WorldWideScience

Sample records for alpha-tocopherol transfer protein

  1. Alpha-Tocopherol Transfer Protein (α-TTP): Insights from Alpha-Tocopherol Transfer Protein Knockout Mice

    OpenAIRE

    Lim, Yunsook; Traber, Maret G.

    2007-01-01

    Alpha-tocopherol transfer protein (α-TTP) is a liver cytosolic transport protein that faciliates α-tocopherol (α-T) transfer into liver secreted plasma lipoproteins. Genetic defects in α-TTP, like dietary vitamin E deficiency, are associated with infertility, muscular weakness and neurological disorders. Both human and α-TTP deficient (α-TTP-/-) mice exhibit severe plasma and tissue vitamin E deficiency that can be attenuated by sufficient dietary α-T supplementations. In this review, we summ...

  2. The hepatic alpha tocopherol transfer protein (TTP): ligand-induced protection from proteasomal degradation†

    OpenAIRE

    Thakur, Varsha; Morley, Samantha; Manor, Danny

    2010-01-01

    There are eight naturally occurring forms of the dietary antioxidant vitamin E. Of these, only α-tocopherol is retained at high levels in vertebrate plasma and tissues. This selectivity is achieved in part by the action of the hepatic alpha tocopherol transfer protein (TTP), which facilitates the selective incorporation of dietary α-tocopherol into circulating lipoproteins. We examined the effects of vitamin E on TTP expression in cultured hepatocytes. Treatment with vitamin E brought about a...

  3. Effect of supplementing sows' feed with alpha-tocopherol acetate and vitamin C on transfer of alpha-tocopherol to piglet tissues, colostrum, and milk: aspects of immune status of piglets.

    Science.gov (United States)

    Pinelli-Saavedra, A; Calderón de la Barca, A M; Hernández, J; Valenzuela, R; Scaife, J R

    2008-08-01

    The aim of this study was to investigate the effects of dietary supplementation of sows with alpha-tocopherol acetate (ATA) and vitamin C on deposition of alpha-tocopherol (AT) in piglet lymphoid organs, such as bone marrow, thymus, and spleen at birth and at weaning, as well as on indicators of immune response in piglets. Sows were given the following treatment diets: control, vitamin C 10 g/day, ATA 500 mg/kg feed, and combined vitamins (ATA 500+Vit-C 10). Supplementation with vitamins started at the beginning of pregnancy and lasted until weaning at 21+/-3 days of age. AT was determined in colostrum, milk, piglet plasma (cord blood) and tissues at birth and on day 21. Immunoglobulins were measured in piglet plasma, milk, and colostrum. Lymphocyte proliferation in response to PHA and ConA was determined in sow and piglet blood. ATA supplementation resulted in a significant increase (Ppiglet plasma, liver, thymus, bone marrow, and spleen at weaning. The AT content of colostrum and milk significantly (Ppiglet plasma and tissues at weaning (day 21). Total Ig and IgG concentrations in piglet plasma were significantly increased in piglets given the combined vitamin treatment. No effect of AT supplementation was observed on IgG and IgA in colostrum and milk. In sows, vitamin C given alone significantly increased lymphocyte response to ConA and PHA; whereas, in piglets, there was no significant effect of treatments on lymphocyte response to PHA and ConA.

  4. Plasma Ubiquinone, Alpha-Tocopherol and Cholesterol in Man

    DEFF Research Database (Denmark)

    Karlsson, Jan; Diamant, Bertil; Edlund, Per Olof;

    1992-01-01

    Farmakologi, Coenzyme Q10, free cholesterol, vitamin E, antioxidants, Alpha-Tocopherol, vitamin Q, plasma, LDL-particle......Farmakologi, Coenzyme Q10, free cholesterol, vitamin E, antioxidants, Alpha-Tocopherol, vitamin Q, plasma, LDL-particle...

  5. Alpha-tocopherol ameliorates cypermethrin-induced toxicity and oxidative stress in the nematode Caenorhabdtis elegans.

    Science.gov (United States)

    Shashikumar, Shivaiah; Rajini, P S

    2011-06-01

    Oxidative stress and other effects induced by cypermethrin (CYP, 15 mM) and their amelioration by alpha-tocopherol (400 microM) was studied in the nematode Caenorhabditis elegans. The worms exposed for 4 h to CYP showed increased levels of reactive oxygen species (46%), H2O2 (37%) and protein carbonyls (29%), accompanied by decreased lifespan and brood size. However, exposure to both CYP and alpha-tocopherol resulted in diminution of above alterations with the worms exhibiting relatively lower levels of ROS (30%), H2O2 (15%), protein carbonyls (14%), altered antioxidant enzyme activities and normal lifespan and brood size. The results suggest that CYP induces oxidative stress in C. elegans and the strategy of intervention with alpha-tocopherol could be exploited to offset this induced oxidative stress.

  6. Pharmacological dose of alpha-tocopherol induces cardiotoxicity in Wistar rats determined by echocardiography and histology

    Science.gov (United States)

    The effect of pharmacological dose of alpha-tocopherol on heart health was determined in Wistar rats. Animals were randomly assigned to either C (control, n = 11) or E (alpha-tocopherol, n = 11) group. Animals received corn oil (C) or alpha-tocopherol dissolved in corn oil (250 mg alpha-tocopherol/[...

  7. Effect of alpha-tocopherol supplementation during boar semen cryopreservation on sperm characteristics and expression of apoptosis related genes.

    Science.gov (United States)

    Jeong, Yeon-Ji; Kim, Mi-Kyeong; Song, Hye-Jin; Kang, Eun-Ju; Ock, Sun-A; Kumar, B Mohana; Balasubramanian, S; Rho, Gyu-Jin

    2009-04-01

    Boar semen is extremely vulnerable to cold shock and sensitive to peroxidative damage due to high content of unsaturated fatty acids in the phospholipids of the plasma membrane and the relatively low antioxidant capacity of seminal plasma. The present study evaluated the influence of alpha-tocopherol supplementation at various concentrations in the boar semen extender during cryopreservation on post-thawed sperm motility characteristics (total sperm motility, MOT; local motility, LCM; curvilinear velocity, VCL; straight linear velocity, VSL; and average path velocity, VAP), sperm qualities (viability, acrosomal integrity and apoptosis), expression of stress protein (HSP70), and the expression of pro-apoptotic (Bax and Bak) and anti-apoptotic (Bcl-2l and Bcl-xl) genes. Semen collected from 10 Duroc boars was cryopreserved in lactose-egg yolk buffer supplemented with various concentrations of alpha-tocopherol (0, 100, 200, 400, 600 and 800 microM) using the straw-freezing procedure and stored at -196 degrees C for a minimum period of one month. In frozen-thawed groups, sperm motility was significantly (Psperm. In fresh sperm, HSP70 immunoreactivity expression was observed in the equatorial region, but in frozen-thawed groups, expressions were mostly observed in the sperm head. Higher apoptosis rates were observed in 600 and 800 microM alpha-tocopherol supplemented frozen-thawed groups. In alpha-tocopherol supplemented frozen-thawed groups immediately after thawing, the expression was similar to that of fresh group. But after incubation at 37 degrees C for 3h, the expression in 200 and 800 microM alpha-tocopherol supplemented groups was higher than that of others. Expression of pro-apoptotic genes was significantly higher and anti-apoptotic genes was significantly (Psperm group. In conclusion, alpha-tocopherol, supplemented at 200 microM concentration in boar semen extender during cryopreservation had a positive effect on post-thawed sperm survivability. PMID:19141297

  8. Retinol and Alpha-Tocopherol Levels Among Hemodialysis Patients.

    Directory of Open Access Journals (Sweden)

    Awatif M. Abd El Maksoud*, Asmaa M. Abd Allah*, Waleed Massoud

    2004-06-01

    Full Text Available Plasma retinol, alpha tocopherol, total cholesterol and triglycerides were measured in 40 patients aged 27-65 years, under regular hemodialysis (HD for 1.8-13 years at Ahmed Maher teaching Hospital and in 28 healthy age and sex matched control. Predialysis and postdialysis measurements were also, done for a subset of 13 hemodialytic patients. Among hemodialytic patients ,all values ( Plasma retinol ,alpha- tocopherol, total cholesterol and triglycerides were significantly higher ( p 100 ug /dl except for one patient . On the other hand ,alpha-tocopherol level in hemodialytic patients was ranged between deficiency ( 1080 ug/dl. Comparing predialysis and postdialysis measurements , the hemodialytic patients showed non significant difference concerning retinol level , while alpha tocopherol was significantly decreased in postdialytic state .In conclusion ; further studies are needed to answer, if hemodialytic patients are at risk for symptomatic vitamin A toxicity?. Even with normal or low plasma vitamin E, it is needed as an antioxidant accessory therapy in hemodialytic patients.

  9. Action of cholecalciferol and alpha-tocopherol on Staphylococcus aureus efflux pumps.

    Science.gov (United States)

    Tintino, Saulo R; Morais-Tintino, Cícera D; Campina, Fábia F; Pereira, Raimundo L; Costa, Maria do S; Braga, Maria Flaviana B M; Limaverde, Paulo W; Andrade, Jacqueline C; Siqueira-Junior, José P; Coutinho, Henrique Douglas Melo; Balbino, Valdir Q; Leal-Balbino, Tereza C; Ribeiro-Filho, Jaime; Quintans-Júnior, Lucindo J

    2016-01-01

    Alpha-tocopherol is one the most abundant and biologically active isoforms of vitamin E. This compound is a potent antioxidant and one of most studied isoforms of vitamin E. Vitamin D3 (cholecalciferol) is an important nutrient for calcium homeostasis and bone health, that has also been recognized as a potent modulator of the immune response. Methicillin-resistant Staphylococcus aureus (MRSA) is the most important causative agent of both nosocomial and community-acquired infections. The aim of this study was to evaluate the inhibitory effect of alpha-tocopherol and cholecalciferol on both S. aureus and multidrug resistant S. aureus efflux pumps. The RN4220 strain has the plasmid pUL5054 that is the carrier of gene that encodes the macrolide resistance protein (an efflux pump) MsrA; the IS-58 strain possesses the TetK tetracycline efflux protein in its genome and the 1199B strain resists to hydrophilic fluoroquinolones via a NorA-mediated mechanism. The antibacterial activity was evaluated by determining the Minimal Inhibitory Concentration (MIC) and a possible inhibition of efflux pumps was associated to a reduction of the MIC. In this work we observed that in the presence of the treatments there was a decrease in the MIC for the RN4220 and IS-58 strains, suggesting that the substances presented an inhibitory effect on the efflux pumps of these strains. Significant efforts have been done to identify efflux pump inhibitors (EPIs) from natural sources and, therefore, the antibacterial properties of cholecalciferol and alpha-tocopherol might be attributed to a direct effect on the bacterial cell depending on their amphipathic structure. PMID:27298617

  10. Coenzyme Q10 and alpha-tocopherol protect against amitriptyline toxicity

    International Nuclear Information System (INIS)

    Since amitriptyline is a very frequently prescribed antidepressant drug, it is not surprising that amitriptyline toxicity is relatively common. Amitriptyline toxic systemic effects include cardiovascular, autonomous nervous, and central nervous systems. To understand the mechanisms of amitriptyline toxicity we studied the cytotoxic effects of amitriptyline treatment on cultured primary human fibroblasts and zebrafish embryos, and the protective role of coenzyme Q10 and alpha-tocopherol, two membrane antioxidants. We found that amitriptyline treatment induced oxidative stress and mitochondrial dysfunction in primary human fibroblasts. Mitochondrial dysfunction in amitriptyline treatment was characterized by reduced expression levels of mitochondrial proteins and coenzyme Q10, decreased NADH:cytochrome c reductase activity, and a drop in mitochondrial membrane potential. Moreover, and as a consequence of these toxic effects, amitriptyline treatment induced a significant increase in apoptotic cell death activating mitochondrial permeability transition. Coenzyme Q10 and alpha-tocopherol supplementation attenuated ROS production, lipid peroxidation, mitochondrial dysfunction, and cell death, suggesting that oxidative stress affecting cell membrane components is involved in amitriptyline cytotoxicity. Furthermore, amitriptyline-dependent toxicity and antioxidant protection were also evaluated in zebrafish embryos, a well established vertebrate model to study developmental toxicity. Amitriptyline significantly increased embryonic cell death and apoptosis rate, and both antioxidants provided a significant protection against amitriptyline embryotoxicity

  11. Physical exercise-induced expression of inducible nitric oxide synthase and heme oxygenase-1 in human leukocytes: effects of RRR-alpha-tocopherol supplementation.

    Science.gov (United States)

    Niess, A M; Sommer, M; Schneider, M; Angres, C; Tschositsch, K; Golly, I C; Battenfeld, N; Northoff, H; Biesalski, H K; Dickhuth, H H; Fehrenbach, E

    2000-01-01

    This study evaluated the effects of RRR-alpha-tocopherol (500 IU/day, 8 days) on in vivo cytokine response and cytoplasmic expression of inducible nitric oxide synthase (iNOS) and the antioxidant stress protein heme oxygenase-1 (HO-1) in human leukocytes after exhaustive exercise. Thirteen men were investigated in a double-blind, placebo-controlled, cross-over study with a wash-out period of 28 days. The exercise procedure consisted of an incremental treadmill test followed by a continuous run until exhaustion at 110% of the individual anaerobic threshold (total duration 28.5 +/- 0.8 min). HO-1 and iNOS protein were assessed in mono- (M), lympho-, and granulocytes (G) using flow cytometry. Plasma interleukin-6 (IL-6) and IL-8 were measured by ELISA. IL-6 rose significantly whereas IL-8 did not exhibit significant changes after exercise. Changes of IL-6 were not affected by RRR-alpha-tocopherol. Exercise induced an increase of iNOS protein primarily in M and G. A small, but significant, increase of HO-1 protein was measured in M and G. RRR-alpha-Tocopherol did not show any significant effects on cytoplasmic expression of iNOS and HO-1 at rest and after exercise. In conclusion, exhaustive exercise induces expression of iNOS and HO-1 in human leukocytes by a mechanism that is not sensitive to RRR-alpha-tocopherol supplementation. PMID:11232592

  12. Coenzyme O*U1*UO, Alpha-Tocopherol and Free Cholesterol in HDL and LDL Fractions

    DEFF Research Database (Denmark)

    Johansen, Kurt; Theorell, Henning; Karlsson, Jan;

    1991-01-01

    Farmakologi, Alpha-tocopherol, Coenzyme Q*U1*U0, free cholesterol, LDL, Antioxidants, Lipoproteins, HDL......Farmakologi, Alpha-tocopherol, Coenzyme Q*U1*U0, free cholesterol, LDL, Antioxidants, Lipoproteins, HDL...

  13. Bioavailability of carotenoids and alpha-tocopherol from fruit juices in the presence of absorption modifiers: in vitro and in vivo assessment.

    Science.gov (United States)

    Granado-Lorencio, F; Herrero-Barbudo, C; Blanco-Navarro, I; Pérez-Sacristán, B; Olmedilla-Alonso, B

    2009-02-01

    The food industry is playing an increasing role in the development and marketing of new products although little is known regarding the bioavailability of the phytochemicals they contain. Our aim was to assess the effect of the presence of absorption modifiers (milk and iron) on the in vitro bioaccessibility and the serum response in vivo of carotenoids and alpha-tocopherol from fruit juices. Thirty-two young women participated in a three-period (21 d each) supplementation study with a 2-week wash-out in between. Subjects consumed consecutively 2 x 250 ml/d vitamin C-fortified juices supplied as fruit juice, fruit juice containing milk and fruit juice containing milk and iron. Fasting blood samples were collected before and after each supplementation period. In vitro bioaccessibility of carotenoids and alpha-tocopherol was assessed by a static digestion model. Vitamin E and carotenoids from both studies were determined by HPLC. In vitro, xanthophyll ester hydrolysis and transference of free xanthophylls and alpha-tocopherol into the micellar phase were higher in the presence of absorption modifiers. In vivo, consumption of the fruit juices provoked significant increments (within-subject) of alpha-tocopherol and some carotenoids in serum. Dose-adjusted increments in serum of some carotenoids were higher when subjects consumed juices with milk and milk plus iron, although differences did not reach statistical significance. In conclusion, the presence of milk and milk plus iron do not influence the bioavailability of carotenoids and alpha-tocopherol from fruit juices in vivo. Our results support the use of in vitro models to assess food-related factors affecting bioavailability of carotenoids and tocopherols from foods. PMID:18616839

  14. alpha-Tocopherol modulates liver toxicity of the pyrethroid cypermethrin.

    Science.gov (United States)

    Aldana, L; Tsutsumi, V; Craigmill, A; Silveira, M I; Gonzalez de Mejia, E

    2001-12-15

    The objective of the current study was to analyze the hepatotoxic effect caused by cypermethrin (CYP) in rats, and to evaluate the possible protective effect of the antioxidant alpha-tocopherol (alpha-T). Fifty male Wistar rats were given daily i.p. doses of 300 mg/kg per day of CYP during 7 days. Half of them were administered three previous doses of 100 mg/kg per day of alpha-T, followed by seven subsequent oral doses of 40 mg/kg per day of alpha-T. The levels of biochemical indicators and histological liver damage were determined, as well as DCVA in urine. CYP altered the lipid metabolism. Such alterations were inhibited 32% by alpha-T, except for LDL. Alterations in AST were modulated in 29%. In the histology, alpha-T reduced mitochondria damage, and swelling of the endoplasmic reticulum of the liver cells. The results suggest that alpha-T can modify CYP metabolism, changing the lipidic profile and the histological analysis.

  15. Effect of dietary alpha-tocopherol supplementation and gamma-irradiation on alpha-tocopherol retention and lipid oxidation in cooked minced chicken

    International Nuclear Information System (INIS)

    The effects of dietary alpha-tocopherol supplementation and gamma-irradiation on alpha-tocopherol retention and lipid oxidation in cooked minced chicken during refrigerated storage were studied. Minced breast and thigh meat from broilers fed diets supplemented with 100, 200 or 400 mg alpha-tocopheryl acetate/kg feed was irradiated at 2.5 or 4.0 kGy. Cooked irradiated and unirradiated meat was stored at 4 degrees C for 5 days. alpha-Tocopherol concentrations increased with increasing dietary supplementation. Concentrations decreased during storage, but retention was not affected by irradiation. Lipid stability was determined by measuring the formation of thiobarbituric acid-reacting substances (TBARS) and cholesterol oxidation products (COPs) during storage. TBARS and COPs increased during storage and were reduced by increasing levels of dietary alpha-tocopheryl acetate supplementation. Irradiation accelerated TBARS formation during storage, but this was prevented by supplementation with 200 mg alpha-tocopheryl acetate/kg feed. Irradiation tended to increase COPs during storage, although no consistent effects were observed. In general supplementation with over 400 mg alpha-tocopheryl acetate/kg feed may be required to control cholesterol oxidation in minced chicken. The results suggest that, overall, irradiation had little effect on lipid stability in alpha-tocopherol-supplemented meat following cooking and storage

  16. Inverted hexagonal and cubic phases induced by alpha-tocopherol in fully hydrated dispersions of dilauroylphosphatidylethanolamine.

    Science.gov (United States)

    Wang, X; Quinn, P J

    1999-08-01

    The effect of alpha-tocopherol on the thermotropic phase behaviour and structure of aqueous dispersions of 1,2-di-lauryl-sn-glycero-3-phosphoethanolamine was examined by synchrotron X-ray diffraction. The pure phospholipid exhibited a lamellar gel to liquid-crystal phase transition at 30 degrees C on heating at 3 degrees C min(-1) between 10 degrees C and 90 degrees C. The transition was reversible with a temperature hysteresis of 0.3 degrees C on cooling. At temperatures less than 10 degrees C only lamellar gel phase of the pure phospholipid was seen in co-dispersions of up to 20 mol % alpha-tocopherol. The presence of 2.5 mol % alpha-tocopherol caused the appearance of inverted hexagonal phase at temperatures just below the main phase transition temperature that co-existed with the lamellar gel phase. The intensity of scattering from the hexagonal-II phase increased with increasing proportion of alpha-tocopherol in the mixture and in proportions greater than 10 mol % it persisted at temperatures above the main transition and co-existed with the lamellar liquid-crystal phase of the pure phospholipid. At higher temperatures all co-dispersions containing up to 15 mol % alpha-tocopherol showed the presence of cubic phases. These phases indexed a Pn3m or Pn3 space grouping. When the proportion of alpha-tocopherol was increased to 20 mol % the only non-lamellar phase observed was inverted hexagonal phase. This phase co-existed with lamellar gel and liquid-crystal phases of the pure phospholipid, but was the only phase present at temperatures >60 degrees C. The X-ray diffraction data were used to construct a partial phase diagram of the lipid mixture in excess water between 10 degrees and 90 degrees C and up to 20 mol % alpha-tocopherol in phospholipid. PMID:17030321

  17. Plasma alpha-tocopherol, total lipids and total cholesterol in wild rockhopper, magellanic and gentoo penguins before and after moulting.

    Science.gov (United States)

    Williams, G; Ghebremeskel, K; Keymer, I F; Horsley, D T

    1989-06-01

    Post moult rockhopper penguins (Eudyptes crestatus) had significantly higher plasma alpha-tocopherol (vitamin E), total lipid and total cholesterol concentrations than their pre-moult counterparts. In the magellanic penguins (Spheniscus magellanicus) there were post moult increases in total lipid, cholesterol and alpha-tocopherol concentrations, but only the increase in alpha-tocopherol was significant. Plasma alpha-tocopherol, total lipid and total cholesterol concentrations in post moult gentoo (Pygoscelis papua) chicks were similar to those in non-moulting adult gentoos. Species differences in the levels of these nutrients in plasma may be due to differences in their dietary habits. PMID:2773196

  18. Effect of alpha-tocopherol on bone formation during distraction osteogenesis: a rabbit model

    OpenAIRE

    Kurklu, Mustafa; Yildiz, Cemil; Kose, Ozkan; Yurttas, Yuksel; Karacalioglu, Ozgur; Serdar, Muhittin; Deveci, Salih

    2011-01-01

    Purpose The purpose of this study was to evaluate the effects of alpha-tocopherol on distraction osteogenesis. Materials and methods Right tibias of 30 New Zealand white rabbits were distracted at a rate of 0.5 mm/day for 20 days with a circular external fixator. Experimental group rabbits (n = 15) were administered i.m. 20 mg/kg/day alpha-tocopherol for 30 days. Radiographic examinations were performed at the 20th, 30th and 40th days. Bone scintigraphy was performed at the 5th and 20th days....

  19. [Endogenous opioid system in the realization of the analgesic effect of alpha-tocopherol in reference to algomenorrhea].

    Science.gov (United States)

    Kryzhanovskiĭ, G N; Bakuleva, L P; Luzina, N L; Vinogradov, V A; Iarygin, K N

    1988-02-01

    Beta-endorphin-like immunoreactivity was studied in 7 patients with algomenorrhea during pain attack and 15 minutes after alpha-tocopherol administration with a therapeutic aim (till the analgetic effect was reached). There was an increase in beta-endorphin-like immunoreactivity after alpha-tocopherol administration. Naloxone administration to 9 patients with algomenorrhea of various etiology resumed the pain. The effect of alpha-tocopherol application for pain relief depended on the pathogenesis of algomenorrhea. At the same time naloxone administration failed to resume the pain in patients, in whom alpha-tocopherol had a strong analgetic effect. It is assumed that the endogenous opioid system participates in alpha-tocopherol effect on pain relief in patients with algomenorrhea. PMID:2964879

  20. Alpha-Tocopherol modulates transcriptional activities that affect essential biological processes in Bovine Cells

    Science.gov (United States)

    Alpha-tocopherol is the major isoform of vitamin E. after nearly 100 years of research and countless publications, the physiological functions of vitamin E remain mysterious to a certain degree. Nevertheless, vitamin E is one of the most commonly used single nutrient supplements. Recent data has su...

  1. Effects of alpha-tocopherol associated with lovastatin on brain tissue and memory function in SHRSPs.

    Science.gov (United States)

    Guimarães, Marcela Rodrigues Moreira; Murad, Leonardo Borges; Paganelli, Aline; de Oliveira, Carlos Alberto Basílio; Vianna, Lucia Marques Alves

    2015-10-01

    Strokes are preceded by oxidative stress and inflammation, two processes linked to atherosclerosis and hypertension. Statins have been widely employed to control atherosclerosis; however, there could be neurological implications to its use—including cognitive impairment. Thus,we aimed to determine whether alpha-tocopherol is capable of reversing the neurological side effects of statins and enhancing its anti-inflammatory properties. To assess these effects, 15-week-old stroke-prone spontaneously hypertensive rats (SHRSPs) were divided into four groups (n = 6, each): alpha-tocopherol (AT), lovastatin (LoV), alpha-tocopherol + lovastatin (AT + LoV), and control (C).We administered 120 IU of alpha-tocopherol diluted in 0.1 ml of coconut oil,whereas the dose of lovastatin was administered at a ratio of 1 mg/kg of rat body weight. The control group received 0.1 ml coconut oil. All animals received the treatments via orogastric gavage.We assessed body weight, diuresis, food and water intake, oxidative stress (malondialdehyde levels), the total cellular injury marker (lactate dehydrogenase), short and long-term memory, cognition, and histopathological changes in the hippocampus. The results demonstrated that lovastatin treatment did not negatively affect the memory of our animal model. In fact, the animals treated with AT and LoV showed improvement in memory and cognition. Additionally, both treatments decrease lactate dehydrogenase and oxidative stress levels. Furthermore, our study also demonstrated hippocampal tissue preservation in the treated groups.

  2. Low Plasma alpha-Tocopherol Concentrations and Adverse Clinical Outcomes in Diabetic Hemodialysis Patients

    NARCIS (Netherlands)

    Espe, Katharina M.; Raila, Jens; Henze, Andrea; Blouin, Katja; Schneider, Andreas; Schmiedeke, Daniel; Krane, Vera; Pilz, Stefan; Schweigert, Florian J.; Hocher, Berthold; Wanner, Christoph; Drechsler, Christiane

    2013-01-01

    Background and objectives Trials with the antioxidant vitamin E have failed to show benefit in the general population. Considering the different causes of death in ESRD, this study investigated the association between plasma concentrations of alpha-tocopherol and specific clinical outcomes in diabet

  3. Alpha-tocopherol and MRI outcomes in multiple sclerosis--association and prediction.

    Directory of Open Access Journals (Sweden)

    Kristin I Løken-Amsrud

    Full Text Available OBJECTIVE: Alpha-tocopherol is the main vitamin E compound in humans, and has important antioxidative and immunomodulatory properties. The aim of this study was to study alpha-tocopherol concentrations and their relationship to disease activity in Norwegian multiple sclerosis (MS patients. METHODS: Prospective cohort study in 88 relapsing-remitting MS (RRMS patients, originally included in a randomised placebo-controlled trial of omega-3 fatty acids (the OFAMS study, before and during treatment with interferon beta. The patients were followed for two years with repeated 12 magnetic resonance imaging (MRI scans and nine serum measurements of alpha-tocopherol. RESULTS: During interferon beta (IFNB treatment, each 10 µmol/L increase in alpha-tocopherol reduced the odds (CI 95% for simultaneous new T2 lesions by 36.8 (0.5-59.8 %, p = 0.048, and for combined unique activity by 35.4 (1.6-57.7 %, p = 0.042, in a hierarchical regression model. These associations were not significant prior to IFNB treatment, and were not noticeably changed by gender, age, body mass index, HLA-DRB1*15, treatment group, compliance, or the concentrations of 25-hydroxyvitamin D, retinol, neutralising antibodies against IFNB, or the omega-3 fatty acids eicosapentaenoic acid and docosahexaenoic acid. The corresponding odds for having new T1 gadolinium enhancing lesions two months later was reduced by 65.4 (16.5-85.7 %, p = 0.019, and for new T2 lesions by 61.0 (12.4-82.6 %, p = 0.023. CONCLUSION: During treatment with IFNB, increasing serum concentrations of alpha-tocopherol were associated with reduced odds for simultaneous and subsequent MRI disease activity in RRMS patients.

  4. Biodegradable films containing {alpha}-tocopherol/{beta}-cyclodextrin complex; Filmes biodegradaveis contendo {alpha}-tocoferol complexado em {beta}-ciclodextrina

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Caroline; Martelli, Silvia M.; Soldi, Valdir, E-mail: vsoldi@qmc.ufsc.br [Lab. de Materiais Polimericos (POLIMAT), Dept. de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Barreto, Pedro L.M. [Lab. de Reologia (REOLAB), Dept. de Ciencia e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2011-07-01

    The growing environmental concern about pollution and the need to reduce dependence of plastic industry in relation to non-renewable resources has increased the interest of both researchers and industry in the use of biopolymers. In this work {beta}-cyclodextrin/{alpha}-tocopherol complexes were prepared and characterized. In order to obtain polymeric active biofilms, the {beta}-cyclodextrin/{alpha}-tocopherol complex was incorporated into a polymeric matrix of carboxymethylcellulose. The {beta}-cyclodextrin/{alpha}-tocopherol complex was characterized through of X-ray diffraction and thermogravimetric analysis. The physicochemical properties of the films incorporated with the complex were evaluated through mechanical and colorimetric analysis and moisture sorption isotherm. (author)

  5. Redox Cycles of Caffeic Acid, alpha-Tocopherol, and Ascorbate: Implications for Protection of Low-Density Lipoproteins Against Oxidation

    OpenAIRE

    Laranjinha, João; Cadenas, Enrique

    1999-01-01

    This study addresses the dynamic interactions among alpha-tocopherol, caffeic acid, and ascorbate in terms of a sequence of redox cycles aimed at accomplishing optimal synergistic antioxidant protection. Several experimental models were designed to examine these interactions: UV irradiation of alpha-tocopherol-containing sodium dodecyl sulfate micelles, one-electron oxidations catalyzed by the hypervalent state of myoglobin, ferrylmyoglobin, and autoxidation at appropriate pHs. These models w...

  6. Protective effects of plasma alpha-tocopherols on the risk of inorganic arsenic-related urothelial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chi-Jung [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China); Chen, Ying-Ting [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Su, Chien-Tien [Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan (China); Wu, Chia-Chang [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Urology, Taipei Medical Universtiy-Shuang Ho Hospital, Taipei, Taiwan (China); Shiue, Horng-Sheng [Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Huang, Chao-Yuan [Department of Urology, National Taiwan University Hospital, Taipei, Taiwan (China); Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2011-02-15

    Arsenic plays an important role in producing oxidative stress in cultured cells. To investigate the interaction between high oxidative stress and low arsenic methylation capacity on arsenic carcinogenesis, a case-control study was conducted to evaluate the relationship among the indices of oxidative stress, such as urinary 8-hydroxydeoxyquanine (8-OHdG), as well as plasma micronutrients and urinary arsenic profiles on urothelial carcinoma (UC) risk. Urinary 8-OHdG was measured using high-sensitivity enzyme-linked immunosorbent assay kits. The urinary arsenic species were analyzed using high-performance liquid chromatography and hydride generator-atomic absorption spectrometry. Plasma micronutrient levels were analyzed using reversed-phase high-performance liquid chromatography. The present study showed a significant protective effect of plasma alpha-tocopherol on UC risk. Plasma alpha-tocopherol levels were significantly inversely related to urinary total arsenic concentrations and inorganic arsenic percentage (InAs%), and significantly positively related to dimethylarsinic acid percentage (DMA%). There were no correlations between plasma micronutrients and urinary 8-OHdG. Study participants with lower alpha-tocopherol and higher urinary total arsenic, higher InAs%, higher MMA%, and lower DMA% had a higher UC risk than those with higher alpha-tocopherol and lower urinary total arsenic, lower InAs%, lower MMA%, and higher DMA%. These results suggest that plasma alpha-tocopherol might modify the risk of inorganic arsenic-related UC. - Research Highlights: {yields} Plasma alpha-tocopherol levels were significantly inversely related to UC risk. {yields} There were no correlations between plasma micronutrients and urinary 8-OHdG. {yields} People with lower alpha-tocopherol and higher total arsenic had increased UC risk.

  7. Protective effects of plasma alpha-tocopherols on the risk of inorganic arsenic-related urothelial carcinoma

    International Nuclear Information System (INIS)

    Arsenic plays an important role in producing oxidative stress in cultured cells. To investigate the interaction between high oxidative stress and low arsenic methylation capacity on arsenic carcinogenesis, a case-control study was conducted to evaluate the relationship among the indices of oxidative stress, such as urinary 8-hydroxydeoxyquanine (8-OHdG), as well as plasma micronutrients and urinary arsenic profiles on urothelial carcinoma (UC) risk. Urinary 8-OHdG was measured using high-sensitivity enzyme-linked immunosorbent assay kits. The urinary arsenic species were analyzed using high-performance liquid chromatography and hydride generator-atomic absorption spectrometry. Plasma micronutrient levels were analyzed using reversed-phase high-performance liquid chromatography. The present study showed a significant protective effect of plasma alpha-tocopherol on UC risk. Plasma alpha-tocopherol levels were significantly inversely related to urinary total arsenic concentrations and inorganic arsenic percentage (InAs%), and significantly positively related to dimethylarsinic acid percentage (DMA%). There were no correlations between plasma micronutrients and urinary 8-OHdG. Study participants with lower alpha-tocopherol and higher urinary total arsenic, higher InAs%, higher MMA%, and lower DMA% had a higher UC risk than those with higher alpha-tocopherol and lower urinary total arsenic, lower InAs%, lower MMA%, and higher DMA%. These results suggest that plasma alpha-tocopherol might modify the risk of inorganic arsenic-related UC. - Research Highlights: → Plasma alpha-tocopherol levels were significantly inversely related to UC risk. → There were no correlations between plasma micronutrients and urinary 8-OHdG. → People with lower alpha-tocopherol and higher total arsenic had increased UC risk.

