Mei-Hua; Tregellas, Jason R; Freedman, Robert; Olincy, Ann

    2007-07-05

    Single nucleotide allelic variants in the promoter region of the chromosome 15 alpha-7 acetylcholine nicotinic receptor gene (CHRNA7) are associated with both schizophrenia and the P50 auditory evoked potential sensory gating deficit. The purpose of this study was to determine if CHRNA7 promoter allelic variants are also associated with abnormal P50 ratios in persons with schizoaffective disorder, bipolar type. P50 auditory evoked potentials were recorded in a paired stimulus paradigm in 17 subjects with schizoaffective disorder, bipolar type. The P50 test to conditioning ratio was used as the measure of sensory gating. Mutation screening of the CHRNA7 promoter region was performed on the subjects' DNA samples. Comparisons to previously obtained data from persons with schizophrenia and controls were made. Subjects with schizophrenia, regardless of allele status, had an abnormal mean P50 ratio. Subjects with schizoaffective disorder, bipolar type and a variant allele had an abnormal mean P50 ratio, whereas those schizoaffective subjects with the common alleles had a normal mean P50 ratio. Normal control subjects had a normal mean ratio, but controls with variant alleles had higher P50 ratios. In persons with bipolar type schizoaffective disorder, CHRNA7 promoter region allelic variants are linked to the capacity to inhibit the P50 auditory evoked potential and thus are associated with a type of illness genetically and biologically more similar to schizophrenia.

  14. Alpha 7 nicotinic acetylcholine receptor-mediated protection against ethanol-induced neurotoxicity.

    Science.gov (United States)

    de Fiebre, NancyEllen C; de Fiebre, Christopher M

    2003-11-01

    The alpha(7)-selective nicotinic partial agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB) was examined for its ability to modulate ethanol-induced neurotoxicity in primary cultures of rat neurons. Primary cultures of hippocampal neurons were established from Long-Evans, embryonic day (E)-18 rat fetuses and maintained for 7 days. Ethanol (0-150 mM), DMXB (0-56 microM), or both were subsequently co-applied to cultures. Ethanol was added two additional times to the cultures to compensate for evaporation. After 5 days, neuronal viability was assessed with the MTT cell proliferation assay. Results demonstrated that ethanol reduces neuronal viability in a concentration-dependent fashion and that DMXB protects against this ethanol-induced neurotoxicity, also in a concentration-dependent fashion. These results support the suggestion that nicotinic partial agonists may be useful in treating binge drinking-induced neurotoxicity and may provide clues as to why heavy drinkers are usually smokers.

  15. A new study of $^{10}$B(p,$\\alpha$)$^{7}$Be reaction at low energies

    CERN Document Server

    Caciolli, A; Broggini, C; La Cognata, M; Lamia, L; Menegazzo, R; Mou, L; Puglia, S M R; Rigato, V; Romano, S; Alvarez, C Rossi; Sergi, M L; Spitaleri, C; Tumino, A

    2016-01-01

    The $^{10}$B(p,$\\alpha$)$^{7}$Be reaction is of great interest since it has many applications in different fields of research such as nuclear astrophysics, nuclear physics, and models of new reactors for clean energy generation. This reaction has been studied at the AN2000 accelerator of the INFN National Laboratories of Legnaro (LNL). The total cross section has been measured in a wide energy range (250 $-$ 1182 keV) by using the activation method. The decays of the $^7$Be nuclei produced by the reaction were measured at the low counting facility of LNL by using two fully shielded high-purity germanium detectors. The present dataset shows a large discrepancy with respect to one of the previous data at the same energies and reduces the total uncertainty to the level of 6\\%. An R-matrix calculation has been performed on the present data using the parameters from previous Trojan Horse measurements for the 10 and 500 keV resonances. The present data do not lay on the R-matrix fit in one point suggesting the exis...

  16. The Endocytic Recycling Protein EHD2 Interacts with Myoferlin to Regulate Myoblast Fusion*

    Science.gov (United States)

    Doherty, Katherine R.; Demonbreun, Alexis R.; Wallace, Gregory Q.; Cave, Andrew; Posey, Avery D.; Heretis, Konstantina; Pytel, Peter; McNally, Elizabeth M.

    2008-01-01

    Skeletal muscle is a multinucleated syncytium that develops and is maintained by the fusion of myoblasts to the syncytium. Myoblast fusion involves the regulated coalescence of two apposed membranes. Myoferlin is a membrane-anchored, multiple C2 domain-containing protein that is highly expressed in fusing myoblasts and required for efficient myoblast fusion to myotubes. We found that myoferlin binds directly to the eps15 homology domain protein, EHD2. Members of the EHD family have been previously implicated in endocytosis as well as endocytic recycling, a process where membrane proteins internalized by endocytosis are returned to the plasma membrane. EHD2 binds directly to the second C2 domain of myoferlin, and EHD2 is reduced in myoferlin null myoblasts. In contrast to normal myoblasts, myoferlin null myoblasts accumulate labeled transferrin and have delayed recycling. Introduction of dominant negative EHD2 into myoblasts leads to the sequestration of myoferlin and inhibition of myoblast fusion. The interaction of myoferlin with EHD2 identifies molecular overlap between the endocytic recycling pathway and the machinery that regulates myoblast membrane fusion. PMID:18502764

  17. Laminin α2-secreting fibroblasts enhance the therapeutic effect of skeletal myoblast sheets.

    Science.gov (United States)

    Uchinaka, Ayako; Tasaka, Kanako; Mizuno, Yoko; Maeno, Yoshitaka; Ban, Tsuyoshi; Mori, Seiji; Hamada, Yoshinosuke; Miyagawa, Shigeru; Saito, Atsuhiro; Sawa, Yoshiki; Matsuura, Nariaki; Nagata, Kohzo; Yamamoto, Hirofumi; Kawaguchi, Naomasa

    2017-03-01

    Skeletal myoblast sheet (SMB) transplantation, a method used for treating failing hearts, results in the secretion of cytokines that improve heart function. Enhancing the survival rate of implanted myoblasts should yield more continuous and effective therapies. We hypothesized that laminin-211 (merosin), a major component of skeletal muscle extracellular matrix (ECM), which mediates cell-to-ECM adhesion by binding to α -dystroglycan ( α DG) on muscle cells, could inhibit detachment of implanted myoblasts from host myocardia. Multilayered sheets composed of fibroblasts expressing laminin G-module (LG)4-5 of α 2 and skeletal myoblasts were transplanted into ischemic cardiomyopathy model rats. Animals were divided into four groups: the ligation only (Control) group, and those transplanted with SMB alone, with both myoblasts and control fibroblast sheets (SMB + normal Fb), or with myoblasts and laminin α 2 LG4-5-expressing fibroblast sheets (SMB + laminin Fb). Quantitative estimation of nebulin mRNA levels indicated that the transplanted myoblasts in SMB + laminin Fb group exhibited significantly higher survival rates than those in the other groups. Consistent with these findings, the myoblasts in SMB + laminin Fb group exhibited elevated expression of growth factors, while SMB + laminin Fb rats also showed significant improvements in percent fractional shortening (%FS) and left ventricular remodelling, compared to the other groups. Laminin secreted by implanted fibroblasts inhibited the detachment of implanted myoblasts from grafted myocardia, resulting in more permanent therapeutic effects upon myoblast sheet transplantation.

  18. Positronium energy levels at order $m \\alpha^7$: vacuum polarization corrections in the two-photon-annihilation channel

    CERN Document Server

    Adkins, Gregory S; Salinger, M D; Wang, Ruihan

    2015-01-01

    We have calculated all contributions to the energy levels of parapositronium at order $m \\alpha^7$ coming from vacuum polarization corrections to processes involving virtual annihilation to two photons. This work is motivated by ongoing efforts to improve the experimental determination of the positronium ground-state hyperfine splitting.

  19. Prefrontal beta2 subunit-containing and alpha7 nicotinic acetylcholine receptors differentially control glutamatergic and cholinergic signaling.

    Science.gov (United States)

    Parikh, Vinay; Ji, Jinzhao; Decker, Michael W; Sarter, Martin

    2010-03-03

    One-second-long increases in prefrontal cholinergic activity ("transients") were demonstrated previously to be necessary for the incorporation of cues into ongoing cognitive processes ("cue detection"). Nicotine and, more robustly, selective agonists at alpha4beta2* nicotinic acetylcholine receptors (nAChRs) enhance cue detection and attentional performance by augmenting prefrontal cholinergic activity. The present experiments determined the role of beta2-containing and alpha7 nAChRs in the generation of prefrontal cholinergic and glutamatergic transients in vivo. Transients were evoked by nicotine, the alpha4beta2* nAChR agonist ABT-089 [2-methyl-3-(2-(S)-pyrrolindinylmethoxy) pyridine dihydrochloride], or the alpha7 nAChR agonist A-582941 [2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole]. Transients were recorded in mice lacking beta2 or alpha7 nAChRs and in rats after removal of thalamic glutamatergic or midbrain dopaminergic inputs to prefrontal cortex. The main results indicate that stimulation of alpha4beta2* nAChRs evokes glutamate release and that the presence of thalamic afferents is necessary for the generation of cholinergic transients. ABT-089-evoked transients were completely abolished in mice lacking beta2* nAChRs. The amplitude, but not the decay rate, of nicotine-evoked transients was reduced by beta2* knock-out. Conversely, in mice lacking the alpha7 nAChR, the decay rate, but not the amplitude, of nicotine-evoked cholinergic and glutamatergic transients was attenuated. Substantiating the role of alpha7 nAChR in controlling the duration of release events, stimulation of alpha7 nAChR produced cholinergic transients that lasted 10- to 15-fold longer than those evoked by nicotine. alpha7 nAChR-evoked cholinergic transients are mediated in part by dopaminergic activity. Prefrontal alpha4beta2* nAChRs play a key role in evoking and facilitating the transient glutamatergic-cholinergic interactions that are necessary for cue detection

  20. The nuclear orphan receptor NR4A1 regulates β1-integrin expression in pancreatic and colon cancer cells and can be targeted by NR4A1 antagonists.

    Science.gov (United States)

    Hedrick, Erik; Lee, Syng-Ook; Safe, Stephen

    2017-09-01

    β1-Integrin is highly expressed and is a negative prognostic factor for colon and pancreatic cancer patients and the gene plays a functional role in cell migration and invasion. In this study, we demonstrate that β1-integrin expression is regulated in pancreatic and colon cancer cells by the pro-oncogenic orphan nuclear receptor 4A1 (NR4A1, Nur77, TR3) and knockdown of this receptor by RNA interference decreases β1-integrin protein and mRNA expression, α5-integrin, and also expression of β1-integrin-dependent phosphorylation of FAK (pFak). Knockdown of NR4A1 also decreased migration and fibronectin-induced adhesion in pancreatic (Panc1, L3.6 pL, and MiaPaCa2) and colon (RKO and SW480) cancer cells. 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methane (C-DIM) compounds containing p-hydroxy (DIM-C-pPhOH) and p-carbomethoxy (DIM-C-pPhCO2 Me) groups are NR4A1 ligands that act as antagonists for this receptor. Treatment of pancreatic and colon cancer cells with DIM-C-pPhOH or DIM-C-pPhCO2 Me mimics the effects of NR4A1 knockdown and decreases β1-integrin expression, β1-integrin regulated genes and responses including migration and adhesion. The results demonstrate a novel method for targeting β1-integrin in colon and pancreatic cancer cells and indicate possible clinical applications for C-DIM/NR4A1 antagonists for pancreatic and colon cancer therapy. © 2017 Wiley Periodicals, Inc.

  1. The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid1-42 toxicity in primary neuron-enriched cultures.

    Science.gov (United States)

    Martin, Shelley E; de Fiebre, Nancy Ellen C; de Fiebre, Christopher M

    2004-10-01

    Studies have suggested that the neuroprotective actions of alpha7 nicotinic agonists arise from activation of receptors and not from the extensive desensitization which rapidly follows activation. Here, we report that the alpha7-selective nicotinic antagonist, methyllycaconitine (MLA), protects against beta-amyloid-induced neurotoxicity; whereas the alpha4beta2-selective antagonist, dihydro-beta-erythroidine, does not. These findings suggest that neuroprotective actions of alpha7-acting agents arise from receptor inhibition/desensitization and that alpha7 antagonists may be useful neuroprotective agents.

  2. Inhibition of myoblast differentiation by Sfrp1 and Sfrp2.

    Science.gov (United States)

    Descamps, Simon; Arzouk, Hayat; Bacou, Francis; Bernardi, Henri; Fedon, Yann; Gay, Stéphanie; Reyne, Yves; Rossano, Bernadette; Levin, Jonathan

    2008-05-01

    Secreted Frizzled-related proteins (Sfrps) are extracellular regulators of Wnt signalling and play important roles in developmental and oncogenic processes. They are known to be upregulated in regenerating muscle and in myoblast cultures but their function is unknown. Here, we show that the addition of recombinant Sfrp1 or Sfrp2 to C2C12 cell line cultures or to primary cultures of satellite cells results in the inhibition of myotube formation with no significant effect on the cell cycle or apoptosis. Even though at confluence, treated and untreated cultures are identical in appearance, analyses have shown that, for maximum effect, the cells have to be treated while they are proliferating. Furthermore, removal of Sfrp from the culture medium during differentiation restores normal myotube formation. We conclude that Sfrp1 and Sfrp2 act to prevent myoblasts from entering the terminal differentiation process.

  3. CD36 is required for myoblast fusion during myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung-Yoon [Department of Biochemistry, College of Medicine, Dongguk University and Medical Institute of Dongguk University, Gyeongju 780-714 (Korea, Republic of); Yun, Youngeun [Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Kim, In-San, E-mail: iskim@knu.ac.kr [Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422 (Korea, Republic of); Biomedical Research Institute, Korea Institute Science and Technology, Seoul (Korea, Republic of)

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer CD36 expression was induced during myogenic differentiation. Black-Right-Pointing-Pointer CD36 expression was localized in multinucleated myotubes. Black-Right-Pointing-Pointer The expression of myogenic markers is attenuated in CD36 knockdown C2C12 cells. Black-Right-Pointing-Pointer Knockdown of CD36 significantly inhibited myotube formation during differentiation. -- Abstract: Recently, CD36 has been found to be involved in the cytokine-induced fusion of macrophage. Myoblast fusion to form multinucleated myotubes is required for myogenesis and muscle regeneration. Because a search of gene expression database revealed the attenuation of CD36 expression in the muscles of muscular dystrophy patients, the possibility that CD36 could be required for myoblast fusion was investigated. CD36 expression was markedly up-regulated during myoblast differentiation and localized in multinucleated myotubes. Knockdown of endogenous CD36 significantly decreased the expression of myogenic markers as well as myotube formation. These results support the notion that CD36 plays an important role in cell fusion during myogenic differentiation. Our finding will aid the elucidation of the common mechanism governing cell-to-cell fusion in various fusion models.

  4. Ductile electroactive biodegradable hyperbranched polylactide copolymers enhancing myoblast differentiation.

    Science.gov (United States)

    Xie, Meihua; Wang, Ling; Guo, Baolin; Wang, Zhong; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Myotube formation is crucial to restoring muscular functions, and biomaterials that enhance the myoblast differentiation into myotubes are highly desirable for muscular repair. Here, we report the synthesis of electroactive, ductile, and degradable copolymers and their application in enhancing the differentiation of myoblasts to myotubes. A hyperbranched ductile polylactide (HPLA) was synthesized and then copolymerized with aniline tetramer (AT) to produce a series of electroactive, ductile and degradable copolymers (HPLAAT). The HPLA and HPLAAT showed excellent ductility with strain to failure from 158.9% to 42.7% and modulus from 265.2 to 758.2 MPa. The high electroactivity of the HPLAAT was confirmed by UV spectrometer and cyclic voltammogram measurements. These HPLAAT polymers also showed improved thermal stability and controlled biodegradation rate compared to HPLA. Importantly, when applying these polymers for myotube formation, the HPLAAT significantly improved the proliferation of C2C12 myoblasts in vitro compared to HPLA. Furthermore, these polymers greatly promoted myogenic differentiation of C2C12 cells as measured by quantitative analysis of myotube number, length, diameter, maturation index, and gene expression of MyoD and TNNT. Together, our study shows that these electroactive, ductile and degradable HPLAAT copolymers represent significantly improved biomaterials for muscle tissue engineering compared to HPLA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Analysis of Mitochondrial Network Morphology in Cultured Myoblasts from Patients with Mitochondrial Disorders.

    Science.gov (United States)

    Sládková, J; Spáčilová, J; Čapek, M; Tesařová, M; Hansíková, H; Honzík, T; Martínek, J; Zámečník, J; Kostková, O; Zeman, J

    2015-01-01

    Mitochondrial morphology was studied in cultivated myoblasts obtained from patients with mitochondrial disorders, including CPEO, MELAS and TMEM70 deficiency. Mitochondrial networks and ultrastructure were visualized by fluorescence microscopy and transmission electron microscopy, respectively. A heterogeneous picture of abnormally sized and shaped mitochondria with fragmentation, shortening, and aberrant cristae, lower density of mitochondria and an increased number of "megamitochondria" were found in patient myoblasts. Morphometric Fiji analyses revealed different mitochondrial network properties in myoblasts from patients and controls. The small number of cultivated myoblasts required for semiautomatic morphometric image analysis makes this tool useful for estimating mitochondrial disturbances in patients with mitochondrial disorders.

  6. The nicotinic alpha7 acetylcholine receptor agonist ssr180711 is unable to activate limbic neurons in mice overexpressing human amyloid-beta1-42

    DEFF Research Database (Denmark)

    Søderman, Andreas; Thomsen, Morten Skøtt; Hansen, Henrik H;

    2008-01-01

    Recent studies have demonstrated that amyloid-beta1-42 (Abeta1-42) binds to the nicotinergic alpha7 acetylcholine receptor (alpha7 nAChR) and that the application of Abeta1-42 to cells inhibits the function of the alpha7 nAChR. The in vivo consequences of the pharmacological activation of the alpha...... through the use of co-immunoprecipitation that human Abeta-immunoreactive peptides bind to mice alpha7 nAChR in vivo. Agonists of the alpha7 nAChR improve memory and attentional properties and increase immediate early gene expression in the prefrontal cortex and the nucleus accumbens. We show that acute...

  7. Nicotinic receptor alpha7 expression identifies a novel hematopoietic progenitor lineage.

    Directory of Open Access Journals (Sweden)

    Lorise C Gahring

    Full Text Available How inflammatory responses are mechanistically modulated by nicotinic acetylcholine receptors (nAChR, especially by receptors composed of alpha7 (α7 subunits, is poorly defined. This includes a precise definition of cells that express α7 and how these impact on innate inflammatory responses. To this aim we used mice generated through homologous recombination that express an Ires-Cre-recombinase bi-cistronic extension of the endogenous α7 gene that when crossed with a reporter mouse expressing Rosa26-LoxP (yellow fluorescent protein (YFP marks in the offspring those cells of the α7 cell lineage (α7(lin+. In the adult, on average 20-25 percent of the total CD45(+ myeloid and lymphoid cells of the bone marrow (BM, blood, spleen, lymph nodes, and Peyers patches are α7(lin+, although variability between litter mates in this value is observed. This hematopoietic α7(lin+ subpopulation is also found in Sca1(+cKit(+ BM cells suggesting the α7 lineage is established early during hematopoiesis and the ratio remains stable in the individual thereafter as measured for at least 18 months. Both α7(lin+ and α7(lin- BM cells can reconstitute the immune system of naïve irradiated recipient mice and the α7(lin+:α7(lin- beginning ratio is stable in the recipient after reconstitution. Functionally the α7(lin+:α7(lin- lineages differ in response to LPS challenge. Most notable is the response to LPS as demonstrated by an enhanced production of IL-12/23(p40 by the α7(lin+ cells. These studies demonstrate that α7(lin+ identifies a novel subpopulation of bone marrow cells that include hematopoietic progenitor cells that can re-populate an animal's inflammatory/immune system. These findings suggest that α7 exhibits a pleiotropic role in the hematopoietic system that includes both the direct modulation of pro-inflammatory cell composition and later in the adult the role of modulating pro-inflammatory responses that would impact upon an individual

  8. NMR study of the preparation of 6 {alpha}, 7 {beta}-dihydroxyvouacapan-17 beta-oic acid mannich base derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Flavio Jose Leite dos; Pilo-Veloso, Dorila [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Inst. de Ciencias Exatas. Dept. Quimica]. E-mail: dorila@zeus.qui.ufmg.br; Ferreira-Alves, Dalton L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte (Brazil). Inst. de Ciencias Biologicas. Dept. de Farmacologia

    2007-07-01

    This work presents four new Mannich base compounds obtained by the Mannich reaction of a {delta}-keto-lactone derivative of 6{alpha}, 7{beta}-dihydroxyvouacapan- 17{beta}-oic acid, a furano diterpene isolated from the hexane extract of Pterodon polygalaeflorus Benth fruits, which shows anti-inflammatory and analgesic activities. The use of 1D and 2D NMR (COSY, DEPT-135, HMBC, HMQC) spectroscopy made it possible to characterize the new compounds. (author)

  9. Chemical engineering of a three-fingered toxin with anti-alpha7 neuronal acetylcholine receptor activity.

    Science.gov (United States)

    Mourier, G; Servent, D; Zinn-Justin, S; Ménez, A

    2000-03-01

    Though it possesses four disulfide bonds the three-fingered fold is amenable to chemical synthesis, using a Fmoc-based method. Thus, we synthesized a three-fingered curaremimetic toxin from snake with high yield and showed that the synthetic and native toxins have the same structural and biological properties. Both were characterized by the same 2D NMR spectra, identical high binding affinity (K(d) = 22 +/- 5 pM) for the muscular acetylcholine receptor (AChR) and identical low affinity (K(d) = 2.0 +/- 0.4 microM) for alpha7 neuronal AchR. Then, we engineered an additional loop cyclized by a fifth disulfide bond at the tip of the central finger. This loop is normally present in longer snake toxins that bind with high affinity (K(d) = 1-5 nM) to alpha7 neuronal AchR. Not only did the chimera toxin still bind with the same high affinity to the muscular AchR but also it displayed a 20-fold higher affinity (K(d) = 100 nM) for the neuronal alpha7 AchR, as compared with the parental short-chain toxin. This result demonstrates that the engineered loop contributes, at least in part, to the high affinity of long-chain toxins for alpha7 neuronal receptors. That three-fingered proteins with four or five disulfide bonds are amenable to chemical synthesis opens new perspectives for engineering new activities on this fold.

  10. The astrocyte-derived alpha7 nicotinic receptor antagonist kynurenic acid controls extracellular glutamate levels in the prefrontal cortex.

    Science.gov (United States)

    Wu, Hui-Qiu; Pereira, Edna F R; Bruno, John P; Pellicciari, Roberto; Albuquerque, Edson X; Schwarcz, Robert

    2010-01-01

    The cognitive deficits seen in schizophrenia patients are likely related to abnormal glutamatergic and cholinergic neurotransmission in the prefrontal cortex. We hypothesized that these impairments may be secondary to increased levels of the astrocyte-derived metabolite kynurenic acid (KYNA), which inhibits alpha7 nicotinic acetylcholine receptors (alpha7AChR) and may thereby reduce glutamate release. Using in vivo microdialysis in unanesthetized rats, we show here that nanomolar concentrations of KYNA, infused directly or produced in situ from its bioprecursor kynurenine, significantly decrease extracellular glutamate levels in the prefrontal cortex. This effect was prevented by the systemic administration of galantamine (3 mg/kg) but not by donepezil (2 mg/kg), indicating that KYNA blocks the allosteric potentiating site of the alpha7AChR, which recognizes galantamine but not donepezil as an agonist. In separate rats, reduction of prefrontal KYNA formation by (S)-4-ethylsulfonyl benzoylalanine, a specific inhibitor of KYNA synthesis, caused a significant elevation in extracellular glutamate levels. Jointly, our results demonstrate that fluctuations in endogenous KYNA formation bidirectionally influence cortical glutamate concentrations. These findings suggest that selective attenuation of cerebral KYNA production, by increasing glutamatergic tone, might improve cognitive function in individuals with schizophrenia.

  11. Assessment of {alpha}7 nicotinic acetylcholine receptor availability in juvenile pig brain with [{sup 18}F]NS10743

    Energy Technology Data Exchange (ETDEWEB)

    Deuther-Conrad, Winnie; Fischer, Steffen; Hiller, Achim; Funke, Uta; Brust, Peter [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmacy, Leipzig (Germany); Becker, Georg; Sabri, Osama [Univ. of Leipzig, Dept. of Nuclear Medicine, Leipzig (Germany); Cumming, Paul; Xiong, Guoming [Univ. of Munich, Dept. of Nuclear Medicine, Munich (Germany); Peters, Dan [NeuroSearch A/S, Ballerup (Denmark)

    2011-08-15

    To conduct a quantitative PET assessment of the specific binding sites in the brain of juvenile pigs for [{sup 18}F]NS10743, a novel diazabicyclononane derivative targeting {alpha}7 nicotinic acetylcholine receptors ({alpha}7 nAChRs). Dynamic PET recordings were made in isoflurane-anaesthetized juvenile pigs during 120 min after administration of [{sup 18}F]NS10743 under baseline conditions (n = 3) and after blocking of the {alpha}7 nAChR with NS6740 (3 mg.kg{sup -1} bolus + 1 mg.kg{sup -1}.h{sup -1} continuous infusion; n = 3). Arterial plasma samples were collected for determining the input function of the unmetabolized tracer. Kinetic analysis of regional brain time-radioactivity curves was performed, and parametric maps were calculated relative to arterial input. Plasma [{sup 18}F]NS10743 passed readily into the brain, with peak uptake occurring in {alpha}7 nAChR-expressing brain regions such as the colliculi, thalamus, temporal lobe and hippocampus. The highest SUV{sub max} was approximately 2.3, whereas the lowest uptake was in the olfactory bulb (SUV{sub max} 1.53 {+-} 0.32). Administration of NS6740 significantly decreased [{sup 18}F]NS10743 binding late in the emission recording throughout the brain, except in the olfactory bulb, which was therefore chosen as reference region for calculation of BP{sub ND}. The baseline BP{sub ND} ranged from 0.39 {+-} 0.08 in the cerebellum to 0.76 {+-} 0.07 in the temporal lobe. Pretreatment and constant infusion with NS6740 significantly reduced the BP{sub ND} in regions with high [{sup 18}F]NS10743 binding (temporal lobe -29%, p = 0.01; midbrain: -35%, p = 0.02), without significantly altering the BP{sub ND} in low binding regions (cerebellum: -16%, p = 0.2). This study confirms the potential of [{sup 18}F]NS10743 as a target-specific radiotracer for the molecular imaging of central {alpha}7 nAChRs by PET. (orig.)

  12. Genome-wide examination of myoblast cell cycle withdrawal duringdifferentiation

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xun; Collier, John Michael; Hlaing, Myint; Zhang, Leanne; Delshad, Elizabeth H.; Bristow, James; Bernstein, Harold S.

    2002-12-02

    Skeletal and cardiac myocytes cease division within weeks of birth. Although skeletal muscle retains limited capacity for regeneration through recruitment of satellite cells, resident populations of adult myocardial stem cells have not been identified. Because cell cycle withdrawal accompanies myocyte differentiation, we hypothesized that C2C12 cells, a mouse myoblast cell line previously used to characterize myocyte differentiation, also would provide a model for studying cell cycle withdrawal during differentiation. C2C12 cells were differentiated in culture medium containing horse serum and harvested at various time points to characterize the expression profiles of known cell cycle and myogenic regulatory factors by immunoblot analysis. BrdU incorporation decreased dramatically in confluent cultures 48 hr after addition of horse serum, as cells started to form myotubes. This finding was preceded by up-regulation of MyoD, followed by myogenin, and activation of Bcl-2. Cyclin D1 was expressed in proliferating cultures and became undetectable in cultures containing 40 percent fused myotubes, as levels of p21(WAF1/Cip1) increased and alpha-actin became detectable. Because C2C12 myoblasts withdraw from the cell cycle during myocyte differentiation following a course that recapitulates this process in vivo, we performed a genome-wide screen to identify other gene products involved in this process. Using microarrays containing approximately 10,000 minimally redundant mouse sequences that map to the UniGene database of the National Center for Biotechnology Information, we compared gene expression profiles between proliferating, differentiating, and differentiated C2C12 cells and verified candidate genes demonstrating differential expression by RT-PCR. Cluster analysis of differentially expressed genes revealed groups of gene products involved in cell cycle withdrawal, muscle differentiation, and apoptosis. In addition, we identified several genes, including DDAH2 and Ly

  13. Characterization of human myoblast cultures for tissue engineering.

    Science.gov (United States)

    Stern-Straeter, Jens; Bran, Gregor; Riedel, Frank; Sauter, Alexander; Hörmann, Karl; Goessler, Ulrich Reinhart

    2008-01-01

    Skeletal muscle tissue engineering, a promising specialty, aims at the reconstruction of skeletal muscle loss. In vitro tissue engineering attempts to achieve this goal by creating differentiated, functional muscle tissue through a process in which stem cells are extracted from the patient, e.g. by muscle biopsies, expanded and differentiated in a controlled environment, and subsequently re-implanted. A prerequisite for this undertaking is the ability to cultivate and differentiate human skeletal muscle cell cultures. Evidently, optimal culture conditions must be investigated for later clinical utilization. We therefore analysed the proliferation of human cells in different environments and evaluated the differentiation potential of different culture media. It was shown that human myoblasts have a higher rate of proliferation in the alamarBlue assay when cultured on gelatin-coated culture flasks rather than polystyrene-coated flasks. We also demonstrated that myoblasts treated with a culture medium with a high concentration of growth factors [growth medium (GM)] showed a higher proliferation compared to cultures treated with a culture medium with lower amounts of growth factors [differentiation medium (DM)]. Differentiation of human myoblast cell cultures treated with GM and DM was analysed until day 16 and myogenesis was verified by expression of MyoD, myogenin, alpha-sarcomeric actin and myosin heavy chain by semi-quantitative RT-PCR. Immunohistochemical staining for desmin, Myf-5 and alpha-sarcomeric actin was performed to verify the myogenic phenotype of extracted satellite cells and to prove the maturation of cells. Cultures treated with DM showed positive staining for alpha-sarcomeric actin. Notably, markers of differentiation were also detected in cultures treated with GM, but there was no formation of myotubes. In the enzymatic assay of creatine phosphokinase, cultures treated with DM showed a higher activity, evidencing a higher degree of differentiation

  14. Absence of muscle regeneration after implantation of a collagen matrix seeded with myoblasts

    NARCIS (Netherlands)

    van Wachem, PB; Brouwer, LA; van Luyn, MJA

    1999-01-01

    Collagens are widely used as biomaterials for e.g. soft tissue reconstruction. The present study was aimed at reconstruction of abdominal wall muscle using processed dermal sheep collagen (DSC) and myoblast seeding. Myoblasts were harvested from foetal quadriceps muscle of an inbred rat strain, cult

  15. Silencing myotubularin related protein 7 enhances proliferation and early differentiation of C2C12 myoblast.

    Science.gov (United States)

    Yuan, Zhuning; Chen, Yaosheng; Zhang, Xumeng; Zhou, Xingyu; Li, Mingsen; Chen, Hu; Wu, Ming; Zhang, Ying; Mo, Delin

    2017-03-11

    Myotubularin related protein 7 (MTMR7) is a key member of the highly conserved myotubularin related proteins (MTMRs) family, which has phosphatase activity. MTMR7 was increased during myoblast differentiation and exhibited high expression level at primary fibers formation stages in pigs. This suggests that MTMR7 may be involved in myogenesis. In our study, we investigated the roles of MTMR7 on proliferation and differentiation of C2C12 myoblasts. Knocking down MTMR7 not only enhanced myoblast early differentiation via altering the expression of Myf5, but also promoted myoblast proliferation through increasing cyclinA2 expression. The improved proliferation capacity was related to the increased phosphorylation of AKT. Taken together, our research demonstrates that MTMR7 plays an important role in proliferation and early differentiation of C2C12 myoblast.

  16. Chromium Picolinate did not Effect on the Proliferation and Differentiation of Myoblasts

    Directory of Open Access Journals (Sweden)

    M. C. Tsa

    2007-01-01

    Full Text Available This experiment is conducted in vitro to investigate trivalent chromium picolinate affects the proliferation and differentiation of myoblasts. A myoblasts cell line (C2C12 from rats was used in the experiment. These were randomly divided into the control group, the Pic group (50ppb picolinate and the CrPic group (50ppb chromium picolinate. The differentiation of myoblasts reveals that the number of differentiated myotubes, creatine kinase (CK activity and the aldolase (ALB activity do not differ among the three groups (P > 0.05. The activity of hexokinase in the CrPic and Pic groups clearly exceeds that in the control group (P 0.05. Myoblast proliferation was the same across the three groups (P > 0.05, and the quantity of DNA in the control group exceeded that in the Pic group (P < 0.05. The experiment indicated that 200ppb chromium picolinate did not influence the proliferation and differentiation of myoblasts.

  17. Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation

    Science.gov (United States)

    Mo, Chenglin; Zhao, Ruonan; Vallejo, Julian; Igwe, Orisa; Bonewald, Lynda; Wetmore, Lori; Brotto, Marco

    2015-01-01

    We recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions. Although four types of receptors, EP1 to EP4, mediate PGE2 signaling, it is unknown whether these receptors play a role in myogenesis. Therefore, in this study, the expression of EPs in mouse primary myoblasts was characterized, followed by examination of their roles in myoblast proliferation by treating myoblasts with PGE2 or specific agonists. All four PGE2 receptor mRNAs were detectable by quantitative real-time PCR (qPCR), but only PGE2 and EP4 agonist CAY 10598 significantly enhance myoblast proliferation. EP1/EP3 agonist 17-phenyl trinor PGE2 (17-PT PGE2) and EP2 agonist butaprost did not have any significant effects. Moreover, treatment with EP4 antagonist L161,982 dose-dependently inhibited myoblast proliferation. These results were confirmed by cell cycle analysis and the gene expression of cell cycle regulators. Concomitant with the inhibition of myoblast proliferation, treatment with L161,982 significantly increased intracellular reactive oxygen species (ROS) levels. Cotreatment with antioxidant N-acetyl cysteine (NAC) or sodium ascorbate (SA) successfully reversed the inhibition of myoblast proliferation and ROS overproduction caused by L161,982. Therefore, PGE2 signaling via the EP4 receptor regulates myogenesis by promoting myoblast proliferation and blocking this receptor results in increased ROS production in myoblasts. PMID:25785867

  18. Codependent activators direct myoblast-specific MyoD transcription.

    Science.gov (United States)

    Hu, Ping; Geles, Kenneth G; Paik, Ji-Hye; DePinho, Ronald A; Tjian, Robert

    2008-10-01

    Although FoxO and Pax proteins represent two important families of transcription factors in determining cell fate, they had not been functionally or physically linked together in mediating regulation of a common target gene during normal cellular transcription programs. Here, we identify MyoD, a key regulator of myogenesis, as a direct target of FoxO3 and Pax3/7 in myoblasts. Our cell-based assays and in vitro studies reveal a tight codependent partnership between FoxO3 and Pax3/7 to coordinately recruit RNA polymerase II and form a preinitiation complex (PIC) to activate MyoD transcription in myoblasts. The role of FoxO3 in regulating muscle differentiation is confirmed in vivo by observed defects in muscle regeneration caused by MyoD downregulation in FoxO3 null mice. These data establish a mutual interdependence and functional link between two families of transcription activators serving as potential signaling sensors and regulators of cell fate commitment in directing tissue specific MyoD transcription.

  19. Hypoxia induces adipogenic differentitation of myoblastic cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Itoigawa, Yoshiaki [Tohoku University School of Medicine, Sendai (Japan); Juntendo University School of Medicine, Tokyo (Japan); Kishimoto, Koshi N., E-mail: kishimoto@med.tohoku.ac.jp [Tohoku University School of Medicine, Sendai (Japan); Okuno, Hiroshi; Sano, Hirotaka [Tohoku University School of Medicine, Sendai (Japan); Kaneko, Kazuo [Juntendo University School of Medicine, Tokyo (Japan); Itoi, Eiji [Tohoku University School of Medicine, Sendai (Japan)

    2010-09-03

    Research highlights: {yields} C2C12 and G8 myogenic cell lines treated by hypoxia differentiate into adipocytes. {yields} The expression of C/EBP{beta}, {alpha} and PPAR{gamma} were increased under hypoxia. {yields} Myogenic differentiation of C2C12 was inhibited under hypoxia. -- Abstract: Muscle atrophy usually accompanies fat accumulation in the muscle. In such atrophic conditions as back muscles of kyphotic spine and the rotator cuff muscles with torn tendons, blood flow might be diminished. It is known that hypoxia causes trans-differentiation of mesenchymal stem cells derived from bone marrow into adipocytes. However, it has not been elucidated yet if hypoxia turned myoblasts into adipocytes. We investigated adipogenesis in C2C12 and G8 murine myogenic cell line treated by hypoxia. Cells were also treated with the cocktail of insulin, dexamethasone and IBMX (MDI), which has been known to inhibit Wnt signaling and promote adipogenesis. Adipogenic differentiation was seen in both hypoxia and MDI. Adipogenic marker gene expression was assessed in C2C12. CCAAT/enhancer-binding protein (C/EBP) {beta}, {alpha} and peroxisome proliferator activating receptor (PPAR) {gamma} were increased by both hypoxia and MDI. The expression profile of Wnt10b was different between hypoxia and MDI. The mechanism for adipogenesis of myoblasts in hypoxia might be regulated by different mechanism than the modification of Wnt signaling.

  20. Microarray assessment of fibronectin, collagen and integrin expression and the role of fibronectin-collagen coating in the growth of normal, SV40 T-antigen-immortalised and malignant human oral keratinocytes.

    Science.gov (United States)

    Sarang, Zsolt; Haig, Ylva; Hansson, Annette; Vondracek, Martin; Wärngård, Lars; Grafström, Roland

    2003-12-01

    Extracellular matrix proteins affect the growth and survival of epithelial tissues. Accordingly, surface coating with fibronectin and collagen is a common practice for promoting keratinocyte culture. In this study, the expression of fibronectin and collagen-related factors, including integrins, by normal (NOK), SV40 T-antigen-immortalised (SVpgC2a) and malignant (SqCC/Y1) human oral keratinocytes, under standardised, serum-free conditions, was investigated by using microarray analysis. Cell growth was also studied in the presence and absence of a matrix consisting of human fibronectin and bovine collagen type I (FN-COL). Fibronectin transcripts were abundant in all cells, whereas 16 of 29 collagen chains and 14 of 24 integrin subunits were variably detected. With regard to both the expression level and the number of transcripts, higher collagen and lower integrin expression was observed in SVpgC2a cells than in NOKs and SqCC/Y1 cells. The cell types differed with regard to colony-forming efficiency and the rate and kinetics of growth at high cell density. For all cell types, FN-COL coating consistently stimulated cell migration, without influencing growth in mass culture or clonal density. The results demonstrate the transcription of genes associated with the formation and function of fibronectin and collagen in oral epithelium, and variably altered expression patterns in transformed states, and show that keratinocyte lines can be successfully transferred without the stimulus from extracellular FN-COL.

  1. Positronium energy levels at order $m \\alpha^7$: light-by-light scattering in the two-photon-annihilation channel

    CERN Document Server

    Adkins, Gregory S; Salinger, M D; Wang, Ruihan; Fell, Richard N

    2014-01-01

    Recent and ongoing experimental work on the positronium spectrum motivates new efforts to calculate positronium energy levels at the level of three loop corrections. We have obtained results for one set of such corrections involving light-by-light scattering of the photons produced in a two-photon virtual annihilation process. Our result is an energy shift $1.58377(8) m \\alpha^7/\\pi^3$ for the n=1 singlet state, correcting the ground state hyperfine splitting by -6.95 kHz. We also obtained a new and more precise result for the light-by-light scattering correction to the real decay of parapositronium into two photons.

  2. The alpha7 nicotinic receptor agonist SSR180711 increases activity regulated cytoskeleton protein (Arc) gene expression in the prefrontal cortex of the rat

    DEFF Research Database (Denmark)

    Kristensen, Søren; Thomsen, Morten Skøtt; Hansen, Henrik H

    2007-01-01

    Nicotinic alpha7 acetylcholine receptors (alpha7 nAChR) have been shown to enhance attentional function and aspects of memory function in experimental models and in man. The protein Arc encoded by the effector immediate early gene arc or arg3.1 has been shown to be strongly implicated in long-ter...... of neurons in the rat prefrontal cortex and this activation likely is important for the attentional effects of this new class of drugs.......Nicotinic alpha7 acetylcholine receptors (alpha7 nAChR) have been shown to enhance attentional function and aspects of memory function in experimental models and in man. The protein Arc encoded by the effector immediate early gene arc or arg3.1 has been shown to be strongly implicated in long...

  3. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits {alpha}7 and {beta}2 in the sudden infant death syndrome (SIDS) brainstem

    Energy Technology Data Exchange (ETDEWEB)

    Machaalani, Rita, E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Say, Meichien [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); Waters, Karen A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia)

    2011-12-15

    It is postulated that nicotine, as the main neurotoxic constituent of cigarette smoke, influences SIDS risk through effects on nicotinic acetylcholine receptors (nAChRs) in brainstem nuclei that control respiration and arousal. This study compared {alpha}7 and {beta}2 nAChR subunit expression in eight nuclei of the caudal and rostral medulla and seven nuclei of the pons between SIDS (n = 46) and non-SIDS infants (n = 14). Evaluation for associations with known SIDS risk factors included comparison according to whether infants had a history of exposure to cigarette smoke in the home, and stratification for sleep position and gender. Compared to non-SIDS infants, SIDS infants had significantly decreased {alpha}7 in the caudal nucleus of the solitary tract (cNTS), gracile and cuneate nuclei, with decreased {beta}2 in the cNTS and increased {beta}2 in the facial. When considering only the SIDS cohort: 1-cigarette smoke exposure was associated with increased {alpha}7 in the vestibular nucleus and increased {beta}2 in the rostral dorsal motor nucleus of the vagus, rNTS and Cuneate, 2-there was a gender interaction for {alpha}7 in the gracile and cuneate, and {beta}2 in the cNTS and rostral arcuate nucleus, and 3-there was no effect of sleep position on {alpha}7, but prone sleep was associated with decreased {beta}2 in three nuclei of the pons. In conclusion, SIDS infants demonstrate differences in expression of {alpha}7 and {beta}2 nAChRs within brainstem nuclei that control respiration and arousal, which is independent on prior history of cigarette smoke exposure, especially for the NTS, with additional differences for smoke exposure ({beta}2), gender ({alpha}7 and {beta}2) and sleep position ({beta}2) evident. -- Highlights: Black-Right-Pointing-Pointer The 'normal' response to smoke exposure is decreased {alpha}7 and {beta}2 in certain nuclei. Black-Right-Pointing-Pointer SIDS infants have decreased {alpha}7 in cNTS, Grac and Cun. Black

  4. Myoblast replication is reduced in the IUGR fetus despite maintained proliferative capacity in vitro.

    Science.gov (United States)

    Soto, Susan M; Blake, Amy C; Wesolowski, Stephanie R; Rozance, Paul J; Barthel, Kristen B; Gao, Bifeng; Hetrick, Byron; McCurdy, Carrie E; Garza, Natalia G; Hay, William W; Leinwand, Leslie A; Friedman, Jacob E; Brown, Laura D

    2017-03-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass and insulin resistance, suggesting muscle growth may be restricted by molecular events that occur during fetal development. To explore the basis of restricted fetal muscle growth, we used a sheep model of progressive placental insufficiency-induced IUGR to assess myoblast proliferation within intact skeletal muscle in vivo and isolated myoblasts stimulated with insulin in vitro Gastrocnemius and soleus muscle weights were reduced by 25% in IUGR fetuses compared to those in controls (CON). The ratio of PAX7+ nuclei (a marker of myoblasts) to total nuclei was maintained in IUGR muscle compared to CON, but the fraction of PAX7+ myoblasts that also expressed Ki-67 (a marker of cellular proliferation) was reduced by 23%. Despite reduced proliferation in vivo, fetal myoblasts isolated from IUGR biceps femoris and cultured in enriched media in vitro responded robustly to insulin in a dose- and time-dependent manner to increase proliferation. Similarly, insulin stimulation of IUGR myoblasts upregulated key cell cycle genes and DNA replication. There were no differences in the expression of myogenic regulatory transcription factors that drive commitment to muscle differentiation between CON and IUGR groups. These results demonstrate that the molecular machinery necessary for transcriptional control of proliferation remains intact in IUGR fetal myoblasts, indicating that in vivo factors such as reduced insulin and IGF1, hypoxia and/or elevated counter-regulatory hormones may be inhibiting muscle growth in IUGR fetuses. © 2017 Society for Endocrinology.

  5. S100B Engages RAGE or bFGF/FGFR1 in Myoblasts Depending on Its Own Concentration and Myoblast Density. Implications for Muscle Regeneration

    Science.gov (United States)

    Beccafico, Sara; Donato, Rosario

    2012-01-01

    In high-density myoblast cultures S100B enhances basic fibroblast growth factor (bFGF) receptor 1 (FGFR1) signaling via binding to bFGF and blocks its canonical receptor, receptor for advanced glycation end-products (RAGE), thereby stimulating proliferation and inhibiting differentiation. Here we show that upon skeletal muscle injury S100B is released from myofibers with maximum release at day 1 post-injury in coincidence with satellite cell activation and the beginning of the myoblast proliferation phase, and declining release thereafter in coincidence with reduced myoblast proliferation and enhanced differentiation. By contrast, levels of released bFGF are remarkably low at day 1 post-injury, peak around day 5 and decline thereafter. We also show that in low-density myoblast cultures S100B binds RAGE, but not bFGF/FGFR1 thereby simultaneously stimulating proliferation via ERK1/2 and activating the myogenic program via p38 MAPK. Clearance of S100B after a 24-h treatment of low-density myoblasts results in enhanced myotube formation compared with controls as a result of increased cell numbers and activated myogenic program, whereas chronic treatment with S100B results in stimulation of proliferation and inhibition of differentiation due to a switch of the initial low-density culture to a high-density culture. However, at relatively high doses, S100B stimulates the mitogenic bFGF/FGFR1 signaling in low-density myoblasts, provided bFGF is present. We propose that S100B is a danger signal released from injured muscles that participates in skeletal muscle regeneration by activating the promyogenic RAGE or the mitogenic bFGF/FGFR1 depending on its own concentration, the absence or presence of bFGF, and myoblast density. PMID:22276098

  6. Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation.

    Science.gov (United States)

    Pedrotty, Dawn M; Koh, Jennifer; Davis, Bryce H; Taylor, Doris A; Wolf, Patrick; Niklason, Laura E

    2005-04-01

    Immature skeletal muscle cells, or myoblasts, have been used in cellular cardiomyoplasty in attempts to regenerate cardiac muscle tissue by injection of cells into damaged myocardium. In some studies, muscle tissue within myoblast implant sites may be morphologically similar to cardiac muscle. We hypothesized that identifiable aspects of the cardiac milieu may contribute to growth and development of implanted myoblasts in vivo. To test this hypothesis, we designed a novel in vitro system to mimic some aspects of the electrical and biochemical environment of native myocardium. This system enabled us to separate the three-dimensional (3-D) electrical and biochemical signals that may be involved in myoblast proliferation and plasticity. Myoblasts were grown on 3-D polyglycolic acid mesh scaffolds under control conditions, in the presence of cardiac-like electrical current fluxes, or in the presence of culture medium that had been conditioned by mature cardiomyocytes. Cardiac-like electrical current fluxes caused increased myoblast number in 3-D culture, as determined by DNA assay. The increase in cell number was due to increased cellular proliferation and not differences in apoptosis, as determined by proliferating cell nuclear antigen and TdT-mediated dUTP nick-end labeling. Cardiomyocyte-conditioned medium also significantly increased myoblast proliferation. Expression of transcription factors governing differentiation along skeletal or cardiac lineages was evaluated by immunoblotting. Although these assays are qualitative, no changes in differentiation state along skeletal or cardiac lineages were observed in response to electrical current fluxes. Furthermore, from these experiments, conditioned medium did not appear to alter the differentiation state of skeletal myoblasts. Hence, cardiac milieu appears to stimulate proliferation but does not affect differentiation of skeletal myoblasts.

  7. Alexa Fluor 546-ArIB[V11L;V16A] is a potent ligand for selectively labeling alpha 7 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Hone, Arik J; Whiteaker, Paul; Mohn, Jesse L; Jacob, Michele H; McIntosh, J Michael

    2010-08-01

    The alpha7* (*denotes the possible presence of additional subunits) nicotinic acetylcholine receptor (nAChR) subtype is widely expressed in the vertebrate nervous system and implicated in neuropsychiatric disorders that compromise thought and cognition. In this report, we demonstrate that the recently developed fluorescent ligand Cy3-ArIB[V11L;V16A] labels alpha7 nAChRs in cultured hippocampal neurons. However, photobleaching of this ligand during long image acquisition times prompted us to develop a new derivative. In photostability studies, this new ligand, Alexa Fluor 546-ArIB[V11L;V16A], was significantly more resistant to bleaching than the Cy3 derivative. The classic alpha7 ligand alpha-bungarotoxin binds to alpha1* and alpha9* nAChRs. In contrast, Alexa Fluor 546-ArIB[V11L;V16A] potently (IC(50) 1.8 nM) and selectively blocked alpha7 nAChRs but not alpha1* or alpha9* nAChRs expressed in Xenopus oocytes. Selectivity was further confirmed by competition binding studies of native nAChRs in rat brain membranes. The fluorescence properties of Alexa Fluor 546-ArIB[V11L;V16A] were assessed using human embryonic kidney-293 cells stably transfected with nAChRs; labeling was observed on cells expressing alpha7 but not cells expressing alpha3beta2, alpha3beta4, or alpha4beta2 nAChRs. Further imaging studies demonstrate that Alexa Fluor 546-ArIB[V11L;V16A] labels hippocampal neurons from wild-type mice but not from nAChR alpha7 subunit-null mice. Thus, Alexa Fluor 546-ArIB[V11L;V16A] represents a potent and selective ligand for imaging alpha7 nAChRs.

  8. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan); Gojo, Satoshi [Department of Cardiac Support, Kyoto Prefectural University of Medicine, Kyoto (Japan); Mazda, Osam, E-mail: mazda@koto.kpu-m.ac.jp [Department of Immunology, Kyoto Prefectural University of Medicine, Kyoto (Japan)

    2013-02-08

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblasts from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.

  9. Induction of angiogenesis by implantation of encapsulated primary myoblasts expressing vascular endothelial growth factor.

    Science.gov (United States)

    Springer, M L; Hortelano, G; Bouley, D M; Wong, J; Kraft, P E; Blau, H M

    2000-01-01

    We previously demonstrated that intramuscular implantation of primary myoblasts engineered to express vascular endothelial growth factor (VEGF) constitutively resulted in hemangioma formation and the appearance of VEGF in the circulation. To investigate the potential for using allogeneic myoblasts and the effects of delivery of VEGF-expressing myoblasts to non-muscle sites, we have enclosed them in microcapsules that protect allogeneic cells from rejection, yet allow the secretion of proteins produced by the cells. Encapsulated mouse primary myoblasts that constitutively expressed murine VEGF164, or encapsulated negative control cells, were implanted either subcutaneously or intraperitoneally into mice. Upon subcutaneous implantation, capsules containing VEGF-expressing myoblasts gave rise to large tissue masses at the implantation site that continued to grow and were composed primarily of endothelial and smooth muscle cells directly surrounding the capsules, and macrophages and capillaries further away from the capsules. Similarly, when injected intraperitoneally, VEGF-producing capsules caused significant localized inflammation and angiogenesis within the peritoneum, and ultimately led to fatal intraperitoneal hemorrhage. Notably, however, VEGF was not detected in the plasma of any mice. We conclude that encapsulated primary myoblasts persist and continue to secrete VEGF subcutaneously and intraperitoneally, but that the heparin-binding isoform VEGF164 exerts localized effects at the site of production. VEGF secreted from the capsules attracts endothelial and smooth muscle cells in a macrophage-independent manner. These results, along with our previous results, show that the mode and site of delivery of the same factor by the same engineered myoblasts can lead to markedly different outcomes. Moreover, the results confirm that constitutive delivery of high levels of VEGF is not desirable. In contrast, regulatable expression may lead to efficacious, safe, and

  10. Elastic hydrogel substrate supports robust expansion of murine myoblasts and enhances their engraftment

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ke, E-mail: dk1118@yeah.net [Department of Pediatric Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072 (China); Yang, Zhong [Department of Clinical Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Xu, Jian-zhong, E-mail: xjzspine@163.com [Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Liu, Wen-ying; Zeng, Qiang; Hou, Fang [Department of Pediatric Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072 (China); Lin, Sen [Department of Anatomy and Histology & Embryology, Chengdu Medical College, Chengdu 610500 (China)

    2015-09-10

    The application of satellite cell-derived myoblasts in regenerative medicine has been restricted by the rapid loss of stemness during in vitro cell expansion using traditional culture systems. However, studies published in the past decade have highlighted the influence of substrate elasticity on stem cell fate and revealed that culture on a soft hydrogel substrate can promote self-renewal and prolong the regenerative potential of muscle stem cells. Whether hydrogel substrates have similar effects after long-term robust expansion remains to be determined. Herein we prepared an elastic chitosan/beta-glycerophosphate/collagen hydrogel mimicking the soft microenvironment of muscle tissues for use as the substrate for satellite cell culture and investigated its influence on long-term cell expansion. After 20 passages in culture, satellite cell-derived myoblasts cultured on our hydrogel substrate exhibited significant improvements in proliferation capability, cell viability, colony forming frequency, and potential for myogenic differentiation compared to those cultured on a routine rigid culture surface. Immunochemical staining and western blot analysis both confirmed that myoblasts cultured on the hydrogel substrate expressed higher levels of several differentiation-related markers, including Pax7, Pax3, and SSEA-1, and a lower level of MyoD compared to myoblasts cultured on rigid culture plates (all p<0.05). After transplantation into the tibialis anterior of nude mice, myoblasts that had been cultured on the hydrogel substrate demonstrated a significantly greater engraftment efficacy than those cultured on the traditional surface. Collectively, these results indicate that the elastic hydrogel substrate supported robust expansion of murine myoblasts and enhanced their engraftment in vivo. - Highlights: • An elastic hydrogel was designed to mimic the pliable muscle tissue microenvironment. • Myoblasts retained their stemness in long-term culture on the elastic

  11. Phosphorylation of Lbx1 controls lateral myoblast migration into the limb.

    Science.gov (United States)

    Masselink, Wouter; Masaki, Megumi; Sieiro, Daniel; Marcelle, Christophe; Currie, Peter D

    2017-08-24

    The migration of limb myogenic precursors from limb level somites to their ultimate site of differentiation in the limb is a paradigmatic example of a set of dynamic and orchestrated migratory cell behaviours. The homeobox containing transcription factor ladybird homeobox 1 (Lbx1) is a central regulator of limb myoblast migration, null mutations of Lbx1 result in severe disruptions to limb muscle formation, particularly in the distal region of the limb in mice (Gross et al., 2000). As such Lbx1 has been hypothesized to control lateral migration of myoblasts into the distal limb anlage. It acts as a core regulator of the limb myoblast migration machinery, controlled by Pax3. A secondary role for Lbx1 in the differentiation and commitment of limb musculature has also been proposed (Brohmann et al., 2000; Uchiyama et al., 2000). Here we show that lateral migration, but not differentiation or commitment of limb myoblasts, is controlled by the phosphorylation of three adjacent serine residues of LBX1. Electroporation of limb level somites in the chick embryo with a dephosphomimetic form of Lbx1 results in a specific defect in the lateral migration of limb myoblasts. Although the initial delamination and migration of myoblasts is unaffected, migration into the distal limb bud is severely disrupted. Interestingly, myoblasts undergo normal differentiation independent of their migratory status, suggesting that the differentiation potential of hypaxial muscle is not regulated by the phosphorylation state of LBX1. Furthermore, we show that FGF8 and ERK mediated signal transduction, both critical regulators of the developing limb bud, have the capacity to induce the phosphorylation of LBX1 at these residues. Overall, this suggests a mechanism whereby the phosphorylation of LBX1, potentially through FGF8 and ERK signalling, controls the lateral migration of myoblasts into the distal limb bud. Copyright © 2017. Published by Elsevier Inc.

  12. Determining the mechanical properties of plectin in mouse myoblasts and keratinocytes.

    Science.gov (United States)

    Bonakdar, Navid; Schilling, Achim; Spörrer, Marina; Lennert, Pablo; Mainka, Astrid; Winter, Lilli; Walko, Gernot; Wiche, Gerhard; Fabry, Ben; Goldmann, Wolfgang H

    2015-02-15

    Plectin is the prototype of an intermediate filament (IF)-based cytolinker protein. It affects cells mechanically by interlinking and anchoring cytoskeletal filaments and acts as scaffolding and docking platform for signaling proteins to control cytoskeleton dynamics. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Therefore, we compared the biomechanical properties and the response to mechanical stress of murine plectin-deficient myoblasts and keratinocytes with wild-type cells. Using a cell stretching device, plectin-deficient myoblasts exhibited lower mechanical vulnerability upon external stress compared to wild-type cells, which we attributed to lower cellular pre-stress. Contrary to myoblasts, wild-type and plectin-deficient keratinocytes showed no significant differences. In magnetic tweezer measurements using fibronectin-coated paramagnetic beads, the stiffness of keratinocytes was higher than of myoblasts. Interestingly, cell stiffness, adhesion strength, and cytoskeletal dynamics were strikingly altered in plectin-deficient compared to wild-type myoblasts, whereas smaller differences were observed between plectin-deficient and wild-type keratinocytes, indicating that plectin might be more important for stabilizing cytoskeletal structures in myoblasts than in keratinocytes. Traction forces strongly correlated with the stiffness of plectin-deficient and wild-type myoblasts and keratinocytes. Contrary to that cell motility was comparable in plectin-deficient and wild-type myoblasts, but was significantly increased in plectin-deficient compared to wild-type keratinocytes. Thus, we postulate that the lack of plectin has divergent implications on biomechanical properties depending on the respective cell type. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Postsynaptic action of brain-derived neurotrophic factor attenuates alpha7 nicotinic acetylcholine receptor-mediated responses in hippocampal interneurons.

    Science.gov (United States)

    Fernandes, Catarina C; Pinto-Duarte, António; Ribeiro, Joaquim Alexandre; Sebastião, Ana M

    2008-05-21

    Nicotinic mechanisms acting on the hippocampus influence attention, learning, and memory and constitute a significant therapeutic target for many neurodegenerative, neurological, and psychiatric disorders. Here, we report that brain-derived neurotrophic factor (BDNF) (1-100 ng/ml), a member of the neurotrophin gene family, rapidly decreases alpha7 nicotinic acetylcholine receptor responses in interneurons of the hippocampal CA1 stratum radiatum. Such effect is dependent on the activation of the TrkB receptor and involves the actin cytoskeleton; noteworthy, it is compromised when the extracellular levels of the endogenous neuromodulator adenosine are reduced with adenosine deaminase (1 U/ml) or when adenosine A(2A) receptors are blocked with SCH 58261 (2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine) (100 nm). The intracellular application of U73122 (1-[6[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) (5 mum), a broad-spectrum inhibitor of phospholipase C, or GF 109203X (bisindolylmaleimide I) (2 mum), a general inhibitor of protein kinase C isoforms, blocks BDNF-induced inhibition of alpha7 nicotinic acetylcholine receptor function. Moreover, in conditions of simultaneous intracellular dialysis of the fast Ca(2+) chelator BAPTA (10 mm) and removal of extracellular Ca(2+) ions, the inhibitory action of BDNF is further prevented. The present findings disclose a novel target for rapid actions of BDNF that might play important roles on synaptic transmission and plasticity in the brain.

  14. The nuclear protein-coding gene ANKRD23 negatively regulates myoblast differentiation.

    Science.gov (United States)

    Wang, Xiaojing; Zeng, Rui; Xu, Haiyang; Xu, Zaiyan; Zuo, Bo

    2017-09-20

    Muscle fiber formation is a complex process and subject to fine regulation of a variety of protein-coding genes and non-coding RNA. In this study, we identified a nuclear protein-coding gene ANKRD23 which was highly expressed in muscle. Quantitative real-time PCR, western blotting and immunofluorescence were used to detect the expression change of myoblast differentiation marker genes after knockdown and overexpression of ANKRD23. The results showed that the expression of myoblast differentiation marker genes were increased by interference and reduced by ANKRD23 overexpression, indicating that ANKRD23 played a negative role in the myoblast differentiation. Interestingly, we discovered a long non-coding RNA-AK004293 which was overlapped with the 3'UTR of ANKRD23 gene. Then we detected the effect of AK004293 on the expression of ANKRD23 and myoblast differentiation marker genes in C2C12 myoblasts. The results showed that AK004293 had no significant effect on the expression of myoblast differentiation maker genes and ANKRD23. In conclusion, our results established the foundation for further studies about the regulation mechanism of ANKRD23 in muscle development. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. FSHD myoblasts fail to downregulate intermediate filament protein vimentin during myogenic differentiation.

    Directory of Open Access Journals (Sweden)

    Lipinski M.

    2011-10-01

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal dominant hereditary neuromuscular disorder. The clinical features of FSHD include weakness of the facial and shoulder girdle muscles followed by wasting of skeletal muscles of the pelvic girdle and lower extremities. Although FSHD myoblasts grown in vitro can be induced to differentiate into myotubes by serum starvation, the resulting FSHD myotubes have been shown previously to be morphologically abnormal. Aim. In order to find the cause of morphological anomalies of FSHD myotubes we compared in vitro myogenic differentiation of normal and FSHD myoblasts at the protein level. Methods. We induced myogenic differentiation of normal and FSHD myoblasts by serum starvation. We then compared protein extracts from proliferating myoblasts and differentiated myotubes using SDS-PAGE followed by mass spectrometry identification of differentially expressed proteins. Results. We demonstrated that the expression of vimentin was elevated at the protein and mRNA levels in FSHD myotubes as compared to normal myotubes. Conclusions. We demonstrate for the first time that in contrast to normal myoblasts, FSHD myoblasts fail to downregulate vimentin after induction of in vitro myogenic differentiation. We suggest that vimentin could be an easily detectable marker of FSHD myotubes

  16. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration.

    Science.gov (United States)

    Teng, Shuzhi; Stegner, David; Chen, Qin; Hongu, Tsunaki; Hasegawa, Hiroshi; Chen, Li; Kanaho, Yasunori; Nieswandt, Bernhard; Frohman, Michael A; Huang, Ping

    2015-02-01

    Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1-null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second-phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes, and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis in which PLD1 facilitates the fusion of mononuclear myocytes with nascent myotubes.

  17. Alpha7 nicotinic acetylcholine receptor activation ameliorates scopolamine-induced behavioural changes in a modified continuous Y-maze task in mice.