  8. Low dietary intake of beta-carotene, alpha-tocopherol and ascorbic acid is associated with increased inflammatory and oxidative stress status in a Swedish cohort.

    Science.gov (United States)

    Helmersson, Johanna; Arnlöv, Johan; Larsson, Anders; Basu, Samar

    2009-06-01

    Fruit and vegetable consumption has been associated with a reduced risk of several diseases including CVD. A part of these effects seen could be linked to anti-inflammatory and antioxidative effects, although this has not been thoroughly investigated. The present study was designed to investigate the effects of the dietary intake of beta-carotene, alpha-tocopherol and ascorbic acid on in vivo biomarkers of inflammation (PGF2alpha, high-sensitive C-reactive protein (hsCRP) and IL-6 formation) and oxidative stress (F2-isoprostane formation), the two important factors associated with accelerated atherosclerosis. The dietary intake of 704 participants in the Uppsala Longitudinal Study of Adult Men (ULSAM) at age 70 years was registered and inflammatory and oxidative stress biomarkers were quantified 7 years later. The registered dietary intakes of ascorbic acid and alpha-tocopherol were negatively associated linearly and in quartiles with both PGF2alpha, hsCRP, IL-6 and F2-isoprostanes, where ascorbic acid intake generally was more strongly associated. Dietary intake of beta-carotene was only significantly negatively associated with F2-isoprostanes. In conclusion, the present study is the first to suggest that the intake of food rich in antioxidants is associated with reduced cyclo-oxygenase- and cytokine-mediated inflammation and oxidative stress at 7 years of follow-up. These associations could be linked to the beneficial effects of fruit and vegetables observed on CVD.

  9. Superoxide dismutase, catalase, and. alpha. -tocopherol content of stored potato tubers. [Solanum tuberosum L

    Energy Technology Data Exchange (ETDEWEB)

    Spychalla, J.P.; Desborough, S.L. (Univ. of Minnesota, St. Paul (USA))

    1990-11-01

    Activated oxygen or oxygen free radical mediated damage to plants has been established or implicated in many plant stress situations. The extent of activated oxygen damage to potato (Solanum tuberosum L.) tubers during low temperature storage and long-term storage is not known. Quantitation of oxygen free radical mediated damage in plant tissues is difficult. However, it is comparatively easy to quantitate endogenous antioxidants, which detoxify potentially damaging forms of activated oxygen. Three tuber antioxidants, superoxide dismutase, catalase, and {alpha}-tocopherol were assayed from four potato cultivars stored at 3{degree}C and 9{degree}C for 40 weeks. Tubers stored at 3{degree}C demonstrated increased superoxide dismutase activities (up to 72%) compared to tubers stored at 9{degree}C. Time dependent increases in the levels of superoxide dismutase, catalase, and {alpha}-tocopherol occurred during the course of the 40 week storage. The possible relationship between these increases in antioxidants and the rate of activated oxygen production in the tubers is discussed.

  10. Alpha-tocopherol disappearance rates from plasma depend on lipid concentrations: Studies using deuterium labeled collard greens in younger and older adults

    Science.gov (United States)

    Little is known about alpha-tocopherol's bioavailability as a constituent of food or its dependence on a subject's age. To evaluate the alpha-tocopherol bioavailability from food, we used collard greens grown in deuterated water (2H collard greens) as a source of deuterium-labeled (2H) alpha-tocophe...

  11. SUPPLEMENTATION OF PATIENTS WITH HOMOZYGOUS SICKLE-CELL DISEASE WITH ZINC, ALPHA-TOCOPHEROL, VITAMIN-C, SOYBEAN OIL, AND FISH OIL

    NARCIS (Netherlands)

    MUSKIET, FAJ; MUSKIET, FD; MEIBORG, G; SCHERMER, JG

    1991-01-01

    Thirteen patients (aged 0.7-17.9 y) with homozygous sickle cell disease were supplemented with alpha-tocopherol, vitamin C, zinc, and soybean oil (suppl 1; for 8 mo) and alpha-tocopherol, vitamin C, and fish oil (suppl 2; for 7 mo). Urinary zinc (suppl 1), plasma vitamin C, plasma cholesterol ester

  12. Níveis de proteína e de vitamina E para matrizes de frango de corte. 2. Efeito sobre a concentração de alfa-tocoferol na gema e nos tecidos e balanço de nitrogênio Protein and vitamin E levels for broiler breed hens. 2. Effects on yolk and tissue alpha-tocopherol concentration and nitrogen balance

    Directory of Open Access Journals (Sweden)

    S.L.T. Barreto

    1999-04-01

    Full Text Available Foram utilizadas 16 matrizes de frangos de corte com o objetivo de avaliar o efeito de dois níveis de proteína bruta (NPB, 14 e 16%, e dois níveis de vitamina E (NVE, 25 e 250mg/kg, na dieta sobre a concentração de alfa-tocoferol (AT na gema, no fígado, no soro sangüíneo e na excreta, e sobre a retenção de AT e de nitrogênio (N. O período experimental foi de 25 dias, sendo 15 dias para a adaptação das aves à dieta e 10 dias para a coleta de ovos e da excreta para análise de vitamina E (VE e N. O delineamento experimental foi o inteiramente ao acaso, formado por quatro tratamentos em esquema fatorial 2 × 2 (NVE × NPB, constituído cada um por quatro repetições, e cada unidade experimental representada por uma ave. Houve aumento linear (PSixteen broiler breed hens were used with the objective of evaluating the effects of supplementation of two crude protein (14 and 16% CP and two vitamin E levels (25 and 250mg VE/kg in the diet on the alpha-tocopherol (AT concentration in the egg yolk, liver, blood serum and feces, and on the AT and nitrogen (N retentions. The experiment lasted 25 days, in which 15 days were used for hens adaptation and 10 days for egg and fecal collection for AT and N analyses. The experimental design was a complete randomized design with a 2 × 2 factorial arrangement (CP × VE levels with four repetitions per treatment. The increasing of VE in the diet resulted in increase (P0.05. Thus, it could be concluded that the increasing of VE levels in the diet increased the AT concentrations in the egg yolk and body tissues, and decreased the AT and increased the N retention in broiler breed hens during the laying peak period.

  13. Phospholipid hydroperoxide accumulation in liver of rats intoxicated with carbon tetrachloride and its inhibition by dietary alpha-tocopherol.

    Science.gov (United States)

    Miyazawa, T; Suzuki, T; Fujimoto, K; Kaneda, T

    1990-05-01

    The formation and accumulation of phospholipid hydroperoxides, especially of phosphatidylcholine hydroperoxide (PCOOH), a primary peroxidation product of phosphatidylcholine (PC), in livers of carbon tetrachloride-intoxicated rats was investigated. PCOOH in liver and blood plasma was measured by a chemiluminescence-high-performance liquid chromatography procedure originally developed by Miyazawa et al. (Anal. Lett. 20, 915, 1987; Free Radical Biol. Med. 7, 209, 1989). Male Sprague-Dawley rats (120 g body wt., 5 weeks of age) were used in the experiments. The amount of PCOOH in the liver of control rats (CCl4-untreated) was 160 +/- 20 pmol/100 mg protein (mean +/- SD) and the PCOOH/PC molar ratio was 1.1 +/- 0.1 X 10(-5). In CCl4 (0.1 ml/100 g body wt.)-dosed rats, the liver PCOOH was 289 +/- 65 pmol/100 mg protein (PCOOH/PC = 2.4 +/- 0.4 X 10(-5], 764 +/- 271 pmol/100 mg protein (PCOOH/PC = 5.2 +/- 1.7 X 10(-5], and 856 +/- 165 pmol/100 mg protien (PCOOH/PC = 6.0 +/- 0.8 X 10(-5] at 6 h, 24 h, and 1 week after the dose, respectively. Under such conditions, the liver phosphatidylethanolamine hydroperoxide (PEOOH) level was not altered and the concentration was less than 100 pmol/100 mg protein even after the dose. The increments of liver PCOOH were suppressed 56% by the oral supplementation of DL-alpha-tocopherol (5 mg/100 g body wt./day) for a week before CCl4 administration. A relatively larger amount of PEOOH was found after stimulation of PC hydroperoxidation in the liver of rats with a large amount of CCl4 (0.25 ml/100 g body wt.) rather than with the small amount of CCl4 (0.1 ml/100 g body wt.).(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Effects of RRR-alpha-tocopherol on leukocyte expression of HSP72 in response to exhaustive treadmill exercise.

    Science.gov (United States)

    Niess, A M; Fehrenbach, E; Schlotz, E; Sommer, M; Angres, C; Tschositsch, K; Battenfeld, N; Golly, I C; Biesalski, H K; Northoff, H; Dickhuth, H H

    2002-08-01

    Previous research revealed an increased expression of HSP72 in leukocytes after vigorous endurance exercise. We questioned whether more intensive but shorter exercise also induces leukocyte HSP72 synthesis. To delineate the role of reactive oxygen species (ROS) in exercise-related HSP72 induction, we additionally examined the effect of RRR-alpha-tocopherol (alpha-toc) on HSP72 expression using a double-blind placebo (P) controlled cross-over design. After supplementation with alpha-toc (500 I.U. daily) or P for 8 days, 9 male subjects performed a combined exhaustive treadmill protocol (total duration 29.4 +/- 2.0 min). HSP72 was assessed on mRNA (RT-PCR) and protein levels (flow cytometry). HSP72 mRNA rose 3 h after exercise only in the P group, but individual differences (alpha-toc - P) did not reveal significant treatment effects. A moderate but significant rise of HSP72 protein occurred in granulocytes up to 48 h after exercise. Three hours post-exercise, granulocyte HSP72 protein was lower when subjects received alpha-toc, but this effect vanished 24 and 48 h post-exercise. Exhaustive treadmill exercise augments HSP72 mRNA in leukocytes and induced a moderate but prolonged response of granulocyte HSP72 protein. These exercise effects are lower when compared to earlier findings obtained after vigorous endurance exercise. ROS seem to be involved, but do not play the major role in the induction of granulocyte HSP72 synthesis after exhaustive exercise. PMID:12215965

  15. Sensory profile of warmed-over flavour in tenderloin from steers supplemented with alpha-tocopherol

    Directory of Open Access Journals (Sweden)

    Moacir Evandro Lage

    2012-08-01

    Full Text Available The objective of the present study was to evaluate the occurrence of warmed-over flavour (WOF in cooked tenderloin and the influence of alpha-tocopherol on its inhibition. A total of 24 animals were confined, 12 of which received 1200 mg/head/day of alpha-tocopherol acetate for 90 days. Longissimus dorsi muscle cuts (tenderloin were obtained for sensory profile assessment by nine trained tasters. The tasters evaluated the taste of the meat based on four general and 18 specific attributes. The results of the evaluations were analysed with ANOVA, post-hoc tests of the means (Tukey tests, and principal component analysis (PCA. There was no significant difference in the WOF between the cuts of meat from the supplemented and non-supplemented animals. However, as the refrigeration period increased, there was a decrease in the intensity of the umami and sweet taste attributes and the flavour and aroma of the roast meat as well as an increase in the intensity of the oxidised vegetable oil flavour and the aromas of fish, hard-boiled egg, flaxseed oil, and oxidised vegetable oil. The samples that had been stored for one day were characterised by PCA as having sweet and umami tastes and the flavour and aroma of roast meat, whereas after three days, the samples were classified as having sour and bitter tastes, the flavour of chicken and nuts, and the aroma of fish. The typical sensory attributes desirable for roasted meat decreased in intensity during the three days of storage after cooking, whereas the intensity of unpleasant (oxidative attributes for the consumer increased.

  16. Testing the Effects of DL-Alpha-Tocopherol Supplementation on Oxidative Damage, Total Antioxidant Protection and the Sex-Specific Responses of Reproductive Effort and Lifespan to Dietary Manipulation in Australian Field Crickets (Teleogryllus commodus).

    Science.gov (United States)

    Archer, C Ruth; Hempenstall, Sarah; Royle, Nick J; Selman, Colin; Willis, Sheridan; Rapkin, James; Blount, Jon D; Hunt, John

    2015-01-01

    The oxidative stress theory predicts that the accumulation of oxidative damage causes aging. More generally, oxidative damage could be a cost of reproduction that reduces survival. Both of these hypotheses have mixed empirical support. To better understand the life-history consequences of oxidative damage, we fed male and female Australian field crickets (Teleogryllus commodus) four diets differing in their protein and carbohydrate content, which have sex-specific effects on reproductive effort and lifespan. We supplemented half of these crickets with the vitamin E isoform DL-alpha-tocopherol and measured the effects of nutrient intake on lifespan, reproduction, oxidative damage and antioxidant protection. We found a clear trade-off between reproductive effort and lifespan in females but not in males. In direct contrast to the oxidative stress theory, crickets fed diets that improved their lifespan had high levels of oxidative damage to proteins. Supplementation with DL-alpha-tocopherol did not significantly improve lifespan or reproductive effort. However, males fed diets that increased their reproductive investment experienced high oxidative damage to proteins. While this suggests that male reproductive effort could elevate oxidative damage, this was not associated with reduced male survival. Overall, these results provide little evidence that oxidative damage plays a central role in mediating life-history trade-offs in T. commodus. PMID:26783958

  17. Testing the Effects of DL-Alpha-Tocopherol Supplementation on Oxidative Damage, Total Antioxidant Protection and the Sex-Specific Responses of Reproductive Effort and Lifespan to Dietary Manipulation in Australian Field Crickets (Teleogryllus commodus

    Directory of Open Access Journals (Sweden)

    C. Ruth Archer

    2015-12-01

    Full Text Available The oxidative stress theory predicts that the accumulation of oxidative damage causes aging. More generally, oxidative damage could be a cost of reproduction that reduces survival. Both of these hypotheses have mixed empirical support. To better understand the life-history consequences of oxidative damage, we fed male and female Australian field crickets (Teleogryllus commodus four diets differing in their protein and carbohydrate content, which have sex-specific effects on reproductive effort and lifespan. We supplemented half of these crickets with the vitamin E isoform DL-alpha-tocopherol and measured the effects of nutrient intake on lifespan, reproduction, oxidative damage and antioxidant protection. We found a clear trade-off between reproductive effort and lifespan in females but not in males. In direct contrast to the oxidative stress theory, crickets fed diets that improved their lifespan had high levels of oxidative damage to proteins. Supplementation with DL-alpha-tocopherol did not significantly improve lifespan or reproductive effort. However, males fed diets that increased their reproductive investment experienced high oxidative damage to proteins. While this suggests that male reproductive effort could elevate oxidative damage, this was not associated with reduced male survival. Overall, these results provide little evidence that oxidative damage plays a central role in mediating life-history trade-offs in T. commodus.

  18. Retinol, alpha-tocopherol and fatty acid content in Bulgarian black Sea fish species

    Directory of Open Access Journals (Sweden)

    Stancheva, M.

    2012-06-01

    Full Text Available The aim of the present study was to measure and evaluate the total lipids, fatty acid profile, retinol content and alpha-tocopherol content in the edible tissue of four commercially important fish species from the Bulgarian Black sea: Sprat (Sprattus sprattus, Round Goby (Neogobius rattan, Black Sea Horse Mackerel (Trahurus medditeraneus ponticus and Shad (Alosa pontica. Fat soluble vitamins were analyzed simultaneously using an HPLC system. The highest content of retinol was established in the Sprat (142.3 ± 4.4 μg/100g and the highest content of alphatocopherol was found in the Black Sea Horse Mackerel (1112.7 ± 39.2 μg/100g. The fatty acid (FA composition was analyzed by GC/MS. The content of omega 3 (n3 FAs was significantly higher (p , 0.001 than the content of omega 6 (n6 FAs in each of the analyzed fish samples. The n6/n3 FA ratio was within the recommended range (0.20–1.50 for Sprat, Round Goby and Shad. Relatively high levels of retinol and alpha-tocopherol, FA composition, n3/n6 FA and PUFA/SFA ratios indicate that these fish species have good nutritional quality.

    El objeto de la investigación presentada es definir y comparar los lípidos totales, el perfil de ácidos grasos y el contenido de retinol y alfa-tocoferol en el tejido comestible de cuatro especies de peces con importancia comercial del Mar Negro búlgaro —espadín (Sprattus Sprattus, gobio de boca negra (Neogobius Melanostomus, chicharro (Trachurus Trachurus y sábalo del Mar Negro (Caspialosa Pontica. Dos vitaminas liposolubles son analizadas simultáneamente mediante cromatografía líquida de alta eficacia (HPLC. El contenido mayor de retinol se encuentra en el espadín (142.3 ± 4.4 μg/100g, y de alfa-tocoferol en el chicharro (1112.7 ± 39.2 μg/100g. El contenido de ácidos grasos ha sido analizado mediante cromatografía gaseosa/espectrometría de masas (GC/MS. El contenido de ácidos grasos (AG

  19. Neuroprotective effects of low-concentration alpha-tocopherol Confocal laser microscopy observations

    Institute of Scientific and Technical Information of China (English)

    Weilun Liang; Huiling Huang; Qiaoli Wu; Chen Wang; Wenzhi Zhang; Xin Su; Dashi Zhi

    2009-01-01

    BACKGROUND: Alpha-tocopherol (α -tocopherol) can effectively relieve neuronal damage induced by oxygen-centered free radicals. However, the effective dose remains controversial. OBJECTIVE: To evaluate the protective effects of low-concentration α -tocopherol on neuronal membranes.DESIGN, TIME AND SETTING: Contrast observation and in vitro study, performed at Laboratory of Neurosurgery, Tianjin Huanhu Hospital between April and September 2006.MATERIALS: Fetal cortical neurons were derived from two 14-day pregnant SD rats, and α -tocopherol was provided by Sigma, USA.METHODS: The neurons were randomly assigned to six groups: (1) normal: neurons were cultured under normal conditions; (2) oxidative damage: oxidative free radicals was damaged using the Fenton reaction; (3) u -tocopherol: neurons were cultured in different concentrations of α -tocopherol- 10, 20, 40, and 80 mg/L for 2 hours, respectively.MAIN OUTCOME MEASURES: Neuronal membrane damage was observed using a confocal laser microscope, and malonaldehyde production was detected using the thiobarbituric acid method.RESULTS: At normal, biological concentrations (10 mg/L), α -tocopherol induced no change in the damaged neurons (P > 0.05). However, at a concentration of 80 mg/L, the number of damaged neurons was significantly reduced, compared with the damage group (P < 0.05).Malonaldehyde levels following 80 mg/L α-tocopherol treatment were less than the oxygen free radical damage group (P < 0.05), but greater than the control group (P < 0.01 ).CONCLUSION: A concentration of 80 mg/L a -tocopherot can effectively protect the neuronal cell membrane from oxidative damage.

  20. Determination of alpha-Tocopherol (vitamin E) in irradiated garlic by high performance liquid chromatography (HPLC); Determinacao de alpha-tocoferol em alho irradiado utilizando cromatografia liquida de alta frequencia (CLAE)

    Energy Technology Data Exchange (ETDEWEB)

    Rios, Magda Dias Goncalves; Penteado, Marilene de Vuono Camargo [Sao Paulo Univ., SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental]. E-mail: riosmagda@hotmail.com

    2003-02-01

    The effects of {sup 60}Co ionizing radiations in doses of 0, 75, 100, 150, 200 and 250Gy on garlic, upon the {alpha}-tocopherol concentration were studied. The {alpha}-tocopherol contents were established by high performance liquid chromatography (HPLC), after direct hexane extraction from the garlic samples. The {alpha}-tocopherol was determined through normal phase column, and mobile phase was composed by hexane: iso-propyl alcohol (99:01 v/v), with 2mL/min flow rate and fluorescence detector. It is statistically shown that an irradiation dose of up to 150 Gy does not affect the garlic {alpha}-tocopherol content. (author)

  1. 7-ketocholesterol incorporation into sphingolipid/cholesterol-enriched (lipid raft) domains is impaired by vitamin E: a specific role for alpha-tocopherol with consequences on cell death.

    Science.gov (United States)

    Royer, Marie-Charlotte; Lemaire-Ewing, Stéphanie; Desrumaux, Catherine; Monier, Serge; Pais de Barros, Jean-Paul; Athias, Anne; Néel, Dominique; Lagrost, Laurent

    2009-06-01

    Cholesterol oxides, in particular 7-ketocholesterol, are proatherogenic compounds that induce cell death in the vascular wall when localized in lipid raft domains of the cell membrane. Deleterious effects of 7-ketocholesterol can be prevented by vitamin E, but the molecular mechanism involved is unclear. In this study, unlike gamma-tocopherol, the alpha-tocopherol vitamin E form was found to prevent 7-ketocholesterol-mediated apoptosis of A7R5 smooth muscle cells. To be operative, alpha-tocopherol needed to be added to the cells before 7-ketocholesterol, and its anti-apoptotic effect was reduced and even suppressed when added together or after 7-ketocholesterol, respectively. Both pre- and co-treatment of the cells with alpha-tocopherol resulted in the redistribution of 7-ketocholesterol out of the sphingolipid/cholesterol-enriched (lipid raft) domains. In turn, fewer amounts of alpha-tocopherol associated with lipid rafts on 7-ketocholesterol-pretreated cells compared with untreated cells, with no prevention of cell death in this case. In further support of the implication of lipid raft domains, the dephosphorylation/inactivation of Akt-PKB was involved in the 7-ketocholesterol-induced apoptosis. Akt-PKB dephosphorylation was prevented by alpha-tocopherol, but not gamma-tocopherol pretreatment. PMID:19351882

  2. Growth performance and feed utilization of keureling (Tor tambra fingerlings fed a formulated diet with different doses of vitamin E (alpha-tocopherol

    Directory of Open Access Journals (Sweden)

    Muchlisin Zainal A.

    2016-03-01

    Full Text Available The objective of the present study was to determine the optimum dosage of vitamin E (alpha-tocopherol in the diet of keureling, Tor tambra (Val. fingerlings for optimal growth performance and feed utilization. Five doses of vitamin E were tested: 0 mg kg−1 feed (control; 150 mg kg−1 feed; 300 mg kg−1 feed; 450 mg kg−1 feed; 600 mg kg−1. The feed ratio was 5% body weight, which was delivered twice daily at 08:00 and 17:00 for 60 days. The results showed that higher growth performance, feeding conversion ratios, feed efficiency, protein retention, and protein digestibility were obtained at 600 mg kg−1 feed, but the value was not significantly different from the other doses. The optimal dose in terms of the hepatosomatic index and survival rate was 300 mg kg−1. Hence, it was concluded that the optimum, most economical dose of vitamin E supplement for keureling (T. tambra was 150 mg kg−1 feed, because this value was not significantly different from the doses of 300 and 600 mg kg−1 feed.

  3. Comparison of serum lipid compositions, lipid peroxide, alpha-tocopherol and lipoproteins in captive marine mammals (bottlenose dolphins, spotted seals and West Indian manatees) and terrestrial mammals.

    Science.gov (United States)

    Kasamatsu, Masahiko; Kawauchi, Rieko; Tsunokawa, Masatoshi; Ueda, Keiichi; Uchida, Eiji; Oikawa, Shin; Higuchi, Hidetoshi; Kawajiri, Takaaki; Uchida, Senzo; Nagahata, Hajime

    2009-04-01

    Concentrations of serum lipid components, lipid peroxide (LPO) and alpha-tocopherol and electrophoretic patterns of lipoproteins in serum samples obtained from captive marine mammals and terrestrial mammals were compared. Serum concentrations of total cholesterol, free fatty acid, and phospholipid in fish-eating animals were significantly higher than those in manatees and cows. Serum LPO and alpha-tocopherol concentrations in the fish-eating animals were also significantly higher than those in manatees, cows and dogs. Different patterns of densitometric scans of low density lipoprotein (LDL) and a significantly lower percentage of LDL were demonstrated in the dolphins compared with the seals, cow and dogs. The concentration of LPO was significantly correlated with triglyceride and phospholipid concentrations in serum from the dolphins. These results suggest that triglyceride and phospholipid are susceptible to oxidative reaction in fish-eating animals. Evaluation of serum lipids, LPO and alpha-tocopherol concentrations is needed for nutritional husbandry for fish-eating animals.

  4. Effect of D-Alpha Tocopherol Therapy towards Malondialdehyde Level and Histology of Kidney in Rattus norvegicus with MLD-STZ Induction

    Directory of Open Access Journals (Sweden)

    Marissa Agnestiansyah Mahardhian

    2013-03-01

    Full Text Available Diabetic Nephropathy is a kidney disease which occurs due to complication of diabetes mellitus  as a consequence of the damage of the kidney endothelial cells. Hyperglicemia condition in patients with diabetes mellitus that induces an oxidative stress, were related to endothelial cell damage. Oxidative stress as a result of hyperglycemia will activate a number of signal transduction pathways resulting in increase of  free radicals. D-alpha tocopherol as one of antioxidant substance, that can act as an inhibitor of free radical chain reactions, play an important role in the reduction of the oxidative stress effect. Effect of D-alpha-tocopherol in reducing oxidative stress is identified by the levels of malondialdehyde (MDA in kidney and histology of kidney. This study used five groups mice; they were a control group, a diabetic group which was induced with MLD-STZ, and a therapeutic groups with a varieties doses of D-alpha tocopherol (100 mg/kgBW, 200 mg/kgBW and 300 mg/kgBW. The results showed that the D-alpha tocopherol was able to reduce the levels of malondialdehyde (MDA and repair the histology of kidney of mice induced by MLD-STZ.

  5. High levels of dietary unsaturated fat decrease alpha-tocopherol content of whole body, liver, and plasma of chickens without variations in intestinal apparent absorption.

    Science.gov (United States)

    Villaverde, C; Baucells, M D; Manzanilla, E G; Barroeta, A C

    2008-03-01

    An experiment was designed to assess the effect of dietary unsaturated fat inclusion level on alpha-tocopherol apparent absorption and deposition in broiler chickens at 2 ages (20 and 39 d). The dietary fat was a mixture of linseed and fish oil, rich in polyunsaturated fatty acids (PUFA). The experimental treatments were the result of 4 levels of supplementation with alpha-tocopheryl acetate (0, 100, 200, and 400 mg/kg; E0, E100, E200, and E400 treatments, respectively) and 4 dietary oil inclusion levels (2, 4, 6, and 8%; O2, O4, O6, and O8 treatments respectively). Almond husk was used as an energy dilutor in the high-fat diets. Apparent absorption of total fatty acids was high in all treatments averaging 88% and was higher with high fat dietary inclusion level. alpha-Tocopheryl acetate hydrolysis and apparent absorption of alpha-tocopherol were similar in both ages and were not affected by fat inclusion level, except for a reduction of the absorption in the low-fat diet (O2) in the E100 treatment at 20 d of age. Despite this lack of differences in hydrolysis and absorption, higher-fat PUFA diets induced lower concentrations of free alpha-tocopherol in the excreta, at high alpha-tocopherol doses, suggesting an increase in the destruction of alpha-tocopherol by lipid oxidation in the gastrointestinal tract. Similarly, total and hepatic alpha-tocopherol deposition was lower in the birds fed high-PUFA diets in the E200- and E400-supplemented birds, possibly due to a destruction of vitamin E when protecting these PUFA from lipid peroxidation. alpha-Tocopherol concentration in liver and, to a lesser extent, in plasma was a useful indicator of the degree of response of this vitamin to different factors that can affect its bioavailability; however, in the present experiment, CV were too high to use liver and plasma concentrations as estimators of total body vitamin E. PMID:18281576

  6. Pharmacodynamics and pharmacokinetics of Veliten (rutine, alpha-tocopherol and ascorbic acid) in patients with chronic venous insufficiency.

    Science.gov (United States)

    Auteri, A; Pasqui, A L; Bruni, F; Di Renzo, M; Bova, G; Chiarion, C; Delchambre, J

    1994-01-01

    The aim of this study was to evaluate the pharmacodynamics and pharmacokinetics of a single oral dose of Veliten in 12 patients affected by chronic venous insufficiency. In particular, the pharmacokinetics of two components of Veliten, namely rutine and alpha-tocopherol, were considered, while with respect to pharmacodynamics, studies were made of venous function, haemocoagulative and fibrinolytic balance, and haemorheological parameters. Correlation between such changes and plasma drug levels was also evaluated. We found a significant increase of venous tone, venous capacity and venous distension after drug intake, as well as a significant activation of fibrinolysis (globally evaluated with euglobulin lysis time), related to a slight increase of plasminogen tissue activator. These changes appeared concomitantly with maximal plasma levels of rutine. We did not find any modifications of coagulative and haemorheological parameters.

  7. Effects of micronutrient antioxidants (alpha-tocopherol and ascorbic acid) on skin thickening and lung function in patients with early diffuse systemic sclerosis.

    Science.gov (United States)

    Ostojic, Predrag; Damjanov, Nemanja

    2011-08-01

    To assess the effects of alpha-tocopherol and ascorbic acid on skin thickening and lung function in patients with early diffuse systemic sclerosis (SSc), thirteen patients with early diffuse SSc, with positive anti-topoisomerase-I antibody, high skin thickening progression rate (STPR ≥ 12/year) and decreased lung diffusing capacity (DLCO ≤ 75%) were included in this study. Patients were randomized into two subgroups: Subgroup A-six patients, treated with intravenous cyclophosphamide (CyP) (500 mg/m(2) of body surface monthly) and antioxidants (alpha-tocopherol 400 IU/day and ascorbic acid 1,000 mg/day), and Subgroup B-seven patients, who received CyP without antioxidants. In both subgroups, effects of treatment on skin thickening and lung function were evaluated by comparison of the modified Rodnan skin score (MRSS), STPR, forced vital capacity (FVC), transfer-factor (DLCO) and diffusing coefficient for carbon monoxide (DLCO/VA) at baseline and 1 month after the sixth pulse of CyP. The mean MRSS did not change from baseline to the end of the follow-up in subgroup A (15.7 vs. 16.4, P = 0.50), but it increased significantly in subgroup B (17.9 vs. 23.6, P = 0.03). Although the mean STPR decreased notably in both subgroups of patients (in subgroup A-from 18.9/year to 2.2/year, P = 0.03, and in subgroup B-from 17.5/year to 8.6/year, P = 0.03), the mean STPR at the end of the treatment period was significantly lower in subgroup A (2.2/year vs. 8.6/year, P = 0.04). The mean value of FVC did not change either in subgroup A (91.0-87%, P = 0.2) or in subgroup B (from 101.2 to 99.7%, P = 0.7). Parameters of lung diffusing capacity improved somewhat in subgroup A (DLCO from 55.7 to 62.0% and DLCO/VA from 68.7 to 74.2%) and decreased in subgroup B (DLCO from 66.2 to 60.6% and DLCO/VA from 76.9 to 71.6%), but differences were not statistically significant. After 6 months of therapy, patients treated with CyP and antioxidants had a significantly lower STPR, compared to

  8. Effect of. cap alpha. -tocopherol, butylated-hydroxytoluene and hydroxy-anisole on the activation and binding of aflatoxin B/sub 1/ to macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Ch' ih, J.J.; Biedrzycka, D.; Devlin, T.M.

    1987-05-01

    The anti-oxidants, ..cap alpha..-tocopherol(TPA), butylated-hydroxy-toluene(BHT) and hydroxyanisole(BHA) inhibit the carcinogenic and toxic effects of a variety of chemical compounds, their effect on aflatoxin B/sub 1/ (AFB/sub 1/) activation and binding was examined utilizing rat liver microsomes and cells. With a NADPH generating system, oxygen, microsomes, (/sup 3/H)-AFB/sub 1/, 2.2 pmoles/h/mg protein was activated and bound to macromolecules. In hepatocytes, 3.4 and 1.4 pmoles of AFB/sub 1/ per 10/sup 6/ cells were taken up and bound to macromolecules, whereas the nucleic acid fraction contained 0.19 pmoles of bound AFB/sub 1/. Moderate decreases of AFB/sub 1/ activation and binding were observed when TPA was present in both cell-free and hepatocytes systems. Only in hepatocytes, BHT inhibited the AFB/sub 1/ uptake and binding to nucleic acids. BHA, however, inhibited microsomal activation of AFB/sub 1/ by 73%; maximum inhibition was reached at 1 mM. AFB/sub 1/ uptake, and binding to nucleic acids were inhibited by 65% and 79% by BHA. GSH-transferase activity of cells treated with these agents was not altered. The effect of BHA at various concentrations on AFB activation was compared with cytochrome P-450 inhibitors; the ED/sub 50/ of SKF 525A, BHA and metyrapone was 9 uM, 80 uM and 380 uM respectively. The data suggest that TPA, BHA and BHT exert their effect by different mechanisms.

  9. Intensive swimming exercise-induced oxidative stress and reproductive dysfunction in male wistar rats: protective role of alpha-tocopherol succinate.

    Science.gov (United States)

    Manna, Indranil; Jana, Kuladip; Samanta, Prabhat Kumar

    2004-04-01

    In the present study, 30 male rats (age 3 mos, Wt 128.6 +/- 3.7 g) were randomly divided into Control group (CG), Experimental group (EG), and Supplemented group (SG), 10 per group. An exercise protocol (3 hrs swimming per day, 5 days a week for 4 weeks) was followed in EG and SG, with no exercise in CG. In SG, alpha-tocopherol succinate was injected sub-cutaneously at a dose of 50 mg x kg(- 1) per body weight per day. After 4 weeks of exercise, significant diminutions (p Intensive swimming exercise-induced oxidative stress causes dysfunction in the male reproductive system, which can be protected by alpha-tocopherol succinate. PMID:15064426

  10. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkab...

  11. Microencapsulation of H. pluvialis oleoresins with different fatty acid composition: Kinetic stability of astaxanthin and alpha-tocopherol.

    Science.gov (United States)

    Bustamante, Andrés; Masson, Lilia; Velasco, Joaquín; del Valle, José Manuel; Robert, Paz

    2016-01-01

    Haematococcus pluvialis is a natural source of astaxanthin (AX). However, AX loses its natural protection when extracted from this microalga. In this study, a supercritical fluid extract (SFE) of H. pluvialis was obtained and added to oils with different fatty acid compositions (sunflower oil (SO) or high oleic sunflower oil (HOSO)). The oleoresins of H. pluvialis ((SO+SFE) and (HOSO+SFE)) were encapsulated with Capsul by spray drying. The stability of the oleoresins and powders were studied at 40, 50 and 70° C. AX and alpha-tocopherol (AT) degradation followed a zero-order and first-order kinetic model, respectively, for all systems. The encapsulation of oleoresins improved the stability of AX and AT to a greater extent in oleoresins with a monounsaturated fatty acid profile, as shown by the significantly lowest degradation rate constants and longest half-lives. Therefore, the encapsulation of H. pluvialis oleoresins is an alternative to developing a functional ingredient for healthy food design. PMID:26213069

  12. Suppression of alpha-tocopherol ether-linked acetic acid in VEGF-induced angiogenesis and the possible mechanisms in human umbilical vein endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Cheng-Hung, E-mail: chchuang@hk.edu.tw [Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, 1018 Sec. 6 Taiwan Boulevard, Taichung 43302, Taiwan, ROC (China); Liu, Chia-Hua [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Lu, Ta-Jung [Department of Chemistry, Institute of Technology and Innovation Management, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China); Hu, Miao-Lin, E-mail: mlhuhu@dragon.nchu.edu.tw [Department of Food Science and Biotechnology, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan, ROC (China)

    2014-12-15

    Alpha-tocopherol ether-linked acetic acid (α-TEA) has been reported to exhibit both anti-tumor and anti-metastatic activities in cell culture and animal studies. However, it is unclear whether α-TEA possesses anti-angiogenic effects. In this study, we investigated the effect of α-TEA on vascular endothelial growth factor (VEGF)-induced angiogenesis and matrix metalloproteinase (MMP) expression both in vitro and ex vivo. We found that the α-TEA inhibited tube formation, invasion, and migration in human umbilical vein endothelial cells (HUVECs) and that such actions were accompanied by reduced expression of MMP-2. α-TEA also inhibited ex vivo angiogenesis, as indicated by chicken egg chorioallantoic membrane assay. We further showed that α-TEA attenuated protein expression of VEGF receptor-2 (VEGFR-2)-mediated p38 mitogen-activated protein kinase (p38), phosphorylated p38, and focal adhesion kinase (FAK). Moreover, α-TEA (30 μM) significantly up-regulated protein expression of tissue inhibitors of MMP (TIMP)-2 (by 138%) and the metastasis suppressor gene nm23-H1 (by 54%). These results demonstrate that the anti-angiogenic effect of α-TEA both in vitro and ex vivo and its possible mechanistic action appears to involve the inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways and through up-regulation of TIMP-2 and nm23-H1 expression. - Graphical abstract: Possible mechanisms of α-TEA on inhibited angiogenesis of human umbilical vein endothelial cells. Brief summary In the present study, we have demonstrated that VEGF-mediated angiogenesis is significantly inhibited by α-TEA, and that this effect involves inhibition of MMP-2 level through VEGFR-2-mediated FAK and p38 signaling pathways related to invasion and migration. - Highlights: • The anti-angiogenic effect and the mechanistic action of α-TEA were investigated. • α-TEA significantly inhibited VEGF-mediated angiogenesis both in vitro and ex vivo. • α-TEA down

  13. Lipid-transfer proteins.

    Science.gov (United States)

    Ng, Tzi Bun; Cheung, Randy Chi Fai; Wong, Jack Ho; Ye, Xiujuan

    2012-01-01

    Lipid-transfer proteins (LTPs) are basic proteins found in abundance in higher plants. LTPs play lots of roles in plants such as participation in cutin formation, embryogenesis, defense reactions against phytopathogens, symbiosis, and the adaptation of plants to various environmental conditions. In addition, LTPs from field mustard and Chinese daffodil exhibit antiproliferative activity against human cancer cells. LTPs from chili pepper and coffee manifest inhibitory activity against fungi pathogenic to humans such as Candida species. The intent of this article is to review LTPs in the plant kingdom. PMID:23193591

  14. Electron transfer in proteins.

    Science.gov (United States)

    Gray, H B; Winkler, J R

    1996-01-01

    Electron-transfer (ET) reactions are key steps in a diverse array of biological transformations ranging from photosynthesis to aerobic respiration. A powerful theoretical formalism has been developed that describes ET rates in terms of two parameters: the nuclear reorganization energy (lambda) and the electronic-coupling strength (HAB). Studies of ET reactions in ruthenium-modified proteins have probed lambda and HAB in several metalloproteins (cytochrome c, myoglobin, azurin). This work has shown that protein reorganization energies are sensitive to the medium surrounding the redox sites and that an aqueous environment, in particular, leads to large reorganization energies. Analyses of electronic-coupling strengths suggest that the efficiency of long-range ET depends on the protein secondary structure: beta sheets appear to mediate coupling more efficiently than alpha-helical structures, and hydrogen bonds play a critical role in both. PMID:8811189

  15. Evaluation and comparison of bond strength to 10% carbamide peroxide bleached enamel following the application of 10% and 25% sodium ascorbate and alpha-tocopherol solutions: An in vitro study

    Directory of Open Access Journals (Sweden)

    Asha Thapa

    2013-01-01

    Full Text Available Aim: To evaluate and compare composite bond strength to carbamide peroxide bleached enamel following the application of 10% and 25% sodium ascorbate and alpha-tocopherol solutions. Materials and Methods: Sixty premolars were divided into six groups. Groups I and VI served as unbleached and bleached controls respectively. Groups II, III, IV and V served as the experimental groups and were subjected to 10% carbamide peroxide bleaching followed by 10 min application of 10% and 25% sodium ascorbate and 10% and 25% alpha-tocopherol solutions, respectively. Following composite bonding, shear bond strength was determined and the results were analyzed using ANOVA and Tukey highest significant difference test. Results: Only Group IV showed significantly lower bond strength when compared to Group I (unbleached control. When compared to Group VI (bleached control, except Group IV, groups II, III and V showed significantly higher bond strength. However, there was no statistically significant difference between the experimental groups corresponding to 10% and 25% and similar concentrations of sodium ascorbate and alpha-tocopherol solutions. Conclusion: Following 10% carbamide peroxide bleaching, except 10% alpha tocopherol, 10 min application of 10% and 25% sodium ascorbate and 25% alpha-tocopherol solutions significantly improves the shear bond strength of composite resin to enamel.

  16. An optimized and validated RP-HPLC/UV detection method for simultaneous determination of all-trans-retinol (vitamin A) and alpha-tocopherol (vitamin E) in human serum: comparison of different particulate reversed-phase HPLC columns.

    Science.gov (United States)

    Khan, Abad; Khan, Muhammad I; Iqbal, Zafar; Shah, Yasar; Ahmad, Lateef; Watson, David G

    2010-09-01

    A novel, simple and fast reversed-phase HPLC/UV method was developed, optimized for various chromatographic conditions, and validated according to international guidelines for simultaneous determination of all-trans-retinol and alpha-tocopherol in human serum using retinyl acetate as internal standard in the concentration of 0.5 microg/ml. A liquid-phase extraction was applied to the 250 microl of serum with n-hexane-dichloromethane mixture (70:30, v/v), in two steps, using ethanol-methanol mixture (95:5, v/v) for protein precipitation and BHT (butylated hydroxy toluene) as stabilizer for sample preparation. Both analytes were analyzed on Kromasil 100 C(18) column (150 mm x 4.6 mm, 5 microm), Brownlee analytical (Perkin Elmer) C(18) column (150 mm x 4.6 mm, 5 microm), and Supelco (Supelcosil) LC-18 column (150 mm x 3 mm, 3 microm), protected by a Perkin Elmer C(18) (30 mm x 4.6 mm, 10 microm; Norwalk, USA) pre-column guard cartridge, at 292 nm wavelength, using methanol-water (99:1, v/v), in isocratic mode as mobile phase applied at flow rate of 1.5 ml/min and 1 ml/min for both 5 microm and 3 microm columns, respectively. Complete separation of all the analytes was achieved in 3 and 6 min on 3 microm and 5 microm columns, respectively by injecting 20 microl of sample into the HPLC system by autosampler, keeping column oven temperature at 25 degrees C. Different particulate reversed-phase chromatographic columns were evaluated in order to select the best column in terms of sensitivity, selectivity, resolution and short run time of both the analytes and it was concluded that 3 microm columns are better to be used in clinical set up as well as in laboratories for the separation of these analytes in a shorter time as compared with 5 microm columns. The method was validated and applied for the analysis of all-trans-retinol and alpha-tocopherol in the serum of human volunteers.

  17. Toxic effects of methamidophos on paraoxonase 1 activity and on rat kidney and liver and ameliorating effects of alpha-tocopherol.

    Science.gov (United States)

    Araoud, Manel; Neffeti, Fadoua; Douki, Wahiba; Khaled, Lamia; Najjar, Mohamed Fadhel; Kenani, Abderraouf; Houas, Zohra

    2016-07-01

    The role of alpha-tocopherol on nephrotoxicity and hepatotoxicity induced by methamidophos (MT) was investigated in wistar rats. Animals were given via gavage, for four weeks, a low dose of MT (MT1), a high dose of MT (MT2), vitamin E (200 mg/kg of bw) or both MT2 plus vitamin E (Vit E) and control group was given distillate water. MT treatment resulted in a significant decrease in the body weight of MT2-treated group. Moreover, MT-treated groups had significantly lower butyrylcholinesterase (p control group (p levels (p control group. However, significant low uric acid level (p < 0.05) was noted in MT2 plus vit E-treated rats compared with MT2-treated group. Histopathological changes in organ tissues were observed in both MT-treated groups and MT2 plus vit E-treated rats. However, the damage was reduced in MT2 plus vit E-treated rats. Therefore, this study deduces that alpha-tocopherol administration may ameliorate the adverse effects of subacute exposure to MT on rat liver and kidney and this antioxidant can protect PON1 from oxidative stress induced by this organophosphorus pesticide. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 842-854, 2016. PMID:25535039

  18. A lipid transfer protein that transfers lipid

    OpenAIRE

    Levine, T. P.

    2007-01-01

    Very few lipid transfer proteins (LTPs) have been caught in the act of transferring lipids in vivo from a donor membrane to an acceptor membrane. Now, two studies (Halter, D., S. Neumann, S. M. van Dijk, J. Wolthoorn, A. M. de Maziere, O.V. Vieira, P. Mattjus, J. Klumperman, G. van Meer, and H. Sprong. 2007. J. Cell Biol. 179: 101 115; D'Angelo, G., E. Polishchuk, G. D. Tullio, M. Santoro, A. D. Campli, A. Godi, G. West, J. Bielawski, C.C. Chuang, A. C. van der Spoel, et al. 2007. Nature. 449...

  19. Age and heat exposure-dependent changes in antioxidant enzymes activities in rat's liver and brain mitochondria: role of alpha-tocopherol.

    Science.gov (United States)

    Stojkovski, V; Hadzi-Petrushev, N; Ilieski, V; Sopi, R; Gjorgoski, I; Mitrov, D; Jankulovski, N; Mladenov, M

    2013-01-01

    To investigate the role of mitochondrial antioxidant capacity during increased susceptibility to heat accompanied by the aging, young and aged Wistar rats were exposed on heat for 60 min. After heat exposure, hepatic and brain mitochondria were isolated. Our results revealed changes in antioxidant enzyme activities in liver and brain mitochondria from young and to a greater extent in aged rats. Our measurements of MnSOD, GPx and GR activity indicate greater reactive oxygen species production from the mitochondria of aged heat exposed in comparison to young heat exposed rats. Also in the aged rats, the effect of alpha-tocopherol treatment in the prevention of oxidative stress occurred as a result of heat exposure, is less pronounced. Taken together, our data suggest that mitochondria in aged rats are more vulnerable and less able to prevent oxidative changes that occur in response to acute heat exposure.

  20. The influence of magnesium-pyridoxal-5'-phosphate-glutamate in comparison with probucol, alpha-tocopherol and trolox on copper-induced oxidation of human low density lipoprotein in vitro.

    Science.gov (United States)

    Kögl, C; Schneider, W; Elstner, E F

    1994-06-15

    Low density lipoprotein (LDL) in the presence of magnesium-pyridoxal-5'-phosphate-glutamate (MPPG), pyridoxal-5'-phosphate (PP), alpha-tocopherol, probucol or trolox is more resistant against copper-induced oxidation as control-LDL in vitro. The efficiency of the drugs is: probucol > MPPG > trolox > alpha-tocopherol > PP. LDL oxidation is determined by its increasing negative surface charge, fragmentation of apolipoprotein B-100 and changes of the fatty acid content of LDL. The protection of the drugs depends on their concentration and incubation time. Different experiments point to the fact that copper-induced oxidation of LDL in vitro starts with the binding of copper at the apolipoprotein B-100, resulting in an increasing negative surface charge and fragmentation of the apolipoprotein B-100. Afterwards a decrease of LDL-bound linoleic acid (18:2) is measurable. PMID:8031313

  1. Protective Effect of Alpha-Tocopherol Isomer from Vitamin E against the H2O2 Induced Toxicity on Dental Pulp Cells

    Directory of Open Access Journals (Sweden)

    Fernanda da Silveira Vargas

    2014-01-01

    Full Text Available The aim of this study was to evaluate the protective effects of different concentrations of vitamin E alpha-tocopherol (α-T isomer against the toxicity of hydrogen peroxide (H2O2 on dental pulp cells. The cells (MDPC-23 were seeded in 96-well plates for 72 hours, followed by treatment with 1, 3, 5, or 10 mM α-T for 60 minutes. They were then exposed or not to H2O2 for 30 minutes. In positive and negative control groups, the cells were exposed to culture medium with or without H2O2 (0.018%, respectively. Cell viability was evaluated by MTT assay (Kruskal-Wallis and Mann-Whitney tests; α=5%. Significant reduction of cell viability (58.5% was observed in positive control compared with the negative control. Cells pretreated with α-T at 1, 3, 5, and 10 mM concentrations and exposed to H2O2 had their viability decreased by 43%, 32%, 25%, and 27.5%, respectively. These values were significantly lower than those observed in the positive control, thereby showing a protective effect of α-T against the H2O2 toxicity. Overall, the vitamin E α-T isomer protected the immortalized MDPC-23 pulp cells against the toxic effects of H2O2. The most effective cell protection was provided by 5 and 10 mM concentrations of α-T.

  2. Dietary carotenoids, serum beta-carotene, and retinol and risk of lung cancer in the alpha-tocopherol, beta-carotene cohort study.

    Science.gov (United States)

    Holick, Crystal N; Michaud, Dominique S; Stolzenberg-Solomon, Rachael; Mayne, Susan T; Pietinen, Pirjo; Taylor, Philip R; Virtamo, Jarmo; Albanes, Demetrius

    2002-09-15

    Findings from several beta-carotene supplementation trials were unexpected and conflicted with most observational studies. Carotenoids other than beta-carotene are found in a variety of fruits and vegetables and may play a role in this important malignancy, but previous findings regarding the five major carotenoids are inconsistent. The authors analyzed the associations between dietary beta-carotene, beta-carotene, lutein/zeaxanthin, lycopene, beta-cryptoxanthin, vitamin A, serum beta-carotene, and serum retinol and the lung cancer risk in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study cohort of male smokers conducted in southwestern Finland between 1985 and 1993. Of the 27,084 male smokers aged 50-69 years who completed the 276-food item dietary questionnaire at baseline, 1,644 developed lung cancer during up to 14 years of follow-up. Cox proportional hazards models were used to estimate relative risks and 95% confidence intervals. Consumption of fruits and vegetables was associated with a lower lung cancer risk (relative risk = 0.73, 95% confidence interval: 0.62, 0.86, highest vs. lowest quintile). Lower risks of lung cancer were observed for the highest versus the lowest quintiles of lycopene (28%), lutein/zeaxanthin (17%), beta-cryptoxanthin (15%), total carotenoids (16%), serum beta-carotene (19%), and serum retinol (27%). These findings suggest that high fruit and vegetable consumption, particularly a diet rich in carotenoids, tomatoes, and tomato-based products, may reduce the risk of lung cancer.

  3. In Vivo Effects of Vanadium Pentoxide and Antioxidants (Ascorbic Acid and Alpha-Tocopherol) on Apoptotic, Cytotoxic, and Genotoxic Damage in Peripheral Blood of Mice

    Science.gov (United States)

    García-Rodríguez, María del Carmen; Hernández-Cortés, Lourdes Montserrat; Altamirano-Lozano, Mario Agustín

    2016-01-01

    This study was conducted to investigate the effects of vanadium pentoxide (V2O5), ascorbic acid (AA), and alpha-tocopherol (α-TOH) on apoptotic, cytotoxic, and genotoxic activity. Groups of five Hsd:ICR mice were treated with the following: (a) vehicle, distilled water; (b) vehicle, corn oil; (c) AA, 100 mg/kg intraperitoneally (ip); (d) α-TOH, 20 mg/kg by gavage; (e) V2O5, 40 mg/kg by ip injection; (f) AA + V2O5; and (g) α-TOH + V2O5. Genotoxic damage was evaluated by examining micronucleated polychromatic erythrocytes (MN-PCE) obtained from the caudal vein at 0, 24, 48, and 72 h after treatments. Induction of apoptosis and cell viability were assessed at 48 h after treatment in nucleated cells of peripheral blood. Treatment with AA alone reduced basal MN-PCE, while V2O5 treatment marginally increased MN-PCE at all times after injection. Antioxidants treatments prior to V2O5 administration decreased MN-PCE compared to the V2O5 group, with the most significant effect in the AA + V2O5 group. The apoptotic cells increased with all treatments, suggesting that this process may contribute to the elimination of the cells with V2O5-induced DNA damage (MN-PCE). The necrotic cells only increased in the V2O5 group. Therefore, antioxidants such as AA and α-TOH can be used effectively to protect or reduce the genotoxic effects induced by vanadium compounds like V2O5. PMID:27413422

  4. Superparamagnetic iron oxide--loaded poly(lactic acid)-D-alpha-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent.

    Science.gov (United States)

    Prashant, Chandrasekharan; Dipak, Maity; Yang, Chang-Tong; Chuang, Kai-Hsiang; Jun, Ding; Feng, Si-Shen

    2010-07-01

    We developed a strategy to formulate supraparamagnetic iron oxides (SPIOs) in nanoparticles (NPs) of biodegradable copolymer made up of poly(lactic acid) (PLA) and d-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS) for medical imaging by magnetic resonance imaging (MRI) of high contrast and low side effects. The IOs-loaded PLA-TPGS NPs (IOs-PNPs) were prepared by the single emulsion method and the nanoprecipitation method. Effects of the process parameters such as the emulsifier concentration, IOs loading in the nanoparticles, and the solvent to non-solvent ratio on the IOs distribution within the polymeric matrix were investigated and the formulation was then optimized. The transmission electron microscopy (TEM) showed direct visual evidence for the well dispersed distribution of the IOs within the NPs. We further investigated the biocompatibility and cellular uptake of the IOs-PNPs in vitro with MCF-7 breast cancer cells and NIH-3T3 mouse fibroblast in close comparison with the commercial IOs imaging agent Resovist. MRI imaging was further carried out to investigate the biodistribution of the IOs formulated in the IOs-PNPs, especially in the liver to understand the liver clearance process, which was also made in close comparison with Resovist. We found that the PLA-TPGS NPs formulation at the clinically approved dose of 0.8 mg Fe/kg could be cleared within 24 h in comparison with several weeks for Resovist. Xenograft tumor model MRI confirmed the advantages of the IOs-PNPs formulation versus Resovist through the enhanced permeation and retention (EPR) effect of the tumor vasculature. PMID:20434210

  5. Binding and uptake of 125iodine-labelled, oxidized low density lipoprotein by macrophages: comparison of the effects of alpha-tocopherol, probucol, pyridoxal-5'-phosphate and magnesium-pyridoxal-5'-phosphate-glutamate.

    Science.gov (United States)

    Selmer, D; Senekowitsch-Schmidtke, R; Schneider, W; Elstner, E F

    1997-01-01

    Specific and unspecific binding and uptake (internalization) by macrophages of 125iodine-labelled, copper-oxidized human low density lipoprotein is differently influenced by the anti-oxidants alpha-tocopherol (alpha-Toc), probucol (Prob), pyridoxal-5'-phosphate (PP) and the magnesium-pyridoxal-5'-phosphate glutamate complex (MPPG). Binding as well as internalization, mediated by the so-called "scavenger receptor" is lower in the presence of MPPG whereas both specific binding and internalization are enhanced. The comparison of the effects in vitro allows a rating of the potentially anti-atherogenic and thus protective effects of the tested substances as follows: MPPG > PP > alpha-Toc > Prob. PMID:9090072

  6. Binding and uptake of {sup 125}iodine-labelled, oxidized low density lipoprotein by macrophages: Comparison of the effects of {alpha}-tocopherol, probucol, pyridoxal-5`-phosphate and magnesium-pyridoxal-5`-phosphate-glutamate

    Energy Technology Data Exchange (ETDEWEB)

    Selmer, D. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Lehrstuhl fuer Phytopathologie; Senekowitsch-Schmidtke, R. [Technische Univ. Muenchen (Germany). Nuklearmedizinische Klinik; Schneider, W. [Steigerwald Arzneimittel, Darmstadt (Germany); Elstner, E.F. [Technische Univ. Muenchen, Freising-Weihenstephan (Germany). Lehrstuhl fuer Phytopathologie

    1997-01-01

    Specific and unspecific binding and uptake (internalization) by macrophages of {sup 125}iodine-labelled, copper-oxidized human low density lipoprotein is differently influenced by the anti-oxidants {alpha}-tocopherol ({alpha}-Toc), probucol (Prob), pyridoxal-5`-phosphate (PP) and the magnesium-pyridoxal-5`-phosphate glutamate complex (MPPG). Binding as well as internalization, mediated by the so-called `scavenger receptor` is lower in the presence of MPPG whereas both specific binding and internalization are enhanced. The comparison of the effects in vitro allows a rating of the potentially anti-atherogenic and thus protective effects of the tested substances as follows: MPPG>PP>{alpha}-Toc>Prob. (orig.)

  7. Effects of α-Tocopherol and β-Carotene Supplementation on Cancer Incidence and Mortality: 18-Year Post-Intervention Follow-Up of the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study

    OpenAIRE

    Virtamo, Jarmo; Taylor, Phil R; Kontto, Jukka; Männistö, Satu; Utriainen, Meri; Weinstein, Stephanie J.; Huttunen, Jussi; Albanes, Demetrius

    2013-01-01

    In the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study among 29,133 Finnish male smokers aged 50–69 years, daily α-tocopherol (50 mg) for a median of 6.1 years decreased the risk of prostate cancer, whereas β-carotene (20 mg) increased risk of lung cancer and overall mortality. To determine the post-intervention effects of α-tocopherol and β-carotene, 25,563 men were followed 18 years for cancer incidence and all causes of mortality through national registers. Neither supplemen...

  8. The Cardioprotective Effect of Vitamin E (Alpha-Tocopherol Is Strongly Related to Age and Gender in Mice.

    Directory of Open Access Journals (Sweden)

    Xiao-Xia Hu

    Full Text Available Vitamin E (VitE only prevented cardiovascular diseases in some patients and the mechanisms remain unknown. VitE levels can be affected by aging and gender. We hypothesize that age and gender can influence VitE's cardioprotective effect. Mice were divided into 4 groups according to age and gender, and each group of mice were divided into a control group and a VitE group. The mice were administered water or VitE for 21 days; Afterward, the cardiac function and myocardial infarct size and cardiomyocyte apoptosis were measured after myocardial ischemia reperfusion(MI/R. VitE may significantly improved cardiac function in young male mice and aged female mice by enhancing ERK1/2 activity and reducing JNK activity. Enhanced expression of HSP90 and Bcl-2 were also seen in young male mice. No changes in cardiac function and cardiac proteins were detected in aged male mice and VitE was even liked to exert a reverse effect in cardiac function in young mice by enhancing JNK activity and reducing Bcl-2 expression. Those effects were in accordance with the changes of myocardial infarction size and cardiomyocyte apoptosis in each group of mice. VitE may reduce MI/R injury by inhibiting cardiomyocyte apoptosis in young male mice and aged female mice but not in aged male mice. VitE was possibly harmful for young female mice, shown as increased cardiomyocyte apoptosis after MI/R. Thus, we speculated that the efficacy of VitE in cardiac protection was associated with age and gender.

  9. Mechanisms of Ligand Transfer by the Hepatic Tocopherol Transfer Protein*

    OpenAIRE

    Morley, Samantha; Cecchini, Matt; Zhang, Wendy; Virgulti, Alessandro; Noy, Noa; Atkinson, Jeffrey; Manor, Danny

    2008-01-01

    α-Tocopherol is a member of the vitamin E family that functions as the principal fat-soluble antioxidant in vertebrates. Body-wide distribution of tocopherol is regulated by the hepatic α-tocopherol transfer protein (αTTP), which stimulates secretion of the vitamin from hepatocytes to circulating lipoproteins. This biological activity of αTTP is thought to stem from its ability to facilitate the transfer of vitamin E between membranes, but the mechanism by which the pr...

  10. The Effects of Combined Antioxidant Supplementation on Antioxidant Capacity, DNA Single-Strand Breaks and Regulation of Insulin Growth Factor-1/IGF-Binding Protein 3 in the Ferret Model of Lung Cancer

    Science.gov (United States)

    Purpose: Insulin-like growth factor 1 (IGF-1) and its major binding protein, IGF binding protein 3 (IGFBP-3) are implicated in lung cancer and other malignancies. We have previously shown that the combination of three major antioxidants [beta-carotene (BC), alpha-tocopherol (AT) and ascorbic acid (...

  11. Plasma cholesteryl ester transfer protein mass and phospholipid transfer protein activity are associated with leptin in type 2 diabetes mellitus

    NARCIS (Netherlands)

    Dullaart, R. P. F.; de Vries, R.; Dallinga-Thie, G. M.; van Tol, A.; Sluiter, W. J.

    2007-01-01

    Adipose tissue contributes to plasma levels of lipid transfer proteins and is also the major source of plasma adipokines. We hypothesized that plasma cholesteryl ester transfer protein (CETP) mass, phospholipid transfer protein (PLTP) activity and cholesteryl ester transfer (CET, a measure of CETP a

  12. Nonlinear exciton transfer in protein helices

    International Nuclear Information System (INIS)

    We study the transfer of vibronic excitation energy in helical forms of proteins. The steric structure of the helix protein is modelled by a three-dimensional network of oscillators representing peptide groups. The covalent and hydrogen bonds between the peptide groups are described by pair interaction potentials. Each peptide group possesses one internal vibrational (excitonic) degree of freedom embodying the amide-I mode. The transfer dynamics of an amide-I exciton along the helix is expressed in terms of a tight-binding system. In the first part of this paper we study a reduced system arising when the vibrations of the covalent bonds are neglected. For the resulting system consisting of the exciton coupled to the hydrogen bond vibrations oriented along the helix axis we construct polaron solutions. Subsequently we investigate the mobility of the polarons within the complete protein matrix including deformations of the covalent bonds too. In particular we show that, during a phase of adaptation going along with internal energy exchange between the exciton and the bond vibrations, a relaxation into a new steady regime takes place. The newly reached equilibrium state is characterized by a localized exciton breather and is attributed local deformations of the steric peptide cage in the form of phonobreathers. Finally, coherent motion of an exciton breather is initiated through suitable injection of kinetic energy. In this way the long-range transfer of vibronic amide-I energy in the steric protein cage is provided. Interestingly, the α-helix possesses better facilities in supporting mobile localized excitons compared to the 3-10-helix form of proteins

  13. Determination of phospholipid transfer proteins in rat tissues by immunoassays

    International Nuclear Information System (INIS)

    Several quantitative immunoassays have been developed for two phospholipid transfer proteins from rat liver, i.e. the phosphatidylcholine transfer protein and the non-specific lipid transfer protein. The development of a double-antibody radioimmunoassay for the phosphatidylcholine transfer protein is described. The transfer protein was labelled with iodine-125 by the mild glucose oxidase-lactoperoxidase method. Although less than one tyrosine residue per molecule of transfer protein was labelled, only 20% of the labelled transfer protein was immunoprecipitable. This value could be increased to 80% by purifying the labelled protein by affinity chromatography on a column of anti-phosphatidylcholine transfer protein-IgG coupled to Sepharose 4B. The radioimmunoassay was used to determine the levels of phosphatidylcholine transfer protein in homogenates and 105 000 xg supernatants from various rat tissues as well as several Morris hepatomas. An enzyme immunoassay for the non-specific lipid transfer protein is also described. The antiserum that was raised especially by the author was cross-reactive with the non-specific lipid transfer protein present in 105 000 xg supernatants from human, mouse and bovine liver. The non-specific lipid transfer protein lost its immunoreactivity upon labelling with iodine-125 using different labelling techniques. Therefore, a regular radioimmunoassay could not be developed. The results of these different assays were compared. (Auth.)

  14. Electron transfer and interfacial behavior of redox proteins

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper reviews the recent progress in the electron transfer and interfacial behavior of redox proteins. Significant achievements in the relevant fields are summarized including the direct electron transfer between proteins and electrodes, the thermodynamic and kinetic properties, catalytic activities and activity regulation of the redox proteins. It has been demonstrated that the electrochemical technique is an effective tool for protein studies, especially for probing into the electron transfer and interfacial behavior of redox proteins.

  15. Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus: antioxidant defense and role of alpha-tocopherol

    Directory of Open Access Journals (Sweden)

    Amin Kamal A

    2012-04-01

    Full Text Available Abstract Background The pyrethroid class of insecticides, including deltamethrin, is being used as substitutes for organochlorines and organophosphates in pest-control programs because of their low environmental persistence and toxicity. This study was aimed to investigate the impact of commonly used pesticides (deltamethrin on the blood and tissue oxidative stress level in catfish (Clarias gariepinus; in addition to the protective effect of α-tocopherol on deltamethrin induced oxidative stress. Catfish were divided into three groups, 1st control group include 20 fish divided into two tanks each one contain 10 fish, 2nd deltamethrin group, where Fish exposed to deltamethrin in a concentration (0.75 μg/l and 3rd Vitamin E group, Fish exposed to deltamethrin and vitamin E at a dose of 12 μg/l for successive 4 days. Serum, liver, kidney and Gills were collected for biochemical assays. Tissue oxidative stress biomarkers malondialdhyde (MDA and catalase activity in liver, kidney and gills tissues, serum liver enzymes (ALT and AST, serum albumin, total protein, urea and creatinine were analysed. Results Our results showed that 48 h. exposure to 0.75 μg/l deltamethrin significantly (p  Conclusions It could be concluded that deltamethrin is highly toxic to catfish even in very low concentration (0.75 μg/l. Moreover the effect of deltamethrin was pronounced in the liver of catfish in comparison with kidneys and gills. Moreover fish antioxidants and oxidative stress could be used as biomarkers for aquatic pollution, thus helping in the diagnosis of pollution. Adminstration of 12 μg/l α-tocopherol restored the quantified tissue and serum parameters, so supplementation of α-tocopherol consider an effective way to counter the toxicity of deltamethrin in the catfish.

  16. Lowering of plasma phospholipid transfer protein activity by acute hyperglycaemia-induced hyperinsulinaemia in healthy men

    NARCIS (Netherlands)

    vanTol, A; Ligtenberg, JJM; Riemens, SC; vanHaeften, TW; Dullaart, RPF

    1997-01-01

    Human plasma contains two lipid transfer proteins involved in the remodelling of plasma lipoproteins: cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP). CETP mediates the transfer/exchange of cholesterylesters, triglycerides and phospholipids between high-density lip

  17. Circulating 25-Hydroxyvitamin D, Vitamin D Binding Protein, and Risk of Prostate Cancer

    OpenAIRE

    Weinstein, Stephanie J.; Mondul, Alison M.; Kopp, William; Rager, Helen; Virtamo, Jarmo; Albanes, Demetrius

    2012-01-01

    We recently reported a significant positive association between 25-hydroxyvitamin D [25(OH)D], the accepted biomarker of vitamin D status, and prostate cancer risk. To further elucidate this association, we examined the influence of vitamin D binding protein (DBP), the primary transporter of vitamin D compounds in the circulation. Prediagnostic serum concentrations of DBP were assayed for 950 cases and 964 matched controls with existing 25(OH)D measurements within the Alpha-Tocopherol, Beta-C...