    Science.gov (United States)

    Redrobe, John P; Nielsen, Elsebet Ø; Christensen, Jeppe K; Peters, Dan; Timmermann, Daniel B; Olsen, Gunnar M

    2009-01-01

    The alpha7 (alpha7) nicotinic acetylcholine receptor may represent a drug target for the treatment of disorders associated with working memory/attentional dysfunction. We investigated the effects of three distinct alpha7 nicotinic acetylcholine receptor agonists: 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941; 0.01-0.1 mg/kg), 4-bromophenyl 1,4-diazabicyclo(3.2.2) nonane-4-carboxylate (SSR180711; 0.3-3 mg/kg) and N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide (PNU-282987; 1-10 mg/kg), on scopolamine-induced deficits in a modified Y-maze procedure. Mice were forced to choose one of two visually distinct arms, and were confined there for a 5 min exploration period before being allowed to explore both arms for a 2 min test session, immediately thereafter. The time spent in each arm, entries and total distance travelled were recorded using an automated system. Characterisation experiments showed that scopolamine-treated (1 mg/kg) mice spent less time exploring the unfamiliar arm, when compared with vehicle-treated animals. Combination experiments showed that all three alpha7 agonists ameliorated scopolamine-induced changes in unfamiliar arm exploration. In conclusion, the present data support the idea that alpha7 nicotinic acetylcholine receptors may represent an interesting target for the treatment of conditions associated with attentional/working memory dysfunction.

  18. Heat shock pretreatment enhances porcine myoblasts survival after autotransplantation in intact skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    YANG Sheng; Thomas LAUMONIER; Jacques MENETREY

    2007-01-01

    Myoblast transplantation (MT) is a cell-based gene therapy treatment, representing a potential treatment for Duchenne muscular dystrophy (DMD), cardiac failure and muscle trauma. The rapid and massive death of transplanted cells after MT is considered as a major hurdle which limits the efficacy of MT treatment. Heat shock proteins (HSPs) are overexpressed when cells undergo various insults. HSPs have been described to protect cells in vivo and in vitro against diverse insults. The aim of our study is to investigate whether HSP overexpression could increase myoblast survival after autotransplantation in pig intact skeletal muscle. HSP expression was induced by warming the cells at 42℃ for 1 h. HSP70 expression was quantified by Western blot and flow cytometry 24 h after the treatment. To investigate the myogenic characteristics of myoblasts, desmin and CD56 were analysed by Western blot and flow cytometry; and the fusion index was measured. We also quantified cell survival after autologous transplantation in pig intact skeletal muscle and followed cell integration. Results showed that heat shock treatment of myoblasts induced a significative overexpression of the HSP70 (P<0.01) without loss of their myogenic characteristics as assessed by FACS and fusion index. In vivo (n=7), the myoblast survival rate was not significantly different at 24 h between heat shock treated and nontreated cells (67.69%±8.35% versus 58.79%±8.35%, P>0.05). However, the myoblast survival rate in the heat shocked cells increased by twofold at 48 h (53.32%±8.22% versus 28.27%±6.32%, P<0.01)and more than threefold at 120 h (26.33%±5.54% versus 8.79%±2.51%, P<0.01). Histological analysis showed the presence of non-heat shocked and heat shocked donor myoblasts fused with host myoblasts. These results suggested that heat shock pretreatment increased the HSP70 expression in porcine myoblasts, and improved the survival rate after autologous transplantation. Therefore, heat shock

  19. Heat shock pretreatment enhances porcine myoblasts survival after autotransplantation in intact skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Myoblast transplantation (MT) is a cell-based gene therapy treatment, representing a potential treat-ment for Duchenne muscular dystrophy (DMD), cardiac failure and muscle trauma. The rapid and mas-sive death of transplanted cells after MT is considered as a major hurdle which limits the efficacy of MT treatment. Heat shock proteins (HSPs) are overexpressed when cells undergo various insults. HSPs have been described to protect cells in vivo and in vitro against diverse insults. The aim of our study is to investigate whether HSP overexpression could increase myoblast survival after autotransplantation in pig intact skeletal muscle. HSP expression was induced by warming the cells at 42℃ for 1 h. HSP70 expression was quantified by Western blot and flow cytometry 24 h after the treatment. To investigate the myogenic characteristics of myoblasts, desmin and CD56 were analysed by Western blot and flow cytometry; and the fusion index was measured. We also quantified cell survival after autologous transplantation in pig intact skeletal muscle and followed cell integration. Results showed that heat shock treatment of myoblasts induced a significative overexpression of the HSP70 (P < 0.01) without loss of their myogenic characteristics as assessed by FACS and fusion index. In vivo (n=7), the myoblast survival rate was not significantly different at 24 h between heat shock treated and non- treated cells (67.69% ± 8.35% versus 58.79% ± 8.35%, P > 0.05). However, the myoblast survival rate in the heat shocked cells increased by twofold at 48 h (53.32% ± 8.22% versus 28.27% ± 6.32%, P < 0.01) and more than threefold at 120 h (26.33% ± 5.54% versus 8.79% ± 2.51%, P < 0.01). Histological analy-sis showed the presence of non-heat shocked and heat shocked donor myoblasts fused with host myoblasts. These results suggested that heat shock pretreatment increased the HSP70 expression in porcine myoblasts, and improved the survival rate after autologous transplantation

  20. Alterated integrin expression in lichen planopilaris.

    Science.gov (United States)

    d'Ovidio, Roberto; Sgarra, Concetta; Conserva, Anna; Angelotti, Umberto Filippo; Erriquez, Roberta; Foti, Caterina

    2007-02-08

    Lichen planopilaris (LPP) is an inflammatory disease characterized by a lymphomononuclear infiltrate surrounding the isthmus and infundibulum of the hair follicle of the scalp, that evolves into atrophic/scarring alopecia. In the active phase of the disease hairs are easily plucked with anagen-like hair-roots. In this study we focused on the expression of integrins and basement membrane components of the hair follicle in active LPP lesions. Scalp biopsies were taken in 10 patients with LPP and in 5 normal controls. Using monoclonal antibodies against alpha3beta1 and alpha6beta4 integrins we showed the expression of these integrins and of the basement membrane components of the hair follicle in active LPP lesions and in healthy scalp skin. In the LPP involved areas, alpha3beta1 was distributed in a pericellular pattern, the alpha6 subunit was present with a basolateral distribution while the beta4 subunit showed discontinuous expression at the basal pole and occasionally, basolateral staining of the hair follicle. An altered distribution of the integrins in active LPP lesions can explain the phenomenon of easy pulling-out of the hair with a "gelatinous" root-sheath.

  1. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis.

    Science.gov (United States)

    Singh, François; Charles, Anne-Laure; Schlagowski, Anna-Isabel; Bouitbir, Jamal; Bonifacio, Annalisa; Piquard, François; Krähenbühl, Stephan; Geny, Bernard; Zoll, Joffrey

    2015-07-01

    Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H₂O₂production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.

  2. Substrate stiffness affects skeletal myoblast differentiation in vitro

    Science.gov (United States)

    Romanazzo, Sara; Forte, Giancarlo; Ebara, Mitsuhiro; Uto, Koichiro; Pagliari, Stefania; Aoyagi, Takao; Traversa, Enrico; Taniguchi, Akiyoshi

    2012-12-01

    To maximize the therapeutic efficacy of cardiac muscle constructs produced by stem cells and tissue engineering protocols, suitable scaffolds should be designed to recapitulate all the characteristics of native muscle and mimic the microenvironment encountered by cells in vivo. Moreover, so not to interfere with cardiac contractility, the scaffold should be deformable enough to withstand muscle contraction. Recently, it was suggested that the mechanical properties of scaffolds can interfere with stem/progenitor cell functions, and thus careful consideration is required when choosing polymers for targeted applications. In this study, cross-linked poly-ɛ-caprolactone membranes having similar chemical composition and controlled stiffness in a supra-physiological range were challenged with two sources of myoblasts to evaluate the suitability of substrates with different stiffness for cell adhesion, proliferation and differentiation. Furthermore, muscle-specific and non-related feeder layers were prepared on stiff surfaces to reveal the contribution of biological and mechanical cues to skeletal muscle progenitor differentiation. We demonstrated that substrate stiffness does affect myogenic differentiation, meaning that softer substrates can promote differentiation and that a muscle-specific feeder layer can improve the degree of maturation in skeletal muscle stem cells.

  3. Culture Conditions Affect Expression of DUX4 in FSHD Myoblasts

    Directory of Open Access Journals (Sweden)

    Sachchida Nand Pandey

    2015-05-01

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is believed to be caused by aberrant expression of double homeobox 4 (DUX4 due to epigenetic changes of the D4Z4 region at chromosome 4q35. Detecting DUX4 is challenging due to its stochastic expression pattern and low transcription level. In this study, we examined different cDNA synthesis strategies and the sensitivity for DUX4 detection. In addition, we investigated the effects of dexamethasone and knockout serum replacement (KOSR on DUX4 expression in culture. Our data showed that DUX4 was consistently detected in cDNA samples synthesized using Superscript III. The sensitivity of DUX4 detection was higher in the samples synthesized using oligo(dT primers compared to random hexamers. Adding dexamethasone to the culture media significantly suppressed DUX4 expression in immortalized (1.3 fold, p < 0.01 and primary (4.7 fold, p < 0.01 FSHD myoblasts, respectively. Culture medium with KOSR increased DUX4 expression and the response is concentration dependent. The findings suggest that detection strategies and culture conditions should be carefully considered when studying DUX4 in cultured cells.

  4. Noninvasive visualization and quantification of tumor {alpha}{sub V{beta}3} integrin expression using a novel positron emission tomography probe, {sup 64}Cu-cyclam-RAFT-c(-RGDfK-){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhao-Hui [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Furukawa, Takako, E-mail: tfuru@nirs.go.j [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Galibert, Mathieu; Boturyn, Didier [Departement de Chimie Moleculaire, UMR 5250, CNRS-Universite Joseph Fourier, 38041 Grenoble Cedex 9 (France); Coll, Jean-Luc [INSERM U823, Institut Albert Bonniot and Universite Joseph Fourier, 38706 La Tronche Cedex, Grenoble (France); Fukumura, Toshimitsu; Saga, Tsuneo [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Dumy, Pascal [Departement de Chimie Moleculaire, UMR 5250, CNRS-Universite Joseph Fourier, 38041 Grenoble Cedex 9 (France); Fujibayashi, Yasuhisa [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan)

    2011-05-15

    Introduction: The {alpha}{sub V{beta}3} integrin is a well-known transmembrane receptor involved in tumor invasion, angiogenesis and metastasis. Our aim was to evaluate a novel positron emission tomography (PET) probe, {sup 64}Cu-cyclam-RAFT-c(-RGDfK-){sub 4}, for noninvasive visualization and quantification of {alpha}{sub V{beta}3} integrin expression. Methods: RAFT-c(-RGDfK-){sub 4}, a tetrameric cyclic Arg-Gly-Asp (RGD)-based peptide, was conjugated with a bifunctional chelator, 1,4,8,11-tetraazacyclotetradecane (cyclam), radiolabeled with the positron emitter {sup 64}Cu and evaluated in vitro by cell binding and competitive inhibition assays and in vivo by biodistribution and receptor blocking studies, and PET imaging. The following cell lines, human embryonic kidney HEK293({beta}{sub 1}) [{alpha}{sub V{beta}3}-negative] and HEK293({beta}{sub 3}) [{alpha}{sub V{beta}3}-overexpressing] and human glioblastoma U87MG [naturally expressing {alpha}{sub V{beta}3}], together with their subcutaneous xenografts in athymic nude mice, were used for the present study. The expression levels of {alpha}{sub V{beta}3} on these cell lines and tumor xenografts were analyzed by flow cytometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis/autoradiography, respectively. Results: {sup 64}Cu-cyclam-RAFT-c(-RGDfK-){sub 4} demonstrated the in vitro and in vivo specificity for the {alpha}{sub V{beta}3} integrin and displayed rapid blood clearance, predominantly renal excretion and low uptake in nontumor tissues. Tumor uptake of {sup 64}Cu-cyclam-RAFT-c(-RGDfK-){sub 4} (3 h postinjection) in HEK293({beta}{sub 3}) (high levels of {alpha}{sub V{beta}3}), U87MG (moderate levels of {alpha}{sub V{beta}3}) and HEK293({beta}{sub 1}) (undetectable levels of {alpha}{sub V{beta}3}) tumors was 9.35%{+-}1.19%, 3.46%{+-}0.45% and 1.18%{+-}0.30% injected dose per gram, respectively, with a strong and positive correlation with the tumor {alpha}{sub V{beta}3} expression levels

  5. Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways.

    Science.gov (United States)

    Bitner, Robert S; Bunnelle, William H; Anderson, David J; Briggs, Clark A; Buccafusco, Jerry; Curzon, Peter; Decker, Michael W; Frost, Jennifer M; Gronlien, Jens Halvard; Gubbins, Earl; Li, Jinhe; Malysz, John; Markosyan, Stella; Marsh, Kennan; Meyer, Michael D; Nikkel, Arthur L; Radek, Richard J; Robb, Holly M; Timmermann, Daniel; Sullivan, James P; Gopalakrishnan, Murali

    2007-09-26

    The alpha7 nicotinic acetylcholine receptor (nAChR) plays an important role in cognitive processes and may represent a drug target for treating cognitive deficits in neurodegenerative and psychiatric disorders. In the present study, we used a novel alpha7 nAChR-selective agonist, 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941) to interrogate cognitive efficacy, as well as examine potential cellular mechanisms of cognition. Exhibiting high affinity to native rat (Ki = 10.8 nM) and human (Ki = 16.7 nM) alpha7 nAChRs, A-582941 enhanced cognitive performance in behavioral assays including the monkey delayed matching-to-sample, rat social recognition, and mouse inhibitory avoidance models that capture domains of working memory, short-term recognition memory, and long-term memory consolidation, respectively. In addition, A-582941 normalized sensory gating deficits induced by the alpha7 nAChR antagonist methyllycaconitine in rats, and in DBA/2 mice that exhibit a natural sensory gating deficit. Examination of signaling pathways known to be involved in cognitive function revealed that alpha7 nAChR agonism increased extracellular-signal regulated kinase 1/2 (ERK1/2) phosphorylation in PC12 cells. Furthermore, increases in ERK1/2 and cAMP response element-binding protein (CREB) phosphorylation were observed in mouse cingulate cortex and/or hippocampus after acute A-582941 administration producing plasma concentrations in the range of alpha7 binding affinities and behavioral efficacious doses. The MEK inhibitor SL327 completely blocked alpha7 agonist-evoked ERK1/2 phosphorylation. Our results demonstrate that alpha7 nAChR agonism can lead to broad-spectrum efficacy in animal models at doses that enhance ERK1/2 and CREB phosphorylation/activation and may represent a mechanism that offers potential to improve cognitive deficits associated with neurodegenerative and psychiatric diseases, such as Alzheimer's disease and schizophrenia.

  6. Radiosynthesis and in vitro validation of 3H-NS14492 as a novel high affinity alpha7 nicotinic receptor radioligand

    DEFF Research Database (Denmark)

    Magnussen, Janus H.; Ettrup, Anders; Donat, Cornelius K.;

    2015-01-01

    The neuronal alpha 7 nicotinic acetylcholine receptor is a homo-pentameric ligand-gated ion channel that is a promising drug target for cognitive deficits in Alzheimer's disease and schizophrenia. We have previously described 11C-NS14492 as a suitable agonist radioligand for in vivo positron....../mg protein. This binding assay further revealed the Ki rank order for a number of alpha 7 nicotinic receptor agonists, and positive allosteric modulators (PAMs). Further, we saw increased binding of 3H-NS14492 to pig frontal cortex membranes when co-incubated with PNU-120596, a type II PAM. Taken together...

  7. hHGF overexpression in myoblast sheets enhances their angiogenic potential in rat chronic heart failure.

    Directory of Open Access Journals (Sweden)

    Antti Siltanen

    Full Text Available After severe myocardial infarction (MI, heart failure results from ischemia, fibrosis, and remodeling. A promising therapy to enhance cardiac function and induce therapeutic angiogenesis via a paracrine mechanism in MI is myoblast sheet transplantation. We hypothesized that in a rat model of MI-induced chronic heart failure, this therapy could be further improved by overexpression of the antiapoptotic, antifibrotic, and proangiogenic hepatocyte growth factor (HGF in the myoblast sheets. We studied the ability of wild type (L6-WT and human HGF-expressing (L6-HGF L6 myoblast sheet-derived paracrine factors to stimulate cardiomyocyte, endothelial cell, or smooth muscle cell migration in culture. Further, we studied the autocrine effect of hHGF-expression on myoblast gene expression profiles by use of microarray analysis. We induced MI in Wistar rats by left anterior descending coronary artery (LAD ligation and allowed heart failure to develop for 4 weeks. Thereafter, we administered L6-WT (n = 15 or L6-HGF (n = 16 myoblast sheet therapy. Control rats (n = 13 underwent LAD ligation and rethoracotomy without therapy, and five rats underwent a sham operation in both surgeries. We evaluated cardiac function with echocardiography at 2 and 4 weeks after therapy, and analyzed cardiac angiogenesis and left ventricular architecture from histological sections at 4 weeks. Paracrine mediators from L6-HGF myoblast sheets effectively induced migration of cardiac endothelial and smooth muscle cells but not cardiomyocytes. Microarray data revealed that hHGF-expression modulated myoblast gene expression. In vivo, L6-HGF sheet therapy effectively stimulated angiogenesis in the infarcted and non-infarcted areas. Both L6-WT and L6-HGF therapies enhanced cardiac function and inhibited remodeling in a similar fashion. In conclusion, L6-HGF therapy effectively induced angiogenesis in the chronically failing heart. Cardiac function, however, was not further

  8. Thermal manipulation during embryogenesis affects myoblast proliferation and skeletal muscle growth in meat-type chickens.

    Science.gov (United States)

    Piestun, Yogev; Yahav, Shlomo; Halevy, Orna

    2015-10-01

    Thermal manipulation (TM) of 39.5°C applied during mid-embryogenesis (embryonic d 7 to 16) has been proven to promote muscle development and enhance muscle growth and meat production in meat-type chickens. This study aimed to elucidate the cellular basis for this effect. Continuous TM or intermittent TM (for 12 h/d) increased myoblast proliferation manifested by higher (25 to 48%) myoblast number in the pectoral muscles during embryonic development but also during the first week posthatch. Proliferation ability of the pectoral-muscle-derived myoblasts in vitro was significantly higher in the TM treatments until embryonic d 15 (intermittent TM) or 13 (continuous TM) compared to that of controls, suggesting increased myogenic progeny reservoir in the muscle. However, the proliferation ability of myoblasts was lower in the TM treatments vs. control during the last days of incubation. This coincided with higher levels of myogenin expression in the muscle, indicating enhanced cell differentiation in the TM muscle. A similar pattern was observed posthatch: Myoblast proliferation was significantly higher in the TM chicks relative to controls during the peak of posthatch cell proliferation until d 6, followed by lower cell number 2 wk posthatch as myoblast number sharply decreases. Higher myogenin expression was observed in the TM chicks on d 6. This resulted in increased muscle growth, manifested by significantly higher relative weight of breast muscle in the embryo and posthatch. It can be concluded that temperature elevation during mid-term embryogenesis promotes myoblast proliferation, thus increasing myogenic progeny reservoir in the muscle, resulting in enhanced muscle growth in the embryo and posthatch. © 2015 Poultry Science Association Inc.

  9. The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion.

    Science.gov (United States)

    Estrada, Beatriz; Maeland, Anne D; Gisselbrecht, Stephen S; Bloor, James W; Brown, Nicholas H; Michelson, Alan M

    2007-07-15

    Multinucleated myotubes develop by the sequential fusion of individual myoblasts. Using a convergence of genomic and classical genetic approaches, we have discovered a novel gene, singles bar (sing), that is essential for myoblast fusion. sing encodes a small multipass transmembrane protein containing a MARVEL domain, which is found in vertebrate proteins involved in processes such as tight junction formation and vesicle trafficking where--as in myoblast fusion--membrane apposition occurs. sing is expressed in both founder cells and fusion competent myoblasts preceding and during myoblast fusion. Examination of embryos injected with double-stranded sing RNA or embryos homozygous for ethane methyl sulfonate-induced sing alleles revealed an identical phenotype: replacement of multinucleated myofibers by groups of single, myosin-expressing myoblasts at a stage when formation of the mature muscle pattern is complete in wild-type embryos. Unfused sing mutant myoblasts form clusters, suggesting that early recognition and adhesion of these cells are unimpaired. To further investigate this phenotype, we undertook electron microscopic ultrastructural studies of fusing myoblasts in both sing and wild-type embryos. These experiments revealed that more sing mutant myoblasts than wild-type contain pre-fusion complexes, which are characterized by electron-dense vesicles paired on either side of the fusing plasma membranes. In contrast, embryos mutant for another muscle fusion gene, blown fuse (blow), have a normal number of such complexes. Together, these results lead to the hypothesis that sing acts at a step distinct from that of blow, and that sing is required on both founder cell and fusion-competent myoblast membranes to allow progression past the pre-fusion complex stage of myoblast fusion, possibly by mediating fusion of the electron-dense vesicles to the plasma membrane.

  10. The real estate of myoblast cardiac transplantation: negative remodeling is associated with location.

    Science.gov (United States)

    McCue, Jonathan D; Swingen, Cory; Feldberg, Tanya; Caron, Gabe; Kolb, Adam; Denucci, Christopher; Prabhu, Somnath; Motilall, Randy; Breviu, Brian; Taylor, Doris A

    2008-01-01

    Skeletal myoblast transplantation has been proposed as a therapy for ischemic cardiomyopathy owing to its possible role in myogenesis. The relative safety and efficacy based on location within scar is not known. We hypothesized that skeletal myoblasts transplanted into peripheral scar (compared with central scar) would more effectively attenuate negative left ventricular (LV) remodeling but at the risk of arrhythmia. New Zealand White rabbits (n = 34) underwent mid-left anterior descending artery (LAD) ligation to produce a transmural LV infarction. One month after LAD ligation, skeletal myoblasts were injected either in the scar center (n = 13) or scar periphery (n = 10) and compared with saline injection (n = 11). Holter monitoring and magnetic resonance imaging (MRI) was performed pre-injection; Holter monitoring was continued until 2 weeks after injection, with follow-up MRI at 1 month. The centrally treated animals demonstrated increased LV end-systolic volume, end-diastolic volume, and mass that correlated with the number of injected cells. There was a trend toward attenuation of negative LV remodeling in peripherally treated animals compared with vehicle. Significant late ectopy was seen in several centrally injected animals, with no late ectopy seen in peripherally injected animals. We noted untoward effects with respect to negative LV remodeling after central injection, suggesting that transplanted cell location with respect to scar may be a key factor in the safety and efficacy of skeletal myoblast cardiac transplantation. Administration of skeletal myoblasts into peripheral scar appears safe, with a trend toward improved function in comparison with sham injection.

  11. Nuclei of non-muscle cells bind centrosome proteins upon fusion with differentiating myoblasts.

    Directory of Open Access Journals (Sweden)

    Xavier Fant

    Full Text Available BACKGROUND: In differentiating myoblasts, the microtubule network is reorganized from a centrosome-bound, radial array into parallel fibres, aligned along the long axis of the cell. Concomitantly, proteins of the centrosome relocalize from the pericentriolar material to the outer surface of the nucleus. The mechanisms that govern this relocalization are largely unknown. METHODOLOGY: In this study, we perform experiments in vitro and in cell culture indicating that microtubule nucleation at the centrosome is reduced during myoblast differentiation, while nucleation at the nuclear surface increases. We show in heterologous cell fusion experiments, between cultures of differentiating mouse myoblasts and human cells of non-muscular origin, that nuclei from non-muscle cells recruit centrosome proteins once fused with the differentiating myoblasts. This recruitment still occurs in the presence of cycloheximide and thus appears to be independent of new protein biosynthesis. CONCLUSIONS: Altogether, our data suggest that nuclei of undifferentiated cells have the dormant potential to bind centrosome proteins, and that this potential becomes activated during myoblast differentiation.

  12. AP-2{alpha} suppresses skeletal myoblast proliferation and represses fibroblast growth factor receptor 1 promoter activity

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Darrion L. [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States); DiMario, Joseph X., E-mail: joseph.dimario@rosalindfranklin.edu [Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 (United States)

    2010-01-15

    Skeletal muscle development is partly characterized by myoblast proliferation and subsequent differentiation into postmitotic muscle fibers. Developmental regulation of expression of the fibroblast growth factor receptor 1 (FGFR1) gene is required for normal myoblast proliferation and muscle formation. As a result, FGFR1 promoter activity is controlled by multiple transcriptional regulatory proteins during both proliferation and differentiation of myogenic cells. The transcription factor AP-2{alpha} is present in nuclei of skeletal muscle cells and suppresses myoblast proliferation in vitro. Since FGFR1 gene expression is tightly linked to myoblast proliferation versus differentiation, the FGFR1 promoter was examined for candidate AP-2{alpha} binding sites. Mutagenesis studies indicated that a candidate binding site located at - 1035 bp functioned as a repressor cis-regulatory element. Furthermore, mutation of this site alleviated AP-2{alpha}-mediated repression of FGFR1 promoter activity. Chromatin immunoprecipitation studies demonstrated that AP-2{alpha} interacted with the FGFR1 promoter in both proliferating myoblasts and differentiated myotubes. In total, these results indicate that AP-2{alpha} is a transcriptional repressor of FGFR1 gene expression during skeletal myogenesis.

  13. Slowing Down Differentiation of Engrafted Human Myoblasts Into Immunodeficient Mice Correlates With Increased Proliferation and Migration

    Science.gov (United States)

    Riederer, Ingo; Negroni, Elisa; Bencze, Maximilien; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Silva-Barbosa, Suse D.; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent

    2012-01-01

    We have used a model of xenotransplantation in which human myoblasts were transplanted intramuscularly into immunodeficient Rag2-/-γC-/- mice, in order to investigate the kinetics of proliferation and differentiation of the transplanted cells. After injection, most of the human myoblasts had already differentiated by day 5. This differentiation correlated with reduction in proliferation and limited migration of the donor cells within the regenerating muscle. These results suggest that the precocious differentiation, already detected at 3 days postinjection, is a limiting factor for both the migration from the injection site and the participation of the donor cells to muscle regeneration. When we stimulated in vivo proliferation of human myoblasts, transplanting them in a serum-containing medium, we observed 5 days post-transplantation a delay of myogenic differentiation and an increase in cell numbers, which colonized a much larger area within the recipient's muscle. Importantly, these myoblasts maintained their ability to differentiate, since we found higher numbers of myofibers seen 1 month postengraftment, as compared to controls. Conceptually, these data suggest that in experimental myoblast transplantation, any intervention upon the donor cells and/or the recipient's microenvironment aimed at enhancing proliferation and migration should be done before differentiation of the implanted cells, e.g., day 3 postengraftment. PMID:21934656

  14. Slowing down differentiation of engrafted human myoblasts into immunodeficient mice correlates with increased proliferation and migration.

    Science.gov (United States)

    Riederer, Ingo; Negroni, Elisa; Bencze, Maximilien; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Silva-Barbosa, Suse D; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent

    2012-01-01

    We have used a model of xenotransplantation in which human myoblasts were transplanted intramuscularly into immunodeficient Rag2(-/-)γC(-/-) mice, in order to investigate the kinetics of proliferation and differentiation of the transplanted cells. After injection, most of the human myoblasts had already differentiated by day 5. This differentiation correlated with reduction in proliferation and limited migration of the donor cells within the regenerating muscle. These results suggest that the precocious differentiation, already detected at 3 days postinjection, is a limiting factor for both the migration from the injection site and the participation of the donor cells to muscle regeneration. When we stimulated in vivo proliferation of human myoblasts, transplanting them in a serum-containing medium, we observed 5 days post-transplantation a delay of myogenic differentiation and an increase in cell numbers, which colonized a much larger area within the recipient's muscle. Importantly, these myoblasts maintained their ability to differentiate, since we found higher numbers of myofibers seen 1 month postengraftment, as compared to controls. Conceptually, these data suggest that in experimental myoblast transplantation, any intervention upon the donor cells and/or the recipient's microenvironment aimed at enhancing proliferation and migration should be done before differentiation of the implanted cells, e.g., day 3 postengraftment.

  15. The pesticide methoxychlor decreases myotube formation in cell culture by slowing myoblast proliferation.

    Science.gov (United States)

    Steffens, Bradley W; Batia, Lyn M; Baarson, Chad J; Choi, Chang-Kun Charles; Grow, Wade A

    2007-08-01

    We studied the effect of the estrogenic pesticide methoxychlor (MXC) on skeletal muscle development using C2C12 cell culture. Myoblast cultures were exposed to various concentrations of MXC at various times during the process of myoblast fusion into myotubes. We observed that MXC exposure decreased myotube formation. In addition, we observed myoblasts with cytoplasmic vacuoles in cultures exposed to MXC. Because cytoplasmic vacuoles can be characteristic of cell death, apoptosis assays and trypan blue exclusion assays were performed. We found no difference in the frequency of apoptosis or in the frequency of cell death for cultures exposed to MXC and untreated cultures. Collectively, these results indicate that MXC exposure decreases myotube formation without causing cell death. In contrast, when cell proliferation was assessed, untreated cultures had a myoblast proliferation rate 50% greater than cultures exposed to MXC. We conclude that MXC decreases myotube formation at least in part by slowing myoblast proliferation. Furthermore, we suggest that direct exposure to MXC could affect skeletal muscle development in animals or humans, in addition to the defects in reproductive development that have previously been reported.

  16. Karyopherin alpha7 (KPNA7), a divergent member of the importin alpha family of nuclear import receptors.

    Science.gov (United States)

    Kelley, Joshua B; Talley, Ashley M; Spencer, Adam; Gioeli, Daniel; Paschal, Bryce M

    2010-08-11

    Classical nuclear localization signal (NLS) dependent nuclear import is carried out by a heterodimer of importin alpha and importin beta. NLS cargo is recognized by importin alpha, which is bound by importin beta. Importin beta mediates translocation of the complex through the central channel of the nuclear pore, and upon reaching the nucleus, RanGTP binding to importin beta triggers disassembly of the complex. To date, six importin alpha family members, encoded by separate genes, have been described in humans. We sequenced and characterized a seventh member of the importin alpha family of transport factors, karyopherin alpha 7 (KPNA7), which is most closely related to KPNA2. The domain of KPNA7 that binds Importin beta (IBB) is divergent, and shows stronger binding to importin beta than the IBB domains from of other importin alpha family members. With regard to NLS recognition, KPNA7 binds to the retinoblastoma (RB) NLS to a similar degree as KPNA2, but it fails to bind the SV40-NLS and the human nucleoplasmin (NPM) NLS. KPNA7 shows a predominantly nuclear distribution under steady state conditions, which contrasts with KPNA2 which is primarily cytoplasmic. KPNA7 is a novel importin alpha family member in humans that belongs to the importin alpha2 subfamily. KPNA7 shows different subcellular localization and NLS binding characteristics compared to other members of the importin alpha family. These properties suggest that KPNA7 could be specialized for interactions with select NLS-containing proteins, potentially impacting developmental regulation.

  17. Virtual screening studies of Chinese medicine Coptidis Rhizoma as alpha7 nicotinic acetylcholine receptor agonists for treatment of Alzheimer's disease

    Science.gov (United States)

    Xiang, Li; Xu, Youdong; Zhang, Yan; Meng, Xianli; Wang, Ping

    2015-04-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease. Extensive in vitro and in vivo experiments have proved that the decreased activity of the cholinergic neuron is responsible for the memory and cognition deterioration. The alpha7 nicotinic acetylcholine receptor (α7-nAChR) is proposed to a drug target of AD, and compounds which acting as α7-nAChR agonists are considered as candidates in AD treatment. Chinese medicine CoptidisRhizoma and its compounds are reported in various anti-AD effects. In this study, virtual screening, docking approaches and hydrogen bond analyses were applied to screen potential α7-nAChR agonists from CoptidisRhizome. The 3D structure of the protein was obtained from PDB database. 87 reported compounds were included in this research and their structures were accessed by NCBI Pubchem. Docking analysis of the compounds was performed using AutoDock 4.2 and AutoDock Vina. The images of the binding modes hydrogen bonds and the hydrophobic interaction were rendered with PyMOL1.5.0.4. and LigPlot+ respectively. Finally, N-tran-feruloyltyramine, isolariciresinol, flavanone, secoisolariciresinol, (+)-lariciresinol and dihydrochalcone, exhibited the lowest docking energy of protein-ligand complex. The results indicate these 6 compounds are potential α7 nAChR agonists, and expected to be effective in AD treatment.

  18. Evidence of BrdU-positive retinal neurons after application of an Alpha7 nicotinic acetylcholine receptor agonist.

    Science.gov (United States)

    Webster, Mark K; Cooley-Themm, Cynthia A; Barnett, Joseph D; Bach, Harrison B; Vainner, Jessica M; Webster, Sarah E; Linn, Cindy L

    2017-03-27

    Irreversible vision loss due to disease or age is responsible for a reduced quality of life. The experiments in this study test the hypothesis that the α7 nicotinic acetylcholine receptor agonist, PNU-282987, leads to the generation of retinal neurons in an adult mammalian retina in the absence of retinal injury or exogenous growth factors. Using antibodies against BrdU, retinal ganglion cells, progenitor cells and Müller glia, the results of this study demonstrate that multiple types of retinal cells and neurons are generated after eye drop application of PNU-282987 in adult Long Evans rats in a dose-dependent manner. The results of this study provide evidence that progenitor cells, derived from Müller glia after treatment with PNU-282987, differentiate and migrate to the photoreceptor and retinal ganglion cell layers. If retinas were treated with the alpha7 nAChR antagonist, methyllycaconitine, before agonist treatment, BrdU-positive cells were significantly reduced. As adult mammalian neurons do not typically regenerate or proliferate, these results have implications for reversing vision loss due to neurodegenerative disease or the aging process to improve the quality of life for millions of patients. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Neuroimmune Interactions in Schizophrenia: Focus on Vagus Nerve Stimulation and Activation of the Alpha-7 Nicotinic Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Fabiana Maria das Graças Corsi-Zuelli

    2017-05-01

    Full Text Available Schizophrenia is one of the most debilitating mental disorders and is aggravated by the lack of efficacious treatment. Although its etiology is unclear, epidemiological studies indicate that infection and inflammation during development induces behavioral, morphological, neurochemical, and cognitive impairments, increasing the risk of developing schizophrenia. The inflammatory hypothesis of schizophrenia is also supported by clinical studies demonstrating systemic inflammation and microglia activation in schizophrenic patients. Although elucidating the mechanism that induces this inflammatory profile remains a challenge, mounting evidence suggests that neuroimmune interactions may provide therapeutic advantages to control inflammation and hence schizophrenia. Recent studies have indicated that vagus nerve stimulation controls both peripheral and central inflammation via alpha-7 nicotinic acetylcholine receptor (α7nAChR. Other findings have indicated that vagal stimulation and α7nAChR-agonists can provide therapeutic advantages for neuropsychiatric disorders, such as depression and epilepsy. This review analyzes the latest results regarding: (I the immune-to-brain pathogenesis of schizophrenia; (II the regulation of inflammation by the autonomic nervous system in psychiatric disorders; and (III the role of the vagus nerve and α7nAChR in schizophrenia.

  20. Neuroimmune Interactions in Schizophrenia: Focus on Vagus Nerve Stimulation and Activation of the Alpha-7 Nicotinic Acetylcholine Receptor

    Science.gov (United States)

    Corsi-Zuelli, Fabiana Maria das Graças; Brognara, Fernanda; Quirino, Gustavo Fernando da Silva; Hiroki, Carlos Hiroji; Fais, Rafael Sobrano; Del-Ben, Cristina Marta; Ulloa, Luis; Salgado, Helio Cesar; Kanashiro, Alexandre; Loureiro, Camila Marcelino

    2017-01-01

    Schizophrenia is one of the most debilitating mental disorders and is aggravated by the lack of efficacious treatment. Although its etiology is unclear, epidemiological studies indicate that infection and inflammation during development induces behavioral, morphological, neurochemical, and cognitive impairments, increasing the risk of developing schizophrenia. The inflammatory hypothesis of schizophrenia is also supported by clinical studies demonstrating systemic inflammation and microglia activation in schizophrenic patients. Although elucidating the mechanism that induces this inflammatory profile remains a challenge, mounting evidence suggests that neuroimmune interactions may provide therapeutic advantages to control inflammation and hence schizophrenia. Recent studies have indicated that vagus nerve stimulation controls both peripheral and central inflammation via alpha-7 nicotinic acetylcholine receptor (α7nAChR). Other findings have indicated that vagal stimulation and α7nAChR-agonists can provide therapeutic advantages for neuropsychiatric disorders, such as depression and epilepsy. This review analyzes the latest results regarding: (I) the immune-to-brain pathogenesis of schizophrenia; (II) the regulation of inflammation by the autonomic nervous system in psychiatric disorders; and (III) the role of the vagus nerve and α7nAChR in schizophrenia. PMID:28620379

  1. Prostate stem cell antigen is an endogenous lynx1-like prototoxin that antagonizes alpha7-containing nicotinic receptors and prevents programmed cell death of parasympathetic neurons.

    Science.gov (United States)

    Hruska, Martin; Keefe, Julie; Wert, David; Tekinay, Ayse Begum; Hulce, Jonathan J; Ibañez-Tallon, Ines; Nishi, Rae

    2009-11-25

    Vertebrate alpha-bungarotoxin-like molecules of the Ly-6 superfamily have been implicated as balancers of activity and survival in the adult nervous system. To determine whether a member of this family could be involved in the development of the avian ciliary ganglion, we identified 6 Gallus genes by their homology in structure to mouse lynx1 and lynx2. One of these genes, an ortholog of prostate stem cell antigen (psca), is barely detectable at embryonic day (E) 8, before neuronal cell loss in the ciliary ganglion, but increases >100-fold as the number of neurons begins to decline between E9 and E14. PSCA is highly expressed in chicken and mouse telencephalon and peripheral ganglia and correlates with expression of alpha7-containing nicotinic acetylcholine receptors (alpha7-nAChRs). Misexpressing PSCA before cell death in the ciliary ganglion blocks alpha7-nAChR activation by nicotine and rescues the choroid subpopulation from dying. Thus, PSCA, a molecule previously identified as a marker of prostate cancer, is a member of the Ly-6 neurotoxin-like family in the nervous system, and is likely to play a role as a modulator of alpha7 signaling-induced cell death during development.

  2. The nicotinic alpha7 acetylcholine receptor agonist ssr180711 is unable to activate limbic neurons in mice overexpressing human amyloid-beta1-42

    DEFF Research Database (Denmark)

    Soderman, A.; Spang-Thomsen, Mogens; Hansen, H.

    2008-01-01

    7 nAChR have not been examined. The aim of this study has been to evaluate the efficacy of alpha7 nAChR modulators in transgene mice that overexpress human amyloid precursor protein and accumulate Abeta1-40 and Abeta1-42. In accordance with observations in human Alzheimer tissues, we show here...

  3. Localized infusions of the partial alpha 7 nicotinic receptor agonist SSR180711 evoke rapid and transient increases in prefrontal glutamate release

    DEFF Research Database (Denmark)

    Bortz, D M; Mikkelsen, J D; Bruno, J P

    2013-01-01

    The ability of local infusions of the alpha 7 nicotinic acetycholine receptor (α7 nAChR) partial agonist SSR180711 to evoke glutamate release in prefrontal cortex was determined in awake rats using a microelectrode array. Infusions of SSR180711 produced dose-dependent increases in glutamate level...

  4. The development of adult abdominal muscles in Drosophila: myoblasts express twist and are associated with nerves.

    Science.gov (United States)

    Currie, D A; Bate, M

    1991-09-01

    During metamorphosis, the adult muscles of the Drosophila abdomen develop from pools of myoblasts that are present in the larva. The adult myoblasts express twist in the third larval instar and the early pupa and are closely associated with nerves. Growing adult nerves and the twist-expressing cells migrate out across the developing abdominal epidermis, and as twist expression declines, the myoblasts begin to synthesize beta 3 tubulin. There follows a process involving cell fusion and segregation into cell groups to form multinucleate muscle precursors. These bipolar precursors migrate at both ends to find their correct attachment points. beta 3 tubulin expression continues at least until 51 h APF by which time the adult muscle pattern has been established.

  5. Myoblast transplantation for heart repair: A review of the state of the field

    Institute of Scientific and Technical Information of China (English)

    Howard J. Leonhardt; Michael Brown

    2006-01-01

    Over 200 humans have been treated with myoblast transplantation for heart muscle repair since June 2000. Bioheart sponsored percutaneous delivery studies began in May 2001 in Europe. Approximately one third of the patients have exhibited substantial improvement in left ventricular ejection fraction (LVEF) of over 30% and two heart failure class improvements. Over 80% of the patients have exhibited one heart failure class improvement with moderate improvement of LVEF. Clinical trials seem to demonstrate a marked reduction in emergency hospitalizations in myoblast treated patients. Many years of careful studies have lead to randomized controlled studies that are enrolling patients now at numerous centers worldwide. A firm conclusion on the safety and efficacy of myoblast transplantation cannot be determined until these randomized studies are completed. Final results from randomized controlled studies should be available soon. (J Geriatr Cardiol 2006;3:165-7.)

  6. Modified methods for culturing myoblasts of rats: Combination of multi-enzymatic digestion and double purification

    Institute of Scientific and Technical Information of China (English)

    Li Zhang; Wei Wang; Ming Fan; Xiaoping Chen; Shuhong Liu; Liang Sun

    2007-01-01

    BACKGROUND: With developments of tissue engineering and genetic engineering, we aim to culture myoblasts, which are characterized by high purity, high quality and high production, for wide application in neural regeneration researches.OBJECTIVE: To modify traditional dissociation method in order to obtain myoblasts, which are characterized by high purity, high quality and high production, and explore the biological properties under in vitro culture.DESIGN: Observational study.SETTING: Basic Institute of Academy of Military Medical Sciences of Chinese PLA.MATERIALS: Four neonatal Wistar rats of 5 days old, both genders and mean body mass of 10 g were selected in this study. The main reagents and devices were detailed as follows: DMEM medium (Gibco Company), fetus bovine serum (FBS, Hycolne Company), collagenase Ⅱ (Sigma Company), trypsin (Sigma Company), dispase Ⅱ (Sigma Company), desmin antibody (Fuzhou Maixin Company), antibody Ⅱ and ABC kit (Wuhan Boster Biotechnology Company), desk centrifuge (KUBATO, Japan), and inverted phase contrast microscope (LEICA DMIRB, Germany).METHODS: The experiment was carried out in the Basic Institute of Academy of Military Medical Sciences of Chinese PLA from June to October 2006. Neonatal rats were sacrificed under sterile condition to obtain skeletal muscles of limbs, which were washed with cold PBS (containing benzylpenicillin and estreptomicina), and muscular tissue was sheared into pieces. Then, those muscular pieces were added with mixed digestive enzyme (containing 2 g/L collagenase Ⅱ + 5 g/L dispase Ⅱ + 0.28 g/L CaCl2) as twice volume as pieces, dealt with mechanical pipetting for 5 minutes and cultured in CO2 incubator for 10 minutes.The operation was done for three times and the muscular pieces were digested for 45 minutes in total.Moreover, cells were suspended again in order to obtain myoblasts from skeletal muscle of neonatal rats. In addition, myoblasts were purified with differential attachment technique

  7. [Differences in the Ca2+ signaling in proliferating and differentiating myoblasts in mice].

    Science.gov (United States)

    Krasnyĭ, A M; Ozerniuk, N D

    2010-01-01

    Specific features of Ca2+ -signaling in proliferating and differentiated C2C12 myoblasts have been studied. It was shown that the system of Ca2+ -signaling is reduced in proliferating myoblasts: the intracellular ATP-regulated stock is insignificant, the buffer protein is absent or present in minimum quantities in endoplasmic reticulum, and the entry of Ca2+ is not registered when its endocellular stocks are exhausted. The formation of the Ca -signaling system occurs during the initial stages of differentiation (within eight to ten hours after transfer of cell to differentiation medium). During this period, the buffer protein is accumulated, and the entry of Ca begins. During the initial stages of myoblast differentiation, the voltage-dependent entry of Ca2+ also appears. It was also shown that the stock of in mitochondria makes an insignificant contribution to increase in Ca2+ concentration in the cytoplasm.

  8. Spatial and functional restriction of regulatory molecules during mammalian myoblast fusion

    Energy Technology Data Exchange (ETDEWEB)

    Pavlath, Grace K., E-mail: gpavlat@emory.edu [Department of Pharmacology, Emory University, 1510 Clifton Rd., Room 5027, Atlanta, GA 30322 (United States)

    2010-11-01

    Myoblast fusion is a highly regulated process that is key for forming skeletal muscle during development and regeneration in mammals. Much remains to be understood about the molecular regulation of myoblast fusion. Some molecules that influence mammalian muscle fusion display specific cellular localization during myogenesis. Such molecules can be localized to the contact region between two fusing cells either in both cells or only in one of the cells. How distinct localization of molecules contributes to fusion is not clear. Further complexity exists as other molecules are functionally restricted to myoblasts at later stages of myogenesis to regulate their fusion with multinucleated myotubes. This review examines these three categories of molecules and discusses how spatial and functional restriction may contribute to the formation of a multinucleated cell. Understanding how and why molecules become restricted in location or function is likely to provide further insights into the mechanisms regulating mammalian muscle fusion.

  9. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) activates promyogenic signaling pathways, thereby promoting myoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang-Jin; Go, Ga-Yeon; Yoo, Miran; Kim, Yong Kee [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Seo, Dong-Wan [College of Pharmacy, Dankook University, Cheonan 330-714 (Korea, Republic of); Kang, Jong-Sun [Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 440-746 (Korea, Republic of); Bae, Gyu-Un, E-mail: gbae@sookmyung.ac.kr [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of)

    2016-01-29

    Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) regulates postnatal myogenesis by alleviating myostatin activity, but the molecular mechanisms by which it regulates myogenesis are not fully understood. In this study, we investigate molecular mechanisms of PPARβ/δ in myoblast differentiation. C2C12 myoblasts treated with a PPARβ/δ agonist, GW0742 exhibit enhanced myotube formation and muscle-specific gene expression. GW0742 treatment dramatically activates promyogenic kinases, p38MAPK and Akt, in a dose-dependent manner. GW0742-stimulated myoblast differentiation is mediated by p38MAPK and Akt, since it failed to restore myoblast differentiation repressed by inhibition of p38MAPK and Akt. In addition, GW0742 treatment enhances MyoD-reporter activities. Consistently, overexpression of PPARβ/δ enhances myoblast differentiation accompanied by elevated activation of p38MAPK and Akt. Collectively, these results suggest that PPARβ/δ enhances myoblast differentiation through activation of promyogenic signaling pathways. - Highlights: • A PPARβ/δ agonist, GW0742 promotes myoblast differentiation. • GW0742 activates both p38MAPK and Akt activation in myogenic differentiation. • GW0742 enhances MyoD activity for myogenic differentiation. • Overexpression of PPARβ/δ enhances myoblast differentiation via activating promyogenic signaling pathways. • This is the first finding for agonistic mechanism of PPARβ/δ in myogenesis.

  10. Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF.

    Directory of Open Access Journals (Sweden)

    Chiara Sassoli

    Full Text Available Mesenchymal stromal cells (MSCs are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies.

  11. Bone Marrow Mesenchymal Stromal Cells Stimulate Skeletal Myoblast Proliferation through the Paracrine Release of VEGF

    Science.gov (United States)

    Chellini, Flaminia; Mazzanti, Benedetta; Nistri, Silvia; Nosi, Daniele; Saccardi, Riccardo; Quercioli, Franco; Zecchi-Orlandini, Sandra; Formigli, Lucia

    2012-01-01

    Mesenchymal stromal cells (MSCs) are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF) by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM) to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies. PMID:22815682

  12. PARP1 Differentially Interacts with Promoter region of DUX4 Gene in FSHD Myoblasts

    Science.gov (United States)

    Sharma, Vishakha; Pandey, Sachchida Nand; Khawaja, Hunain; Brown, Kristy J; Hathout, Yetrib; Chen, Yi-Wen

    2016-01-01

    Objective The goal of the study is to identity proteins, which interact with the promoter region of double homeobox protein 4 (DUX4) gene known to be causative for the autosomal dominant disorder Facioscapulohumeral Muscular Dystrophy (FSHD). Methods We performed a DNA pull down assay coupled with mass spectrometry analysis to identify proteins that interact with a DUX4 promoter probe in Rhabdomyosarcomca (RD) cells. We selected the top ranked protein poly (ADP-ribose) polymerase 1 (PARP1) from our mass spectrometry data for further ChIP-qPCR validation using patients' myoblasts. We then treated FSHD myoblasts with PARP1 inhibitors to investigate the role of PARP1 in the FSHD myoblasts. Results In our mass spectrometry analysis, PARP1 was found to be the top ranked protein interacting preferentially with the DUX4 promoter probe in RD cells. We further validated this interaction by immunoblotting in RD cells (2-fold enrichment compared to proteins pulled down by a control probe, pfisetin (0.5 mM), a polyphenol compound with PARP1 inhibitory property, for 24 h also suppressed the expression of DUX4 (44.8 fold, p<0.01) and ZSCAN4 (2.2 fold, p<0.05) in the FSHD myoblasts. We further showed that DNA methyltransferase 1 (DNMT1), a gene regulated by PARP1 was also enriched at the DUX4 promoter in RD cells through immunoblotting (2-fold, p<0.01) and immortalized FSHD myoblasts (42-fold, p<0.01) but not control myoblasts through ChIP qPCR. Conclusion Our results showed that PARP1 and DNMT1 interacted with DUX4 promoter and may be involved in modulating DUX4 expression in FSHD. PMID:27722032

  13. Injectable scaffold materials differ in their cell instructive effects on primary human myoblasts

    DEFF Research Database (Denmark)

    Hejbøl, Eva Kildall; Sellathurai, Jeeva; Nair, Prabha Damodaran

    2017-01-01

    a minimally invasive technique. In this study, we examined in vitro the cell instructive effects of three types of injectable scaffolds, fibrin, alginate, and poly(lactic-co-glycolic acid)-based microparticles on primary human myoblasts. The myoblast morphology and progression in the myogenic program differed......, depending on the type of scaffold material. In alginate gel, the cells obtained a round morphology, they ceased to proliferate, and entered quiescence. In the fibrin gels, differentiation was promoted, and myotubes were observed within a few days in culture, while poly(lactic-co-glycolic acid...

  14. Positive allosteric modulators of alpha 7 nicotinic acetylcholine receptors reverse ketamine-induced schizophrenia-like deficits in rats.

    Science.gov (United States)

    Nikiforuk, Agnieszka; Kos, Tomasz; Hołuj, Małgorzata; Potasiewicz, Agnieszka; Popik, Piotr

    2016-02-01

    Alpha 7 nicotinic acetylcholine receptors (α7-nAChRs) have generated great interest as targets of new pharmacological treatments for cognitive dysfunction in schizophrenia. One promising recent approach is based on the use of positive allosteric modulators (PAMs) of α7-nAChRs, which demonstrate several advantages over direct agonists. Nevertheless, the efficacy of these newly introduced α7-nAChR agents has not been extensively characterised in animal models of schizophrenia. The aim of the present study was to evaluate the efficacy of type I and II PAMs, N-(5-chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)urea (PNU-120596) and N-(4-chlorophenyl)-[[(4-chlorophenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide (CCMI), respectively, and galantamine, an acetylcholinesterase inhibitor (AChE) that also allosterically modulates nAChRs, against ketamine-induced cognitive deficits and social withdrawal in rats. The orthosteric α7-nAChR agonist octahydro-2-methyl-5-(6-phenyl-3-pyridazinyl)-pyrrolo[3,4-c]pyrrole (A-582941) was used as a positive control. Additionally, the antipsychotic activities of the tested compounds were assessed using the conditioned avoidance response (CAR) test. PNU-120596, CCMI, galantamine and A-582941 reversed ketamine-induced cognitive inflexibility, as assessed in the attentional set-shifting task (ASST). The tested compounds were also effective against ketamine-induced impairment in the novel object recognition task (NORT). PNU-120596, CCMI, and A-582941 ameliorated ketamine-induced social interaction deficits, whereas galantamine was ineffective. Moreover, all tested compounds selectively suppressed the CAR. The positive allosteric modulation of α7-nAChRs demonstrates preclinical efficacy not only against schizophrenia-like cognition impairments but also positive and negative symptoms. Therefore, the use of α7-nAChR PAMs as a potential treatment strategy in schizophrenia is supported.

  15. A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion.

    Science.gov (United States)

    Kuckwa, Jessica; Fritzen, Katharina; Buttgereit, Detlev; Rothenbusch-Fender, Silke; Renkawitz-Pohl, Renate

    2016-01-15

    The testis of Drosophila resembles an individual testis tubule of mammals. Both are surrounded by a sheath of smooth muscles, which in Drosophila are multinuclear and originate from a pool of myoblasts that are set aside in the embryo and accumulate on the genital disc later in development. These muscle stem cells start to differentiate early during metamorphosis and give rise to all muscles of the inner male reproductive system. Shortly before the genital disc and the developing testes connect, multinuclear nascent myotubes appear on the anterior tips of the seminal vesicles. Here, we show that adhesion molecules are distinctly localized on the seminal vesicles; founder cell (FC)-like myoblasts express Dumbfounded (Duf) and Roughest (Rst), and fusion-competent myoblast (FCM)-like cells mainly express Sticks and stones (Sns). The smooth but multinuclear myotubes of the testes arose by myoblast fusion. RNAi-mediated attenuation of Sns or both Duf and Rst severely reduced the number of nuclei in the testes muscles. Duf and Rst probably act independently in this context. Despite reduced fusion in all of these RNAi-treated animals, myotubes migrated onto the testes, testes were shaped and coiled, muscle filaments were arranged as in the wild type and spermatogenesis proceeded normally. Hence, the testes muscles compensate for fusion defects so that the myofibres encircling the adult testes are indistinguishable from those of the wild type and male fertility is guaranteed.

  16. Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study.

    Science.gov (United States)

    Périé, Sophie; Trollet, Capucine; Mouly, Vincent; Vanneaux, Valérie; Mamchaoui, Kamel; Bouazza, Belaïd; Marolleau, Jean Pierre; Laforêt, Pascal; Chapon, Françoise; Eymard, Bruno; Butler-Browne, Gillian; Larghero, Jérome; St Guily, Jean Lacau

    2014-01-01

    Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant genetic disease mainly characterized by ptosis and dysphagia. We conducted a phase I/IIa clinical study (ClinicalTrials.gov NCT00773227) using autologous myoblast transplantation following myotomy in adult OPMD patients. This study included 12 patients with clinical diagnosis of OPMD, indication for cricopharyngeal myotomy, and confirmed genetic diagnosis. The feasibility and safety end points of both autologous myoblast transplantation and the surgical procedure were assessed by videoendoscopy in addition to physical examinations. Potential therapeutic benefit was also assessed through videoendoscopy and videofluoroscopy of swallowing, quality of life score, dysphagia grade, and a drink test. Patients were injected with a median of 178 million myoblasts following myotomy. Short and long-term (2 years) safety and tolerability were observed in all the patients, with no adverse effects. There was an improvement in the quality of life score for all 12 patients, and no functional degradation in swallowing was observed for 10 patients. A cell dose-dependant improvement in swallowing was even observed in this study. This trial supports the hypothesis that a local injection of autologous myoblasts in the pharyngeal muscles is a safe and efficient procedure for OPMD patients.

  17. ROCK-2 is associated with focal adhesion maturation during myoblast migration.

    Science.gov (United States)

    Goetsch, K P; Snyman, C; Myburgh, K H; Niesler, C U

    2014-07-01

    Satellite cell migration is critical for skeletal muscle growth and regeneration. Controlled cell migration is dependent on the formation of mature focal adhesions between the cell and the underlying extracellular matrix (ECM). These cell-ECM interactions trigger the activation of signalling events such as the Rho/ROCK pathway. We have previously identified a specific role for ROCK-2 during myoblast migration. In this study we report that ROCK inhibition with Y-27632 increases C2C12 myoblast velocity, but at the expense of directional migration. In response to Y-27632 an increased number of smaller focal adhesions were distributed across adhesion sites that in turn were clearly larger than sites in untreated cells, suggesting a reduction in focal adhesion maturation. We also confirm ROCK-2 localisation to the focal adhesion sites in migrating myoblasts and demonstrate a change in the distribution of these ROCK-2 containing adhesions in response to Y-27632. Taken together, our observations provide further proof that ROCK-2 regulates directional myoblast migration through focal adhesion formation and maturation.

  18. Electrotransfection and lipofection show comparable efficiency for in vitro gene delivery of primary human myoblasts.

    Science.gov (United States)

    Mars, Tomaz; Strazisar, Marusa; Mis, Katarina; Kotnik, Nejc; Pegan, Katarina; Lojk, Jasna; Grubic, Zoran; Pavlin, Mojca

    2015-04-01

    Transfection of primary human myoblasts offers the possibility to study mechanisms that are important for muscle regeneration and gene therapy of muscle disease. Cultured human myoblasts were selected here because muscle cells still proliferate at this developmental stage, which might have several advantages in gene therapy. Gene therapy is one of the most sought-after tools in modern medicine. Its progress is, however, limited due to the lack of suitable gene transfer techniques. To obtain better insight into the transfection potential of the presently used techniques, two non-viral transfection methods--lipofection and electroporation--were compared. The parameters that can influence transfection efficiency and cell viability were systematically approached and compared. Cultured myoblasts were transfected with the pEGFP-N1 plasmid either using Lipofectamine 2000 or with electroporation. Various combinations for the preparation of the lipoplexes and the electroporation media, and for the pulsing protocols, were tested and compared. Transfection efficiency and cell viability were inversely proportional for both approaches. The appropriate ratio of Lipofectamine and plasmid DNA provides optimal conditions for lipofection, while for electroporation, RPMI medium and a pulsing protocol using eight pulses of 2 ms at E = 0.8 kV/cm proved to be the optimal combination. The transfection efficiencies for the optimal lipofection and optimal electrotransfection protocols were similar (32 vs. 32.5%, respectively). Both of these methods are effective for transfection of primary human myoblasts; however, electroporation might be advantageous for in vivo application to skeletal muscle.

  19. Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles.

    Science.gov (United States)

    Dhanyasi, Nagaraju; Segal, Dagan; Shimoni, Eyal; Shinder, Vera; Shilo, Ben-Zion; VijayRaghavan, K; Schejter, Eyal D

    2015-10-12

    Fusion of individual myoblasts to form multinucleated myofibers constitutes a widely conserved program for growth of the somatic musculature. We have used electron microscopy methods to study this key form of cell-cell fusion during development of the indirect flight muscles (IFMs) of Drosophila melanogaster. We find that IFM myoblast-myotube fusion proceeds in a stepwise fashion and is governed by apparent cross talk between transmembrane and cytoskeletal elements. Our analysis suggests that cell adhesion is necessary for bringing myoblasts to within a minimal distance from the myotubes. The branched actin polymerization machinery acts subsequently to promote tight apposition between the surfaces of the two cell types and formation of multiple sites of cell-cell contact, giving rise to nascent fusion pores whose expansion establishes full cytoplasmic continuity. Given the conserved features of IFM myogenesis, this sequence of cell interactions and membrane events and the mechanistic significance of cell adhesion elements and the actin-based cytoskeleton are likely to represent general principles of the myoblast fusion process.

  20. Structure-function analysis of myomaker domains required for myoblast fusion.

    Science.gov (United States)

    Millay, Douglas P; Gamage, Dilani G; Quinn, Malgorzata E; Min, Yi-Li; Mitani, Yasuyuki; Bassel-Duby, Rhonda; Olson, Eric N

    2016-02-23

    During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell-cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation.

  1. Developmental programming in response to intrauterine growth restriction impairs myoblast function and skeletal muscle metabolism.

    Science.gov (United States)

    Yates, D T; Macko, A R; Nearing, M; Chen, X; Rhoads, R P; Limesand, S W

    2012-01-01

    Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.

  2. Novel lncRNAs in myogenesis: a miR-31 overlapping transcript controls myoblast differentiation.

    KAUST Repository

    Ballarino, Monica

    2014-12-15

    Transcriptome analysis allowed the identification of new long noncoding RNAs differentially expressed during murine myoblast differentiation. These transcripts were classified on the basis of their expression under proliferating versus differentiated conditions, muscle-restricted activation, and subcellular localization. Several species displayed preferential expression in dystrophic (mdx) versus wild-type muscles, indicating their possible link with regenerative processes. One of the identified transcripts, lnc-31, even if originating from the same nuclear precursor of miR-31, is produced by a pathway mutually exclusive. We show that lnc-31 and its human homologue hsa-lnc-31 are expressed in proliferating myoblasts, where they counteract differentiation. In line with this, both species are more abundant in mdx muscles and in human Duchenne muscular dystrophy (DMD) myoblasts, than in their normal counterparts. Altogether, these data suggest a crucial role for lnc-31 in controlling the differentiation commitment of precursor myoblasts and indicate that its function is maintained in evolution despite the poor sequence conservation with the human counterpart.

  3. Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

    Directory of Open Access Journals (Sweden)

    D. T. Yates

    2012-01-01

    Full Text Available Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR, skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.

  4. Human myoblast differentiation: Ca(2+) channels are activated by K(+) channels.

    Science.gov (United States)

    Bernheim, Laurent; Bader, Charles R

    2002-02-01

    In a paradigm of cellular differentiation, human myoblast fusion, we investigated how a Ca(2+) influx, indispensable for fusion, is triggered. We show how newly expressed Kir2.1 K(+) channels, via their hyperpolarizing effect on the membrane potential, generate a window Ca(2+) current (mediated by alpha 1H T-type Ca(2+) channels), which causes intracellular Ca(2+) to rise.

  5. Leucine and isoleucine reduce protein degradation in rainbow trout (Oncorhynchus mykiss) primary myoblast cultures

    Science.gov (United States)

    Myogenic precursor cells were isolated from rainbow trout skeletal muscle and incubated in media containing 10% fetal bovine serum for 7 days, thereby differentiating into myoblasts. Rates of protein degradation were determined in response to minimal essential media (MEM) of various amino acid (AA)...