  18. Protein-protein interactions of mitochondrial-associated protein via bioluminescence resonance energy transfer

    Science.gov (United States)

    Koshiba, Takumi

    2015-01-01

    Protein-protein interactions are essential biological reactions occurring at inter- and intra-cellular levels. The analysis of their mechanism is generally required in order link to understand their various cellular functions. Bioluminescence resonance energy transfer (BRET), which is based on an enzymatic activity of luciferase, is a useful tool for investigating protein-protein interactions in live cells. The combination of the BRET system and biomolecular fluorescence complementation (BiFC) would provide us a better understanding of the hetero-oligomeric structural states of protein complexes. In this review, we discuss the application of BRET to the protein-protein interactions of mitochondrial-associated proteins and discuss its physiological relevance. PMID:27493852

  19. Vitamin E is essential for Purkinje neuron integrity

    OpenAIRE

    Ulatowski, L.; Parker, R.; Warrier, G.; Sultana, R.; Butterfield, D.A.; Manor, D.

    2013-01-01

    Alpha-tocopherol (vitamin E) is an essential dietary antioxidant with important neuroprotective functions. Alpha-tocopherol deficiency manifests primarily in neurological pathologies, notably cerebellar dysfunctions such as spinocerebellar ataxia. To study the roles of α-tocopherol in the cerebellum, we used the Ttpa-/- mice which lack the tocopherol transfer protein (TTP) and are a faithful model of vitamin E deficiency and oxidative stress. When fed vitamin E deficient diet, Ttpa-/- mice ha...

  20. Non-specific lipid transfer proteins in maize

    OpenAIRE

    Wei, Kaifa; Zhong, Xiaojun

    2014-01-01

    Background In plant, non-specific lipid transfer proteins (nsLTPs) are small, basic proteins that have been reported to be involved in numerous biological processes such as transfer of phospholipids, reproductive development, pathogen defence and abiotic stress response. To date, only a tiny fraction of plant nsLTPs have been functionally identified, and even fewer have been identified in maize [Zea mays (Zm)]. Results In this study, we carried out a genome-wide analysis of nsLTP gene family ...

  1. Protein dynamics modulated electron transfer kinetics in early stage photosynthesis.

    Science.gov (United States)

    Kundu, Prasanta; Dua, Arti

    2013-01-28

    A recent experiment has probed the electron transfer kinetics in the early stage of photosynthesis in Rhodobacter sphaeroides for the reaction center of wild type and different mutants [Science 316, 747 (2007)]. By monitoring the changes in the transient absorption of the donor-acceptor pair at 280 and 930 nm, both of which show non-exponential temporal decay, the experiment has provided a strong evidence that the initial electron transfer kinetics is modulated by the dynamics of protein backbone. In this work, we present a model where the electron transfer kinetics of the donor-acceptor pair is described along the reaction coordinate associated with the distance fluctuations in a protein backbone. The stochastic evolution of the reaction coordinate is described in terms of a non-Markovian generalized Langevin equation with a memory kernel and Gaussian colored noise, both of which are completely described in terms of the microscopics of the protein normal modes. This model provides excellent fits to the transient absorption signals at 280 and 930 nm associated with protein distance fluctuations and protein dynamics modulated electron transfer reaction, respectively. In contrast to previous models, the present work explains the microscopic origins of the non-exponential decay of the transient absorption curve at 280 nm in terms of multiple time scales of relaxation of the protein normal modes. Dynamic disorder in the reaction pathway due to protein conformational fluctuations which occur on time scales slower than or comparable to the electron transfer kinetics explains the microscopic origin of the non-exponential nature of the transient absorption decay at 930 nm. The theoretical estimates for the relative driving force for five different mutants are in close agreement with the experimental estimates obtained using electrochemical measurements. PMID:23387626

  2. [Electron transfer between globular proteins. Dependence of the rate of transfer on distance].

    Science.gov (United States)

    Lakhno, V D; Chuev, G N; Ustinin, M N; Komarov, V M

    1998-01-01

    Based on the assumption that electron transfer between globular proteins occurs by a collective excitation of polaron type, the dependence of the rate of this process on the distance between the donor and acceptor centers with regard to their detailed electron structure was calculated. The electron structure of the heme was calculated by the quantum-chemical MNDO-PM3 method. The results were compared with experimental data on interprotein and intraglobular electron transfer. It is shown that, in the framework of this model, the electron transfer is not exponential and does not require a particular transfer pathway since the whole protein macromolecule is involved in the formation of the electron excited state.

  3. Concerted actions of cholesteryl ester transfer protein and phospholipid transfer protein in type 2 diabetes : effects of apolipoproteins

    NARCIS (Netherlands)

    Dallinga-Thie, Geesje M.; Dullaart, Robin P. F.; van Tol, Arie

    2007-01-01

    Purpose of review Type 2 diabetes frequently coincides with dyslipidemia, characterized by elevated plasma triglycerides, low high-density lipoprotein cholesterol levels and the presence of small dense low-density lipoprotein particles. Plasma lipid transfer proteins play an essential role in lipopr

  4. Plant lipid transfer proteins : Evolution, expression and function

    OpenAIRE

    Edstam, Monika

    2013-01-01

    The plant non-specific lipid transfer proteins (nsLTPs) are known for the ability to transfer different lipids in vitro, but their in vivo functions have not yet been elucidated. They seem to play a role in the defense against biotic and abiotic stresses; the gene expression of nsLTPs is often upregulated when exposed to stresses. Further, two different nsLTPs have been shown to affect the lipid composition of the plant cuticle, a structure acting as a protective barrier. However, more eviden...

  5. Effects of intersegmental transfers on target location by proteins

    CERN Document Server

    Sheinman, Michael

    2008-01-01

    We study a model for a protein searching for a target, using facilitated diffusion, on a DNA molecule confined in a finite volume. The model includes three distinct pathways for facilitated diffusion: (a) sliding - in which the protein diffuses along the contour of the DNA (b) jumping - where the protein travels between two sites along the DNA by three-dimensional diffusion, and finally (c) intersegmental transfer - which allows the protein to move from one site to another by transiently binding both at the same time. The typical search time is calculated using scaling arguments which are verified numerically. Our results suggest that the inclusion of intersegmental transfer (i) decreases the search time considerably (ii) makes the search time much more robust to variations in the parameters of the model and (iii) that the optimal search time occurs in a regime very different than that found for models which ignore intersegmental transfers. The behavior we find is rich and shows surprising dependencies, for e...

  6. Conformational Dependence of a Protein Kinase Phosphate Transfer Reaction

    CERN Document Server

    Henkelman, Graeme; Tung, Chang-Shung; Fenimore,, P W; McMahon, Benjamin H

    2004-01-01

    Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase (PKA) are calculated by plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In the TC, we calculate that the reactants and products are nearly isoenergetic with a 0.2 eV barrier; while phosphate transfer is unfavorable by over 1.2 eV in the RC, with an even higher barrier. With the protein in the TC, the motions involved in reaction are small, with only P$_\\gamma$ and the catalytic proton moving more than 0.5 \\AA. Examination of the structures reveals that in the RC the active site cleft is not completely closed and there is insufficient space for the phosphorylated serine residue in the product state. Together, these observations imply that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by...

  7. Protein Transfer Free Energy Obeys Entropy-Enthalpy Compensation.

    Science.gov (United States)

    Mills, Eric A; Plotkin, Steven S

    2015-11-01

    We have found significant entropy-enthalpy compensation for the transfer of a diverse set of two-state folding proteins from water into water containing a diverse set of cosolutes, including osmolytes, denaturants, and crowders. In extracting thermodynamic parameters from experimental data, we show the potential importance of accounting for the cosolute concentration-dependence of the heat capacity change upon unfolding, as well as the potential importance of the temperature-dependence of the heat capacity change upon unfolding. We introduce a new Monte Carlo method to estimate the experimental uncertainty in the thermodynamic data and use this to show by bootstrapping methods that entropy-enthalpy compensation is statistically significant, in spite of large, correlated scatter in the data. We show that plotting the data at the transition midpoint provides the most accurate experimental values by avoiding extrapolation errors due to uncertainty in the heat capacity, and that this representation exhibits the strongest evidence of compensation. Entropy-enthalpy compensation is still significant at lab temperature however. We also find that compensation is still significant when considering variations due to heat capacity models, as well as typical measurement discrepancies lab-to-lab when such data is available. Extracting transfer entropy and enthalpy along with their uncertainties can provide a valuable consistency check between experimental data and simulation models, which may involve tests of simulated unfolded ensembles and/or models of the transfer free energy; we include specific applications to cold shock protein and protein L.

  8. The expression and significance of alpha-tocopherol associated protein in human prostate cancer%生育酚结合蛋白在前列腺癌组织的表达及意义

    Institute of Scientific and Technical Information of China (English)

    温星桥; 刘勇; 黄文涛; 周祥福; 蔡育彬; 高新

    2006-01-01

    目的 探讨生育酚结合蛋白(α-TAP)在良恶性前列腺组织的表达差异及意义.方法 构建TAP-N端的质粒并转化到大肠杆菌BL21-Condon Plus,以1 mmol/L IPTG诱导3 h表达蛋白,用Ni-NTA琼脂糖柱纯化TAP蛋白并免疫兔生产抗体.将pGEM-T-easy质粒酶切线性化,37℃体外转录120 min合成地高辛标记的TAP-RNA探针.免疫组织化学和原位杂交法测定TAP在分别40例良性前列腺增生(BPH)与前列腺癌(Pca)的表达.结果 制备到毫克量的TAP-N端蛋白、特异性TAP抗体和RNA探针.TAP主要表达于前列腺上皮,很少位于基质成分.BPH组TAP表达阳性率(37例,92.5%)比Pca组高(7例,17.5%),两组差异有统计学意义(P<0.05).无TAP表达的33例Pca患者术前PSA水平(12.5±3.3)μg/L、Gleason评分(7.3±1.4)分均高于其余7例TAP阳性患者(P<0.05),后者PSA为(6.7±2.6)μg/L、Gleason评分为(4.6±2.1)分.TAP阴性的Pca患者术后出现复发时间(32.5±6.2)个月小于TAP阳性患者(78.5±12.6)个月(P<0.05).结论 TAP在前列腺癌的表达比在良性前列腺增生组织明显下调,无TAP表达的前列腺癌患者术前PSA和Gleason评分高于TAP阳性患者.

  9. Controlling time scales for electron transfer through proteins

    Directory of Open Access Journals (Sweden)

    Scot Wherland

    2015-12-01

    Full Text Available Electron transfer processes within proteins constitute key elements in biological energy conversion processes as well as in a wide variety of biochemical transformations. Pursuit of the parameters that control the rates of these processes is driven by the great interest in the latter reactions. Here, we review a considerable body of results emerging from investigation of intramolecular electron transfer (ET reactions in two types of proteins, all done by the use of the pulse-radiolysis method: first are described results of extensive studies of a model system, the bacterial electron mediating protein azurin, where an internal ET between the disulfide radical ion and the Cu(II is induced. Impact of specific structural changes introduced into azurin on the reaction rates and the parameters controlling it are discussed. Then, the presentation is extended to results of investigations of intra-protein ET reactions that are part of catalytic cycles of multi-copper containing enzymes. Again, the rates and the parameters controlling them are presented and discussed in the context of their efficacy and possible constraints set on their evolution.

  10. Teores de retinol, beta-caroteno e alfa-tocoferol em leites bovinos comercializados na cidade de São Paulo Amounts of retinol, beta-carotene and alpha-tocopherol in cow milk comercialized in the city of São Paulo

    Directory of Open Access Journals (Sweden)

    Rute BIANCHINI

    1999-12-01

    Full Text Available Os teores de retinol, beta-caroteno e alfa-tocoferol foram determinados por cromatografia líquida de alta eficiência em leites em pó, pasteurizados e esterilizados, comercializados na Cidade de São Paulo. Após a saponificação e extração, os compostos foram determinados simultaneamente utilizando-se coluna de sílica, fase móvel constituída por hexano:isopropanol (99:1 e fluxo de 2,0mL/min. O retinol e o beta-caroteno foram determinados no detector UV/visível e o alfa-tocoferol no detector de fluorescência, ligado em série com o anterior. Os valores de vitamina A dos leites foram calculados com e sem a consideração do beta-caroteno. A maior contribuição deste nutriente no valor de vitamina A esteve entre os leites em pó, cerca de 17% em uma das marcas. Os altos teores das vitamina A e E encontrados em alguns leites, indicam que os mesmos provavelmente receberam adição destas vitaminas, não trazendo, entretanto, tal informação no rótulo. A análise de vitaminas nestes produtos indica a necessidade de maior controle de qualidade dos mesmos.The amount of retinol, beta-carotene, alpha -tocopherol in powder, pasteurized and sterilized milk, comercialized in the city of São Paulo, were analyzed by high performance liquid chromatography. After saponification and extraction, compounds were determined simultaneously through a normal-phase column, mobile phase composed by hexan:2-propanol (99:1 and 2 mL/min flow. The retinol and beta-carotene were analysed by a UV/visible detector and the alpha-tocopherol by a fluorescence detector, both linked in series. The milk vitamin A values were calculated with and without beta-carotene. The major contribution of beta-carotene in the vitamin A value was in powder milks, around 17% in one of the brands. The high amounts of vitamin A and E found in some milks indicate that they probably were enriched with these vitamins but nothing is mentioned about this in their labels. The analysis of

  11. A study of oxidative stress, thiol proteins and role of vitamin E supplementation in chronic obstructive pulmonary disease (COPD

    Directory of Open Access Journals (Sweden)

    Anita M. Raut

    2013-04-01

    Full Text Available Background: Lipid peroxide plays an important role in inflammatory lung disease. Increased epithelial permeability produced by cigarette smoke is likely to be mediated through depletion of thiol proteins. Imbalance between oxidants and thiol proteins is also an established fact in these patients. Materials & methods: In the present study 30 healthy non-smokers were served as controls and 20 patients with stable COPD were included. Their base line clinical examination, Malondialdehyde (MDA as an oxidant, alpha tocopherol and erythrocyte superoxide dismutase (SOD as an antioxidants and thiol proteins levels were measured. All above parameters were repeated after 12 weeks of supplementation with 400 IU of vitamin E daily. Results: We observed that the mean malondialdehyde levels in these patients at base line were high (p<0.001 than Control Plasma alpha-tocopherol, SOD and thiol proteins levels were low (p<0.001 in the patients compared to controls. Exogenous vitamin E (400 IU twice daily Supplementation did not bring about any significant change in plasma Erythrocyte Superoxide Dismutase and vitamin E. But slight increase in the plasma thiol proteins levels was seen. The present study shows that initially the plasma lipid peroxide (MDA levels were high antioxidant (alpha- tocopherol, SOD and thiol proteins were low in patients with COPD. Exogenous supplementation with vitamin E increases slightly thiol proteins levels and brings down the levels of MDA showing attenuation of further damage. Conclusion: Our study confirmed the existence of oxidative stress and and the augmentation of antioxidant defenses as shown by slight increase in thiol proteins level. The antioxidant therapy is adjunct in lung disease patients and opens a promising field in prevention of oxidative stress related complications in these patients.

  12. A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins

    OpenAIRE

    Cammue, Bruno; Thevissen, Karin; Hendriks, M.; Eggermont, Kristel; Goderis, I. J.; Proost, Paul; Van Damme, Jozef; Osborn, R W; Guerbette, F.; Kader, J. C.; Broekaert, Willem

    1995-01-01

    An antimicrobial protein of about 10 kD, called Ace-AMP1, was isolated from onion (Allium cepa L.) seeds. Based on the near-complete amino acid sequence of this protein, oligonucleotides were designed for polymerase chain reaction-based cloning of the corresponding cDNA. The mature protein is homologous to plant nonspecific lipid transfer proteins (nsLTPs), but it shares only 76% of the residues that are conserved among all known plant nsLTPs and is unusually rich in arginine. Ace-AMP1 inhibi...

  13. Serum Vitamin D, Vitamin D Binding Protein, and Risk of Colorectal Cancer

    OpenAIRE

    Anic, Gabriella M.; Weinstein, Stephanie J.; Mondul, Alison M.; Satu Männistö; Demetrius Albanes

    2014-01-01

    Background We previously reported a positive association between serum 25-hydroxyvitamin D (25(OH)D) and colorectal cancer risk. To further elucidate this association, we examined the molar ratio of 25(OH)D to vitamin D binding protein (DBP), the primary 25(OH)D transport protein, and whether DBP modified the association between 25(OH)D and colorectal cancer risk. Methods In a nested case-control study within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study, controls were 1∶1 match...

  14. A polaron model for electron transfer in globular proteins.

    Science.gov (United States)

    Chuev, G N; Lakhno, V D

    1993-07-01

    Polaron models have been considered for the electron states in protein globules existing in a solvent. These models account for two fundamental effects, viz, polarization interaction of an electron with the conformational vibrations and the heterogeneity of the medium. Equations have been derived to determine the electron state in a protein globule. The parameters of this state show that it is an extended state with an energy of 2 eV. The electron transfer rate for cyt C self-exchange reaction has been calculated in the polaron model. Reorganization energy, tunneling matrix element and the rate constant have also been estimated. The results are compared with experimental data. The influence of model parameters on the significance of the data obtained has been studied. The potentialities of the model are discussed.

  15. Acute and chronic effects of a 24-hour intravenous triglyceride emulsion challenge on plasma lecithin : cholesterol acyltransferase, phospholipid transfer protein, and cholesteryl ester transfer protein activities

    NARCIS (Netherlands)

    Riemens, SC; Van Tol, A; Sluiter, WJ; Dullaart, RPF

    1999-01-01

    Lecithin:cholesterol acyltransferase (LCAT), phospholipid transfer protein (PLTP), and cholesteryl ester transfer protein (CETP) are key factors in remodeling of high density lipoproteins (HDL) and triglyceride-rich lipoproteins. We examined the effect of a large, 24 h intravenous fat load on plasma

  16. Electron transfer, decoherence, and protein dynamics: insights from atomistic simulations.

    Science.gov (United States)

    Narth, Christophe; Gillet, Natacha; Cailliez, Fabien; Lévy, Bernard; de la Lande, Aurélien

    2015-04-21

    Electron transfer in biological systems drives the processes of life. From cellular respiration to photosynthesis and enzymatic catalysis, electron transfers (ET) are chemical processes on which essential biological functions rely. Over the last 40 years, scientists have sought understanding of how these essential processes function in biology. One important breakthrough was the discovery that Marcus theory (MT) of electron transfer is applicable to biological systems. Chemists have experimentally collected both the reorganization energies (λ) and the driving forces (ΔG°), two parameters of Marcus theory, for a large variety of ET processes in proteins. At the same time, theoretical chemists have developed computational approaches that rely on molecular dynamics and quantum chemistry calculations to access numerical estimates of λ and ΔG°. Yet another crucial piece in determining the rate of an electron transfer is the electronic coupling between the initial and final electronic wave functions. This is an important prefactor in the nonadiabatic rate expression, since it reflects the probability that an electron tunnels from the electron donor to the acceptor through the intervening medium. The fact that a protein matrix supports electron tunneling much more efficiently than vacuum is now well documented, both experimentally and theoretically. Meanwhile, many chemists have provided examples of the rich physical chemistry that can be induced by protein dynamics. This Account describes our studies of the dynamical effects on electron tunneling. We present our analysis of two examples of natural biological systems through MD simulations and tunneling pathway analyses. Through these examples, we show that protein dynamics sustain efficient tunneling. Second, we introduce two time scales: τcoh and τFC. The former characterizes how fast the electronic coupling varies with nuclear vibrations (which cause dephasing). The latter reflects the time taken by the system

  17. Protein electron transfer: is biology (thermo)dynamic?

    International Nuclear Information System (INIS)

    Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life’s ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein’s elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic

  18. Protein electron transfer: is biology (thermo)dynamic?

    Science.gov (United States)

    Matyushov, Dmitry V.

    2015-12-01

    Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life’s ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein’s elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic

  19. New horizons for cholesterol ester transfer protein inhibitors.

    Science.gov (United States)

    Schwartz, Gregory G

    2012-02-01

    High-density lipoprotein (HDL) cholesterol levels bear an inverse relationship to cardiovascular risk. To date, however, no intervention specifically targeting HDL has been demonstrated to reduce cardiovascular risk. Cholesterol ester transfer protein (CETP) mediates transfer of cholesterol ester from HDL to apolipoprotein B-containing particles. Most, but not all observational cohort studies indicate that genetic polymorphisms of CETP associated with reduced activity and higher HDL cholesterol levels are also associated with reduced cardiovascular risk. Some, but not all studies indicate that CETP inhibition in rabbits retards atherosclerosis, whereas transgenic CETP expression in mice promotes atherosclerosis. Torcetrapib, the first CETP inhibitor to reach phase III clinical development, was abandoned due to excess mortality associated with increases in aldosterone and blood pressure. Two other CETP inhibitors have entered phase III clinical development. Anacetrapib is a potent inhibitor of CETP that produces very large increases in HDL cholesterol and large reductions in low-density lipoprotein (LDL) cholesterol, beyond those achieved with statins. Dalcetrapib is a less potent CETP inhibitor that produces smaller increases in HDL cholesterol with minimal effect on LDL cholesterol. Both agents appear to allow efflux of cholesterol from macrophages to HDL in vitro, and neither agent affects blood pressure or aldosterone in vivo. Two large cardiovascular outcomes trials, one with anacetrapib and one with dalcetrapib, should provide a conclusive test of the hypothesis that inhibition of CETP decreases cardiovascular risk. PMID:22083134

  20. Elevated plasma cholesteryl ester transfer in NIDDM : relationships with apolipoprotein B-containing lipoproteins and phospholipid transfer protein

    NARCIS (Netherlands)

    Riemens, S; van Tol, A; Sluiter, W; Dullaart, R

    1998-01-01

    Lecithin:cholesteryl acyl transferase (LCAT) and cholesteryl ester transfer protein (CETP) are key factors in the esterification of cholesterol and the subsequent transfer of cholesteryl ester from high density lipoproteins (HDL) towards very low and low density lipoproteins (VLDL + LDL). Phospholip

  1. Utility of a fluorescent vitamin E analog as a probe for tocopherol transfer protein activity

    OpenAIRE

    Morley, Samantha; Cross, Valerie; Cecchini, Matt; Nava, Phil; Atkinson, Jeffrey; Manor, Danny

    2006-01-01

    The tocopherol transfer protein (TTP1) is a member of the CRAL-TRIO family of lipid binding proteins that facilitates vitamin E transfer between membrane vesicles in vitro. In cultured hepatocytes, TTP enhances the secretion of tocopherol to the media; presumably, tocopherol transfer is at the basis of this biological activity. The mechanism underlying ligand transfer by TTP is presently unknown, and available tools for monitoring this activity suffer from complicated assay procedure and poor...

  2. AcEST: DK956185 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ypti GN=retm ... 48 2e-05 sp|Q757H2|CSR1_ASHGO Phosphatidylinositol transfer protein CSR1 ... 47 7e-05 sp|Q06705|CSR1..._YEAST Phosphatidylinositol transfer protein CSR1 ... 41 0.003 sp|P41034|TTPA_RAT Alpha-tocopherol

  3. Influence of vitamin D binding protein on the association between circulating vitamin D and risk of bladder cancer

    OpenAIRE

    Mondul, A M; Weinstein, S J; Virtamo, J; Albanes, D

    2012-01-01

    Background: There is little research investigating the role of vitamin D binding protein (DBP) in the association between 25-hydroxyvitamin D (25(OH)D) and disease risk. Methods: Within the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study, 250 bladder cancer cases were randomly sampled and matched 1:1 to controls on age and date of blood collection. Odds ratios (OR) and 95% confidence intervals (CI) of bladder cancer were estimated by quartiles of DBP (measured by ELISA), 25(OH)...

  4. Histological and biochemical serum effects of alpha-tocopherol on ischemia/reperfusion-related injuries induced in the pelvic limb of rats Efeitos histológicos e bioquímicos séricos do alfa-tocoferol na lesão de isquemia e reperfusão em membro pélvico de ratos

    Directory of Open Access Journals (Sweden)

    Marcelo Gomes da Silva

    2005-10-01

    Full Text Available PURPOSE: To evaluate the protective action of alpha-tocopherol in ischemia/reperfusion injuries of pelvic member of rats. METHODS: Thirty adult male rats of the Wistar strain were randomized into three experimental groups of 10: Group I - control group with no ischemia or reperfusion. Groups II and III - four hours of ischemia and of hours of reperfusion by means of clamping of the infrarenal aorta. The animals of Group II were treated with saline and those of Group III were treated with i.v. alpha-tocopherol (50 mg/kg. Parameters studied were biopsies of the soleus muscle, dosing of creatine phosphokinase, lactate dehydrogenase, potassium, calcium and arterial blood gasometry. RESULTS: The results of biopsies of the soleus muscles studied by optical microscopy, were not significant in terms of presence of edema among the three groups studied. Variables inflammation and necrosis were not observed, therefore cannot be statistically analyzed. As to dosing of calcium and lactate dehydrogenase, the pH, pO2 and pCO2 values were not significant for all groups studied. We observed that the levels of potassium (Group II > Group I, Fcalculated = 5.84; Fcritical = 3.33, creatine phosphokinase (Group II > Groups I and III, Hcalculated = 13.92; Hcritical = 5.99 and bicarbonate (Groups I and III > Group II, Hcalculated = 11.98; Hcritical = 5.99 presented significant results among groups. CONCLUSION: From the serum biochemical perspective, the treatment with alpha-tocopherol has attenuated the metabolic injuries in the ischemia/reperfusion syndrome in this experimental model.OBJETIVO: Avaliar ação protetora do alfa-tocoferol na lesão de isquemia e reperfusão em membro pélvico de ratos. MÉTODOS: Trinta ratos machos adultos da linhagem wistar foram distribuídos aleatoriamente, em três grupos experimentais, com 10 animais cada: Grupo I - Grupo controle sem isquemia ou reperfusão. Grupos II e III - quatro horas de isquemia e duas horas de reperfus

  5. Fast electron transfer through a single molecule natively structured redox protein

    DEFF Research Database (Denmark)

    Della Pia, Eduardo Antonio; Chi, Qijin; Macdonald, J. Emyr;

    2012-01-01

    The electron transfer properties of proteins are normally measured as molecularly averaged ensembles. Through these and related measurements, proteins are widely regarded as macroscopically insulating materials. Using scanning tunnelling microscopy (STM), we present new measurements of the conduc...

  6. In silico allergenicity prediction of several lipid transfer proteins.

    Science.gov (United States)

    Garino, Cristiano; Coïsson, Jean Daniel; Arlorio, Marco

    2016-02-01

    Non-specific lipid transfer proteins (nsLTPs) are common allergens and they are particularly widespread within the plant kingdom. They have a highly conserved three-dimensional structure that generate a strong cross-reactivity among the members of this family. In the last years several web tools for the prediction of allergenicity of new molecules based on their homology with known allergens have been released, and guidelines to assess potential allergenicity of proteins through bioinformatics have been established. Even if such tools are only partially reliable yet, they can provide important indications when other kinds of molecular characterization are lacking. The potential allergenicity of 28 amino acid sequences of LTPs homologs, either retrieved from the UniProt database or in silico deduced from the corresponding EST coding sequence, was predicted using 7 publicly available web tools. Moreover, their similarity degree to their closest known LTP allergens was calculated, in order to evaluate their potential cross-reactivity. Finally, all sequences were studied for their identity degree with the peach allergen Pru p 3, considering the regions involved in the formation of its known conformational IgE-binding epitope. Most of the analyzed sequences displayed a high probability to be allergenic according to all the software employed. The analyzed LTPs from bell pepper, cassava, mango, mungbean and soybean showed high homology (>70%) with some known allergenic LTPs, suggesting a potential risk of cross-reactivity for sensitized individuals. Other LTPs, like for example those from canola, cassava, mango, mungbean, papaya or persimmon, displayed a high degree of identity with Pru p 3 within the consensus sequence responsible for the formation, at three-dimensional level, of its major conformational epitope. Since recent studies highlighted how in patients mono-sensitized to peach LTP the levels of IgE seem directly proportional to the chance of developing cross

  7. Purification and characterization of a novel phospholipid transfer protein from filamentous fungi.

    Science.gov (United States)

    Grondin, P; Vergnolle, C; Chavant, L; Kader, J C

    1990-01-01

    1. We have isolated from mycelia of Mucor mucedo, a filamentous fungus, a phospholipid transfer protein. 2. The purification steps were gel filtration, hydroxyapatite chromatography, blue affinity column and fast protein liquid chromatography on anion exchanger. 3. A purified protein was obtained with a molecular mass of 24 kDa and a pI of 5.05 and its N-terminal sequence was established. 4. This protein transfers phosphatidylinositol, as well as phosphatidylcholine and phosphatidylethanolamine.

  8. Tissue distribution and subcellular localization of phosphatidylcholine transfer protein in rats as determined by radioimmunoassay

    NARCIS (Netherlands)

    Teerlink, T.; Krift, T.P. van der; Post, M.; Wirtz, K.W.A.

    1982-01-01

    A radioimmunoassay for the phosphatidylcholine-transfer protein from rat liver was used to measure levels of PC-transfer protein in rat tissues. The assay as described before (Teerlink T., Poorthuis B.J.H.M., Van der Krift T.P. and Wirtz K.W.A., Biochim. Biophys. Acta 665 (1981) 74–80) was modified

  9. Probing Membrane Protein Structure Using Water Polarization Transfer Solid-State NMR

    OpenAIRE

    Williams, Jonathan K.; Hong, Mei

    2014-01-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected 1H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of ...

  10. Construction and analysis of a plant non-specific lipid transfer protein database (nsLTPDB)

    OpenAIRE

    Wang Nai-Jyuan; Lee Chi-Ching; Cheng Chao-Sheng; Lo Wei-Cheng; Yang Ya-Fen; Chen Ming-Nan; Lyu Ping-Chiang

    2012-01-01

    Abstract Background Plant non-specific lipid transfer proteins (nsLTPs) are small and basic proteins. Recently, nsLTPs have been reported involved in many physiological functions such as mediating phospholipid transfer, participating in plant defence activity against bacterial and fungal pathogens, and enhancing cell wall extension in tobacco. However, the lipid transfer mechanism of nsLTPs is still unclear, and comprehensive information of nsLTPs is difficult to obtain. Methods In this study...

  11. Sphingolipid metabolism and interorganellar transport: localization of sphingolipid enzymes and lipid transfer proteins.

    Science.gov (United States)

    Yamaji, Toshiyuki; Hanada, Kentaro

    2015-02-01

    In recent decades, many sphingolipid enzymes, sphingolipid-metabolism regulators and sphingolipid transfer proteins have been isolated and characterized. This review will provide an overview of the intracellular localization and topology of sphingolipid enzymes in mammalian cells to highlight the locations where respective sphingolipid species are produced. Interestingly, three sphingolipids that reside or are synthesized in cytosolic leaflets of membranes (ceramide, glucosylceramide and ceramide-1-phosphate) all have cytosolic lipid transfer proteins (LTPs). These LTPs consist of ceramide transfer protein (CERT), four-phosphate adaptor protein 2 (FAPP2) and ceramide-1-phosphate transfer protein (CPTP), respectively. These LTPs execute functions that affect both the location and metabolism of the lipids they bind. Molecular details describing the mechanisms of regulation of LTPs continue to emerge and reveal a number of critical processes, including competing phosphorylation and dephosphorylation reactions and binding interactions with regulatory proteins and lipids that influence the transport, organelle distribution and metabolism of sphingolipids. PMID:25382749

  12. [Electron transfer between globular proteins. Evaluation of a matrix element].

    Science.gov (United States)

    Lakhno, V D; Chuev, G N; Ustinin, M N

    1998-01-01

    The dependence of the matrix element of the probability of interprotein electron transfer on the mutual orientation of the donor and acceptor centers and the distance between them was calculated. The calculations were made under the assumption that electron transfer proceeds mainly by a collective excitation of polaron nature, like a solvated electron state. The results obtained are consistent with experimental data and indicate the nonexponential behavior of this dependence in the case when the distance transfer is less than 20 A.

  13. Control of zinc transfer between thionein, metallothionein, and zinc proteins

    OpenAIRE

    Jacob, Claus; Maret, Wolfgang; Vallee, Bert L.

    1998-01-01

    Metallothionein (MT), despite its high metal binding constant (KZn = 3.2 × 1013 M−1 at pH 7.4), can transfer zinc to the apoforms of zinc enzymes that have inherently lower stability constants. To gain insight into this paradox, we have studied zinc transfer between zinc enzymes and MT. Zinc can be transferred in both directions—i.e., from the enzymes to thionein (the apoform of MT) and from MT to the apoenzymes. Agents that mediate or enhance zinc transfer have be...

  14. Singlet oxygen triplet energy transfer-based imaging technology for mapping protein-protein proximity in intact cells.

    Science.gov (United States)

    To, Tsz-Leung; Fadul, Michael J; Shu, Xiaokun

    2014-01-01

    Many cellular processes are carried out by large protein complexes that can span several tens of nanometres. Whereas forster resonance energy transfer has a detection range of technology with a detection range of up to several tens of nanometres: singlet oxygen triplet energy transfer. We demonstrate that our method confirms the topology of a large protein complex in intact cells, which spans from the endoplasmic reticulum to the outer mitochondrial membrane and the matrix. This new method is thus suited for mapping protein proximity in large protein complexes.

  15. Fast electron transfer through a single molecule natively structured redox protein

    OpenAIRE

    Della Pia, Eduardo Antonio; Chi, Qijin; Macdonald, J. Emyr; Ulstrup, Jens; Jones, D Dafydd; Elliott, Martin

    2012-01-01

    The electron transfer properties of proteins are normally measured as molecularly averaged ensembles. Through these and related measurements, proteins are widely regarded as macroscopically insulating materials. Using scanning tunnelling microscopy (STM), we present new measurements of the conductance through single-molecules of the electron transfer protein cytochrome b562 in its native conformation, under pseudo-physiological conditions. This is achieved by thiol (SH) linker pairs at opposi...

  16. Computational design and biochemical characterization of maize nonspecific lipid transfer protein variants for biosensor applications

    OpenAIRE

    Choi, Eun Jung; Mao, Jessica; Mayo, Stephen L.

    2007-01-01

    Lipid transfer proteins (LTPs) are a family of proteins that bind and transfer lipids. Utilizing the maize LTP, we have successfully engineered fluorescent reagentless biosensors for the natural ligand of LTPs; this was achieved by using computational protein design to remove a disulfide bridge and attaching a thio-reactive fluorophore. Conformational change induced by ligand titration is thought to affect the fluorescence of the fluorophore, allowing detection of ligand binding. Fluorescence...

  17. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET)

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Hansen, Jakob L; Sheikh, Søren P;

    2002-01-01

    -induced intermolecular movements in the CaR homodimer using the new bioluminescence resonance energy transfer technique, BRET2, which is based on the transference of energy from Renilla luciferase (Rluc) to the green fluorescent protein mutant GFP2. We tagged CaR with Rluc and GFP2 at different intracellular locations...

  18. Das Phosphatidylinositol-Transfer-Protein PITPnm2 in humanen Thrombozyten

    OpenAIRE

    Kramer, Daniel

    2013-01-01

    Die Analyse des Phosphoproteoms in ruhenden und in aktivierten humanen Plättchen führte zur Identifikation des PITPnm2-Proteins. Dieses Protein wird bei einer Stimulation von Thrombozyten mit dem Prostazyklinanalogon Iloprost phosphoryliert. Diese Ergebnisse gaben Anlass zu weiteren Untersuchungen zum Vorkommen und zur Funktion dieses Proteins in Thrombozyten. In der Arbeit wurde gezeigt, dass das PITPnm2-Protein das einzige Protein der PITP-Familie ist, welches in humanen Thrombozyten exprim...

  19. Multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization.

    Science.gov (United States)

    Mei, Suyu

    2012-01-21

    Protein sub-organelle localization, e.g. submitochondria, seems more challenging than general protein subcellular localization, because the determination of protein's micro-level localization within organelle by fluorescent imaging technique would face up with more difficulties. Up to present, there are far few computational methods for protein submitochondria localization, and the existing sequence-based predictive models demonstrate moderate or unsatisfactory performance. Recent researches have demonstrated that gene ontology (GO) is a convincingly effective protein feature for protein subcellular localization. However, the GO information may not be available for novel proteins or sparsely annotated protein subfamilies. In allusion to the problem, we transfer the homology's GO information to the target protein and propose a multi-kernel transfer learning model for protein submitochondria localization (MK-TLM), which substantially extends our previously published work (gene ontology based transfer learning model for protein subcellular localization, GO-TLM). To reduce the risk of performance overestimation, we conduct a more comprehensive survey of the model performance in optimistic case, moderate case and pessimistic case according to the abundance of target protein's GO information. The experiments on submitochondria benchmark datasets show that MK-TLM significantly outperforms the baseline models, and demonstrates excellent performance for novel mitochondria proteins and those mitochondria proteins that belong to the subfamily we know little about.

  20. Carotenoid to chlorophyll energy transfer in the peridinin–chlorophyll-a–protein complex involves an intramolecular charge transfer state

    Science.gov (United States)

    Zigmantas, Donatas; Hiller, Roger G.; Sundström, Villy; Polívka, Tomáš

    2002-01-01

    Carotenoids are, along with chlorophylls, crucial pigments involved in light-harvesting processes in photosynthetic organisms. Details of carotenoid to chlorophyll energy transfer mechanisms and their dependence on structural variability of carotenoids are as yet poorly understood. Here, we employ femtosecond transient absorption spectroscopy to reveal energy transfer pathways in the peridinin–chlorophyll-a–protein (PCP) complex containing the highly substituted carotenoid peridinin, which includes an intramolecular charge transfer (ICT) state in its excited state manifold. Extending the transient absorption spectra toward near-infrared region (600–1800 nm) allowed us to separate contributions from different low-lying excited states of peridinin. The results demonstrate a special light-harvesting strategy in the PCP complex that uses the ICT state of peridinin to enhance energy transfer efficiency. PMID:12486228

  1. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes.

    Directory of Open Access Journals (Sweden)

    Todd J Treangen

    Full Text Available Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus, average-sized genomes (Bacillus, Enterobacteriaceae, and large genomes (Pseudomonas, Bradyrhizobiaceae to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes--xenologs--persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes--paralogs--are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein-protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families.

  2. Computational study of ligand binding in lipid transfer proteins: Structures, interfaces, and free energies of protein-lipid complexes

    OpenAIRE

    Fernandez Pacios, Luis; Gomez Casado, Cristina; Tordesillas Villuendas, Leticia; Palacín Gómez, Aranzazu; Sanchez-Monge Laguna De Rins, Maria Rosa; Díaz Perales, Araceli

    2012-01-01

    Plant nonspecific lipid transfer proteins (nsLTPs) bind a wide variety of lipids, which allows them to perform disparate functions. Recent reports on their multifunctionality in plant growth processes have posed new questions on the versatile binding abilities of these proteins. The lack of binding specificity has been customarily explained in qualitative terms on the basis of a supposed structural flexibility and nonspecificity of hydrophobic protein-ligand interactions. We present here a co...

  3. In vitro thermodynamic dissection of human copper transfer from chaperone to target protein.

    Directory of Open Access Journals (Sweden)

    Moritz S Niemiec

    Full Text Available Transient protein-protein and protein-ligand interactions are fundamental components of biological activity. To understand biological activity, not only the structures of the involved proteins are important but also the energetics of the individual steps of a reaction. Here we use in vitro biophysical methods to deduce thermodynamic parameters of copper (Cu transfer from the human copper chaperone Atox1 to the fourth metal-binding domain of the Wilson disease protein (WD4. Atox1 and WD4 have the same fold (ferredoxin-like fold and Cu-binding site (two surface exposed cysteine residues and thus it is not clear what drives metal transfer from one protein to the other. Cu transfer is a two-step reaction involving a metal-dependent ternary complex in which the metal is coordinated by cysteines from both proteins (i.e., Atox1-Cu-WD4. We employ size exclusion chromatography to estimate individual equilibrium constants for the two steps. This information together with calorimetric titration data are used to reveal enthalpic and entropic contributions of each step in the transfer process. Upon combining the equilibrium constants for both steps, a metal exchange factor (from Atox1 to WD4 of 10 is calculated, governed by a negative net enthalpy change of ∼10 kJ/mol. Thus, small variations in interaction energies, not always obvious upon comparing protein structures alone, may fuel vectorial metal transfer.

  4. Glycolipid Transfer Protein Interaction with Bilayer Vesicles: Modulation by Changing Lipid Composition

    OpenAIRE

    Rao, Chetan S; Chung, Taeowan; Pike, Helen M.; Brown, Rhoderick E.

    2005-01-01

    Glycosphingolipids (GSLs) are important constituents of lipid rafts and caveolae, are essential for the normal development of cells, and are adhesion sites for various infectious agents. One strategy for modulating GSL composition in lipid rafts is to selectively transfer GSL to or from these putative membrane microdomains. Glycolipid transfer protein (GLTP) catalyzes selective intermembrane transfer of GSLs. To enable effective use of GLTP as a tool to modify the glycolipid content of membra...

  5. Preferential transfer of certain plasma membrane proteins onto T and B cells by trogocytosis.

    Directory of Open Access Journals (Sweden)

    Sandrine Daubeuf

    Full Text Available T and B cells capture antigens via membrane fragments of antigen presenting cells (APC in a process termed trogocytosis. Whether (and how a preferential transfer of some APC components occurs during trogocytosis is still largely unknown. We analyzed the transfer onto murine T and B cells of a large panel of fluorescent proteins with different intra-cellular localizations in the APC or various types of anchors in the plasma membrane (PM. Only the latter were transferred by trogocytosis, albeit with different efficiencies. Unexpectedly, proteins anchored to the PM's cytoplasmic face, or recruited to it via interaction with phosphinositides, were more efficiently transferred than those facing the outside of the cell. For proteins spanning the PM's whole width, transfer efficiency was found to vary quite substantially, with tetraspanins, CD4 and FcRgamma found among the most efficiently transferred proteins. We exploited our findings to set immunodiagnostic assays based on the capture of preferentially transferred components onto T or B cells. The preferential transfer documented here should prove useful in deciphering the cellular structures involved in trogocytosis.

  6. Funktionelle Charakterisierung zweier Lipid Transfer Proteine in der Arabidopsis thaliana Pathogenantwort

    OpenAIRE

    Bieber, Michael

    2013-01-01

    Die Multigenfamilie der Lipid Transfer Proteine (LTP) stellt eine Gruppe von kleinen Proteinen dar, welche in allen höheren Landpflanzen vorkommen. In der Modellpflanze Arabidopsis thaliana werden 92 Proteine zur Klasse der LTPs gezählt. Die Benennung der Proteinfamilie basiert auf dem beobachteten in vitro Transfer von Lipiden zwischen zwei Membranen. Alle LTPs weisen ein konserviertes, 8 Cysteine beinhaltendes Motiv und eine hydrophobe Tasche auf, welche für die Bindung hydrophober Moleküle...

  7. Superexchange coupling and electron transfer in globular proteins via polaron excitations.

    Science.gov (United States)

    Chuev, G N; Lakhno, V D; Ustitnin, M N

    2000-06-01

    The polaron approach is used to treat long-range electron transfersbetween globular proteins. A rate expression for the polaron transfer model is given along with a description of appropriate conditions forits use. Assuming that electrons transfer via a superexchange couplingdue to a polaron excitation, we have estimated the distance dependenceof the rate constant for the self-exchange reactions between globularproteins in solutions. The distance dependence of the polaron coupling andsolvent reorganization energy are provided as a basis forunderstanding and interpreting a long-range electron transfer experiment.The difficulties and problems of the polaron treatment of long-rangeelectron transfers are discussed, and suggestions for new experimentsare made.

  8. Direct observation of resonance tryptophan-to-chromophore energy transfer in visible fluorescent proteins

    NARCIS (Netherlands)

    Visser, NV; Borst, JW; Hink, MA; van Hoek, A; Visser, AJWG

    2005-01-01

    Visible fluorescent proteins from Aequorea victoria contain next to the fluorophoric group a single tryptophan residue. Both molecules form a single donor-acceptor pair for resonance energy transfer (RET) within the protein. Time-resolved fluorescence experiments using tryptophan excitation have sho

  9. The role of profilin and lipid transfer protein in strawberry allergy in the Mediterranean area

    NARCIS (Netherlands)

    L. Zuidmeer; E. Salentijn; M.F. Rivas; E.G. Mancebo; R. Asero; C.I. Matos; K.T.B. Pelgrom; L.J.W.J. Gilissen; R. van Ree

    2006-01-01

    Background In contrast to other Rosaceae fruit, only few cases of patients with adverse reactions to strawberry are listed in literature. Objective To identify allergenic proteins in strawberry and to express and characterize recombinant strawberry lipid transfer protein (LTP; rFra a 3). Methods Est

  10. Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Winther, J R

    2001-01-01

    Barley LTP1 belongs to a large family of plant proteins termed non-specific lipid transfer proteins. The in vivo function of these proteins is unknown, but it has been suggested that they are involved in responses towards stresses such as pathogens, drought, heat, cold and salt. Also, the proteins...... have been suggested as transporters of monomers for cutin synthesis. We have analysed the stability of LTP1 towards denaturant, heat and proteases and found it to be a highly stable protein, which apparently does not denature at temperatures up to 100 degrees C. This high stability may be important...

  11. Multi-label multi-kernel transfer learning for human protein subcellular localization.

    Directory of Open Access Journals (Sweden)

    Suyu Mei

    Full Text Available Recent years have witnessed much progress in computational modelling for protein subcellular localization. However, the existing sequence-based predictive models demonstrate moderate or unsatisfactory performance, and the gene ontology (GO based models may take the risk of performance overestimation for novel proteins. Furthermore, many human proteins have multiple subcellular locations, which renders the computational modelling more complicated. Up to the present, there are far few researches specialized for predicting the subcellular localization of human proteins that may reside in multiple cellular compartments. In this paper, we propose a multi-label multi-kernel transfer learning model for human protein subcellular localization (MLMK-TLM. MLMK-TLM proposes a multi-label confusion matrix, formally formulates three multi-labelling performance measures and adapts one-against-all multi-class probabilistic outputs to multi-label learning scenario, based on which to further extends our published work GO-TLM (gene ontology based transfer learning model for protein subcellular localization and MK-TLM (multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization for multiplex human protein subcellular localization. With the advantages of proper homolog knowledge transfer, comprehensive survey of model performance for novel protein and multi-labelling capability, MLMK-TLM will gain more practical applicability. The experiments on human protein benchmark dataset show that MLMK-TLM significantly outperforms the baseline model and demonstrates good multi-labelling ability for novel human proteins. Some findings (predictions are validated by the latest Swiss-Prot database. The software can be freely downloaded at http://soft.synu.edu.cn/upload/msy.rar.

  12. Fatty acid transfer between multilamellar liposomes and fatty acid-binding proteins.

    Science.gov (United States)

    Brecher, P; Saouaf, R; Sugarman, J M; Eisenberg, D; LaRosa, K

    1984-11-10

    A simple experimental system was developed for studying the movement of long-chain fatty acids between multilamellar liposomes and soluble proteins capable of binding fatty acids. Oleic acid was incorporated into multilamellar liposomes containing cholesterol and egg yolk lecithin and incubated with albumin or hepatic fatty acid-binding protein. It was found that the fatty acid transferred from the liposomes to either protein rapidly and selectively under conditions where phospholipid and cholesterol transfer did not occur. More than 50% of the fatty acid contained within liposomes could become protein bound, suggesting that the fatty acid moved readily between and across phospholipid bilayers. Transfer was reduced at low pH, and this reduction appeared to result from decreased dissociation of the protonated fatty acid from the bilayer. Liposomes made with dimyristoyl or dipalmitoyl lecithin and containing 1 mol per cent palmitic acid were used to show the effect of temperature on fatty acid transfer. Transfer to either protein did not occur at temperatures where the liposomes were in a gel state but occurred rapidly at temperatures at or above the transition temperatures of the phospholipid used. PMID:6490659

  13. Immune response in mice to ingested soya protein: antibody production, oral tolerance and maternal transfer

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Pedersen, Susanne Brix; Frøkiær, Hanne

    2004-01-01

    While allergic reactions to soya are increasingly investigated, the normal immune response to ingested soya is scarcely described. In the present study, we wanted to characterise the soya-specific immune response in healthy mice ingesting soya protein. Mice fed a soya-containing diet (F0) and mice...... of the first (F1) and second (F2) offspring generation bred on a soya protein-free diet were used either directly or were transferred between the soya-containing and soya protein-free diet during pregnancy or neonatal life. The mice were compared as to levels of naturally occurring specific antibodies analysed...... by ELISA, and to the presence of oral tolerance detected as a suppressed antibody and cell-proliferation response upon immunisation with soya protein. F0 mice generated soya-specific antibodies, while oral tolerance to the same soya proteins was also clearly induced. When F0 dams were transferred to soya...

  14. First principles design of a core bioenergetic transmembrane electron-transfer protein.

    Science.gov (United States)

    Goparaju, Geetha; Fry, Bryan A; Chobot, Sarah E; Wiedman, Gregory; Moser, Christopher C; Dutton, P Leslie; Discher, Bohdana M

    2016-05-01

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. PMID:26672896

  15. Conjugative DNA Transfer Is Enhanced by Plasmid R1 Partitioning Proteins.

    Science.gov (United States)

    Gruber, Christian J; Lang, Silvia; Rajendra, Vinod K H; Nuk, Monika; Raffl, Sandra; Schildbach, Joel F; Zechner, Ellen L

    2016-01-01

    Bacterial conjugation is a form of type IV secretion used to transport protein and DNA directly to recipient bacteria. The process is cell contact-dependent, yet the mechanisms enabling extracellular events to trigger plasmid transfer to begin inside the cell remain obscure. In this study of plasmid R1 we investigated the role of plasmid proteins in the initiation of gene transfer. We find that TraI, the central regulator of conjugative DNA processing, interacts physically, and functionally with the plasmid partitioning proteins ParM and ParR. These interactions stimulate TraI catalyzed relaxation of plasmid DNA in vivo and in vitro and increase ParM ATPase activity. ParM also binds the coupling protein TraD and VirB4-like channel ATPase TraC. Together, these protein-protein interactions probably act to co-localize the transfer components intracellularly and promote assembly of the conjugation machinery. Importantly these data also indicate that the continued association of ParM and ParR at the conjugative pore is necessary for plasmid transfer to start efficiently. Moreover, the conjugative pilus and underlying secretion machinery assembled in the absence of Par proteins mediate poor biofilm formation and are completely dysfunctional for pilus specific R17 bacteriophage uptake. Thus, functional integration of Par components at the interface of relaxosome, coupling protein, and channel ATPases appears important for an optimal conformation and effective activation of the transfer machinery. We conclude that low copy plasmid R1 has evolved an active segregation system that optimizes both its vertical and lateral modes of dissemination. PMID:27486582

  16. Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin.

    OpenAIRE

    Heli Salmela; Amdam, Gro V.; Dalial Freitak

    2015-01-01

    Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to b...

  17. Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites.

    Science.gov (United States)

    Yu, Haijia; Liu, Yinghui; Gulbranson, Daniel R; Paine, Alex; Rathore, Shailendra S; Shen, Jingshi

    2016-04-19

    Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation. PMID:27044075

  18. Inhibition of cholesterol ester transfer protein CGS 25159 and changes in lipoproteins in hamsters.

    Science.gov (United States)

    Kothari, H V; Poirier, K J; Lee, W H; Satoh, Y

    1997-01-01

    As a result of screening, several isoflavans were identified to be antagonists of cholesterol ester transfer protein (CETP) activity. The present study evaluates CGS 25159, a synthetic isoflavan, as a putative inhibitor of CETP activity of human and hamster plasma. Determined by [3]CE transfer from HDL to VLDL + LDL fraction or by fluorescent-CE transfer assay, CGS 25159 inhibited CETP in both human plasma bottom fraction (d = 1.21 g/ml) and in plasma from Golden Syrian Hamsters with an IC50 contention that pharmacological down regulation of CETP activity could result in favorable changes in lipoprotein profile. PMID:9051198

  19. BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells.

    Science.gov (United States)

    Mo, Xiu-Lei; Fu, Haian

    2016-01-01

    Bioluminescence resonance energy transfer (BRET) is a prominent biophysical technology for monitoring molecular interactions, and has been widely used to study protein-protein interactions (PPI) in live cells. This technology requires proteins of interest to be associated with an energy donor (i.e., luciferase) and an acceptor (e.g., fluorescent protein) molecule. Upon interaction of the proteins of interest, the donor and acceptor will be brought into close proximity and energy transfer of chemical reaction-induced luminescence to its corresponding acceptor will result in an increased emission at an acceptor-defined wavelength, generating the BRET signal. We leverage the advantages of the superior optical properties of the NanoLuc(®) luciferase (NLuc) as a BRET donor coupled with Venus, a yellow fluorescent protein, as acceptor. We term this NLuc-based BRET platform "BRET(n)". BRET(n) has been demonstrated to have significantly improved assay performance, compared to previous BRET technologies, in terms of sensitivity and scalability. This chapter describes a step-by-step practical protocol for developing a BRET(n) assay in a multi-well plate format to detect PPIs in live mammalian cells.

  20. Flavoproteins, iron proteins, and hemoproteins as electron-transfer components of the sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    LeGall, J. (Centre National de la Recherche Scientifique, Marseille, France); DerVartanian, D.V.; Peck, H.D. Jr.

    1979-01-01

    This review article with 105 references discusses the most recent publications that deal with the discovery of new redox proteins of the sulfate-reducing bacteria belonging to the genera Desulfotomaculum and Desulfovibrio and proposes explanations for their physical and biological functions. The redox proteins studied as part of the electron-transfer system of these bacteria include flavodoxins, ferredoxins, rubredoxins, cytochromes and several reductose-type enzymes. (KRM)

  1. Molecularly Imprinted Electropolymer for a Hexameric Heme Protein with Direct Electron Transfer and Peroxide Electrocatalysis

    OpenAIRE

    Lei Peng; Aysu Yarman; Jetzschmann, Katharina J.; Jae-Hun Jeoung; Daniel Schad; Holger Dobbek; Ulla Wollenberger; Scheller, Frieder W.

    2016-01-01

    For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP wer...

  2. [Long-range electron transfer in globular proteins by polaron excitation].

    Science.gov (United States)

    Lakhno, V L; Chuev, G N

    1997-01-01

    Considering polaron model, we have calculated an electron state localized in the protein heme. Using these calculations: the electron density and electron energy, we estimated the self-exchange rate constant for cyt c (horse heart), its reorganization energy, matrix element, and dependence of this rate on the distance between hemes. The results are compared with the experimental data and other theoretical estimations. We discuss the role of polaron excitations in the long-range electron transfer in globular proteins.

  3. The biochemistry and biology of extracellular plant lipid-transfer proteins (LTPs)

    OpenAIRE

    Trevor H Yeats; Rose, Jocelyn K.C.

    2008-01-01

    Plant lipid-transfer proteins (LTPs) are abundant, small, lipid binding proteins that are capable of exchanging lipids between membranes in vitro. Despite their name, a role in intracellular lipid transport is considered unlikely, based on their extracellular localization. A number of other biological roles, including antimicrobial defense, signaling, and cell wall loosening, have been proposed, but conclusive evidence is generally lacking, and these functions are not well correlated with in ...

  4. Níveis de alfa-tocoferol no soro e leite materno de puérperas atendidas em maternidade pública de Natal, Rio Grande do Norte Levels of alpha-tocopherol in the serum and breast-milk of child-bearing women attending a public maternity hospital in the city of Natal , in the Brazilian State of Rio Grande do Norte

    Directory of Open Access Journals (Sweden)

    Lígia Rejane Siqueira Garcia

    2009-12-01

    Full Text Available OBJETIVOS: avaliar os níveis de alfa-tocoferol no soro e leite materno em diferentes estágios de lactação de puérperas e verificar a adequação nutri cional de vitamina E do leite oferecido ao lactente. MÉTODOS: participaram do estudo 32 parturientes adultas com idade média de 25 anos. Foram coletados 5 mL de sangue e 2 mL de colostro, em condição de jejum, para análise dos níveis de alfa tocoferol. Entre 10 e 15 dias pós-parto foram coletados mais 2 mL de leite. As amostras foram analisadas por Cromatografia Líquida de Alta Eficiência. A adequação nutricional do leite para a vitamina E foi calculada pelo produto do volume estimado de ingestão de leite com a concentração de α-tocoferol no leite e por comparação direta desse produto com o valor de referência para ingestão do nutriente (4 mg/dia. RESULTADOS: os níveis de alfa-tocoferol no sangue foram 29 ± 0,9 µmol/L (Média ± Erro padrão e no colostro e leite de transição foram 28,7 ± 4,7 µmol/L e 7,8 ± 1,0 µmol/L, respectivamente. O consumo estimado de colostro forneceu 241% da recomendação dietética e o de leite de transição atingiu 66%. CONCLUSÕES: o grupo de mulheres estudadas apresentou um estado nutricional satisfatório de vitamina E, refletido no leite materno, principalmente no colostro, cujos valores foram capazes de suprir mais do que o dobro do requerimento nutricional do lactente.OBJECTIVES: to evaluate levels of alpha-tocopherol in the serum and breast-milk of women at various stages in lactation and to confirm whether nutritio nally appropriate levels of vitamin E are present in the milk given to the babies. METHODS: thirty-two child-bearing women with an average age of 25 years took part in the study. 5 mL of blood and 2 mL of colostrum were collected, under fasting conditions, for the purposes of analyzing the levels of alpha-tocopherol. Between 10 to 15 days after childbirth, a further 2 mL of breast-milk was collected. The samples were

  5. Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces

    DEFF Research Database (Denmark)

    Barends, Sharief; Zehl, Martin; Bialek, Sylwia;

    2010-01-01

    The transfer-messenger RNA (tmRNA)-mediated trans-translation mechanism is highly conserved in bacteria and functions primarily as a system for the rescue of stalled ribosomes and the removal of aberrantly produced proteins. Here, we show that in the antibiotic-producing soil bacterium Streptomyc...... functionality for tmRNA, promoting the translation of the same mRNA it targets, at the expense of sacrificing the first nascent protein. In streptomycetes, tmRNA has evolved into a dedicated task force that ensures the instantaneous response to the exposure to stress.......The transfer-messenger RNA (tmRNA)-mediated trans-translation mechanism is highly conserved in bacteria and functions primarily as a system for the rescue of stalled ribosomes and the removal of aberrantly produced proteins. Here, we show that in the antibiotic-producing soil bacterium Streptomyces...... coelicolor, trans-translation has a specialized role in stress management. Analysis of proteins that were carboxy-terminally His(8)-tagged by a recombinant tmRNA identified only 10 targets, including the stress proteins: DnaK heat-shock protein 70, thiostrepton-induced protein A, universal stress protein A...

  6. Linker proteins enable ultrafast excitation energy transfer in the phycobilisome antenna system of Thermosynechococcus vulcanus.

    Science.gov (United States)

    Nganou, C; David, L; Adir, N; Mkandawire, M

    2016-01-01

    We applied a femtosecond flash method, using induced transient absorption changes, to obtain a time-resolved view of excitation energy transfer in intact phycobilisomes of Thermosynechococcus vulcanus at room temperature. Our measurement of an excitation energy transfer rate of 888 fs in phycobilisomes shows the existence of ultrafast kinetics along the phycocyanin rod subcomplex to the allophycocyanin core that is faster than expected for previous excitation energy transfer based on Förster theory in phycobilisomes. Allophycocyanin in the core further transfers energy to the terminal emitter(s) in 17 ps. In the phycobilisome, rod doublets composed of hexameric phycocyanin discs and internal linker proteins are arranged in a parallel fashion, facilitating direct rod-rod interactions. Excitonic splitting likely drives rod absorption at 635 nm as a result of strong coupling between β84 chromophores (20 ± 1 Å) in adjacent hexamers. In comparison to the absorbance of the phycobilisome antenna system of the cyanobacterium Acaryochloris marina, which possesses a single rod structure, the linkers in T. vulcanus rods induce a 17 nm red shift in the absorbance spectrum. Furthermore, the kinetics of 888 fs indicates that the presence of the linker protein induces ultrafast excitation energy transfer between phycocyanin and allophycocyanin inside the phycobilisome, which is faster than all previous excitation energy transfer in phycobilisome subunits or sub-complexes reported to date. PMID:26537632

  7. Natural ligand binding and transfer from liver fatty acid binding protein (LFABP) to membranes.

    Science.gov (United States)

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C; Córsico, Betina

    2010-09-01

    Liver fatty acid-binding protein (LFABP) is distinctive among fatty acid-binding proteins because it binds more than one molecule of long-chain fatty acid and a variety of diverse ligands. Also, the transfer of fluorescent fatty acid analogues to model membranes under physiological ionic strength follows a different mechanism compared to most of the members of this family of intracellular lipid binding proteins. Tryptophan insertion mutants sensitive to ligand binding have allowed us to directly measure the binding affinity, ligand partitioning and transfer to model membranes of natural ligands. Binding of fatty acids shows a cooperative mechanism, while acyl-CoAs binding presents a hyperbolic behavior. Saturated fatty acids seem to have a stronger partition to protein vs. membranes, compared to unsaturated fatty acids. Natural ligand transfer rates are more than 200-fold higher compared to fluorescently-labeled analogues. Interestingly, oleoyl-CoA presents a markedly different transfer behavior compared to the rest of the ligands tested, probably indicating the possibility of specific targeting of ligands to different metabolic fates. PMID:20541621

  8. Modifier Genes for Mouse Phosphatidylinositol Transfer Protein alpha (vibrator) That Bypass Juvenile Lethality

    NARCIS (Netherlands)

    Concepcion, Dorothy; Johannes, Frank; Lo, Yuan Hung; Yao, Jay; Fong, Jerry; Hamilton, Bruce A.

    2011-01-01

    Phosphatidylinositol transfer proteins (PITPs) mediate lipid signaling and membrane trafficking in eukaryotic cells. Loss-of-function mutations of the gene encoding PITP alpha in mice result in a range of dosage-sensitive phenotypes, including neurological dysfunction, neurodegeneration, and prematu

  9. Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale.

    Science.gov (United States)

    Lin, Meishan; Gessmann, Dennis; Naveed, Hammad; Liang, Jie

    2016-03-01

    Knowledge of the transfer free energy of amino acids from aqueous solution to a lipid bilayer is essential for understanding membrane protein folding and for predicting membrane protein structure. Here we report a computational approach that can calculate the folding free energy of the transmembrane region of outer membrane β-barrel proteins (OMPs) by combining an empirical energy function with a reduced discrete state space model. We quantitatively analyzed the transfer free energies of 20 amino acid residues at the center of the lipid bilayer of OmpLA. Our results are in excellent agreement with the experimentally derived hydrophobicity scales. We further exhaustively calculated the transfer free energies of 20 amino acids at all positions in the TM region of OmpLA. We found that the asymmetry of the Gram-negative bacterial outer membrane as well as the TM residues of an OMP determine its functional fold in vivo. Our results suggest that the folding process of an OMP is driven by the lipid-facing residues in its hydrophobic core, and its NC-IN topology is determined by the differential stabilities of OMPs in the asymmetrical outer membrane. The folding free energy is further reduced by lipid A and assisted by general depth-dependent cooperativities that exist between polar and ionizable residues. Moreover, context-dependency of transfer free energies at specific positions in OmpLA predict regions important for protein function as well as structural anomalies. Our computational approach is fast, efficient and applicable to any OMP.

  10. Cholesteryl Ester Transfer Protein (CETP) genotype and cognitive function in persons aged 35 years or older

    NARCIS (Netherlands)

    Izaks, Gerbrand J.; van der Knaap, Aafke M.; Gansevoort, Ron T.; Navis, Gerjan; Slaets, Joris P. J.; Dullaart, Robin P. F.

    2012-01-01

    Common polymorphisms of the Cholestryl Ester Transfer Protein (CETP) gene may predict lower risk of cognitive decline. We investigated the association of cognitive function with CETP genotype in a population-based cohort of 4135 persons aged 35-82 years. Cognitive function was measured with the Ruff

  11. Electron transfer patterns of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri

    DEFF Research Database (Denmark)

    Raffalt, Anders Christer; Schmidt, L.; Christensen, Hans Erik Mølager;

    2009-01-01

    We report kinetic data for the two-step electron transfer (ET) oxidation and reduction of the two-domain di-heme redox protein Pseudomonas stutzeri cytochrome (cyt) c(4) by [Co(bipy)(3)](2- 3-) (bipy = 2,2'-bipyridine). Following earlier reports, the data accord with both bi- and tri-exponential ...

  12. Long-range protein electron transfer observed at the single-molecule level

    DEFF Research Database (Denmark)

    Chi, Qijin; Farver, Ole; Ulstrup, Jens

    2005-01-01

    A biomimetic long-range electron transfer (ET) system consisting of the blue copper protein azurin, a tunneling barrier bridge, and a gold single-crystal electrode was designed on the basis of molecular wiring self-assembly principles. This system is sufficiently stable and sensitive in a quasi...

  13. Role of pigment-protein coupling and pathways of excitation energy transfer in FMO complex

    CERN Document Server

    Singh, Davinder

    2016-01-01

    We theoretically investigate the effect of different pigment-protein couplings and the role of quantum interference among different energy transfer channels in excitation energy transfer (EET) in FMO complex. We employ the non-Markovian master equation that allows the use of different values of pigment-protein couplings and cut-off frequencies for different BChla sites, in the adiabatic limit of electron transfer in FMO complex. Several pathways of EET are identified and investigated using a realistic set of pigment-pigment couplings and the site energy of each BChla site. We analyze that it is the destructive interference between different channels of a particular pathway that is responsible for the time-scales of oscillations of excitation energy as observed in the recent experiments.

  14. Analysis of Native-Like Proteins and Protein Complexes Using Cation to Anion Proton Transfer Reactions (CAPTR)

    Science.gov (United States)

    Laszlo, Kenneth J.; Bush, Matthew F.