  6. Encapsulated human primary myoblasts deliver functional hFIX in hemophilic mice.

    Science.gov (United States)

    Wen, Jianping; Xu, Nong; Li, Anna; Bourgeois, Jacqueline; Ofosu, Frederick A; Hortelano, Gonzalo

    2007-11-01

    Hemophilia B is a bleeding disorder caused by defective factor IX (FIX), currently treated by regular infusions of plasma-derived or recombinant FIX. We propose a gene therapy strategy based on the implantation of cells secreting FIX enclosed in alginate microcapsules as a highly desirable alternative treatment. We have reported sustained delivery of human factor IX (hFIX) in immunocompetent mice implanted with encapsulated primary mouse myoblasts engineered to secrete hFIX. As a step towards the treatment of human patients, in this study we report the implantation of encapsulated human primary myoblasts secreting hFIX in hemophilia B mice. Human primary myoblasts were transfected with plasmids pKL4M-hFIX, pLNM-betaIXL, pMFG-hFIX, and transduced with retrovirus MFG-hFIX. Two human primary myoblast clones secreting approximately 1 microg hFIX/10(6) cells/day were enclosed in biocompatible alginate microcapsules and implanted intraperitoneally into SCID and hemophilic mice. Circulating hFIX (peak of approximately 120 ng/ml) was detected in hemophilia B mice on day 1 after implantation. Human FIX delivery was transient, however, becoming undetectable on day 14. Concurrently, anti-hFIX antibodies were detected. At the same time, activated partial thromboplastin time (APTT) was reduced from 94 s before treatment to 78-80 s. Tail bleeding time decreased from 15 min to 1.5-7 min after treatment, some mice being normalised. These findings indicate that the delivered hFIX is biologically active. Similarly treated NOD/SCID mice had circulating hFIX levels of 170 ng/ml on day 1 that remained detectable for 1 month, albeit at low levels. Cell viability of microcapsules retrieved on day 60 was below 5%. Our findings indicate that encapsulated human primary myoblasts secrete functional hFIX. Furthermore, implantation of encapsulated human primary myoblasts can partially correct the phenotype of hemophilia B mice, supporting the feasibility of this gene therapy approach for

  7. Functional KCa1.1 channels are crucial for regulating the proliferation, migration and differentiation of human primary skeletal myoblasts

    Science.gov (United States)

    Tajhya, Rajeev B; Hu, Xueyou; Tanner, Mark R; Huq, Redwan; Kongchan, Natee; Neilson, Joel R; Rodney, George G; Horrigan, Frank T; Timchenko, Lubov T; Beeton, Christine

    2016-01-01

    Myoblasts are mononucleated precursors of myofibers; they persist in mature skeletal muscles for growth and regeneration post injury. During myotonic dystrophy type 1 (DM1), a complex autosomal-dominant neuromuscular disease, the differentiation of skeletal myoblasts into functional myotubes is impaired, resulting in muscle wasting and weakness. The mechanisms leading to this altered differentiation are not fully understood. Here, we demonstrate that the calcium- and voltage-dependent potassium channel, KCa1.1 (BK, Slo1, KCNMA1), regulates myoblast proliferation, migration, and fusion. We also show a loss of plasma membrane expression of the pore-forming α subunit of KCa1.1 in DM1 myoblasts. Inhibiting the function of KCa1.1 in healthy myoblasts induced an increase in cytosolic calcium levels and altered nuclear factor kappa B (NFκB) levels without affecting cell survival. In these normal cells, KCa1.1 block resulted in enhanced proliferation and decreased matrix metalloproteinase secretion, migration, and myotube fusion, phenotypes all observed in DM1 myoblasts and associated with disease pathogenesis. In contrast, introducing functional KCa1.1 α-subunits into DM1 myoblasts normalized their proliferation and rescued expression of the late myogenic marker Mef2. Our results identify KCa1.1 channels as crucial regulators of skeletal myogenesis and suggest these channels as novel therapeutic targets in DM1. PMID:27763639

  8. In vivo evaluation of alpha7 nicotinic acetylcholine receptor agonists [11C]A-582941 and [11C]A-844606 in mice and conscious monkeys.

    Directory of Open Access Journals (Sweden)

    Jun Toyohara

    Full Text Available BACKGROUND: The alpha7 nicotinic acetylcholine receptors (nAChRs play an important role in the pathophysiology of neuropsychiatric diseases such as schizophrenia and Alzheimer's disease. The goal of this study was to evaluate the two carbon-11-labeled alpha7 nAChR agonists [(11C]A-582941 and [(11C]A-844606 for their potential as novel positron emission tomography (PET tracers. METHODOLOGY/PRINCIPAL FINDINGS: The two tracers were synthesized by methylation of the corresponding desmethyl precursors using [(11C]methyl triflate. Effects of receptor blockade in mice were determined by coinjection of either tracer along with a carrier or an excess amount of a selective alpha7 nAChR agonist (SSR180711. Metabolic stability was investigated using radio-HPLC. Dynamic PET scans were performed in conscious monkeys with/without SSR180711-treatment. [(11C]A-582941 and [(11C]A-844606 showed high uptake in the mouse brain. Most radioactive compounds in the brain were detected as an unchanged form. However, regional selectivity and selective receptor blockade were not clearly observed for either compound in the mouse brain. On the other hand, the total distribution volume of [(11C]A-582941 and [(11C]A-844606 was high in the hippocampus and thalamus but low in the cerebellum in the conscious monkey brain, and reduced by pretreatment with SSR180711. CONCLUSIONS/SIGNIFICANCE: A nonhuman primate study suggests that [(11C]A-582941 and [(11C]A-844606 would be potential PET ligands for imaging alpha7 nAChRs in the human brain.

  9. Co-expression of alpha7 and beta2 nicotinic acetylcholine receptor subunit mRNAs within rat brain cholinergic neurons.

    Science.gov (United States)

    Azam, L; Winzer-Serhan, U; Leslie, F M

    2003-01-01

    Nicotine enhances cognitive and attentional processes through stimulation of the basal forebrain cholinergic system. Although muscarinic cholinergic autoreceptors have been well characterized, pharmacological characterization of nicotinic autoreceptors has proven more difficult. The present study used double-labeling in situ hybridization to determine expression of nicotinic acetylcholine receptor (nAChR) subunit mRNAs within basal forebrain cholinergic neurons in order to gain information about possible nAChR autoreceptor properties. Cholinergic cells of the mesopontine tegmentum and striatal interneurons were also examined, as were septohippocampal GABAergic neurons that interact with cholinergic neurons to regulate hippocampal activity. alpha7 and beta2 nAChR mRNAs were found to be co-expressed in almost all cholinergic cells and in the majority of GABAergic neurons examined. alpha4 nAChR mRNA expression was restricted to cholinergic cells of the nucleus basalis magnocellularis, and to non-cholinergic cells of the medial septum and mesopontine tegmentum. These data suggest possible regional differences in the pharmacological properties of nicotinic autoreceptors on cholinergic cells. Whereas most cholinergic cells express rapidly desensitizing alpha7 homomers or alpha7beta2 heteromers, cortical projection neurons may also express a pharmacologically distinct alpha4beta2 nAChR subtype. There may also be differential nAChR regulation of cholinergic and non-cholinergic cells within the mesopontine tegmentum that are implicated in acquisition of nicotine self-administration.

  10. Activation of IL-11/STAT3 pathway in preconditioned human skeletal myoblasts blocks apoptotic cascade under oxidant stress.

    Science.gov (United States)

    Idris, Niagara Muhammad; Ashraf, Muhammad; Ahmed, Rafeeq P H; Shujia, Jiang; Haider, Khawaja H

    2012-01-01

    To determine whether our novel approach of diazoxide-induced stem cell preconditioning might be extrapolated to human skeletal myoblasts to support their survival under lethal oxidant stress. Using an in vitro model of H(2)O(2) treatment of human skeletal myoblasts, we report the ability of diazoxide-preconditioned human skeletal myoblasts to express cytokines and growth factors, which act in an autocrine and paracrine fashion to promote their own survival. Preconditioning of skeletal myoblasts was cytoprotective and significantly reduced their apoptotic index (p oxidant stress. The cytoprotective effect of diazoxide preconditioning was blocked by Erk1/2 inhibitor PD98059 (20-100 µM), which abrogated STAT-3 phosphorylation, thus confirming a possible involvement of Erk1/2/STAT3 signaling downstream of IL-11 in cell survival. We also investigated the time course of subcellular changes and signaling pathway of skeletal myoblasts apoptosis under oxidant stress before and after preconditioning. Apoptosis was induced in skeletal myoblasts with 100-500 µM H(2)O(2) for time points ranging from 1 to 24 h. Release of lactate dehydrogenase, disruption of the mitochondrial membrane potential and cytochrome-c translocation into cytoplasm were the earliest signs of apoptosis. Total Akt protein remained unchanged whereas marked reduction in pAkt was observed in the native skeletal myoblasts. Terminal dUTP nick end-labeling and annexin-V positivity were significantly increased after 4 h. Ultra-structure studies showed condensed chromatin, shriveled nuclei and swollen mitochondria. These data suggest that skeletal myoblasts undergo apoptosis under oxidant stress in a time-dependent manner and preconditioning of skeletal myoblasts significantly prevented their apoptosis via IL-11/STAT3 signaling.

  11. Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest.

    Science.gov (United States)

    Subramaniam, Sindhu; Sreenivas, Prethish; Cheedipudi, Sirisha; Reddy, Vatrapu Rami; Shashidhara, Lingadahalli Subrahmanya; Chilukoti, Ravi Kumar; Mylavarapu, Madhavi; Dhawan, Jyotsna

    2014-01-01

    Most cells in adult mammals are non-dividing: differentiated cells exit the cell cycle permanently, but stem cells exist in a state of reversible arrest called quiescence. In damaged skeletal muscle, quiescent satellite stem cells re-enter the cell cycle, proliferate and subsequently execute divergent programs to regenerate both post-mitotic myofibers and quiescent stem cells. The molecular basis for these alternative programs of arrest is poorly understood. In this study, we used an established myogenic culture model (C2C12 myoblasts) to generate cells in alternative states of arrest and investigate their global transcriptional profiles. Using cDNA microarrays, we compared G0 myoblasts with post-mitotic myotubes. Our findings define the transcriptional program of quiescent myoblasts in culture and establish that distinct gene expression profiles, especially of tumour suppressor genes and inhibitors of differentiation characterize reversible arrest, distinguishing this state from irreversibly arrested myotubes. We also reveal the existence of a tissue-specific quiescence program by comparing G0 C2C12 myoblasts to isogenic G0 fibroblasts (10T1/2). Intriguingly, in myoblasts but not fibroblasts, quiescence is associated with a signature of Wnt pathway genes. We provide evidence that different levels of signaling via the canonical Wnt pathway characterize distinct cellular states (proliferation vs. quiescence vs. differentiation). Moderate induction of Wnt signaling in quiescence is associated with critical properties such as clonogenic self-renewal. Exogenous Wnt treatment subverts the quiescence program and negatively affects clonogenicity. Finally, we identify two new quiescence-induced regulators of canonical Wnt signaling, Rgs2 and Dkk3, whose induction in G0 is required for clonogenic self-renewal. These results support the concept that active signal-mediated regulation of quiescence contributes to stem cell properties, and have implications for pathological

  12. An integrated strategy for analyzing the unique developmental programs of different myoblast subtypes.

    Directory of Open Access Journals (Sweden)

    2006-02-01

    Full Text Available An important but largely unmet challenge in understanding the mechanisms that govern the formation of specific organs is to decipher the complex and dynamic genetic programs exhibited by the diversity of cell types within the tissue of interest. Here, we use an integrated genetic, genomic, and computational strategy to comprehensively determine the molecular identities of distinct myoblast subpopulations within the Drosophila embryonic mesoderm at the time that cell fates are initially specified. A compendium of gene expression profiles was generated for primary mesodermal cells purified by flow cytometry from appropriately staged wild-type embryos and from 12 genotypes in which myogenesis was selectively and predictably perturbed. A statistical meta-analysis of these pooled datasets--based on expected trends in gene expression and on the relative contribution of each genotype to the detection of known muscle genes--provisionally assigned hundreds of differentially expressed genes to particular myoblast subtypes. Whole embryo in situ hybridizations were then used to validate the majority of these predictions, thereby enabling true-positive detection rates to be estimated for the microarray data. This combined analysis reveals that myoblasts exhibit much greater gene expression heterogeneity and overall complexity than was previously appreciated. Moreover, it implicates the involvement of large numbers of uncharacterized, differentially expressed genes in myogenic specification and subsequent morphogenesis. These findings also underscore a requirement for considerable regulatory specificity for generating diverse myoblast identities. Finally, to illustrate how the developmental functions of newly identified myoblast genes can be efficiently surveyed, a rapid RNA interference assay that can be scored in living embryos was developed and applied to selected genes. This integrated strategy for examining embryonic gene expression and function provides

  13. Therapeutic angiogenesis by a myoblast layer harvested by tissue transfer printing from cell-adhesive, thermosensitive hydrogels.

    Science.gov (United States)

    Kim, Dong Wan; Jun, Indong; Lee, Tae-Jin; Lee, Ji Hye; Lee, Young Jun; Jang, Hyeon-Ki; Kang, Seokyung; Park, Ki Dong; Cho, Seung-Woo; Kim, Byung-Soo; Shin, Heungsoo

    2013-11-01

    Peripheral arterial disease (PAD) is characterized by the altered structure and function of arteries caused by accumulated plaque. There have been many studies on treating this disease by the direct injection of various types of therapeutic cells, however, the low cell engraftment efficiency and diffusion of the transplanted cells have been major problems. In this study, we developed an approach (transfer printing) to deliver monolayer of cells to the hindlimb ischemic tissue using thermosensitive hydrogels, and investigated its efficacy in long term retention upon transplantation and therapeutic angiogenesis. We first investigated the in vitro maintenance of robust cell-cell contacts and stable expression of the ECM proteins in myoblast layer following transfer printing process. In order to confirm the therapeutic effect of the myoblasts in vivo, we cultured a monolayer of C2C12 myoblasts on thermosensitive hydrogels, which was then transferred to the hindlimb ischemia tissue of athymic mice directly from the hydrogel by conformal contact. The transferred myoblast layer was retained for a longer period of time than an intramuscularly injected cell suspension. In addition, the morphology of the mice and laser Doppler perfusion (28 days after treatment) supported that the myoblast layer enhanced the therapeutic effects on the ischemic tissue. In summary, the transplantation of the C2C12 myoblast layer using a tissue transfer printing method could represent a new approach for the treatment of PAD by therapeutic angiogenesis.

  14. Tocotrienol-Rich Fraction Ameliorates Antioxidant Defense Mechanisms and Improves Replicative Senescence-Associated Oxidative Stress in Human Myoblasts

    Directory of Open Access Journals (Sweden)

    Shy Cian Khor

    2017-01-01

    Full Text Available During aging, oxidative stress affects the normal function of satellite cells, with consequent regeneration defects that lead to sarcopenia. This study aimed to evaluate tocotrienol-rich fraction (TRF modulation in reestablishing the oxidative status of myoblasts during replicative senescence and to compare the effects of TRF with other antioxidants (α-tocopherol (ATF and N-acetyl-cysteine (NAC. Primary human myoblasts were cultured to young, presenescent, and senescent phases. The cells were treated with antioxidants for 24 h, followed by the assessment of free radical generation, lipid peroxidation, antioxidant enzyme mRNA expression and activities, and the ratio of reduced to oxidized glutathione. Our data showed that replicative senescence increased reactive oxygen species (ROS generation and lipid peroxidation in myoblasts. Treatment with TRF significantly diminished ROS production and decreased lipid peroxidation in senescent myoblasts. Moreover, the gene expression of superoxide dismutase (SOD2, catalase (CAT, and glutathione peroxidase (GPX1 was modulated by TRF treatment, with increased activity of superoxide dismutase and catalase and reduced glutathione peroxidase in senescent myoblasts. In comparison to ATF and NAC, TRF was more efficient in heightening the antioxidant capacity and reducing free radical insults. These results suggested that TRF is able to ameliorate antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in myoblasts.

  15. Cargo delivery to adhering myoblast cells from liposome-containing poly(dopamine) composite coatings

    DEFF Research Database (Denmark)

    Madsen, Martin Elias Lynge; Mian Teo, Boon; Laursen, Marie Bækgaard;

    2013-01-01

    Designing surfaces to deliver therapeutic compounds to adhering cells is of paramount importance for both implantable devices and tissue engineering. We report the assembly of composite films consisting of liposomes as drug deposits in a poly(dopamine) matrix. We monitor the film assembly using...... a quartz crystal microbalance with dissipation. We assess the response of adhering myoblast cells to these films containing fluorescent lipids in terms of uptake efficiency and cell mean fluorescence using flow cytometry. The viability of adhering myoblast cells, when the hydrophobic cytotoxic compound...... thiocoraline is entrapped in the lipid membrane, is assessed for different films. Coatings with one or two liposome deposition steps are considered. Further, the effect of the polymer separation layers between the liposome layers is determined. We found that it is possible to use the different nano...

  16. Genomic-wide transcriptional profiling in primary myoblasts reveals Runx1-regulated genes in muscle regeneration

    Directory of Open Access Journals (Sweden)

    Kfir Baruch Umansky

    2015-12-01

    Full Text Available In response to muscle damage the muscle adult stem cells are activated and differentiate into myoblasts that regenerate the damaged tissue. We have recently showed that following myopathic damage the level of the Runx1 transcription factor (TF is elevated and that during muscle regeneration this TF regulates the balance between myoblast proliferation and differentiation (Umansky et al.. We employed Runx1-dependent gene expression, Chromatin Immunoprecipitation sequencing (ChIP-seq, Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq and histone H3K4me1/H3K27ac modification analyses to identify a subset of Runx1-regulated genes that are co-occupied by the TFs MyoD and c-Jun and are involved in muscle regeneration (Umansky et al.. The data is available at the GEO database under the superseries accession number GSE56131.

  17. A surgical robot with a heart-surface-motion synchronization mechanism for myoblast cell sheet transplantation.

    Science.gov (United States)

    Xu, Kangyi; Nakamura, Ryoichi

    2013-01-01

    Myoblast cell sheets are employed in the clinical treatment of heart disorders. We propose a surgical robot system with two endoscopic cameras, characterized by a double remote center of motion (RCM) mechanism, to realize heart-surface-motion synchronization movement for myoblast cell sheet transplantation on a beating heart surface. A robot system with the double RCM mechanism was developed for which the linear and rotation motions are totally isolated, and an experiment was conducted to evaluate the tracking accuracy of the robot system when tracking a randomly moving target. The tracking data were updated with a Polaris system at 30 Hz. The experiment results showed linear and rotation tracking errors of 4.93 ± 5.92 mm and 2.54 ± 5.44°, respectively.

  18. Pro-cognitive and antipsychotic efficacy of the alpha7 nicotinic partial agonist SSR180711 in pharmacological and neurodevelopmental latent inhibition models of schizophrenia.

    Science.gov (United States)

    Barak, Segev; Arad, Michal; De Levie, Amaya; Black, Mark D; Griebel, Guy; Weiner, Ina

    2009-06-01

    Schizophrenia symptoms can be segregated into positive, negative and cognitive, which exhibit differential sensitivity to drug treatments. Accumulating evidence points to efficacy of alpha7 nicotinic receptor (nAChR) agonists for cognitive deficits in schizophrenia but their activity against positive symptoms is thought to be minimal. The present study examined potential pro-cognitive and antipsychotic activity of the novel selective alpha7 nAChR partial agonist SSR180711 using the latent inhibition (LI) model. LI is the reduced efficacy of a previously non-reinforced stimulus to gain behavioral control when paired with reinforcement, compared with a novel stimulus. Here, no-drug controls displayed LI if non-reinforced pre-exposure to a tone was followed by weak but not strong conditioning (2 vs 5 tone-shock pairings). MK801 (0.05 mg/kg, i.p.) -treated rats as well as rats neonatally treated with nitric oxide synthase inhibitor L-NoArg (10 mg/kg, s.c.) on postnatal days 4-5, persisted in displaying LI with strong conditioning, whereas amphetamine (1 mg/kg) -treated rats failed to show LI with weak conditioning. SSR180711 (0.3, 1, 3 mg/kg, i.p.) was able to alleviate abnormally persistent LI produced by acute MK801 and neonatal L-NoArg; these models are believed to model cognitive aspects of schizophrenia and activity here was consistent with previous findings with alpha7-nAChR agonists. In addition, unexpectedly, SSR180711 (1, 3 mg/kg, i.p.) potentiated LI with strong conditioning in no-drug controls and reversed amphetamine-induced LI disruption, two effects considered predictive of activity against positive symptoms of schizophrenia. These findings suggest that SSR180711 may be beneficial not only for the treatment of cognitive symptoms in schizophrenia, as reported multiple times previously, but also positive symptoms.

  19. 3-[2,4-Dimethoxybenzylidene]anabaseine (DMXB) selectively activates rat alpha7 receptors and improves memory-related behaviors in a mecamylamine-sensitive manner.

    Science.gov (United States)

    Meyer, E M; Tay, E T; Papke, R L; Meyers, C; Huang, G L; de Fiebre, C M

    1997-09-12

    The alpha7 nicotinic receptor agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB; GTS-21) was investigated for its ability to: (1) activate a variety of nicotinic receptor subtypes in Xenopus oocytes; (2) improve passive avoidance and spatial Morris water task performances in mecamylamine-sensitive manners in bilaterally nucleus basalis lesioned rats; and (3) elevate high-affinity [3H]acetylcholine (ACh) and high-affinity alpha-[125I]bungarotoxin binding in rat neocortex following 2 weeks of daily injections. DMXB (100 microM) activated alpha7 homo-oligomeric receptors, without significant activity at alpha2-, alpha3- and alpha4-containing subtypes. Mecamylamine blocked rat alpha7 receptors weakly if co-administered with agonist, but much more potently when pre-applied. Bilateral ibotenic acid lesions of the nucleus basalis interfered with passive avoidance and spatial memory-related behaviors. DMXB (0.5 mg/kg, i.p.) improved passive avoidance behavior in lesioned animals in a mecamylamine-sensitive manner. DMXB (0.5 mg/kg 15 min before each session) also improved performance in the training and probe components of the Morris water task. DMXB-induced improvement in the probe component but not the training phase was mecamylamine-sensitive. [3H]ACh binding was elevated after 14 days of daily i.p. injections with 0.2 mg/kg nicotine but not after 1 mg/kg DMXB. Neither drug elevated high-affinity alpha-[125I]bungarorotoxin binding over this interval.

  20. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    Directory of Open Access Journals (Sweden)

    Su Deng

    2015-08-01

    Full Text Available The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia, which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  1. Protein kinase D2 is an essential regulator of murine myoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Alexander Kleger

    Full Text Available Muscle differentiation is a highly conserved process that occurs through the activation of quiescent satellite cells whose progeny proliferate, differentiate, and fuse to generate new myofibers. A defined pattern of myogenic transcription factors is orchestrated during this process and is regulated via distinct signaling cascades involving various intracellular signaling pathways, including members of the protein kinase C (PKC family. The protein kinase D (PKD isoenzymes PKD1, -2, and -3, are prominent downstream targets of PKCs and phospholipase D in various biological systems including mouse and could hence play a role in muscle differentiation. In the present study, we used a mouse myoblast cell line (C2C12 as an in vitro model to investigate the role of PKDs, in particular PKD2, in muscle stem cell differentiation. We show that C2C12 cells express all PKD isoforms with PKD2 being highly expressed. Furthermore, we demonstrate that PKD2 is specifically phosphorylated/activated during the initiation of mouse myoblast differentiation. Selective inhibition of PKCs or PKDs by pharmacological inhibitors blocked myotube formation. Depletion of PKD2 by shRNAs resulted in a marked inhibition of myoblast cell fusion. PKD2-depleted cells exhibit impaired regulation of muscle development-associated genes while the proliferative capacity remains unaltered. Vice versa forced expression of PKD2 increases myoblast differentiation. These findings were confirmed in primary mouse satellite cells where myotube fusion was also decreased upon inhibition of PKDs. Active PKD2 induced transcriptional activation of myocyte enhancer factor 2D and repression of Pax3 transcriptional activity. In conclusion, we identify PKDs, in particular PKD2, as a major mediator of muscle cell differentiation in vitro and thereby as a potential novel target for the modulation of muscle regeneration.

  2. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation.

    Science.gov (United States)

    Deng, Su; Bothe, Ingo; Baylies, Mary K

    2015-08-01

    The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease.

  3. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts.

    Science.gov (United States)

    Ito, Akira; Yamamoto, Masahiro; Ikeda, Kazushi; Sato, Masanori; Kawabe, Yoshinori; Kamihira, Masamichi

    2015-05-01

    Skeletal muscle regeneration requires migration, proliferation and fusion of myoblasts to form multinucleated myotubes. In our previous study, we showed that insulin-like growth factor (IGF)-I gene delivery stimulates the proliferation and differentiation of mouse myoblast C2C12 cells and promotes the contractile force generated by tissue-engineered skeletal muscles. The aim of this study was to investigate the effects of the extracellular matrix on IGF-I gene-engineered C2C12 cells in vitro. Retroviral vectors for doxycycline (Dox)-inducible expression of the IGF-I gene were transduced into C2C12 cells. When cultured on a type IV collagen-coated surface, we observed significant increases in the migration speed and number of IGF-I gene-engineered C2C12 cells with Dox addition, designated as C2C12/IGF (+) cells. Co-culture of C2C12/IGF (+) cells and parental C2C12 cells, which had been cultured in differentiation medium for 3 days, greatly enhanced myotube formation. Moreover, type IV collagen supplementation promoted the fusion of C2C12/IGF (+) cells with differentiated C2C12 cells and increased the number of myotubes with striations. Myotubes formed by C2C12/IGF (+) cells cultured on type IV collagen showed a dynamic contractile activity in response to electrical pulse stimulation. These findings indicate that type IV collagen promotes skeletal muscle regeneration mediated by IGF-I-expressing myoblasts, which may have important clinical implications in the design of myoblast-based therapies.

  4. The intracellular domain of Dumbfounded affects myoblast fusion efficiency and interacts with Rolling pebbles and Loner.

    Directory of Open Access Journals (Sweden)

    Sarada Bulchand

    Full Text Available Drosophila body wall muscles are multinucleated syncytia formed by successive fusions between a founder myoblast and several fusion competent myoblasts. Initial fusion gives rise to a bi/trinucleate precursor followed by more fusion cycles forming a mature muscle. This process requires the functions of various molecules including the transmembrane myoblast attractants Dumbfounded (Duf and its paralogue Roughest (Rst, a scaffold protein Rolling pebbles (Rols and a guanine nucleotide exchange factor Loner. Fusion completely fails in a duf, rst mutant, and is blocked at the bi/trinucleate stage in rols and loner single mutants. We analysed the transmembrane and intracellular domains of Duf, by mutating conserved putative signaling sites and serially deleting the intracellular domain. These were tested for their ability to translocate and interact with Rols and Loner and to rescue the fusion defect in duf, rst mutant embryos. Studying combinations of double mutants, further tested the function of Rols, Loner and other fusion molecules. Here we show that serial truncations of the Duf intracellular domain successively compromise its function to translocate and interact with Rols and Loner in addition to affecting myoblast fusion efficiency in embryos. Putative phosphorylation sites function additively while the extreme C terminus including a PDZ binding domain is dispensable for its function. We also show that fusion is completely blocked in a rols, loner double mutant and is compromised in other double mutants. These results suggest an additive function of the intracellular domain of Duf and an early function of Rols and Loner which is independent of Duf.

  5. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices.

    Science.gov (United States)

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Linhua; Kim, Min Jeong; Kim, Yong-Joo; Hyun, Jung Keun; Jung, Tae-Gon; Hong, Suck Won; Han, Dong-Wook

    2015-03-12

    Electrospinning is a simple and effective method for fabricating micro- and nanofiber matrices. Electrospun fibre matrices have numerous advantages for use as tissue engineering scaffolds, such as high surface area-to-volume ratio, mass production capability and structural similarity to the natural extracellular matrix (ECM). Therefore, electrospun matrices, which are composed of biocompatible polymers and various biomaterials, have been developed as biomimetic scaffolds for the tissue engineering applications. In particular, graphene oxide (GO) has recently been considered as a novel biomaterial for skeletal muscle regeneration because it can promote the growth and differentiation of myoblasts. Therefore, the aim of the present study was to fabricate the hybrid fibre matrices that stimulate myoblasts differentiation for skeletal muscle regeneration. Hybrid fibre matrices composed of poly(lactic-co-glycolic acid, PLGA) and collagen (Col) impregnated with GO (GO-PLGA-Col) were successfully fabricated using an electrospinning process. Our results indicated that the GO-PLGA-Col hybrid matrices were comprised of randomly-oriented continuous fibres with a three-dimensional non-woven porous structure. Compositional analysis showed that GO was dispersed uniformly throughout the GO-PLGA-Col matrices. In addition, the hydrophilicity of the fabricated matrices was significantly increased by blending with a small amount of Col and GO. The attachment and proliferation of the C2C12 skeletal myoblasts were significantly enhanced on the GO-PLGA-Col hybrid matrices. Furthermore, the GO-PLGA-Col matrices stimulated the myogenic differentiation of C2C12 skeletal myoblasts, which was enhanced further under the culture conditions of the differentiation media. Taking our findings into consideration, it is suggested that the GO-PLGA-Col hybrid fibre matrices can be exploited as potential biomimetic scaffolds for skeletal tissue engineering and regeneration because these GO

  6. Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha 7 integrin, utrophin and associated glycoproteins

    DEFF Research Database (Denmark)

    Moghadaszadeh, Behzad; Albrechtsen, Reidar; Guo, Ling T;

    2003-01-01

    , and suggested that significant changes in mdx/ADAM12 muscle might occur post-transcriptionally. Indeed, by immunostaining and immunoblotting we found an approximately 2-fold increase in expression, and distinct extrasynaptic localization, of alpha 7B integrin and utrophin, the functional homolog of dystrophin....... The expression of the dystrophin-associated glycoproteins was also increased. In conclusion, these results demonstrate a novel way to alleviate dystrophin deficiency in mice, and may stimulate the development of new approaches to compensate for dystrophin deficiency in animals and humans....

  7. Smad3 signaling is required for satellite cell function and myogenic differentiation of myoblasts

    Institute of Scientific and Technical Information of China (English)

    Xiaojia Ge; Ravi Kambadur; Craig McFarlane; Anuradha Vajjala; Sudarsanareddy Lokireddy; Zhi Hui Ng; Chek Kun Tan; Nguan Soon Tan; Walter Wahli; Mridula Sharma

    2011-01-01

    TGF-β and myostatin are the two most important regulators of muscle growth.Both growth factors have been shown to signal through a Smad3-dependent pathway.However to date,the role of Smad3 in muscle growth and differentiation is not investigated.Here,we demonstrate that Smad3-null mice have decreased muscle mass and pronounced skeletal muscle atrophy.Consistent with this,we also find increased protein ubiquitination and elevated levels of the ubiquitin E3 ligase MuRF1 in muscle tissue isolated from Smad3-null mice.Loss of Smad3 also led to defective satellite cell (SC) functionality.Smad3-null SCs showed reduced propensity for self-renewal,which may lead to a progressive loss of SC number.Indeed,decreased SC number was observed in skeletal muscle from Smad3- null mice showing signs of severe muscle wasting.Further in vitro analysis of primary myoblast cultures identified that Smad3-nuil myoblasts exhibit impaired proliferation,differentiation and fusion,resulting in the formation of atrophied myotubes.A search for the molecular mechanism revealed that loss of Smad3 results in increased myostatin expression in Smad3-null muscle and myoblasts.Given that myostatin is a negative regulator,we hypothesize that increased myostatin levels are responsible for the atrophic phenotype in Smad3-null mice.Consistent with this theory,inactivation of myostatin in Smad3-null mice rescues the muscle atrophy phenotype.

  8. Low-level infrared laser modulates muscle repair and chromosome stabilization genes in myoblasts.

    Science.gov (United States)

    da Silva Neto Trajano, Larissa Alexsandra; Stumbo, Ana Carolina; da Silva, Camila Luna; Mencalha, Andre Luiz; Fonseca, Adenilson S

    2016-08-01

    Infrared laser therapy is used for skeletal muscle repair based on its biostimulative effect on satellite cells. However, shortening of telomere length limits regenerative potential in satellite cells, which occurs after each cell division cycle. Also, laser therapy could be more effective on non-physiologic tissues. This study evaluated low-level infrared laser exposure effects on mRNA expression from muscle injury repair and telomere stabilization genes in myoblasts in normal and stressful conditions. Laser fluences were those used in clinical protocols. C2C12 myoblast cultures were exposed to low-level infrared laser (10, 35, and 70 J/cm(2)) in standard or normal (10 %) and reduced (2 %) fetal bovine serum concentrations; total RNA was extracted for mRNA expression evaluation from muscle injury repair (MyoD and Pax7) and chromosome stabilization (TRF1 and TRF2) genes by real time quantitative polymerization chain reaction. Data show that low-level infrared laser increases the expression of MyoD and Pax7 in 10 J/cm(2) fluence, TRF1 expression in all fluences, and TRF2 expression in 70 J/cm(2) fluence in both 10 and 2 % fetal bovine serum. Low-level infrared laser increases mRNA expression from genes related to muscle repair and telomere stabilization in myoblasts in standard or normal and stressful conditions.

  9. In vivo cell tracking of mouse embryonic myoblasts and fast fibers during development.

    Science.gov (United States)

    Guerrero, Lucia; Villar, Pedro; Martínez, Lidia; Badia-Careaga, Claudio; Arredondo, Juan J; Cervera, Margarita

    2014-09-01

    Fast and slow TnI are co-expressed in E11.5 embryos, and fast TnI is present from the very beginning of myogenesis. A novel green fluorescent protein (GFP) reporter mouse lines (FastTnI/GFP lines) that carry the primary and secondary enhancer elements of the mouse fast troponin I (fast TnI), in which reporter expression correlates precisely with distribution of the endogenous fTnI protein was generated. Using the FastTnI/GFP mouse model, we characterized the early myogenic events in mice, analyzing the migration of GFP+ myoblasts, and the formation of primary and secondary myotubes in transgenic embryos. Interestingly, we found that the two contractile fast and slow isoforms of TnI are expressed during the migration of myoblasts from the somites to the limbs and body wall, suggesting that both participate in these events. Since no sarcomeres are present in myoblasts, we speculate that the function of fast TnI in early myogenesis is, like Myosin and Tropomyosin, to participate in cell movement during the initial myogenic stages. genesis © 2014 Wiley Periodicals, Inc.

  10. Hes6 is required for actin cytoskeletal organization in differentiating C2C12 myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Malone, Caroline M.P.; Domaschenz, Renae; Amagase, Yoko [MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Addenbrooke' s Hospital, Cambridge CB2 0XZ (United Kingdom); Dunham, Ian [EMBL-European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD (United Kingdom); Murai, Kasumi [MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Addenbrooke' s Hospital, Cambridge CB2 0XZ (United Kingdom); Jones, Philip H., E-mail: phj20@cam.ac.uk [MRC Cancer Cell Unit, Hutchison-MRC Research Centre, Addenbrooke' s Hospital, Cambridge CB2 0XZ (United Kingdom)

    2011-07-01

    Hes6 is a member of the hairy-enhancer-of-split family of transcription factors that regulate proliferating cell fate in development and is known to be expressed in developing muscle. Here we investigate its function in myogenesis in vitro. We show that Hes6 is a direct transcriptional target of the myogenic transcription factors MyoD and Myf5, indicating that it is integral to the myogenic transcriptional program. The localization of Hes6 protein changes during differentiation, becoming predominantly nuclear. Knockdown of Hes6 mRNA levels by siRNA has no effect on cell cycle exit or induction of myosin heavy chain expression in differentiating C2C12 myoblasts, but F-actin filament formation is disrupted and both cell motility and myoblast fusion are reduced. The knockdown phenotype is rescued by expression of Hes6 cDNA resistant to siRNA. These results define a novel role for Hes6 in actin cytoskeletal dynamics in post mitotic myoblasts.

  11. Povidone-iodine Solutions Inhibit Cell Migration and Survival of Osteoblasts, Fibroblasts, and Myoblasts.

    Science.gov (United States)

    Liu, James X; Werner, Jordan A; Buza, John A; Kirsch, Thorsten; Zuckerman, Joseph D; Virk, Mandeep S

    2017-04-12

    In vitro laboratory study. The purpose of this study was to identify the effect of dilute povidone-iodine (PVI) solutions on human osteoblast, fibroblast and myoblast cells in vitro. Dilute PVI wound lavage has been used successfully in spine and joint arthroplasty procedures to prevent post-operative surgical site infection, but their biologic effect on host cells is largely unknown. Human primary osteoblasts, fibroblasts, and myoblasts were expanded in cell culture and subjected to various concentrations of PVI (0%, 0.001%, 0.01%, 0.1%, 0.35%, 1%) for 3 minutes. To assess the effect of PVI on cell migration, a scratch assay was performed, in which a "scratch" was made by a standard pipette tip in a cell monolayer following PVI exposure, and time to closure of the scratch was evaluated. Cell survival and proliferation was measured 48 hours post-PVI exposure using a cell viability and cytotoxicity assay. Closure of the scratch defect in all cell monolayers was achieved in PVI concentrations PVI concentrations of ≥ 0.1%. PVI concentrations PVI ≥ 0.1% had cell survival rates of less than 6% (p PVI (0.35%) exerts a pronounced cytotoxic effect on osteoblasts, fibroblast, and myoblasts in vitro. Further investigation is required to systematically study the effect of PVI on tissue healing in vivo and also determine a safe and clinically potent concentration for PVI lavage. N/A.

  12. Can Human Embryonic Stem Cell-Derived Stromal Cells Serve a Starting Material for Myoblasts?

    Directory of Open Access Journals (Sweden)

    Yu Ando

    2017-01-01

    Full Text Available A large number of myocytes are necessary to treat intractable muscular disorders such as Duchenne muscular dystrophy with cell-based therapies. However, starting materials for cellular therapy products such as myoblasts, marrow stromal cells, menstrual blood-derived cells, and placenta-derived cells have a limited lifespan and cease to proliferate in vitro. From the viewpoints of manufacturing and quality control, cells with a long lifespan are more suitable as a starting material. In this study, we generated stromal cells for future myoblast therapy from a working cell bank of human embryonic stem cells (ESCs. The ESC-derived CD105+ cells with extensive in vitro proliferation capability exhibited myogenesis and genetic stability in vitro. These results imply that ESC-derived CD105+ cells are another cell source for myoblasts in cell-based therapy for patients with genetic muscular disorders. Since ESCs are immortal, mesenchymal stromal cells generated from ESCs can be manufactured at a large scale in one lot for pharmaceutical purposes.

  13. PKC-Mediated ZYG1 Phosphorylation Induces Fusion of Myoblasts as well as of Dictyostelium Cells

    Directory of Open Access Journals (Sweden)

    Aiko Amagai

    2012-01-01

    Full Text Available We have previously demonstrated that a novel protein ZYG1 induces sexual cell fusion (zygote formation of Dictyostelium cells. In the process of cell fusion, involvements of signal transduction pathways via Ca2+ and PKC (protein kinase C have been suggested because zygote formation is greatly enhanced by PKC activators. In fact, there are several deduced sites phosphorylated by PKC in ZYG1 protein. Thereupon, we designed the present work to examine whether or not ZYG1 is actually phosphorylated by PKC and localized at the regions of cell-cell contacts where cell fusion occurs. These were ascertained, suggesting that ZYG1 might be the target protein for PKC. A humanized version of zyg1 cDNA (mzyg1 was introduced into myoblasts to know if ZYG1 is also effective in cell fusion of myoblasts. Quite interestingly, enforced expression of ZYG1 in myoblasts was found to induce markedly their cell fusion, thus strongly suggesting the existence of a common signaling pathway for cell fusion beyond the difference of species.

  14. Defective Regulation of MicroRNA Target Genes in Myoblasts from Facioscapulohumeral Dystrophy Patients*

    Science.gov (United States)

    Dmitriev, Petr; Stankevicins, Luiza; Ansseau, Eugenie; Petrov, Andrei; Barat, Ana; Dessen, Philippe; Robert, Thomas; Turki, Ahmed; Lazar, Vladimir; Labourer, Emmanuel; Belayew, Alexandra; Carnac, Gilles; Laoudj-Chenivesse, Dalila; Lipinski, Marc; Vassetzky, Yegor S.

    2013-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant hereditary neuromuscular disorder linked to the deletion of an integral number of 3.3-kb-long macrosatellite repeats (D4Z4) within the subtelomeric region of chromosome 4q. Most genes identified in this region are overexpressed in FSHD myoblasts, including the double homeobox genes DUX4 and DUX4c. We have carried out a simultaneous miRNome/transcriptome analysis of FSHD and control primary myoblasts. Of 365 microRNAs (miRNAs) analyzed in this study, 29 were found to be differentially expressed between FSHD and normal myoblasts. Twenty-one microRNAs (miR-1, miR-7, miR-15a, miR-22, miR-30e, miR-32, miR-107, miR-133a, miR-133b, miR-139, miR-152, miR-206, miR-223, miR-302b, miR-331, miR-362, miR-365, miR-382, miR-496, miR-532, miR-654, and miR-660) were up-regulated, and eight were down-regulated (miR-15b, miR-20b, miR-21, miR-25, miR-100, miR-155, miR-345, and miR-594). Twelve of the miRNAs up-regulated in FHSD were also up-regulated in the cells ectopically expressing DUX4c, suggesting that this gene could regulate miRNA gene transcription. The myogenic miRNAs miR-1, miR-133a, miR-133b, and miR-206 were highly expressed in FSHD myoblasts, which nonetheless did not prematurely enter myogenic differentiation. This could be accounted for by the fact that in FSHD myoblasts, functionally important target genes, including cell cycle, DNA damage, and ubiquitination-related genes, escape myogenic microRNA-induced repression. PMID:24145033

  15. Assessment of reactive oxygen species production in cultured equine skeletal myoblasts in response to conditions of anoxia followed by reoxygenation with or without exposure to peroxidases.

    Science.gov (United States)

    Ceusters, Justine D; Mouithys-Mickalad, Ange A; de la Rebière de Pouyade, Geoffroy; Franck, Thierry J; Votion, Dominique M; Deby-Dupont, Ginette P; Serteyn, Didier A

    2012-03-01

    To culture equine myoblasts from muscle microbiopsy specimens, examine myoblast production of reactive oxygen species (ROS) in conditions of anoxia followed by reoxygenation, and assess the effects of horseradish peroxidase (HRP) and myeloperoxidase (MPO) on ROS production. 5 healthy horses (5 to 15 years old). Equine skeletal myoblast cultures were derived from 1 or 2 microbiopsy specimens obtained from a triceps brachii muscle of each horse. Cultured myoblasts were exposed to conditions of anoxia followed by reoxygenation or to conditions of normoxia (control cells). Cell production of ROS in the presence or absence of HRP or MPO was assessed by use of a gas chromatography method, after which cells were treated with a 3,3'-diaminobenzidine chromogen solution to detect peroxidase binding. Equine skeletal myoblasts were successfully cultured from microbiopsy specimens. In response to anoxia and reoxygenation, ROS production of myoblasts increased by 71%, compared with that of control cells. When experiments were performed in the presence of HRP or MPO, ROS production in myoblasts exposed to anoxia and reoxygenation was increased by 228% and 183%, respectively, compared with findings for control cells. Chromogen reaction revealed a close adherence of peroxidases to cells, even after several washes. Results indicated that equine skeletal myoblast cultures can be generated from muscle microbiopsy specimens. Anoxia-reoxygenation-treated myoblasts produced ROS, and production was enhanced in the presence of peroxidases. This experimental model could be used to study the damaging effect of exercise on muscles in athletic horses.

  16. Crystallochemical study of amides derived from 6{alpha}, 7{beta}-diidroxivoacapan-17{beta}-oic acid by X-ray diffraction; Estudo cristaloquimico de amidas derivadas do acido 6{alpha}, 7{beta}-di- hidroxivouacapan-17 {beta}-oico por difracao de raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Marcello Cardoso; Prado Gambardella, Maria Teresa do [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica. Dept. de Quimica e Fisica Molecular

    1995-12-31

    Abstract. The 6{alpha}, 7{beta}-diidroxivoacapan-17{beta}-oic acid (DVA) is a Furane-diterpene isolated from Peterodon genus. It has anti inflammatory and analgesic properties. The purpose of this work is the characterization of amides derived from DVA, in order to understand the relationship between Chemical Structure and Biological Activity of Vouacapanes. The structures of DVA derivatives will be solved by single-crystal X-ray diffraction. (author) 15 refs., 2 figs.

  17. Change of podocytes and αvβ3 integrin expression in kidney of diabetic rats%糖尿病大鼠肾组织足细胞数和整合素αvβ3表达的变化

    Institute of Scientific and Technical Information of China (English)

    盛佳曦; 金秀平

    2011-01-01

    目的 观察糖尿病大鼠肾小球足细胞数和整合素αvβ3表达的变化,探讨肾小球足细胞数及整合素αvβ3与糖尿病肾病(DN)的关系.方法 链脲佐菌素(STZ)制备糖尿病大鼠模型,分为对照组(n=10)和实验组(n=14).造模6周后,透射电镜下观察肾脏超微结构变化.采用免疫组化法检测肾脏上皮细胞整合素αvβ3的表达.结果 与对照组比较,实验组大鼠足细胞数减少.实验组大鼠24 h尿蛋白量明显增多(P<0.05).肾脏上皮细胞整合素αvβ3表达明显增强(P<0.01).尿清蛋白与足细胞数呈负相关,与整合素αvβ3表达呈正相关.结论 糖尿病大鼠肾组织整合素αvβ3表达增强和足细胞数减少是DN发生的重要环节.%Objective To observe the changes of podocyte and αvβ3 integrin expression in kidney of type 1 diabetic rats and to inquire into the correlation between podocyte and αvβ3 integrin with diabetic nephropathy(DN). Methods The animal model of DN was induced by intraperitoneal injection of strep tozotocin. The rats were randomized into diabetic model group with rats without STZ injection as the normal control group. After 6 weeks, the rats were sacrificed and renal tissue pathology was observed under light microscope. In addition,the ultrastructure of glomeruli was observed by electron microscope. Integrin αvβ3 expression localized to epithelical cells was detected by immunohistochemistry. Results Comparcd with the control group, podocytes of the diabetic modle group significantly decreased,the 24 h urine microalbumin increased significantly. The expression of αvβ3 integrin expression localized to epithelical was increased. Urine microalbumin was negatively corrclated with podocytes and positively correlated with αvβ3 integrin expression. Conclusion The upregulation of αvβ3 integrin and decreased expression of podocyte in kidney of type 1 diabetic rats play a key role in DN.

  18. Constructing retroviral vector carrying green fluorescent protein (GFP) and investigating the expression of GFP in primary rat myoblast

    Institute of Scientific and Technical Information of China (English)

    Shuling Rong; Yongxin Lu; Yuhua Liao; Xiaolin Wang; Xiaoqing Li; Jiahua Zhang; Yanli He

    2006-01-01

    Objective: To construct green fluorescent protein (GFP) retroviral vector (pLgXSN), and to investigate the expression of GFP in primary rat myoblast. Methods: GFP cDNA was subcloned into the plasmid pLgXSN, and the recombinant vector was transfected into packaging cell PT67. G418 was used to select positive colony. Myoblasts were infected by a high-titer viral supernatant. The recombinant retroviral plasmid vector was identified by restriction endonuclease analysis and DNA sequence analysis. Confocal microscopy and flow cytometry were used to detect the expression of GFP. Results: The GFP cDNA sequence was identical to that of GenBank. Recombinant retroviral plasmid vector pLgGFPSN was constructed successfully. The titer of the packaged recombinant retrovirus was 1 × 106 cfu/ml. Bright green fluorescence of the transfected cells was observed under confocal microscope 48 h after transfection. The transfection rate was 33%. The effective expression of GFP in myoblast infected by recombinant retrovirus lasted for 6 weeks. Conclusion: GFP gene could be effectively and stably expressed in myoblast, which suggests that GFP could act as a marker for studies on myoblast.

  19. Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser.

    Science.gov (United States)

    Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina

    2016-07-01

    Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.

  20. E-cadherin cytoplasmic domain inhibits cell surface localization of endogenous cadherins and fusion of C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Masayuki Ozawa

    2015-11-01

    Full Text Available Myoblast fusion is a highly regulated process that is essential for skeletal muscle formation during muscle development and regeneration in mammals. Much remains to be elucidated about the molecular mechanism of myoblast fusion although cadherins, which are Ca2+-dependent cell–cell adhesion molecules, are thought to play a critical role in this process. Mouse myoblasts lacking either N-cadherin or M-cadherin can still fuse to form myotubes, indicating that they have no specific function in this process and may be functionally replaced by either M-cadherin or N-cadherin, respectively. In this study, we show that expressing the E-cadherin cytoplasmic domain ectopically in C2C12 myoblasts inhibits cell surface localization of endogenous M-cadherin and N-cadherin, as well as cell–cell fusion. This domain, however, does not inhibit myoblast differentiation according to microarray-based gene expression analysis. In contrast, expressing a dominant-negative β-catenin mutant ectopically, which suppresses Wnt/β-catenin signaling, did not inhibit cell–cell fusion. Therefore, the E-cadherin cytoplasmic domain inhibits cell–cell fusion by inhibiting cell surface localization of endogenous cadherins and not by inhibiting Wnt/β-catenin signaling.

  1. Overexpression of insulin-like growth factor-II induces accelerated myoblast differentiation.

    Science.gov (United States)

    Stewart, C E; James, P L; Fant, M E; Rotwein, P

    1996-10-01

    Previous studies have shown that exogenous insulin-like growth factors (IGFs) can stimulate the terminal differentiation of skeletal myoblasts in culture and have established a correlation between the rate and the extent of IGF-II secretion by muscle cell lines and the rate of biochemical and morphological differentiation. To investigate the hypothesis that autocrine secretion of IGF-II plays a critical role in stimulating spontaneous myogenic differentiation in vitro, we have established C2 muscle cell lines that stably express a mouse IGF-II cDNA under control of the strong, constitutively active Moloney sarcoma virus promoter, enabling us to study directly the effects of IGF-II overproduction. Similar to observations with other muscle cell lines, IGF-II overexpressing myoblasts proliferated normally in growth medium containing 20% fetal serum, but they underwent enhanced differentiation compared with controls when incubated in low-serum differentiation medium. Accelerated differentiation of IGF-II overexpressing C2 cells was preceded by the rapid induction of myogenin mRNA and protein expression (within 1 h, compared with 24-48 h in controls) and was accompanied by an enhanced proportion of the retinoblastoma protein in an underphosphrylated and potentially active form, by a marked increase in activity of the muscle-specific enzyme, creatine phosphokinase, by extensive myotube formation by 48 h, and by elevated secretion of IGF binding protein-5 when compared with controls. These results confirm a role for IGF-II as an autocrine/paracrine differentiation factor for skeletal myoblasts, and they define a model cell system that will be useful in determining the biochemical mechanisms of IGF action in cellular differentiation.

  2. Expression of myosin heavy-chain mRNA in cultured myoblasts induced by centrifugal force.

    Science.gov (United States)

    Kurokawa, Katsuhide; Sakiyama, Koji; Abe, Shinichi; Hiroki, Emi; Naito, Kaoru; Nakajima, Kazunori; Takeda, Tomotaka; Inoue, Takashi; Ide, Yoshinobu; Ishigami, Keiichi

    2008-11-01

    Ballistic muscle training leads to hypertrophy of fast type fibers and training for endurance induces that of slow type fibers. Numerous studies have been conducted on electrical, extending and magnetic stimulation of cells, but the effect of centrifugal force on cells remains to be investigated. In this study, we investigated the effect of stimulating cultured myoblasts with centrifugal force at different speeds on cell proliferation and myosin heavy-chain (MyHC) mRNA expression in muscle fiber. Stimulation of myoblasts was carried out at 2 different speeds for 20 min using the Himac CT6D, a desk centrifuge, and cells were observed at 1, 3 and 5 days later. Number of cells 1 and 5 days after centrifugal stimulation was significantly larger in the 62.5 x g and 4,170 x g stimulation groups than in the control group. Expression of MyHC-2b mRNA 1 day after centrifugal stimulation was significantly higher in the 2 stimulation groups than in the control group. Almost no expression of MyHC-2a was observed in any group at 1 and 3 days after centrifugal stimulation. However, 5 days after stimulation, MyHC-2a was strongly expressed in the 2 stimulation groups in comparison to the control group. Three days after centrifugal stimulation, expression of MyHC-1 was significantly higher in the 2 stimulation groups than in the control group. The results of this study clarified the effect of different centrifugal stimulation speeds on muscle fiber characteristics, and suggest that centrifugal stimulation of myoblasts enhances cell proliferation.

  3. Propolis Ethanol Extract Stimulates Cytokine and Chemokine Production through NF-κB Activation in C2C12 Myoblasts

    Science.gov (United States)

    Washio, Kohei; Kobayashi, Mao; Saito, Natsuko; Amagasa, Misato; Kitamura, Hiroshi

    2015-01-01

    Myoblast activation is a triggering event for muscle remodeling. We assessed the stimulatory effects of propolis, a beehive product, on myoblasts. After an 8 h treatment with 100 μg/mL of Brazilian propolis ethanol extract, expression of various chemokines, including CCL-2 and CCL-5, and cytokines, such as IL-6, increased. This propolis-induced cytokine production appears to depend on NF-κB activation, because the IKK inhibitor BMS-345541 repressed mRNA levels of CCL-2 by ~66%, CCL-5 by ~81%, and IL-6 by ~69% after propolis treatment. Supernatant from propolis-conditioned C2C12 cells upregulated RAW264 macrophage migration. The supernatant also stimulated RAW264 cells to produce angiogenic factors, including VEGF-A and MMP-12. Brazilian green propolis therefore causes myoblasts to secrete cytokines and chemokines, which might contribute to tissue remodeling of skeletal muscle. PMID:26604971

  4. Docosahexaenoyl ethanolamide improves glucose uptake and alters endocannabinoid system gene expression in proliferating and differentiating C2C12 myoblasts

    Directory of Open Access Journals (Sweden)

    Jeffrey eKim

    2014-03-01

    Full Text Available Skeletal muscle is a major storage site for glycogen and a focus for understanding insulin resistance and type-2-diabetes. New evidence indicates that overactivation of the peripheral endocannabinoid system (ECS in skeletal muscle diminishes insulin sensitivity. Specific n-6 and n-3 polyunsaturated fatty acids (PUFA are precursors for the biosynthesis of ligands that bind to and activate the cannabinoid receptors. The function of the ECS and action of PUFA in skeletal muscle glucose uptake was investigated in proliferating and differentiated C2C12 myoblasts treated with either 25µM of arachidonate (AA or docosahexaenoate (DHA, 25µM of EC [anandamide (AEA, 2-arachidonoylglycerol (2-AG, docosahexaenoylethanolamide (DHEA], 1µM of CB1 antagonist NESS0327, and CB2 antagonist AM630. Compared to the BSA vehicle control cell cultures in both proliferating and differentiated myoblasts those treated with DHEA, the EC derived from the n-3 PUFA DHA, had higher 24 h glucose uptake, while AEA and 2-AG, the EC derived from the n-6 PUFA AA, had lower basal glucose uptake. Adenylyl cyclase mRNA was higher in myoblasts treated with DHA in both proliferating and differentiated states while those treated with AEA or 2-AG were lower compared to the control cell cultures. Western blot and qPCR analysis showed higher expression of the cannabinoid receptors in differentiated myoblasts treated with DHA while the opposite was observed with AA. These findings indicate a compensatory effect of DHA and DHEA compared to AA-derived ligands on the ECS and associated ECS gene expression and higher glucose uptake in myoblasts.Key Words: endocannabinoid system •C2C12 myoblasts cannabinoid receptors glucose uptake gene expression DHEA • polyunsaturated fatty acids

  5. Critical Role Played by Cyclin D3 in the MyoD-Mediated Arrest of Cell Cycle during Myoblast Differentiation

    OpenAIRE

    1999-01-01

    During the terminal differentiation of skeletal myoblasts, the activities of myogenic factors regulate not only tissue-specific gene expressions but also the exit from the cell cycle. The induction of cell cycle inhibitors such as p21 and pRb has been shown to play a prominent role in the growth arrest of differentiating myoblasts. Here we report that, at the onset of differentiation, activation by MyoD of the Rb, p21, and cyclin D3 genes occurs in the absence of new protein synthesis and wit...

  6. Effects of dihydroartemisinin on the expression level of Alpha-7 .3 giardin mRNA in C2 Giardia lamblia%双氢青蒿素对 C2株蓝氏贾第鞭毛虫Alpha-7.3 giardin 基因 mRNA 表达水平的影响

    Institute of Scientific and Technical Information of China (English)

    余源; 田喜凤; 陈阳; 葛爽; 王洋; 李巍伟; 赵丽娜; 刘阿倩; 林志强; 高雪

    2014-01-01

    目的:观察双氢青蒿素(dihydroartemisinin ,DHA)对C2株蓝氏贾第鞭毛虫(Giardia lamblia)Alpha-7.3 giar-din (α-贾第素)基因mRNA表达水平的影响,探讨其对蓝氏贾第鞭毛虫骨架蛋白的损伤作用。方法用双氢青蒿素浓度为100μg/mL、200μg/mL的改良TYI-S-33培养基分别培养C2株蓝氏贾第鞭毛虫2 h、4 h、8 h、12 h后,以不含药物组为对照,实时荧光定量RT-PCR检测药物作用后Alpha-7.3 giardin基因mRNA表达水平的变化。结果双氢青蒿素作用虫体后Al-pha-7.3 giardin基因mRNA表达水平明显低于对照组,二者有显著性差异。结论双氢青蒿素对C2株蓝氏贾第鞭毛虫Al-pha-7.3 giardin基因mRNA的表达具有明显的抑制作用,抑制效果与药物浓度和作用时间相关,提示双氢青蒿素对蓝氏贾第鞭毛虫骨架蛋白具有损伤作用。%Effects of dihydroartemisinin (DHA) on the expression level of Alpha-7 .3 giardin mRNA in C2 Giardia lam-blia was investigated in this study to explore the damage to skeleton protein of C 2 Giardia lamblia .Giardia lamblia was culti-vated respectively for 2 ,4 ,8 ,and 12 hours with modified TYI-S-33 medium containing 100 μg/mL and 200 μg/mL DHA , while the control group performed in the same experimental conditions without DHA .The expressive quantity of Alpha-7 .3 gi-ardin mRNA was determined by using real-time reverse transcription PCR ,and then we found that the expressive quantities of Alpha-7 .3 giardin mRNA with DHA were significantly lower than those in the control group .It’s suggested that dihydroarte-misinin has obvious inhibitory effect on the expression level of Alpha-7 .3 giardin mRNA in C2 Giardia lamblia .The actions of dihydroartemisinin on skeleton protein of C2 Giardia lamblia are effective .

  7. Co-dependent Activators Direct Myoblast Specific MyoD Transcription

    Science.gov (United States)

    Hu, Ping; Geles, Kenneth G.; Paik, Ji-Hye; DePinho, Ronald A.; Tjian, Robert

    2008-01-01

    Summary Although FoxO and Pax proteins represent two important families of transcription factors in determining cell fate, they had not been functionally or physically linked together in mediating regulation of a common target gene during normal cellular transcription programs. Here we identify MyoD, a key regulator of myogenesis, as a direct target of FoxO3 and Pax3/7 in myoblasts. Our cell based assays and in vitro studies reveal a tight co-dependent partnership between FoxO3 and Pax3/7 to coordinately recruit RNA polymerase II and form a pre-initiation complex (PIC) to activate MyoD transcription in myoblasts. The role of FoxO3 in regulating muscle differentiation is confirmed in vivo by observed defects in muscle regeneration caused by MyoD down-regulation in FoxO3 null mice. These data establish a mutual interdependence and functional link between two families of transcription activators serving as potential signaling sensors and regulators of cell fate commitment in directing tissue specific MyoD transcription. PMID:18854138

  8. AlphaB-crystallin is involved in oxidative stress protection determined by VEGF in skeletal myoblasts.

    Science.gov (United States)

    Mercatelli, Neri; Dimauro, Ivan; Ciafré, Silvia Anna; Farace, Maria Giulia; Caporossi, Daniela

    2010-08-01

    Recent studies suggest that the effects of VEGF-A, the prototype VEGF ligand, may extend to a variety of cell types other than endothelial cells. The expression of VEGF-A and its main receptors, Flt-1/VEGFR-1 and KDR/Flk-1/VEGFR-2, was indeed detected in several cell types, including cardiac myocytes and regenerating myotubes. In addition to its proangiogenic activity, evidence indicates that VEGF-A can sustain skeletal muscle regeneration by enhancing the survival and migration of myogenic cells and by promoting the growth of myogenic fibers. In this study, our aim was to investigate whether VEGF could protect skeletal muscle satellite cells from apoptotic cell death triggered by reactive oxygen species and to identify the main molecular mechanisms. C2C12 mouse myoblasts, cultured in vitro in the presence of exogenous VEGF or stably transfected with a plasmid vector expressing VEGF-A, were subjected to oxidative stress and analyzed for cell growth and survival, induction of apoptosis, and molecular signaling. The results of our study demonstrated that VEGF protects C2C12 myoblasts from apoptosis induced by oxidative or hypoxic-like stress. This protection did not correlate with the modulation of the expression of VEGF receptors, but is clearly linked to the phosphorylation of the KDR/Flk-1 receptor, the activation of NF-kappaB, and/or the overexpression of the antiapoptotic protein alphaB-crystallin. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Biocompatible Elastic Conductive Films Significantly Enhanced Myogenic Differentiation of Myoblast for Skeletal Muscle Regeneration.

    Science.gov (United States)

    Dong, Ruonan; Zhao, Xin; Guo, Baolin; Ma, Peter X

    2017-09-11

    The key factor in skeletal muscle tissue engineering is regeneration of the functional skeletal muscles. Materials that could promote the myoblast proliferation and myogenic differentiation are promising candidates in skeletal muscle tissue engineering. Herein, we developed an elastic conductive poly(ethylene glycol)-co-poly(glycerol sebacate) (PEGS) grafted aniline pentamer (AP) copolymer that could promote the formation of myotubes by differentiating the C2C12 myoblast cells. The results of hydration behavior and water contact angle suggested that by adjusting the poly(ethylene glycol) (PEG) and AP content, this film showed a proper surface hydrophilicity for cell attachment. Additionally, these films showed tunable conductivity and mechanical properties that can be altered by changing the AP content. The maximum conductivity of the films was 1.84 × 10(-4) S/cm and the Young's modulus of these films ranged from 14.58 ± 1.35 MPa to 24.62 ± 0.61 MPa. Our findings indicate that the PEGS-AP films promote the proliferation and myogenic differentiation of C2C12 cells, suggesting that they are promising biomaterials for skeletal muscle tissue engineering.

  10. Notch pathway activation contributes to inhibition of C2C12 myoblast differentiation by ethanol.

    Directory of Open Access Journals (Sweden)

    Michelle A Arya

    Full Text Available The loss of muscle mass in alcoholic myopathy may reflect alcohol inhibition of myogenic cell differentiation into myotubes. Here, using a high content imaging system we show that ethanol inhibits C2C12 myoblast differentiation by reducing myogenic fusion, creating smaller and less complex myotubes compared with controls. Ethanol administration during C2C12 differentiation reduced MyoD and myogenin expression, and microarray analysis identified ethanol activation of the Notch signaling pathway target genes Hes1 and Hey1. A reporter plasmid regulated by the Hes1 proximal promoter was activated by alcohol treatment in C2C12 cells. Treatment of differentiating C2C12 cells with a gamma secretase inhibitor (GSI abrogated induction of Hes1. On a morphological level GSI treatment completely rescued myogenic fusion defects and partially restored other myotube parameters in response to alcohol. We conclude that alcohol inhibits C2C12 myoblast differentiation and the inhibition of myogenic fusion is mediated by Notch pathway activation.

  11. Gene therapy for rat renal anemia with implantation of erythropoietin-transgenic myoblasts

    Institute of Scientific and Technical Information of China (English)

    刘永学; 魏汉东; 吴祖泽; 贺福初

    1999-01-01

    To investigate whether an erythropoietin (EPO) gene-based therapy could serve as an alternative to the repeated injection of rhEPO in treatment to renal anemia, the genetically modified myoblasts of rats, named Myo/ EPO, were implanted through intramuscular injection to model rats with renal anemia. The hemoglobin (Hb) and hematocrit (HCT) of the rats increased from (92. 5±3.0) g/L and 0.29 ±0.04 to the peak values of (103.8 ±5.0) g/L and 0. 32 ±0. 04 respectively 14 d after implantation, and sustained the pre-implantation level for 90 d. Otherwise, the control rats implanted with Myo/X, which carried the parent retroviral vector, gradually became severe in anemia. The PCR detection for hEPO cDNA in the rat muscle adjacent to injection sites indicated that the Myo/EPO cells survived for a long period in the muscle of rats. The results primarily demonstrate that myoblast gene transfer of EPO is effective for the treatment of rat renal anemia.