    2015-12-01

    Mass spectra of native-like protein complexes often exhibit narrow charge-state distributions, broad peaks, and contributions from multiple, coexisting species. These factors can make it challenging to interpret those spectra, particularly for mixtures with significant heterogeneity. Here we demonstrate the use of ion/ion proton transfer reactions to reduce the charge states of m/ z-selected, native-like ions of proteins and protein complexes, a technique that we refer to as cation to anion proton transfer reactions (CAPTR). We then demonstrate that CAPTR can increase the accuracy of charge state assignments and the resolution of interfering species in native mass spectrometry. The CAPTR product ion spectra for pyruvate kinase exhibit ~30 peaks and enable unambiguous determination of the charge state of each peak, whereas the corresponding precursor spectra exhibit ~6 peaks and the assigned charge states have an uncertainty of ±3%. 15+ bovine serum albumin and 21+ yeast enolase dimer both appear near m/ z 4450 and are completely unresolved in a mixture. After a single CAPTR event, the resulting product ions are baseline resolved. The separation of the product ions increases dramatically after each subsequent CAPTR event; 12 events resulted in a 3000-fold improvement in separation relative to the precursor ions. Finally, we introduce a framework for interpreting and predicting the figures of merit for CAPTR experiments. More generally, these results suggest that CAPTR strongly complements other mass spectrometry tools for analyzing proteins and protein complexes, particularly those in mixtures.

  15. Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach

    OpenAIRE

    Segura, Ana; Moreno, Manuel; García Olmedo, Francisco

    1993-01-01

    Two homogeneous proteins active in vitro against the bacterial pathogen Clavibacter michiganensis subsp. sepedonicus were obtained from a crude cell-wall preparation from the leaves of Columbia wild-type Arabidopsis. The N-terminal amino acid sequences of these proteins allowed their identification as lipid transfer proteins (LTP-a1, LTP-a2); the LTP1-a1 sequence was identical to that deduced from a previously described cDNA (EMBL M80566) and LTP-a2 was quite divergent (44% identical position...

  16. Identificazione e caratterizzazione dell'allergene Lipid Transfer Protein di pomodoro

    OpenAIRE

    Rasore, Claudia

    2013-01-01

    Le non specific lipid transfer proteins appartengono alla famiglia delle LTP1 e rappresentano le più importanti proteine allergeniche in grado di causare reazioni IgE-mediate nell'area Mediterranea. Sebbene i casi più noti di reazioni avverse alle nsLTPs siano allergie ai frutti di Rosaceae, fra le proteine allergeniche del pomodoro è stata identificata Lyc e 3 (LTP di pomodoro). Inoltre è stato osservato che Lyc e 3 è in grado di conservare la sua reattività immunologica anche a seguito di p...

  17. Influence of insulin sensitivity and the TaqIB cholesteryl ester transfer protein gene polymorphism on plasma lecithin : Cholesterol acyltransferase and lipid transfer protein activities and their response to hyperinsulinaemia in nondiabetic men.

    NARCIS (Netherlands)

    Riemens, SC; Van Tol, A; Stulp, BK; Dullaart, RPF

    1999-01-01

    Lecithin:cholesteryl acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), phospholipid transfer protein (PLTP), and lipoprotein lipases are involved in high density lipoprotein (HDL) metabolism. We evaluated the influence of insulin sensitivity and of the TaqIB CETP gem polymorphism (B

  18. Progress and challenges in simulating and understanding electron transfer in proteins.

    Science.gov (United States)

    de la Lande, Aurélien; Gillet, Natacha; Chen, Shufeng; Salahub, Dennis R

    2015-09-15

    This Review presents an overview of the most common numerical simulation approaches for the investigation of electron transfer (ET) in proteins. We try to highlight the merits of the different approaches but also the current limitations and challenges. The article is organized into three sections. Section 2 deals with direct simulation algorithms of charge migration in proteins. Section 3 summarizes the methods for testing the applicability of the Marcus theory for ET in proteins and for evaluating key thermodynamic quantities entering the reaction rates (reorganization energies and driving force). Recent studies interrogating the validity of the theory due to the presence of non-ergodic effects or of non-linear responses are also described. Section 4 focuses on the tunneling aspects of electron transfer. How can the electronic coupling between charge transfer states be evaluated by quantum chemistry approaches and rationalized? What interesting physics regarding the impact of protein dynamics on tunneling can be addressed? We will illustrate the different sections with examples taken from the literature to show what types of system are currently manageable with current methodologies. We also take care to recall what has been learned on the biophysics of ET within proteins thanks to the advent of atomistic simulations. PMID:26116376

  19. Kinetic analysis of the effect of HIV nucleocapsid protein (NCp) on internal strand transfer reactions.

    Science.gov (United States)

    Raja, A; DeStefano, J J

    1999-04-20

    The mechanism of HIV reverse transcriptase (RT) catalyzed strand transfer synthesis (i.e., switching of the primer to a new template) from internal regions on RNA templates in the presence and absence of HIV nucleocapsid protein (NCp) was investigated. Two different systems each consisting of DNA-primed RNA donor (on which primer extension initiated) and acceptor (to which DNAs initiated on the donor could transfer) templates were used to determine kinetic parameters of strand transfer. The donor and acceptor shared an internal region of homology where homologous strand transfer could occur. The rate of strand transfer at various acceptor concentrations was determined by monitoring the production of transfer products over time. These rates were used to construct Lineweaver-Burk plots. In each system, NCp increased the Vmax about 3-fold while the Km for acceptor template was decreased severalfold. NCp's effects on RT extension ranged from no effect to inhibition depending on the primer-template used. The lowered Km shows that NCp increases the affinity of the acceptor template for the transferring DNA. Vmax increases despite the inhibition of RT extension. The increased Vmax implies a stimulatory mechanism that cannot be mimicked by high acceptor concentrations. Therefore, NCp does not act by merely increasing the effective concentration of nucleic acids.

  20. Blue copper proteins as a model for investigating electron transfer processes within polypeptide matrices

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1994-01-01

    Intramolecular long-range electron transfer (ET) processes have been investigated in two types of blue copper proteins; the single-copper protein, azurin and the multi-copper oxidase, ascorbate oxidase. These have several advantages for investigating the parameters that control the above reactions...... resolution. (3) These proteins have no other cofactors except for the copper ions, thus the role of the polypeptide matrix can be addressed in a more straightforward manner. In azurins, the ET from the cystine (3-26) radical-ion produced by pulse-radiolytic reduction of this single disulfide bridge......, to the Cu(II) ion bound at a distance of approximately 2.6 nm has been studied, in naturally occurring and in single-site mutated azurins. The role of changing specific amino acid residues on the internal long-range electron transfer (LRET) process and its potential pathways has been investigated...

  1. Transfer

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne; Aarkrog, Vibe

    Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...

  2. Unraveling the electron transfer processes of a nanowire protein from Geobacter sulfurreducens.

    Science.gov (United States)

    Alves, Mónica N; Fernandes, Ana P; Salgueiro, Carlos A; Paquete, Catarina M

    2016-01-01

    The extracellular electron transfer metabolism of Geobacter sulfurreducens is sustained by several multiheme c-type cytochromes. One of these is the dodecaheme cytochrome GSU1996 that belongs to a new sub-class of c-type cytochromes. GSU1996 is composed by four similar triheme domains (A–D). The C-terminal half of the molecule encompasses the domains C and D, which are connected by a small linker and the N-terminal half of the protein contains two domains (A and B) that form one structural unit. It was proposed that this protein works as an electrically conductive device in G. sulfurreducens, transferring electrons within the periplasm or to outer-membrane cytochromes. In this work, a novel strategy was applied to characterize in detail the thermodynamic and kinetic properties of the hexaheme fragment CD of GSU1996. This characterization revealed the electron transfer process of GSU1996 for the first time, showing that a heme at the edge of the C-terminal of the protein is thermodynamic and kinetically competent to receive electrons from physiological redox partners. This information contributes towards understanding how this new sub-class of cytochromes functions as nanowires, and also increases the current knowledge of the extracellular electron transfer mechanisms in G. sulfurreducens. PMID:26435389

  3. Acoustic transfer of protein crystals from agarose pedestals to micromeshes for high-throughput screening

    Energy Technology Data Exchange (ETDEWEB)

    Cuttitta, Christina M. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314 (United States); Ericson, Daniel L. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); University at Buffalo, SUNY, 12 Capen Hall, Buffalo, NY 14260 (United States); Scalia, Alexander [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 11973-5000 (United States); Roessler, Christian G. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Teplitsky, Ella [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Stony Brook University, Stony Brook, NY 11794-5215 (United States); Joshi, Karan [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); PEC University of Technology, Chandigarh (India); Campos, Olven [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33414 (United States); Agarwal, Rakhi; Allaire, Marc [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Orville, Allen M. [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Sweet, Robert M.; Soares, Alexei S., E-mail: soares@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2015-01-01

    An acoustic high-throughput screening method is described for harvesting protein crystals and combining the protein crystals with chemicals such as a fragment library. Acoustic droplet ejection (ADE) is an emerging technology with broad applications in serial crystallography such as growing, improving and manipulating protein crystals. One application of this technology is to gently transfer crystals onto MiTeGen micromeshes with minimal solvent. Once mounted on a micromesh, each crystal can be combined with different chemicals such as crystal-improving additives or a fragment library. Acoustic crystal mounting is fast (2.33 transfers s{sup −1}) and all transfers occur in a sealed environment that is in vapor equilibrium with the mother liquor. Here, a system is presented to retain crystals near the ejection point and away from the inaccessible dead volume at the bottom of the well by placing the crystals on a concave agarose pedestal (CAP) with the same chemical composition as the crystal mother liquor. The bowl-shaped CAP is impenetrable to crystals. Consequently, gravity will gently move the crystals into the optimal location for acoustic ejection. It is demonstrated that an agarose pedestal of this type is compatible with most commercially available crystallization conditions and that protein crystals are readily transferred from the agarose pedestal onto micromeshes with no loss in diffraction quality. It is also shown that crystals can be grown directly on CAPs, which avoids the need to transfer the crystals from the hanging drop to a CAP. This technology has been used to combine thermolysin and lysozyme crystals with an assortment of anomalously scattering heavy atoms. The results point towards a fast nanolitre method for crystal mounting and high-throughput screening.

  4. A bioinformatics approach to investigate the function of non specific lipid transfer proteins in Arabidopsis thaliana

    OpenAIRE

    Jayachandra Pandiyan, Muneeswaran

    2010-01-01

    Plant non specific lipid transfer proteins (nsLTPs) enhance in vitro transfer of phospholipids between membranes. Our analysis exploited the large amount of Arabidopsis transcriptome data in public databases to learn more about the function of nsLTPs. The analysis revealed that some nsLTPs are expressed only in roots, some are seed specific, and others are specific for tissues above ground whereas certain nsLTPs show a more general expression pattern. Only few nsLTPs showed a strong up or dow...

  5. Lipid binding in rice nonspecific lipid transfer protein-1 complexes from Oryza sativa

    OpenAIRE

    Cheng, Hui-Chun; Cheng, Pei-Tsung; Peng, Peiyu; Lyu, Ping-Chiang; Sun, Yuh-Ju

    2004-01-01

    Nonspecific lipid transfer proteins (nsLTPs) facilitate the transfer of phospholipids, glycolipids, fatty acids and steroids between membranes, with wide-ranging binding affinities. Three crystal structures of rice nsLTP1 from Oryza sativa, complexed with myristic (MYR), palmitic (PAL) or stearic acid (STE) were determined. The overall structures of the rice nsLTP1 complexes belong to the four-helix bundle folding with a long C-terminal loop. The nsLTP1–MYR and the nsLTP1–STE complexes bind a...

  6. Catalytic properties of lipopolysaccharide (LPS) binding protein. Transfer of LPS to soluble CD14.

    Science.gov (United States)

    Yu, B; Wright, S D

    1996-02-23

    Lipopolysaccharide (LPS) binding protein (LBP) is a lipid transfer protein that catalyzes transfer of LPS monomers from micelles to a binding site on soluble CD14 (sCD14) and transfer of LPS from LPS.sCD14 complexes to HDL particles. To characterize the first of these two reactions, LPS covalently derivatized with the fluorophore, boron dipyrromethene difluoride (BODIPY), was used to monitor LBP-catalyzed movement of LPS in real time. The fluorescence efficiency of micelles of BODIPY-LPS was low but was strongly increased upon dissolution in detergent or upon binding to sCD14. Spontaneous binding of BODIPY-LPS to sCD14 was very slow but was accelerated by substoichiometric concentration of LBP, and the rate of binding was measured under a variety of conditions. LBP-catalyzed transfer was first order with respect to both sCD14 and LPS concentration, and the apparent Km values were 1 approximately 2 microg/ml for sCD14 and 100 ng/ml for LPS. The maximum turnover number for LBP was approximately 150 molecules of LPS min-1 LBP-1. LBP alone caused a small but measurable increase in the fluorescence of BODIPY-LPS, suggesting that it bound LPS aggregates but did not readily remove LPS monomers. The subsequent addition of sCD14 caused a large fluorescence increase, suggesting transfer of BODIPY-LPS to sCD14. These and other observations suggest that LPS is transferred by an ordered ternary complex reaction mechanism in which LBP transfers LPS monomer from LPS aggregates to sCD14 without dissociating from the LPS aggregate. PMID:8626747

  7. Identification of phosphatidylcholine transfer protein-like in the parasite Entamoeba histolytica.

    Science.gov (United States)

    Piña-Vázquez, Carolina; Reyes-López, Magda; Mendoza-Hernández, Guillermo; Bermúdez-Cruz, Rosa María; de la Garza, Mireya

    2014-12-01

    Caveolin is the protein marker of caveola-mediated endocytosis. Previously, we demonstrated by immunoblotting and immunofluorescence that an anti-chick embryo caveolin-1 monoclonal antibody (mAb) recognizes a protein in amoeba extracts. Nevertheless, the caveolin-1 gene is absent in the Entamoeba histolytica genome database. In this work, the goal was to isolate, identify and characterize the protein that cross-reacts with chick embryo caveolin-1. We identified the protein using a proteomic approach, and the complete gene was cloned and sequenced. The identified protein, E. histolytica phosphatidylcholine transfer protein-like (EhPCTP-L), is a member of the StAR-related lipid transfer (START) protein superfamily. The human homolog binds and transfers phosphatidylcholine (PC) and phosphatidylethanolamine (PE) between model membranes in vitro; however, the physiological role of PCTP-L remains elusive. Studies in silico showed that EhPCTP-L has a central START domain and also contains a C-terminal intrinsically disordered region. The anti-rEhPCTP-L antibody demonstrated that EhPCTP-L is found in the plasma membrane and cytosol, which is in agreement with previous reports on the human counterpart. This result points to the plasma membrane as one possible target membrane for EhPCTP-L. Furthermore, assays using filipin and nystatin showed down regulation of EhPCTP-L, in an apparently cholesterol-independent way. Interestingly, EhPCTP-L binds primarily to anionic phospholipids phosphatidylserine (PS) and phosphatidic acid (PA), while its mammalian counterpart HsPCTP-L binds neutral phospholipids PC and PE. The present study provides information that helps reveal the possible function and regulation of PCTP-L expression in the primitive eukaryotic parasite E. histolytica.

  8. First isolation and antinociceptive activity of a lipid transfer protein from noni (Morinda citrifolia) seeds.

    Science.gov (United States)

    Campos, Dyély C O; Costa, Andrea S; Lima, Amanda D R; Silva, Fredy D A; Lobo, Marina D P; Monteiro-Moreira, Ana Cristina O; Moreira, Renato A; Leal, Luzia K A M; Miron, Diogo; Vasconcelos, Ilka M; Oliveira, Hermógenes D

    2016-05-01

    In this study a novel heat-stable lipid transfer protein, designated McLTP1, was purified from noni (Morinda citrifolia L.) seeds, using four purification steps which resulted in a high-purified protein yield (72 mg McLTP1 from 100g of noni seeds). McLTP1 exhibited molecular masses of 9.450 and 9.466 kDa, determined by electrospray ionisation mass spectrometry. The N-terminal sequence of McLTP1 (AVPCGQVSSALSPCMSYLTGGGDDPEARCCAGV), as analysed by NCBI-BLAST database, revealed a high degree of identity with other reported plant lipid transfer proteins. In addition, this protein proved to be resistant to pepsin, trypsin and chymotrypsin digestion. McLTP1 given intraperitoneally (1, 2, 4 and 8 mg/kg) and orally (8 mg/kg) caused an inhibition of the writhing response induced by acetic acid in mice. This protein displayed thermostability, retaining 100% of its antinociceptive activity after 30 min incubation at 80 °C. Pretreatment of mice with McLTP1 (8 mg/kg, i.p. and p.o.) also decreased neurogenic and inflammatory phases of nociception in the formalin test. Naloxone (2 mg/kg, i.p.) antagonised the antinociceptive effect of McLTP1 suggesting that the opioid mechanisms mediate the analgesic properties of this protein.

  9. Immune response in mice to ingested soya protein: antibody production, oral tolerance and maternal transfer.

    Science.gov (United States)

    Christensen, Hanne R; Brix, Susanne; Frøkiaer, Hanne

    2004-05-01

    While allergic reactions to soya are increasingly investigated, the normal immune response to ingested soya is scarcely described. In the present study, we wanted to characterise the soya-specific immune response in healthy mice ingesting soya protein. Mice fed a soya-containing diet (F0) and mice of the first (F1) and second (F2) offspring generation bred on a soya protein-free diet were used either directly or were transferred between the soya-containing and soya protein-free diet during pregnancy or neonatal life. The mice were compared as to levels of naturally occurring specific antibodies analysed by ELISA, and to the presence of oral tolerance detected as a suppressed antibody and cell-proliferation response upon immunisation with soya protein. F0 mice generated soya-specific antibodies, while oral tolerance to the same soya proteins was also clearly induced. When F0 dams were transferred to soya protein-free feed before mating, the F1 and F2 offspring generations showed no significantly different response, indicating that soya-specific immune components were not maternally transmitted. However, the ingestion of dietary soya protein by F1 mice during late pregnancy and lactation caused a lasting antibody response in the offspring, but in this case in the absence of oral tolerance. This indicates that, under certain conditions, factors involved in spontaneous antibody production can be transmitted from mother to offspring. Understanding the immune response to soya protein ingested under healthy conditions is important in the assessment of adverse effects of soya protein and in the use of animal allergy models. The present results add to this understanding. PMID:15137924

  10. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label

    Science.gov (United States)

    Yang, Yi; Song, Haiping; He, Dan; Zhang, Shuai; Dai, Shizhong; Lin, Shixian; Meng, Rong; Wang, Chu; Chen, Peng R.

    2016-01-01

    Coupling photocrosslinking reagents with mass spectrometry has become a powerful tool for studying protein–protein interactions in living systems, but it still suffers from high rates of false-positive identifications as well as the lack of information on interaction interface due to the challenges in deciphering crosslinking peptides. Here we develop a genetically encoded photo-affinity unnatural amino acid that introduces a mass spectrometry-identifiable label (MS-label) to the captured prey proteins after photocrosslinking and prey–bait separation. This strategy, termed IMAPP (In-situ cleavage and MS-label transfer After Protein Photocrosslinking), enables direct identification of photo-captured substrate peptides that are difficult to uncover by conventional genetically encoded photocrosslinkers. Taking advantage of the MS-label, the IMAPP strategy significantly enhances the confidence for identifying protein–protein interactions and enables simultaneous mapping of the binding interface under living conditions. PMID:27460181

  11. On the transfer of serum proteins to the rat intestinal juice

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Norén, Ove; Poulsen, Mona D;

    1994-01-01

    The in vivo pattern of serum proteins in the rat small-intestinal juice was characterized by crossed immunoelectrophoresis. Immunoglobulins and albumin, alpha-1-antitrypsin, transferrin, and orosomucoid were present. Larger serum proteins were absent (ceruloplasmin, haptoglobin, alpha-1......-macroglobulin, alpha and beta lipoproteins). Thus, apart from immunoglobulins, only serum proteins with a molecular mass less than approximately 100 kDa were demonstrated. The origin and epithelial transfer were further characterized, using albumin as a model. No sign of local synthesis of albumin...... proteins in the intestinal juice is a selective passage through the capillary wall followed by passive intercellular transport via delivery of the serum in the interstitial space during disintegration of the enterocytes....

  12. Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure

    DEFF Research Database (Denmark)

    Lenaerts, Tom; Ferkinghoff-Borg, Jesper; Stricher, Francois;

    2008-01-01

    instance of communication over a noisy channel. In particular, we analyze the conformational correlations between protein residues and apply the concept of mutual information to quantify information exchange. Mapping out changes of mutual information on the protein structure then allows visualizing how...... distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located...... by crossing the core of the SH2 domain. Conclusion: As a result, our method provides a means to directly map the exchange of biological information on the structure of protein domains, making it clear how binding triggers conformational changes in the protein structure. As such it provides a structural road...

  13. Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water

    Energy Technology Data Exchange (ETDEWEB)

    Dalvit, Claudio; Pevarello, Paolo; Tato, Marco; Veronesi, Marina; Vulpetti, Anna; Sundstroem, Michael [Pharmacia (Italy)

    2000-09-15

    A powerful screening by NMR methodology (WaterLOGSY), based on transfer of magnetization from bulk water, for the identification of compounds that interact with target biomolecules (proteins, RNA and DNA fragments) is described. The method exploits efficiently the large reservoir of H{sub 2}O magnetization. The high sensitivity of the technique reduces the amount of biomolecule and ligands needed for the screening, which constitutes an important requirement for high throughput screening by NMR of large libraries of compounds. Application of the method to a compound mixture against the cyclin-dependent kinase 2 (cdk2) protein is presented.

  14. Regulation of non-specific lipid transfer proteins in abiotically stressed Physcomitrella patens

    OpenAIRE

    Jansson, Sandra

    2011-01-01

    Non-specific lipid transfer proteins is a large and diverse protein family found in plants, with roles in biological systems ranging from long distance signaling to plant pathogen defense. Little is known about the roles of nsLTPs, but recent studies have cast some light on the issue, among other things proposing that they may be involved in the cutice formation on land-living liverworts, mosses and non-seedbearing plants. Increased cuticle formation is thought to be a part of a plants defens...

  15. Structural and Functional Characterization of Recombinant Isoforms of the Lentil Lipid Transfer Protein

    OpenAIRE

    Bogdanov, I. V.; Finkina, E. I.; Balandin, S. V.; Melnikova, D. N.; Stukacheva, E. A.; Ovchinnikova, T. V.

    2015-01-01

    The recombinant isoforms Lc-LTP1 and Lc-LTP3 of the lentil lipid transfer protein were overexpressed in E. coli cells. It was confirmed that both proteins are stabilized by four disulfide bonds and characterized by a high proportion of the α-helical structure. It was found that Lc-LTP1 and Lc-LTP3 possess antimicrobial activity and can bind fatty acids. Both isoforms have the ability to bind specific IgE from sera of patients with food allergies, which recognize similar epitopes of the major ...

  16. STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF RECOMBINANT ISOFORMS OF THE LENTIL LIPID TRANSFER PROTEIN

    OpenAIRE

    Bogdanov, I. V.; Finkina, E. I.; Balandin, S. V.; Melnikova, D. N.; Stukacheva, E. A.; Ovchinnikova, T. V.

    2015-01-01

    The recombinant isoforms Lc-LTP1 and Lc-LTP3 of the lentil lipid transfer protein were overexpressed in E. coli cells. It was confirmed that both proteins are stabilized by four disulfide bonds and characterized by a high proportion of the α-helical structure. It was found that Lc-LTP1 and Lc-LTP3 possess antimicrobial activity and can bind fatty acids. Both isoforms have the ability to bind specific IgE from sera of patients with food allergies, which recognize similar epitopes of the major ...

  17. Probability weighted ensemble transfer learning for predicting interactions between HIV-1 and human proteins.

    Directory of Open Access Journals (Sweden)

    Suyu Mei

    Full Text Available Reconstruction of host-pathogen protein interaction networks is of great significance to reveal the underlying microbic pathogenesis. However, the current experimentally-derived networks are generally small and should be augmented by computational methods for less-biased biological inference. From the point of view of computational modelling, data scarcity, data unavailability and negative data sampling are the three major problems for host-pathogen protein interaction networks reconstruction. In this work, we are motivated to address the three concerns and propose a probability weighted ensemble transfer learning model for HIV-human protein interaction prediction (PWEN-TLM, where support vector machine (SVM is adopted as the individual classifier of the ensemble model. In the model, data scarcity and data unavailability are tackled by homolog knowledge transfer. The importance of homolog knowledge is measured by the ROC-AUC metric of the individual classifiers, whose outputs are probability weighted to yield the final decision. In addition, we further validate the assumption that only the homolog knowledge is sufficient to train a satisfactory model for host-pathogen protein interaction prediction. Thus the model is more robust against data unavailability with less demanding data constraint. As regards with negative data construction, experiments show that exclusiveness of subcellular co-localized proteins is unbiased and more reliable than random sampling. Last, we conduct analysis of overlapped predictions between our model and the existing models, and apply the model to novel host-pathogen PPIs recognition for further biological research.

  18. Purification of nonspecific lipid transfer protein (sterol carrier protein 2) from human liver and its deficiency in livers from patients with cerebro-hepato-renal (Zellweger) syndrome

    NARCIS (Netherlands)

    Amerongen, A. van; Helms, J.B.; Krift, T.P. van der; Schutgens, R.B.H.; Wirtz, K.W.A.

    1987-01-01

    The nonspecific lipid transfer protein (i.e., sterol carrier protein 2) from human liver was purified to homogeneity using ammonium sulfate precipitation, CM-cellulose chromatography, molecular sieve chromatography and fast protein liquid chromatography. Its amino acid composition was determined and

  19. Activation of transfer RNA-guanine ribosyltransferase by protein kinase C.

    OpenAIRE

    Morris, R C; Brooks, B. J.; Eriotou, P; Kelly, D F; Sagar, S.; Hart, K L; Elliott, M.S.

    1995-01-01

    Transfer RNA-guanine ribosyltransferase (TGRase) irreversibly incorporates queuine into the first position in the anticodon of four tRNA isoacceptors. Rat brain protein kinase C (PKC) was shown to stimulate rat liver TGRase activity. TGRase preparations derived from rat liver have been observed to decrease in activity over time in storage at -20 or -70 degrees C. Contamination of the samples by phosphatases was indicated by a p-nitrophenylphosphate conversion test. The addition of micromolar ...

  20. The α-Tocopherol Transfer Protein Is Essential for Vertebrate Embryogenesis

    OpenAIRE

    Galen W Miller; Lynn Ulatowski; Labut, Edwin M.; Lebold, Katie M.; Danny Manor; Jeffrey Atkinson; Barton, Carrie L.; Tanguay, Robert L.; Traber, Maret G.

    2012-01-01

    The hepatic α-tocopherol transfer protein (TTP) is required for optimal α-tocopherol bioavailability in humans; mutations in the human TTPA gene result in the heritable disorder ataxia with vitamin E deficiency (AVED, OMIM #277460). TTP is also expressed in mammalian uterine and placental cells and in the human embryonic yolk-sac, underscoring TTP's significance during fetal development. TTP and vitamin E are essential for productive pregnancy in rodents, but their precise physiological role ...

  1. Expression pattern of GPI-anchored non-specific lipid transfer proteins in Physcomitrella patens

    OpenAIRE

    Höglund, Andrey

    2011-01-01

    During the water-to-land transition, that occurred approximately 450 MYA, novel habitats wererevealed to the emerging plants. This terrestrial habitat was a harsh environment compared to theaquatic, with shifting substrate content, irregular supply of water, damaging UV-radiation andrapid fluctuating temperatures. Non-specific lipid transfer proteins (nsLTP) are today only foundin the land living plants and not in the green algae. This suggests that these genes might haveevolved to help the p...

  2. An extracellular lipid transfer protein is relocalized intracellularly during seed germination.

    Science.gov (United States)

    Pagnussat, Luciana; Burbach, Christian; Baluska, Frantisek; de la Canal, Laura

    2012-11-01

    Plant lipid transfer proteins (LTPs) constitute a family of small proteins recognized as being extracellular. In agreement with this notion, several lines of evidence have shown the apoplastic localization of HaAP10, a LTP from Helianthus annuus dry seeds. However, HaAP10 was recently detected intracellularly in imbibing seeds. To clarify its distribution, immunolocalization experiments were performed during the course of germination and confirmed its intracellular localization upon early seed imbibition. Further assays using a hydrophobic dye, FM4-64, inhibitors of vesicular traffic, and immunolocalization of the pectin rhamnogalacturonan-II, allowed the conclusion that endocytosis is activated as soon as seed imbibition starts. Furthermore, this study demonstrated that HaAP10 is endocytosed throughout imbibition. Biochemical and cellular approaches indicate that the intracellular fraction of this LTP appears associated with oil bodies and some evidence also suggest its presence in glyoxysomes. So, HaAP10 is apoplastic in dry seeds and upon imbibition is rapidly internalized and relocalized to organelles involved in lipid metabolism. The results suggest that HaAP10 may be acting as a fatty acid shuttle between the oil body and the glyoxysome during seed germination. This concept is consistent with the initial proposition that LTPs participate in the intracellular transfer of lipids which was further denied based on their apparent extracellular localization. This report reveals for the first time the relocalization of a lipid transfer protein and opens new perspectives on its role. PMID:23162115

  3. The surface protein Shr of Streptococcus pyogenes binds heme and transfers it to the streptococcal heme-binding protein Shp

    OpenAIRE

    Lei Benfang; Liu Mengyao; Zhu Hui

    2008-01-01

    Abstract Background The heme acquisition machinery in Streptococcus pyogenes is believed to consist of the surface proteins, Shr and Shp, and heme-specific ATP-binding cassette transporter HtsABC. Shp has been shown to rapidly transfer its heme to the lipoprotein component, HtsA, of HtsABC. The function of Shr and the heme source of Shp have not been established. Results The objective of this study was to determine whether Shr binds heme and is a heme source of Shp. To achieve the objective, ...

  4. DNA-Binding Proteins Regulating pIP501 Transfer and Replication.

    Science.gov (United States)

    Grohmann, Elisabeth; Goessweiner-Mohr, Nikolaus; Brantl, Sabine

    2016-01-01

    pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently detected in clinical Enterococcus faecalis and Enterococcus faecium strains. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual function: It acts as transcriptional repressor at the repR promoter and, in addition, prevents convergent transcription of RNAIII and repR mRNA (RNAII), which indirectly increases RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII). Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS) encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including Streptomyces and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter overlapping with the origin of transfer (oriT). The T4SS operon encodes the DNA-binding proteins TraJ (VirD4-like coupling

  5. DNA-Binding Proteins Regulating pIP501 Transfer and Replication

    Science.gov (United States)

    Grohmann, Elisabeth; Goessweiner-Mohr, Nikolaus; Brantl, Sabine

    2016-01-01

    pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently detected in clinical Enterococcus faecalis and Enterococcus faecium strains. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual function: It acts as transcriptional repressor at the repR promoter and, in addition, prevents convergent transcription of RNAIII and repR mRNA (RNAII), which indirectly increases RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII). Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS) encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including Streptomyces and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter overlapping with the origin of transfer (oriT). The T4SS operon encodes the DNA-binding proteins TraJ (VirD4-like coupling

  6. Using computational chemistry to understand proton transfer in Green Fluorescent Protein

    Science.gov (United States)

    Hoskin, Christa; Champion, Paul; Sage, Timothy; Benabbas, Abdelkrim; Demidov, Alexander; Salna, Bridget

    2012-02-01

    Green Fluorescent Protein has been studied experimentally by the scientific community for years yet frustratingly little is known about the underlying proton transfer process that produces the green fluorescence. We are trying to elucidate more about this process using Density Functional Theory to prepare and run various calculations on GFP that we compare with kinetics data, Raman and vibrational coherence spectra. I am building a model of wild type GFP that is realistically sized for our computational power, yet still contains key residues that might affect the proton transport process. I will compare my results to those of the E222D GFP mutant. This comparison will allow us to see any differences in energy and normal modes that give insights regarding the proton transfer process. For example, how does it depend on a variety of factors such as temperature, buffer, pH, mutations, etc.? We also plan to examine if the proton transfer propagates through the three donor-acceptor pairs of the ``proton wire'' consecutively versus the three protons on the wire transferring simultaneously. Finally, we will consider how quantum tunneling may be involved in the proton transfer.

  7. Plasma phospholipid transfer protein activity is related to insulin resistance : impaired acute lowering by insulin in obese Type II diabetic patients

    NARCIS (Netherlands)

    Riemens, SC; van Tol, A; Sluiter, WJ; Dullaart, RPF

    1998-01-01

    Cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) have important functions in high density lipoprotein (HDL) metabolism. We determined the association of plasma CETP and PLTP activities (measured with exogenous' substrate assays) with insulin resistance, plasma trigl

  8. Purification and structural characterisation of lipid transfer protein from red wine and grapes.

    Science.gov (United States)

    Jaeckels, Nadine; Tenzer, Stefan; Rosfa, Susanne; Schild, Hansjoerg; Decker, Heinz; Wigand, Petra

    2013-05-01

    Lipid transfer proteins (LTP) play a major role in plant defence and are of particular interest due to their known ability to cause allergic reactions. These proteins are expressed in grapes and also remain detectable after vinification, especially in red wine. However, it remains unknown whether the protein undergoes any changes during the vinification process. Here, we present a purification method for LTPs from Dornfelder grapes and wine. By liquid-chromatography-mass spectroscopy (LC-MS/MS) we identified LTPs from two different species (Vitis vinifera and Vitis aestivalis). Additionally, the purified LTPs were characterised using spectrometric methods, confirming their high purity and structural stability during vinification. We conclude that LTPs are resistant to the alcohol content (13.5 vol%), acidic milieu of wine and other ingredients present during the vinification process, indicating that the allergenic potential of grape LTP is not diminished by the vinification process. PMID:23265486

  9. Cloning and characterization of cholesteryl ester transfer protein isolated from the tree shrew

    Institute of Scientific and Technical Information of China (English)

    曾武威; 张坚; 陈保生; 吴钢; 薛红

    2003-01-01

    ObjectiveTo obtain the nucleotide sequence and deduced amino acid sequence of cholesterylester transfer protein (CETP) cDNA from the tree shrew (Tupaia glis). MethodsThe cDNA sequence of the tree shrew CETP was obtained by utilizing the techniqueof switching mechanism at 5' end of RNA transcript (SMART) and rapid amplification of cDNA end (RACE) from the first strand of the cDNA. The amino acidsequence of CETP was deduced from the cDNA sequence and its primary and secondary structures were predicted. ResultsThe sequence of CETP cDNA from tree shrew (GenBank accession number AF334033) covers 1636 bp, including 178 bp at the 3' end of the untranslated region anda 1458 bp fragment in a coding region, which provides the complete sequence of mature tree shrew CETP, although not the initiator methionine. The first 24 bp encodes a partial signal peptide. The mature protein consists of 477 amino acids and is longer than the human version by one amino acid (Gly318). Comparing this amino acid sequence with those of other animals' CETPs, the identity between tree shrew and human and rabbit CETP is 88% and 82%, respectively. The protein is extremely hydrophobic as it contains many hydrophobic residues, especially at the C-terminal, consistent with its function in the transfer of neutral lipids. The amino acid residues concerning with binding and transferringneutral lipids are highly conserved. There is a deletion of an N-linked glycosylation site at Asn342 in the tree shrew CETP protein that may participate in the removal of peripheral cholesterol and cholesteryl ester by increasing its activity of transferring cholesteryl ester. ConclusionThe possible glycosylation in the tree shrew CETP may be involved in the molecular mechanism of its insusceptibility to atherosclerosis.

  10. Expression and secretion of rabbit plasma cholesteryl ester transfer protein by Pichia pastoris.

    Science.gov (United States)

    Kotake, H; Li, Q; Ohnishi, T; Ko, K W; Agellon, L B; Yokoyama, S

    1996-03-01

    The rabbit cholesteryl ester transfer protein (CETP) was expressed in the methylotrophic yeast Pichia pastoris by introducing the CETP cDNA under the control of the methanol-inducible alcohol oxidase promoter. The cDNA was cloned from in vitro amplified cDNA of rabbit liver mRNA. The nucleotide sequence of the cloned cDNA differed slightly from the previously published sequence that changed the amino acid sequence in six residues. Interestingly, five of these replacements are identical to the corresponding residues in human CEPT. In addition, the encoded mature N-terminal sequence was changed from Cys- to Arg-Glu-Phe- to link the CETP sequence to the yeast acid phosphatase signal peptide. The culture medium of the transformed cells induced with 1% methanol contained both cholesteryl ester and triglyceride transfer activity comparable to that of rabbit plasma. Like rabbit plasma, the lipid transfer activity in the medium could be inhibited by monoclonal antibodies that block CE/TG transfer or TG transfer alone. Immunoblot analysis of M(r) = 80 K and minor species of M(r) = 60-100 K. In spite of these differences, the specific transfer activity of the recombinant CETP was indistinguishable from that of rabbit plasma CETP of M(r) = 74 K. N-Glycosidase F treatment converted both the recombinant and plasma CETP to a single species of M(r) = 55 K. Both the plasma and recombinant CETP lost their activity after removal of N-linked carbohydrate and sialic acid. A single 55 K component was found in the cell-lysates. The intracellular form of the recombinant CETP was not modified by N-glycosidase F treatment. In conclusion, the recombinant CETP is synthesized as an inactive polypeptide that is processed and secreted as a functional glycoprotein. In addition, the N-terminal Cys residue of the plasma CETP is not required for its activity. PMID:8728322

  11. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges

    2012-11-01

    The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems

  12. Transcriptional modulation of hepatic lipoprotein assembly and secretion : coordinate regulation of the liver-fatty acid binding protein and microsomal triglyceride transfer protein genes

    OpenAIRE

    Spann, Nathanael J.

    2006-01-01

    Hepatic production of apolipoprotein (apo) B-containing lipoproteins provides a means to transport essential lipids and fat-soluble nutrients to peripheral tissues for utilization and storage. Liver-fatty acid binding protein (L-FABP) and microsomal triglyceride transfer protein (MTP) bind fatty acids and glycerolipids, respectively and facilitate their transfer into the VLDL assembly and secretion pathway. Sequence analysis reveals that the proximal promoter regions of L-FABP and MTP contain...

  13. Transfer of protein antigens into milk after intravenous injection into lactating mice

    Energy Technology Data Exchange (ETDEWEB)

    Harmatz, P.R.; Hanson, D.G.; Walsh, M.K.; Kleinman, R.E.; Bloch, K.J.; Walker, W.A.

    1986-08-01

    We investigated the transfer of bovine serum /sup 125/I-albumin (/sup 125/I-BSA), bovine /sup 125/I-gamma-globulin (/sup 125/I-BGG), /sup 125/I-ovalbumin (/sup 125/I-OVA), and /sup 125/I-beta-lactoglobulin (/sup 125/I-BLG) from the blood into the milk of lactating mice. Equal amounts (by weight) of the radiolabeled proteins were injected intravenously into mice 1 wk postpartum. Total radioactivity, trichloroacetic acid-precipitable radioactivity, and specifically immunoprecipitable radioactivity were measured in serum, mammary gland homogenate, and milk. Clearance of immunoreactive OVA (iOVA) and iBLG from the circulation was more rapid than iBSA and iBGG. The radioactivity in mammary tissue associated with BSA and BGG was greater than 70% immunoprecipitable throughout the 4-h test interval; /sup 125/I-OVA and /sup 125/I-BLG were less than 12% precipitable 1 and 4 h after injection. In milk obtained at 4 h, there was an approximately 10-fold greater accumulation of iBSA or iBGG than of iOVA or iBLG. These experiments demonstrate that protein antigens differ in their ability to transfer from maternal circulation into milk. The transfer into milk appeared to be in proportion to persistence of the antigens in the maternal circulation.

  14. Genetic and nongenetic sources of variation in phospholipid transfer protein activity.

    Science.gov (United States)

    Jarvik, Gail P; Rajagopalan, Ramakrishnan; Rosenthal, Elisabeth A; Wolfbauer, Gertrud; McKinstry, Laura; Vaze, Aditya; Brunzell, John; Motulsky, Arno G; Nickerson, Deborah A; Heagerty, Patrick J; Wijsman, Ellen M; Albers, John J

    2010-05-01

    Phospholipid transfer protein (PLTP) belongs to the lipid transfer/lipopolysaccharide-binding protein gene family. Expression of PLTP has been implicated in the development of atherosclerosis. We evaluated the effects of PLTP region tagging single nucleotide polymorphisms (SNPs) on the prediction of both carotid artery disease (CAAD) and PLTP activity. CAAD effects were evaluated in 442 Caucasian male subjects with severe CAAD and 497 vascular disease-free controls. SNP prediction of PLTP transfer activity was evaluated in both a subsample of 87 subjects enriched for an allele of interest and in a confirmation sample of 210 Caucasian males and females. Hemoglobin A1c or insulin level predicted 11-14% of age- and sex-adjusted PLTP activity. PLTP SNPs that predicted approximately 11-30% of adjusted PLTP activity variance were identified in the two cohorts. For rs6065904, the allele that was associated with CAAD was also associated with elevated PLTP activity in both cohorts. SNPs associated with PLTP activity also predicted variation in LDL-cholesterol and LDL-B level only in the replication cohort. These results demonstrate that PLTP activity is strongly influenced by PLTP region polymorphisms and metabolic factors.

  15. Cancer-Related NEET Proteins Transfer 2Fe-2S Clusters to Anamorsin, a Protein Required for Cytosolic Iron-Sulfur Cluster Biogenesis

    Science.gov (United States)

    Lipper, Colin H.; Paddock, Mark L.; Onuchic, José N.; Mittler, Ron; Nechushtai, Rachel; Jennings, Patricia A.

    2015-01-01

    Iron-sulfur cluster biogenesis is executed by distinct protein assembly systems. Mammals have two systems, the mitochondrial Fe-S cluster assembly system (ISC) and the cytosolic assembly system (CIA), that are connected by an unknown mechanism. The human members of the NEET family of 2Fe-2S proteins, nutrient-deprivation autophagy factor-1 (NAF-1) and mitoNEET (mNT), are located at the interface between the mitochondria and the cytosol. These proteins have been implicated in cancer cell proliferation, and they can transfer their 2Fe-2S clusters to a standard apo-acceptor protein. Here we report the first physiological 2Fe-2S cluster acceptor for both NEET proteins as human Anamorsin (also known as cytokine induced apoptosis inhibitor-1; CIAPIN-1). Anamorsin is an electron transfer protein containing two iron-sulfur cluster-binding sites that is required for cytosolic Fe-S cluster assembly. We show, using UV-Vis spectroscopy, that both NAF-1 and mNT can transfer their 2Fe-2S clusters to apo-Anamorsin with second order rate constants similar to those of other known human 2Fe-2S transfer proteins. A direct protein-protein interaction of the NEET proteins with apo-Anamorsin was detected using biolayer interferometry. Furthermore, electrospray mass spectrometry of holo-Anamorsin prepared by cluster transfer shows that it receives both of its 2Fe-2S clusters from the NEETs. We propose that mNT and NAF-1 can provide parallel routes connecting the mitochondrial ISC system and the CIA. 2Fe-2S clusters assembled in the mitochondria are received by NEET proteins and when needed transferred to Anamorsin, activating the CIA. PMID:26448442

  16. Genome-Wide Survey and Expression Analysis of the Putative Non-Specific Lipid Transfer Proteins in Brassica rapa L

    OpenAIRE

    Li, Jun; Gao, Guizhen; Xu, Kun; Chen, Biyun; Yan, Guixin; Li, Feng; Qiao, Jiangwei; Zhang, Tianyao; Wu, Xiaoming

    2014-01-01

    Background Plant non-specific lipid transfer proteins (nsLtps) are small, basic proteins encoded by multigene families and have reported functions in many physiological processes such as mediating phospholipid transfer, defense reactions against phytopathogens, the adaptation of plants to various environmental conditions, and sexual reproduction. To date, no genome-wide overview of the Brassica rapa nsLtp (BrnsLtp) gene family has been performed. Therefore, as the first step and as a helpful ...

  17. Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris

    Energy Technology Data Exchange (ETDEWEB)

    Gizatullina, Albina K. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Finkina, Ekaterina I.; Mineev, Konstantin S.; Melnikova, Daria N.; Bogdanov, Ivan V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Telezhinskaya, Irina N.; Balandin, Sergey V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Shenkarev, Zakhar O. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Arseniev, Alexander S. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation); Ovchinnikova, Tatiana V., E-mail: ovch@ibch.ru [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology (State University), Department of Physicochemical Biology and Biotechnology, Institutskii per., 9, 141700, Dolgoprudny, Moscow Region (Russian Federation)

    2013-10-04

    Highlights: •Lipid transfer protein from lentil seeds (Lc-LTP2) was overexpressed in E. coli. •Antimicrobial activity and spatial structure of the recombinant Lc-LTP2 were examined. •Internal tunnel-like lipid-binding cavity occupies ∼7% of the total Lc-LTP2 volume. •Binding of DMPG lipid induces moderate rearrangements in the Lc-LTP2 structure. •Lc-LTP2/DMPG complex has limited lifetime and dissociates within tens of hours. -- Abstract: Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7 Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600 Å{sup 3}). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours.

  18. Molecularly Imprinted Electropolymer for a Hexameric Heme Protein with Direct Electron Transfer and Peroxide Electrocatalysis.

    Science.gov (United States)

    Peng, Lei; Yarman, Aysu; Jetzschmann, Katharina J; Jeoung, Jae-Hun; Schad, Daniel; Dobbek, Holger; Wollenberger, Ulla; Scheller, Frieder W

    2016-01-01

    For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of -184.4 ± 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP). PMID:26907299

  19. Molecularly Imprinted Electropolymer for a Hexameric Heme Protein with Direct Electron Transfer and Peroxide Electrocatalysis

    Directory of Open Access Journals (Sweden)

    Lei Peng

    2016-02-01

    Full Text Available For the first time a molecularly imprinted polymer (MIP with direct electron transfer (DET and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM of mercaptoundecanoic acid (MUA on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs with a formal potential of −184.4 ± 13.7 mV vs. Ag/AgCl (1 M KCl at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP.

  20. Barley lipid transfer protein, LTP1, contains a new type of lipid-like post-translational modification

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Lerche, Mathilde H.; Poulsen, Flemming Martin;

    2001-01-01

    In plants a group of proteins termed nonspecific lipid transfer proteins are found. These proteins bind and catalyze transfer of lipids in vitro, but their in vivo function is unknown. They have been suggested to be involved in different aspects of plant physiology and cell biology, including the...... formation of cutin and involvement in stress and pathogen responses, but there is yet no direct demonstration of an in vivo function. We have found and characterized a novel post-translational modification of the barley nonspecific lipid transfer protein, LTP1. The protein-modification bond is of a new type...... found to be lipid-like in nature. The modification does not resemble any standard lipid post-translational modification but is similar to a compound with known antimicrobial activity....

  1. Preferred sites and pathways for electron transfer in blue copper proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1988-01-01

    Long-range electron transfer reactions proceed within and between metalloproteins at relatively fast rates and with marked specificities. The blue single copper proteins are well known electron carriers with their redox center being of limited accessibility to solvent and solutes. The question......, E.T. proceeds via an extended imidazole ring system, and in plastocyanin and stellacyanin via a weakly coupled pi-system. Therefore, a case emerges for suggesting that this is the common feature of the long-distance intramolecular E.T. in this class of metalloproteins. These pathways are most...

  2. Editing of CD1d-Bound Lipid Antigens by Endosomal Lipid Transfer Proteins

    OpenAIRE

    Zhou, Dapeng; Cantu, Carlos; Sagiv, Yuval; Schrantz, Nicolas; Kulkarni, Ashok B.; Qi, Xiaoyang; Mahuran, Don J.; Carlos R Morales; Grabowski, Gregory A.; Benlagha, Kamel; Savage, Paul; Bendelac, Albert; Teyton, Luc

    2003-01-01

    It is now established that CD1 molecules present lipid antigens to T cells, although it is not clear how the exchange of lipids between membrane compartments and the CD1 binding groove is assisted. We report that mice deficient in prosaposin, the precursor to a family of endosomal lipid transfer proteins (LTP), exhibit specific defects in CD1d-mediated antigen presentation and lack Vα14 NKT cells. In vitro, saposins extracted monomeric lipids from membranes and from CD1, thereby promoting the...

  3. Protein repellent hydrophilic grafts prepared by surface-initiated atom transfer radical polymerization from polypropylene

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Eskimergen, Rüya;

    2012-01-01

    Grafting of poly(ethylene glycol)methacrylate (PEGMA) and N,N-dimethylacrylamide (DMAAm) from UV-initiator modified polypropylene (PP) was performed by Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). The modification and hydrophilization of the PP substrates were confirmed...... with Attenuated Total Reflectance (ATR) Fourier Transform Infrared (FTIR) spectroscopy and Water Contact Angle (WCA) measurements. Confocal fluorescence microscopy of modified and unmodified substrates immersed in labelled insulin aspart showed superior repulsion of this protein for the poly(PEGMA) grafts, due...

  4. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Science.gov (United States)

    Scheler, Gabriele

    2013-01-01

    We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species) with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of individual transfer

  5. Transfer functions for protein signal transduction: application to a model of striatal neural plasticity.

    Directory of Open Access Journals (Sweden)

    Gabriele Scheler

    Full Text Available We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of

  6. Protein microarrays based on polymer brushes prepared via surface-initiated atom transfer radical polymerization.

    Science.gov (United States)

    Barbey, Raphael; Kauffmann, Ekkehard; Ehrat, Markus; Klok, Harm-Anton

    2010-12-13

    Polymer brushes represent an interesting platform for the development of high-capacity protein binding surfaces. Whereas the protein binding properties of polymer brushes have been investigated before, this manuscript evaluates the feasibility of poly(glycidyl methacrylate) (PGMA) and PGMA-co-poly(2-(diethylamino)ethyl methacrylate) (PGMA-co-PDEAEMA) (co)polymer brushes grown via surface-initiated atom transfer radical polymerization (SI-ATRP) as protein reactive substrates in a commercially available microarray system using tantalum-pentoxide-coated optical waveguide-based chips. The performance of the polymer-brush-based protein microarray chips is assessed using commercially available dodecylphosphate (DDP)-modified chips as the benchmark. In contrast to the 2D planar, DDP-coated chips, the polymer-brush-covered chips represent a 3D sampling volume. This was reflected in the results of protein immobilization studies, which indicated that the polymer-brush-based coatings had a higher protein binding capacity as compared to the reference substrates. The protein binding capacity of the polymer-brush-based coatings was found to increase with increasing brush thickness and could also be enhanced by copolymerization of 2-(diethylamino)ethyl methacrylate (DEAEMA), which catalyzes epoxide ring-opening of the glycidyl methacrylate (GMA) units. The performance of the polymer-brush-based microarray chips was evaluated in two proof-of-concept microarray experiments, which involved the detection of biotin-streptavidin binding as well as a model TNFα reverse assay. These experiments revealed that the use of polymer-brush-modified microarray chips resulted not only in the highest absolute fluorescence readouts, reflecting the 3D nature and enhanced sampling volume provided by the brush coating, but also in significantly enhanced signal-to-noise ratios. These characteristics make the proposed polymer brushes an attractive alternative to commercially available, 2D microarray

  7. REACH coarse-grained biomolecular simulation: transferability between different protein structural classes.

    Science.gov (United States)

    Moritsugu, Kei; Smith, Jeremy C

    2008-08-01

    Coarse graining of protein interactions provides a means of simulating large biological systems. The REACH (Realistic Extension Algorithm via Covariance Hessian) coarse-graining method, in which the force constants of a residue-scale elastic network model are calculated from the variance-covariance matrix obtained from atomistic molecular dynamics (MD) simulation, involves direct mapping between scales without the need for iterative optimization. Here, the transferability of the REACH force field is examined between protein molecules of different structural classes. As test cases, myoglobin (all alpha), plastocyanin (all beta), and dihydrofolate reductase (alpha/beta) are taken. The force constants derived are found to be closely similar in all three proteins. An MD version of REACH is presented, and low-temperature coarse-grained (CG) REACH MD simulations of the three proteins are compared with atomistic MD results. The mean-square fluctuations of the atomistic MD are well reproduced by the CGMD. Model functions for the CG interactions, derived by averaging over the three proteins, are also shown to produce fluctuations in good agreement with the atomistic MD. The results indicate that, similarly to the use of atomistic force fields, it is now possible to use a single, generic REACH force field for all protein studies, without having first to derive parameters from atomistic MD simulation for each individual system studied. The REACH method is thus likely to be a reliable way of determining spatiotemporal motion of a variety of proteins without the need for expensive computation of long atomistic MD simulations. PMID:18469078

  8. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    CERN Document Server

    Awazu, K; Tamiya, E

    2002-01-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm sup 2. FEL irradiation at a wavelength of 5.75 and 6.1 mu m, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 mu m. The maximum transfer efficiency was about 0.5%.

  9. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    International Nuclear Information System (INIS)

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm2. FEL irradiation at a wavelength of 5.75 and 6.1 μm, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 μm. The maximum transfer efficiency was about 0.5%

  10. IR-FEL-induced green fluorescence protein (GFP) gene transfer into plant cell

    Science.gov (United States)

    Awazu, Kunio; Kinpara, Takeshi; Tamiya, Eiichi

    2002-05-01

    A Free Electron Laser (FEL) holds potential for various biotechnological applications due to its characteristics such as flexible wavelength tunability, short pulse and high peak power. We could successfully introduce the Green Fluorescent Protein (GFP) gene into tobacco BY2 cells by IR-FEL laser irradiation. The irradiated area of the solution containing BY2 cells and plasmid was about 0.1 mm 2. FEL irradiation at a wavelength of 5.75 and 6.1 μm, targeting absorption by the ester bond of the lipid and the amide I bond of the protein, respectively, was shown to cause the introduction of the fluorescent dye into the cell. On the other hand, transient expression of the GFP fluorescence was only observed after irradiation at 5.75 μm. The maximum transfer efficiency was about 0.5%.

  11. Surface residues dynamically organize water bridges to enhance electron transfer between proteins

    CERN Document Server

    de la Lande, Aurélien; Řezáč, Jan; Sanders, Barry C; Salahub, Dennis R; 10.1073/pnas.0914457107

    2010-01-01

    Cellular energy production depends on electron transfer (ET) between proteins. In this theoretical study, we investigate the impact of structural and conformational variations on the electronic coupling between the redox proteins methylamine dehydrogenase and amicyanin from Paracoccus denitrificans. We used molecular dynamics simulations to generate configurations over a duration of 40ns (sampled at 100fs intervals) in conjunction with an ET pathway analysis to estimate the ET coupling strength of each configuration. In the wild type complex, we find that the most frequently occurring molecular configurations afford superior electronic coupling due to the consistent presence of a water molecule hydrogen-bonded between the donor and acceptor sites. We attribute the persistence of this water bridge to a "molecular breakwater" composed of several hydrophobic residues surrounding the acceptor site. The breakwater supports the function of nearby solvent-organizing residues by limiting the exchange of water molecul...

  12. Structural and Functional Characterization of Recombinant Isoforms of the Lentil Lipid Transfer Protein.

    Science.gov (United States)

    Bogdanov, I V; Finkina, E I; Balandin, S V; Melnikova, D N; Stukacheva, E A; Ovchinnikova, T V

    2015-01-01

    The recombinant isoforms Lc-LTP1 and Lc-LTP3 of the lentil lipid transfer protein were overexpressed in E. coli cells. It was confirmed that both proteins are stabilized by four disulfide bonds and characterized by a high proportion of the α-helical structure. It was found that Lc-LTP1 and Lc-LTP3 possess antimicrobial activity and can bind fatty acids. Both isoforms have the ability to bind specific IgE from sera of patients with food allergies, which recognize similar epitopes of the major peach allergen Pru p 3. Both isoforms were shown to have immunological properties similar to those of other plant allergenic LTPs, but Lc-LTP3 displayed a less pronounced immunoreactivity. PMID:26483961

  13. Enhanced Dissociation of Intact Proteins with High Capacity Electron Transfer Dissociation

    Science.gov (United States)

    Riley, Nicholas M.; Mullen, Christopher; Weisbrod, Chad R.; Sharma, Seema; Senko, Michael W.; Zabrouskov, Vlad; Westphall, Michael S.; Syka, John E. P.; Coon, Joshua J.

    2016-03-01

    Electron transfer dissociation (ETD) is a valuable tool for protein sequence analysis, especially for the fragmentation of intact proteins. However, low product ion signal-to-noise often requires some degree of signal averaging to achieve high quality MS/MS spectra of intact proteins. Here we describe a new implementation of ETD on the newest generation of quadrupole-Orbitrap-linear ion trap Tribrid, the Orbitrap Fusion Lumos, for improved product ion signal-to-noise via ETD reactions on larger precursor populations. In this new high precursor capacity ETD implementation, precursor cations are accumulated in the center section of the high pressure cell in the dual pressure linear ion trap prior to charge-sign independent trapping, rather than precursor ion sequestration in only the back section as is done for standard ETD. This new scheme increases the charge capacity of the precursor accumulation event, enabling storage of approximately 3-fold more precursor charges. High capacity ETD boosts the number of matching fragments identified in a single MS/MS event, reducing the need for spectral averaging. These improvements in intra-scan dynamic range via reaction of larger precursor populations, which have been previously demonstrated through custom modified hardware, are now available on a commercial platform, offering considerable benefits for intact protein analysis and top down proteomics. In this work, we characterize the advantages of high precursor capacity ETD through studies with myoglobin and carbonic anhydrase.

  14. The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling.

    Science.gov (United States)

    Chiapparino, Antonella; Maeda, Kenji; Turei, Denes; Saez-Rodriguez, Julio; Gavin, Anne-Claude

    2016-01-01

    Within the eukaryotic cell, more than 1000 species of lipids define a series of membranes essential for cell function. Tightly controlled systems of lipid transport underlie the proper spatiotemporal distribution of membrane lipids, the coordination of spatially separated lipid metabolic pathways, and lipid signaling mediated by soluble proteins that may be localized some distance away from membranes. Alongside the well-established vesicular transport of lipids, non-vesicular transport mediated by a group of proteins referred to as lipid-transfer proteins (LTPs) is emerging as a key mechanism of lipid transport in a broad range of biological processes. More than a hundred LTPs exist in humans and these can be divided into at least ten protein families. LTPs are widely distributed in tissues, organelles and membrane contact sites (MCSs), as well as in the extracellular space. They all possess a soluble and globular domain that encapsulates a lipid monomer and they specifically bind and transport a wide range of lipids. Here, we present the most recent discoveries in the functions and physiological roles of LTPs, which have expanded the playground of lipids into the aqueous spaces of cells. PMID:26658141

  15. Forster Resonance Energy Transfer and Conformational Stability of Proteins: An Advanced Biophysical Module for Physical Chemistry Students

    Science.gov (United States)

    Sanchez, Katheryn M.; Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2008-01-01

    Protein folding is an exploding area of research in biophysics and physical chemistry. Here, we describe the integration of several techniques, including absorption spectroscopy, fluorescence spectroscopy, and Forster resonance energy transfer (FRET) measurements, to probe important topics in protein folding. Cytochrome c is used as a model…

  16. Green fluorescent protein (GFP) transgenic pig produced by somatic cell nuclear transfer

    Institute of Scientific and Technical Information of China (English)

    LIU ZhongHua; SUN Shuang; LI YuTian; WANG HongBin; R S PRATHER; SONG Jun; WANG ZhenKun; TIAN JiangTian; KONG QingRan; ZHENG Zhong; YIN Zhi; GAO Li; MA HaiKun

    2008-01-01

    Transgenic somatic cell nuclear transfer is a very promising route for producing transgenic farm ani-mals. Research on GFP transgenic pigs can provide useful information for breeding transgenic pigs, human disease models and human organ xenotransplantation. In this study, a liposomal transfection system was screened and transgenic embryos were reconstructed by nuclear transfer of GFP positive cells into enucleated in vitro matured oocytes. The development of reconstructed embryos both in vitro and in vivo was observed, and GFP expression was determined. The results showed that porcine fe-tal-derived fibroblast cells cultured with 4.0 plJmL liposome and 1.6 pg/mL plasmid DNA for 6 h re-sulted in the highest transfection rate (3.6%). The percentage of GFP reconstructed embryos that de-veloped in vitro to the blastocyst stage was 10%. Of those the GFP positive percentage was 48%. Re-constructed transgenic embryos were transferred to 10 recipients. 5 of them were pregnant, and 3 de-livered 6 cloned piglets in which 4 piglets were transgenic for the GFP as verified by both GFP protein expression and GFP DNA sequence analysis. The percentage of reconstructed embryos that resulted in cloned piglets was 1.0%; while the percentage of piglets that were transgenic was 0.7%. This is the first group of transgenic cloned pigs born in China, marking a great progress in Chinese transgenic cloned pig research.

  17. Paper-based fluorescence resonance energy transfer assay for directly detecting nucleic acids and proteins.

    Science.gov (United States)

    Li, Hua; Fang, Xueen; Cao, Hongmei; Kong, Jilie

    2016-06-15

    Paper-based fluorescence resonance energy transfer assay (FRET) is gaining great interest in detecting macro-biological molecule. It is difficult to achieve conveniently and fast detection for macro-biological molecule. Herein, a graphene oxide (GO)-based paper chip (glass fiber) integrated with fluorescence labeled single-stranded DNA (ssDNA) for fast, inexpensive and direct detection of biological macromolecules (proteins and nucleic acids) has been developed. In this paper, we employed the Cy3/FAM-labeled ssDNA as the reporter and the GO as quencher and the original glass fiber paper as data acquisition substrates. The chip which was designed and fabricated by a cutting machine is a miniature biosensor that monitors fluorescence recovery from resonance energy transfer. The hybridization assays and fluorescence detection were all simplified, and the surface of the chip did not require immobilization or washing. A Nikon Eclipse was employed as excited resource and a commercial digital camera was employed for capturing digital images. This paper-based microfluidics chip has been applied in the detection of proteins and nucleic acids. The biosensing capability meets many potential requirements for disease diagnosis and biological analysis. PMID:26807518

  18. Unraveling the structure of membrane proteins in situ by transfer function corrected cryo-electron tomography.

    Science.gov (United States)

    Eibauer, Matthias; Hoffmann, Christian; Plitzko, Jürgen M; Baumeister, Wolfgang; Nickell, Stephan; Engelhardt, Harald

    2012-12-01

    Cryo-electron tomography in combination with subtomogram averaging allows to investigate the structure of protein assemblies in their natural environment in a close to live state. To make full use of the structural information contained in tomograms it is necessary to analyze the contrast transfer function (CTF) of projections and to restore the phases of higher spatial frequencies. CTF correction is however hampered by the difficulty of determining the actual defocus values from tilt series data, which is due to the low signal-to-noise ratio of electron micrographs. In this study, an extended acquisition scheme is introduced that enables an independent CTF determination. Two high-dose images are recorded along the tilt axis on both sides of each projection, which allow an accurate determination of the defocus values of these images. These values are used to calculate the CTF for each image of the tilt series. We applied this scheme to the mycobacterial outer membrane protein MspA reconstituted in lipid vesicles and tested several variants of CTF estimation in combination with subtomogram averaging and correction of the modulation transfer function (MTF). The 3D electron density map of MspA was compared with a structure previously determined by X-ray crystallography. We were able to demonstrate that structural information up to a resolution of 16.8Å can be recovered using our CTF correction approach, whereas the uncorrected 3D map had a resolution of only 26.2Å.

  19. Unraveling the structure of membrane proteins in situ by transfer function corrected cryo-electron tomography.

    Science.gov (United States)

    Eibauer, Matthias; Hoffmann, Christian; Plitzko, Jürgen M; Baumeister, Wolfgang; Nickell, Stephan; Engelhardt, Harald

    2012-12-01

    Cryo-electron tomography in combination with subtomogram averaging allows to investigate the structure of protein assemblies in their natural environment in a close to live state. To make full use of the structural information contained in tomograms it is necessary to analyze the contrast transfer function (CTF) of projections and to restore the phases of higher spatial frequencies. CTF correction is however hampered by the difficulty of determining the actual defocus values from tilt series data, which is due to the low signal-to-noise ratio of electron micrographs. In this study, an extended acquisition scheme is introduced that enables an independent CTF determination. Two high-dose images are recorded along the tilt axis on both sides of each projection, which allow an accurate determination of the defocus values of these images. These values are used to calculate the CTF for each image of the tilt series. We applied this scheme to the mycobacterial outer membrane protein MspA reconstituted in lipid vesicles and tested several variants of CTF estimation in combination with subtomogram averaging and correction of the modulation transfer function (MTF). The 3D electron density map of MspA was compared with a structure previously determined by X-ray crystallography. We were able to demonstrate that structural information up to a resolution of 16.8Å can be recovered using our CTF correction approach, whereas the uncorrected 3D map had a resolution of only 26.2Å. PMID:23000705

  20. Biomolecular Mechanisms of Mercury Transfers and Transformations by Proteins of the Mer Operon

    Science.gov (United States)

    Miller, S. M.; Hong, B.; Nauss, R.; Momany, C.; Summers, A. O.; Feng, X.; Harwood, I.; Stroud, R.

    2008-12-01

    Aerobic bacteria exhibiting resistance to the toxic effects of Hg(II) and organomercurials [RHg(I), e.g. MeHg(I)] and are widely found in both pristine and mercury contaminated environments. Resistance, afforded by a plasmid- or transposon-associated mer operon, involves an unusual pathway where Hg(II) and organomercurials [RHg(I)] undergo facilitated entry into the bacterial cytoplasm via an integral membrane transport protein (MerT) and are then "detoxified" by the concerted effort of two enzymes, organomercurial lyase (MerB), which catalyzes dealkylation (i.e., demethylation) of RHg(I) to Hg(II) and a hydrocarbon, and mercuric ion reductase (MerA), which catalyzes reduction of Hg(II) to Hg(0) as the ultimate detoxification for the organism. With a widespread distribution, these bacterial transformations play a significant role in the fate of mercury in the environment. Our focus is on elucidation of the molecular mechanisms for the transport and catalytic transformations of RHg(I) and Hg(II) by these proteins and the factors that influence the overall efficiency of the process. Current efforts are focused primarily on elucidating details of RHg(I) binding and dealkylation by MerB as well as the mechanism for transfer of the Hg(II) product to MerA. Key findings include the demonstration of a non-cysteine residue as essential for the catalytic activity and demonstration that direct transfer of Hg(II) to MerA proceeds more rapidly and more completely than transfer to small MW thiols such as cysteines or glutathione. Reuslts of these studies as well as an overview of our current understanding of the whole system will be presented.