  12. Action of lovastatin, simvastatin, and pravastatin on sterol synthesis and their antiproliferative effect in cultured myoblasts from human striated muscle

    NARCIS (Netherlands)

    Vliet, A.K. van; Nègre-Arrariou, P.; Thiel, G.C.F. van; Bolhuis, P.A.; Cohen, L.H.

    1996-01-01

    Lovastatin, simvastatin, and pravastatin are fairly strong inhibitors of sterol synthesis in human myoblasts in culture. Lovastatin and simvastatin have IC50 values of 19 ± 6 nM and 4.0 ± 2.3 nM, respectively. Pravastatin is a weaker inhibitor of sterol synthesis (IC50 value of 110 ± 38 nM). Through

  13. Mechanical stimuli activation of calpain is required for myoblast differentiation and occurs via an ERK/MAP kinase signaling pathway

    DEFF Research Database (Denmark)

    Grossi, Alberto; Karlsson, Anders H; Lawson, Moira Ann

    a magnetic bead stimulation assay and C2C12 mouse myoblasts cell population, we have shown that mechanical signals transmitted through the C2C12 cells interaction with laminin cause an increase in cellular differentiation. This signaling results in an increase in the number of myotubes formed in the cultures...

  14. Non-invasive Bioluminescence Imaging of Myoblast-Mediated Hypoxia-Inducible Factor-1 Alpha Gene Transfer

    Science.gov (United States)

    Gheysens, Olivier; Chen, Ian Y.; Rodriguez-Porcel, Martin; Chan, Carmel; Rasooly, Julia; Vaerenberg, Caroline; Paulmurugan, Ramasamy; Willmann, Juergen K.; Deroose, Christophe; Wu, Joseph; Gambhir, Sanjiv S.

    2011-01-01

    Purpose We tested a novel imaging strategy, in which both the survival of transplanted myoblasts and their therapeutic transgene expression, a recombinant hypoxia-inducible factor-1α (HIF-1α-VP2), can be monitored using firefly luciferase (fluc) and Renilla luciferase (hrl) bioluminescence reporter genes, respectively. Procedures The plasmid pUbi-hrl-pUbi-HIF-1α-VP2, which expresses both hrl and HIF-1α-VP2 using two ubiquitin promoters, was characterized in vitro. C2c12 myoblasts stably expressing fluc and transiently transfected with pUbi-hrl-pUbi-HIF-1α-VP2 were injected into the mouse hindlimb. Both hrl and fluc expression were monitored using bioluminescence imaging (BLI). Results Strong correlations existed between the expression of hRL and each of HIF-1α-VP2, VEGF, and PlGF (r2>0.83, r2>0.82, and r2>0.97, respectively). In vivo, both transplanted cells and HIF-1α-VP2 transgene expression were successfully imaged using BLI. Conclusions An objective evaluation of myoblast-mediated gene transfer in living mice can be performed by monitoring both the survival and the transgene expression of transplanted myoblasts using the techniques developed herein. PMID:21267661

  15. Actin-associated protein palladin is required for migration behavior and differentiation potential of C2C12 myoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc Uyen Nhi; Liang, Vincent Roderick; Wang, Hao-Ven, E-mail: hvwang@mail.ncku.edu.tw

    2014-09-26

    Highlights: • Palladin is involved in myogenesis in vitro. • Palladin knockdown by siRNA increases myoblast proliferation, viability and differentiation. • Palladin knockdown decreases C2C12 myoblast migration ability. - Abstract: The actin-associated protein palladin has been shown to be involved in differentiation processes in non-muscle tissues. However, but its function in skeletal muscle has rarely been studied. Palladin plays important roles in the regulation of diverse actin-related signaling in a number of cell types. Since intact actin-cytoskeletal remodeling is necessary for myogenesis, in the present study, we pursue to investigate the role of actin-associated palladin in skeletal muscle differentiation. Palladin in C2C12 myoblasts is knocked-down using specific small interfering RNA (siRNA). The results show that down-regulation of palladin decreased migratory activity of mouse skeletal muscle C2C12 myoblasts. Furthermore, the depletion of palladin enhances C2C12 vitality and proliferation. Of note, the loss of palladin promotes C2C12 to express the myosin heavy chain, suggesting that palladin has a role in the modulation of C2C12 differentiation. It is thus proposed that palladin is required for normal C2C12 myogenesis in vitro.

  16. The small G-proteins Rac1 and Cdc42 are essential for myoblast fusion in the mouse

    DEFF Research Database (Denmark)

    Vasyutina, Elena; Martarelli, Benedetta; Brakebusch, Cord;

    2009-01-01

    Rac1 and Cdc42 are small G-proteins that regulate actin dynamics and affect plasma membrane protrusion and vesicle traffic. We used conditional mutagenesis in mice to demonstrate that Rac1 and Cdc42 are essential for myoblast fusion in vivo and in vitro. The deficit in fusion of Rac1 or Cdc42...

  17. Mesenchymal Stromal Cell Secreted Sphingosine 1-Phosphate (S1P) Exerts a Stimulatory Effect on Skeletal Myoblast Proliferation

    Science.gov (United States)

    Tani, Alessia; Anderloni, Giulia; Pierucci, Federica; Matteini, Francesca; Chellini, Flaminia; Zecchi Orlandini, Sandra; Meacci, Elisabetta

    2014-01-01

    Bone-marrow-derived mesenchymal stromal cells (MSCs) have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P), a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK), blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF) involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration. PMID:25264785

  18. Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P exerts a stimulatory effect on skeletal myoblast proliferation.

    Directory of Open Access Journals (Sweden)

    Chiara Sassoli

    Full Text Available Bone-marrow-derived mesenchymal stromal cells (MSCs have the potential to significantly contribute to skeletal muscle healing through the secretion of paracrine factors that support proliferation and enhance participation of the endogenous muscle stem cells in the process of repair/regeneration. However, MSC-derived trophic molecules have been poorly characterized. The aim of this study was to investigate paracrine signaling effects of MSCs on skeletal myoblasts. It was found, using a biochemical and morphological approach that sphingosine 1-phosphate (S1P, a natural bioactive lipid exerting a broad range of muscle cell responses, is secreted by MSCs and represents an important factor by which these cells exert their stimulatory effects on C2C12 myoblast and satellite cell proliferation. Indeed, exposure to conditioned medium obtained from MSCs cultured in the presence of the selective sphingosine kinase inhibitor (iSK, blocked increased cell proliferation caused by the conditioned medium from untreated MSCs, and the addition of exogenous S1P in the conditioned medium from MSCs pre-treated with iSK further increased myoblast proliferation. Finally, we also demonstrated that the myoblast response to MSC-secreted vascular endothelial growth factor (VEGF involves the release of S1P from C2C12 cells. Our data may have important implications in the optimization of cell-based strategies to promote skeletal muscle regeneration.

  19. Effect of Low Power Laser Irradiation on the Ability of Cell Growth and Myogenic Differentiation of Myoblasts Cultured In Vitro

    Directory of Open Access Journals (Sweden)

    Cui-Ping Zhang

    2014-01-01

    Full Text Available As a therapeutic modality, low power laser irradiation (LPLI has been used clinically in the treatment of skeletal muscle injuries and other myopathic conditions, but the cellular and molecular mechanisms attributed to this therapy were still unclear. Myoblasts are a type of myogenic stem cells quiescence in mature skeletal muscle fibers and are considered as the source cells during the regenerating process. The purpose of this paper was to investigate the effects of LPLI on the proliferation and myogenic differentiation of the cultured myoblasts and to find out the major candidates responsible for LPLI-induced muscle regeneration in vivo. In this study, primary rat myoblasts were exposed to helium-neon (He-Ne laser. Cell proliferation, differentiation, and the cellular responses to LPLI were monitored by using morphological observation and molecular biological methods. It was found that LPLI at a certain fluence could increase the cell growth potential for myoblasts and further induce more cells entering into S phase of the mitotic cycle as indicated by high levels of bromodeoxyuridine (BrdU incorporation, while at the same time inhibiting their in vitro differentiation and decreasing the expression of myogenic regulatory genes to a certain extent. Taken together, these results provide experimental evidence for the clinical applications of LPLI in regenerating skeletal muscle.

  20. Biodistribution studies of {sup 99m}Tc-labeled myoblasts in a murine model of muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, F.R. E-mail: colombof@policlinico.mi.it; Torrente, Y.; Casati, R.; Benti, R.; Corti, S.; Salani, S.; D' Angelo, M.G.; DeLiso, A.; Scarlato, G.; Bresolin, N.; Gerundini, P

    2001-11-01

    The purpose of this study was twofold: first, to evaluate the myoblast labeling of various {sup 99m}Tc complexes and to select the complex that best accomplishes this labeling, and second to evaluate the biodistribution of myoblasts labeled with this complex using mice with MDX muscular dystrophy (the murine homologue of Duchenne's muscular dystrophy). The following ligands were used to prepare the corresponding {sup 99m}Tc complexes: hexakis-methoxy-isobutyl-isonitrile (MIBI), bis(2-ethoxyethyl)diphosphinoethane (Tf), (RR,SS)-4,8-diaza-3,6,6,9-tetramethyl-undecane-2,10-dione-bisoxime (HM-PAO), bis(N-ethyl)dithiocarbamate (NEt), and bis(N-ethoxy, N-ethyl)dithiocarbamate (NOEt). One million murine myoblasts were incubated for 30-60 minutes with 5 mCi of each of the 99mTc complexes prepared from the above ligands. Viability was assessed by microscopic counting after trypan blue staining, and the radioactivity absorbed in the cells was measured after centrifugation. The compound with the highest uptake in cellular pellets was [{sup 99m}Tc]N-NOEt. The biodistribution of myoblasts labeled with this complex was evaluated after intraaortic injection in dystrophic mice. Such an approach has the potential of effecting widespread gene transfer through the bloodstream to muscles lacking dystrophin.

  1. Adipose Tissue-Derived Stem Cell Secreted IGF-1 Protects Myoblasts from the Negative Effect of Myostatin

    Directory of Open Access Journals (Sweden)

    Sebastian Gehmert

    2014-01-01

    Full Text Available Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs, these cells (ASCs provide a therapeutic option for Duchenne Muscular Dystrophy (DMD. But the protective effect of stem cell secreted IGF-1 on myoblast under high level of myostatin remains unclear. In the present study murine myoblasts were exposed to myostatin under presence of ASCs conditioned medium and investigated for proliferation and apoptosis. The protective effect of IGF-1 was further examined by using IGF-1 neutralizing and receptor antibodies as well as gene silencing RNAi technology. MyoD expression was detected to identify impact of IGF-1 on myoblasts differentiation when exposed to myostatin. IGF-1 was accountable for 43.6% of the antiapoptotic impact and 48.8% for the proliferative effect of ASCs conditioned medium. Furthermore, IGF-1 restored mRNA and protein MyoD expression of myoblasts under risk. Beside fusion and transdifferentiation the beneficial effect of ASCs is mediated by paracrine secreted cytokines, particularly IGF-1. The present study underlines the potential of ASCs as a therapeutic option for Duchenne muscular dystrophy and other dystrophic muscle diseases.

  2. Engineering skeletal muscle tissues from murine myoblast progenitor cells and application of electrical stimulation.

    Science.gov (United States)

    van der Schaft, Daisy W J; van Spreeuwel, Ariane C C; Boonen, Kristel J M; Langelaan, Marloes L P; Bouten, Carlijn V C; Baaijens, Frank P T

    2013-03-19

    Engineered muscle tissues can be used for several different purposes, which include the production of tissues for use as a disease model in vitro, e.g. to study pressure ulcers, for regenerative medicine and as a meat alternative (1). The first reported 3D muscle constructs have been made many years ago and pioneers in the field are Vandenburgh and colleagues (2,3). Advances made in muscle tissue engineering are not only the result from the vast gain in knowledge of biochemical factors, stem cells and progenitor cells, but are in particular based on insights gained by researchers that physical factors play essential roles in the control of cell behavior and tissue development. State-of-the-art engineered muscle constructs currently consist of cell-populated hydrogel constructs. In our lab these generally consist of murine myoblast progenitor cells, isolated from murine hind limb muscles or a murine myoblast cell line C2C12, mixed with a mixture of collagen/Matrigel and plated between two anchoring points, mimicking the muscle ligaments. Other cells may be considered as well, e.g. alternative cell lines such as L6 rat myoblasts (4), neonatal muscle derived progenitor cells (5), cells derived from adult muscle tissues from other species such as human (6) or even induced pluripotent stem cells (iPS cells) (7). Cell contractility causes alignment of the cells along the long axis of the construct (8,9) and differentiation of the muscle progenitor cells after approximately one week of culture. Moreover, the application of electrical stimulation can enhance the process of differentiation to some extent (8). Because of its limited size (8 x 2 x 0.5 mm) the complete tissue can be analyzed using confocal microscopy to monitor e.g. viability, differentiation and cell alignment. Depending on the specific application the requirements for the engineered muscle tissue will vary; e.g. use for regenerative medicine requires the up scaling of tissue size and vascularization, while

  3. Mast cell tryptase stimulates myoblast proliferation; a mechanism relying on protease-activated receptor-2 and cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Côté Claude H

    2011-10-01

    Full Text Available Abstract Background Mast cells contribute to tissue repair in fibrous tissues by stimulating proliferation of fibroblasts through the release of tryptase which activates protease-activated receptor-2 (PAR-2. The possibility that a tryptase/PAR-2 signaling pathway exists in skeletal muscle cell has never been investigated. The aim of this study was to evaluate whether tryptase can stimulate myoblast proliferation and determine the downstream cascade. Methods Proliferation of L6 rat skeletal myoblasts stimulated with PAR-2 agonists (tryptase, trypsin and SLIGKV was assessed. The specificity of the tryptase effect was evaluated with a specific inhibitor, APC-366. Western blot analyses were used to evaluate the expression and functionality of PAR-2 receptor and to assess the expression of COX-2. COX-2 activity was evaluated with a commercial activity assay kit and by measurement of PGF2α production. Proliferation assays were also performed in presence of different prostaglandins (PGs. Results Tryptase increased L6 myoblast proliferation by 35% above control group and this effect was completely inhibited by APC-366. We confirmed the expression of PAR-2 receptor in vivo in skeletal muscle cells and in satellite cells and in vitro in L6 cells, where PAR-2 was found to be functional. Trypsin and SLIGKV increased L6 cells proliferation by 76% and 26% above control, respectively. COX-2 activity was increased following stimulation with PAR-2 agonist but its expression remained unchanged. Inhibition of COX-2 activity by NS-398 abolished the stimulation of cell proliferation induced by tryptase and trypsin. Finally, 15-deoxy-Δ-12,14-prostaglandin J2 (15Δ-PGJ2, a product of COX-2-derived prostaglandin D2, stimulated myoblast proliferation, but not PGE2 and PGF2α. Conclusions Taken together, our data show that tryptase can stimulate myoblast proliferation and this effect is part of a signaling cascade dependent on PAR-2 activation and on the downstream

  4. Trpc1 ion channel modulates phosphatidylinositol 3-kinase/Akt pathway during myoblast differentiation and muscle regeneration.

    Science.gov (United States)

    Zanou, Nadège; Schakman, Olivier; Louis, Pierre; Ruegg, Urs T; Dietrich, Alexander; Birnbaumer, Lutz; Gailly, Philippe

    2012-04-27

    We previously showed in vitro that calcium entry through Trpc1 ion channels regulates myoblast migration and differentiation. In the present work, we used primary cell cultures and isolated muscles from Trpc1(-/-) and Trpc1(+/+) murine model to investigate the role of Trpc1 in myoblast differentiation and in muscle regeneration. In these models, we studied regeneration consecutive to cardiotoxin-induced muscle injury and observed a significant hypotrophy and a delayed regeneration in Trpc1(-/-) muscles consisting in smaller fiber size and increased proportion of centrally nucleated fibers. This was accompanied by a decreased expression of myogenic factors such as MyoD, Myf5, and myogenin and of one of their targets, the developmental MHC (MHCd). Consequently, muscle tension was systematically lower in muscles from Trpc1(-/-) mice. Importantly, the PI3K/Akt/mTOR/p70S6K pathway, which plays a crucial role in muscle growth and regeneration, was down-regulated in regenerating Trpc1(-/-) muscles. Indeed, phosphorylation of both Akt and p70S6K proteins was decreased as well as the activation of PI3K, the main upstream regulator of the Akt. This effect was independent of insulin-like growth factor expression. Akt phosphorylation also was reduced in Trpc1(-/-) primary myoblasts and in control myoblasts differentiated in the absence of extracellular Ca(2+) or pretreated with EGTA-AM or wortmannin, suggesting that the entry of Ca(2+) through Trpc1 channels enhanced the activity of PI3K. Our results emphasize the involvement of Trpc1 channels in skeletal muscle development in vitro and in vivo, and identify a Ca(2+)-dependent activation of the PI3K/Akt/mTOR/p70S6K pathway during myoblast differentiation and muscle regeneration.

  5. Trpc1 Ion Channel Modulates Phosphatidylinositol 3-Kinase/Akt Pathway during Myoblast Differentiation and Muscle Regeneration*

    Science.gov (United States)

    Zanou, Nadège; Schakman, Olivier; Louis, Pierre; Ruegg, Urs T.; Dietrich, Alexander; Birnbaumer, Lutz; Gailly, Philippe

    2012-01-01

    We previously showed in vitro that calcium entry through Trpc1 ion channels regulates myoblast migration and differentiation. In the present work, we used primary cell cultures and isolated muscles from Trpc1−/− and Trpc1+/+ murine model to investigate the role of Trpc1 in myoblast differentiation and in muscle regeneration. In these models, we studied regeneration consecutive to cardiotoxin-induced muscle injury and observed a significant hypotrophy and a delayed regeneration in Trpc1−/− muscles consisting in smaller fiber size and increased proportion of centrally nucleated fibers. This was accompanied by a decreased expression of myogenic factors such as MyoD, Myf5, and myogenin and of one of their targets, the developmental MHC (MHCd). Consequently, muscle tension was systematically lower in muscles from Trpc1−/− mice. Importantly, the PI3K/Akt/mTOR/p70S6K pathway, which plays a crucial role in muscle growth and regeneration, was down-regulated in regenerating Trpc1−/− muscles. Indeed, phosphorylation of both Akt and p70S6K proteins was decreased as well as the activation of PI3K, the main upstream regulator of the Akt. This effect was independent of insulin-like growth factor expression. Akt phosphorylation also was reduced in Trpc1−/− primary myoblasts and in control myoblasts differentiated in the absence of extracellular Ca2+ or pretreated with EGTA-AM or wortmannin, suggesting that the entry of Ca2+ through Trpc1 channels enhanced the activity of PI3K. Our results emphasize the involvement of Trpc1 channels in skeletal muscle development in vitro and in vivo, and identify a Ca2+-dependent activation of the PI3K/Akt/mTOR/p70S6K pathway during myoblast differentiation and muscle regeneration. PMID:22399301

  6. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2010-01-01

    Cystic Fibrosis (CF) is an inherited disorder characterised by chronic inflammation of the airways. The lung manifestations of CF include colonization with Pseudomonas aeruginosa and Staphylococcus aureus leading to neutrophil-dominated airway inflammation and tissue damage. Inflammation in the CF lung is initiated by microbial components which activate the innate immune response via Toll-like receptors (TLRs), increasing airway epithelial cell production of proinflammatory mediators such as the neutrophil chemokine interleukin-8 (IL-8). Thus modulation of TLR function represents a therapeutic approach for CF. Nicotine is a naturally occurring plant alkaloid. Although it is negatively associated with cigarette smoking and cardiovascular damage, nicotine also has anti-inflammatory properties. Here we investigate the inhibitory capacity of nicotine against TLR2- and TLR4-induced IL-8 production by CFTE29o- airway epithelial cells, determine the role of alpha7-nAChR (nicotinic acetylcholine receptor) in these events, and provide data to support the potential use of safe nicotine analogues as anti-inflammatories for CF.

  7. Non-charged amino acids from three different domains contribute to link agonist binding to channel gating in alpha7 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Aldea, Marcos; Mulet, José; Sala, Salvador; Sala, Francisco; Criado, Manuel

    2007-10-01

    Binding of agonists to nicotinic acetylcholine receptors results in channel opening. Previously, we have shown that several charged residues at three different domains of the alpha7 nicotinic receptor are involved in coupling binding and gating, probably through a network of electrostatic interactions. This network, however, could also be integrated by other residues. To test this hypothesis, non-charged amino acids were mutated and expression levels and electrophysiological responses of mutant receptors were determined. Mutants at positions Asn47 and Gln48 (loop 2), Ile130, Trp134, and Gln140 (loop 7), and Thr264 (M2-M3 linker) showed poor or null functional responses, despite significant membrane expression. By contrast, mutants F137A and S265A exhibited a gain of function effect. In all cases, changes in dose-response relationships were small, EC(50) values being between threefold smaller and fivefold larger, arguing against large modifications of agonist binding. Peak currents decayed at the same rate in all receptors except two, excluding large effects on desensitization. Thus, the observed changes could be mostly caused by alterations of the gating characteristics. Moreover, analysis of double mutants showed an interconnection between some residues in these domains, especially Gln48 with Ile130, suggesting a potential coupling between agonist binding and channel gating through these amino acids.

  8. A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome.

    Science.gov (United States)

    Di Gioia, Silvio Alessandro; Connors, Samantha; Matsunami, Norisada; Cannavino, Jessica; Rose, Matthew F; Gilette, Nicole M; Artoni, Pietro; de Macena Sobreira, Nara Lygia; Chan, Wai-Man; Webb, Bryn D; Robson, Caroline D; Cheng, Long; Van Ryzin, Carol; Ramirez-Martinez, Andres; Mohassel, Payam; Leppert, Mark; Scholand, Mary Beth; Grunseich, Christopher; Ferreira, Carlos R; Hartman, Tyler; Hayes, Ian M; Morgan, Tim; Markie, David M; Fagiolini, Michela; Swift, Amy; Chines, Peter S; Speck-Martins, Carlos E; Collins, Francis S; Jabs, Ethylin Wang; Bönnemann, Carsten G; Olson, Eric N; Carey, John C; Robertson, Stephen P; Manoli, Irini; Engle, Elizabeth C

    2017-07-06

    Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymk(insT/insT) zebrafish in vivo can differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits.

  9. Rab8A regulates insulin-stimulated GLUT4 translocation in C2C12 myoblasts.

    Science.gov (United States)

    Li, Hanbing; Ou, Liting; Fan, Jiannan; Xiao, Mei; Kuang, Cuifang; Liu, Xu; Sun, Yonghong; Xu, Yingke

    2017-02-01

    Rab proteins are important regulators of GLUT4 trafficking in muscle and adipose cells. It is still unclear which Rabs are involved in insulin-stimulated GLUT4 translocation in C2C12 myoblasts. In this study, we detect the colocalization of Rab8A with GLUT4 and the presence of Rab8A at vesicle exocytic sites by TIRFM imaging. Overexpression of dominant-negative Rab8A (T22N) diminishes insulin-stimulated GLUT4 translocation, while constitutively active Rab8A (Q67L) augments it. In addition, knockdown of Rab8A inhibits insulin-stimulated GLUT4 translocation, which is rescued by replenishment of RNAi-resistant Rab8A. Together, these results indicate an indispensable role for Rab8A in insulin-regulated GLUT4 trafficking in C2C12 cells.

  10. Runx1 Transcription Factor Is Required for Myoblasts Proliferation during Muscle Regeneration.

    Directory of Open Access Journals (Sweden)

    Kfir Baruch Umansky

    2015-08-01

    Full Text Available Following myonecrosis, muscle satellite cells proliferate, differentiate and fuse, creating new myofibers. The Runx1 transcription factor is not expressed in naïve developing muscle or in adult muscle tissue. However, it is highly expressed in muscles exposed to myopathic damage yet, the role of Runx1 in muscle regeneration is completely unknown. Our study of Runx1 function in the muscle's response to myonecrosis reveals that this transcription factor is activated and cooperates with the MyoD and AP-1/c-Jun transcription factors to drive the transcription program of muscle regeneration. Mice lacking dystrophin and muscle Runx1 (mdx-/Runx1f/f, exhibit impaired muscle regeneration leading to age-dependent muscle waste, gradual decrease in motor capabilities and a shortened lifespan. Runx1-deficient primary myoblasts are arrested at cell cycle G1 and consequently differentiate. Such premature differentiation disrupts the myoblasts' normal proliferation/differentiation balance, reduces the number and size of regenerating myofibers and impairs muscle regeneration. Our combined Runx1-dependent gene expression, ChIP-seq, ATAC-seq and histone H3K4me1/H3K27ac modification analyses revealed a subset of Runx1-regulated genes that are co-occupied by MyoD and c-Jun in mdx-/Runx1f/f muscle. The data provide unique insights into the transcriptional program driving muscle regeneration and implicate Runx1 as an important participant in the pathology of muscle wasting diseases.

  11. Polyunsaturated fatty acids incorporation into cardiolipin in H9c2 cardiac myoblast.

    Science.gov (United States)

    Ting, Hsiu-Chi; Chao, Yu-Jen; Hsu, Yuan-Hao Howard

    2015-07-01

    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), known as ω-3 polyunsaturated fatty acid (PUFA), are common nutrients in daily food intake and have been shown to prevent cardiovascular disease and improve cardiac functions. Cardiolipin is a mitochondrial phospholipid necessary for maintaining physiological function of mitochondria. Several studies have indicated that the cardiolipin acyl chain compositions affect the function of cardiolipin and mitochondria. Here, we investigated the structural changes of cardiolipin after DHA and EPA supplementation and compared them to arachidonic acid (AA) treatment. H9c2 cardiac myoblast was used as a cell model, and cardiolipin species was monitored and identified via LC-MS and MS/MS. Our results showed distinct mass envelopes of cardiolipin with the same carbon number but different double bonds in mass spectrum. There were 116 cardiolipin species with 36 distinct mass in 6 mass envelopes identified by MS/MS. Three days of PUFA treatment resulted in decreases of low-molecular-weight cardiolipin and increases of high-molecular-weight cardiolipin, suggesting the incorporation of exogenous DHA, EPA and AA into mitochondrial cardiolipin. PUFA incorporation was further verified by MS/MS analysis. More importantly, we found that DHA supplementation elevated the percent content of less unsaturated cardiolipin species and highly unsaturated cardiolipin species, containing ω-3 fatty acyl chains, indicating a ω-3 fatty acid incorporation mechanism with peroxidation protection. Our results indicate that PUFA supplementation differentially perturbed the fatty acyl chain compositions in the mitochondrial cardiolipin in the H9c2 cardiac myoblast, suggesting that mitochondrial membrane and the function of mitochondria are susceptible to exogenous lipid species.

  12. Muscle Specific Fragile X Related Protein 1 Isoforms are Sequestered in the Nucleus of Undifferentiated Myoblast

    Directory of Open Access Journals (Sweden)

    Khandjian Edouard W

    2000-12-01

    Full Text Available Abstract Background The family of Fragile X Mental Retardation Proteins is composed of three members: Fragile Mental Retardation 1, Fragile X Related 1 and X Related 2 proteins. These proteins are associated with mRNPs within translating ribosomes and have the capacity to shuttle between the nucleus and the cytoplasm. Great attention has been given to FMRP due to its implication in human hereditary mental retardation while FXR1P and FXR2P have only recently been studied. Results Using antibodies directed against several epitopes of FXR1P, we have detected protein isoforms generated by small peptides pocket inserts. Four isoforms of MW 70, 74, 78, 80 kDa are widely distributed in mouse organs, while in striated muscles these isoforms are replaced by proteins of 82 and 84 kDa containing an extra pocket of 27 aa. Expression of these muscle isoforms is an early event during in vitro differentiation of myoblasts into myotubes and correlates with the activation of muscle-specific genes. However, while FXR1P82,84 are associated with cytoplasmic mRNPs in myotubes, they are sequestered in the nuclei of undifferentiated myoblasts. These observations suggest that, in addition to a cytoplasmic function yet to be defined, FXR1P82,84 may play a nuclear role in pre-mRNA metabolism. Conclusions The pattern of subcellular partitioning of FXR1P isoforms during myogenesis is unique among the family of the FXR proteins. The model system described here should be considered as a powerful tool for ongoing attempts to unravel structure-function relationships of the different FMR family members since the potential role(s of FXR1P as a compensatory factor in Fragile X syndrome is still elusive.

  13. Effect of oxygen tension on bioenergetics and proteostasis in young and old myoblast precursor cells

    Directory of Open Access Journals (Sweden)

    M. Konigsberg

    2013-01-01

    Full Text Available In the majority of studies using primary cultures of myoblasts, the cells are maintained at ambient oxygen tension (21% O2, despite the fact that physiological O2 at the tissue level in vivo is much lower (~1–5% O2. We hypothesized that the cellular response in presence of high oxygen concentration might be particularly important in studies comparing energetic function or oxidative stress in cells isolated from young versus old animals. To test this, we asked whether oxygen tension plays a role in mitochondrial bioenergetics (oxygen consumption, glycolysis and fatty acid oxidation or oxidative damage to proteins (protein disulfides, carbonyls and aggregates in myoblast precursor cells (MPCs isolated from young (3–4 m and old (29–30 m C57BL/6 mice. MPCs were grown under physiological (3% or ambient (21% O2 for two weeks prior to exposure to an acute oxidative insult (H2O2. Our results show significantly higher basal mitochondrial respiration in young versus old MPCs, an increase in basal respiration in young MPCs maintained at 3% O2 compared to cells maintained at 21% O2, and a shift toward glycolytic metabolism in old MPCs grown at 21% O2. H2O2 treatment significantly reduced respiration in old MPCs grown at 3% O2 but did not further repress respiration at 21% O2 in old MPCs. Oxidative damage to protein was higher in cells maintained at 21% O2 and increased in response to H2O2 in old MPCs. These data underscore the importance of understanding the effect of ambient oxygen tension in cell culture studies, in particular studies measuring oxidative damage and mitochondrial function.

  14. Methylglyoxal impairs GLUT4 trafficking and leads to increased glucose uptake in L6 myoblasts.

    Science.gov (United States)

    Engelbrecht, B; Mattern, Y; Scheibler, S; Tschoepe, D; Gawlowski, T; Stratmann, B

    2014-02-01

    Methylglyoxal (MG) is a highly reactive dicarbonyl compound derived mainly from glucose degradation pathways, but also from protein and fatty acid metabolism. MG modifies structure and function of different biomolecules and thus plays an important role in the pathogenesis of diabetic complications. Hyperglycemia-associated accumulation of MG might be associated with generation of oxidative stress and subsequently insulin resistance. Therefore, the effects of MG on insulin signaling and on translocation of glucose transporter 4 (GLUT4) were investigated in the rat skeletal muscle cell line L6-GLUT4myc stably expressing myc-tagged GLUT4. Twenty four-hour MG treatment resulted in elevated GLUT4 presentation on the surface of L6 myoblasts and in an increased uptake of glucose even without insulin stimulation. Exogenously added MG neither effected IRS-1 expression nor IRS-1 phosphorylation. A decreased expression of Akt1 but not Akt2 and concomitantly increased apoptosis were detected following MG treatment. To exclude that oxidative stress caused by MG treatment leads to increased GLUT4 translocation, effects of pretreatment with 2 antioxidants were investigated. The antioxidant and MG scavenger NAC prevented the MG-induced GLUT4 translocation. In contrast, tiron, a well-known antioxidant that does not exert MG-scavenger function, had no impact on MG-induced GLUT4 translocation supporting the hypothesis of a direct effect of MG on GLUT4 trafficking. In conclusion, prolonged treatment with MG augments GLUT4 level on the surface of L6 myoblasts, at least in part through a higher translocation of GLUT4 from the intracellular compartment as well as a reduction of GLUT4 internalization, resulting in increased glucose uptake.

  15. Rb1 gene inactivation expands satellite cell and postnatal myoblast pools.

    Science.gov (United States)

    Hosoyama, Tohru; Nishijo, Koichi; Prajapati, Suresh I; Li, Guangheng; Keller, Charles

    2011-06-03

    Satellite cells are well known as a postnatal skeletal muscle stem cell reservoir that under injury conditions participate in repair. However, mechanisms controlling satellite cell quiescence and activation are the topic of ongoing inquiry by many laboratories. In this study, we investigated whether loss of the cell cycle regulatory factor, pRb, is associated with the re-entry of quiescent satellite cells into replication and subsequent stem cell expansion. By ablation of Rb1 using a Pax7CreER,Rb1 conditional mouse line, satellite cell number was increased 5-fold over 6 months. Furthermore, myoblasts originating from satellite cells lacking Rb1 were also increased 3-fold over 6 months, while terminal differentiation was greatly diminished. Similarly, Pax7CreER,Rb1 mice exhibited muscle fiber hypotrophy in vivo under steady state conditions as well as a delay of muscle regeneration following cardiotoxin-mediated injury. These results suggest that cell cycle re-entry of quiescent satellite cells is accelerated by lack of Rb1, resulting in the expansion of both satellite cells and their progeny in adolescent muscle. Conversely, that sustained Rb1 loss in the satellite cell lineage causes a deficit of muscle fiber formation. However, we also show that pharmacological inhibition of protein phosphatase 1 activity, which will result in pRb inactivation accelerates satellite cell activation and/or expansion in a transient manner. Together, our results raise the possibility that reversible pRb inactivation in satellite cells and inhibition of protein phosphorylation may provide a new therapeutic tool for muscle atrophy by short term expansion of the muscle stem cells and myoblast pool.

  16. Characterization of a series of anabaseine-derived compounds reveals that the 3-(4)-dimethylaminocinnamylidine derivative is a selective agonist at neuronal nicotinic alpha 7/125I-alpha-bungarotoxin receptor subtypes.

    Science.gov (United States)

    de Fiebre, C M; Meyer, E M; Henry, J C; Muraskin, S I; Kem, W R; Papke, R L

    1995-01-01

    Investigation of the naturally occurring, nicotinic agonist anabaseine and novel derivatives has shown that these compounds have cytoprotective and memory-enhancing effects. The hypothesis that these arise at least in part through actions on brain nicotinic receptors was evaluated by examining the ability of these compounds to displace the binding of nicotinic ligands and to affect the function of the alpha 4 beta 2 and alpha 7 receptor subtypes expressed in Xenopus oocytes. The derivative 3-(4)-dimethylaminocinnamylidine anabaseine (DMAC) was found to be a selective alpha 7 receptor agonist; it was more potent than nicotine, acetylcholine, anabaseine, and other derivatives at activating the alpha 7 receptor subtype, while displaying little agonist activity at alpha 4 beta 2 and other receptor subtypes. Compared with anabaseine and the other derivatives, DMAC was the most potent at displacing 125I-alpha-bungarotoxin binding (putative alpha 7) and the least potent at displacing [3H]cytisine binding (putative alpha 4 beta 2) to brain membranes. Independently of agonist activities, all of the novel compounds displayed secondary inhibitory activity at both receptor subtypes. At the alpha 4 beta 2 receptor subtype, inhibition by the 3-(2,4)-dimethoxybenzylidene derivative was enhanced by coapplication of acetylcholine, suggesting a noncompetitive form of inhibition. Anabaseine and nicotine prolonged the time course of activation of alpha 4 beta 2 receptors, compared with acetylcholine, suggesting sequential channel-blocking activity. As selective agonists, anabaseine derivatives such as DMAC may be useful for elucidating the function of alpha 7 nicotinic receptors, including their potential role(s) in the cytoprotective and memory-enhancing effects of nicotinic agents.

  17. Effects of transplanted myoblasts transfected with human growth hormone gene on improvement of ventricular function of rats

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background Cell transplantation for myocardial repair is limited by early cell death.Gene therapy with human growth hormone(hGH)has been shown to promote angiogensis and attenuate apoptosis in the experimental animal.This study was conducted to explore the effects of myoblast-based hGH gene therapy on heart function restoration and angiogenesis after myocardial infarction,and to compare the differences between myoblast-based hGH gene therapy and myoblast therapy.Methods Myoblasts were isolated from several SD rats,cultured,purified,and transfected with plasmid pLghGHSN and pLgGFPSN.Radioimmunoassay(RIA)was used to detect the expression of hGH in these myoblasts.SD rats underwent the ligation of the left anterior descending coronary artery so as to establish a heart ischemia model.Thirty surviving rats that underwent ligation were randomly divided into 3 equal groups 2 weeks after left coronary artery occlusion:pLghGHSN group received myoblast infected with hGH gene transplantation;pLgGFPSN group received myoblast infected with GFP gene transplantation;control group:received cultured medium only.Four weeks after the injection the surviving rat underwent evaluation of cardiac function by echocardiography.The rats were killed and ventricular samples were undergone immunohistochemistry with hematoxylin-eosin and factorⅧ.Cryosection was analyzed by fluorescence microscopy to examine the expression of green fluorescent protein.Reverse transcriptase-polymerase chain reaction(RT-PCR)was used to examine the mRNA expression of vascular endothelial growth factor(VEGF),bax and Bcl-2.hGH expression in myocardium was examined by Western blot.Results Myoblast can be successfully isolated,cultured and transfected.The expression of hGH in transfected myoblast was demonstrated with RIA.Four weeks after therapy,the cardiac function was improved significantly in pLghGHSN group and pLgGFPSN group.Fractional shortening(FS)and ejection fraction(EF)in pLghGHSN group were elevated

  18. Arecoline inhibits interleukin-2 secretion in Jurkat cells by decreasing the expression of alpha7-nicotinic acetylcholine receptors and prostaglandin E2.

    Science.gov (United States)

    Hwang, G S; Hu, S; Lin, Y H; Chen, S T; Tang, T K; Wang, P S; Wang, S W

    2013-10-01

    The purpose of the present study was to explore the effect of arecoline on phytohemagglutinin (PHA)-stimulated interleukin-2 (IL-2) secretion, the expression of alpha7-nicotinic acetylcholine receptors (α7-nAChRs), prostaglandin E2(PGE2) protein, and IL-2 mRNA in human lymphocyte cells (Jurkat cell line). The IL-2 and PGE2 were determined by enzyme-linked immunosorbent assay (ELISA). The expressions of phosphorylated extracellular signal-regulated kinase (ERK) and α7-nAChRs were determined by Western blotting. The level of IL-2 mRNA was determined by reverse-transcriptase polymerase chain reaction (RT-PCR). Arecoline, in a dose-dependent manner, significantly decreased IL-2 and PGE2 secretion by Jurkat cells incubated with 0 or 5 μg/ml 5 μg/ml PHA. PGE2 also significantly inhibited IL-2 secretion by Jurkat cells in a dose-dependent manner. In addition, reduced expression of PHA-induced ERK phosphorylation was observed in Jurkat cells treated with arecoline. PHA-enhanced IL-2 mRNA expression was also inhibited by arecoline. These results imply that arecoline inhibits the release of PGE2 and PHA-induced IL-2 secretion by Jurkat cells and that these effects seem to occur, at least in part, either through the attenuation of ERK in conjunction with a decrease of PHA-induced IL-2 mRNA expression. These results imply that arecoline inhibits the protein expression of α7-nAChRs , the release of PGE2 and PHA-induced IL-2 secretion by Jurkat cells.

  19. Meningitic Escherichia coli K1 penetration and neutrophil transmigration across the blood-brain barrier are modulated by alpha7 nicotinic receptor.

    Directory of Open Access Journals (Sweden)

    Feng Chi

    Full Text Available Alpha7 nicotinic acetylcholine receptor (nAChR, an essential regulator of inflammation, is abundantly expressed in hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether α7 nAChR contributes to the regulation of these events. In this report, an aggravating role of α7 nAChR in host defense against meningitic E. coli infection was demonstrated by using α7-deficient (α7(-/- mouse brain microvascular endothelial cells (BMEC and animal model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN transmigration across the blood-brain barrier (BBB were significantly reduced in α7(-/- BMEC and α7(-/- mice. Stimulation by nicotine was abolished in the α7(-/- cells and animals. The same blocking effect was achieved by methyllycaconitine (α7 antagonist. The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice infected with E. coli and treated with nicotine, compared to α7(-/- cells and animals. Decreased neuronal injury in the hippocampal dentate gyrus was observed in α7(-/- mice with meningitis. Proinflammatory cytokines (IL-1β, IL-6, TNFα, MCP-1, MIP-1alpha, and RANTES and adhesion molecules (CD44 and ICAM-1 were significantly reduced in the cerebrospinal fluids of the α7(-/- mice with E. coli meningitis. Furthermore, α7 nAChR is the major calcium channel for nicotine- and E. coli K1-increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that α7 nAChR plays a detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment, calcium signaling and neuronal inflammation.

  20. Six1 induces protein synthesis signaling expression in duck myoblasts mainly via up-regulation of mTOR

    Directory of Open Access Journals (Sweden)

    Haohan Wang

    2016-03-01

    Full Text Available Abstract As a critical transcription factor, Six1 plays an important role in the regulation of myogenesis and muscle development. However, little is known about its regulatory mechanism associated with muscular protein synthesis. The objective of this study was to investigate the effects of overexpression ofSix1 on the expression of key protein metabolism-related genes in duck myoblasts. Through an experimental model where duck myoblasts were transfected with a pEGFP-duSix1 construct, we found that overexpression of duckSix1 could enhance cell proliferation activity and increase mRNA expression levels of key genes involved in the PI3K/Akt/mTOR signaling pathway, while the expression of FOXO1, MuRF1and MAFbx was not significantly altered, indicating thatSix1 could promote protein synthesis in myoblasts through up-regulating the expression of several related genes. Additionally, in duck myoblasts treated with LY294002 and rapamycin, the specific inhibitors ofPI3K and mTOR, respectively, the overexpression of Six1 could significantly ameliorate inhibitive effects of these inhibitors on protein synthesis. Especially, the mRNA expression levels of mTOR and S6K1 were observed to undergo a visible change, and a significant increase in protein expression of S6K1 was seen. These data suggested that Six1plays an important role in protein synthesis, which may be mainly due to activation of the mTOR signaling pathway.

  1. Mast cell tryptase stimulates myoblast proliferation; a mechanism relying on protease-activated receptor-2 and cyclooxygenase-2

    OpenAIRE

    Côté Claude H; Tremblay Marie-Hélène; Duchesne Elise

    2011-01-01

    Abstract Background Mast cells contribute to tissue repair in fibrous tissues by stimulating proliferation of fibroblasts through the release of tryptase which activates protease-activated receptor-2 (PAR-2). The possibility that a tryptase/PAR-2 signaling pathway exists in skeletal muscle cell has never been investigated. The aim of this study was to evaluate whether tryptase can stimulate myoblast proliferation and determine the downstream cascade. Methods Proliferation of L6 rat skeletal m...

  2. TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo

    OpenAIRE

    Shilpy Joshi; Guillaume Davidson; Stéphanie Le Gras; Shuichi Watanabe; Thomas Braun; Gabrielle Mengus; Irwin Davidson

    2017-01-01

    The TEAD family of transcription factors (TEAD1-4) bind the MCAT element in the regulatory elements of both growth promoting and myogenic differentiation genes. Defining TEAD transcription factor function in myogenesis has proved elusive due to overlapping expression of family members and their functional redundancy. We show that silencing of either Tead1, Tead2 or Tead4 did not effect primary myoblast (PM) differentiation, but that their simultaneous knockdown strongly impaired differentiati...

  3. DUX4c is up-regulated in FSHD. It induces the MYF5 protein and human myoblast proliferation.

    Directory of Open Access Journals (Sweden)

    Eugénie Ansseau

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is a dominant disease linked to contractions of the D4Z4 repeat array in 4q35. We have previously identified a double homeobox gene (DUX4 within each D4Z4 unit that encodes a transcription factor expressed in FSHD but not control myoblasts. DUX4 and its target genes contribute to the global dysregulation of gene expression observed in FSHD. We have now characterized the homologous DUX4c gene mapped 42 kb centromeric of the D4Z4 repeat array. It encodes a 47-kDa protein with a double homeodomain identical to DUX4 but divergent in the carboxyl-terminal region. DUX4c was detected in primary myoblast extracts by Western blot with a specific antiserum, and was induced upon differentiation. The protein was increased about 2-fold in FSHD versus control myotubes but reached 2-10-fold induction in FSHD muscle biopsies. We have shown by Western blot and by a DNA-binding assay that DUX4c over-expression induced the MYF5 myogenic regulator and its DNA-binding activity. DUX4c might stabilize the MYF5 protein as we detected their interaction by co-immunoprecipitation. In keeping with the known role of Myf5 in myoblast accumulation during mouse muscle regeneration DUX4c over-expression activated proliferation of human primary myoblasts and inhibited their differentiation. Altogether, these results suggested that DUX4c could be involved in muscle regeneration and that changes in its expression could contribute to the FSHD pathology.

  4. Cultured myoblasts from patients affected by myotonic dystrophy type 2 exhibit senescence-related features: ultrastructural evidence

    Directory of Open Access Journals (Sweden)

    M. Malatesta

    2011-09-01

    Full Text Available Myotonic dystrophy type 2 (DM2 is an autosomal dominant disorder caused by the expansion of the tetranucleotidic repeat (CCTGn in the first intron of the Zinc Finger Protein-9 gene. In DM2 tissues, the expanded mutant transcripts accumulate in nuclear focal aggregates where splicing factors are sequestered, thus impairing the whole mRNA processing. Interestingly, the ultrastructural alterations in the splicing machinery observed in the myonuclei of DM2 skeletal muscles are reminiscent of the nuclear changes occurring in age-related muscle atrophy. Here, we investigated structural and functional features of satellite cell-derived myoblasts from biceps brachii, in the attempt to investigate cell senescence indices in DM2 patients by ultrastructural cytochemistry. We observed that in satellite cell-derived DM2 myoblasts, cell-senescence alterations and impairment of the pre-mRNA maturation pathways occur earlier than in myoblasts from healthy patients. This suggests that also in vivo the regeneration capability of satellite cells could be reduced in dystrophic muscles.

  5. Cellular responses to H(2)O(2) and bleomycin-induced oxidative stress in L6C5 rat myoblasts.

    Science.gov (United States)

    Caporossi, Daniela; Ciafrè, Silvia Anna; Pittaluga, Monica; Savini, Isabella; Farace, Maria Giulia

    2003-12-01

    In muscle cells, reactive oxygen species (ROS) are continually generated. It is believed that these molecules have a well-established role as physiological modulators of skeletal muscle functions, ranging from development to metabolism and from blood flow to contractile functions. Moreover, ROS may contribute to the development of muscle fatigue, inflammation, and degeneration, and may be implicated in many muscle diseases. The aim of the present study was to verify the role of short or prolonged exposure to oxidative stress, generated by different concentrations of H(2)O(2), on growth, chromosomal aberrations, and apoptosis induced in cultured L6C5 rat muscle cells used as model for myoblasts. Our results indicate that, in L6C5 cells, reactive oxygen intermediates (ROI) can activate distinct cell pathways leading to cell growth induction and development of resistant phenotype, or to chromosomal aberrations, cell cycle arrest, or cell death. The positive vs. negative effects of H(2)O(2)-altered redox potential in myoblasts are strictly related to the intensity of oxidative stress, likely depending on the types and number of cellular targets involved. Among these, DNA molecules appear to be very sensitive to breakage by H(2)O(2), although DNA damage is not directly responsible for ROI-induced apoptosis in L6C5 rat myoblasts.

  6. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke; Chao, Guozheng; Takahashi, Hideyuki; Watanabe, Kouichi; Ohwada, Shyuichi; Aso, Hisashi [Laboratory of Functional Morphology, Department of Animal Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-Ku, Sendai 981-8555 (Japan); Yamaguchi, Takahiro, E-mail: ty1010@bios.tohoku.ac.jp [Laboratory of Functional Morphology, Department of Animal Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-Ku, Sendai 981-8555 (Japan)

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated at a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.

  7. Proinflammatory Macrophages Enhance the Regenerative Capacity of Human Myoblasts by Modifying Their Kinetics of Proliferation and Differentiation

    Science.gov (United States)

    Bencze, Maximilien; Negroni, Elisa; Vallese, Denis; Yacoub–Youssef, Houda; Chaouch, Soraya; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Chazaud, Bénédicte; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent; Riederer, Ingo

    2012-01-01

    Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2−/− γC−/− immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy. PMID:23070116

  8. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation.

    Science.gov (United States)

    Bencze, Maximilien; Negroni, Elisa; Vallese, Denis; Yacoub-Youssef, Houda; Chaouch, Soraya; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Chazaud, Bénédicte; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent; Riederer, Ingo

    2012-11-01

    Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2(-/-) γC(-/-) immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy.

  9. Effect of atrophy and contractions on myogenin mRNA concentration in chick and rat myoblast omega muscle cells

    Science.gov (United States)

    Krebs, J. M.; Denney, R. M.

    1997-01-01

    The skeletal rat myoblast omega (RMo) cell line forms myotubes that exhibit spontaneous contractions under appropriate conditions in culture. We examined if the RMo cells would provide a model for studying atrophy and muscle contraction. To better understand how to obtain contractile cultures, we examined levels of contraction under different growing conditions. The proliferation medium and density of plating affected the subsequent proportion of spontaneously contracting myotubes. Using a ribonuclease protection assay, we found that exponentially growing RMo myoblasts contained no detectable myogenin or herculin mRNA, while differentiating myoblasts contained high levels of myogenin mRNA but no herculin mRNA. There was no increase in myogenin mRNA concentration in either primary chick or RMo myotubes whose contractions were inhibited by depolarizing concentrations of potassium (K+). Thus, altered myogenin mRNA concentrations are not involved in atrophy of chick myotubes. Depolarizing concentrations of potassium inhibited spontaneous contractions in both RMo cultures and primary chick myotube cultures. However, we found that the myosin concentration of 6-d-old contracting RMo cells fed medium plus AraC was 11 +/- 3 micrograms myosin/microgram DNA, not significantly different from 12 +/- 4 micrograms myosin/microgram DNA (n = 3), the myosin concentration of noncontracting RMo cells (treated with 12 mM K+ for 6 d). Resolving how RMo cells maintained their myosin content when contraction is inhibited may be important for understanding atrophy.

  10. Talin 1 and 2 are required for myoblast fusion, sarcomere assembly and the maintenance of myotendinous junctions

    Science.gov (United States)

    Conti, Francesco J.; Monkley, Sue J.; Wood, Malcolm R.; Critchley, David R.; Müller, Ulrich

    2009-01-01

    Summary Talin 1 and 2 connect integrins to the actin cytoskeleton and regulate the affinity of integrins for ligands. In skeletal muscle, talin 1 regulates the stability of myotendinous junctions (MTJs), but the function of talin 2 in skeletal muscle is not known. Here we show that MTJ integrity is affected in talin 2-deficient mice. Concomitant ablation of talin 1 and 2 leads to defects in myoblast fusion and sarcomere assembly, resembling defects in muscle lacking β1 integrins. Talin 1/2-deficient myoblasts express functionally active β1 integrins, suggesting that defects in muscle development are not primarily caused by defects in ligand binding, but rather by disruptions of the interaction of integrins with the cytoskeleton. Consistent with this finding, assembly of integrin adhesion complexes is perturbed in the remaining muscle fibers of talin 1/2-deficient mice. We conclude that talin 1 and 2 are crucial for skeletal muscle development, where they regulate myoblast fusion, sarcomere assembly and the maintenance of MTJs. PMID:19793892

  11. Photobiomodulation Protects and Promotes Differentiation of C2C12 Myoblast Cells Exposed to Snake Venom

    Science.gov (United States)

    da Silva, Aline; Vieira, Rodolfo Paula; Mesquita-Ferrari, Raquel Agnelli; Cogo, José Carlos; Zamuner, Stella Regina

    2016-01-01

    Background Snakebites is a neglected disease and in Brazil is considered a serious health problem, with the majority of the snakebites caused by the genus Bothrops. Antivenom therapy and other first-aid treatments do not reverse local myonecrose which is the main sequel caused by the envenomation. Several studies have shown the effectiveness of low level laser (LLL) therapy in reducing local myonecrosis induced by Bothropic venoms, however the mechanism involved in this effect is unknown. In this in vitro study, we aimed to analyze the effect of LLL irradiation against cytotoxicity induced by Bothrops jararacussu venom on myoblast C2C12 cells. Methodology C2C12 were utilized as a model target and were incubated with B. jararacussu venom (12.5 μg/mL) and immediately irradiated with LLL at wavelength of red 685 nm or infrared 830 nm with energy density of 2.0, 4.6 and 7.0 J/cm2. Effects of LLL on cellular responses of venom-induced cytotoxicity were examined, including cell viability, measurement of cell damage and intra and extracellular ATP levels, expression of myogenic regulatory factors, as well as cellular differentiation. Results In non-irradiated cells, the venom caused a decrease in cell viability and a massive release of LDH and CK levels indicating myonecrosis. Infrared and red laser at all energy densities were able to considerably decrease venom-induced cytotoxicity. Laser irradiation induced myoblasts to differentiate into myotubes and this effect was accompanied by up regulation of MyoD and specially myogenin. Moreover, LLL was able to reduce the extracellular while increased the intracellular ATP content after venom exposure. In addition, no difference in the intensity of cytotoxicity was shown by non-irradiated and irradiated venom. Conclusion LLL irradiation caused a protective effect on C2C12 cells against the cytotoxicity caused by B. jararacussu venom and promotes differentiation of these cells by up regulation of myogenic factors. A modulatory

  12. Activity of cytisine and its brominated isosteres on recombinant human alpha7, alpha4beta2 and alpha4beta4 nicotinic acetylcholine receptors.

    Science.gov (United States)

    Houlihan, L M; Slater, Y; Guerra, D L; Peng, J H; Kuo, Y P; Lukas, R J; Cassels, B K; Bermudez, I

    2001-09-01

    Effects of cytisine (cy), 3-bromocytisine (3-Br-cy), 5-bromocytisine (5-Br-cy) and 3,5-dibromocytisine (3,5-diBr-cy) on human (h) alpha7-, alpha4beta2- and alpha4beta4 nicotinic acetylcholine (nACh) receptors, expressed in Xenopus oocytes and cell lines, have been investigated. Cy and its bromo-isosteres fully inhibited binding of both [alpha-(125)I]bungarotoxin ([alpha-(125)I]BgTx) to halpha7- and [(3)H]cy to halpha4beta2- or halpha4beta4-nACh receptors. 3-Br-cy was the most potent inhibitor of both [alpha-(125)I]BgTx and [(3)H]cy binding. Cy was less potent than 3-Br-cy, but 5-Br-cy and 3,5-diBr-cy were the least potent inhibitors. Cy and 3-Br-cy were potent full agonists at halpha7-nACh receptors but behaved as partial agonists at halpha4beta2- and halpha4beta4-nACh receptors. 5-Br-cy and 3,5-diBr-cy had low potency and were partial agonists at halpha7- and halpha4beta4-nACh receptors, but they elicited no responses on halpha4beta2-nACh receptors. Cy and 3-Br-cy produced dual dose-response curves (DRC) at both halpha4beta2- and halpha4beta4-nACh receptors, but ACh produced dual DRC only at halpha4beta2-nACh receptors. Low concentrations of cy, 3-Br-cy and 5-Br-cy enhanced ACh responses of oocytes expressing halpha4beta2-nACh receptors, but at high concentrations they inhibited the responses. In contrast, 3,5-diBr-cy only inhibited, in a competitive manner, ACh responses of halpha4beta2-nACh receptors. It is concluded that bromination of the pyridone ring of cy produces marked changes in effects of cy that are manifest as nACh receptor subtype-specific differences in binding affinities and in functional potencies and efficacies.

  13. Synthesis and positron emission tomography studies of C-11-labeled isotopomers and metabolites of GTS-21, a partial {alpha}7 nicotinic cholinergic agonist drug

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Won [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States) and Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400 (United States)]. E-mail: swkim@bnl.gov; Ding Yushin [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400 (United States); Department of Radiology, Yale University School of Medicine, New Haven, CT 06520-8048 (United States); Alexoff, David [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Patel, Vinal [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Logan, Jean [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Lin, K.-S. [Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Shea, Colleen [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Muench, Lisa [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Xu Youwen [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Carter, Pauline [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); King, Payton [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Constanzo, Jasmine R. [Department of Chemistry, Fordham University, Bronx, NY 10458 (United States); Ciaccio, James A. [Department of Chemistry, Fordham University, Bronx, NY 10458 (United States); Fowler, Joanna S. [Medical Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400 (United States); Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2007-07-15

    Introduction: (3E)-3-[(2,4-dimethoxyphenyl)methylene]-3,4,5,6-tetrahydro-2,3'-bipyridine (GTS-21), a partial {alpha}7 nicotinic acetylcholine receptor agonist drug, has recently been shown to improve cognition in schizophrenia and Alzheimer's disease. One of its two major demethylated metabolites, 4-OH-GTS-21, has been suggested to contribute to its therapeutic effects. Methods: We labeled GTS-21 in two different positions with carbon-11 ([2-methoxy-{sup 11}C]GTS-21 and [4-{sup 11}C]GTS-21) along with two corresponding demethylated metabolites ([2-methoxy-{sup 11}C]4-OH-GTS-21 and [4-methoxy-{sup 11}C]2-OH-GTS-21) for pharmacokinetic studies in baboons and mice with positron emission tomography (PET). Results: Both [2-{sup 11}C]GTS-21 and [4-methoxy-{sup 11}C]GTS-21 showed similar initial high rapid uptake in baboon brain, peaking from 1 to 3.5 min (0.027-0.038%ID/cc) followed by rapid clearance (t {sub 1/2}<15 min), resulting in low brain retention by 30 min. However, after 30 min, [2-methoxy-{sup 11}C]GTS-21 continued to clear while [4-methoxy-{sup 11}C]GTS-21 plateaued, suggesting the entry of a labeled metabolite into the brain. Comparison of the pharmacokinetics of the two labeled metabolites confirmed expected higher brain uptake and retention of [4-methoxy-{sup 11}C]2-OH-GTS-21 (the labeled metabolite of [4-methoxy-{sup 11}C]GTS-21) relative to [2-methoxy-{sup 11}C]4-OH-GTS-21 (the labeled metabolite of [2-methoxy-{sup 11}C]GTS-21), which had negligible brain uptake. Ex vivo studies in mice showed that GTS-21 is the major chemical form in the mouse brain. Whole-body dynamic PET imaging in baboon and mouse showed that the major route of excretion of C-11 is through the gallbladder. Conclusions: The major findings are as follows: (a) extremely rapid uptake and clearance of [2-methoxy-{sup 11}C]GTS-21 from the brain, which may need to be considered in developing optimal dosing of GTS-21 for patients, and (b) significant brain uptake of 2-OH-GTS-21

  14. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.

    Science.gov (United States)

    Witt, R; Weigand, A; Boos, A M; Cai, A; Dippold, D; Boccaccini, A R; Schubert, D W; Hardt, M; Lange, C; Arkudas, A; Horch, R E; Beier, J P

    2017-02-28

    Volumetric muscle loss caused by trauma or after tumour surgery exceeds the natural regeneration capacity of skeletal muscle. Hence, the future goal of tissue engineering (TE) is the replacement and repair of lost muscle tissue by newly generating skeletal muscle combining different cell sources, such as myoblasts and mesenchymal stem cells (MSCs), within a three-dimensional matrix. Latest research showed that seeding skeletal muscle cells on aligned constructs enhance the formation of myotubes as well as cell alignment and may provide a further step towards the clinical application of engineered skeletal muscle. In this study the myogenic differentiation potential of MSCs upon co-cultivation with myoblasts and under stimulation with hepatocyte growth factor (HGF) and insulin-like growth factor-1 (IGF-1) was evaluated. We further analysed the behaviour of MSC-myoblast co-cultures in different 3D matrices. Primary rat myoblasts and rat MSCs were mono- and co-cultivated for 2, 7 or 14 days. The effect of different concentrations of HGF and IGF-1 alone, as well as in combination, on myogenic differentiation was analysed using microscopy, multicolour flow cytometry and real-time PCR. Furthermore, the influence of different three-dimensional culture models, such as fibrin, fibrin-collagen-I gels and parallel aligned electrospun poly-ε-caprolacton collagen-I nanofibers, on myogenic differentiation was analysed. MSCs could be successfully differentiated into the myogenic lineage both in mono- and in co-cultures independent of HGF and IGF-1 stimulation by expressing desmin, myocyte enhancer factor 2, myosin heavy chain 2 and alpha-sarcomeric actinin. An increased expression of different myogenic key markers could be observed under HGF and IGF-1 stimulation. Even though, stimulation with HGF/IGF-1 does not seem essential for sufficient myogenic differentiation. Three-dimensional cultivation in fibrin-collagen-I gels induced higher levels of myogenic differentiation

  15. Encapsulated engineered myoblasts can cure Hurler syndrome: preclinical experiments in the mouse model.

    Science.gov (United States)

    Piller Puicher, E; Tomanin, R; Salvalaio, M; Friso, A; Hortelano, G; Marin, O; Scarpa, M

    2012-04-01

    Mucopolysaccharidosis type I (MPSI) is an autosomic recessive, lysosomal storage disorder due to the deficit of the enzyme α-L-iduronidase (IDUA). The disease accounts for a general impairment of tissue and organ functions, mainly including heart disease, corneal clouding, organomegaly, skeletal malformations and joint stiffness. Neurological deterioration affects the severe forms. Both haemopoietic stem cell transplantation and enzyme replacement therapy can be applied to the treatment of the disorder; however, they both present several limitations. Thus, the search for alternative strategies to complement the present procedures is highly desirable. A murine myoblast cell line engineered to overexpress IDUA was generated and enclosed in alginate microcapsules, which were intra-peritoneally implanted in the MPSI mouse model. Plasma and tissue enzyme activity induced by the treatment and urinary and tissue glycosaminoglycan content were monitored in the animals, progressively sacrificed up to 4 months after implantation. Significant induction of enzyme activity and reduction of glycosaminoglycan accumulation were detected in the implanted animals, complete normalization of deposits was achieved in two animals. Intra-peritoneal implantation of alginate microcapsule confirms to be a valid approach as an endogenous enzyme replacement procedure.

  16. Photovoltaic surfaces enable clonal myoblastic cell release using visible light as external stimulation.

    Science.gov (United States)

    Bhuyan, Mohammod Kabir; Rodriguez-Devora, Jorge; Tseng, Tzu-Liang Bill; Boland, Thomas

    2016-03-01

    Many new biomedical approaches to treating disease require the supply of cells delivered to an injured or diseased organ either individually, collectively as aggregates or sheets, or encapsulated with a scaffold. The collection of cells is accomplished by using enzymatic digestion witch suffer from the need to remove the enzymes after digestion. In addition, enzymatic methods are not applicable for all cells, cell aggregates, cell sheets or 3D structures. The objective of this study was to investigate the release of cultured cells from silicon based Photovoltaic (PV) surfaces using a light source as external stimulation. C2C12 myoblasts were cultured on the negative surface of a PV device and upon confluence they were exposed to light. The amount of released cells was quantified as a function light exposure. It was found that light exposure at 25,000 lux for one hour caused equivalent cell release from the PV surface than trypsination. The released cells are viable and can be re-cultured if needed. This mechanism may offer an alternative method to release excitable cells without using an enzymatic agent. This may be important for cell therapy if larger cell structures such as sheets need to be collected.

  17. Chitooligomer-Immobilized Biointerfaces with Micropatterned Geometries for Unidirectional Alignment of Myoblast Cells

    Directory of Open Access Journals (Sweden)

    Pornthida Poosala

    2016-01-01

    Full Text Available Skeletal muscle possesses a robust capacity to regenerate functional architectures with a unidirectional orientation. In this study, we successfully arranged skeletal myoblast (C2C12 cells along micropatterned gold strips on which chitohexaose was deposited via a vectorial chain immobilization approach. Hexa-N-acetyl-d-glucosamine (GlcNAc6 was site-selectively modified at its reducing end with thiosemicarbazide, then immobilized on a gold substrate in striped micropatterns via S–Au chemisorption. Gold micropatterns ranged from 100 to 1000 µm in width. Effects of patterning geometries on C2C12 cell alignment, morphology, and gene expression were investigated. Unidirectional alignment of C2C12 cells having GlcNAc6 receptors was clearly observed along the micropatterns. Decreasing striped pattern width increased cell attachment and proliferation, suggesting that the fixed GlcNAc6 and micropatterns impacted cell function. Possibly, interactions between nonreducing end groups of fixed GlcNAc6 and cell surface receptors initiated cellular alignment. Our technique for mimicking native tissue organization should advance applications in tissue engineering.

  18. Graphene oxide increases the viability of C2C12 myoblasts microencapsulated in alginate.

    Science.gov (United States)

    Ciriza, J; Saenz del Burgo, L; Virumbrales-Muñoz, M; Ochoa, I; Fernandez, L J; Orive, G; Hernandez, R M; Pedraz, J L

    2015-09-30

    Cell microencapsulation represents a great promise for long-term drug delivery, but still several challenges need to be overcome before its translation into the clinic, such as the long term cell survival inside the capsules. On this regard, graphene oxide has shown to promote proliferation of different cell types either in two or three dimensions. Therefore, we planned to combine graphene oxide with the cell microencapsulation technology. We first studied the effect of this material on the stability of the capsules and next we analyzed the biocompatibility of this chemical compound with erythropoietin secreting C2C12 myoblasts within the microcapsule matrix. We produced 160 μm-diameter alginate microcapsules with increasing concentrations of graphene oxide and did not find modifications on the physicochemical parameters of traditional alginate microcapsules. Moreover, we observed that the viability of encapsulated cells within alginate microcapsules containing specific graphene oxide concentrations was enhanced. These results provide a relevant step for the future clinical application of graphene oxide on cell microencapsulation.

  19. Effect of IR Laser on Myoblasts: Prospects of Application for Counteracting Microgravity-Induced Muscle Atrophy

    Science.gov (United States)

    Monici, Monica; Cialdai, Francesca; Romano, Giovanni; Corsetto, Paola Antonia; Rizzo, Angela Maria; Caselli, Anna; Ranaldi, Francesco

    2013-02-01

    Microgravity-induced muscle atrophy is a problem of utmost importance for the impact it may have on the health and performance of astronauts. Therefore, appropriate countermeasures are needed to prevent disuse atrophy and favour muscle recovery. Muscle atrophy is characterized by loss of muscle mass and strength, and a shift in substrate utilization from fat to glucose, that leads to a reduced metabolic efficiency and enhanced fatigability. Laser therapy is already used in physical medicine and rehabilitation to accelerate muscle recovery and in sports medicine to prevent damages produced by metabolic disturbances and inflammatory reactions after heavy exercise. The aim of the research we present was to get insights on possible benefits deriving from the application of an advanced infrared laser system to counteract deficits of muscle energy metabolism and stimulate the recovery of the hypotrophic tissue. The source used was a Multiwave Locked System (MLS) laser, which combines continuous and pulsed emissions at 808 nm and 905 nm, respectively. We studied the effect of MLS treatment on morphology and energy metabolism of C2C12 cells, a widely accepted myoblast model, previously exposed to microgravity conditions modelled by a Random Positioning Machine. The MLS laser treatment was able to restore basal levels of serine/threonine protein phosphatase activity and to counteract cytoskeletal alterations and increase in glycolytic enzymes activity that occurred following the exposure to modelled microgravity. In conclusion, the results provide interesting insights for the application of infrared laser in the treatment of muscle atrophy.

  20. Cross talk between matrix elasticity and mechanical force regulates myoblast traction dynamics

    Science.gov (United States)

    Al-Rekabi, Zeinab; Pelling, Andrew E.

    2013-12-01

    Growing evidence suggests that critical cellular processes are profoundly influenced by the cross talk between extracellular nanomechanical forces and the material properties of the cellular microenvironment. Although many studies have examined either the effect of nanomechanical forces or the material properties of the microenvironment on biological processes, few have investigated the influence of both. Here, we performed simultaneous atomic force microscopy and traction force microscopy to demonstrate that muscle precursor cells (myoblasts) rapidly generate a significant increase in traction when stimulated with a local 10 nN force. Cells were cultured and nanomechanically stimulated on hydrogel substrates with controllable local elastic moduli varying from ˜16-89 kPa, as confirmed with atomic force microscopy. Importantly, cellular traction dynamics in response to nanomechanical stimulation only occurred on substrates that were similar to the elasticity of working muscle tissue (˜64-89 kPa) as opposed to substrates mimicking resting tissue (˜16-51 kPa). The traction response was also transient, occurring within 30 s, and dissipating by 60 s, during constant nanomechanical stimulation. The observed biophysical dynamics are very much dependent on rho-kinase and myosin-II activity and likely contribute to the physiology of these cells. Our results demonstrate the fundamental ability of cells to integrate nanoscale information in the cellular microenvironment, such as nanomechanical forces and substrate mechanics, during the process of mechanotransduction.

  1. A gene-trap strategy identifies quiescence-induced genes in synchronized myoblasts

    Indian Academy of Sciences (India)

    Ramkumar Sambasivan; Grace K Pavlath; Jyotsna Dhawan

    2008-03-01

    Cellular quiescence is characterized not only by reduced mitotic and metabolic activity but also by altered gene expression. Growing evidence suggests that quiescence is not merely a basal state but is regulated by active mechanisms. To understand the molecular programme that governs reversible cell cycle exit, we focused on quiescence-related gene expression in a culture model of myogenic cell arrest and activation. Here we report the identification of quiescence-induced genes using a gene-trap strategy. Using a retroviral vector, we generated a library of gene traps in C2C12 myoblasts that were screened for arrest-induced insertions by live cell sorting (FACS-gal). Several independent genetrap lines revealed arrest-dependent induction of gal activity, confirming the efficacy of the FACS screen. The locus of integration was identified in 15 lines. In three lines, insertion occurred in genes previously implicated in the control of quiescence, i.e. EMSY – a BRCA2-interacting protein, p8/com1– a p300HAT-binding protein and MLL5 – a SET domain protein. Our results demonstrate that expression of chromatin modulatory genes is induced in G0, providing support to the notion that this reversibly arrested state is actively regulated.

  2. Arecoline inhibits myogenic differentiation of C2C12 myoblasts by reducing STAT3 phosphorylation.

    Science.gov (United States)

    Chang, Yung-Fu; Liu, Ting-Yuan; Liu, Shao-Tung; Tseng, Chao-Neng

    2012-10-01

    Areca nut (Areca catechu) is chewed regularly as a medical and psychoactive food by about 10% of the world population, in countries including India, Taiwan and parts of Southern Asia. Areca nut chewing during pregnancy has been associated with both lower birth weight and premature birth. Animals of low birth weights showed retardation of muscle development. Our previous study showed that arecoline, the major areca alkaloid, decreased the number of implanted embryos. Here we sought to determine the effects of arecoline in myogenic differentiation by in vitro assays using C2C12 myoblast cells. The results showed that arecoline higher than 0.4mM significantly increased apoptosis and decreased viability of C2C12 cells. Morphometric measurements of myotube formation and analyses of myogenic markers, myosin heavy chain and myogenin, revealed that myogenic differentiation was inhibited by 0.04-0.08 mM arecoline. Moreover, phosphorylated but not total STAT3 was significantly inhibited by arecoline during myotube formation. These results indicate that arecoline inhibits the myogenic differentiation of C2C12 cells by reducing the activation of STAT3, an upstream regulator of myogenesis. Improved understanding of the effects of arecoline during myogenic differentiation may help to establish public health policies and to develop potential treatments for such patients. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. An adaptable stage perfusion incubator for the controlled cultivation of C2C12 myoblasts.

    Science.gov (United States)

    Kurth, Felix; Franco-Obregón, Alfredo; Bärtschi, Christoph A; Dittrich, Petra S

    2015-01-01

    Here we present a stage perfusion incubation system that allows for the cultivation of mammalian cells within PDMS microfluidic devices for long-term microscopic examination and analysis. The custom-built stage perfusion incubator is adaptable to any x-y microscope stage and is enabled for temperature, gas and humidity control as well as equipped with chip and tubing holder. The applied double-layered microfluidic chip allows the predetermined positioning and concentration of cells while the gas permeable PDMS material facilitates pH control via CO2 levels throughout the chip. We demonstrate the functionality of this system by culturing C2C12 murine myoblasts in buffer free medium within its confines for up to 26 hours. We moreover demonstrated the system's compatibility with various chip configurations, other cells lines (HEK-293 cells) and for longer-term culturing. The cost-efficient system are applicable for any type of PDMS-based cell culture system. Detailed technical drawings and specification to reproduce this perfusion incubation system is provided in the ESI.

  4. [The creatine effect on RNA and protein synthesis in growing culture of chick embryo myoblasts].

    Science.gov (United States)

    Zilber, M L; Litvinova, V N; Morozov, V I; Pliskin, A V; Pshendin, A I; Rogozkin, V A

    1975-01-01

    4hr incubation of the growing culture of chick embrio myoblasts in the presence of 5 mM creatine resulted, regardless of a well-defined lowering of cell membrane permeability to labelled precursors, in: (1) the 1.5-fold induction of 14C-orotic acid incorporation into total cellular RNA; (2) the 1.9-fold stimulation of DNA-dependent RNA-polymerase activity and (3) the preferable, in comparison with total proteins, 14C-leucine incorporation in the myosin heavy chain. The stimulating effect of creatine on RNA-poly-merase deals with a definite enzyme fraction and it is caused by the augmentation of the transcriptional complex enzyme activity. Polyacrilamide gel electrophoresis of total 14C-RNA revealed a relative increase of radioactivity after creatine treatment in both high-molecular pike and the fraction corresponding to 26S RNA, the relative proportion of mRNA containing Poly-A in the composition of total cellular RNA being invariable. The data obtained show that, though creatine as a positive regulator manifestates its effect at different stages of the sucessive chain of reactions leading to muscular protein synthesis, the direct realization of creatine regulatory function is connected with nucleus and is fullfilled at the transcription level.

  5. First intron of nestin gene regulates its expression during C2C12 myoblast ifferentiation

    Institute of Scientific and Technical Information of China (English)

    Hua Zhong; Zhigang Jin; Yongfeng Chen; Ting Zhang; Wei Bian; Xing Cui; Naihe Jing

    2008-01-01

    Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China Nestin is an intermediate filament protein expressed in neural progenitor cells and in developing skeletal muscle. Nestin has been widely used as a neural progenitor cell marker. It is well established that the specific expression of the nestin gene in neural progenitor cells is conferred by the neural-specific enhancer located in the second intron of the nestin gene. However, the transcriptional mechanism of nestin expression in developing muscle is still unclear. In this study, we identified a muscle cell-specific enhancer in the first intron of mouse nestin gene in mouse myoblast C2C12 cells.We localized the core enhancer activity to the 291-661 region of the first intron, and showed that the two E-boxes in the core enhancer region were important for enhancer activity in differentiating C2C12 cells. We also showed that MyoD protein was involved in the regulation of nestin expression in the myogenic differentiation of C2C12 cells.

  6. The Tocotrienol-Rich Fraction Is Superior to Tocopherol in Promoting Myogenic Differentiation in the Prevention of Replicative Senescence of Myoblasts.

    Directory of Open Access Journals (Sweden)

    Shy Cian Khor

    Full Text Available Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF and α-tocopherol (ATF in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal expression, myogenic differentiation and myogenic regulatory factors (MRFs expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.

  7. The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration.

    Science.gov (United States)

    Miroshnychenko, Olga; Chang, Wen-Teh; Dragoo, Jason L

    2017-03-01

    Platelet-rich plasma (PRP) has been used to augment tissue repair and regeneration after musculoskeletal injury. However, there is increasing clinical evidence that PRP does not show a consistent clinical effect. Purpose/Hypothesis: This study aimed to compare the effects of the following non-neutrophil-containing (leukocyte-poor) plasma fractions on human skeletal muscle myoblast (HSMM) differentiation: (1) PRP, (2) modified PRP (Mod-PRP), in which transforming growth factor β1 (TGF-β1) and myostatin (MSTN) were depleted, and (3) platelet-poor plasma (PPP). The hypothesis was that leukocyte-poor PRP would lead to myoblast proliferation (not differentiation), whereas certain modifications of PRP preparations would increase myoblast differentiation, which is necessary for skeletal muscle regeneration. Controlled laboratory study. Blood from 7 human donors was individually processed to simultaneously create leukocyte-poor fractions: PRP, Mod-PRP, PPP, and secondarily spun PRP and Mod-PRP (PRPss and Mod-PRPss, respectively). Mod-PRP was produced by removing TGF-β1 and MSTN from PRP using antibodies attached to sterile beads, while a second-stage centrifugal spin of PRP was performed to remove platelets. The biologics were individually added to cell culture groups. Analysis for induction into myoblast differentiation pathways included Western blot analysis, reverse-transcription polymerase chain reaction, and immunohistochemistry, as well as confocal microscopy to assess polynucleated myotubule formation. HSMMs cultured with PRP showed an increase in proliferation but no evidence of differentiation. Western blot analysis confirmed that MSTN and TGF-β1 could be decreased in Mod-PRP using antibody-coated beads, but this modification mildly improved myoblast differentiation. However, cell culture with PPP, PRPss, and Mod-PRPss led to a decreased proliferation rate but a significant induction of myoblast differentiation verified by increased multinucleated myotubule

  8. An NF-κB--EphrinA5-Dependent Communication between NG2(+) Interstitial Cells and Myoblasts Promotes Muscle Growth in Neonates.

    Science.gov (United States)

    Gu, Jin-Mo; Wang, David J; Peterson, Jennifer M; Shintaku, Jonathan; Liyanarachchi, Sandya; Coppola, Vincenzo; Frakes, Ashley E; Kaspar, Brian K; Cornelison, Dawn D; Guttridge, Denis C

    2016-01-25

    Skeletal muscle growth immediately following birth is critical for proper body posture and locomotion. However, compared with embryogenesis and adulthood, the processes regulating the maturation of neonatal muscles is considerably less clear. Studies in the 1960s predicted that neonatal muscle growth results from nuclear accretion of myoblasts preferentially at the tips of myofibers. Remarkably, little information has been added since then to resolve how myoblasts migrate to the ends of fibers. Here, we provide insight into this process by revealing a unique NF-κB-dependent communication between NG2(+) interstitial cells and myoblasts. NF-κB in NG2(+) cells promotes myoblast migration to the tips of myofibers through cell-cell contact. This occurs through expression of ephrinA5 from NG2(+) cells, which we further deduce is an NF-κB target gene. Together, these results suggest that NF-κB plays an important role in the development of newborn muscles to ensure proper myoblast migration for fiber growth.

  9. Stimulative Effects of Low Intensity He-Ne Laser Irradiation on the Proliferative Potential and Cell-Cycle Progression of Myoblasts in Culture

    Directory of Open Access Journals (Sweden)

    Cui-Ping Zhang

    2014-01-01

    Full Text Available Low intensity laser irradiation (LILI was found to promote the regeneration of skeletal muscle in vivo but the cellular mechanisms are not fully understood. Myoblasts, normally quiescent and inactivated in adult skeletal muscle, are a type of myogenic progenitor cells and considered as the major candidates responsible for muscle regeneration. The aim of the present study was to study the effect of LILI on the growth potential and cell-cycle progression of the cultured myoblasts. Primary myoblasts isolated from rat hind legs were cultured in nutrient-deficient medium for 36 hours and then irradiated by helium-neon laser at a certain energy density. Immunohistochemical and flow cytometric analysis revealed that laser irradiation could increase the expression of cellular proliferation marker and the amount of cell subpopulations in the proliferative phase as compared with the nonirradiated control group. Meanwhile, the expressions of cell-cycle regulatory proteins in the laser-treated myoblasts were markedly upregulated as compared to the unirradiated cells, indicating that LILI could promote the reentry of quiescent myoblasts into the cell division cycle. These results suggest that LILI at certain fluences could promote their proliferation, thus contributing to the skeletal muscle regeneration following trauma and myopathic diseases.

  10. Reduction of GAG storage in MPS II mouse model following implantation of encapsulated recombinant myoblasts.

    Science.gov (United States)

    Friso, Adelaide; Tomanin, Rosella; Alba, Sabrina; Gasparotto, Nicoletta; Puicher, Elisabetta Piller; Fusco, Mariella; Hortelano, Gonzalo; Muenzer, Joseph; Marin, Oriano; Zacchello, Franco; Scarpa, Maurizio

    2005-11-01

    Hunter syndrome, mucopolysaccharidosis type II (MPS II), is a X-linked inherited disorder caused by the deficiency of the enzyme iduronate-2-sulfatase (IDS), involved in the lysosomal catabolism of the glycosaminoglycans (GAG) dermatan and heparan sulfate. Such a deficiency leads to the intracellular accumulation of undegraded GAG and eventually to a progressive severe clinical pattern. Many attempts have been made in the last two to three decades to identify possible therapeutic strategies for the disorder, including gene therapy and somatic cell therapy. In this study we evaluated the intraperitoneal implantation of allogeneic myoblasts over-expressing IDS, enclosed in alginate microcapsules, in the MPS II mouse model. Animals were monitored for 8 weeks post-implantation, during which plasma and tissue IDS levels, as well as tissue and urinary GAG contents, were measured. Induced enzyme activity occurred both in the plasma and in the different tissues analyzed. A significant decrease in urinary undegraded GAG between the fourth and the sixth week of treatment was observed. Moreover, a biochemical reduction of GAG deposits was measured 8 weeks after treatment in the liver and kidney, on average 30 and 38%, respectively, while in the spleen GAG levels were almost normalized. Finally, the therapeutic effect was confirmed by histolochemical examination of the same tissues. Such effects were obtained following implantation of about 1.5 x 10(6) recombinant cells/animal. Taken together, these results represent a clear evidence of the therapeutic efficacy of this strategy in the MPS II mouse model, and encourage further evaluation of this approach for potential treatment of human beings. Copyright (c) 2005 John Wiley & Sons, Ltd.

  11. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders

    Directory of Open Access Journals (Sweden)

    Mamchaoui Kamel

    2011-11-01

    Full Text Available Abstract Background Investigations into both the pathophysiology and therapeutic targets in muscle dystrophies have been hampered by the limited proliferative capacity of human myoblasts. Isolation of reliable and stable immortalized cell lines from patient biopsies is a powerful tool for investigating pathological mechanisms, including those associated with muscle aging, and for developing innovative gene-based, cell-based or pharmacological biotherapies. Methods Using transduction with both telomerase-expressing and cyclin-dependent kinase 4-expressing vectors, we were able to generate a battery of immortalized human muscle stem-cell lines from patients with various neuromuscular disorders. Results The immortalized human cell lines from patients with Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy, congenital muscular dystrophy, and limb-girdle muscular dystrophy type 2B had greatly increased proliferative capacity, and maintained their potential to differentiate both in vitro and in vivo after transplantation into regenerating muscle of immunodeficient mice. Conclusions Dystrophic cellular models are required as a supplement to animal models to assess cellular mechanisms, such as signaling defects, or to perform high-throughput screening for therapeutic molecules. These investigations have been conducted for many years on cells derived from animals, and would greatly benefit from having human cell models with prolonged proliferative capacity. Furthermore, the possibility to assess in vivo the regenerative capacity of these cells extends their potential use. The innovative cellular tools derived from several different neuromuscular diseases as described in this report will allow investigation of the pathophysiology of these disorders and assessment of new therapeutic strategies.

  12. Live imaging provides new insights on dynamic F-actin filopodia and differential endocytosis during myoblast fusion in Drosophila.

    Science.gov (United States)

    Haralalka, Shruti; Shelton, Claude; Cartwright, Heather N; Guo, Fengli; Trimble, Rhonda; Kumar, Ram P; Abmayr, Susan M

    2014-01-01

    The process of myogenesis includes the recognition, adhesion, and fusion of committed myoblasts into multinucleate syncytia. In the larval body wall muscles of Drosophila, this elaborate process is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs), and cell adhesion molecules Kin-of-IrreC (Kirre) and Sticks-and-stones (Sns) on their respective surfaces. The FCMs appear to provide the driving force for fusion, via the assembly of protrusions associated with branched F-actin and the WASp, SCAR and Arp2/3 pathways. In the present study, we utilize the dorsal pharyngeal musculature that forms in the Drosophila embryo as a model to explore myoblast fusion and visualize the fusion process in live embryos. These muscles rely on the same cell types and genes as the body wall muscles, but are amenable to live imaging since they do not undergo extensive morphogenetic movement during formation. Time-lapse imaging with F-actin and membrane markers revealed dynamic FCM-associated actin-enriched protrusions that rapidly extend and retract into the myotube from different sites within the actin focus. Ultrastructural analysis of this actin-enriched area showed that they have two morphologically distinct structures: wider invasions and/or narrow filopodia that contain long linear filaments. Consistent with this, formin Diaphanous (Dia) and branched actin nucleator, Arp3, are found decorating the filopodia or enriched at the actin focus, respectively, indicating that linear actin is present along with branched actin at sites of fusion in the FCM. Gain-of-function Dia and loss-of-function Arp3 both lead to fusion defects, a decrease of F-actin foci and prominent filopodia from the FCMs. We also observed differential endocytosis of cell surface components at sites of fusion, with actin reorganizing factors, WASp and SCAR, and Kirre remaining on the myotube surface and Sns preferentially taken up with other membrane proteins into early endosomes and lysosomes in the

  13. Live imaging provides new insights on dynamic F-actin filopodia and differential endocytosis during myoblast fusion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Shruti Haralalka

    Full Text Available The process of myogenesis includes the recognition, adhesion, and fusion of committed myoblasts into multinucleate syncytia. In the larval body wall muscles of Drosophila, this elaborate process is initiated by Founder Cells and Fusion-Competent Myoblasts (FCMs, and cell adhesion molecules Kin-of-IrreC (Kirre and Sticks-and-stones (Sns on their respective surfaces. The FCMs appear to provide the driving force for fusion, via the assembly of protrusions associated with branched F-actin and the WASp, SCAR and Arp2/3 pathways. In the present study, we utilize the dorsal pharyngeal musculature that forms in the Drosophila embryo as a model to explore myoblast fusion and visualize the fusion process in live embryos. These muscles rely on the same cell types and genes as the body wall muscles, but are amenable to live imaging since they do not undergo extensive morphogenetic movement during formation. Time-lapse imaging with F-actin and membrane markers revealed dynamic FCM-associated actin-enriched protrusions that rapidly extend and retract into the myotube from different sites within the actin focus. Ultrastructural analysis of this actin-enriched area showed that they have two morphologically distinct structures: wider invasions and/or narrow filopodia that contain long linear filaments. Consistent with this, formin Diaphanous (Dia and branched actin nucleator, Arp3, are found decorating the filopodia or enriched at the actin focus, respectively, indicating that linear actin is present along with branched actin at sites of fusion in the FCM. Gain-of-function Dia and loss-of-function Arp3 both lead to fusion defects, a decrease of F-actin foci and prominent filopodia from the FCMs. We also observed differential endocytosis of cell surface components at sites of fusion, with actin reorganizing factors, WASp and SCAR, and Kirre remaining on the myotube surface and Sns preferentially taken up with other membrane proteins into early endosomes and

  14. Effect of myeloperoxidase and anoxia/reoxygenation on mitochondrial respiratory function of cultured primary equine skeletal myoblasts.

    Science.gov (United States)

    Ceusters, Justine D; Mouithys-Mickalad, Ange A; Franck, Thierry J; Derochette, Sandrine; Vanderplasschen, Alain; Deby-Dupont, Ginette P; Serteyn, Didier A

    2013-09-01

    Horses are particularly sensitive to excessive inflammatory reaction where myeloperoxidase, a marker of inflammation, may contribute to mitochondrial dysfunctions. This study investigated the interaction between myeloperoxidase and cultured primary equine skeletal myoblasts, particularly its effect on mitochondrial respiration combined or not with anoxia followed by reoxygenation (AR). We showed that active myeloperoxidase entered into the cells, interacted with mitochondria and decreased routine and maximal respirations. When combined with AR, myeloperoxidase caused a further decrease of these respiratory parameters while the leak increased. Our results indicate that myeloperoxidase amplifies the mitochondrial damages initiated by AR phenomenon and alters the mitochondrial function.

  15. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation.

    Science.gov (United States)

    Jo, Hyerim; Sim, Myeongbu; Kim, Semin; Yang, Sumi; Yoo, Youngjae; Park, Jin-Ho; Yoon, Tae Ho; Kim, Min-Gon; Lee, Jae Young

    2017-01-15

    Graphene and graphene derivatives, such as graphene oxide (GO) and reduced GO (rGO), have been extensively employed as novel components of biomaterials because of their unique electrical and mechanical properties. These materials have also been used to fabricate electrically conductive biomaterials that can effectively deliver electrical signals to biological systems. Recently, increasing attention has been paid to electrically conductive hydrogels that have both electrical activity and a tissue-like softness. In this study, we synthesized conductive graphene hydrogels by mild chemical reduction of graphene oxide/polyacrylamide (GO/PAAm) composite hydrogels to obtain conductive hydrogels. The reduced hydrogel, r(GO/PAAm), exhibited muscle tissue-like stiffness with a Young's modulus of approximately 50kPa. The electrochemical impedance of r(GO/PAAm) could be decreased by more than ten times compared to that of PAAm and unreduced GO/PAAm. In vitro studies with C2C12 myoblasts revealed that r(GO/PAAm) significantly enhanced proliferation and myogenic differentiation compared with unreduced GO/PAAm and PAAm. Moreover, electrical stimulation of myoblasts growing on r(GO/PAAm) graphene hydrogels for 7days significantly enhanced the myogenic gene expression compared to unstimulated controls. As results, our graphene-based conductive and soft hydrogels will be useful as skeletal muscle tissue scaffolds and can serve as a multifunctional platform that can simultaneously deliver electrical and mechanical cues to biological systems. Graphene-based conductive hydrogels presenting electrical conductance and a soft tissue-like modulus were successfully fabricated via mild reduction of graphene oxide/polyacrylamide composite hydrogels to study their potential to skeletal tissue scaffold applications. Significantly promoted myoblast proliferation and differentiation were obtained on our hydrogels. Additionally, electrical stimulation of myoblasts via the graphene hydrogels could

  16. Let-7b Regulates Myoblast Proliferation by Inhibiting IGF2BP3 Expression in Dwarf and Normal Chicken

    Science.gov (United States)

    Lin, Shumao; Luo, Wen; Ye, Yaqiong; Bekele, Endashaw J.; Nie, Qinghua; Li, Yugu; Zhang, Xiquan

    2017-01-01

    The sex-linked dwarf chicken is caused by the mutation of growth hormone receptor (GHR) gene and characterized by shorter shanks, lower body weight, smaller muscle fiber diameter and fewer muscle fiber number. However, the precise regulatory pathways that lead to the inhibition of skeletal muscle growth in dwarf chickens still remain unclear. Here we found a let-7b mediated pathway might play important role in the regulation of dwarf chicken skeletal muscle growth. Let-7b has higher expression in the skeletal muscle of dwarf chicken than in normal chicken, and the expression of insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3), which is a translational activator of IGF2, showed opposite expression trend to let-7b. In vitro cellular assays validated that let-7b directly inhibits IGF2BP3 expression through binding to its 3′UTR region, and the protein level but not mRNA level of IGF2 would be reduced in let-7b overexpressed chicken myoblast. Let-7b can inhibit cell proliferation and induce cell cycle arrest in chicken myoblast through let-7b-IGF2BP3-IGF2 signaling pathway. Additionally, let-7b can also regulate skeletal muscle growth through let-7b-GHR-GHR downstream genes pathway, but this pathway is non-existent in dwarf chicken because of the deletion mutation of GHR 3′UTR. Notably, as the loss binding site of GHR for let-7b, let-7b has enhanced its binding and inhibition on IGF2BP3 in dwarf myoblast, suggesting that the miRNA can balance its inhibiting effect through dynamic regulate its binding to target genes. Collectively, these results not only indicate that let-7b can inhibit skeletal muscle growth through let-7b-IGF2BP3-IGF2 signaling pathway, but also show that let-7b regulates myoblast proliferation by inhibiting IGF2BP3 expression in dwarf and normal chickens. PMID:28736533

  17. Disruption of GLUT1 glucose carrier trafficking in L6E9 and Sol8 myoblasts by the phosphatidylinositol 3-kinase inhibitor wortmannin.

    Science.gov (United States)

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1995-01-01

    In this study we have used wortmannin, a highly specific inhibitor of phosphatidylinositol (PI) 3-kinase, to assess the role of this enzyme on GLUT1 glucose carrier distribution and glucose transport activity in myoblasts from two skeletal-muscle cell lines, L6E9 and Sol8. As detected in L6E9 cells, myoblasts exhibited basal and insulin-stimulated PI 3-kinase activities. Incubation of intact myoblasts with wortmannin resulted in a marked inhibition of both basal and insulin-stimulated PI 3-kinase activities. L6E9 and Sol8 myoblasts showed basal and insulin-stimulated glucose transport activities, both of them inhibited by wortmannin in a dose-dependent manner (IC50 approximately 10-20 nM). Concomitantly, immunofluorescence analysis revealed that 1 h treatment with wortmannin led to a dramatic intracellular accumulation of GLUT1 carriers (the main glucose transporter expressed in L6E9 and Sol8 myoblasts) in both cell systems. The effect of wortmannin on GLUT1 cellular redistribution was independent of the presence of insulin. The cellular distribution of two structural plasma-membrane components such as beta 1-integrin or the alpha 1 subunit of the Na(+)-K(+)-ATPase were unaffected by wortmannin in both the absence and the presence of insulin. As a whole, our results indicate that PI 3-kinase is necessary to basal and insulin-stimulated glucose transport in L6E9 and Sol8 myoblasts. Moreover, immunofluorescence assays suggest that in both cellular models there is a constitutive GLUT 1 trafficking pathway (independent of insulin) that involves PI 3-kinase and which, when blocked, locks GLUT1 in a perinuclear compartment. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8526858

  18. Insulin-like growth factor-1 (IGF-1) promotes myoblast proliferation and skeletal muscle growth of embryonic chickens via the PI3K/Akt signalling pathway.

    Science.gov (United States)

    Yu, Minli; Wang, Huan; Xu, Yali; Yu, Debing; Li, Dongfeng; Liu, Xiuhong; Du, Wenxing

    2015-08-01

    During embryonic development, IGF-1 fulfils crucial roles in skeletal myogenesis. However, the involvement of IGF-1-induced myoblast proliferation in muscle growth is still unclear. In the present study, we have characterised the role of IGF-1 in myoblast proliferation both in vitro and in vivo and have revealed novel details of how exogenous IGF-1 influences myogenic genes in chicken embryos. The results show that IGF-1 significantly induces the proliferation of cultured myoblasts in a dose-dependent manner. Additionally, the IGF-1 treatment significantly promoted myoblasts entering a new cell cycle and increasing the mRNA expression levels of cell cycle-dependent genes. However, these effects were inhibited by the PI3K inhibitor LY294002 and the Akt inhibitor KP372-1. These data indicated that the pro-proliferative effect of IGF-1 was mediated in response to the PI3K/Akt signalling pathway. Moreover, we also showed that exogenous IGF-1 stimulated myoblast proliferation in vivo. IGF-1 administration obviously promoted the incorporation of BrdU and remarkably increased the number of PAX7-positive cells in the skeletal muscle of chicken embryos. Administration of IGF-1 also significantly induced the upregulation of myogenic factors gene, the enhancement of c-Myc and the inhibition of myostatin (Mstn) expression. These findings demonstrate that IGF-1 has strong activity as a promoter of myoblast expansion and muscle fiber formation during early myogenesis. Therefore, this study offers insight into the mechanisms responsible for IGF-1-mediated stimulation of embryonic skeletal muscle development, which could have important implications for the improvement of chicken meat production. © 2015 International Federation for Cell Biology.

  19. Effects of Abeta1-42 fibrils and of the tetrapeptide Pr-IIGL on the phosphorylation state of the tau-protein and on the alpha7 nicotinic acetylcholine receptor in vitro.

    Science.gov (United States)

    Lain, Enzo; Penke, Botond; Delacourte, André; Gündisch, Daniela; Schröder, Hannsjörg; Witter, Brigitte

    2005-02-01

    In order to investigate the possible links connecting beta-amyloid (Abeta) accumulation, tau-hyperphosphorylation and nicotinic receptor expression, rat embryonic primary hippocampal cultures were incubated with amyloidogenic peptides. Exposure to 0.5 microm fibrillar Abeta(1-42) for 3 days caused retraction of dendrites, shrinkage of cell bodies and a decrease in the expression of microtubule-associated proteins 2b (MAP2b), without affecting the total number of neurons and their viability. No impact on the tau-phosphorylation sites Ser-202, Thr231/Ser235, Ser262 and Ser396/Ser404 was found. The total number of homomeric alpha7-nicotinic receptors (alpha7-nAChRs) and their affinity for [(125)I]alpha-bungarotoxin remained unaltered. Upon incubation with the putatively protective tetrapeptide propionyl-isoleucine-isoleucine-glycine-leucine (Pr-IIGL), an analogue of the region [31-34] of Abeta, cell bodies were swollen in the region of the apical dendrite. These morphological alterations, different from those elicited by Abeta(1-42), did not involve MAP2 expression changes. In contrast to Abeta(1-42), Pr-IIGL caused a massive hyperphosphorylation of the tau-protein at Ser-202 and at Ser396/Ser404. The total number of homomeric alpha7-nAChRs and their affinity for [(125)I]alpha-bungarotoxin were unaffected. In conclusion, the present results show a toxic effect of Abeta(1-42) on the cytoskeletal structure at concentrations normally present in the brains of Alzheimer's disease patients, but raise some doubts about the role of Abeta(1-42) fibrils as a direct trigger of tau-hyperphosphorylation. The tetrapeptide Pr-IIGL cannot be considered protective with regard to cell morphology. Although it prevents the Abeta(1-42)-induced retraction of dendrites, it exhibits other toxic properties. The homomeric alpha7-nAChRs were not affected either by Abeta(1-42) incubation or by Pr-IIGL-induced tau-hyperphosphorylation.

  20. Keap1 redox-dependent regulation of doxorubicin-induced oxidative stress response in cardiac myoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Nordgren, Kendra K.S., E-mail: knordgre@d.umn.edu; Wallace, Kendall B., E-mail: kwallace@d.umn.edu

    2014-01-01

    Doxorubicin (DOX) is a widely prescribed treatment for a broad scope of cancers, but clinical utility is limited by the cumulative, dose-dependent cardiomyopathy that occurs with repeated administration. DOX-induced cardiotoxicity is associated with the production of reactive oxygen species (ROS) and oxidation of lipids, DNA and proteins. A major cellular defense mechanism against such oxidative stress is activation of the Keap1/Nrf2-antioxidant response element (ARE) signaling pathway, which transcriptionally regulates expression of antioxidant genes such as Nqo1 and Gstp1. In the present study, we address the hypothesis that an initial event associated with DOX-induced oxidative stress is activation of the Keap1/Nrf2-dependent expression of antioxidant genes and that this is regulated through drug-induced changes in redox status of the Keap1 protein. Incubation of H9c2 rat cardiac myoblasts with DOX resulted in a time- and dose-dependent decrease in non-protein sulfhydryl groups. Associated with this was a near 2-fold increase in Nrf2 protein content and enhanced transcription of several of the Nrf2-regulated down-stream genes, including Gstp1, Ugt1a1, and Nqo1; the expression of Nfe2l2 (Nrf2) itself was unaltered. Furthermore, both the redox status and the total amount of Keap1 protein were significantly decreased by DOX, with the loss of Keap1 being due to both inhibited gene expression and increased autophagic, but not proteasomal, degradation. These findings identify the Keap1/Nrf2 pathway as a potentially important initial response to acute DOX-induced oxidative injury, with the primary regulatory events being the oxidation and autophagic degradation of the redox sensor Keap1 protein. - Highlights: • DOX caused a ∼2-fold increase in Nrf2 protein content. • DOX enhanced transcription of several Nrf2-regulated down-stream genes. • Redox status and total amount of Keap1 protein were significantly decreased by DOX. • Loss of Keap1 protein was due to

  1. The regulation of total creatine content in a myoblast cell line.

    Science.gov (United States)

    Odoom, J E; Kemp, G J; Radda, G K

    1996-05-24

    Total cellular creatine content is an important bioenergetic parameter in skeletal muscle. To understand its regulation we investigated creatine transport and accumulation in the G8 cultured skeletal myoblast line. Like other cell types, these contain a creatine transporter, whose activity, measured using a radiolabelling technique, was saturable (Km = 110 +/- 25 microM) and largely dependent on extracellular [Na+]. To study sustained influences on steady state creatine concentration we measured total cellular creatine content using a fluorimetric method in 48 h incubations. We found that the total cellular creatine content was relatively independent of extracellular creatine concentration, consistent with high affinity sodium-dependent uptake balanced by slow passive efflux. Accordingly, in creatine-free incubations net creatine efflux was slow (5 +/- 1% of basal creatine content per day over 6 days), while creatine content in 48 h incubations was reduced by 28 +/- 13% of control by the Na+, K(+)-ATPase inhibitor ouabain. Creatine accumulation after 48 h was stimulated by treatment with the mixed alpha- and beta-adrenergic agonist noradrenaline, the beta-adrenergic agonist isoproterenol, the beta 2-agonist clenbuterol and the cAMP analogue N6,2'-O-dibutyryladenosine 3',5'-cyclic monophosphate, but was unaffected by the alpha 1 adrenergic agonist methoxamine. The noradrenaline enhancement of creatine accumulation at 48 h was inhibited by the mixed alpha- and beta-antagonist labetalol and by the beta-antagonist propranolol, but was unaffected by the alpha 2 antagonist phentolamine; greater inhibition was caused by the beta 2 antagonist butoxamine than the beta 1 antagonist atenolol. Creatine accumulation at 48 h was increased to 230 +/- 6% of control by insulin and by 140 +/- 13% by IGF-I (both at 3 nM). Creatine accumulation at 48 h was also increased to 280 +/- 40% of control by 3,3',5-triiodothyronine (at 70 microM) and to 220 +/- 35% of control by amylin (60 n

  2. Efficient Restoration of the Dystrophin Gene Reading Frame and Protein Structure in DMD Myoblasts Using the CinDel Method

    Directory of Open Access Journals (Sweden)

    Jean-Paul Iyombe-Engembe

    2016-01-01

    Full Text Available The CRISPR/Cas9 system is a great revolution in biology. This technology allows the modification of genes in vitro and in vivo in a wide variety of living organisms. In most Duchenne muscular dystrophy (DMD patients, expression of dystrophin (DYS protein is disrupted because exon deletions result in a frame shift. We present here the CRISPR-induced deletion (CinDel, a new promising genome-editing technology to correct the DMD gene. This strategy is based on the use of two gRNAs targeting specifically exons that precede and follow the patient deletion in the DMD gene. This pair of gRNAs induced a precise large additional deletion leading to fusion of the targeted exons. Using an adequate pair of gRNAs, the deletion of parts of these exons and the intron separating them restored the DMD reading frame in 62% of the hybrid exons in vitro in DMD myoblasts and in vivo in electroporated hDMD/mdx mice. Moreover, adequate pairs of gRNAs also restored the normal spectrin-like repeat of the dystrophin rod domain; such restoration is not obtained by exon skipping or deletion of complete exons. The expression of an internally deleted DYS protein was detected following the formation of myotubes by the unselected, treated DMD myoblasts. Given that CinDel induces permanent reparation of the DMD gene, this treatment would not have to be repeated as it is the case for exon skipping induced by oligonucleotides.

  3. Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts.

    Science.gov (United States)

    Pantic, Boris; Borgia, Doriana; Giunco, Silvia; Malena, Adriana; Kiyono, Tohru; Salvatori, Sergio; De Rossi, Anita; Giardina, Emiliano; Sangiuolo, Federica; Pegoraro, Elena; Vergani, Lodovica; Botta, Annalisa

    2016-03-01

    Primary human skeletal muscle cells (hSkMCs) are invaluable tools for deciphering the basic molecular mechanisms of muscle-related biological processes and pathological alterations. Nevertheless, their use is quite restricted due to poor availability, short life span and variable purity of the cells during in vitro culture. Here, we evaluate a recently published method of hSkMCs immortalization, relying on ectopic expression of cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK4) and telomerase (TERT) in myoblasts from healthy donors (n=3) and myotonic dystrophy type 1 (DM1) patients (n=2). The efficacy to maintain the myogenic and non-transformed phenotype, as well as the main pathogenetic hallmarks of DM1, has been assessed. Combined expression of the three genes i) maintained the CD56(NCAM)-positive myoblast population and differentiation potential; ii) preserved the non-transformed phenotype and iii) maintained the CTG repeat length, amount of nuclear foci and aberrant alternative splicing in immortal muscle cells. Moreover, immortal hSkMCs displayed attractive additional features such as structural maturation of sarcomeres, persistence of Pax7-positive cells during differentiation and complete disappearance of nuclear foci following (CAG)7 antisense oligonucleotide (ASO) treatment. Overall, the CCND1, CDK4 and TERT immortalization yields versatile, reliable and extremely useful human muscle cell models to investigate the basic molecular features of human muscle cell biology, to elucidate the molecular pathogenetic mechanisms and to test new therapeutic approaches for DM1 in vitro.

  4. Muscle-specific androgen receptor deletion shows limited actions in myoblasts but not in myofibers in different muscles in vivo.

    Science.gov (United States)

    Rana, Kesha; Chiu, Maria W S; Russell, Patricia K; Skinner, Jarrod P; Lee, Nicole K L; Fam, Barbara C; Zajac, Jeffrey D; MacLean, Helen E

    2016-08-01

    The aim of this study was to investigate the direct muscle cell-mediated actions of androgens by comparing two different mouse lines. The cre-loxP system was used to delete the DNA-binding activity of the androgen receptor (AR) in mature myofibers (MCK mAR(ΔZF2)) in one model and the DNA-binding activity of the AR in both proliferating myoblasts and myofibers (α-actin mAR(ΔZF2)) in another model. We found that hind-limb muscle mass was normal in MCK mAR(ΔZF2) mice and that relative mass of only some hind-limb muscles was reduced in α-actin mAR(ΔZF2) mice. This suggests that myoblasts and myofibers are not the major cellular targets mediating the anabolic actions of androgens on male muscle during growth and development. Levator ani muscle mass was decreased in both mouse lines, demonstrating that there is a myofiber-specific effect in this unique androgen-dependent muscle. We found that the pattern of expression of genes including c-myc, Fzd4 and Igf2 is associated with androgen-dependent changes in muscle mass; therefore, these genes are likely to be mediators of anabolic actions of androgens. Further research is required to identify the major targets of androgen actions in muscle, which are likely to include indirect actions via other tissues.

  5. Culture of skeletal myoblasts from human donors aged over 40 years: dynamics of cell growth and expression of differentiation markers

    Directory of Open Access Journals (Sweden)

    Cherubino Paolo

    2005-05-01

    Full Text Available Abstract Background Local myogenesis, neoangiogenesis and homing of progenitor cells from the bone marrow appear to contribute to repair of the infarcted myocardium. Implantation into heart tissues of autologous skeletal myoblasts has been associated with improved contractile function in animal models and in humans with acute myocardial ischemia. Since heart infarction is most prevalent in individuals of over 40 years of age, we tested whether culture methods available in our laboratory were adequate to obtain sufficient numbers of differentiated skeletal myoblasts from muscle biopsy specimens obtained from patients aged 41 to 91. Methods and results No matter of donor age, differentiated skeletal muscle cells could be produced in vitro in amounts adequate for cellular therapy (≥300 millions. Using desmin as a cytoplasmic marker, about 50% cultured cells were differentiated along myogenic lineages and expressed proteins proper of skeletal muscle (myosin type I and II, actin, actinin, spectrin and dystrophin. Cytogenetic alterations were not detected in cultured muscle cells that had undergone at least 10 population doublings. Molecular methods employed for the screening of persistent viral infections evidenced that HCV failed to replicate in muscle cells cultured from one patient with chronic HCV infection. Conclusion The proposed culture methods appear to hold promise for aged patients not only in the field of cardiovascular medicine, but also in the urologic and orthopedic fields.

  6. Rbfox2-coordinated alternative splicing of Mef2d and Rock2 controls myoblast fusion during myogenesis.

    Science.gov (United States)

    Singh, Ravi K; Xia, Zheng; Bland, Christopher S; Kalsotra, Auinash; Scavuzzo, Marissa A; Curk, Tomaz; Ule, Jernej; Li, Wei; Cooper, Thomas A

    2014-08-21

    Alternative splicing plays important regulatory roles during periods of physiological change. During development, a large number of genes coordinately express protein isoform transitions regulated by alternative splicing; however, the mechanisms that coordinate splicing and the functional integration of the resultant tissue-specific protein isoforms are typically unknown. Here we show that the conserved Rbfox2 RNA binding protein regulates 30% of the splicing transitions observed during myogenesis and is required for the specific step of myoblast fusion. Integration of Rbfox2-dependent splicing outcomes from RNA-seq with Rbfox2 iCLIP data identified Mef2d and Rock2 as Rbfox2 splicing targets. Restored activities of Mef2d and Rock2 rescued myoblast fusion in Rbfox2-depleted cultures, demonstrating functional cooperation of protein isoforms generated by coordinated alterative splicing. The results demonstrate that coordinated alternative splicing by a single RNA binding protein modulates transcription (Mef2d) and cell signaling (Rock2) programs to drive tissue-specific functions (cell fusion) to promote a developmental transition.

  7. Distribution, phosphorylation, and activities of Hsp25 in heat-stressed H9c2 myoblasts : a functional link to cytoprotection

    NARCIS (Netherlands)

    Bryantsev, AL; Loktionova, SA; Ilyinskaya, OP; Tararak, EM; Kampinga, HH; Kabakov, AE

    2002-01-01

    The behavior of the endogenous heat shock protein 25 (Hsp25) in heat-stressed rat H9c2 myoblasts was studied. After mild or severe heating, this protein became less extractable with Triton X-100 and displayed characteristic immunofluorescence patterns, namely (1) granules in the nucleus, and (2) ass

  8. Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model

    Directory of Open Access Journals (Sweden)

    In Young Choi

    2016-06-01

    Full Text Available Duchenne muscular dystrophy (DMD remains an intractable genetic disease. Althogh there are several animal models of DMD, there is no human cell model that carries patient-specific DYSTROPHIN mutations. Here, we present a human DMD model using human induced pluripotent stem cells (hiPSCs. Our model reveals concordant disease-related phenotypes with patient-dependent variation, which are partially reversed by genetic and pharmacological approaches. Our “chemical-compound-based” strategy successfully directs hiPSCs into expandable myoblasts, which exhibit a myogenic transcriptional program, forming striated contractile myofibers and participating in muscle regeneration in vivo. DMD-hiPSC-derived myoblasts show disease-related phenotypes with patient-to-patient variability, including aberrant expression of inflammation or immune-response genes and collagens, increased BMP/TGFβ signaling, and reduced fusion competence. Furthermore, by genetic correction and pharmacological “dual-SMAD” inhibition, the DMD-hiPSC-derived myoblasts and genetically corrected isogenic myoblasts form “rescued” multi-nucleated myotubes. In conclusion, our findings demonstrate the feasibility of establishing a human “DMD-in-a-dish” model using hiPSC-based disease modeling.

  9. MiRNA-199a-3p Regulates C2C12 Myoblast Differentiation through IGF-1/AKT/mTOR Signal Pathway

    Directory of Open Access Journals (Sweden)

    Long Jia

    2013-12-01

    Full Text Available MicroRNAs constitute a class of ~22-nucleotide non-coding RNAs. They modulate gene expression by associating with the 3' untranslated regions (3' UTRs of messenger RNAs (mRNAs. Although multiple miRNAs are known to be regulated during myoblast differentiation, their individual roles in muscle development are still not fully understood. In this study, we showed that miR-199a-3p was highly expressed in skeletal muscle and was induced during C2C12 myoblasts differentiation. We also identified and confirmed several genes of the IGF-1/AKT/mTOR signal pathway, including IGF-1, mTOR, and RPS6KA6, as important cellular targets of miR-199a-3p in myoblasts. Overexpression of miR-199a-3p partially blocked C2C12 myoblast differentiation and the activation of AKT/mTOR signal pathway, while interference of miR-199a-3p by antisense oligonucleotides promoted C2C12 differentiation and myotube hypertrophy. Thus, our studies have established miR-199a-3p as a potential regulator of myogenesis through the suppression of IGF-1/AKT/mTOR signal pathway.

  10. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    Energy Technology Data Exchange (ETDEWEB)

    Zuloaga, R. [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Fuentes, E.N.; Molina, A. [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción (Chile); Valdés, J.A., E-mail: jvaldes@unab.cl [Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago (Chile); Interdisciplinary Center for Aquaculture Research (INCAR), Víctor Lamas 1290, PO Box 160-C, Concepción (Chile)

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1 during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.

  11. Dock mediates Scar- and WASp-dependent actin polymerization through interaction with cell adhesion molecules in founder cells and fusion-competent myoblasts.

    Science.gov (United States)

    Kaipa, Balasankara Reddy; Shao, Huanjie; Schäfer, Gritt; Trinkewitz, Tatjana; Groth, Verena; Liu, Jianqi; Beck, Lothar; Bogdan, Sven; Abmayr, Susan M; Önel, Susanne-Filiz

    2013-01-01

    The formation of the larval body wall musculature of Drosophila depends on the asymmetric fusion of two myoblast types, founder cells (FCs) and fusion-competent myoblasts (FCMs). Recent studies have established an essential function of Arp2/3-based actin polymerization during myoblast fusion, formation of a dense actin focus at the site of fusion in FCMs, and a thin sheath of actin in FCs and/or growing muscles. The formation of these actin structures depends on recognition and adhesion of myoblasts that is mediated by cell surface receptors of the immunoglobulin superfamily. However, the connection of the cell surface receptors with Arp2/3-based actin polymerization is poorly understood. To date only the SH2-SH3 adaptor protein Crk has been suggested to link cell adhesion with Arp2/3-based actin polymerization in FCMs. Here, we propose that the SH2-SH3 adaptor protein Dock, like Crk, links cell adhesion with actin polymerization. We show that Dock is expressed in FCs and FCMs and colocalizes with the cell adhesion proteins Sns and Duf at cell-cell contact points. Biochemical data in this study indicate that different domains of Dock are involved in binding the cell adhesion molecules Duf, Rst, Sns and Hbs. We emphasize the importance of these interactions by quantifying the enhanced myoblast fusion defects in duf dock, sns dock and hbs dock double mutants. Additionally, we show that Dock interacts biochemically and genetically with Drosophila Scar, Vrp1 and WASp. Based on these data, we propose that Dock links cell adhesion in FCs and FCMs with either Scar- or Vrp1-WASp-dependent Arp2/3 activation.

  12. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux.

    Directory of Open Access Journals (Sweden)

    Hyunju Kim

    Full Text Available Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2 result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux.

  13. Conessine Interferes with Oxidative Stress-Induced C2C12 Myoblast Cell Death through Inhibition of Autophagic Flux

    Science.gov (United States)

    Kim, Hyunju; Lee, Kang Il; Jang, Minsu; Namkoong, Sim; Park, Rackhyun; Ju, Hyunwoo; Choi, Inho; Oh, Won Keun

    2016-01-01

    Conessine, a steroidal alkaloid isolated from Holarrhena floribunda, has anti-malarial activity and interacts with the histamine H3 receptor. However, the cellular effects of conessine are poorly understood. Accordingly, we evaluated the involvement of conessine in the regulation of autophagy. We searched natural compounds that modulate autophagy, and conessine was identified as an inhibitor of autophagic flux. Conessine treatment induced the formation of autophagosomes, and p62, an autophagic adapter, accumulated in the autophagosomes. Reactive oxygen species such as hydrogen peroxide (H2O2) result in muscle cell death by inducing excessive autophagic flux. Treatment with conessine inhibited H2O2-induced autophagic flux in C2C12 myoblast cells and also interfered with cell death. Our results indicate that conessine has the potential effect to inhibit muscle cell death by interfering with autophagic flux. PMID:27257813

  14. Mechanical stimuli activation of calpain is required for myoblast differentiation and occurs via an ERK/MAP kinase signaling pathway

    DEFF Research Database (Denmark)

    Grossi, Alberto; Karlsson, Anders H; Lawson, Moira Ann

    fusion, cell membrane and cytoskeleton component reorganization due to the activity of ubiquitous proteolytic enzymes known as calpains has been reported. Whether there is a link between stretch- or load induced signals, the MAPK pathway and calpain expression and activation is not known. Using......, with each individual myotube containing fewer nuclei. Mechanical stimulation increases not only the expression of m-calpain but also the overall activity of calpain in the cells through the MAPK signaling cascade. Our findings underline that the mechanical modulation of MAPK signaling cascade enhances...... the expression and activity of m-calpain, which play a pivotal role during myoblast fusion, strengthening the idea of its implication during the initial events of muscle development....

  15. Phenotypes induced by NM causing α-skeletal muscle actin mutants in fibroblasts, Sol 8 myoblasts and myotubes

    Directory of Open Access Journals (Sweden)

    Vandamme Drieke

    2009-03-01

    Full Text Available Abstract Background Nemaline myopathy is a neuromuscular disorder characterized by the presence of nemaline bodies in patient muscles. 20% of the cases are associated with α-skeletal muscle actin mutations. We previously showed that actin mutations can cause four different biochemical phenotypes and that expression of NM associated actin mutants in fibroblasts, myoblasts and myotubes induces a range of cellular defects. Findings We conducted the same biochemical experiments for twelve new actin mutants associated with nemaline myopathy. We observed folding and polymerization defects. Immunostainings of these and eight other mutants in transfected cells revealed typical cellular defects such as nemaline rods or aggregates, decreased incorporation in F-actin structures, membrane blebbing, the formation of thickened actin fibres and cell membrane blebbing in myotubes. Conclusion Our results confirm that NM associated α-actin mutations induce a range of defects at the biochemical level as well as in cultured fibroblasts and muscle cells.

  16. Detection of Pancreatic Cancer-Induced Cachexia Using a Fluorescent Myoblast Reporter System and Analysis of Metabolite Abundance.

    Science.gov (United States)

    Winnard, Paul T; Bharti, Santosh K; Penet, Marie-France; Marik, Radharani; Mironchik, Yelena; Wildes, Flonne; Maitra, Anirban; Bhujwalla, Zaver M

    2016-03-15

    The dire effects of cancer-induced cachexia undermine treatment and contribute to decreased survival rates. Therapeutic options for this syndrome are limited, and therefore efforts to identify signs of precachexia in cancer patients are necessary for early intervention. The applications of molecular and functional imaging that would enable a whole-body "holistic" approach to this problem may lead to new insights and advances for diagnosis and treatment of this syndrome. Here we have developed a myoblast optical reporter system with the purpose of identifying early cachectic events. We generated a myoblast cell line expressing a dual tdTomato:GFP construct that was grafted onto the muscle of mice-bearing human pancreatic cancer xenografts to provide noninvasive live imaging of events associated with cancer-induced cachexia (i.e., weight loss). Real-time optical imaging detected a strong tdTomato fluorescent signal from skeletal muscle grafts in mice with weight losses of only 1.2% to 2.7% and tumor burdens of only approximately 79 to 170 mm(3). Weight loss in cachectic animals was also associated with a depletion of lipid, cholesterol, valine, and alanine levels, which may provide informative biomarkers of cachexia. Taken together, our findings demonstrate the utility of a reporter system that is capable of tracking tumor-induced weight loss, an early marker of cachexia. Future studies incorporating resected tissue from human pancreatic ductal adenocarcinoma into a reporter-carrying mouse may be able to provide a risk assessment of cachexia, with possible implications for therapeutic development.

  17. Functional analysis of SH3 domain containing ring finger 2 during the myogenic differentiation of quail myoblast cells

    Directory of Open Access Journals (Sweden)

    Si Won Kim

    2017-08-01

    Full Text Available Objective Owing to the public availability of complete genome sequences, including avian species, massive bioinformatics analyses may be conducted for computational gene prediction and the identification of gene regulatory networks through various informatics tools. However, to evaluate the biofunctional activity of a predicted target gene, in vivo and in vitro functional genomic analyses should be a prerequisite. Methods Due to a lack of quail genomic sequence information, we first identified the partial genomic structure and sequences of the quail SH3 domain containing ring finger 2 (SH3RF2 gene. Subsequently, SH3RF2 was knocked out using clustered regularly interspaced short palindromic repeat/Cas9 technology and single cell-derived SH3RF2 mutant sublines were established to study the biofunctional activity of SH3RF2 in quail myoblast (QM7 cells during muscle differentiation. Results Through a T7 endonuclease I assay and genotyping analysis, we established an SH3RF2 knockout (KO QM7#4 subline with 61 and 155 nucleotide deletion mutations in SH3RF2. After the induction of myotube differentiation, the expression profiles were analyzed and compared between regular QM7 and SH3RF2 KO QM7#4 cells by global RNA sequencing and bioinformatics analysis. Conclusion We did not detect any statistically significant role of SH3RF2 during myotube differentiation in QM7 myoblast cells. However, additional experiments are necessary to examine the biofunctional activity of SH3RF2 in cell proliferation and muscle growth.

  18. Degree of Suppression of Mouse Myoblast Cell Line C2C12 Differentiation Varies According to Chondroitin Sulfate Subtype

    Science.gov (United States)

    Warita, Katsuhiko; Oshima, Nana; Takeda-Okuda, Naoko; Tamura, Jun-ichi; Hosaka, Yoshinao Z.

    2016-01-01

    Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a factor involved in the suppression of myogenic differentiation. CS comprises two repeating sugars and has different subtypes depending on the position and number of bonded sulfate groups. However, the effect of each subtype on myogenic differentiation remains unclear. In this study, we spiked cultures of C2C12 myoblasts, cells which are capable of undergoing skeletal muscle differentiation, with one of five types of CS (CS-A, -B, -C, -D, or -E) and induced differentiation over a fixed time. After immunostaining of the formed myotubes with an anti-MHC antibody, we counted the number of nuclei in the myotubes and then calculated the fusion index (FI) as a measure of myotube differentiation. The FI values of all the CS-treated groups were lower than the FI value of the control group, especially the group treated with CS-E, which displayed notable suppression of myotube formation. To confirm that the sugar chain in CS-E is important in the suppression of differentiation, chondroitinase ABC (ChABC), which catabolizes CS, was added to the media. The addition of ChABC led to the degradation of CS-E, and neutralized the suppression of myotube formation by CS-E. Collectively, it can be concluded that the degree of suppression of differentiation depends on the subtype of CS and that CS-E strongly suppresses myogenic differentiation. We conclude that the CS sugar chain has inhibitory action against myoblast cell fusion. PMID:27775651

  19. Glycogenome expression dynamics during mouse C2C12 myoblast differentiation suggests a sequential reorganization of membrane glycoconjugates

    Directory of Open Access Journals (Sweden)

    Dupuy Fabrice

    2009-10-01

    Full Text Available Abstract Background Several global transcriptomic and proteomic approaches have been applied in order to obtain new molecular insights on skeletal myogenesis, but none has generated any specific data on glycogenome expression, and thus on the role of glycan structures in this process, despite the involvement of glycoconjugates in various biological events including differentiation and development. In the present study, a quantitative real-time RT-PCR technology was used to profile the dynamic expression of 375 glycogenes during the differentiation of C2C12 myoblasts into myotubes. Results Of the 276 genes expressed, 95 exhibited altered mRNA expression when C2C12 cells differentiated and 37 displayed more than 4-fold up- or down-regulations. Principal Component Analysis and Hierarchical Component Analysis of the expression dynamics identified three groups of coordinately and sequentially regulated genes. The first group included 12 down-regulated genes, the second group four genes with an expression peak at 24 h of differentiation, and the last 21 up-regulated genes. These genes mainly encode cell adhesion molecules and key enzymes involved in the biosynthesis of glycosaminoglycans and glycolipids (neolactoseries, lactoseries and ganglioseries, providing a clearer indication of how the plasma membrane and extracellular matrix may be modified prior to cell fusion. In particular, an increase in the quantity of ganglioside GM3 at the cell surface of myoblasts is suggestive of its potential role during the initial steps of myogenic differentiation. Conclusion For the first time, these results provide a broad description of the expression dynamics of glycogenes during C2C12 differentiation. Among the 37 highly deregulated glycogenes, 29 had never been associated with myogenesis. Their biological functions suggest new roles for glycans in skeletal myogenesis.

  20. Automated high-content assay for compounds selectively toxic to Trypanosoma cruzi in a myoblastic cell line.

    Directory of Open Access Journals (Sweden)

    Julio Alonso-Padilla

    2015-01-01

    Full Text Available Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, represents a very important public health problem in Latin America where it is endemic. Although mostly asymptomatic at its initial stage, after the disease becomes chronic, about a third of the infected patients progress to a potentially fatal outcome due to severe damage of heart and gut tissues. There is an urgent need for new drugs against Chagas disease since there are only two drugs available, benznidazole and nifurtimox, and both show toxic side effects and variable efficacy against the chronic stage of the disease.Genetically engineered parasitic strains are used for high throughput screening (HTS of large chemical collections in the search for new anti-parasitic compounds. These assays, although successful, are limited to reporter transgenic parasites and do not cover the wide T. cruzi genetic background. With the aim to contribute to the early drug discovery process against Chagas disease we have developed an automated image-based 384-well plate HTS assay for T. cruzi amastigote replication in a rat myoblast host cell line. An image analysis script was designed to inform on three outputs: total number of host cells, ratio of T. cruzi amastigotes per cell and percentage of infected cells, which respectively provides one host cell toxicity and two T. cruzi toxicity readouts. The assay was statistically robust (Z´ values >0.6 and was validated against a series of known anti-trypanosomatid drugs.We have established a highly reproducible, high content HTS assay for screening of chemical compounds against T. cruzi infection of myoblasts that is amenable for use with any T. cruzi strain capable of in vitro infection. Our visual assay informs on both anti-parasitic and host cell toxicity readouts in a single experiment, allowing the direct identification of compounds selectively targeted to the parasite.

  1. Effects of 1,25(OH)2 D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy.

    Science.gov (United States)

    van der Meijden, K; Bravenboer, N; Dirks, N F; Heijboer, A C; den Heijer, M; de Wit, G M J; Offringa, C; Lips, P; Jaspers, R T

    2016-11-01

    An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2 D by 1α-hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2 D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . We show that myoblasts not only responded to 1,25(OH)2 D3 , but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2 D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2 D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α-hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2 D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2 D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . J. Cell. Physiol. 231: 2517-2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  2. The atypical alpha2beta2 IGF receptor expressed in inducible c2.7 myoblasts is derived from post-translational modifications of the mouse IGF-I receptor.

    Science.gov (United States)

    Navarro, Magali; Joulia, Dominique; Fedon, Yann; Levin, Jonathan; Barenton, Bruno; Bernardi, Henri

    2008-10-01

    Unlike parental permissive C2.7 myoblasts, inducible C2.7 myoblasts require IGF-I or IGF-II to differentiate and expression of MyoD is not constitutive. Our previous studies indicated that inducible myoblasts express an atypical alpha2beta2 IGF receptor that differs from the classical IGF-I receptor by its higher affinity for IGF-II compared with IGF-I and the higher molecular weight of its alpha and beta subunits. Expression of this atypical IGF-I receptor is developmentally regulated; hence this receptor is lost upon terminal differentiation. Muscle cell differentiation is a system in which IGF-II plays an essential role and developmentally regulated atypical IGF-I receptor may represent a candidate for mediating differentiation signals provided by IGF-II. To further understand the structure and the role of the atypical IGF-I receptor, (i) we investigated for a putative IGF-I receptor transcript polymorphism by extensive sequencing of RT-PCR products; (ii) we overexpressed cloned mouse IGF-I receptor in permissive and inducible C2.7 myoblasts and characterized the binding and structural properties of overexpressed IGF-I receptor and (iii) we analysed the effects of this overexpression on myoblasts differentiation. Cultured mouse myoblasts C2.7 and subclone variant inducible C2.7 cell lines were used. Mouse IGF-I receptor cDNA was cloned by cDNA library screening. Gene expression was measured by semi-quantitative RT-PCR analysis and receptor affinity by ligand binding. Receptor protein autophosphorylation of IGF-IR was analysed by immunoprecipitation and Western blot. Myoblastic differentiation was accessed by myogenic factors expression and immunofluorescence study. Atypical IGF-I receptor may correspond to a new receptor belonging to the insulin/IGF-I receptor family, or it may also derive from alternate splicing of the gene of the insulin/IGF-I receptors and/or post-translational modifications of the insulin/IGF-I receptors. Our results exclude the existence of

  3. Mechano-growth factor peptide, the COOH terminus of unprocessed insulin-like growth factor 1, has no apparent effect on myoblasts or primary muscle stem cells.

    Science.gov (United States)

    Fornaro, Mara; Hinken, Aaron C; Needle, Saul; Hu, Erding; Trendelenburg, Anne-Ulrike; Mayer, Angelika; Rosenstiel, Antonia; Chang, Calvin; Meier, Viktor; Billin, Andrew N; Becherer, J David; Brace, Arthur D; Evans, William J; Glass, David J; Russell, Alan J

    2014-01-15

    A splice form of IGF-1, IGF-1Eb, is upregulated after exercise or injury. Physiological responses have been ascribed to the 24-amino acid COOH-terminal peptide that is cleaved from the NH3-terminal 70-amino acid mature IGF-1 protein. This COOH-terminal peptide was termed "mechano-growth factor" (MGF). Activities claimed for the MGF peptide included enhancing muscle satellite cell proliferation and delaying myoblast fusion. As such, MGF could represent a promising strategy to improve muscle regeneration. Thus, at our two pharmaceutical companies, we attempted to reproduce the claimed effect of MGF peptides on human and mouse muscle myoblast proliferation and differentiation in vitro. Concentrations of peptide up to 500 ng/ml failed to increase the proliferation of C2C12 cells or primary human skeletal muscle myoblasts. In contrast, all cell types exhibited a proliferative response to mature IGF-1 or full-length IGF-1Eb. MGF also failed to inhibit the differentiation of myoblasts into myotubes. To address whether the response to MGF was lost in these tissue culture lines, we measured proliferation and differentiation of primary mouse skeletal muscle stem cells exposed to MGF. This, too, failed to demonstrate a significant effect. Finally, we tested whether MGF could alter a separate documented in vitro effect of the peptide, activation of p-ERK, but not p-Akt, in cardiac myocytes. Although a robust response to IGF-1 was observed, there were no demonstrated activating responses from the native or a stabilized MGF peptide. These results call in to question whether there is a physiological role for MGF.

  4. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7

    Energy Technology Data Exchange (ETDEWEB)

    Bonn, Bettina R.; Rudolf, Anja; Hornbruch-Freitag, Christina; Daum, Gabor; Kuckwa, Jessica; Kastl, Lena; Buttgereit, Detlev [Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg (Germany); Renkawitz-Pohl, Renate, E-mail: renkawit@biologie.uni-marburg.de [Developmental Biology, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35037 Marburg (Germany)

    2013-02-15

    Besides representing the sarcomeric thick filaments, myosins are involved in many cellular transport and motility processes. Myosin heavy chains are grouped into 18 classes. Here we show that in Drosophila, the unconventional group XVIII myosin heavy chain-like (Mhcl) is transcribed in the mesoderm of embryos, most prominently in founder cells (FCs). An ectopically expressed GFP-tagged Mhcl localizes in the growing muscle at cell–cell contacts towards the attached fusion competent myoblast (FCM). We further show that Mhcl interacts in vitro with the essential fusion protein Rolling pebbles 7 (Rols7), which is part of a protein complex established at cell contact sites (Fusion-restricted Myogenic-Adhesive Structure or FuRMAS). Here, branched F-actin is likely needed to widen the fusion pore and to integrate the myoblast into the growing muscle. We show that the localization of Mhcl is dependent on the presence of Rols7, and we postulate that Mhcl acts at the FuRMAS as an actin motor protein. We further show that Mhcl deficient embryos develop a wild-type musculature. We thus propose that Mhcl functions redundantly to other myosin heavy chains in myoblasts. Lastly, we found that the protein is detectable adjacent to the sarcomeric Z-discs, suggesting an additional function in mature muscles. - Highlights: ► The class XVIII myosin encoding gene Mhcl is transcribed in the mesoderm. ► Mhcl localization at contact sites of fusing myoblasts depends on Rols7. ► Mhcl interacts in vitro with Rols7 which is essential for myogenesis. ► Functional redundancy with other myosins is likely as mutants show no muscle defects. ► Mhcl localizes adjacent to Z-discs of sarcomeres and might support muscle integrity.

  5. The CELF1 RNA-Binding Protein Regulates Decay of Signal Recognition Particle mRNAs and Limits Secretion in Mouse Myoblasts

    Science.gov (United States)

    Russo, Joseph; Lee, Jerome E.; López, Carolina M.; Anderson, John; Nguyen, Thuy-mi P.; Heck, Adam M.; Wilusz, Jeffrey

    2017-01-01

    We previously identified several mRNAs encoding components of the secretory pathway, including signal recognition particle (SRP) subunit mRNAs, among transcripts associated with the RNA-binding protein CELF1. Through immunoprecipitation of RNAs crosslinked to CELF1 in myoblasts and in vitro binding assays using recombinant CELF1, we now provide evidence that CELF1 directly binds the mRNAs encoding each of the subunits of the SRP. Furthermore, we determined the half-lives of the Srp transcripts in control and CELF1 knockdown myoblasts. Our results indicate CELF1 is a destabilizer of at least five of the six Srp transcripts and that the relative abundance of the SRP proteins is out of balance when CELF1 is depleted. CELF1 knockdown myoblasts exhibit altered secretion of a luciferase reporter protein and are impaired in their ability to migrate and close a wound, consistent with a defect in the secreted extracellular matrix. Importantly, similar defects in wound healing are observed when SRP subunit imbalance is induced by over-expression of SRP68. Our studies support the existence of an RNA regulon containing Srp mRNAs that is controlled by CELF1. One implication is that altered function of CELF1 in myotonic dystrophy may contribute to changes in the extracellular matrix of affected muscle through defects in secretion. PMID:28129347

  6. Sustained and therapeutic delivery of factor IX in nude haemophilia B mice by encapsulated C2C12 myoblasts: concurrent tumourigenesis.

    Science.gov (United States)

    Hortelano, G; Wang, L; Xu, N; Ofosu, F A

    2001-03-01

    This study reports the generation of an immunodeficient murine model for haemophilia B, obtained by breeding factor IX-deficient mice with an immunodeficient mouse strain, and use of this mouse model to evaluate the long-term efficacy and safety of a gene therapy strategy for treating haemophilia B. Nude haemophilic mice were implanted with biocompatible microcapsules enclosing recombinant myoblasts secreting human factor IX. The activated partial thromboplastin time (APTT) of plasma of mice thus treated was invariably shortened 3 weeks after microcapsule implantation, and remained shortened for at least 77 days. Shortening of the APTT of the haemophilia mice coincided with the appearance of human factor IX in mice plasmas (up to 600 ng mL(-1) on day 77), and normalization of the tail-bleeding time. Thus, the microencapsulated myoblasts reversed the clinical phenotype of haemophilia B. In contrast, plasmas of immunocompetent haemophilic mice similarly implanted with microcapsules only showed a transient shortening of APTT, and coincident transient delivery of human factor IX antigen. Rapid disappearance of human factor IX from plasmas of immunocompetent mice also coincided with production of antibodies to the human transgene. Significantly, 86% of the nude haemophilia mice developed tumours of myoblast origin. Thus, while this study revealed the feasibility of this gene therapy approach to treat severe haemophilia B, it also highlights the importance of using safer cell lines to prevent tumour development.

  7. Endocytic Recycling Proteins EHD1 and EHD2 Interact with Fer-1-like-5 (Fer1L5) and Mediate Myoblast Fusion*

    Science.gov (United States)

    Posey, Avery D.; Pytel, Peter; Gardikiotes, Konstantina; Demonbreun, Alexis R.; Rainey, Mark; George, Manju; Band, Hamid; McNally, Elizabeth M.

    2011-01-01

    The mammalian ferlins are calcium-sensing, C2 domain-containing proteins involved in vesicle trafficking. Myoferlin and dysferlin regulate myoblast fusion and muscle membrane resealing, respectively. Correspondingly, myoferlin is most highly expressed in singly nucleated myoblasts, whereas dysferlin expression is increased in mature, multinucleated myotubes. Myoferlin also mediates endocytic recycling and participates in trafficking the insulin-like growth factor receptor. We have now characterized a novel member of the ferlin family, Fer1L5, because of its high homology to dysferlin and myoferlin. We found that Fer1L5 protein is expressed in small myotubes that contain only two to four nuclei. We also found that Fer1L5 protein binds directly to the endocytic recycling proteins EHD1 and EHD2 and that the second C2 domain in Fer1L5 mediates this interaction. Reduction of EHD1 and/or EHD2 inhibits myoblast fusion, and EHD2 is required for normal translocation of Fer1L5 to the plasma membrane. The characterization of Fer1L5 and its interaction with EHD1 and EHD2 underscores the complex requirement of ferlin proteins and mediators of endocytic recycling for membrane trafficking events during myotube formation. PMID:21177873

  8. Endocytic recycling proteins EHD1 and EHD2 interact with fer-1-like-5 (Fer1L5) and mediate myoblast fusion.

    Science.gov (United States)

    Posey, Avery D; Pytel, Peter; Gardikiotes, Konstantina; Demonbreun, Alexis R; Rainey, Mark; George, Manju; Band, Hamid; McNally, Elizabeth M

    2011-03-01

    The mammalian ferlins are calcium-sensing, C2 domain-containing proteins involved in vesicle trafficking. Myoferlin and dysferlin regulate myoblast fusion and muscle membrane resealing, respectively. Correspondingly, myoferlin is most highly expressed in singly nucleated myoblasts, whereas dysferlin expression is increased in mature, multinucleated myotubes. Myoferlin also mediates endocytic recycling and participates in trafficking the insulin-like growth factor receptor. We have now characterized a novel member of the ferlin family, Fer1L5, because of its high homology to dysferlin and myoferlin. We found that Fer1L5 protein is expressed in small myotubes that contain only two to four nuclei. We also found that Fer1L5 protein binds directly to the endocytic recycling proteins EHD1 and EHD2 and that the second C2 domain in Fer1L5 mediates this interaction. Reduction of EHD1 and/or EHD2 inhibits myoblast fusion, and EHD2 is required for normal translocation of Fer1L5 to the plasma membrane. The characterization of Fer1L5 and its interaction with EHD1 and EHD2 underscores the complex requirement of ferlin proteins and mediators of endocytic recycling for membrane trafficking events during myotube formation.

  9. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration.

    Science.gov (United States)

    Yeo, Miji; Lee, Hyeongjin; Kim, Geun Hyung

    2016-09-16

    Biomedical scaffolds must be used in tissue engineering to provide physical stability and topological/biochemical properties that directly affect tissue regeneration. In this study, a new cell-laden scaffold was developed that supplies micro/nano-topological cues and promotes efficient release of cells. The hierarchical structure consisted of poly(ε-caprolactone) macrosized struts for sustaining a three-dimensional structural shape, aligned nanofibers obtained with optimized electrospinning, and cell-printed myoblasts. Importantly, the printed myoblasts were fully safe and were efficiently released from the cell-laden struts to neighboring nanofiber networks. The incorporation of micro/nanofibers in the hierarchical scaffold significantly affected myoblast proliferation, alignment, and even facilitated the formation of myotubes. We observed that myosin heavy chain expression and the expression levels of various myogenic genes (MyoD, myogenin, and troponin T) were significantly affected by the fiber alignment achieved in our hierarchical cell-laden structure. We believe that the combination of cell-printing and a hierarchical scaffold that encourages fiber alignment is a highly promising technique for skeletal muscle tissue engineering.

  10. Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices.

    Science.gov (United States)

    Shin, Yong Cheol; Lee, Jong Ho; Kim, Min Jeong; Hong, Suck Won; Kim, Bongju; Hyun, Jung Keun; Choi, Yu Suk; Park, Jong-Chul; Han, Dong-Wook

    2015-01-01

    In the field of biomedical engineering, many studies have focused on the possible applications of graphene and related nanomaterials due to their potential for use as scaffolds, coating materials and delivery carriers. On the other hand, electrospun nanofiber matrices composed of diverse biocompatible polymers have attracted tremendous attention for tissue engineering and regenerative medicine. However, their combination is intriguing and still challenging. In the present study, we fabricated nanofiber matrices composed of M13 bacteriophage with RGD peptide displayed on its surface (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) and characterized their physicochemical properties. In addition, the effect of graphene oxide (GO) on the cellular behaviors of C2C12 myoblasts, which were cultured on PLGA decorated with RGD-M13 phage (RGD/PLGA) nanofiber matrices, was investigated. Our results revealed that the RGD/PLGA nanofiber matrices have suitable physicochemical properties as a tissue engineering scaffold and the growth of C2C12 myoblasts were significantly enhanced on the matrices. Moreover, the myogenic differentiation of C2C12 myoblasts was substantially stimulated when they were cultured on the RGD/PLGA matrices in the presence of GO. In conclusion, these findings propose that the combination of RGD/PLGA nanofiber matrices and GO can be used as a promising strategy for skeletal tissue engineering and regeneration.

  11. DNA replication timing is maintained genome-wide in primary human myoblasts independent of D4Z4 contraction in FSH muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Benjamin D Pope

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is linked to contraction of an array of tandem 3.3-kb repeats (D4Z4 at 4q35.2 from 11-100 copies to 1-10 copies. The extent to which D4Z4 contraction at 4q35.2 affects overall 4q35.2 chromatin organization remains unclear. Because DNA replication timing is highly predictive of long-range chromatin interactions, we generated genome-wide replication-timing profiles for FSHD and control myogenic precursor cells. We compared non-immortalized myoblasts from four FSHD patients and three control individuals to each other and to a variety of other human cell types. This study also represents the first genome-wide comparison of replication timing profiles in non-immortalized human cell cultures. Myoblasts from both control and FSHD individuals all shared a myoblast-specific replication profile. In contrast, male and female individuals were readily distinguished by monoallelic differences in replication timing at DXZ4 and other regions across the X chromosome affected by X inactivation. We conclude that replication timing is a robust cell-type specific feature that is unaffected by FSHD-related D4Z4 contraction.

  12. L6E9 Myoblasts Are Deficient of Myostatin and Additional TGF- Members Are Candidates to Developmentally Control Their Fiber Formation

    Directory of Open Access Journals (Sweden)

    Stefania Rossi

    2010-01-01

    Full Text Available This work provides evidence that the robust myoblast differentiation observed in L6E9 cells is causally linked to deficiency of myostatin, which, conversely, has been found to be expressed in C2C12 cells. However, despite the absence of endogenous myostatin, L6E9 myoblasts expressed functional Activin receptors type II (ActRIIs and follistatin as well as the highly related TGF- members Activins and GDF11, suggesting that in this cell line the regulation of fiber size might be under the control of multiple regulators regardless of myostatin. In line with this hypothesis, delivery of a dominant-negative ActRIIb form or the increase of follistatin, as obtained via Trichostatin treatment or stable transfection of a short human follistatin form, enhanced the L6E9 cell differentiation and further increased the size of myotubes, suggesting that L6E9 myoblasts provide a spontaneous myostatin knock-out in vitro model to study TGF- ligands involved in developmental regulation of fiber size.

  13. TAK-1/p38/nNFκB signaling inhibits myoblast differentiation by increasing levels of Activin A

    Directory of Open Access Journals (Sweden)

    Trendelenburg Anne

    2012-02-01

    Full Text Available Abstract Background Skeletal-muscle differentiation is required for the regeneration of myofibers after injury. The differentiation capacity of satellite cells is impaired in settings of old age, which is at least one factor in the onset of sarcopenia, the age-related loss of skeletal-muscle mass and major cause of frailty. One important cause of impaired regeneration is increased levels of transforming growth factor (TGF-β accompanied by reduced Notch signaling. Pro-inflammatory cytokines are also upregulated in aging, which led us hypothesize that they might potentially contribute to impaired regeneration in sarcopenia. Thus, in this study, we further analyzed the muscle differentiation-inhibition pathway mediated by pro-inflammatory cytokines in human skeletal muscle cells (HuSKMCs. Methods We studied the modulation of HuSKMC differentiation by the pro-inflammatory cytokines interleukin (IL-1α and tumor necrosis factor (TNF-α The grade of differentiation was determined by either imaging (fusion index or creatine kinase (CK activity, a marker of muscle differentiation. Secretion of TGF-β proteins during differentiation was assessed by using a TGF-β-responsive reporter-gene assay and further identified by means of pharmacological and genetic inhibitors. In addition, signaling events were monitored by western blotting and reverse transcription PCR, both in HuSKMC cultures and in samples from a rat sarcopenia study. Results The pro-inflammatory cytokines IL-1α and TNF-α block differentiation of human myoblasts into myotubes. This anti-differentiation effect requires activation of TGF-β-activated kinase (TAK-1. Using pharmacological and genetic inhibitors, the TAK-1 pathway could be traced to p38 and NFκB. Surprisingly, the anti-differentiation effect of the cytokines required the transcriptional upregulation of Activin A, which in turn acted through its established signaling pathway: ActRII/ALK/SMAD. Inhibition of Activin A signaling was

  14. Differentiation-Associated Downregulation of Poly(ADP-Ribose Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Gábor Oláh

    Full Text Available Poly(ADP-ribose polymerase 1 (PARP-1, the major isoform of the poly (ADP-ribose polymerase family, is a constitutive nuclear and mitochondrial protein with well-recognized roles in various essential cellular functions such as DNA repair, signal transduction, apoptosis, as well as in a variety of pathophysiological conditions including sepsis, diabetes and cancer. Activation of PARP-1 in response to oxidative stress catalyzes the covalent attachment of the poly (ADP-ribose (PAR groups on itself and other acceptor proteins, utilizing NAD+ as a substrate. Overactivation of PARP-1 depletes intracellular NAD+ influencing mitochondrial electron transport, cellular ATP generation and, if persistent, can result in necrotic cell death. Due to their high metabolic activity, skeletal muscle cells are particularly exposed to constant oxidative stress insults. In this study, we investigated the role of PARP-1 in a well-defined model of murine skeletal muscle differentiation (C2C12 and compare the responses to oxidative stress of undifferentiated myoblasts and differentiated myotubes. We observed a marked reduction of PARP-1 expression as myoblasts differentiated into myotubes. This alteration correlated with an increased resistance to oxidative stress of the myotubes, as measured by MTT and LDH assays. Mitochondrial function, assessed by measuring mitochondrial membrane potential, was preserved under oxidative stress in myotubes compared to myoblasts. Moreover, basal respiration, ATP synthesis, and the maximal respiratory capacity of mitochondria were higher in myotubes than in myoblasts. Inhibition of the catalytic activity of PARP-1 by PJ34 (a phenanthridinone PARP inhibitor exerted greater protective effects in undifferentiated myoblasts than in differentiated myotubes. The above observations in C2C12 cells were also confirmed in a rat-derived skeletal muscle cell line (L6. Forced overexpression of PARP1 in C2C12 myotubes sensitized the cells to oxidant

  15. PAX3-FOXO1 is essential for tumour initiation and maintenance but not recurrence in a human myoblast model of rhabdomyosarcoma.

    Science.gov (United States)

    Pandey, Puspa R; Chatterjee, Bishwanath; Olanich, Mary E; Khan, Javed; Miettinen, Markku M; Hewitt, Stephen M; Barr, Frederic G

    2017-01-31

    The PAX3-FOXO1 fusion gene is generated by a 2;13 chromosomal translocation and is a characteristic feature of an aggressive subset of rhabdomyosarcoma (RMS). To dissect the mechanism of oncogene action during RMS tumourigenesis and progression, doxycycline-inducible PAX3-FOXO1 and constitutive MYCN expression constructs were introduced into immortalised human myoblasts. Though myoblasts expressing PAX3-FOXO1 or MYCN alone were not transformed in focus formation assays, combined PAX3-FOXO1 and MYCN expression resulted in transformation. Following intramuscular injection into immunodeficient mice, myoblasts expressing PAX3-FOXO1 and MYCN formed rapidly growing RMS tumours whereas myoblasts expressing only PAX3-FOXO1 formed tumours after a longer latency period. Doxycycline withdrawal in myoblasts expressing inducible PAX3-FOXO1 and constitutive MYCN following tumour formation in vivo or focus formation in vitro resulted in tumour regression or smaller foci associated with myogenic differentiation and cell death. Following regression, most tumours recurred in the absence of doxycycline. Analysis of recurrent tumours revealed a subset without PAX3-FOXO1 expression, and cell lines derived from these recurrent tumours demonstrated transformation in the absence of doxycycline. The doxycycline-independent oncogenicity in these recurrent tumour-derived lines persisted even after PAX3-FOXO1 was inactivated by a CRISPR-Cas9 editing strategy. Whereas cell lines derived from primary tumours were dependent on PAX3-FOXO1 and differentiated following doxycycline withdrawal, recurrent tumour-derived cells without PAX3-FOXO1 expression did not differentiate under these conditions. These findings indicate that PAX3-FOXO1 collaborates with MYCN during early RMS tumourigenesis to dysregulate proliferation and inhibit myogenic differentiation and cell death. Although most cells in the primary tumours are dependent on PAX3-FOXO1, recurrent tumours can develop by a PAX3-FOXO1

  16. Skeletal myoblasts for heart regeneration and repair: state of the art and perspectives on the mechanisms for functional cardiac benefits.

    Science.gov (United States)

    Formigli, L; Zecchi-Orlandini, S; Meacci, E; Bani, D

    2010-01-01

    Until recently, skeletal myoblasts (SkMBs) have been the most widely used cells in basic research and clinical trials of cell based therapy for cardiac repair and regeneration. Although SkMB engraftment into the post-infarcted heart has been consistently found to improve cardiac contractile function, the underlying therapeutic mechanisms remain still a matter of controversy and debate. This is basically because SkMBs do not attain a cardiac-like phenotype once homed into the diseased heart nor they form a contractile tissue functionally coupled with the surrounding viable myocardium. This issue of concern has generated the idea that the cardiotropic action of SkMBs may depend on the release of paracrine factors. However, the paracrine hypothesis still remains ill-defined, particularly concerning the identification of the whole spectrum of cell-derived soluble factors and details on their cardiac effects. In this context, the possibility to genetically engineering SkMBs to potentate their paracrine attitudes appears particularly attractive and is actually raising great expectation. Aim of the present review is not to cover all the aspects of cell-based therapy with SkMBs, as this has been the object of previous exhaustive reviews in this field. Rather, we focused on novel aspects underlying the interactions between SkMBs and the host cardiac tissues which may be relevant for directing the future basic and applied research on SkMB transplantation for post ischemic cardiac dysfunction.

  17. Celf1 regulates cell cycle and is partially responsible for defective myoblast differentiation in myotonic dystrophy RNA toxicity.

    Science.gov (United States)

    Peng, Xiaoping; Shen, Xiaopeng; Chen, Xuanying; Liang, Rui; Azares, Alon R; Liu, Yu

    2015-07-01

    Myotonic dystrophy is a neuromuscular disease of RNA toxicity. The disease gene DMPK harbors expanded CTG trinucleotide repeats on its 3'-UTR. The transcripts of this mutant DMPK led to misregulation of RNA-binding proteins including MBNL1 and Celf1. In myoblasts, CUG-expansion impaired terminal differentiation. In this study, we formally tested how the abundance of Celf1 regulates normal myocyte differentiation, and how Celf1 expression level mediates CUG-expansion RNA toxicity-triggered impairment of myocyte differentiation. As the results, overexpression of Celf1 largely recapitulated the defects of myocytes with CUG-expansion, by increasing myocyte cycling. Knockdown of endogenous Celf1 level led to precocious myotube formation, supporting a negative connection between Celf1 abundance and myocyte terminal differentiation. Finally, knockdown of Celf1 in myocyte with CUG-expansion led to partial rescue, by promoting cell cycle exit. Our results suggest that Celf1 plays a distinctive and negative role in terminal myocyte differentiation, which partially contribute to DM1 RNA toxicity. Targeting Celf1 may be a valid strategy in correcting DM1 muscle phenotypes, especially for congenital cases.

  18. Characterization of viability and proliferation of alginate-poly-L-lysine-alginate encapsulated myoblasts using flow cytometry.

    Science.gov (United States)

    Thakur, Ajit; Sengupta, Ruchira; Matsui, Hideto; Lillicrap, David; Jones, Kim; Hortelano, Gonzalo

    2010-08-01

    Genetically modified cells encapsulated in alginate-poly-L-lysine-alginate (APA) are being developed to deliver therapeutic products to treat a variety of diseases. The characterization of the encapsulated cells thus becomes paramount. This study reports a novel method to assess the viability, granularity and proliferation of encapsulated cells based on flow cytometry. The in vitro viability of encapsulated G8 murine myoblasts secreting canine FVIII (cFVIII) measured by flow cytometry was comparable to the traditional trypan blue exclusion method and both correlated with cFVIII secretion levels. In contrast, after implantation into mice, only viability measured by flow cytometry correlated with cFVIII secretion. Further, flow cytometry analysis of encapsulated cells maintained in vitro and in vivo revealed a greater fraction of granular cells compared to free cells, suggesting that encapsulation influences the morphology (cytoplasmic composition) of cells within APA microcapsules. Interestingly, the proliferation study showed that encapsulated cells proliferate faster, on average, and were more heterogeneous in vivo compared to in vitro culture conditions, suggesting that encapsulated cell proliferation is complex and environment-dependent. In conclusion, we show that flow cytometry analysis allows for a more consistent and comprehensive examination of encapsulated cells to aid in the development of cell therapy protocols.

  19. Hyperthermia Differently Affects Connexin43 Expression and Gap Junction Permeability in Skeletal Myoblasts and HeLa Cells

    Directory of Open Access Journals (Sweden)

    Ieva Antanavičiūtė

    2014-01-01

    Full Text Available Stress kinases can be activated by hyperthermia and modify the expression level and properties of membranous and intercellular channels. We examined the role of c-Jun NH2-terminal kinase (JNK in hyperthermia-induced changes of connexin43 (Cx43 expression and permeability of Cx43 gap junctions (GJs in the rabbit skeletal myoblasts (SkMs and Cx43-EGFP transfected HeLa cells. Hyperthermia (42°C for 6 h enhanced the activity of JNK and its target, the transcription factor c-Jun, in both SkMs and HeLa cells. In SkMs, hyperthermia caused a 3.2-fold increase in the total Cx43 protein level and enhanced the efficacy of GJ intercellular communication (GJIC. In striking contrast, hyperthermia reduced the total amount of Cx43 protein, the number of Cx43 channels in GJ plaques, the density of hemichannels in the cell membranes, and the efficiency of GJIC in HeLa cells. Both in SkMs and HeLa cells, these changes could be prevented by XG-102, a JNK inhibitor. In HeLa cells, the changes in Cx43 expression and GJIC under hyperthermic conditions were accompanied by JNK-dependent disorganization of actin cytoskeleton stress fibers while in SkMs, the actin cytoskeleton remained intact. These findings provide an attractive model to identify the regulatory players within signalosomes, which determine the cell-dependent outcomes of hyperthermia.

  20. Signal mingle: Micropatterns of BMP-2 and fibronectin on soft biopolymeric films regulate myoblast shape and SMAD signaling

    Science.gov (United States)

    Fitzpatrick, Vincent; Fourel, Laure; Destaing, Olivier; Gilde, Flora; Albigès-Rizo, Corinne; Picart, Catherine; Boudou, Thomas

    2017-01-01

    In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro.

  1. PI(4,5)P2 regulates myoblast fusion through Arp2/3 regulator localization at the fusion site.

    Science.gov (United States)

    Bothe, Ingo; Deng, Su; Baylies, Mary

    2014-06-01

    Cell-cell fusion is a regulated process that requires merging of the opposing membranes and underlying cytoskeletons. However, the integration between membrane and cytoskeleton signaling during fusion is not known. Using Drosophila, we demonstrate that the membrane phosphoinositide PI(4,5)P2 is a crucial regulator of F-actin dynamics during myoblast fusion. PI(4,5)P2 is locally enriched and colocalizes spatially and temporally with the F-actin focus that defines the fusion site. PI(4,5)P2 enrichment depends on receptor engagement but is upstream or parallel to actin remodeling. Regulators of actin branching via Arp2/3 colocalize with PI(4,5)P2 in vivo and bind PI(4,5)P2 in vitro. Manipulation of PI(4,5)P2 availability leads to impaired fusion, with a reduction in the F-actin focus size and altered focus morphology. Mechanistically, the changes in the actin focus are due to a failure in the enrichment of actin regulators at the fusion site. Moreover, improper localization of these regulators hinders expansion of the fusion interface. Thus, PI(4,5)P2 enrichment at the fusion site encodes spatial and temporal information that regulates fusion progression through the localization of activators of actin polymerization.

  2. Hyperthermia differently affects connexin43 expression and gap junction permeability in skeletal myoblasts and HeLa cells.

    Science.gov (United States)

    Antanavičiūtė, Ieva; Mildažienė, Vida; Stankevičius, Edgaras; Herdegen, Thomas; Skeberdis, Vytenis Arvydas

    2014-01-01

    Stress kinases can be activated by hyperthermia and modify the expression level and properties of membranous and intercellular channels. We examined the role of c-Jun NH2-terminal kinase (JNK) in hyperthermia-induced changes of connexin43 (Cx43) expression and permeability of Cx43 gap junctions (GJs) in the rabbit skeletal myoblasts (SkMs) and Cx43-EGFP transfected HeLa cells. Hyperthermia (42°C for 6 h) enhanced the activity of JNK and its target, the transcription factor c-Jun, in both SkMs and HeLa cells. In SkMs, hyperthermia caused a 3.2-fold increase in the total Cx43 protein level and enhanced the efficacy of GJ intercellular communication (GJIC). In striking contrast, hyperthermia reduced the total amount of Cx43 protein, the number of Cx43 channels in GJ plaques, the density of hemichannels in the cell membranes, and the efficiency of GJIC in HeLa cells. Both in SkMs and HeLa cells, these changes could be prevented by XG-102, a JNK inhibitor. In HeLa cells, the changes in Cx43 expression and GJIC under hyperthermic conditions were accompanied by JNK-dependent disorganization of actin cytoskeleton stress fibers while in SkMs, the actin cytoskeleton remained intact. These findings provide an attractive model to identify the regulatory players within signalosomes, which determine the cell-dependent outcomes of hyperthermia.

  3. Signal mingle: Micropatterns of BMP-2 and fibronectin on soft biopolymeric films regulate myoblast shape and SMAD signaling

    Science.gov (United States)

    Fitzpatrick, Vincent; Fourel, Laure; Destaing, Olivier; Gilde, Flora; Albigès-Rizo, Corinne; Picart, Catherine; Boudou, Thomas

    2017-01-01

    In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro. PMID:28134270

  4. MicroRNA-17-92 regulates myoblast proliferation and differentiation by targeting the ENH1/Id1 signaling axis

    Science.gov (United States)

    Qiu, H; Liu, N; Luo, L; Zhong, J; Tang, Z; Kang, K; Qu, J; Peng, W; Liu, L; Li, L; Gou, D

    2016-01-01

    Myogenesis is an important biological process that occurs during both skeletal muscle regeneration and postnatal growth. Growing evidence points to the critical role of microRNAs (miRNAs) in myogenesis. Our analysis of miRNA expression patterns reveal that miRNAs of miR-17-92 cluster are dramatically downregulated in C2C12 cells after myogenesis stimulation, are strongly induced in mouse skeletal muscle after injury and decrease steadily thereafter and are downregulated with age in skeletal muscle during mouse and porcine postnatal growth. However, their roles in muscle developmental processes remain elusive. We show that the miR-17-92 cluster promotes mouse myoblast proliferation but inhibits myotube formation. miR-17, -20a and -92a target the actin-associated protein enigma homolog 1 (ENH1). The silencing of ENH1 increased the nuclear accumulation of the inhibitor of differentiation 1 (Id1) and represses myogenic differentiation. Furthermore, the injection of adenovirus expressing miR-20a into the tibialia anterior muscle downregulates ENH1 and delays regeneration. In addition, the downregulation of miR-17-92 during myogenesis is transcriptionally regulated by E2F1. Overall, our results reveal a E2F1/miR-17-92/ENH1/Id1 regulatory axis during myogenesis. PMID:27315298

  5. TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo.

    Science.gov (United States)

    Joshi, Shilpy; Davidson, Guillaume; Le Gras, Stéphanie; Watanabe, Shuichi; Braun, Thomas; Mengus, Gabrielle; Davidson, Irwin

    2017-02-01

    The TEAD family of transcription factors (TEAD1-4) bind the MCAT element in the regulatory elements of both growth promoting and myogenic differentiation genes. Defining TEAD transcription factor function in myogenesis has proved elusive due to overlapping expression of family members and their functional redundancy. We show that silencing of either Tead1, Tead2 or Tead4 did not effect primary myoblast (PM) differentiation, but that their simultaneous knockdown strongly impaired differentiation. In contrast, Tead1 or Tead4 silencing impaired C2C12 differentiation showing their different contributions in PMs and C2C12 cells. Chromatin immunoprecipitation identified enhancers associated with myogenic genes bound by combinations of Tead4, Myod1 or Myog. Tead4 regulated distinct gene sets in C2C12 cells and PMs involving both activation of the myogenic program and repression of growth and signaling pathways. ChIP-seq from mature mouse muscle fibres in vivo identified a set of highly transcribed muscle cell-identity genes and sites bound by Tead1 and Tead4. Although inactivation of Tead4 in mature muscle fibres caused no obvious phenotype under normal conditions, notexin-induced muscle regeneration was delayed in Tead4 mutants suggesting an important role in myogenic differentiation in vivo. By combining knockdown in cell models in vitro with Tead4 inactivation in muscle in vivo, we provide the first comprehensive description of the specific and redundant roles of Tead factors in myogenic differentiation.

  6. TEAD transcription factors are required for normal primary myoblast differentiation in vitro and muscle regeneration in vivo.

    Directory of Open Access Journals (Sweden)

    Shilpy Joshi

    2017-02-01

    Full Text Available The TEAD family of transcription factors (TEAD1-4 bind the MCAT element in the regulatory elements of both growth promoting and myogenic differentiation genes. Defining TEAD transcription factor function in myogenesis has proved elusive due to overlapping expression of family members and their functional redundancy. We show that silencing of either Tead1, Tead2 or Tead4 did not effect primary myoblast (PM differentiation, but that their simultaneous knockdown strongly impaired differentiation. In contrast, Tead1 or Tead4 silencing impaired C2C12 differentiation showing their different contributions in PMs and C2C12 cells. Chromatin immunoprecipitation identified enhancers associated with myogenic genes bound by combinations of Tead4, Myod1 or Myog. Tead4 regulated distinct gene sets in C2C12 cells and PMs involving both activation of the myogenic program and repression of growth and signaling pathways. ChIP-seq from mature mouse muscle fibres in vivo identified a set of highly transcribed muscle cell-identity genes and sites bound by Tead1 and Tead4. Although inactivation of Tead4 in mature muscle fibres caused no obvious phenotype under normal conditions, notexin-induced muscle regeneration was delayed in Tead4 mutants suggesting an important role in myogenic differentiation in vivo. By combining knockdown in cell models in vitro with Tead4 inactivation in muscle in vivo, we provide the first comprehensive description of the specific and redundant roles of Tead factors in myogenic differentiation.

  7. Selective androgen receptor modulator, YK11, regulates myogenic differentiation of C2C12 myoblasts by follistatin expression.

    Science.gov (United States)

    Kanno, Yuichiro; Ota, Rumi; Someya, Kousuke; Kusakabe, Taichi; Kato, Keisuke; Inouye, Yoshio

    2013-01-01

    The myogenic differentiation of C2C12 myoblast cells is induced by the novel androgen receptor (AR) partial agonist, (17α,20E)-17,20-[(1-methoxyethylidene)bis-(oxy)]-3-oxo-19-norpregna-4,20-diene-21-carboxylic acid methyl ester (YK11), as well as by dihydrotestosterone (DHT). YK11 is a selective androgen receptor modulator (SARM), which activates AR without the N/C interaction. In this study, we further investigated the mechanism by which YK11 induces myogenic differentiation of C2C12 cells. The induction of key myogenic regulatory factors (MRFs), such as myogenic differentiation factor (MyoD), myogenic factor 5 (Myf5) and myogenin, was more significant in the presence of YK11 than in the presence of DHT. YK11 treatment of C2C12 cells, but not DHT, induced the expression of follistatin (Fst), and the YK11-mediated myogenic differentiation was reversed by anti-Fst antibody. These results suggest that the induction of Fst is important for the anabolic effect of YK11.

  8. Serotonin and Histamine Therapy Increases Tetanic Forces of Myoblasts, Reduces Muscle Injury, and Improves Grip Strength Performance of Dmdmdx Mice

    Directory of Open Access Journals (Sweden)

    Volkan Gurel

    2015-11-01

    Full Text Available Duchenne muscular dystrophy (DMD is a recessive X-linked fatal disorder caused by a mutation in the dystrophin gene. Although several therapeutic approaches have been studied, none has led to substantial long-term effects in patients. The aim of this study was to test a serotonin and histamine (S&H combination on human skeletal myoblasts and Dmdmdx mice for its effects on muscle strength and injury. Normal human bioartificial muscles (BAMs were treated, and muscle tetanic forces and muscle injury tests were performed using the MyoForce Analysis System. Dmdmdx mice, the murine model of DMD, were administered serotonin, histamine, or S&H combination twice daily for 6 weeks, and functional performance tests were conducted once a week. The S&H combination treatment caused significant increases in tetanic forces at all time points and concentrations tested as compared to the saline controls. Dose response of the BAMs to the treatment demonstrated a significant increase in force generation at all concentrations compared to the controls after 3 to 4 days of drug treatment. The highest 3 concentrations had a significant effect on lowering contractile-induced injury as measured by a reduction in the release of adenylate kinase. Histamine-only and S&H treatments improved grip strength of Dmdmdx mice, whereas serotonin-only treatment resulted in no significant improvement in muscle strength. The results of this study indicate that S&H therapy might be a promising new strategy for muscular dystrophies and that the mechanism should be further investigated.

  9. RNA/MBNL1-containing foci in myoblast nuclei from patients affected by myotonic dystrophy type 2: an immunocytochemical study

    Directory of Open Access Journals (Sweden)

    F. Perdoni

    2009-09-01

    Full Text Available Myotonic dystrophy type 2 (DM2 is a dominantly inherited autosomal disease with multi-systemic clinical features and it is caused by expansion of a CCTG tetranucleotide repeat in the first intron of the zinc finger protein 9 (ZNF9 gene in 3q21.The expanded-CCUG-containing transcripts are retained in the cell nucleus and accumulate in the form of focal aggregates which specifically sequester the muscleblind-like 1 (MBNL1 protein, a RNA binding factor involved in the regulation of alternative splicing. The structural organization and composition of the foci are still incompletely known. In this study, the nuclear foci occurring in cultured myoblasts from DM2 patients were characterised at fluorescence and transmission electron microscopy by using a panel of antibodies recognizing transcription and processing factors of pre-mRNAs. MBNL1 proved to co-locate in the nuclear foci with snRNPs and hnRNPs, whereas no co-location was observed with RNA polymerase II, the non-RNP splicing factor SC35, the cleavage factor CStF and the PML protein. At electron microscopy the MBNL1-containing nuclear foci appeared as roundish domains showing a rather homogeneous structure and proved to contain snRNPs and hnRNPs. The sequestration of splicing factors involved in early phases of pre-mRNA processing supports the hypothesis of a general alteration in the maturation of several mRNAs, which could lead to the multiple pathological dysfunctions observed in dystrophic patients.

  10. Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat.

    Science.gov (United States)

    Fukushima, Satsuki; Coppen, Steven R; Lee, Joon; Yamahara, Kenichi; Felkin, Leanne E; Terracciano, Cesare M N; Barton, Paul J R; Yacoub, Magdi H; Suzuki, Ken

    2008-08-27

    Intramyocardial injection of skeletal myoblasts (SMB) has been shown to be a promising strategy for treating post-infarction chronic heart failure. However, insufficient therapeutic benefit and occurrence of ventricular arrhythmias are concerns. We hypothesised that the use of a retrograde intracoronary route for SMB-delivery might favourably alter the behaviour of the grafted SMB, consequently modulating the therapeutic effects and arrhythmogenicity. Three weeks after coronary artery ligation in female wild-type rats, 5x10(6) GFP-expressing SMB or PBS only (control) were injected via either the intramyocardial or retrograde intracoronary routes. Injection of SMB via either route similarly improved cardiac performance and physical activity, associated with reduced cardiomyocyte-hypertrophy and fibrosis. Grafted SMB via either route were only present in low numbers in the myocardium, analysed by real-time PCR for the Y-chromosome specific gene, Sry. Cardiomyogenic differentiation of grafted SMB was extremely rare. Continuous ECG monitoring by telemetry revealed that only intramyocardial injection of SMB produced spontaneous ventricular tachycardia up to 14 days, associated with local myocardial heterogeneity generated by clusters of injected SMB and accumulated inflammatory cells. A small number of ventricular premature contractions with latent ventricular tachycardia were detected in the late-phase of SMB injection regardless of the injection-route. Retrograde intracoronary injection of SMB provided significant therapeutic benefits with attenuated early-phase arrhythmogenicity in treating ischaemic cardiomyopathy, indicating the promising utility of this route for SMB-delivery. Late-phase arrhythmogenicity remains a concern, regardless of the delivery route.

  11. Functional β-adrenoceptors are important for early muscle regeneration in mice through effects on myoblast proliferation and differentiation.

    Directory of Open Access Journals (Sweden)

    Jarrod E Church

    Full Text Available Muscles can be injured in different ways and the trauma and subsequent loss of function and physical capacity can impact significantly on the lives of patients through physical impairments and compromised quality of life. The relative success of muscle repair after injury will largely determine the extent of functional recovery. Unfortunately, regenerative processes are often slow and incomplete, and so developing novel strategies to enhance muscle regeneration is important. While the capacity to enhance muscle repair by stimulating β2-adrenoceptors (β-ARs using β2-AR agonists (β2-agonists has been demonstrated previously, the exact role β-ARs play in regulating the regenerative process remains unclear. To investigate β-AR-mediated signaling in muscle regeneration after myotoxic damage, we examined the regenerative capacity of tibialis anterior and extensor digitorum longus muscles from mice lacking either β1-AR (β1-KO and/or β2-ARs (β2-KO, testing the hypothesis that muscles from mice lacking the β2-AR would exhibit impaired functional regeneration after damage compared with muscles from β1-KO or β1/β2-AR null (β1/β2-KO KO mice. At 7 days post-injury, regenerating muscles from β1/β2-KO mice produced less force than those of controls but muscles from β1-KO or β2-KO mice did not exhibit any delay in functional restoration. Compared with controls, β1/β2-KO mice exhibited an enhanced inflammatory response to injury, which delayed early muscle regeneration, but an enhanced myoblast proliferation later during regeneration ensured a similar functional recovery (to controls by 14 days post-injury. This apparent redundancy in the β-AR signaling pathway was unexpected and may have important implications for manipulating β-AR signaling to improve the rate, extent and efficacy of muscle regeneration to enhance functional recovery after injury.

  12. Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells.

    Directory of Open Access Journals (Sweden)

    Zeeshan Pasha

    Full Text Available UNLABELLED: The current protocols for generation of induced pluripotent stem (iPS cells involve genome integrating viral vectors which may induce tumorgenesis. The aim of this study was to develop and optimize a non-viral method without genetic manipulation for reprogramming of skeletal myoblasts (SMs using small molecules. METHODS AND RESULTS: SMs from young male Oct3/4-GFP(+ transgenic mouse were treated with DNA methyltransferase (DNMT inhibitor, RG108. Two weeks later, GFP(+ colonies of SM derived iPS cells (SiPS expressing GFP and with morphological similarity of mouse embryonic stem (ESCs were formed and propagated in vitro. SiPS were positive for alkaline phosphatase activity, expressed SSEA1, displayed ES cell specific pluripotency markers and formed teratoma in nude mice. Optimization of culture conditions for embryoid body (EBs formation yielded spontaneously contracting EBs having morphological, molecular, and ultra-structural similarities with cardiomyocytes and expressed early and late cardiac markers. miR profiling showed abrogation of let-7 family and upregulation of ESCs specific miR-290-295 cluster thus indicating that SiPS were similar to ESCs in miR profile. Four weeks after transplantation into the immunocompetent mice model of acute myocardial infarction (n = 12 per group, extensive myogenesis was observed in SiPS transplanted hearts as compared to DMEM controls (n = 6 per group. A significant reduction in fibrosis and improvement in global heart function in the hearts transplanted with SiPS derived cardiac progenitor cells were observed. CONCLUSIONS: Reprogramming of SMs by DNMT inhibitor is a simple, reproducible and efficient technique more likely to generate transgene integration-free iPS cells. Cardiac progenitors derived from iPS cells propagated extensively in the infarcted myocardium without tumorgenesis and improved cardiac function.

  13. Choice of cell-delivery route for skeletal myoblast transplantation for treating post-infarction chronic heart failure in rat.

    Directory of Open Access Journals (Sweden)

    Satsuki Fukushima

    Full Text Available BACKGROUND: Intramyocardial injection of skeletal myoblasts (SMB has been shown to be a promising strategy for treating post-infarction chronic heart failure. However, insufficient therapeutic benefit and occurrence of ventricular arrhythmias are concerns. We hypothesised that the use of a retrograde intracoronary route for SMB-delivery might favourably alter the behaviour of the grafted SMB, consequently modulating the therapeutic effects and arrhythmogenicity. METHODS AND RESULTS: Three weeks after coronary artery ligation in female wild-type rats, 5x10(6 GFP-expressing SMB or PBS only (control were injected via either the intramyocardial or retrograde intracoronary routes. Injection of SMB via either route similarly improved cardiac performance and physical activity, associated with reduced cardiomyocyte-hypertrophy and fibrosis. Grafted SMB via either route were only present in low numbers in the myocardium, analysed by real-time PCR for the Y-chromosome specific gene, Sry. Cardiomyogenic differentiation of grafted SMB was extremely rare. Continuous ECG monitoring by telemetry revealed that only intramyocardial injection of SMB produced spontaneous ventricular tachycardia up to 14 days, associated with local myocardial heterogeneity generated by clusters of injected SMB and accumulated inflammatory cells. A small number of ventricular premature contractions with latent ventricular tachycardia were detected in the late-phase of SMB injection regardless of the injection-route. CONCLUSION: Retrograde intracoronary injection of SMB provided significant therapeutic benefits with attenuated early-phase arrhythmogenicity in treating ischaemic cardiomyopathy, indicating the promising utility of this route for SMB-delivery. Late-phase arrhythmogenicity remains a concern, regardless of the delivery route.

  14. Modulation of apoptosis by sulforaphane is associated with PGC-1α stimulation and decreased oxidative stress in cardiac myoblasts.

    Science.gov (United States)

    Fernandes, Rafael O; Bonetto, Jéssica H P; Baregzay, Boran; de Castro, Alexandre L; Puukila, Stephanie; Forsyth, Heidi; Schenkel, Paulo C; Llesuy, Susana F; Brum, Ilma Simoni; Araujo, Alex Sander R; Khaper, Neelam; Belló-Klein, Adriane

    2015-03-01

    Sulforaphane is a naturally occurring isothiocyanate capable of stimulating cellular antioxidant defenses and inducing phase 2 detoxifying enzymes, which can protect cells against oxidative damage. Oxidative stress and apoptosis are intimately involved in the pathophysiology of cardiac diseases. Although sulforaphane is known for its anticancer benefits, its role in cardiac cells is just emerging. The aim of the present study was to investigate whether sulforaphane can modulate oxidative stress, apoptosis, and correlate with PGC-1α, a transcriptional cofactor involved in energy metabolism. H9c2 cardiac myoblasts were incubated with R-sulforaphane 5 µmol/L for 24 h. Cell viability, ANP gene expression, oxidative stress and apoptosis markers, and protein expression of PGC-1α were studied. In cells treated with sulforaphane, cellular viability increased (12 %) and ANP gene expression decreased (46 %) compared to control cells. Moreover, sulforaphane induced a significant increase in superoxide dismutase (103 %), catalase (101 %), and glutathione S-transferase (72 %) activity, reduced reactive oxygen species levels (15 %) and lipid peroxidation (65 %), as well as stimulated the expression of the cytoprotective enzyme heme oxygenase-1 (4-fold). Sulforaphane also promoted an increase in the expression of the anti-apoptotic protein Bcl-2 (60 %), decreasing the Bax/Bcl-2 ratio. Active Caspase 3\\7 and p-JNK/JNK were also reduced by sulforaphane, suggesting a reduction in apoptotic signaling. This was associated with an increased protein expression of PGC-1α (42 %). These results suggest that sulforaphane offers cytoprotection to cardiac cells by activating PGC1-α, reducing oxidative stress, and decreasing apoptosis signaling.

  15. Internalization and fate of silica nanoparticles in C2C12 skeletal muscle cells: evidence of a beneficial effect on myoblast fusion

    Directory of Open Access Journals (Sweden)

    Poussard S

    2015-02-01

    Full Text Available Sylvie Poussard,1,2 Marion Decossas,1,2 Olivier Le Bihan,1,2 Stéphane Mornet,3 Grégoire Naudin,1,2 Olivier Lambert1,2 1Institute of Chemistry and Biology of Membranes and Nanoobjects, University of Bordeaux, UMR5248, Pessac, France; 2Institute of Chemistry and Biology of Membranes and Nanoobjects, Centre National de la Recherche Scientifique, Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR5248, Pessac, France; 3ICMCB, Institut de Chimie de la Matière Condensée de Bordeaux, CNRS UPR9048, Université de Bordeaux, Pessac, France Abstract: The use of silica nanoparticles for their cellular uptake capability opens up new fields in biomedical research. Among the toxicological effects associated with their internalization, silica nanoparticles induce apoptosis that has been recently reported as a biochemical cue required for muscle regeneration. To assess whether silica nanoparticles could affect muscle regeneration, we used the C2C12 muscle cell line to study the uptake of fluorescently labeled NPs and their cellular trafficking over a long period. Using inhibitors of endocytosis, we determined that the NP uptake was an energy-dependent process mainly involving macropinocytosis and clathrin-mediated pathway. NPs were eventually clustered in lysosomal structures. Myoblasts containing NPs were capable of differentiation into myotubes, and after 7 days, electron microscopy revealed that the NPs remained primarily within lysosomes. The presence of NPs stimulated the formation of myotubes in a dose-dependent manner. NP internalization induced an increase of apoptotic myoblasts required for myoblast fusion. At noncytotoxic doses, the NP uptake by skeletal muscle cells did not prevent their differentiation into myotubes but, instead, enhanced the cell fusion. Keywords: silica, nanoparticle, muscle, cell encapsulation, transmission electron microscopy, apoptosis

  16. Effects of Ghrelin on Triglyceride Accumulation and Glucose Uptake in Primary Cultured Rat Myoblasts under Palmitic Acid-Induced High Fat Conditions

    Directory of Open Access Journals (Sweden)

    Lingling Han

    2015-01-01

    Full Text Available This study aimed to study the effects of acylated ghrelin on glucose and triglyceride metabolism in rat myoblasts under palmitic acid- (PA- induced high fat conditions. Rat myoblasts were treated with 0, 10−11, 10−9, or 10−7 M acylated ghrelin and 0.3 mM PA for 12 h. Triglyceride accumulation was determined by Oil-Red-O staining and the glycerol phosphate dehydrogenase-peroxidase enzymatic method, and glucose uptake was determined by isotope tracer. The glucose transporter 4 (GLUT4, AMP-activated protein kinase (AMPK, acetyl-CoA carboxylase (ACC, and uncoupling protein 3 (UCP3 were assessed by RT-PCR and western blot. Compared to 0.3 mM PA, ghrelin at 10−9 and 10−7 M reduced triglyceride content (5.855 ± 0.352 versus 5.030 ± 0.129 and 4.158 ± 0.254 mM, P<0.05 and prevented PA-induced reduction of glucose uptake (1.717 ± 0.264 versus 2.233 ± 0.333 and 2.333 ± 0.273 10−2 pmol/g/min, P<0.05. The relative protein expression of p-AMPKα/AMPKα, UCP3, and p-ACC under 0.3 mM PA was significantly reduced compared to controls (all P<0.05, but those in the 10−9 and 10−7 M ghrelin groups were significantly protected from 0.3 mM PA (all P<0.05. In conclusion, acylated ghrelin reduced PA-induced triglyceride accumulation and prevented the PA-induced decrease in glucose uptake in rat myoblasts. These effects may involve fatty acid oxidation.

  17. Crystallochemical study of esters derived from 6{alpha}, 7{beta}-diidroxivouacapan-17{beta}-oic acid by x-ray diffraction; Estudo cristaloquimico de esteres derivados do acido 6{alpha}, 6{beta}-di-hidroxivouacapan-17{beta}-oico por difracao de raios-X

    Energy Technology Data Exchange (ETDEWEB)

    Abrahao Junior, Odonirio [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica

    1995-12-31

    The 6{alpha}, 7{beta}-diidroxivoacapan-17{beta}-oic acid (DVA) is a Furane-diterpene isolated from Peterodon genus. It has anti-inflammatory and analgesic properties. The purpose of this work is the characterisation by x-ray single crystal diffraction technique of esters derived from DVA, to understand the relationship between chemical structure and biological activity of vouacapanes. (author) 15 refs.

  18. Cardiac Shock Wave Therapy Attenuates H9c2 Myoblast Apoptosis by Activating the AKT Signal Pathway

    Directory of Open Access Journals (Sweden)

    Weiwei Yu

    2014-04-01

    Full Text Available Background: Previous studies have demonstrated that Cardiac Shock Wave Therapy (CSWT improves myocardial perfusion and cardiac function in a porcine model of chronic myocardial ischemia and also ameliorates myocardial ischemia in patients with severe coronary artery disease (CAD. Apoptosis plays a key role in ischemic myocardial pathogenesis. However, it remains unclear whether CSWT is beneficial for ischemia/hypoxia (I/H-induced myocardial cell apoptosis and by which mechanism CSWT could improve heart function. We put forward the hypothesis that CSWT might protect heart function during ischemia/hypoxia by decreasing apoptosis. Methods: We generated ischemia/hypoxia (I/H-induced apoptosis in the H9c2 myoblast cell line to examine the CSWT function and possible mechanisms. H9c2 cells were treated under hypoxic serum-starved conditions for 24 h and then treated with or without CSWT (500 shots, 0.06, 0.09, 0.12mJ/mm2. The apoptotic cell rate was determined by flow cytometry assay, cell viability was examined by the MTT assay, nuclear fragmentation was detected by Hoechst 33342 staining, and the mitochondrial-mediated intrinsic pathway of apoptosis was assessed by the expression of Bax and Bcl-2 protein and Caspase3 activation. Results: First, apoptosis could be induced by ischemia/hypoxia in H9c2 cells. Second, CSWT attenuates the cell death and decreases the H9c2 cell apoptosis rate induced by ischemia and hypoxia. Third, CSWT suppresses the expression of apoptosis molecules that regulate the intrinsic pathway of apoptosis in H9c2 cells. Fourth, CSWT increases the phosphorylation of AKT, which indicates the activation of the PI3K-AKT pathway. Conclusions: These results indicate that CSWT exerts a protective effect against I/H-induced cell death, potentially by preventing the activation of components of the mitochondrial-dependent intrinsic apoptotic pathway. We also demonstrate that the PI3K-Akt pathway may be involved in the CSWT effects on

  19. Platelet-rich plasma, especially when combined with a TGF-β inhibitor promotes proliferation, viability and myogenic differentiation of myoblasts in vitro.

    Directory of Open Access Journals (Sweden)

    Robi Kelc

    Full Text Available Regeneration of skeletal muscle after injury is limited by scar formation, slow healing time and a high recurrence rate. A therapy based on platelet-rich plasma (PRP has become a promising lead for tendon and ligament injuries in recent years, however concerns have been raised that PRP-derived TGF-β could contribute to fibrotic remodelling in skeletal muscle after injury. Due to the lack of scientific grounds for a PRP -based muscle regeneration therapy, we have designed a study using human myogenic progenitors and evaluated the potential of PRP alone and in combination with decorin (a TGF-β inhibitor, to alter myoblast proliferation, metabolic activity, cytokine profile and expression of myogenic regulatory factors (MRFs. Advanced imaging multicolor single-cell analysis enabled us to create a valuable picture on the ratio of quiescent, activated and terminally committed myoblasts in treated versus control cell populations. Finally high-resolution confocal microscopy validated the potential of PRP and decorin to stimulate the formation of polynucleated myotubules. PRP was shown to down-regulate fibrotic cytokines, increase cell viability and proliferation, enhance the expression of MRFs, and contribute to a significant myogenic shift during differentiation. When combined with decorin further synergistc effects were identified. These results suggest that PRP could not only prevent fibrosis but could also stimulate muscle commitment, especially when combined with a TGF-β inhibitor.

  20. α-linolenic acid reduces TNF-induced apoptosis in C2C12 myoblasts by regulating expression of apoptotic proteins

    Directory of Open Access Journals (Sweden)

    Felicia Carotenuto

    2016-11-01

    Full Text Available Impaired regeneration and consequent muscle wasting is a major feature of muscle degenerative diseases. Nutritional interventions as adjuvant strategy for preventing such conditions are recently gaining increasing attention. Ingestion of n3-polyunsaturated fatty acids has been suggested to have a positive impact on muscle diseases. We recently demonstrated that the dietary n3-fatty acid, alpha-linolenic acid (ALA, exerts potent beneficial effects in preserving skeletal muscle regeneration in models of muscle dystrophy. To better elucidate the underlying mechanism we investigate here on the expression level of the anti- and pro-apototic proteins, as well as caspase-3 activity, in C2C12 myoblasts challenged with pathological levels of TNF. The results demonstrated that ALA protective effect on C2C12 myoblasts was associated to an increased Bcl-2/Bax ratio. Indeed, the effect of ALA was directed to rescue Bcl-2 expression and decrease Bax expression both affected in an opposite way by TNF treatment. This effect was associated with a decrease in caspase-3 activity by ALA. TNF is a major pro-inflammatory cytokine that is expressed in damaged skeletal muscle, therefore, counteract inflammatory signals in the muscle microenvironment represents a critical strategy to ameliorate skeletal muscle pathologies

  1. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    Science.gov (United States)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  2. DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation.

    Science.gov (United States)

    Miyata, Kohei; Miyata, Tomoko; Nakabayashi, Kazuhiko; Okamura, Kohji; Naito, Masashi; Kawai, Tomoko; Takada, Shuji; Kato, Kiyoko; Miyamoto, Shingo; Hata, Kenichiro; Asahara, Hiroshi

    2015-01-15

    Although DNA methylation is considered to play an important role during myogenic differentiation, chronological alterations in DNA methylation and gene expression patterns in this process have been poorly understood. Using the Infinium HumanMethylation450 BeadChip array, we obtained a chronological profile of the genome-wide DNA methylation status in a human myoblast differentiation model, where myoblasts were cultured in low-serum medium to stimulate myogenic differentiation. As the differentiation of the myoblasts proceeded, their global DNA methylation level increased and their methylation patterns became more distinct from those of mesenchymal stem cells. Gene ontology analysis revealed that genes whose promoter region was hypermethylated upon myoblast differentiation were highly significantly enriched with muscle-related terms such as 'muscle contraction' and 'muscle system process'. Sequence motif analysis identified 8-bp motifs somewhat similar to the binding motifs of ID4 and ZNF238 to be most significantly enriched in hypermethylated promoter regions. ID4 and ZNF238 have been shown to be critical transcriptional regulators of muscle-related genes during myogenic differentiation. An integrated analysis of DNA methylation and gene expression profiles revealed that de novo DNA methylation of non-CpG island (CGI) promoters was more often associated with transcriptional down-regulation than that of CGI promoters. These results strongly suggest the existence of an epigenetic mechanism in which DNA methylation modulates the functions of key transcriptional factors to coordinately regulate muscle-related genes during myogenic differentiation.

  3. Expression of Basic Fibroblast Growth Factor Results in the Decrease of Myostatin mRNA in Murine C2C12 Myoblasts

    Institute of Scientific and Technical Information of China (English)

    Hua-Zhong LIU; Qing LI; Xing-Yuan YANG; Lin LIU; Lei LIU; Xiao-Rong AN; Yong-Fu CHEN

    2006-01-01

    During the development and regeneration of skeletal muscle, many growth factors, such as basic fibroblast growth factor (bFGF, FGF-2) and myostatin, have been shown to play regulating roles.bFGF contributes to promote proliferation and to inhibit differentiation of skeletal muscle, whereas myostatin plays a series of contrasting roles. In order to elucidate whether the expression of bFGF has any relationship with the expression of myostatin in skeletal muscle cells, we constructed a eukaryotic expression vector for the expression of exogenous bFGF in murine C2C12 myoblasts. Quantitative RT-PCR assays indicated that with the increase of the expression of exogenous bFGF gene, the expression of endogenous myostatin gene was suppressed at mRNA level and protein level.

  4. Cell-Adhesive Matrices Composed of RGD Peptide-Displaying M13 Bacteriophage/Poly(lactic-co-glycolic acid) Nanofibers Beneficial to Myoblast Differentiation.

    Science.gov (United States)

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Linhua; Kim, Min Jeong; Kim, Chuntae; Hong, Suck Won; Oh, Jin Woo; Han, Dong-Wook

    2015-10-01

    Recently, there has been considerable effort to develop suitable scaffolds for tissue engineering applications. Cell adhesion is a prerequisite for cells to survive. In nature, the extracellular matrix (ECM) plays this role. Therefore, an ideal scaffold should be structurally similar to the natural ECM and have biocompatibility and biodegradability. In addition, the scaffold should have biofunctionality, which provides the potent ability to enhance the cellular behaviors, such as adhesion, proliferation and differentiation. This study concentrates on fabricating cell-adhesive matrices composed of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) nanofibers. Long rod-shaped M13 bacteriophages are non-toxic and can express many desired proteins on their surface. A genetically engineered M13 phage was constructed to display RGD peptides on its surface. PLGA is a biodegradable polymer with excellent biocompatibility and suitable physicochemical property for adhesive matrices. In this study, RGD-M13 phage/PLGA hybrid nanofiber matrices were fabricated by electrospinning. The physicochemical properties of these matrices were characterized by scanning electron microscopy, atomic force microscopy, Raman spectroscopy, and contact angle measurement. In addition, the cellular behaviors, such as the initial attachment, proliferation and differentiation, were analyzed by a CCK-8 assay and immunofluorescence staining to evaluate the potential application of these matrices to tissue engineering scaffolds. The RGD-M13 phage/PLGA nanofiber matrices could enhance the cellular behaviors and promote the differentiation of C2C12 myoblasts. These results suggest that the RGD-M13 phage/PLGA nanofiber matrices are beneficial to myoblast differentiation and can serve as effective tissue engineering scaffolds.

  5. Overexpression of ryanodine receptor type 1 enhances mitochondrial fragmentation and Ca2+-induced ATP production in cardiac H9c2 myoblasts.

    Science.gov (United States)

    O-Uchi, Jin; Jhun, Bong Sook; Hurst, Stephen; Bisetto, Sara; Gross, Polina; Chen, Ming; Kettlewell, Sarah; Park, Jongsun; Oyamada, Hideto; Smith, Godfrey L; Murayama, Takashi; Sheu, Shey-Shing

    2013-12-01

    Ca(+) influx to mitochondria is an important trigger for both mitochondrial dynamics and ATP generation in various cell types, including cardiac cells. Mitochondrial Ca(2+) influx is mainly mediated by the mitochondrial Ca(2+) uniporter (MCU). Growing evidence also indicates that mitochondrial Ca(2+) influx mechanisms are regulated not solely by MCU but also by multiple channels/transporters. We have previously reported that skeletal muscle-type ryanodine receptor (RyR) type 1 (RyR1), which expressed at the mitochondrial inner membrane, serves as an additional Ca(2+) uptake pathway in cardiomyocytes. However, it is still unclear which mitochondrial Ca(2+) influx mechanism is the dominant regulator of mitochondrial morphology/dynamics and energetics in cardiomyocytes. To investigate the role of mitochondrial RyR1 in the regulation of mitochondrial morphology/function in cardiac cells, RyR1 was transiently or stably overexpressed in cardiac H9c2 myoblasts. We found that overexpressed RyR1 was partially localized in mitochondria as observed using both immunoblots of mitochondrial fractionation and confocal microscopy, whereas RyR2, the main RyR isoform in the cardiac sarcoplasmic reticulum, did not show any expression at mitochondria. Interestingly, overexpression of RyR1 but not MCU or RyR2 resulted in mitochondrial fragmentation. These fragmented mitochondria showed bigger and sustained mitochondrial Ca(2+) transients compared with basal tubular mitochondria. In addition, RyR1-overexpressing cells had a higher mitochondrial ATP concentration under basal conditions and showed more ATP production in response to cytosolic Ca(2+) elevation compared with nontransfected cells as observed by a matrix-targeted ATP biosensor. These results indicate that RyR1 possesses a mitochondrial targeting/retention signal and modulates mitochondrial morphology and Ca(2+)-induced ATP production in cardiac H9c2 myoblasts.

  6. Hybrid Randomly Electrospun Poly(lactic-co-glycolic acid):Poly(ethylene oxide) (PLGA:PEO) Fibrous Scaffolds Enhancing Myoblast Differentiation and Alignment.

    Science.gov (United States)

    Evrova, Olivera; Hosseini, Vahid; Milleret, Vincent; Palazzolo, Gemma; Zenobi-Wong, Marcy; Sulser, Tullio; Buschmann, Johanna; Eberli, Daniel

    2016-11-23

    Cellular responses are regulated by their microenvironments, and engineered synthetic scaffolds can offer control over different microenvironment properties. This important relationship can be used as a tool to manipulate cell fate and cell responses for different biomedical applications. We show for the first time in this study how blending of poly(ethylene oxide) (PEO) to poly(lactic-co-glycolic acid) (PLGA) fibers to yield hybrid scaffolds changes the physical and mechanical properties of PLGA fibrous scaffolds and in turn affects cellular response. For this purpose we employed electrospinning to create fibrous scaffolds mimicking the basic structural properties of the native extracellular matrix. We introduced PEO to PLGA electrospun fibers by spinning a blend of PLGA:PEO polymer solutions in different ratios. PEO served as a sacrificial component within the fibers upon hydration, leading to pore formation in the fibers, fiber twisting, increased scaffold disintegration, and hydrophilicity, decreased Young's modulus, and significantly improved strain at break of initially electrospun scaffolds. We observed that the blended PLGA:PEO fibrous scaffolds supported myoblast adhesion and proliferation and resulted in increased myotube formation and self-alignment, when compared to PLGA-only scaffolds, even though the scaffolds were randomly oriented. The 50:50 PLGA:PEO blended scaffold showed the most promising results in terms of mechanical properties, myotube formation, and alignment, suggesting an optimal microenvironment for myoblast differentiation from the PLGA:PEO blends tested. The explored approach for tuning fiber properties can easily extend to other polymeric scaffolds and provides a valuable tool to engineer fibrillar microenvironments for several biomedical applications.

  7. BPAG1a and b associate with EB1 and EB3 and modulate vesicular transport, Golgi apparatus structure, and cell migration in C2.7 myoblasts.

    Directory of Open Access Journals (Sweden)

    Kseniia Poliakova

    Full Text Available BPAG1a and BPAG1b (BPAG1a/b constitute two major isoforms encoded by the dystonin (Dst gene and show homology with MACF1a and MACF1b. These proteins are members of the plakin family, giant multi-modular proteins able to connect the intermediate filament, microtubule and microfilament cytoskeletal networks with each other and to distinct cell membrane sites. They also serve as scaffolds for signaling proteins that modulate cytoskeletal dynamics. To gain better insights into the functions of BPAG1a/b, we further characterized their C-terminal region important for their interaction with microtubules and assessed the role of these isoforms in the cytoskeletal organization of C2.7 myoblast cells. Our results show that alternative splicing does not only occur at the 5' end of Dst and Macf1 pre-mRNAs, as previously reported, but also at their 3' end, resulting in expression of additional four mRNA variants of BPAG1 and MACF1. These isoform-specific C-tails were able to bundle microtubules and bound to both EB1 and EB3, two microtubule plus end proteins. In the C2.7 cell line, knockdown of BPAG1a/b had no major effect on the organization of the microtubule and microfilament networks, but negatively affected endocytosis and maintenance of the Golgi apparatus structure, which became dispersed. Finally, knockdown of BPAG1a/b caused a specific decrease in the directness of cell migration, but did not impair initial cell adhesion. These data provide novel insights into the complexity of alternative splicing of Dst pre-mRNAs and into the role of BPAG1a/b in vesicular transport, Golgi apparatus structure as well as in migration in C2.7 myoblasts.

  8. Changes of integrin expression in rat hepatocarcinogenesis induced by 3′-Me-DAB

    Institute of Scientific and Technical Information of China (English)

    Sheng Tao Yuan; Xi Qi Hu; Jian Ping Lu; Wei Rong Zhai; Yue E Zhang; Hayashi KeiKi

    2000-01-01

    AIM To investigate the expression of integrins in rats liver during 3 '-Me-DAB induced hepatocarcinogenesis and to find out the relationship between integrins and liver cancer metastasis. METHODS The expressions of integrins α1, α2,α3 and α5 and epidermal keratin (EK) were observed by immunohistochemical PAP method.RESULTS In the normal liver tissues,hepatocytes express integrins α1 and α5 and in the bile duct epithlium, EK. In liver cirrhosis,hepatocytes highly express integrins α1, α2, α3 and α5 and in hyperplsstic bile duct epithelium,integrins α1, α5 and EK. Expression of integrins α1, α2, α3 and α5 were obviously decreased in the preneoplsstic nodules and primary carcinoma but expressions of integrins α1 and α5 in metastasis in the lung and diaphragme were higher than those in primary carcinoma.CONCLUSION Integrins α1 and α5 may play a major role in chemically induced hepatocarcinogenssis and metastasis in rats.

  9. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes

    DEFF Research Database (Denmark)

    Brakebusch, C; Grose, R; Quondamatteo, F

    2000-01-01

    of alpha 6 beta 4 integrin, and the number of hemidesmosomes decreased. Basement membrane components were atypically deposited and, at least in the case of laminin-5, improperly processed, leading to disruption of the basement membrane and blister formation at the dermal-epidermal junction. In contrast...

  10. Differences in integrin expression and signaling within human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Liu Yongqing

    2011-07-01

    Full Text Available Abstract Background Integrins are used as prognostic indicators in breast cancer. Following engagement with extracellular matrix proteins, their signaling influences numerous cellular processes including migration, proliferation, and death. Integrin signaling varies between cell types through differential expression of integrin subunits, and changes within a given cell upon exposure to a cell agonist or through changes in its surroundings. These variations in signaling can profoundly affect the phenotypic, tumorogenecity and metastatic properties of cancer cells. In the present study, we investigated if there were differences in the expression of integrins, integrin structures, and integrin co-receptors within three breast cancer cells and if these differences effected integrin signaling. Methods Expression of integrins, urokinase receptor and vascular endothelial cell growth factor receptor (VEGFR in metastatic MDA-MB-435 and MDA-MB-231, non-metastatic MCF7 and non-breast cancer Hek-293 cells was measured by flow cytometry. Cell adhesion was assessed using collagen, fibrinogen, fibronectin and vitronectin coated plates. Changes in kinase levels following PMA stimulation, and cell adhesion-induced activation of kinases were determined by western blot analysis. Distribution of actin stress fibers and focal adhesions was assessed by immunocytochemistry. Results All cells expressed αv integrins, while high β5 and αvβ5 expression was restricted to the cancer cells and high β3 and αvβ3 expression was restricted to MDA-MB-435 cells. The two metastatic cells were the least adhesive, but all cells adhered well to most proteins in the absence of PMA. All proliferating cells expressed activated pSrc, but only proliferating metastatic cells expressed high pMEK levels. PMA treatment resulted in time-dependent changes in activated kinase levels, and only MDA-MB-231 cells constitutively expressed high levels of activated pMEK. MDA-MB-435 cells formed more stress fibers and focal adhesions and only exhibited adhesion-induced activation of pMEK and pFAK. All cells expressed the urokinase receptor, but MCF7 cells had markedly higher VEGFR expression. Adhesion induced differential expression of pFAK, pMEK and pERK. Conclusions This study demonstrates that breast cancers vary in their expression of integrins, their capacity to form focal adhesion and to signal through integrins. These differences likely contribute to phenotypic variations between cancer lines and account for some of the heterogeneity of breast cancer.

  11. Analysis of integrin expression in U2OS cells cultured on various calcium phosphate ceramic substrates.

    NARCIS (Netherlands)

    Ruijter, J.E. de; Brugge, P.J. ter; Dieudonne, S.C.; Vliet, S.J. van; Torensma, R.; Jansen, J.A.

    2001-01-01

    Earlier we observed that calcium phosphate (Ca-P)-coated implant substrates stimulated the differentiation of osteoblast-like cells compared to uncoated substrates. This suggests that this difference in osteogenic induction is due to the chemical composition of the substratum. We hypothesized that C

  12. Effects of β4 integrin expression on microRNA patterns in breast cancer

    Directory of Open Access Journals (Sweden)

    Kristin D. Gerson

    2012-05-01

    The integrin α6β4 is defined as an adhesion receptor for laminins. Referred to as ‘β4’, this integrin plays a key role in the progression of various carcinomas through its ability to orchestrate key signal transduction events and promote cell motility. To identify novel downstream effectors of β4 function in breast cancer, microRNAs (miRNAs were examined because of their extensive links to tumorigenesis and their ability to regulate gene expression globally. Two breast carcinoma cell lines and a collection of invasive breast carcinomas with varying β4 expression were used to assess the effect of this integrin on miRNA expression. A novel miRNA microarray analysis termed quantitative Nuclease Protection Assay (qNPA revealed that β4 expression can significantly alter miRNA expression and identified two miRNA families, miR-25/32/92abc/363/363-3p/367 and miR-99ab/100, that are consistently downregulated by expression of this integrin. Analysis of published Affymetrix GeneChip data identified 54 common targets of miR-92ab and miR-99ab/100 within the subset of β4-regulated mRNAs, revealing several genes known to be key components of β4-regulated signaling cascades and effectors of cell motility. Gene ontology classification identified an enrichment in genes associated with cell migration within this population. Finally, gene set enrichment analysis of all β4-regulated mRNAs revealed an enrichment in targets belonging to distinct miRNA families, including miR-92ab and others identified by our initial array analyses. The results obtained in this study provide the first example of an integrin globally impacting miRNA expression and provide evidence that select miRNA families collectively target genes important in executing β4-mediated cell motility.

  13. Bupivacaine can enhance lysosomal activity in mouse muscle myoblasts%布比卡因增强小鼠成肌细胞溶酶体的活性

    Institute of Scientific and Technical Information of China (English)

    熊静薇; 毛雨; 李荣荣; 丁正年

    2015-01-01

    Objective To investigate the effects of bupivacaine on lysosomal abundance and activity in mouse muscle myoblasts.Methods Mouse myoblasts C2C12 was randomly divided into control group (without any treatment) and bupivacaine group (treated with bupivacaine 600 μ mol/L for 6 h).After then,the changes of lysosomal pH was assessed by LysoSensor pH indicator.The content of lysosomes was detected by LysoTracker probe.The expression of lysosomal-associated membrane protein-1 (LAMP-1) and Cathepsin B was detected by Western blot analysis.The activity of lysosomal proteolytic enzymes Cathepsin B was determined by MagicRed assay kit.Results Bupivacaine did not affect lysosomal pH.However,compared with the controls,lysosomal abundance was significantly increased 15.15% following bupivacaine treatment(P<0.01).Moreover,protein expression levels of LAMP-1 and Cathepsin B were significantly upregulated 36.41% and 35.29% respetctively by bupivacaine (P<0.01).Furthermore,the activity of Cathepsin B was significantly increased 23.74% by bupivacaine(P<0.01).Conclusions Bupivacaine increased lysosomal content and enhance lysosomal activity in mouse muscle myoblasts.%目的 探讨局部麻醉药布比卡因对小鼠成肌细胞溶酶体的影响. 方法 将体外培养的小鼠成肌细胞C2C12分为2组.对照组:不加任何药物;布比卡因组:以600μmol/L布比卡因刺激细胞6h.实验结束后,用LysoSensor探针评价溶酶体腔pH,用LysoTrackor探针检测溶酶体含量,用蛋白免疫印迹法检测溶酶体相关膜蛋白-1(LAMP-1)和溶酶体蛋白水解酶Cathepsin B的表达水平,并以MagicRed染色法测定Cathepsin B的活性.结果 布比卡因对溶酶体腔pH没有影响.但是,与对照组相比,布比卡因组溶酶体含量增加15.15% (P<0.01),LAMP-1与Cathepsin B表达量分别增加36.41%、35.29% (P<0.01),Cathepsin B活性增加23.74%(P<0.01).结论 布比卡因能增加小鼠成肌细胞溶酶体含量,增强溶酶体活性.

  14. Sodium arsenite represses the expression of myogenin in C2C12 mouse myoblast cells through histone modifications and altered expression of Ezh2, Glp, and Igf-1

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gia-Ming [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Present address: The University of Chicago, Section of Hematology/Oncology, 900 E. 57th Street, Room 7134, Chicago, IL 60637 (United States); Bain, Lisa J., E-mail: lbain@clemson.edu [Environmental Toxicology Graduate Program, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States); Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634 (United States)

    2012-05-01

    Arsenic is a toxicant commonly found in water systems and chronic exposure can result in adverse developmental effects including increased neonatal death, stillbirths, and miscarriages, low birth weight, and altered locomotor activity. Previous studies indicate that 20 nM sodium arsenite exposure to C2C12 mouse myocyte cells delayed myoblast differentiation due to reduced myogenin expression, the transcription factor that differentiates myoblasts into myotubes. In this study, several mechanisms by which arsenic could alter myogenin expression were examined. Exposing differentiating C2C12 cells to 20 nM arsenic increased H3K9 dimethylation (H3K9me2) and H3K9 trimethylation (H3K9me3) by 3-fold near the transcription start site of myogenin, which is indicative of increased repressive marks, and reduced H3K9 acetylation (H3K9Ac) by 0.5-fold, indicative of reduced permissive marks. Protein expression of Glp or Ehmt1, a H3-K9 methyltransferase, was also increased by 1.6-fold in arsenic-exposed cells. In addition to the altered histone remodeling status on the myogenin promoter, protein and mRNA levels of Igf-1, a myogenic growth factor, were significantly repressed by arsenic exposure. Moreover, a 2-fold induction of Ezh2 expression, and an increased recruitment of Ezh2 (3.3-fold) and Dnmt3a (∼ 2-fold) to the myogenin promoter at the transcription start site (− 40 to + 42), were detected in the arsenic-treated cells. Together, we conclude that the repressed myogenin expression in arsenic-exposed C2C12 cells was likely due to a combination of reduced expression of Igf-1, enhanced nuclear expression and promoter recruitment of Ezh2, and altered histone remodeling status on myogenin promoter (− 40 to + 42). -- Highlights: ► Igf-1 expression is decreased in C2C12 cells after 20 nM arsenite exposure. ► Arsenic exposure alters histone remodeling on the myogenin promoter. ► Glp expression, a H3–K9 methyltransferase, was increased in arsenic-exposed cells. ► Ezh2

  15. Skeletal myoblast based delivery of angiogenic growth factors:a comparison between angiopoietin-1 and VEGF gene delivery for therapeutic angiogenesis in the heart

    Institute of Scientific and Technical Information of China (English)

    Lei Ye; Husnain Kh Haider; Shujia Jiang; Rusan Tan; In-Chin Song; Ruowen Ge; Peter K Law; Eugene KW Sim

    2006-01-01

    Objectives This study investigated the efficacy of human skeletal myoblasts (SkM) mediated either human vascular endothelial growth factor-165 (hVEGF165) or angiopoietin-1 (Ang-1) on vascular development and myocardial regional perfusion. Methods A porcine heart model of chronic infarction was created in 28 female swine by coronary artery ligation. The animals were randomized into:(1) group-1, DMEM injected (n=6), (2) group-2, Ad-null transduced SkM transplanted (n=6), (3) group-3, Ad-hVEGF165 transduced SkM transplanted (n=8), and (4) group-4, Ad-Ang-1 transduced SkM (n=8). Three weeks later, 5 ml DMEM containing 3× 108 SkM carrying exogenous genes were intramyocardially injected into 20 sites in left ventricle in groups-2, -3 and -4. Animals in group-1 were injected 5 ml DMEM without cells. Animals were kept on 5 mg/kg cyclosporine per day for 6 weeks. Regional blood flow was measured using fluorescent microspheres. The heart was explanted at 2, 6 and 12 weeks after transplantation for histological studies. Results Histological examination showed survival of lac-z expressing myoblasts in host tissue. Capillary density based on Von Willebrand factor-Ⅷ (vWF-Ⅷ) at low power field (× 100) was 57.13+11.85 in group-3 at 6 weeks and declined to 32.1±5.21 at 12 weeks, while it was 39.9±10.26 at 6 weeks and increased to 45.14±6.54 at 12 weeks in group-4. The mature blood vessel index was highest in group4 at 6 and 12 weeks after transplantation. The regional blood flow in the center and peri-infarct area was significantly increased in animals of groups-3 and -4. Conclusions SkM carrying either hVEGF165 or Ang- 1 induced neovascularization with increased blood flow. Ang- 1 overexpression resulted in mature and stable blood vessel formation and may be a more potent arteriogenic inducer for neovascularization.(J Geriatr Cardiol 2006;3:152-60.)

  16. Norepinephrine-induced apoptotic and hypertrophic responses in H9c2 cardiac myoblasts are characterized by different repertoire of reactive oxygen species generation

    Directory of Open Access Journals (Sweden)

    Anita Thakur

    2015-08-01

    Full Text Available Despite recent advances, the role of ROS in mediating hypertrophic and apoptotic responses in cardiac myocytes elicited by norepinephrine (NE is rather poorly understood. We demonstrate through our experiments that H9c2 cardiac myoblasts treated with 2 µM NE (hypertrophic dose generate DCFH-DA positive ROS only for 2 h; while those treated with 100 µM NE (apoptotic dose sustains generation for 48 h, followed by apoptosis. Though the levels of DCFH fluorescence were comparable at early time points in the two treatment sets, its quenching by DPI, catalase and MnTmPyP suggested the existence of a different repertoire of ROS. Both doses of NE also induced moderate levels of H2O2 but with different kinetics. Sustained but intermittent generation of highly reactive species detectable by HPF was seen in both treatment sets but no peroxynitrite was generated in either conditions. Sustained generation of hydroxyl radicals with no appreciable differences were noticed in both treatment sets. Nevertheless, despite similar profile of ROS generation between the two conditions, extensive DNA damage as evident from the increase in 8-OH-dG content, formation of γ-H2AX and PARP cleavage was seen only in cells treated with the higher dose of NE. We therefore conclude that hypertrophic and apoptotic doses of NE generate distinct but comparable repertoire of ROS/RNS leading to two very distinct downstream responses.

  17. Development and Growth of the Avian Pectoralis Major (Breast Muscle: Function of Syndecan-4 and Glypican-1 in Adult Myoblast Proliferation and Differentiation

    Directory of Open Access Journals (Sweden)

    Sandra G. Velleman

    2017-08-01

    Full Text Available Muscle fiber number is determined around the time hatch with continued posthatch muscle growth being mediated by the adult myoblast, satellite cell, population of cells. Satellite cells are dynamic in their expression of proteins including the cell membrane associated proteoglycans, syndecan-4 and glypican-1. These proteoglycans play roles in organizing the extracellular environment in the satellite cell niche, cytoskeletal structure, cell-to-cell adhesion, satellite cell migration, and signal transduction. This review article focuses on syndecan-4 and glypican-1 as both are capable of regulating satellite cell responsiveness to fibroblast growth factor 2. Fibroblast growth factor 2 is a potent stimulator of muscle cell proliferation and a strong inhibitor of differentiation. Proteoglycans are composed of a central core protein defined functional domains, and covalently attached glycosaminoglycans and N-glycosylation chains. The functional association of these components with satellite cell function is discussed as well as an emerging role for microRNA regulation of syndecan-4 and glypican-1.

  18. Fine-Tuning of the Actin Cytoskeleton and Cell Adhesion During Drosophila Development by the Unconventional Guanine Nucleotide Exchange Factors Myoblast City and Sponge.

    Science.gov (United States)

    Biersmith, Bridget; Wang, Zong-Heng; Geisbrecht, Erika R

    2015-06-01

    The evolutionarily conserved Dock proteins function as unconventional guanine nucleotide exchange factors (GEFs). Upon binding to engulfment and cell motility (ELMO) proteins, Dock-ELMO complexes activate the Rho family of small GTPases to mediate a diverse array of biological processes, including cell motility, apoptotic cell clearance, and axon guidance. Overlapping expression patterns and functional redundancy among the 11 vertebrate Dock family members, which are subdivided into four families (Dock A, B, C, and D), complicate genetic analysis. In both vertebrate and invertebrate systems, the actin dynamics regulator, Rac, is the target GTPase of the Dock-A subfamily. However, it remains unclear whether Rac or Rap1 are the in vivo downstream GTPases of the Dock-B subfamily. Drosophila melanogaster is an excellent genetic model organism for understanding Dock protein function as its genome encodes one ortholog per subfamily: Myoblast city (Mbc; Dock A) and Sponge (Spg; Dock B). Here we show that the roles of Spg and Mbc are not redundant in the Drosophila somatic muscle or the dorsal vessel. Moreover, we confirm the in vivo role of Mbc upstream of Rac and provide evidence that Spg functions in concert with Rap1, possibly to regulate aspects of cell adhesion. Together these data show that Mbc and Spg can have different downstream GTPase targets. Our findings predict that the ability to regulate downstream GTPases is dependent on cellular context and allows for the fine-tuning of actin cytoskeletal or cell adhesion events in biological processes that undergo cell morphogenesis.

  19. Cultured senescent myoblasts derived from human vastus lateralis exhibit normal mitochondrial ATP synthesis capacities with correlating concomitant ROS production while whole cell ATP production is decreased.

    Science.gov (United States)

    Minet, Ariane D; Gaster, Michael

    2012-06-01

    The free radical theory of aging says that increased oxidative stress and mitochondrial dysfunction are associated with old age. In the present study we have investigated the effects of cellular senescence on muscle energetic by comparing mitochondrial content and function in cultured muscle satellite cells at early and late passage numbers. We show that cultured muscle satellite cells undergoing senescence express a reduced mitochondrial mass, decreased whole cell ATP level, normal to increased mitochondrial ATP production under ATP utilization, increased mitochondrial membrane potential and increased superoxide/mitochondrial mass and hydrogen peroxide/mitochondrial mass ratios. Moreover, the increased ROS production correlates with the corresponding mitochondrial ATP production. Thus, myotubes differentiated from human myoblasts undergoing senescence have a reduced mitochondrial content, but the existent mitochondria express normal to increased functional capabilities. The present data suggest that the origin of aging lies outside the mitochondria and that a malfunction in the cell might be preceding and initiating the increase of mitochondrial ATP synthesis and concomitant ROS production in the single mitochondrion in response to decreased mitochondrial mass and reduced extra-mitochondrial energy supply. This then can lead to the increased damage of DNA, lipids and proteins of the mitochondria as postulated by the free radical theory of aging.

  20. Nrf2-Mediated HO-1 Induction Contributes to Antioxidant Capacity of a Schisandrae Fructus Ethanol Extract in C2C12 Myoblasts

    Directory of Open Access Journals (Sweden)

    Ji Sook Kang

    2014-12-01

    Full Text Available This study was designed to confirm the protective effect of Schisandrae Fructus, which are the dried fruits of Schisandra chinensis (Turcz. Baill, against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms in C2C12 myoblasts. Preincubating C2C12 cells with a Schisandrae Fructus ethanol extract (SFEE significantly attenuated hydrogen peroxide (H2O2-induced inhibition of growth and induced scavenging activity against intracellular reactive oxygen species (ROS induced by H2O2. SFEE also inhibited comet tail formation and phospho-histone γH2A.X expression, suggesting that it prevents H2O2-induced cellular DNA damage. Furthermore, treating C2C12 cells with SFEE significantly induced heme oxygenase-1 (HO-1 and phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2. However, zinc protoporphyrin IX, a potent inhibitor of HO-1 activity, significantly reversed the protective effects of SFEE against H2O2-induced growth inhibition and ROS generation in C2C12 cells. Additional experiments revealed that the potential of the SFEE to induce HO-1 expression and protect against H2O2-mediated cellular damage was abrogated by transient transfection with Nrf2-specific small interfering RNA, suggesting that the SFEE protected C2C12 cells against oxidative stress-induced injury through the Nrf2/HO-1 pathway.

  1. Transforming growth factor type-β inhibits Mas receptor expression in fibroblasts but not in myoblasts or differentiated myotubes; Relevance to fibrosis associated to muscular dystrophies.

    Science.gov (United States)

    Cofre, Catalina; Acuña, María José; Contreras, Osvaldo; Morales, María Gabriela; Riquelme, Cecilia; Cabello-Verrugio, Claudio; Brandan, Enrique

    2015-01-01

    Duchenne muscular dystrophy is a genetic disorder characterized by myofiber degeneration, muscle weakness, and increased fibrosis. Transforming growth factor type-β (TGF-β), a central mediator of fibrosis, is upregulated in fibrotic diseases. Angiotensin-(1-7) [Ang-(1-7)] is a peptide with actions that oppose those of angiotensin-II (Ang II). Ang-(1-7) effects are mediated by the Mas receptor. Treatment with Ang-(1-7) produce positive effects in the mdx mouse, normalizing skeletal muscle architecture, decreasing local fibrosis, and fibroblasts, and improving muscle function. Mdx mice deficient for the Mas receptor showed the opposite effects. To identify the cell type(s) responsible for Mas receptor expression, and to characterize whether profibrotic effectors had any effect on its expression, we determined the effect of profibrotic agents on Mas expression. TGF-β, but not connective tissue growth factor or Ang-II, reduced the expression of Mas receptor in fibroblasts isolated from skeletal muscle cells and fibroblasts from two established cell lines. In contrast, no effects were observed in myoblasts and differentiated myotubes. This inhibition was mediated by the Smad-dependent (canonical) and the PI3K and MEK1/2 (noncanonical) TGF-β signaling pathways. When both canonical and noncanonical inhibitors of the TGF-β-dependent pathways were added together, the inhibitory effect of TGF-β on Mas expression was lost. The decrease in Mas receptor induced by TGF-β in fibroblasts reduced the Ang-(1-7) mediated stimulation of phosphorylation of AKT pathway proteins. These results suggest that reduction of Mas receptor in fibroblasts, by TGF-β, could increase the fibrotic phenotype observed in dystrophic skeletal muscle decreasing the beneficial effect of Ang-(1-7). © 2015 International Union of Biochemistry and Molecular Biology.

  2. Addition of Mesenchymal Stem Cells Enhances the Therapeutic Effects of Skeletal Myoblast Cell-Sheet Transplantation in a Rat Ischemic Cardiomyopathy Model

    Science.gov (United States)

    Shudo, Yasuhiro; Miyagawa, Shigeru; Ohkura, Hanayuki; Fukushima, Satsuki; Saito, Atsuhiro; Shiozaki, Motoko; Kawaguchi, Naomasa; Matsuura, Nariaki; Shimizu, Tatsuya; Okano, Teruo; Matsuyama, Akifumi

    2014-01-01

    Introduction: Functional skeletal myoblasts (SMBs) are transplanted into the heart effectively and safely as cell sheets, which induce functional recovery in myocardial infarction (MI) patients without lethal arrhythmia. However, their therapeutic effect is limited by ischemia. Mesenchymal stem cells (MSCs) have prosurvival/proliferation and antiapoptotic effects on co-cultured cells in vitro. We hypothesized that adding MSCs to the SMB cell sheets might enhance SMB survival post-transplantation and improve their therapeutic effects. Methods and Results: Cell sheets of primary SMBs of male Lewis rats (r-SMBs), primary MSCs of human female fat tissues (h-MSCs), and their co-cultures were generated using temperature-responsive dishes. The levels of candidate paracrine factors, rat hepatocyte growth factor and vascular endothelial growth factor, in vitro were significantly greater in the h-MSC/r-SMB co-cultures than in those containing r-SMBs only, by real-time PCR and enzyme-linked immunosorbent assay (ELISA). MI was generated by left-coronary artery occlusion in female athymic nude rats. Two weeks later, co-cultured r-SMB or h-MSC cell sheets were implanted or no treatment was performed (n=10 each). Eight weeks later, systolic and diastolic function parameters were improved in all three treatment groups compared to no treatment, with the greatest improvement in the co-cultured cell sheet transplantation group. Consistent results were found for capillary density, collagen accumulation, myocyte hypertrophy, Akt-signaling, STAT3 signaling, and survival of transplanted cells of rat origin, and were related to poly (ADP-ribose) polymerase-dependent signal transduction. Conclusions: Adding MSCs to SMB cell sheets enhanced the sheets' angiogenesis-related paracrine mechanics and, consequently, functional recovery in a rat MI model, suggesting a possible strategy for clinical applications. PMID:24164292

  3. Global N-linked Glycosylation is Not Significantly Impaired in Myoblasts in Congenital Myasthenic Syndromes Caused by Defective Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT1

    Directory of Open Access Journals (Sweden)

    Qiushi Chen

    2015-10-01

    Full Text Available Glutamine-fructose-6-phosphate transaminase 1 (GFPT1 is the first enzyme of the hexosamine biosynthetic pathway. It transfers an amino group from glutamine to fructose-6-phosphate to yield glucosamine-6-phosphate, thus providing the precursor for uridine diphosphate N-acetylglucosamine (UDP-GlcNAc synthesis. UDP-GlcNAc is an essential substrate for all mammalian glycosylation biosynthetic pathways and N-glycan branching is especially sensitive to alterations in the concentration of this sugar nucleotide. It has been reported that GFPT1 mutations lead to a distinct sub-class of congenital myasthenic syndromes (CMS termed “limb-girdle CMS with tubular aggregates”. CMS are hereditary neuromuscular transmission disorders in which neuromuscular junctions are impaired. To investigate whether alterations in protein glycosylation at the neuromuscular junction might be involved in this impairment, we have employed mass spectrometric strategies to study the N-glycomes of myoblasts and myotubes derived from two healthy controls, three GFPT1 patients, and four patients with other muscular diseases, namely CMS caused by mutations in DOK7, myopathy caused by mutations in MTND5, limb girdle muscular dystrophy type 2A (LGMD2A, and Pompe disease. A comparison of the relative abundances of bi-, tri-, and tetra-antennary N-glycans in each of the cell preparations revealed that all samples exhibited broadly similar levels of branching. Moreover, although some differences were observed in the relative abundances of some of the N-glycan constituents, these variations were modest and were not confined to the GFPT1 samples. Therefore, GFPT1 mutations in CMS patients do not appear to compromise global N-glycosylation in muscle cells.

  4. Cytotoxicity of an ebulin l-anti-human CD105 immunotoxin on mouse fibroblasts (L929) and rat myoblasts (L6E9) cells expressing human CD105.

    Science.gov (United States)

    Benítez, Jorge; Ferreras, J Miguel; Muñoz, Raquel; Arias, Yolanda; Iglesias, Rosario; Córdoba-Díaz, Manuel; del Villar, Rosario; Girbés, Tomás

    2005-01-01

    Tumour growth is characterised by the formation of a fine vessel network or neovasculature which nourishes tumour cells. Two kinds of novel anti-angiogenic therapies are based on the prevention of vessels growth and on the destruction of those vessels already formed. We report here on the design and construction of a novel immunotoxin formed with the non-toxic type II ribosome-inactivating protein ebulin l and the mouse anti-human CD105 monoclonal antibody 44G4. The 44G4-ebulin immunotoxin was formed by covalent linking of both proteins with N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) and was purified by chromatography on Superdex 200 HiLoad. The analysis of the anti-ribosomal effects in a cell-free translation system indicated that conjugation does not affect the activity of ebulin l. The immunotoxin displays cytotoxicity with nanomolar IC50 values on human CD105+ cells like the mouse fibroblasts L929 cells transfected with the short form of human CD105 and the rat myoblasts L6E9 transfected with the long form of human CD105. In contrast, cells lacking human CD105 were 2-2.5 logs less sensitive to the immunotoxin. Free ebulin displays IC50 values in the range 10(-6) M. Since CD105 is being considered as a potential target for the anti-vascular therapy of tumours, the present immunotoxin could be a promising tool for the anticancer therapy, especially due to the very low in vivo toxicity of ebulin l as compared ricin and other toxins used for immunotoxins.

  5. Expression of the myodystrophic R453W mutation of lamin A in C2C12 myoblasts causes promoter-specific and global epigenetic defects.

    Science.gov (United States)

    Håkelien, Anne-Mari; Delbarre, Erwan; Gaustad, Kristine G; Buendia, Brigitte; Collas, Philippe

    2008-05-01

    Autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD) is characterized by muscle wasting and is caused by mutations in the LMNA gene encoding A-type lamins. Overexpression of the EDMD lamin A R453W mutation in C2C12 myoblasts impairs myogenic differentiation. We show here the influence of stable expression of the R453W and of the Dunnigan-type partial lipodystrophy R482W mutation of lamin A in C2C12 cells on transcription and epigenetic regulation of the myogenin (Myog) gene and on global chromatin organization. Expression of R453W-, but not R482W-lamin A, impairs activation of Myog and maintains a repressive chromatin state on the Myog promoter upon induction of differentiation, marked by H3 lysine (K) 9 dimethylation and failure to hypertrimethylate H3K4. Cells expressing WT-LaA also fail to hypertrimethylate H3K4. No defect occurs at the level of Myog promoter DNA methylation in any of the clones. Expression of R453W-lamin A and to a lesser extent R482W-lamin A in undifferentiated C2C12 cells redistributes H3K9me3 from pericentric heterochromatin. R453W-lamin A also elicits a redistribution of H3K27me3 from inactive X (Xi) and partial decondensation of Xi, but maintains Xist expression and coating of Xi, indicating that Xi remains inactivated. Our results argue that gene-specific and genome-wide chromatin rearrangements may constitute a molecular basis for laminopathies.

  6. Transfection of rat myoblasts with leuflvirus carrying autocrine motility factor gene%携带自分泌运动因子基因的慢病毒载体转染大鼠成肌细胞

    Institute of Scientific and Technical Information of China (English)

    李任; 金岚; 田怡; 牙祖蒙

    2009-01-01

    目的 探索高效、安全的自分泌运动因子(autocrine motility factor,AMF)基因转染方法 ,为携带AMF基因的成肌细胞移植提供实验依据. 方法 取SD大鼠胸肌,用组织块培养法原代培养成肌细胞,纯化、鉴定、扩增成肌细胞;构建携带AMF及增强型绿色荧光蛋白(enhancedgreen fluorescent protein,EGFP)基因的猫免疫缺陷病毒(feline immuneddieiency vires,FIV)慢病毒载体;后者转染至成肌细胞;用荧光显微镜、激光共聚焦显微镜检测EGFP以确定转染的阳性率;应用免疫组化方法 检测AMF的表达. 结果 经过2周的原代培养及纯化,可获得纯度为98%的成肌细胞,在转染复数(multiplieity ofinfection,MOI)为100时,可获得90.4%(P<0.01)的转染阳性率,而转染后的AMF基因能正常表达. 结论 组织块培养法适合成肌细胞的原代培养;FIV载体能以高转染率将AMF基因转至大鼠成肌细胞,并获得高效的表达.该方法 为一种较理想的AMF基因转染模式.%Objective To explore a safe and high efficiency way of gene transfection of autocrine motility factor(AMF) in order to provide experimental basis for transplantation of myoblasts carrying AMF gone. Methods Sprague Dawley rat myoblasts were cultured, purified, proliferated and immunohisto-chemically verified. Then, the myoblasts were transfected with AMF and eGFP (enhanced green fluores-cent protein) gene by FIV (feline immunodeficiency virus). Fluorescence microscope and laser scanning confocal microscope were employed to detect eGFP so as to verify positive transfection rate. Expression of AMF was detected by immunohistochemical method. Results Myoblasts with 98% purity could he ob-tained after two weeks of primary culture and purification. Positive transfection rate reached 90.4% when MOI (multiplicity of infection) was 100 (P <0.01). The transfected AMF gene could express normally. Conclusions Explant culture is a proper way in rat myoblast culture. Meanwhile, AMF gene can

  7. G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo.

    Science.gov (United States)

    Wu, Melissa P; Doyle, Jamie R; Barry, Brenda; Beauvais, Ariane; Rozkalne, Anete; Piao, Xianhua; Lawlor, Michael W; Kopin, Alan S; Walsh, Christopher A; Gussoni, Emanuela

    2013-12-01

    Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G-protein coupled receptor 56 (GPR56) was transiently up-regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56(-/-) myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T-cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56-mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild-type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G-protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities.

  8. Impact of Temperature Profile on Indium-Tin Oxide Glass Chips on Growth and Proliferation of Myoblasts%ITO玻璃芯片上温度分布对成肌细胞生长增殖的影响

    Institute of Scientific and Technical Information of China (English)

    张晓娟; 杨忠; 王振宇; 胡宁; 黄小玲; 郑小林; 曹毅; 杨军

    2013-01-01

    为了研究不同温度对小鼠成肌细胞生长增殖的影响,在ITO玻璃芯片上加载电场形成一定的温度分布.在不同温度(38、39、40和41℃)所对应的区域加工相同尺寸的PDMS微型培养腔室用于小鼠成肌细胞的培养.通过对芯片上培养的小鼠成肌细胞连续5d的热刺激(30 min/d),研究不同温度短期热刺激对成肌细胞增殖的影响.细胞形态显微观察和流式细胞仪检测结果表明,一定的温度刺激对小鼠成肌细胞的增殖有促进作用,其中40C刺激后的细胞数目增加最明显.在总刺激时间(30 min)相同情况下,短时多次热刺激的效果更理想,细胞增殖指数最高可达38.39.%In order to study the impact of different temperatures on the growth and proliferation of myoblasts,specific electric fields were loaded on indium-tin oxide (ITO) glass chips to form some temperature profiles.In several zones with different temperatures (38,39,40 and 41 ℃),microchambers with equal size were fabricated for the culture of mouse myoblasts.Impacts of temperatures on growth and proliferation of myoblasts were studied by stimulating cells for continuous 5 d (30 min/d).Microscopic observation of cell morphology and flow cytometric detection results showed that certain thermal stimulation could promote the proliferation of myoblasts.Number of cells was obviously increased after the stimulus of 40 ℃.For equal total stimulation time,short-term multiple thermal stimulation could achieve better effect and maximum proliferation index could reach 38.39.

  9. ANKRD1 modulates inflammatory responses in C2C12 myoblasts through feedback inhibition of NF-κB signaling activity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin-Hua [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Bauman, William A. [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Cardozo, Christopher, E-mail: chris.cardozo@va.gov [National Center of Excellence for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, NY 10468 (United States); Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States); Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 (United States)

    2015-08-14

    Transcription factors of the nuclear factor-kappa B (NF-κB) family play a pivotal role in inflammation, immunity and cell survival responses. Recent studies revealed that NF-κB also regulates the processes of muscle atrophy. NF-κB activity is regulated by various factors, including ankyrin repeat domain 2 (AnkrD2), which belongs to the muscle ankyrin repeat protein family. Another member of this family, AnkrD1 is also a transcriptional effector. The expression levels of AnkrD1 are highly upregulated in denervated skeletal muscle, suggesting an involvement of AnkrD1 in NF-κB mediated cellular responses to paralysis. However, the molecular mechanism underlying the interactive role of AnkrD1 in NF-κB mediated cellular responses is not well understood. In the current study, we examined the effect of AnkrD1 on NF-κB activity and determined the interactions between AnkrD1 expression and NF-κB signaling induced by TNFα in differentiating C2C12 myoblasts. TNFα upregulated AnkrD1 mRNA and protein levels. AnkrD1-siRNA significantly increased TNFα-induced transcriptional activation of NF-κB, whereas overexpression of AnkrD1 inhibited TNFα-induced NF-κB activity. Co-immunoprecipitation studies demonstrated that AnkrD1 was able to bind p50 subunit of NF-κB and vice versa. Finally, CHIP assays revealed that AnkrD1 bound chromatin at a NF-κB binding site in the AnrkD2 promoter and required NF-κB to do so. These results provide evidence of signaling integration between AnkrD1 and NF-κB pathways, and suggest a novel anti-inflammatory role of AnkrD1 through feedback inhibition of NF-κB transcriptional activity by which AnkrD1 modulates the balance between physiological and pathological inflammatory responses in skeletal muscle. - Highlights: • AnkrD1 is upregulated by TNFα and represses NF-κB-induced transcriptional activity. • AnkrD1 binds to p50 subunit of NF-κB and is recruited to NF-κB bound to chromatin. • AnkrD1 mediates a feed-back inhibitory loop

  10. Cartap-induced cytotoxicity in mouse C2C12 myoblast cell line and the roles of calcium ion and oxidative stress on the toxic effects.

    Science.gov (United States)

    Liao, Jiunn-Wang; Kang, Jaw-Jou; Jeng, Chian-Ren; Chang, Shao-Kuang; Kuo, Ming-Jang; Wang, Shun-Cheng; Liu, Michael R S; Pang, Victor Fei

    2006-02-15

    Our previous study has demonstrated that instead of neuromuscular blockage cartap, an organonitrogen insecticide, could cause a marked irreversible Ca2+-dependent contracture in both isolated mouse and rabbit phrenic nerve-diaphragms. We further examined the potential of direct myocytotoxicity of cartap and the possible roles of calcium ion and oxidative stress on cartap-induced muscle cell injury using the mouse myoblast cell line, C2C12. Cartap exerted a dose- and time-dependent cytotoxic effect in C2C12 cells measured by MTT colorimetric assay and trypan blue dye exclusion. The extracellular activities of both creatine kinase (CK) and lactate dehydrogenase (LDH) were elevated in the cartap-treated groups at or greater than 100 microM. The isoenzymatic profiles showed that the elevations were mainly due to CK-3, LDH-3, and LDH-4. Following the addition of 0.5-2.5mM EGTA, a Ca2+ chelator, or 30-100 microM verapamil, an L-type Ca2+ channel blocker, the cartap-induced reduction in MTT metabolic rate of C2C12 cells was significantly restored in a dose-dependent manner in both EGTA and verapamil-treated cells. Furthermore, EGTA could significantly reduce the cartap-induced elevation in the levels of total extracellular CK and LDH activities. Additionally, cartap significantly increased the level of endogenous reactive oxygen species (ROS) in C2C12 cells in a dose- and time-dependent manner. The cartap-induced ROS generation could be significantly inhibited by antioxidants, including Vitamins C and E, catalase, and superoxide dismutase, with catalase the most effective. EGTA could significantly inhibit cartap-induced ROS generation in a dose-dependent manner. The results suggested that cartap could induce ROS generation in C2C12 cells via a Ca2+-dependent mechanism resulting in subsequent cytotoxicity, at least partially, to C2C12 cells. It is speculated that both Ca2+ and Ca2+-induced ROS may also play the central role on the myogenic contracture and myofiber injury

  11. Influence of high-fat environment on glucose metabolism in rat myoblasts%高脂环境对大鼠成肌细胞糖脂代谢的影响

    Institute of Scientific and Technical Information of China (English)

    韩玲玲; 李佳; 陈颖; 王威; 张丹; 刘国良

    2011-01-01

    AIM:To explore the effects of high - fat environment on glucose metabolism in rat myoblasts. METHODS; The rat myoblasts were exposed to palmitic acid (PA) at concentrations of 0. 1 mmol/L, 0. 3 mmol/L or 0. 5 mmol/L for 6 h, 12 h or 24 h. The viability of the cells was determined by MTT assay. The oil red 0 dyeing method was used to display triglyceride (TC) sediment in the cells. Triglyceride content in the cells was measured by glycerophosphate oxidase - peroxidase ( GPO - POD) method. The uptake of 2 - deoxy - D - [3H ] glucose ( [3H ] - G) in rat myoblasts was determined by isotope tracer method. RESULTS: After exposed to PA at concentrations of 0. 1 ~ 0. 5 mmol/L for 6 24 h, the viability of rat myoblasts decreased, TG sediment and content increased,and[ 3H] - G uptake was inhibited in a concentration -and time -dependent manner. Compared with control group, the cell viability, TG sediment and content, and [3H] - G uptake were significantly changed in 0. 3 mmol/L PA group (24 h) and 0. 5 mmol/L PA groups (12 h and 24 h). CONCLUSION; With the elevating concentration of PA exposure, TG sediment increases and glucose uptake decreases in rat myoblasts.%目的:探讨棕榈酸(PA)形成的高脂环境对大鼠成肌细胞糖代谢的影响,为深入研究2型糖尿病的发生机制提供理论依据.方法:用0.1、0.3、0.5 mmol/L棕榈酸处理原代培养大鼠成肌细胞6、12、24 h后,用MTT法检测成肌细胞活力;用油红O染色法检测成肌细胞脂肪变性后甘油三酯沉积;用甘油磷酸氧化酶-过氧化物酶(GPO-POD)法测定成肌细胞脂肪变性后甘油三酯含量;用同位素示踪法检测葡萄糖摄取.结果:随着PA处理浓度(0.1-0.5 mmol/L)的增加,及暴露时间(6~24 h)的增加,成肌细胞活力逐渐降低、甘油三酯沉积及含量不断增高、葡萄糖摄取不断降低,并呈现剂量和时间依赖性的效应关系.与对照组比较,0.3 mmol/L PA(24 h)和0.5 mmol/L PA(12、24 h)造成细胞活力、甘油

  12. Myoblast and its application in skeletal muscle research%成肌细胞及其在骨骼肌研究中的应用

    Institute of Scientific and Technical Information of China (English)

    潘红英; 徐晓阳

    2007-01-01

    目的:总结成肌细胞在骨骼肌收缩功能和细胞基因治疗研究中的应用.资料来源:应用计算机检索Medline及Science Direct(Elsevier),EBSCOhost,Kluwer Online等数据库2000-01/2006-10相关骨骼肌成肌细胞及其应用研究方面的文献,检索词"myoblast,contract,mitochondria,genetreatment",限定文献语言种类为English.同时计算机检索中国期刊全文数据库2002-01/2006-10相关骨骼肌成肌细胞及其应用研究方面的文献,检索词"成肌细胞,骨骼肌收缩,基因治疗",限定文献语言种类为中文.资料选择:对资料进行初审,选取包括成肌细胞特性、收缩研究及应用等方面的文献,开始查找全文.纳入标准:有关成肌细胞的生物学特性、在骨骼肌收缩中的应用、在基因治疗中应用方面的文献.排除标准:重复研究、个案报告、综述、Meta分析的文献.资料提炼:共检索到125篇关于成肌细胞研究的文献,最终纳入35篇符合标准的文献.资料综合:成肌细胞是肌组织的前体细胞,易培养、可塑性强,具有骨骼肌的许多重要生物特性,且细胞能够融合进在体骨骼肌组织中,因此在骨骼肌收缩运动引起的细胞离子浓度、线粒体功能和肌型变化等的研究以及细胞移植治疗骨骼肌肌病和修复心肌组织的研究上都有着广泛的应用.本文综述近年来成肌细胞的生物学特性和骨骼肌收缩功能及基因治疗应用等方面所取得的相关进展.结论:成肌细胞可以为骨骼肌在收缩功能上的研究提供一个很好的研究平台,其在基因治疗研究中的应用也为肌组织工程的研究奠定了基础.

  13. Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue

    Directory of Open Access Journals (Sweden)

    Suzuki Erika

    2011-07-01

    Full Text Available Abstract Background In vitro studies using the myogenic cell line C2C12 demonstrate that bone morphogenetic protein-2 (BMP-2 converts the developmental pathway of C2C12 from a myogenic cell lineage to an osteoblastic cell lineage. Further, in vivo studies using null mutation mice demonstrate that BMPs inhibit the specification of the developmental fate of myogenic progenitor cells. However, the roles of BMPs in the phases of differentiation and maturation in skeletal muscles have yet to be determined. The present study attempts to define the function of BMP-2 in the final stage of differentiation of mouse tongue myoblast. Results Recombinant BMP-2 inhibited the expressions of markers for the differentiation of skeletal muscle cells, such as myogenin, muscle creatine kinase (MCK, and fast myosin heavy chain (fMyHC, whereas BMP-2 siRNA stimulated such markers. Neither the recombinant BMP-2 nor BMP-2 siRNA altered the expressions of markers for the formation of cartilage and bone, such as osteocalcin, alkaline phosphatase (ALP, collagen II, and collagen X. Further, no formation of cartilage and bone was observed in the recombinant BMP-2-treated tongues based on Alizarin red and Alcian blue stainings. Neither recombinant BMP-2 nor BMP-2 siRNA affected the expression of inhibitor of DNA binding/differentiation 1 (Id1. The ratios of chondrogenic and osteogenic markers relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a house keeping gene were approximately 1000-fold lower than those of myogenic markers in the cultured tongue. Conclusions BMP-2 functions as a negative regulator for the final differentiation of tongue myoblasts, but not as an inducer for the formation of cartilage and bone in cultured tongue, probably because the genes related to myogenesis are in an activation mode, while the genes related to chondrogenesis and osteogenesis are in a silencing mode.

  14. Laminin and integrin expression in the ventral ectodermal ridge of the mouse embryo: implications for regulation of BMP signalling

    Science.gov (United States)

    Lopez-Escobar, Beatriz; de Felipe, Beatriz; Sanchez-Alcazar, Jose Antonio; Sasaki, Takako; Copp, Andrew J.; Ybot-Gonzalez, Patricia

    2013-01-01

    Background The ventral ectodermal ridge (VER) is an important signalling centre in the mouse tail-bud following completion of gastrulation. BMP regulation is essential for VER function, but how these signals are transmitted between adjacent tissues is unclear. Results We investigated the idea that extracellular matrix components might be involved, using immunohistochemistry and in situ hybridisation to detect all known α, β and γ laminin chains and their mRNAs in the early tail bud. We identified an apparently novel laminin variant, comprising α5, β3 and γ2 chains, as a major component of the VER basement membrane at E9.5. Strikingly, only the mRNAs for these chains were co-expressed in VER cells, suggesting that lamin532 may be the sole basement membrane laminin at this stage. Since α6 integrin was also expressed in VER cells, this raises the possibility of cell-matrix interactions regulating BMP signalling at this site of caudal morphogenesis. Conclusions Laminin532 could interact with α6-containing integrin to direct differentiation of the specialised VER cells from surface ectoderm. PMID:22911573

  15. Prostaglandin E2 suppresses beta1-integrin expression via E-prostanoid receptor in human monocytes/macrophages.

    Science.gov (United States)

    Hasegawa, Shunji; Ichiyama, Takashi; Kohno, Fumitaka; Korenaga, Yuno; Ohsaki, Ayami; Hirano, Reiji; Haneda, Yasuhiro; Fukano, Reiji; Furukawa, Susumu

    2010-01-01

    Beta1-integrins mediate cell attachment to different extracellular matrix proteins, intracellular proteins, and intercellular adhesions. Recently, it has been reported that prostaglandin E2 (PGE2) has anti-inflammatory properties such as inhibition of the expression of adhesion molecules or production of chemokines. However, the effect of PGE2 on the expression of beta1-integrin remains unknown. In this study, we investigated the effects of PGE2 on the expression of beta1-integrin in the human monocytic cell line THP-1 and in CD14+ monocytes/macrophages in human peripheral blood. For this, we examined the role of four subtypes of PGE2 receptors and E-prostanoid (EP) receptors on PGE2-mediated inhibition. We found that PGE2 significantly inhibited the expression of beta1-integrin, mainly through EP4 receptors in THP-1 cells and CD14+ monocytes/macrophages in human peripheral blood. We suggest that PGE2 has anti-inflammatory effects, leading to the inhibited expression of beta1-integrin in human monocytes/macrophages, and that the EP4 receptor may play an important role in PGE2-mediated inhibition. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Fluvastatin attenuates the down-regulation of β1 integrin expression in PAN-treated podocytes by inhibiting ROS

    Institute of Scientific and Technical Information of China (English)

    刘佳

    2013-01-01

    Objective To investigate the effect of fluvastatin(FLV) on the expression of β1 integrin in puromycin aminonucleoside(PAN)-treated podocytes and its mechanism. Methods Cultured human podocytes were divided into PAN,different concentrations of

  17. Production of IL1-beta by ovarian cancer cells induces mesothelial cell beta1-integrin expression facilitating peritoneal dissemination

    Directory of Open Access Journals (Sweden)

    Watanabe Takafumi

    2012-02-01

    Full Text Available Abstract Background A crucial step in the metastatic spread of ovarian cancer (OC is the adhesion and implantation of tumor cells to the peritoneal mesothelium. In order to study this step in the cascade, we derived a pro-metastatic human ovarian carcinoma cell line (MFOC3 from the non-metastatic FOC3 line. Methods Molecular profiling of the isogeneic lines identified differentially expressed genes, and investigation for a role in dissemination for specific factors was achieved by development of a co-culture adhesion assay utilizing monolayers of human mesothelial cells. Results After murine intraperitoneal inoculation, the FOC3 cell line formed no metastases, but the MFOC3 subline formed metastases in > 80% of SCID mice. MFOC3 cells also adhered 2-3 times more avidly to mesothelial monolayers. This adhesion was inhibited by neutralizing antibodies to IL-1β and enhanced by recombinant IL-1β (p in vitro and significantly reduced metastases in vivo. Immunohistochemical analysis of a cohort of 96 ovarian cancer cases showed that negative IL-1β expression was significantly associated with an improved overall survival rate. Conclusions These results suggest that a IL-1β/β1-integrin axis plays a role in ovarian tumor cell adhesion to mesothelia, a crucial step in ovarian cancer dissemination.

  18. Ionizing radiation modulates cell surface integrin expression and adhesion of COLO-320 cells to collagen and fibronectin in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Meineke, V.; Gilbertz, K.P.; Schilperoort, K.; Cordes, N.; Beuningen, D. van [Inst. of Radiobiology, Federal Armed Forces, Muenchen (Germany); Sendler, A. [Surgical Clinic, TU Muenchen (Germany); Moede, T. [Dept. of Molecular Medicine, Karolinska Hospital, Stockholm (Sweden)

    2002-12-01

    Purpose: Adhesion of tumor cells to endothelial cells and to the extracellular matrix is a key step in the initial phase of metastasis. Since radiotherapy of tumors can induce alterations of the cell surface, we investigated the effect of ionizing radiation on the expression of integrins in the colorectal tumor cell line COLO-320 and the modulation of adhesion capacity of irradiated cells to collagen and fibronectin. Material and Methods: The cells surface expression of a broad range of integrins on COLO-320 cells was determined by flow cytometry during 144 hours after X-irradiation. The functional significance of increased adhesion molecule expression was assessed by cell-matrix adhesion and receptor blocking experiments. Results: Cell surface expression of the following integrin {alpha} and {beta} subunits was quantified: {beta}1 (CD29), {alpha}2 (CD49b), {alpha}5 (CD49e) and {alpha}6 (CD49f). The expression of {alpha}1, {alpha}2, {alpha}5, and {alpha}6 changed as a function of time after irradiation (5 Gy). For {beta}1 even a function of dose (1-5 Gy) could be shown. Adhesion experiments confirmed a time dependent increase in adhesion to both collagen and fibronectin. Radiation-induced increase in adhesion was inhibited significantly by using a CD29 antibody. Conclusions: Ionizing radiation modulates cell surface expression of integrins and cell-matrix interactions. The {beta}1-integrin subunit plays an important role in radiation-induced adhesion to both collagen and fibronectin. Possible consequences of these invitro results for radiotherapy of colorectal tumors in vivo are discussed. (orig.) [German] Hintergrund: Die Adhaesion zwischen Tumorzellen und Endothelzellen sowie der extrazellulaeren Matrix ist ein entscheidender Schritt in der Initialphase einer Metastasierung. Da eine Bestrahlung von Tumoren mittels Radiotherapie Aenderungen der Zelloberflaeche bewirken kann, wurde der Effekt von ionisierender Strahlung auf die Expression von Integrinen in der kolorektalen Tumorzelllinie COLO-320 sowie die Modulation der Adhaesionsfaehigkeit der bestrahlten Zellen an Kollagen und Fibronektin untersucht. Material und Methode: Die Zelloberflaechenexpression einer Reihe von Integrinen wurde durchflusszytometrisch an COLO-320-Zellen bis zu 144 Stunden nach Bestrahlung bestimmt. Die funktionelle Bedeutung einer gesteigerten Adhaesionsmolekuelexpression wurde mittels Zell-Matrix-Adhaesionsversuchen und Rezeptorblockaden untersucht. Ergebnisse: Die Zelloberflaechenexpression der folgenden {alpha}- und {beta}-Integrinuntereinheiten wurde quantifiziert: {beta}1 (CD29), {alpha}2 (CD49b), {alpha}5 (CD49e) und {alpha}6 (CD49f). Die Expression von {alpha}1, {alpha}2, {alpha}5 und {alpha}6 aenderte sich zeitabhaengig nach Bestrahlung (5 Gy). Fuer {beta}1 konnte auch eine Dosisabhaengigkeit zwischen 1 und 5 Gy gezeigt werden. Adhaesionsversuche bestaetigen einen zeitabhaengigen Anstieg sowohl der Adhaesion zu Kollagen als auch zu Fibronektin. Der strahleninduzierte Anstieg der Adhaesion wurde signifikant durch einen CD29-Antikoerper inhibiert. Schlussfolgerungen: Ionisierende Strahlung moduliert die Zelloberflaechenexpression von Integrinen und Zell-Matrix-Interaktionen. Die {beta}1-Integrinuntereinheit spielt eine wichtige Rolle bei der strahleninduzierten Adhaesion sowohl an Kollagen als auch an Fibronektin. Moegliche Konsequenzen dieser In-vitro-Ergebnisse fuer eine Radiotherapie kolorektaler Tumoren in vivo werden diskutiert. (orig.)

  19. miR-143-3p促进C2C12成肌细胞分化%miR-143-3p Is Implicated in C2C12 Myoblasts Differentiation

    Institute of Scientific and Technical Information of China (English)

    云青; 吴国芳; 魏欢; 庞卫军; 杨公社; 沈清武

    2013-01-01

    MicroRNAs (miRNAs) are small non-coding RNA that play important roles in skeletal muscle development.To explore the function of miR-143-3p in the differentiation of C2C12 myoblasts,we detected miR-143-3p levels by real-time PCR in different mouse tissues,as well as C2C12 myoblasts during myogenesis.After the trasfection of miR-143-3p mimics and inhibitor in C2C12 myoblasts,the expression of myogenic regulatory factor MyoG and myogenic marker gene MyHC were detected by realtime PCR and Western blotting.The myotubule formation was detected by immunofluorescent staining.The results showed that miR-143-3p was ubiquitously expressed in various tissues and was upregulated during cell differentiation.The differentiation of C2C12 myoblasts was promoted with miR-143-3p overexpression as significant upregulation of MyoG and MyHC,and increased number of myotubules.The inhibitor of miR-143-3p significantly repressed cell differentiation.Interestingly,the transfection of miR-143-3p mimics had little effect on the expression of MyHCs.Our data suggested that miR-143-3p might be involved during the myogeneis of C2C12 myoblasts,but not directly impact MyHC expression.%MicroRNAs (miRNAs)是一类小非编码RNA,近年研究发现其在骨骼肌发育调控中发挥重要作用.为探明miR-143-3p在C2C12成肌细胞分化中的调控作用,采用real-time PCR检测了miR-143-3p在小鼠各组织及C2C12成肌细胞分化过程中的表达;使用miR-143-3p的模拟物和特异性抑制剂分别处理细胞,采用real-time PCR和Western印迹分别检测成肌因子MyoG和成肌标志基因MyHC mRNA和蛋白水平的变化;用免疫荧光染色的方法观察肌管的形成.结果显示,miR-143-3p在小鼠各组织中均有表达,并且随着细胞分化表达量逐渐增加;C2C12成肌细胞过表达miR-143-3p,与对照组相比,成肌调控因子MyoG和成肌标志基因MyHC的mRNA和蛋白表达均显著升高,肌管数量明显增多;抑制剂处理结果显示,细胞分

  20. Myoblast differentiation of human mesenchymal stem cells on graphene oxide and electrospun graphene oxide-polymer composite fibrous meshes: importance of graphene oxide conductivity and dielectric constant on their biocompatibility.

    Science.gov (United States)

    Chaudhuri, Biswadeep; Bhadra, Debabrata; Moroni, Lorenzo; Pramanik, Krishna

    2015-02-18

    Recently graphene and graphene based composites are emerging as better materials to fabricate scaffolds. Addition of graphene oxide (GO) nanoplatelets (GOnPs) in bioactive polymers was found to enhance its conductivity (σ) and, dielectric permittivity (ϵ) along with biocompatibility. In this paper, human cord blood derived mesenchymal stem cells (CB-hMSCs) were differentiated to skeletal muscle cells (hSkMCs) on spin coated thin GO sheets composed of GOnPs and on electrospun fibrous meshes of GO-PCL (poly-caprolactone) composite. Both substrates exhibited excellent myoblast differentiations and promoted self-alignedmyotubesformation similar to natural orientation. σ, ϵ, microstructural and vibration spectroscopic studies were carried out for the characterizations of GO sheet and the composite scaffolds. Significantly enhanced values of both σ and ϵ of the GO-PCL composite were considered to provide favourable cues for the formation of superior multinucleated myotubes on the electrospun meshes compared to those on thin GO sheets. The present results demonstrated that both substrates might be used as potential candidates for CB-hMSCs differentiation and proliferation for human skeletal muscle tissue regeneration.

  1. The cytoprotective effect of isorhamnetin against oxidative stress is mediated by the upregulation of the Nrf2-dependent HO-1 expression in C2C12 myoblasts through scavenging reactive oxygen species and ERK inactivation.

    Science.gov (United States)

    Choi, Yung Hyun

    2016-04-01

    This study was designed to confirm the protective effects of isorhamnetin against oxidative stress-induced cellular damage. Our results indicated that isorhamnetin inhibited the hydrogen peroxide (H2O2)-induced growth inhibition and exhibited scavenging activity against the intracellular reactive oxygen species (ROS) in mouse-derived C2C12 myoblasts. Isorhamnetin also significantly attenuated H2O2-induced DNA damage and apoptosis, and increased the levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and its phosphorylation associated with the induction of heme oxygenase-1 (HO-1). However, the protective effects of isorhamnetin on H2O2-induced ROS and growth inhibition were significantly abolished by an HO-1 competitive inhibitor. Moreover, the potential of isorhamnetin to mediate HO-1 induction and protect against H2O2-mediated growth inhibition was abrogated by transient transfection with Nrf2-specific small interfering RNA. Additionally, isorhamnetin induced the activation of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. However, the specific inhibitor of ERK, but not JNK and p38 MAPK, was able to abolish the HO-1 upregulation and the Nrf2 phosphorylation. Collectively, these results demonstrate that isorhamnetin augments the cellular antioxidant defense capacity by activating the Nrf2/HO-1 pathway involving the activation of the ERK pathway, thus protecting the C2C12 cells from H2O2-induced cytotoxicity.

  2. Overexpression of miRNA-133a on the in vitro proliferation and differentiation of L6 myoblasts%miRNA-133a过表达对体外L6成肌细胞增殖分化作用机制的研究

    Institute of Scientific and Technical Information of China (English)

    李波; 弓贺炜; 李文斌; 李永平; 冯勇; 贾英伟; 田江华; 李刚; 梁炳生

    2014-01-01

    Objective To construct recombinant lentiviral vector of micro RNA-133a and observe the proliferation,differentiation and expression of transcription factor MEF2A of L6 myoblasts transfected with the vector system.Methods Recombinant lentiviral vector containing micro RNA-133a gene was constructed and transfected into L6 myoblasts.The expression of micro RNA-133a gene was detected by real-time PCR (Taqman probe).The effect of micro RNA-133a overexpression on L6 myoblast proliferation was quantified using cell counting kit (CCK-8).Its effect on cell differentiation was detected by inverted fluorescence microscope.Western blot assay was used to detect the expression level of transcription factor MEF2A in these cells.Results The successful construction of micro RNA-133a recombinant lentiviral vector was confirmed by plasmid enzyme digestion and DNA sequencing.Compared with the control group,relative expression of micro RNA-133a gene in L6 myoblasts was significantly increased (P < 0.01) 24h after the vector transfection.L6 cell proliferation was increased significantly (P < 0.01),while its differentiation was effectively inhibited.The expression level of MEF2A was significantly reduced (P < 0.01).Conclusion Micro RNA-133a recombinant lentiviral vector can successfully transfect L6 myoblasts causing the cells to overexpress micro RNA-133a.This overexpression promotes L6 myoblast proliferation and inhibits its differentiation in an in vitro cell culture system.%目的 构建微小RNA-133a重组慢病毒载体,观察其转染后对L6成肌细胞增殖、分化及转录因子MEF2A的影响.方法 构建表达含微小RNA-133a基因的重组慢病毒载体,转染L6成肌细胞,以实时定量PCR(Taqman探针法)对微小RNA-133a基因表达水平进行检测;细胞计数试剂盒(CCK-8)试验评价微小RNA-133a过表达后对L6成肌细胞增殖的影响;倒置荧光显微镜观察L6成肌细胞增殖、分化的影响;Western blot法检测转录因子MEF2A

  3. 人参皂苷Rg1对体外培养C2C12成肌细胞凋亡的影响%Effect of ginsenoside Rg1 during serum-deprivation induced apoptosis in C2C12 myoblasts cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    叶东明; 余磊; 王乐禹; 邱小忠; 欧阳钧

    2011-01-01

    Objective: To investigate the effect and possible mechanism of ginsenoside Rgl during serum-deprivation induced apoptosis in C2C12 myoblasts cultured in vitro. Methods: The effect of different concentrations of ginsenoside Rgl during the cell apoptosis was assessed by MTT assay, Hoechst 33258-PI double staining and RT-PCR analysis. Results: After 48 h treatment, various doses of ginsenoside Rgl increased cell viability in serum-deprived C2C12 myoblasts using MTT assay. Hoechst 33258-PI double staining showed that the rate of apoptosis cells significantly decreased after being treated by ginsenoside Rgl. RT-PCR showed that ginsenoside Rgl caused the downregulation of pro-apoptotic caspase-3, Bax and AIF genes, while caused the up-regulation of anti-apoptotic Bcl-2 gene. Conclusion: Ginsenoside Rgl can protect the serum-deprived apoptosis in C2C12 myoblasts.%目的:研究人参皂苷Rg1对体外无血清诱导培养的C2C12成肌细胞凋亡的影响及其可能机制.方法:采用MTT法、人参皂苷Rg1处理48 h后hoechst 33258-PI染色,以及RT-PCR方法观察不同浓度人参皂苷Rg1对C2C12成肌细胞凋亡的影响.结果:MTT法结果显示人参皂苷Rg1处理48 h后可抑制C2C12成肌细胞凋亡;Hoechst 33258-PI染色可见C2C12成肌细胞凋亡率人参皂苷处理前后差异有统计学意义,人参皂苷处理后C2C12成肌细胞凋亡率显著下降;RT-PCR法结果显示人参皂苷Rg1可抑制Caspase-3、Bax和AIF mRNA表达,并能诱导Bcl-2 mRNA表达.结论:人参皂苷Rg1对C2C12成肌细胞凋亡具有保护作用.

  4. PET imaging of {alpha}{sub v}{beta}{sub 3} integrin expression in tumours with {sup 68}Ga-labelled mono-, di- and tetrameric RGD peptides

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, Ingrid; Franssen, Gerben M.; Oyen, Wim J.G.; Boerman, Otto C. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Yim, Cheng-Bin [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, P.O. Box 9101, Nijmegen (Netherlands); Utrecht University, Department of Medicinal Chemistry and Chemical Biology, Utrecht Institute for Pharmaceutical Sciences, Utrecht (Netherlands); Schuit, Robert C. [VU University Medical Centre, Department of Nuclear Medicine and PET Research, P.O. Box 7057, Amsterdam (Netherlands); Luurtsema, Gert [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, P.O. Box 30.001, Groningen (Netherlands); Liu, Shuang [Purdue University, School of Health Sciences, West Lafayette, IN (United States)

    2011-01-15

    Due to the restricted expression of {alpha}{sub v}{beta}{sub 3} in tumours, {alpha}{sub v}{beta}{sub 3} is considered a suitable receptor for tumour targeting. In this study the {alpha}{sub v}{beta}{sub 3}-binding characteristics of {sup 68}Ga-labelled monomeric, dimeric and tetrameric RGD peptides were determined and compared with their {sup 111}In-labelled counterparts. A monomeric (E-c(RGDfK)), a dimeric (E-[c(RGDfK)]{sub 2}) and a tetrameric (E{l_brace}E[c(RGDfK)]{sub 2}{r_brace}{sub 2}) RGD peptide were synthesised, conjugated with DOTA and radiolabelled with {sup 68}Ga. In vitro {alpha}{sub v}{beta}{sub 3}-binding characteristics were determined in a competitive binding assay. In vivo {alpha}{sub v}{beta}{sub 3}-targeting characteristics of the compounds were assessed in mice with subcutaneously growing SK-RC-52 xenografts. In addition, microPET images were acquired using a microPET/CT scanner. The IC{sub 50} values for the Ga(III)-labelled DOTA-E-c(RGDfK), DOTA-E-[c(RGDfK)]{sub 2} and DOTA-E{l_brace}E[c(RGDfK)]{sub 2}{r_brace}{sub 2} were 23.9 {+-} 1.22, 8.99 {+-} 1.20 and 1.74 {+-} 1.18 nM, respectively, and were similar to those of the In(III)-labelled mono-, di- and tetrameric RGD peptides (26.6 {+-} 1.15, 3.34 {+-} 1.16 and 1.80 {+-} 1.37 nM, respectively). At 2 h post-injection, tumour uptake of the {sup 68}Ga-labelled mono-, di- and tetrameric RGD peptides (3.30 {+-} 0.30, 5.24 {+-} 0.27 and 7.11 {+-} 0.67%ID/g, respectively) was comparable to that of their {sup 111}In-labelled counterparts (2.70 {+-} 0.29, 5.61 {+-} 0.85 and 7.32 {+-} 2.45%ID/g, respectively). PET scans were in line with the biodistribution data. On all PET scans, the tumour could be clearly visualised. The integrin affinity and the tumour uptake followed the order of DOTA-tetramer > DOTA-dimer > DOTA-monomer. The {sup 68}Ga-labelled tetrameric RGD peptide has excellent characteristics for imaging of {alpha}{sub v} {beta}{sub 3} expression with PET. (orig.)

  5. Discovery, SAR, and Radiolabeling of Halogenated Benzimidazole Carboxamide Antagonists as Useful Tools for (alpha)4(beta)1 Integrin Expressed on T- and B-cell Lymphomas

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, R D; Natarajan, A; Lau, E Y; Andrei, M; Solano, D M; Lightstone, F C; DeNardo, S J; Lam, K S; Kurth, M J

    2010-02-08

    The cell surface receptor {alpha}{sub 4}{beta}{sub 1} integrin is an attractive yet poorly understood target for selective diagnosis and treatment of T- and B-cell lymphomas. This report focuses on the rapid microwave preparation of medicinally pertinent benzimidazole heterocycles, structure-activity relationships (SAR) of novel halobenzimidazole carboxamide antagonists 3-6, and preliminary biological evaluation of radioiodinated agents 7, 8, and 18. The I-125 derivative 18 had good tumor uptake (12 {+-} 1% ID/g at 24 h; 4.5 {+-} 1% ID/g at 48 h) and tumor:kidney ratio ({approx}4:1 at 24 h; 2.5:1 at 48 h) in xenograft murine models of B-cell lymphoma. Molecular homology models of {alpha}{sub 4}{beta}{sub 1} integrin have predicted that docked halobenzimidazole carboxamides have the halogen atom in a suitable orientation for halogen-hydrogen bonding. These high affinity ({approx} pM binding) halogenated ligands are attractive tools for medicinal and biological use; the fluoro and iodo derivatives are potential radiodiagnostic ({sup 18}F) or radiotherapeutic ({sup 131}I) agents, whereas the chloro and bromo analogues could provide structural insight into integrin-ligand interactions through photoaffinity cross-linking/mass spectroscopy experiments, as well as co-crystallization X-ray studies.

  6. Establishment and evaluation of a murine ανβ3-integrin-expressing cell line with increased susceptibility to Foot-and-mouth disease virus.

    Science.gov (United States)

    Zhang, Wei; Lian, Kaiqi; Yang, Fan; Yang, Yang; Zhu, Zhijian; Zhu, Zixiang; Cao, Weijun; Mao, Ruoqing; Jin, Ye; He, Jijun; Guo, Jianhong; Liu, Xiangtao; Zheng, Haixue

    2015-01-01

    Integrin ανβ3 plays a major role in various signaling pathways, cell apoptosis, and tumor angiogenesis. To examine the functions and roles of ανβ3 integrin, a stable CHO-677 cell line expressing the murine ανβ3 heterodimer (designated as "CHO-677-mανβ3" cells) was established using a highly efficient lentiviral-mediated gene transfer technique. Integrin subunits αν and β3 were detected at the gene and protein levels by polymerase chain reaction (PCR) and indirect immunofluorescent assay (IFA), respectively, in the CHO-677-mανβ3 cell line at the 20th passage, implying that these genes were successfully introduced into the CHO-677 cells and expressed stably. A plaque-forming assay, 50% tissue culture infective dose (TCID50), real-time quantitative reverse transcription-PCR, and IFA were used to detect the replication levels of Foot-and-mouth disease virus (FMDV) in the CHO-677-mανβ3 cell line. After infection with FMDV/O/ZK/93, the cell line showed a significant increase in viral RNA and protein compared with CHO-677 cells. These findings suggest that we successfully established a stable ανβ3-receptor-expressing cell line with increased susceptibility to FMDV. This cell line will be very useful for further investigation of ανβ3 integrin, and as a cell model for FMDV research.

  7. Alpha-enolase (ENO1 controls alpha v/beta 3 integrin expression and regulates pancreatic cancer adhesion, invasion, and metastasis

    Directory of Open Access Journals (Sweden)

    Moitza Principe

    2017-01-01

    Full Text Available Abstract Background We have previously shown that in pancreatic ductal adenocarcinoma (PDA cells, the glycolytic enzyme alpha-enolase (ENO1 also acts as a plasminogen receptor and promotes invasion and metastasis formation. Moreover, ENO1 silencing in PDA cells induces oxidative stress, senescence and profoundly modifies PDA cell metabolism. Although anti-ENO1 antibody inhibits PDA cell migration and invasion, little is known about the role of ENO1 in regulating cell-cell and cell-matrix contacts. We therefore investigated the effect of ENO1 silencing on the modulation of cell morphology, adhesion to matrix substrates, cell invasiveness, and metastatic ability. Methods The membrane and cytoskeleton modifications that occurred in ENO1-silenced (shENO1 PDA cells were investigated by a combination of confocal microscopy and atomic force microscopy (AFM. The effect of ENO1 silencing was then evaluated by phenotypic and functional experiments to identify the role of ENO1 in adhesion, migration, and invasion, as well as in senescence and apoptosis. The experimental results were then validated in a mouse model. Results We observed a significant increase in the roughness of the cell membrane due to ENO1 silencing, a feature associated with an impaired ability to migrate and invade, along with a significant downregulation of proteins involved in cell-cell and cell-matrix adhesion, including alpha v/beta 3 integrin in shENO1 PDA cells. These changes impaired the ability of shENO1 cells to adhere to Collagen I and IV and Fibronectin and caused an increase in RGD-independent adhesion to vitronectin (VN via urokinase plasminogen activator receptor (uPAR. Binding of uPAR to VN triggers integrin-mediated signals, which result in ERK1-2 and RAC activation, accumulation of ROS, and senescence. In shENO1 cancer cells, the use of an anti-uPAR antibody caused significant reduction of ROS production and senescence. Overall, a decrease of in vitro and in vivo cell migration and invasion of shENO1 PDA cells was observed. Conclusion These data demonstrate that ENO1 promotes PDA survival, migration, and metastasis through cooperation with integrins and uPAR.

  8. Effects of a Single and Low Dose of Mifepristone on Integrin Expression in Human Endometrium During the Peri-implantation Period

    Institute of Scientific and Technical Information of China (English)

    Jie WU; Jie-dong WANG; Long-sheng WANG; Peng-di ZHU; Jie CHENG

    2002-01-01

    Objective In order to gain further information about the mechanism of emergency contraception, during the peri-implantation period the effect of single and low dose of Mifepristone on the expression of integrin level in endometrium of healthy women were observed Materials & Methods Eleven healthy women, proven fertility, were randomly divided into two groups: group LH-2 (n = 5) and LH+ 2 (n = 6). During the control and treatment cycle, placebo or 10 mg Mifepristone were given orally to group LH- 2 on cycle day LH- 2 or to group LH + 2 on cycle day LH - 2, respectively. One endometrial tissue specimen was obtained in both the control and the treatment cycle on cycle day LH+ 7.In this study, the endometrial specimens were assessed by immunohistochemistry analysis to measure the change of integrin α1, α4 and β3 subunits expression on the endometrium after using Mifepristone.Results Mifepristone increased the expression of α1 and α4 subunit in glandular epithelium only in group LH- 2. The expression of β3 integrin subunit remain the same in our experiments.Conclusion Treatment with Mifepristone interferes with integrin distribution during the implantation period, which may imply that the contraceptive effect of Mi fepristone is primarily due to impaired endometrial receptivity.

  9. Leptin upregulates beta3-integrin expression and interleukin-1beta, upregulates leptin and leptin receptor expression in human endometrial epithelial cell cultures.

    Science.gov (United States)

    Gonzalez, R R; Leavis, P

    2001-10-01

    Human endometrium and endometrial epithelial cells (EECs) either cultured alone or cocultured with human embryos express leptin and leptin receptor. This study compares the effect of leptin with that of interleukin-1beta (IL-1beta) on the expression of beta3-EEC integrin, a marker of endometrial receptivity. Both cytokines increased the expression of beta3-EEC at concentrations in the range of 0.06-3 nM; however, leptin exhibited a significantly greater effect than IL-1beta. We also determined the regulatory effects of IL-1beta on leptin secretion and on the expression of leptin and leptin receptor at the protein level in both EEC and endometrial stromal cell (ESC) cultures. In EEC cultures, IL-1beta upregulated secretion of leptin and expression of both leptin and leptin receptors. No effect of IL-1beta was found in the ESC cultures. However, leptin exhibited marginal upregulation of leptin receptor. The upregulation of beta3-integrin and leptin/leptin receptor expression by IL-1beta in EEC cultures indicates that both cytokines may be implicated in embryonic-maternal cross-talk during the early phase of human implantation. Our present data also raise the possibility that leptin is an endometrial molecular effector of IL-1beta action on beta3-integrin upregulation. Thus, a new role for leptin in human reproduction as an autocrine/paracrine regulator of endometrial receptivity is proposed.

  10. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus.

    Science.gov (United States)

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-03-19

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7*nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7*nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2-3 week-old Wistar rats, and 2-9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7*nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7*nicotinic receptor modulator, which were blocked by a specific α7*nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7*nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7*nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study.

    Science.gov (United States)

    Marcus, Monica M; Björkholm, Carl; Malmerfelt, Anna; Möller, Annie; Påhlsson, Ninni; Konradsson-Geuken, Åsa; Feltmann, Kristin; Jardemark, Kent; Schilström, Björn; Svensson, Torgny H

    2016-09-01

    Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression.

  12. Dual Modulators of GABA-A and Alpha7 Nicotinic Receptors for Treating Autism

    Science.gov (United States)

    2014-08-01

    figure 3). The effect was dose- dependent with no significant effect observed at a dose of 0.3 mg/kg i.p. (data not shown). 8...Interestingly recent studies with the benzodiazepine agonist clonazepam, a non-selective GABAA receptor PAM, resulted in a bell-shaped dose response...These dose- dependence studies are underway and will not be complete until August 2014 because of changes in baseline BTBR behavior described below

  13. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    Science.gov (United States)

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals.

  14. HUMAN ALPHA-7 NICOTINIC ACETYLCHOLINE RECEPTORS EXPRESSED IN XENOPUS OOCYTES ARE INHIBITED BY TRICHLOROETHYLENE.

    Science.gov (United States)

    Trichloroethylene (TCE) is a volatile organic solvent (VOC) that is used as a metal degreasing agent and in paints and glue. In addition to being a commonly abused inhalant, run-off from hazardous waste sites contain enough TCE and other VOCs to contaminate ground water and near...

  15. 组蛋白乙酰化/去乙酰化失衡对C2C12肌原细胞成肌分化的影响%The Effects of Imbalance Between Histone Acetylation and Deacetylation on C2C12 Myoblasts Differentiation

    Institute of Scientific and Technical Information of China (English)

    李一飞; 华益民; 方婕; 王川; 詹雅兰; 朱琦; 母得志; 周开宇

    2014-01-01

    Objective To explore the effects of histone acetylation and deacetylation on C2C12 myoblasts differentiation.Methods Based on the differentiation of C2C12 myoblasts into myotubes using high glucose dulbecco′s modified eagle medium (DMEM)containing 2% horse serum invitro,valproic acid (VPA)was given to C2C12 myoblasts during differentiation with different concentrations,which contained 1 mmol/L VPA,2 mmol/L VPA,4 mmol/L VPA and 8 mmol/L VPA in the final concentrations with 2%horse serum and high glucose DMEM.So that this experiment was scheduled into 6 groups as control group (contain 10% fetal bovine serum in growth medium),horse serum induced differentiation group,1 mmol/L VPA group,2 mmol/L VPA group,4 mmol/L VPA group and 8 mmol/L VPA group according to different growth medium.There were 6 samples in each group.The myotube differentiation rate were compared in different concentration VPA groups and horse serum induced differentiation group.Besides,mRNA and protein expression levels of muscle-related proteins (including Myosin, Troponin I-SS, myogenic differentiation 1)and histone deacetylases (HDAC,including HDAC1,2,3)were also evaluated with real time polymerase chain reaction (RT-PCR)and Western blotting.The mRNA and protein expression levels of them were compared and analyzed.Results ①The mRNA and protein expression levels of muscle-related proteins of horse serum induced differentiation group were significantly higher than those of control group, and the differences were statistically significant (P 0.05 ).② The myotube differentiation rate in every concentration VPA group compared with horse serum induced differentiation group were significantly lower,and the differences were statistically significant (P0.05)。②各浓度 VPA 组肌小管分化率分别较马血清诱导分化组显著下降,且差异有统计学意义(P<0.05)。③4 mmol/L VPA组及8 mmol/L VPA组肌相关蛋白及 HDAC mRNA和蛋白表达水平分别较马血清诱导分化组

  16. 甲苯喹哌对培养爪蟾胚胎肌细胞和神经细胞离子通道的作用%Effects of toquipidine on ionic channels of cultured embryonic Xenopus laevis myoblasts and neurons

    Institute of Scientific and Technical Information of China (English)

    郑平; 陈功; 史念慈; 周思平; 鲁映青; 姚明辉; 何曾佑

    1995-01-01

    目的:研究新型抗心律失常药甲苯喹哌对离子通道的作用.方法:通过膜片钳技术记录培养爪蟾胚胎肌细胞和神经细胞全细胞离子通道电流.结果:甲苯喹哌(0.1,1,10,100μmolL-1)可浓度依赖性地抑制肌细胞的钠通道,其IC50为7.2 μmol L-1(5.3-9.8 μmol L-1).甲苯喹哌(10 μmol L-1)可抑制神经细胞的高电压激活的钙通道.然而,肌细胞上的稳态外向钾电流却受到甲苯喹哌(10μmol L-1)的激活.结论:甲苯喹哌抑制钠、钙通道,但激活稳态外向钾通道.%AIM: To study the effects of toquipidine ( 1-p-methyl-phenyl- 2- ( α-piperidinoacetyl ) - 1,2, 3, 4-tetrahydroisoquinoline hydrochloride,Toq), a new anti-arrhythmic agent first synthesized in China, on ionic channels. METHODS: Ionic channel currents were recorded by whole-cell patch clamp technique in cultured embryonic Xenopus laevis myoblasts and neurons. RESULTS: Toq (0. 1, 1, 10, and 100 μmol L-1) caused a concentration-dependent inhibition of the Na+ currents with IC50 7.2μmol L-1(5.3-9.8 μmol L-1). Toq (10μmol L-1) also suppressed the high-voltageactivated Ca2+ currents in neurons. But the steady-state outward K+ currents in myoblasts were activated by Toq (10 μmol L-1).CONCLUSION: Toq blocked the Na+ andCa2+ channels and opened the steady-stateoutward K+ channels.

  17. The Effects of Autologous Skeletal Myoblasts Transplantation on Hurted Vocal Cord of Paralysis%自体成肌细胞甲杓肌注射治疗创伤性声门关闭不全的实验研究

    Institute of Scientific and Technical Information of China (English)

    闫飚; 孙敬武; 邹嘉平; 张磊

    2013-01-01

    目的:观察自体成肌细胞甲杓肌注射对创伤性声门关闭不全的疗效。方法将20只成年新西兰大白兔行左侧喉返神经切断并于左侧声带表面划痕(深度超过上皮层到声带肌),建立左侧喉返神经切断、左侧声带创伤后声带疤痕形成的创伤性声门关闭不全的动物模型;同时,分离这20只大白兔胸锁乳突肌成肌细胞,进行体外培养、分离及扩增。12周后,将20只动物随机分为A、B两组,每组10只,A组(成肌细胞注射组)于左侧声带甲杓肌注射成肌细胞0.3 ml时,右侧声带不作任何处理作为正常对照;B组(盐水注射对照组)于左侧声带甲杓肌注射等量生理盐水,右侧声带不作任何处理作为正常对照,12周后分别观察两组动物双侧甲杓肌肌纤维直径和声带体积。结果 A组自体成肌细胞左侧甲杓肌注射12周后双侧甲杓肌肌纤维直径及声带容积大小差异无显著统计学意义(P>0.05),B组注射侧甲杓肌肌纤维直径及声带体积明显小于A组(P<0.05)。结论经甲杓肌注射自体成肌细胞能有效地治疗创伤性声门关闭不全。%Objective The goal of the present experimental study is to investigate effects on the injection of a-dult rabbit autologous skeletal myoblasts into the thyroarytenoid(TA)muscle after recurrent laryngeal nerve (RLN) damage and traumatic vocal cords .Methods 20 adult New Zealand white rabbits were used for the establishment of an animal model simulating the cut -off of the left recurrent laryngeal nerve and the left vocal cord trauma scar for-mation after traumatic damage .Then from the rabbits ,the sternocleidomastoid muscle cells were cultured ,separa-ted and expanded .After 12 weeks ,the 20 animals were randomly divided into group A ,group B with 10 in each group .Group A(myoblast injection group) in the left vocal cord thyroarytenoid muscle injection of myoblasts 0 .3 ml ,the right

  18. Histamine H3 receptor inhibited electrically evoked cytoplasmic calcium in differentiated skeletal C2C12 myoblasts%组胺 H3受体降低电激发收缩的小鼠成肌细胞胞浆中钙离子浓度

    Institute of Scientific and Technical Information of China (English)

    齐麟; 冯晓; 陈燕; 薛瑞; 张凤; 王素云; 孙素珂; 建国

    2015-01-01

    目的:探讨组胺H3受体(H3R)在小鼠成肌细胞C2C12成肌分化过程及分化后的横纹肌细胞中的表达和可能发挥的作用。方法:诱导C2C12细胞成肌分化,测量H3R和分化晚期标志物肌球蛋白重链mRNA和蛋白的表达;分化过程中加入H3R拮抗剂ciproxifan,测量分化早期标志物desmin、中期标志物myogenin和肌球蛋白重链mRNA的表达。 Fluo-4结合剂标记分化后的横纹肌胞内钙离子,测量双极交流电200 mA刺激下,H3R激动剂甲基组胺(RMeHA)对胞浆中钙离子浓度的影响。结果:H3R和肌球蛋白重链在成肌分化过程中表达量逐渐增加。 Ciproxifan在成肌分化过程中对3种分化标志物mRNA的表达与对照组相比无差异( P>0.05)。 RMeHA在浓度10 nmol/L~100μmol/L刺激细胞5~20 min,可呈钟形降低因交流电引起的肌浆钙离子浓度的升高( P<0.05),其中RMeHA 100 nmol/L在10 min和20 min对电刺激细胞中Ca2+的抑制百分率最高。相同浓度的RMeHA在20 min和10 min时对Ca2+的抑制率比其在5 min时高(P<0.05)。结论:H3R可能在成肌分化过程中的作用不大,而在分化成熟细胞中可以降低电刺激引起的胞浆钙离子浓度的升高。%AIM:To explore the expression and possible function of histamine H3 receptor (H3R) in striated myogenesis and the differentiated C2C12 cells.METHODS: H3R and myogenesis late marker myosin heavy chain (MHC) were detected at mRNA and protein levels during C2C12 myogenesis.H3R antagonist ciproxifan was added and the expression of the myogenesis early marker desmin, intermediate markers myogenin and MHC was detected.Differentia-ted myoblasts were loaded with Fluo-4 calcium indicator dye and the effect of R-( a)-methylhistamine ( RMeHA) on the cy-toplasmic calcium concentration was determined under the 200 mA electrical stimulation.RESULTS: The expression of H3R and MHC was increased during myogenesis

  19. Skeletal muscle cells express ICAM-1 after muscle overload and ICAM-1 contributes to the ensuing hypertrophic response.

    Directory of Open Access Journals (Sweden)

    Christopher L Dearth

    Full Text Available We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1 is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12 did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/- mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05 overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05 the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.

  20. 血管紧张素Ⅱ对L6大鼠成肌细胞胰岛素作用机制的研究%Effects of angiotensin Ⅱ on insulin signal transduction in myoblasts of L6 rats

    Institute of Scientific and Technical Information of China (English)

    闫朝丽; 任小燕; 孟兴凯; 胡康洪; 苏秀兰; 张嘉玲

    2011-01-01

    目的 研究血管紧张素Ⅱ( AngⅡ)对L6大鼠成肌细胞的胰岛素信号传导的影响,探讨AngⅡ影响胰岛素信号传导通路的可能机制.方法 培养及诱导分化L6细胞,根据AngⅡ或JAK2-PKA抑制剂H89干预的不同,将其分为4组:对照组、胰岛素组、胰岛素+AngⅡ组及胰岛素+AngⅡ+H89组.采用RT-PCR方法检测IRS1、GLUT4 mRNA的表达水平,Western blot方法检测IRS1、Ptyr-IRS1、总蛋白和膜蛋白中GLUT4的蛋白表达.结果 RT-PCR检测4组间GLUT4 mRNA表达差异无统计学意义(P>0.05),后3组间IRS1 mRNA表达差异无统计学意义(P>0.05),但均较对照组增加(P<0.05).Westernblot检测后3组IRS1、ptyr-IRS1、膜蛋白中GLUT4表达均较对照组升高(P<0.05),而3组间IRS1表达差异无统计学意义(P>0.05),4组间GLUT4表达差异无统计学意义(P>0.05),胰岛素+AngⅡ+H89组Ptyr-IRS1、GLUT4较胰岛素+AngⅡ组表达增加(P<0.05),较胰岛素组表达减少(P<0.05).结论 AngⅡ在骨骼肌细胞中通过JAK2-PKA通路抑制IRS1的酪氨酸磷酸化,抑制GLUT4由胞浆转移至胞膜,进而导致胰岛素抵抗.%Objective To study the effects of angiotensin Ⅱ (AngⅡ) on insulin signal transduction pathway in skeletal myoblast of L6 rats,and further to explore the possible mechanism of AngⅡ on glucose utilization.Methods Myoblast cells of L6 rats were cultured and induced to differentiate.They were divided into 4 groups according to different treatment by AngⅡ or JAK2-PKA inhibitor H89:normal control group ( NC group),insulin group,insulin + AngⅡ group and insulin + AngⅡ + H89 group.Expression of IRS1 and GLUT4 mRNA was detected by RT-PCR.Expression of IRS1,Ptyr-IRS1 and GLUT4 (total and membrane protein) were detected by Western blot.Results The difference of GLUT4 mRNA expression in the 4 groups detected by RT-PCR had no statistical significance(P > 0.05).The difference of IRS1 mRNA expression among the latter 3 groups had no statistical

  1. Myoblast seeding in a collagen matrix evaluated in vitro

    NARCIS (Netherlands)

    vanWachem, PB; vanLuyn, MJA; daCosta, MLP

    1996-01-01

    Collagens may be used as biomaterials for soft tissue reconstruction, e.g., the abdominal wall. We previously developed a biocompatible dermal sheep collagen (DSC), which in an abdominal wall reconstruction model showed controlled biodegradation and functioned as a matrix for ingrowth of fibroblasts

  2. Dynamics of the skeletal muscle secretome during myoblast differentiation

    DEFF Research Database (Denmark)

    Henningsen, Jeanette; Rigbolt, Kristoffer T G; Blagoev, Blagoy

    2010-01-01

    of the intracellular levels of members of the semaphorin family and their corresponding secretion dynamics demonstrated that the release of secreted proteins is tightly regulated by the secretory pathway, the stability of the protein, and/or the processing of secreted proteins. Finally, we provide 299 unique...... proteomics platform to investigate the factors secreted during the differentiation of murine C2C12 skeletal muscle cells. Using triple encoding stable isotope labeling by amino acids in cell culture, we compared the secretomes at three different time points of muscle differentiation and followed the dynamics...

  3. Cellular Proteome Dynamics during Differentiation of Human Primary Myoblasts

    DEFF Research Database (Denmark)

    Le Bihan, Marie-Catherine; Barrio, Inigo; Mortensen, Tenna Pavia;

    2015-01-01

    and the complex temporal protein dynamics accompanying the differentiation of primary human muscle cells remain poorly understood. Here, we demonstrate the advantages of applying a MS-based quantitative approach, stable isotope labeling by amino acids in cell culture (SILAC), for studying human myogenesis...... dynamic expression profiles during the course of myogenic differentiation and quantified 2240 proteins, 243 of which were regulated. These changes in protein expression occurred in sequential waves and underlined vast reprogramming in key processes governing cell fate decisions, i.e., cell cycle...

  4. Regulation of myoblast differentiation by metabolic perturbations induced by metformin

    National Research Council Canada - National Science Library

    Theodora Pavlidou; Marco Rosina; Claudia Fuoco; Giulia Gerini; Cesare Gargioli; Luisa Castagnoli; Gianni Cesareni

    2017-01-01

    The metabolic perturbation caused by calorie restriction enhances muscle repair by playing a critical role in regulating satellite cell availability and activity in the muscles of young and old mice...

  5. Differential immediate and sustained memory enhancing effects of alpha7 nicotinic receptor agonists and allosteric modulators in rats.

    Directory of Open Access Journals (Sweden)

    Morten S Thomsen

    Full Text Available The α7 nicotinic acetylcholine receptor (nAChR is a potential target for the treatment of cognitive deficits in patients with schizophrenia, ADHD and Alzheimer's disease. Here we test the hypothesis that upregulation of α7 nAChR levels underlies the enhanced and sustained procognitive effect of repeated administration of α7 nAChR agonists. We further compare the effect of agonists to that of α7 nAChR positive allosteric modulators (PAMs, which do not induce upregulation of the α7 nAChR. Using the social discrimination test as a measure of short-term memory, we show that the α7 nAChR agonist A-582941 improves short-term memory immediately after repeated (7× daily, but not a single administration. The α7 nAChR PAMs PNU-120596 and AVL-3288 do not affect short-term memory immediately after a single or repeated administration. This demonstrates a fundamental difference in the behavioral effects of agonists and PAMs that may be relevant for clinical development. Importantly, A-582941 and AVL-3288 increase short-term memory 24 hrs after repeated, but not a single, administration, suggesting that repeated administration of both agonists and PAMs may produce sustained effects on cognitive performance. Subsequent [(125I]-bungarotoxin autoradiography revealed no direct correlation between α7 nAChR levels in frontal cortical or hippocampal brain regions and short-term memory with either compound. Additionally, repeated treatment with A-582941 did not affect mRNA expression of RIC-3 or the lynx-like gene products lynx1, lynx2, PSCA, or Ly6H, which are known to affect nAChR function. In conclusion, both α7 nAChR agonists and PAMs exhibit sustained pro-cognitive effects after repeated administration, and altered levels of the α7 nAChR per se, or that of endogenous regulators of nAChR function, are likely not the major cause of this effect.

  6. Integrins (alpha7beta1) in muscle function and survival. Disrupted expression in merosin-deficient congenital muscular dystrophy

    DEFF Research Database (Denmark)

    Vachon, P H; Xu, H; Liu, L;

    1997-01-01

    isoforms in myofibers of merosin-deficient human patients and mice, but not in dystrophin-deficient or sarcoglycan-deficient humans and animals. It was shown previously that skeletal muscle fibers require merosin for survival and function (Vachon, P.H., F. Loechel, H. Xu, U.M. Wewer, and E. Engvall. 1996...

  7. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor

    Directory of Open Access Journals (Sweden)

    Kumi Kimura

    2016-03-01

    Full Text Available Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity.

  8. Effects of an Alpha7 Nicotinic Receptor Agonist and Stress on Spatial Memory in an Animal Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Paloma Vicens

    2013-01-01

    Full Text Available The aim of the present study was to test the effects of PNU-282987 on spatial learning and memory and hippocampal neurogenesis in both intact and chronically stressed transgenic mice. Transgenic mice with susceptibility to Alzheimer's disease (AD under immobilization stress and not-stressed animals receiving 0 and 1 mg/kg of PNU-282987 (PNU were evaluated in a water maze task. The effects of PNU and stress on proliferation of new cells in the hippocampus of these animals were also assessed. The latency to escape the platform was significantly higher in transgenic stressed mice compared to those in the wild stressed group, as well as in transgenic animals without PNU compared to control wild group. On retention of the task, differences emerged on stressed wild animals, PNU wild group, and stressed wild mice receiving PNU. However, no significant differences were detected on new cell proliferation. The results of the present study did not show any impact of stress in acquisition of a spatial task both in wild and transgenic mice. No clear effects of PNU on acquisition of a spatial task in transgenic mice with susceptibility to AD were detected. Although PNU and stress effects were detected on retention of the task in wild animals, no changes were noted in transgenic mice.

  9. Vagotomy affects the development of oral tolerance and increases susceptibility to develop colitis independently of the alpha-7 nicotinic receptor.

    Science.gov (United States)

    Di Giovangiulio, Martina; Bosmans, Goele; Meroni, Elisa; Stakenborg, Nathalie; Florens, Morgane; Farro, Giovanna; Gomez-Pinilla, Pedro J; Matteoli, Gianluca; Boeckxstaens, Guy

    2016-06-14

    Vagotomy (VGX) increases the susceptibility to develop colitis suggesting a crucial role for the cholinergic anti-inflammatory pathway in the regulation of the immune responses. Since oral tolerance and the generation of regulatory T cells (Tregs) are crucial to preserve mucosal immune homeostasis, we studied the effect of vagotomy and the involvement of α7 nicotinic receptors (α7nAChR) at the steady state and during colitis. Therefore, the development of both oral tolerance and colitis (induced by dextran sulfate sodium (DSS) or via T cell transfer) was studied in vagotomized mice and in α7nAChR(-/-) mice. VGX, but not α7nAChR deficiency, prevented oral tolerance establishment. This effect was associated with reduced Treg conversion in the lamina propria and mesenteric lymphnodes. To the same extent, vagotomized mice, but not α7nAChR(-/-) mice, developed a more severe DSS colitis compared with control mice treated with DSS, associated with a decreased number of colonic Tregs. However, neither VGX nor absence of α7nAChR in recipient mice affected colitis development in the T cell transfer model. In line, deficiency of α7nAChR exclusively in T cells did not influence the development of colitis induced by T cell transfer. Our results indicate a key role for the vagal intestinal innervation in the development of oral tolerance and colitis, most likely by modulating induction of Tregs independently of α7nAChR.

  10. Differential immediate and sustained memory enhancing effects of alpha7 nicotinic receptor agonists and allosteric modulators in rats

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; El-Sayed, Mona; Mikkelsen, Jens D

    2011-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is a potential target for the treatment of cognitive deficits in patients with schizophrenia, ADHD and Alzheimer's disease. Here we test the hypothesis that upregulation of α7 nAChR levels underlies the enhanced and sustained procognitive effect...... of agonists and PAMs that may be relevant for clinical development. Importantly, A-582941 and AVL-3288 increase short-term memory 24 hrs after repeated, but not a single, administration, suggesting that repeated administration of both agonists and PAMs may produce sustained effects on cognitive performance...... products lynx1, lynx2, PSCA, or Ly6H, which are known to affect nAChR function. In conclusion, both α7 nAChR agonists and PAMs exhibit sustained pro-cognitive effects after repeated administration, and altered levels of the α7 nAChR per se, or that of endogenous regulators of nAChR function, are likely...

  11. [(68)Ga]FSC-(RGD)3 a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold-synthesis and evaluation.

    Science.gov (United States)

    Knetsch, Peter A; Zhai, Chuangyan; Rangger, Christine; Blatzer, Michael; Haas, Hubertus; Kaeopookum, Piriya; Haubner, Roland; Decristoforo, Clemens

    2015-02-01

    Over the last years Gallium-68 ((68)Ga) has received tremendous attention for labeling of radiopharmaceuticals for positron emission tomography (PET). (68)Ga labeling of biomolecules is currently based on bifunctional chelators containing aminocarboxylates (mainly DOTA and NOTA). We have recently shown that cyclic peptide siderophores have very good complexing properties for (68)Ga resulting in high specific activities and excellent metabolic stabilities, in particular triacetylfusarinine-C (TAFC). We postulated, that, starting from its deacetylated form (Fusarinine-C (FSC)) trimeric bioconjugates are directly accessible to develop novel targeting peptide based (68)Ga labeled radiopharmaceuticals. As proof of principle we report on the synthesis and (68)Ga-radiolabeling of a trimeric FSC-RGD conjugate, [(68)Ga]FSC-(RGD)3, targeting αvβ3 integrin, which is highly expressed during tumor-induced angiogenesis. Synthesis of the RGD peptide was carried out applying solid phase peptide synthesis (SPPS), followed by the coupling to the siderophore [Fe]FSC via in situ activation using HATU/HOAt and DIPEA. Subsequent demetalation allowed radiolabeling of FSC-(RGD)3 with (68)Ga. The radiolabeling procedure was optimized regarding peptide amount, reaction time, temperature as well buffer systems. For in vitro evaluation partition coefficient, protein binding, serum stability, αvβ3 integrin binding affinity, and tumor cell uptake were determined. For in vitro tests as well as for the biodistribution studies αvβ3 positive human melanoma M21 and αvβ3 negative M21-L cells were used. [(68)Ga]FSC-(RGD)3 was prepared with high radiochemical yield (>98%). Distribution coefficient was -3.6 revealing a hydrophilic character, and an IC50 value of 1.8±0.6 nM was determined indicating a high binding affinity for αvβ3 integrin. [(68)Ga]FSC-(RGD)3 was stable in PBS (pH7.4), FeCl3- and DTPA-solution as well as in fresh human serum at 37°C for 2hours. Biodistribution assay confirmed the receptor specific uptake found in vitro. Uptake in the αvβ3 positive tumor was 4.3% ID/g 60min p.i. which was 3-fold higher than the monomeric [(68)Ga]NODAGA-RGD. Tumor to blood ratio of approx. 8 and tumor to muscle ratio of approx. 7 were observed. [(68)Ga]FSC-(RGD)3 serves as an example for the feasibility of a novel class of bifunctional chelators based on cyclic peptide siderophores and shows excellent targeting properties for αvβ3 integrin in vivo for imaging tumor-induced neovascularization.

  12. Enhancing PET Signal at Target Tissue in Vivo: Dendritic and Multimeric Tris(hydroxypyridinone) Conjugates for Molecular Imaging of αvβ3 Integrin Expression with Gallium-68.

    Science.gov (United States)

    Imberti, Cinzia; Terry, Samantha Y A; Cullinane, Carleen; Clarke, Fiona; Cornish, Georgina H; Ramakrishnan, Nisha K; Roselt, Peter; Cope, Andrew P; Hicks, Rodney J; Blower, Philip J; Ma, Michelle T

    2017-02-15

    Tris(hydroxypyridinone) chelators conjugated to peptides can rapidly complex the positron-emitting isotope gallium-68 ((68)Ga) under mild conditions, and the resulting radiotracers can delineate peptide receptor expression at sites of diseased tissue in vivo. We have synthesized a dendritic bifunctional chelator containing nine 1,6-dimethyl-3-hydroxypyridin-4-one groups (SCN-HP9) that can coordinate up to three Ga(3+) ions. This derivative has been conjugated to a trimeric peptide (RGD3) containing three peptide groups that target the αvβ3 integrin receptor. The resulting dendritic compound, HP9-RGD3, can be radiolabeled in 97% radiochemical yield at a 3-fold higher specific activity than its homologues HP3-RGD and HP3-RGD3 that contain only a single metal binding site. PET scanning and biodistribution studies show that [(68)Ga(HP9-RGD3)] demonstrates higher receptor-mediated tumor uptake in animals bearing U87MG tumors that overexpress αvβ3 integrin than [(68)Ga(HP3-RGD)] and [(68)Ga(HP3-RGD3)]. However, concomitant nontarget organ retention of [(68)Ga(HP9-RGD3)] results in low tumor to nontarget organ contrast in PET images. On the other hand, the trimeric peptide homologue containing a single tris(hydroxypyridinone) chelator, [(68)Ga(HP3-RGD3)], clears nontarget organs and exhibits receptor-mediated uptake in mice bearing tumors and in mice with induced rheumatoid arthritis. PET imaging with [(68)Ga(HP3-RGD3)] enables clear delineation of αvβ3 integrin receptor expression in vivo.

  13. Brucella abortus Invasion of Osteocytes Modulates Connexin 43 and Integrin Expression and Induces Osteoclastogenesis via Receptor Activator of NF-κB Ligand and Tumor Necrosis Factor Alpha Secretion.

    Science.gov (United States)

    Pesce Viglietti, Ayelén Ivana; Arriola Benitez, Paula Constanza; Gentilini, María Virginia; Velásquez, Lis Noelia; Fossati, Carlos Alberto; Giambartolomei, Guillermo Hernán; Delpino, María Victoria

    2015-10-12

    Osteoarticular brucellosis is the most common localization of human active disease. Osteocytes are the most abundant cells of bone. They secrete factors that regulate the differentiation of both osteoblasts and osteoclasts during bone remodeling. The aim of this study is to determine if Brucella abortus infection modifies osteocyte function. Our results indicate that B. abortus infection induced matrix metalloproteinase 2 (MMP-2), receptor activator for NF-κB ligand (RANKL), proinflammatory cytokines, and keratinocyte chemoattractant (KC) secretion by osteocytes. In addition, supernatants from B. abortus-infected osteocytes induced bone marrow-derived monocytes (BMM) to undergo osteoclastogenesis. Using neutralizing antibodies against tumor necrosis factor alpha (TNF-α) or osteoprotegerin (OPG), RANKL's decoy receptor, we determined that TNF-α and RANKL are involved in osteoclastogenesis induced by supernatants from B. abortus-infected osteocytes. Connexin 43 (Cx43) and the integrins E11/gp38, integrin-α, integrin-β, and CD44 are involved in cell-cell interactions necessary for osteocyte survival. B. abortus infection inhibited the expression of Cx43 but did not modify the expression of integrins. Yet the expression of both Cx43 and integrins was inhibited by supernatants from B. abortus-infected macrophages. B. abortus infection was not capable of inducing osteocyte apoptosis. However, supernatants from B. abortus-infected macrophages induced osteocyte apoptosis in a dose-dependent manner. Taken together, our results indicate that B. abortus infection could alter osteocyte function, contributing to bone damage.

  14. The interaction between alpha 7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α represents a new antinociceptive signaling pathway in mice.

    Science.gov (United States)

    Donvito, Giulia; Bagdas, Deniz; Toma, Wisam; Rahimpour, Elnaz; Jackson, Asti; Meade, Julie A; AlSharari, Shakir; Kulkarni, Abhijit R; Ivy Carroll, F; Lichtman, Aron H; Papke, Roger L; Thakur, Ganesh A; Imad Damaj, M

    2017-09-01

    Recently, α7 nicotinic acetylcholine receptors (nAChRs), primarily activated by binding of orthosteric agonists, represent a target for anti-inflammatory and analgesic drug development. These receptors may also be modulated by positive allosteric modulators (PAMs), ago-allosteric ligands (ago-PAMs), and α7-silent agonists. Activation of α7 nAChRs has been reported to increase the brain levels of endogenous ligands for nuclear peroxisome proliferator-activated receptors type-α (PPAR-α), palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), in a Ca(2+)-dependent manner. Here, we investigated potential crosstalk between α7 nAChR and PPAR-α, using the formalin test, a mouse model of tonic pain. Using pharmacological and genetic approaches, we found that PNU282987, a full α7 agonist, attenuated formalin-induced nociceptive behavior in α7-dependent manner. Interestingly, the selective PPAR-α antagonist GW6471 blocked the antinociceptive effects of PNU282987, but did not alter the antinociceptive responses evoked by the α7 nAChR PAM PNU120596, ago-PAM GAT107, and silent agonist NS6740. Moreover, GW6471 administered systemically or spinally, but not via the intraplantar surface of the formalin-injected paw blocked PNU282987-induced antinociception. Conversely, exogenous administration of the naturally occurring PPAR-α agonist PEA potentiated the antinociceptive effects of PNU282987. In contrast, the cannabinoid CB1 antagonist rimonabant and the CB2 antagonist SR144528 failed to reverse the antinociceptive effects of PNU282987. These findings suggest that PPAR-α plays a key role in a putative antinociceptive α7 nicotinic signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Repeated potentiation of the metabotropic glutamate receptor 5 and the alpha 7 nicotinic acetylcholine receptor modulates behavioural and GABAergic deficits induced by early postnatal phencyclidine (PCP) treatment

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Bundgaard, Christoffer; Fejgin, Kim;

    2013-01-01

    treatment, pyramidal neurons displayed a reduced mIPSC frequency and up-regulation of extrasynaptic THIP-induced current. ADX47273 treatment restored this up-regulation of THIP-induced current. Reduced receptor function seems to be the underlying cause of the reported changes, since repeated treatment...

  16. Alpha7 Nicotinic Acetylcholine Receptors Play a Predominant Role in the Cholinergic Potentiation of N-Methyl-D-Aspartate Evoked Firing Responses of Hippocampal CA1 Pyramidal Cells

    Directory of Open Access Journals (Sweden)

    Zsolt K. Bali

    2017-09-01

    Full Text Available The aim of the present study was to identify in vivo electrophysiological correlates of the interaction between cholinergic and glutamatergic neurotransmission underlying memory. Extracellular spike recordings were performed in the hippocampal CA1 region of anesthetized rats in combination with local microiontophoretic administration of N-methyl-D-aspartate (NMDA and acetylcholine (ACh. Both NMDA and ACh increased the firing rate of the neurons. Furthermore, the simultaneous delivery of NMDA and ACh resulted in a more pronounced excitatory effect that was superadditive over the sum of the two mono-treatment effects and that was explained by cholinergic potentiation of glutamatergic neurotransmission. Next, animals were systemically treated with scopolamine or methyllycaconitine (MLA to assess the contribution of muscarinic ACh receptor (mAChR or α7 nicotinic ACh receptor (nAChR receptor-mediated mechanisms to the observed effects. Scopolamine totally inhibited ACh-evoked firing, and attenuated the firing rate increase evoked by simultaneous application of NMDA and ACh. However, the superadditive nature of the combined effect was preserved. The α7 nAChR antagonist MLA robustly decreased the firing response to simultaneous application of NMDA and ACh, suspending their superadditive effect, without modifying the tonic firing rate increasing effect of ACh. These results provide the first in vivo electrophysiological evidence that, in the hippocampal CA1 region, α7 nAChRs contribute to pyramidal cell activity mainly through potentiation of glutamatergic signaling, while the direct cholinergic modulation of tonic firing is notably mediated by mAChRs. Furthermore, the present findings also reveal cellular physiological correlates of the interplay between cholinergic and glutamatergic agents in behavioral pharmacological models of cognitive decline.

  17. Association study of polymorphisms in the alpha 7 nicotinic acetylcholine receptor subunit and catechol-o-methyl transferase genes with sensory gating in first-episode schizophrenia.

    Science.gov (United States)

    Liu, Xia; Hong, Xiaohong; Chan, Raymond C K; Kong, Fanzhi; Peng, Zhizhen; Wan, Xiaona; Wang, Changqing; Cheng, Lu

    2013-10-30

    The purpose of the current study was to explore the association of auditory P50 sensory gating (P50) and prepulse inhibition (PPI) of schizophrenia with polymorphisms in the CHRNA7 and COMT genes. One hundred and fourty patients with schizophrenia participated in this study. They were administered the tests P50 and PPI. Moreover, three single nucleotide polymorphisms (SNPs) (rs2337980, rs1909884 and rs883473) in CHRNA7 and three SNPs (rs4680, rs737865 and rs165599) in COMT were selected to be genotyped by polyacrylamide gel microarray techniques. P50 index showed significant reduction in S2 amplitude between wild-type and mutation groups in the COMT rs4680. S1 amplitude of mutation group in the COMT rs737865 was also lower compared to wild-type group. PPI index revealed a shorter pulse latency of mutation group in the rs4680. The suppression ratio of mutation group was lower in COMT rs165599. Negative findings were shown between comparisons in all the CHRNA7 SNPs. We find that P50 and PPI may be influenced by COMT rs4680 polymorphisms in schizophrenia; more excitingly, we find that P50 might be influenced by COMT rs737865 polymorphisms and PPI may be influenced by COMT rs165599 polymorphisms in schizophrenia, and their mutations are associated with the reduction of the risk of P50 or PPI defects in schizophrenia. Futher studies with a larger number of subjects are needed to verify the present findings.

  18. Hippocampal GABAergic interneurons coexpressing alpha7-nicotinic receptors and connexin-36 are able to improve neuronal viability under oxygen-glucose deprivation.

    Science.gov (United States)

    Voytenko, L P; Lushnikova, I V; Savotchenko, A V; Isaeva, E V; Skok, M V; Lykhmus, O Yu; Patseva, M A; Skibo, G G

    2015-08-07

    The hippocampal interneurons are very diverse by chemical profiles and rather inconsistent by sensitivity to CI. Some hippocampal GABAergic interneurons survive certain time after ischemia while ischemia-sensitive interneurons and pyramidal neurons are damaged. GABAergic signaling, nicotinic receptors expressing α7-subunit (α7nAChRs(+)) and connexin-36 (Cx36(+), electrotonic gapjunctions protein) contradictory modulate post-ischemic environment. We hypothesized that hippocampal ischemia-resistant GABAergic interneurons coexpressing glutamate decarboxylase-67 isoform (GAD67(+)), α7nAChRs(+), Cx36(+) are able to enhance neuronal viability. To check this hypothesis the histochemical and electrophysiological investigations have been performed using rat hippocampal organotypic culture in the condition of 30-min oxygen-glucose deprivation (OGD). Post-OGD reoxygenation (4h) revealed in CA1 pyramidal layer numerous damaged cells, decreased population spike amplitude and increased pair-pulse depression. In these conditions GAD67(+) interneurons displayed the OGD-resistance and significant increase of GABA synthesis/metabolism (GAD67-immunofluorescence, mitochondrial activity). The α7nAChRs(+) and Cx36(+) co-localizations were revealed in resistant GAD67(+) interneurons. Under OGD: GABAA-receptors (GABAARs) blockade increased cell damage and exacerbated the pair-pulse depression in CA1 pyramidal layer; α7nAChRs and Cx36-channels separate blockades sufficiently decreased cell damage while interneuronal GAD67-immunofluorescence and mitochondrial activity were similar to the control. Thus, hippocampal GABAergic interneurons co-expressing α7nAChRs and Cx36 remained resistant certain time after OGD and were able to modulate CA1 neuron survival through GABAARs, α7nAChRs and Cx36-channels activity. The enhancements of the neuronal viability together with GABA synthesis/metabolism normalization suggest cooperative neuroprotective mechanism that could be used for increase in efficiency of therapeutic strategies against post-ischemic pathology.

  19. 11C-NS14492 as a novel PET radioligand for imaging cerebral alpha7 nicotinic acetylcholine receptors: in vivo evaluation and drug occupancy measurements

    DEFF Research Database (Denmark)

    Ettrup, Anders; Mikkelsen, Jens D; Lehel, Szabolcs

    2011-01-01

    Small-molecule a(7) nicotinic acetylcholine receptor (a(7)nAChR) agonists are currently validated for use as treatment for cognitive disturbances in schizophrenia and in Alzheimer disease. A suitable radiolabeled a(7)nAChR PET tracer would be important for in vivo quantification of a(7)n...

  20. Rescue of amyloid-Beta-induced inhibition of nicotinic acetylcholine receptors by a peptide homologous to the nicotine binding domain of the alpha 7 subtype.

    Directory of Open Access Journals (Sweden)

    Arthur A Nery

    Full Text Available Alzheimer's disease (AD is characterized by brain accumulation of the neurotoxic amyloid-β peptide (Aβ and by loss of cholinergic neurons and nicotinic acetylcholine receptors (nAChRs. Recent evidence indicates that memory loss and cognitive decline in AD correlate better with the amount of soluble Aβ than with the extent of amyloid plaque deposits in affected brains. Inhibition of nAChRs by soluble Aβ40 is suggested to contribute to early cholinergic dysfunction in AD. Using phage display screening, we have previously identified a heptapeptide, termed IQ, homologous to most nAChR subtypes, binding with nanomolar affinity to soluble Aβ40 and blocking Aβ-induced inhibition of carbamylcholine-induced currents in PC12 cells expressing α7 nAChRs. Using alanine scanning mutagenesis and whole-cell current recording, we have now defined the amino acids in IQ essential for reversal of Aβ40 inhibition of carbamylcholine-induced responses in PC12 cells, mediated by α7 subtypes and other endogenously expressed nAChRs. We further investigated the effects of soluble Aβ, IQ and analogues of IQ on α3β4 nAChRs recombinantly expressed in HEK293 cells. Results show that nanomolar concentrations of soluble Aβ40 potently inhibit the function of α3β4 nAChRs, and that subsequent addition of IQ or its analogues does not reverse this effect. However, co-application of IQ makes the inhibition of α3β4 nAChRs by Aβ40 reversible. These findings indicate that Aβ40 inhibits different subtypes of nAChRs by interacting with specific receptor domains homologous to the IQ peptide, suggesting that IQ may be a lead for novel drugs to block the inhibition of cholinergic function in AD.

  1. Alpha7 Nicotinic Acetylcholine Receptors and Temporal Memory: Synergistic Effects of Combining Prenatal Choline and Nicotine on Reinforcement-Induced Resetting of an Interval Clock

    Science.gov (United States)

    Cheng, Ruey-Kuang; Meck, Warren H.; Williams, Christina L.

    2006-01-01

    We previously showed that prenatal choline supplementation could increase the precision of timing and temporal memory and facilitate simultaneous temporal processing in mature and aged rats. In the present study, we investigated the ability of adult rats to selectively control the reinforcement-induced resetting of an internal clock as a function…

  2. 11C-NS14492 as a novel PET radioligand for imaging cerebral alpha7 nicotinic acetylcholine receptors: in vivo evaluation and drug occupancy measurements

    DEFF Research Database (Denmark)

    Ettrup, Anders; Mikkelsen, Jens D; Lehel, Szabolcs;

    2011-01-01

    Small-molecule α(7) nicotinic acetylcholine receptor (α(7)nAChR) agonists are currently validated for use as treatment for cognitive disturbances in schizophrenia and in Alzheimer disease. A suitable radiolabeled α(7)nAChR PET tracer would be important for in vivo quantification of α(7)nAChR bind......Small-molecule α(7) nicotinic acetylcholine receptor (α(7)nAChR) agonists are currently validated for use as treatment for cognitive disturbances in schizophrenia and in Alzheimer disease. A suitable radiolabeled α(7)nAChR PET tracer would be important for in vivo quantification of α(7)n...

  3. Prostate stem cell antigen is an endogenous lynx1-like prototoxin that antagonizes alpha7 containing nicotinic receptors and prevents programmed cell death of parasympathetic neurons

    OpenAIRE

    2009-01-01

    Vertebrate alpha-bungarotoxin-like molecules of the Ly-6 superfamily have been implicated as balancers of activity and survival in the adult nervous system. To determine whether a member of this family could be involved in the development of the avian ciliary ganglion, we identified 6 Gallus genes by their homology in structure to mouse lynx1 and lynx2. One of these genes, an ortholog of prostate stem cell antigen (psca), is barely detectable at embryonic day (E) 8, before neuronal cell loss ...

  4. A chimeric 18L1-45RG1 virus-like particle vaccine cross-protects against oncogenic alpha-7 human papillomavirus types.

    Directory of Open Access Journals (Sweden)

    Bettina Huber

    Full Text Available Persistent infection with oncogenic human papillomaviruses (HPV types causes all cervical and a subset of other anogenital and oropharyngeal carcinomas. Four high-risk (hr mucosal types HPV16, 18, 45, or 59 cause almost all cervical adenocarcinomas (AC, a subset of cervical cancer (CxC. Although the incidence of cervical squamous cell carcinoma (SCC has dramatically decreased following introduction of Papanicolaou (PAP screening, the proportion of AC has relatively increased. Cervical SCC arise mainly from the ectocervix, whereas AC originate primarily from the endocervical canal, which is less accessible to obtain viable PAP smears. Licensed (bivalent and quadrivalent HPV vaccines comprise virus-like particles (VLP of the most important hr HPV16 and 18, self-assembled from the major capsid protein L1. Due to mainly type-restricted efficacy, both vaccines do not target 13 additional hr mucosal types causing 30% of CxC. The papillomavirus genus alpha species 7 (α7 includes a group of hr types of which HPV18, 45, 59 are proportionally overrepresented in cervical AC and only partially (HPV18 targeted by current vaccines. To target these types, we generated a chimeric vaccine antigen that consists of a cross-neutralizing epitope (homologue of HPV16 RG1 of the L2 minor capsid protein of HPV45 genetically inserted into a surface loop of HPV18 L1 VLP (18L1-45RG1. Vaccination of NZW rabbits with 18L1-45RG1 VLP plus alum-MPL adjuvant induced high-titer neutralizing antibodies against homologous HPV18, that cross-neutralized non-cognate hr α7 types HPV39, 45, 68, but not HPV59, and low risk HPV70 in vitro, and induced a robust L1-specific cellular immune response. Passive immunization protected mice against experimental vaginal challenge with pseudovirions of HPV18, 39, 45 and 68, but not HPV59 or the distantly related α9 type HPV16. 18L1-45RG1 VLP might be combined with our previously described 16L1-16RG1 VLP to develop a second generation bivalent vaccine with extended spectrum against hr HPV.

  5. Design, synthesis, and pharmacological characterization of novel spirocyclic quinuclidinyl-Delta2 -isoxazoline derivatives as potent and selective agonists of alpha7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Dallanoce, Clelia; Magrone, Pietro; Matera, Carlo;

    2011-01-01

    A set of racemic spirocyclic quinuclidinyl-¿(2) -isoxazoline derivatives was synthesized using a 1,3-dipolar cycloaddition-based approach. Target compounds were assayed for binding affinity toward rat neuronal homomeric (a7) and heteromeric (a4ß2) nicotinic acetylcholine receptors. ¿(2) -Isoxazol...

  6. A hippocampal nicotinic acetylcholine alpha 7-containing receptor complex is linked to memory retrieval in the multiple-T-maze in C57BL/6j mice.

    Science.gov (United States)

    Subramaniyan, Saraswathi; Heo, Seok; Patil, Sudarshan; Li, Lin; Hoger, Harald; Pollak, Arnold; Lubec, Gert

    2014-08-15

    The link between the cholinergic and serotonergic system in cognitive function is well-documented. There is, howe