  1. Structural determinants of stability to proteolysis, processing and impact on allergenic potential of non-specific lipid transfer proteins

    OpenAIRE

    Abdullah, Syed Umer

    2012-01-01

    Lipid transfer proteins (LTPs) are a class of low molecular weight hydrophobic conserved proteins comprising four intramolecular disulphide bonds making the structure very resistant to proteolysis and harsh food processing conditions. These proteins are identified as strong allergens sensitizing through the gut and share epitopes with LTPs from closely related species. Peach LTP, Pru p 3 is the primary sensitizer in the Mediterranean area being the most frequent food allergen. Wheat LTP, Tri ...

  2. Protein Homeostasis Imposes a Barrier on Functional Integration of Horizontally Transferred Genes in Bacteria.

    Directory of Open Access Journals (Sweden)

    Shimon Bershtein

    2015-10-01

    Full Text Available Horizontal gene transfer (HGT plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR, with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90% in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM, correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the

  3. Isolation and full characterisation of a potentially allergenic lipid transfer protein (LTP) in almond.

    Science.gov (United States)

    Buhler, Sofie; Tedeschi, Tullia; Faccini, Andrea; Garino, Cristiano; Arlorio, Marco; Dossena, Arnaldo; Sforza, Stefano

    2015-01-01

    Non-specific lipid transfer proteins (nsLTP) were shown to be among the most significant allergens, in particular in several fruits belonging to the Rosaceae family. The molecular features of LTPs, such as the presence of eight cysteine residues forming four disulfide bridges, confer a compact structure, decreasing the probability of degradation due to cooking or digestion, thereby increasing the chance of systemic absorption and severe allergic reactions. Few studies on LTP-induced allergies regarding almond (Prunus dulcis L) are available in the literature. In the present work, we describe for the first time the extraction and purification of an almond LTP, achieving its full characterisation by using liquid chromatography and exact mass spectrometry; the full sequence was identified by means of LC-ESI-Orbitrap-MS applying a bottom-up approach. The characterised protein consists of 92 amino acids and has a calculated exact MW of 9579.0. The presence of four disulfide bridges was confirmed after reduction, as shown by a mass increment of 8 Da. Finally, its potential allergenicity was confirmed via an in silico approach. The results presented here demonstrate the enormous potential of advanced MS techniques for obtaining high-quality structural and functional data of allergenic proteins in a short time. PMID:25658292

  4. Isolation and full characterisation of a potentially allergenic lipid transfer protein (LTP) in almond.

    Science.gov (United States)

    Buhler, Sofie; Tedeschi, Tullia; Faccini, Andrea; Garino, Cristiano; Arlorio, Marco; Dossena, Arnaldo; Sforza, Stefano

    2015-01-01

    Non-specific lipid transfer proteins (nsLTP) were shown to be among the most significant allergens, in particular in several fruits belonging to the Rosaceae family. The molecular features of LTPs, such as the presence of eight cysteine residues forming four disulfide bridges, confer a compact structure, decreasing the probability of degradation due to cooking or digestion, thereby increasing the chance of systemic absorption and severe allergic reactions. Few studies on LTP-induced allergies regarding almond (Prunus dulcis L) are available in the literature. In the present work, we describe for the first time the extraction and purification of an almond LTP, achieving its full characterisation by using liquid chromatography and exact mass spectrometry; the full sequence was identified by means of LC-ESI-Orbitrap-MS applying a bottom-up approach. The characterised protein consists of 92 amino acids and has a calculated exact MW of 9579.0. The presence of four disulfide bridges was confirmed after reduction, as shown by a mass increment of 8 Da. Finally, its potential allergenicity was confirmed via an in silico approach. The results presented here demonstrate the enormous potential of advanced MS techniques for obtaining high-quality structural and functional data of allergenic proteins in a short time.

  5. Light-induced conformational changes and energy transfer in red fluorescent protein

    International Nuclear Information System (INIS)

    Reversible conformational changes have been photo-induced in the red fluorescent protein DsRed at low temperature by wavelength-selective laser irradiation. We have found two new fluorescent forms: a shifted-red (SR-) and a new green (G'-) form that absorb and emit, respectively, ∼14 nm to the red and ∼80 nm to the blue of the 'mature' red (R-) form present in an un-illuminated sample of DsRed. Further, we have identified the 0-0 transitions of the various forms by spectral hole burning and estimated their ground-state energy differences and barrier heights by means of temperature-dependent excitation and fluorescence spectroscopy between 1.6 and 295 K. We have also proven that 'downhill' energy transfer takes place between these forms within the tetrameric structure of DsRed

  6. Using nonfluorescent Förster resonance energy transfer acceptors in protein binding studies.

    Science.gov (United States)

    Ruan, Qiaoqiao; Skinner, Joseph P; Tetin, Sergey Y

    2009-10-15

    The purpose of this article is to highlight the versatility of nonfluorescent Förster resonance energy transfer (FRET) acceptors in determination of protein equilibrium dissociation constants and kinetic rates. Using a nonfluorescent acceptor eliminates the necessity to spectrally isolate the donor fluorescence when performing binding titrations covering a broad range of reagent concentrations. Moreover, random distribution of the donor and acceptor chromophores on the surface of proteins increases the probability of FRET occurring on their interaction. Three high-affinity antibodies are presented in this study as characteristic protein systems. Monoclonal antibody (mAb) 106.3 binds brain natriuretic peptide (BNP)5-13(C10A) and full-length BNP1-32 with the dissociation constants 0.26+/-0.01 and 0.05+/-0.02 nM, respectively, which was confirmed by kinetic measurements. For anti-hCG (human chorionic gonadotropin) mAb 8F11, studied at two incorporation ratios (IRs=1.9 and 3.8) of the nonfluorescent FRET acceptor, K(D) values of 0.04+/-0.02 and 0.059(-0.004)(+0.006) nM, respectively, were obtained. Likewise, the binding of goat anti-hamster immunoglobulin G (IgG) antibody was not affected by conjugation and yielded K(D) values of 1.26+/-0.04, 1.25+/-0.05, and 1.14+/-0.04 nM at IRs of 1.7, 4.7, and 8.1, respectively. We conclude that this FRET-based method offers high sensitivity, practical simplicity, and versatility in protein binding studies. PMID:19563765

  7. How anacetrapib inhibits the activity of the cholesteryl ester transfer protein? Perspective through atomistic simulations.

    Directory of Open Access Journals (Sweden)

    Tarja Äijänen

    2014-11-01

    Full Text Available Cholesteryl ester transfer protein (CETP mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity and thereby raise high density lipoprotein (HDL-cholesterol and decrease low density lipoprotein (LDL-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site of anacetrapib turns out to reside in the tunnel inside CETP, near the residues surrounding the N-terminal opening. Free energy calculations show that when anacetrapib resides in this area, it hinders the ability of cholesteryl ester to diffuse out from CETP. The simulations further bring out the ability of anacetrapib to regulate the structure-function relationships of phospholipids and helix X, the latter representing the structural region of CETP important to the process of neutral lipid exchange with lipoproteins. Altogether, the simulations propose CETP inhibition to be realized when anacetrapib is transferred into the lipid binding pocket. The novel insight gained in this study has potential use in the development of new molecular agents capable of preventing the progression of cardiovascular diseases.

  8. Epidural ropivacaine hydrochloride during labour: protein binding, placental transfer and neonatal outcome.

    LENUS (Irish Health Repository)

    Porter, J M

    2012-02-03

    This study was undertaken: (i) to quantify the effects of labour and epidural analgesia on plasma alpha1-acid glycoprotein concentration, (ii) to examine the effects of changes in plasma alpha1-acid glycoprotein concentration on plasma protein binding and placental transfer of ropivacaine, and (iii) to examine the association between umbilical venous ropivacaine concentration and neurobehavioural function in the neonate. Multiparous patients undergoing induction of labour received a continuous epidural infusion of 0.1% ropivacaine following an epidural bolus. A significant association was demonstrated between maternal plasma alpha1-acid glycoprotein concentration and 1\\/free fraction of ropivacaine 60 min after starting ropivacaine administration (r(2) = 0.77) but not at delivery. No significant correlation was demonstrable between maternal unbound ropivacaine concentration and either neonatal (cord) ropivacaine concentration or UV\\/MV (a measure of placental transfer). Thirty minutes after delivery, 9\\/10 neonates had neurological and adaptive capacity scores < 35, whereas only three infants had scores < 35 at 2 h. All scores exceeded 35 16 h after delivery. No association between mean (SD) umbilical venous ropivacaine concentration [0.09 (0.08) mg x l(-1)] and neurological and adaptive capacity scores was demonstrated.

  9. Transfer of Immunity from Mother to Offspring Is Mediated via Egg-Yolk Protein Vitellogenin.

    Directory of Open Access Journals (Sweden)

    Heli Salmela

    2015-07-01

    Full Text Available Insect immune systems can recognize specific pathogens and prime offspring immunity. High specificity of immune priming can be achieved when insect females transfer immune elicitors into developing oocytes. The molecular mechanism behind this transfer has been a mystery. Here, we establish that the egg-yolk protein vitellogenin is the carrier of immune elicitors. Using the honey bee, Apis mellifera, model system, we demonstrate with microscopy and western blotting that vitellogenin binds to bacteria, both Paenibacillus larvae--the gram-positive bacterium causing American foulbrood disease--and to Escherichia coli that represents gram-negative bacteria. Next, we verify that vitellogenin binds to pathogen-associated molecular patterns; lipopolysaccharide, peptidoglycan and zymosan, using surface plasmon resonance. We document that vitellogenin is required for transport of cell-wall pieces of E. coli into eggs by imaging tissue sections. These experiments identify vitellogenin, which is distributed widely in oviparous species, as the carrier of immune-priming signals. This work reveals a molecular explanation for trans-generational immunity in insects and a previously undescribed role for vitellogenin.

  10. Surface-tuned electron transfer and electrocatalysis of hexameric tyrosine-coordinated heme protein.

    Science.gov (United States)

    Peng, Lei; Utesch, Tillmann; Yarman, Aysu; Jeoung, Jae-Hun; Steinborn, Silke; Dobbek, Holger; Mroginski, Maria Andrea; Tanne, Johannes; Wollenberger, Ulla; Scheller, Frieder W

    2015-05-11

    Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine-coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self-assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl-terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this "disc" orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi-reversible redox behavior with rate constant ks values between 0.93 and 2.86 s(-1) and apparent formal potentials ${E{{0{^{\\prime }}\\hfill \\atop {\\rm app}\\hfill}}}$ between -131.1 and -249.1 mV. On the MUA/MU-modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH. PMID:25825040

  11. A theoretical multiscale treatment of protein-protein electron transfer: The ferredoxin/ferredoxin-NADP(+) reductase and flavodoxin/ferredoxin-NADP(+) reductase systems.

    Science.gov (United States)

    Saen-Oon, Suwipa; Cabeza de Vaca, Israel; Masone, Diego; Medina, Milagros; Guallar, Victor

    2015-12-01

    In the photosynthetic electron transfer (ET) chain, two electrons transfer from photosystem I to the flavin-dependent ferredoxin-NADP(+) reductase (FNR) via two sequential independent ferredoxin (Fd) electron carriers. In some algae and cyanobacteria (as Anabaena), under low iron conditions, flavodoxin (Fld) replaces Fd as single electron carrier. Extensive mutational studies have characterized the protein-protein interaction in FNR/Fd and FNR/Fld complexes. Interestingly, even though Fd and Fld share the interaction site on FNR, individual residues on FNR do not participate to the same extent in the interaction with each of the protein partners, pointing to different electron transfer mechanisms. Despite of extensive mutational studies, only FNR/Fd X-ray structures from Anabaena and maize have been solved; structural data for FNR/Fld remains elusive. Here, we present a multiscale modelling approach including coarse-grained and all-atom protein-protein docking, the QM/MM e-Pathway analysis and electronic coupling calculations, allowing for a molecular and electronic comprehensive analysis of the ET process in both complexes. Our results, consistent with experimental mutational data, reveal the ET in FNR/Fd proceeding through a bridge-mediated mechanism in a dominant protein-protein complex, where transfer of the electron is facilitated by Fd loop-residues 40-49. In FNR/Fld, however, we observe a direct transfer between redox cofactors and less complex specificity than in Fd; more than one orientation in the encounter complex can be efficient in ET. PMID:26385068

  12. Characterization of a new antifungal non-specific lipid transfer protein (nsLTP) from sugar beet leaves

    DEFF Research Database (Denmark)

    Kristensen, A K; Brunstedt, J; Madsen, M T;

    2000-01-01

    cysteines at conserved positions, the protein can be classified as a member of the plant family of non-specific lipid transfer proteins (nsLTPs). The protein is 47% identical to IWF1, an antifungal nsLTP previously isolated from leaves of sugar beet. A potential site for N-linked glycosylation present...... sequence of 26 amino acid residues. The protein shows a strong in vitro antifungal activity against Cercospora beticola (causal agent of leaf spot disease in sugar beet) and inhibits fungal growth at concentrations below 10 µg ml(-1)....

  13. THE INTEGRITY OF THE α-HELICAL DOMAIN OF INTESTINAL FATTY ACID BINDING PROTEIN IS ESSENTIAL FOR THE COLLISION-MEDIATED TRANSFER OF FATTY ACIDS TO PHOSPHOLIPID MEMBRANES

    OpenAIRE

    Franchini, G. R.; Storch, J.; Corsico, B.

    2008-01-01

    Intestinal FABP (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms of fatty acid transfer to acceptor model membranes. Transfer from IFABP occurs during protein-membrane-collisional interactions, while for LFABP transfer occurs by diffusion through the aqueous phase. In addition, transfer from IFABP is markedly faster than from LFABP. The overall goal of this study was to further explore the structu...

  14. Purification and characterization of a approximately 34 kDa antioxidant protein (beta-turmerin) from turmeric (Curcuma longa) waste grits.

    Science.gov (United States)

    Smitha, S; Dhananjaya, B L; Dinesha, R; Srinivas, Leela

    2009-09-01

    Beta-turmerin from turmeric (Curcuma longa) waste grits obtained after extraction of curcumin was purified by successive gel permeation chromatography. Homogeneity of beta-turmerin was confirmed by its movement as single band both in SDS-PAGE and as well as in native (basic) PAGE. The apparent molecular mass is approximately 34 kDa by SDS-PAGE. It is more hydrophobic protein and showed sharp single peak in RP-HPLC with retention time of 62.17 min. It is a glycoprotein as it shows the presence of amino sugars up to 0.021 gm%. In three different model systems i.e., linolenic acid micelles, erythrocyte membrane systems and liposomes, beta-turmerin at 0.125 microM offered 70%, 64%, and 60% inhibition of lipid peroxidation, which is 3200 times more efficient than the standard antioxidants BHA (400 microM) and alpha-tocopherol (400 microM). beta-turmerin inhibited diene-triene and tetraene conjugation up to 54%, 72% and 47%, respectively. beta-turmerin also effectively scavenges hydroxyl radicals when compared to BHA and alpha-tocopherol. beta-turmerin (2.5 microM) further inhibited the activation of PMNL mediated by fMLP up to the extent of 75%, where as standards BHA (400 microM) and mannitol (10 microM) inhibited the same to 65% and 55%, respectively. At 0.125 microM dose beta-turmerin prevented t-BOOH induced cell death at all time intervals. In addition to the above properties, it is non-toxic to lymphocytes as it did not affect the viability of cells. The mechanism of antioxidant action of beta-turmerin could probably be by counteracting/quenching of reactive oxygen species (ROS). We report the purification and characterization of beta-turmerin ( approximately 34 kDa), a potent antioxidant protein from turmeric waste grits.

  15. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Holliday, Nicholas D; Hansen, Jakob L;

    2007-01-01

    To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase-inactive muta......To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase...

  16. Sec14-like phosphatidylinositol transfer proteins and the biological landscape of phosphoinositide signaling in plants.

    Science.gov (United States)

    Huang, Jin; Ghosh, Ratna; Bankaitis, Vytas A

    2016-09-01

    Phosphoinositides and soluble inositol phosphates are essential components of a complex intracellular chemical code that regulates major aspects of lipid signaling in eukaryotes. These involvements span a broad array of biological outcomes and activities, and cells are faced with the problem of how to compartmentalize and organize these various signaling events into a coherent scheme. It is in the arena of how phosphoinositide signaling circuits are integrated and, and how phosphoinositide pools are functionally defined and channeled to privileged effectors, that phosphatidylinositol (PtdIns) transfer proteins (PITPs) are emerging as critical players. As plant systems offer some unique advantages and opportunities for study of these proteins, we discuss herein our perspectives regarding the progress made in plant systems regarding PITP function. We also suggest interesting prospects that plant systems hold for interrogating how PITPs work, particularly in multi-domain contexts, to diversify the biological outcomes for phosphoinositide signaling. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. PMID:27038688

  17. Vitamin E and Phosphoinositides Regulate the Intracellular Localization of the Hepatic α-Tocopherol Transfer Protein.

    Science.gov (United States)

    Chung, Stacey; Ghelfi, Mikel; Atkinson, Jeffrey; Parker, Robert; Qian, Jinghui; Carlin, Cathleen; Manor, Danny

    2016-08-12

    α-Tocopherol (vitamin E) is an essential nutrient for all vertebrates. From the eight naturally occurring members of the vitamin E family, α-tocopherol is the most biologically active species and is selectively retained in tissues. The hepatic α-tocopherol transfer protein (TTP) preferentially selects dietary α-tocopherol and facilitates its transport through the hepatocyte and its secretion to the circulation. In doing so, TTP regulates body-wide levels of α-tocopherol. The mechanisms by which TTP facilitates α-tocopherol trafficking in hepatocytes are poorly understood. We found that the intracellular localization of TTP in hepatocytes is dynamic and responds to the presence of α-tocopherol. In the absence of the vitamin, TTP is localized to perinuclear vesicles that harbor CD71, transferrin, and Rab8, markers of the recycling endosomes. Upon treatment with α-tocopherol, TTP- and α-tocopherol-containing vesicles translocate to the plasma membrane, prior to secretion of the vitamin to the exterior of the cells. The change in TTP localization is specific to α-tocopherol and is time- and dose-dependent. The aberrant intracellular localization patterns of lipid binding-defective TTP mutants highlight the importance of protein-lipid interaction in the transport of α-tocopherol. These findings provide the basis for a proposed mechanistic model that describes TTP-facilitated trafficking of α-tocopherol through hepatocytes. PMID:27307040

  18. Measuring ligand-dependent and ligand-independent interactions between nuclear receptors and associated proteins using Bioluminescence Resonance Energy Transfer (BRET2)

    OpenAIRE

    Koterba, Kristen L.; Rowan, Brian G.

    2006-01-01

    Bioluminescent resonance energy transfer (BRET2) is a recently developed technology for the measurement of protein-protein interactions in a live, cell-based system. BRET2 is characterized by the efficient transfer of excited energy between a bioluminescent donor molecule (Renilla luciferase) and a fluorescent acceptor molecule (a mutant of Green Fluorescent Protein (GFP2)). The BRET2 assay offers advantages over fluorescence resonance energy transfer (FRET) because it does not require an ext...

  19. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques

    Directory of Open Access Journals (Sweden)

    Amar B. T. Ghisaidoobe

    2014-12-01

    Full Text Available F resonance energy transfer (FRET occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (\\(\\uplambda_{\\textsc{ex}}\\sim\\ nm, \\(\\uplambda_{\\textsc{em}}\\sim\\ 350 nm, in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the proteinlocal environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic F resonance energy transfer (iFRET, a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins.

  20. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases?

    Directory of Open Access Journals (Sweden)

    Shayne Anthony Bellingham

    2012-05-01

    Full Text Available Exosomes are small membranous vesicles secreted by a number of cell types including neurons and can be isolated from conditioned cell media or bodily fluids such as urine and plasma. Exosome biogenesis involves the inward budding of endosomes to form multivesicular bodies (MVB. When fused with the plasma membrane, the MVB releases the vesicles into the extracellular environment as exosomes. Proposed functions of these vesicles include roles in cell-cell signaling, removal of unwanted proteins, and the transfer of pathogens between cells. One such pathogen which exploits this pathway is the prion, the infectious particle responsible for the transmissible neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD of humans or bovine spongiform encephalopathy (BSE of cattle. Similarly, exosomes are also involved in the processing of the amyloid precursor protein (APP which is associated with Alzheimer's disease (AD. Exosomes have been shown to contain full-length APP and several distinct proteolytically cleaved products of APP, including Aβ. In addition, these fragments can be modulated using inhibitors of the proteases involved in APP cleavage. These observations provide further evidence for a novel pathway in which PrP and APP fragments are released from cells. Other proteins such as superoxide dismutase I (SOD-1 and alpha-synuclein (involved in Amyotrophic Lateral Sclerosis (ALS and Parkinson’s disease respectively are also found associated with exosomes. This review will focus on the role of exosomes in neurodegenerative disorders and discuss the potential of these vesicles for the spread of neurotoxicity, therapeutics and diagnostics for these diseases.

  1. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    Directory of Open Access Journals (Sweden)

    Luthey-Schulten Zaida

    2009-07-01

    Full Text Available Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene transfer (HGT of S4 during bacterial evolution. Results In this study we present the complex evolutionary history of ribosomal protein S4 using 660 bacterial genomes from 16 major bacterial phyla. According to conserved characteristics in the sequences, S4 can be classified into C+ (zinc-binding and C- (zinc-free variants, with 26 genomes (mainly from the class Clostridia containing genes for both. A maximum likelihood phylogenetic tree of the S4 sequences was incongruent with the standard bacterial phylogeny, indicating a departure from strict vertical inheritance. Further analysis using the genome content near the S4 genes, which are usually located in a conserved gene cluster, showed not only that HGT of the C- gene had occurred at various stages of bacterial evolution, but also that both the C- and C+ genes were present before the individual phyla diverged. To explain the latter, we theorize that a gene pool existed early in bacterial evolution from which bacteria could sample S4 gene variants, according to environmental conditions. The distribution of the C+/- variants for seven other zinc-binding ribosomal proteins in these 660 bacterial genomes is consistent with that seen for S4 and may shed light on the evolutionary pressures involved. Conclusion The complex history presented for "core" protein S4 suggests the existence of a gene pool before the emergence of bacterial lineages and reflects the pervasive nature of HGT in subsequent bacterial evolution

  2. AcEST: BP916259 [AcEST

    Lifescience Database Archive (English)

    Full Text Available |YN02_CAEEL Uncharacterized protein T23G5.2 OS=Caenorha... 41 0.002 sp|Q757H2|CSR1..._ASHGO Phosphatidylinositol transfer protein CSR1 ... 41 0.002 sp|Q9VMD6|RETM_DROME Protein real-time OS=Dr...|O66585|Y209_AQUAE Uncharacterized protein aq_209 OS=Aquifex a... 37 0.032 sp|Q06705|CSR1_YEAST Phosphatidyl...inositol transfer protein CSR1 ... 35 0.16 sp|P41034|TTPA_RAT Alpha-tocopherol transfer protein OS=Rattus n.

  3. Specific adduction of plant lipid transfer protein by an allene oxide generated by 9-lipoxygenase and allene oxide synthase

    OpenAIRE

    Bakan, Benedicte; Hamberg, Mats; Perrocheau, Ludivine; Maume, Daniel; Rogniaux, Helene; Tranquet, Olivier; Rondeau, Corinne; Blein, J Pierre; Ponchet, Michel; Marion, Didier

    2006-01-01

    Lipid transfer proteins (LTPs) are ubiquitous plant lipid-binding proteins that have been associated with multiple developmental and stress responses. Although LTPs typically bind fatty acids and fatty acid derivatives in a non-covalent way, studies on the LTPs of barley seeds have identified an abundantly occurring covalently modified form, LTP1b, the lipid ligand of which has resisted clarification. In the present study, this adduct was identified as the {alpha}-ketol 9-hydroxy-10-oxo-12(Z)...

  4. Screening of α-Tocopherol Transfer Protein Sensitive Genes in Human Hepatoma Cells (HepG2).

    Science.gov (United States)

    Qu, Yang-Hua; Fu, Jun-Cai; Liu, Kun; Zuo, Zhao-Yun; Jia, Hui-Na; Ma, Yong; Luo, Hai-Ling

    2016-01-01

    α-Tocopherol transfer protein (α-TTP) is a ~32 kDa protein expressed mainly in hepatocytes. The major function of the protein is to bind specifically to α-tocopherol and, together, the complex transfers from late lysosomes to the cell membrane. A previous study indicated that some factors might be required in the transferring process. However, there is little information available about the potential transferring factors. In addition, there remains much to learn about other physiological processes which α-TTP might participate in. Thus, in this study a human α-TTP eukaryotic expression vector was successfully constructed and expressed in human hepatoma cells (HepG2). The sensitive genes related to α-TTP were then screened by microarray technology. Results showed that expression of the vector in HepG2 cells led to the identification of 323 genes showing differential expression. The differentially expressed transcripts were divided into four main categories, including (1) cell inflammation; (2) cell cycle and cell apoptosis; (3) cell signaling and gene regulation; and (4) cellular movement. A few cellular movement related transcripts were selected and verified by quantitative real-time PCR. Expressions of some were significantly increased in α-TTP-expressed group, which indicated that these factors were likely to play a role in the transferring process. PMID:27355945

  5. Mitochondrial triglyceride transfer protein inhibition: new achievements in the treatment of dyslipidemias.

    Science.gov (United States)

    Kostapanos, Michael S; Rizos, Evangelos C; Papanas, Nikolaos; Maltezos, Efstratios; Elisaf, Moses S

    2013-01-01

    Current lipid-lowering drugs are often unable to achieve low density lipoprotein cholesterol (LDL-C) goals. Moreover, despite LDL-C lowering mostly by statins, a considerable residual vascular risk remains. This is partly associated with atherogenic dyslipidemia where apolipoprotein (apo) B-containing lipoproteins predominate. Mitochondrial Triglyceride (TG) transfer protein (MTP) is a key enzyme for apoB-containing lipoprotein assembly and secretion. This is mostly attributed to its capacity to transfer lipid components (TGs, cholesterol esters and phospholipids) to the endoplasmic reticulum lumen, where these lipoproteins are assembled. Several agents were developed to inhibit MTP wherever it is expressed, namely the liver and/or the intestine. Liver-specific MTP inhibitors reduce secretion of very low density lipoproteins (VLDL) mostly containing apoB100, while the intestine-specific ones reduce secretion of chylomicrons containing apoB48. These drugs can significantly reduce total cholesterol, LDL-C, TGs, VLDL cholesterol, as well as apoB levels in vivo. They may also exert anti-atherosclerotic and insulin-sensitizing effects. Limited clinical data suggest that these compounds can also improve the serum lipid profile in patients with homozygous familial hypercholesterolemia (HoFH). The accumulation of unsecreted fat in the liver and intestinal lumen is associated with elevation of aminotransferases and steatorrhea. Liver steatosis can be avoided by the use of intestine-specific MTP inhibitors, while steatorrhea by low-fat diet. Future indications for these developing drugs may include dyslipidemia associated with insulin resistant states, familial combined hyperlipidemia and HoFH. Future clinical trials are warranted to assess the efficacy and safety of MTP inhibitors in various clinical states.

  6. No renal phenotype in human phospholipid transfer protein transgenic apolipoprotein E deficient mice despite severe aortic atherosclerosis

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; van Haperen, Rien; van den Born, Jaap; van Goor, Harry; de Crom, Rini; van Tol, Arie

    2014-01-01

    Background: Phospholipid transfer protein (PLTP) is an emerging cardiometabolic risk factor. Plasma PLTP is elevated in humans with end-stage kidney disease and glomerular proteinuria, but the contribution of systemic PLTP elevation to the development of renal damage is unknown. We tested whether hu

  7. Saturation-Transfer Difference (STD) NMR: A Simple and Fast Method for Ligand Screening and Characterization of Protein Binding

    Science.gov (United States)

    Viegas, Aldino; Manso, Joao; Nobrega, Franklin L.; Cabrita, Eurico J.

    2011-01-01

    Saturation transfer difference (STD) NMR has emerged as one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. The success of this technique is a consequence of its robustness and the fact that it is focused on the signals of the ligand, without any need of processing NMR information about the receptor…

  8. Lipid transfer protein : a pan-allergen in plant-derived foods that is highly resistant to pepsin digestion

    NARCIS (Netherlands)

    Asero, R.; Mistrello, G.; Roncarolo, D.; Vries, de S.C.; Gautier, M.F.; Ciurana, C.L.; Verbeek, E.; Mohammadi, T.; Knul-Brettlova, V.; Akkerdaas, J.H.; Bulder, I.; Aalberse, R.C.; Ree, van R.

    2000-01-01

    Lipid transfer proteins (LTPs) are small molecules of approximately 10 kD that demonstrate high stability. They have recently been identified as allergens in the Rosaceae subfamilies of the Prunoideae (peach, apricot, plum) and of the Pomoideae (apple). They belong to a family of structurally highly

  9. Maturity and storage influence on the apple (Malus domestica) allergen Mal d 3, a nonspecific lipid transfer protein

    NARCIS (Netherlands)

    A.I. Sancho; R. Foxall; N.M. Rigby; T. Browne; L. Zuidmeer; R. van Ree; K.W. Waldron; E.N.C. Mills

    2006-01-01

    Consumption of apples can provoke severe allergic reactions, in susceptible individuals, due to the presence of the allergen Mal d 3, a nonspecific lipid transfer protein, found largely in the fruit skin. Levels of Mal d 3 were determined in peel as a function of apple cultivar, position of the frui

  10. Lipid Exchange Mechanism of the Cholesteryl Ester Transfer Protein Clarified by Atomistic and Coarse-grained Simulations

    DEFF Research Database (Denmark)

    Koivuniemi, A.; Vuorela, T.; Kovanen, P. T.;

    2012-01-01

    Cholesteryl ester transfer protein (CETP) transports cholesteryl esters, triglycerides, and phospholipids between different lipoprotein fractions in blood plasma. The inhibition of CETP has been shown to be a sound strategy to prevent and treat the development of coronary heart disease. We employed...

  11. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein (MTP)

    DEFF Research Database (Denmark)

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus;

    2014-01-01

    microsomal triglyceride transfer protein (MTP), which we show is also under the transcriptional regulation of C/EBPβ and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen...

  12. The alpha-helical domain of liver fatty acid binding protein is responsible for the diffusion-mediated transfer of fatty acids to phospholipid membranes.

    Science.gov (United States)

    Córsico, Betina; Liou, Heng Ling; Storch, Judith

    2004-03-30

    Intestinal fatty acid binding protein (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms for the transfer of fatty acids (FAs) to acceptor membranes. Transfer from IFABP occurs during protein-membrane collisional interactions, while for LFABP, transfer occurs by diffusion through the aqueous phase. Earlier, we had shown that the helical domain of IFABP is critical in determining its collisional FA transfer mechanism. In the study presented here, we have engineered a pair of chimeric proteins, one with the "body" (ligand binding domain) of IFABP and the alpha-helical region of LFABP (alphaLbetaIFABP) and the other with the ligand binding pocket of LFABP and the helical domain of IFABP (alphaIbetaLFABP). The objective of this work was to determine whether the change in the alpha-helical domain of each FABP would alter the rate and mechanism of transfer of FA from the chimeric proteins in comparison with those of the wild-type proteins. The fatty acid transfer properties of the FABP chimeras were examined using a fluorescence resonance transfer assay. The results showed a significant modification of the absolute rate of FA transfer from the chimeric proteins compared to that of the wild type, indicating that the slower rate of FA transfer observed for wild-type LFABP relative to that of wild-type IFABP is, in part, determined by the helical domain of the proteins. In addition to these quantitative changes, it was of great interest to observe that the apparent mechanism of FA transfer also changed when the alpha-helical domain was exchanged, with transfer from alphaLbetaIFABP occurring by aqueous diffusion and transfer from alphaIbetaLFABP occurring via protein-membrane collisional interactions. These results demonstrate that the alpha-helical region of LFABP is responsible for its diffusional mechanism of fatty acid transfer to membranes. PMID:15035630

  13. Lateral transfer of a lectin-like antifreeze protein gene in fishes.

    Directory of Open Access Journals (Sweden)

    Laurie A Graham

    Full Text Available Fishes living in icy seawater are usually protected from freezing by endogenous antifreeze proteins (AFPs that bind to ice crystals and stop them from growing. The scattered distribution of five highly diverse AFP types across phylogenetically disparate fish species is puzzling. The appearance of radically different AFPs in closely related species has been attributed to the rapid, independent evolution of these proteins in response to natural selection caused by sea level glaciations within the last 20 million years. In at least one instance the same type of simple repetitive AFP has independently originated in two distant species by convergent evolution. But, the isolated occurrence of three very similar type II AFPs in three distantly related species (herring, smelt and sea raven cannot be explained by this mechanism. These globular, lectin-like AFPs have a unique disulfide-bonding pattern, and share up to 85% identity in their amino acid sequences, with regions of even higher identity in their genes. A thorough search of current databases failed to find a homolog in any other species with greater than 40% amino acid sequence identity. Consistent with this result, genomic Southern blots showed the lectin-like AFP gene was absent from all other fish species tested. The remarkable conservation of both intron and exon sequences, the lack of correlation between evolutionary distance and mutation rate, and the pattern of silent vs non-silent codon changes make it unlikely that the gene for this AFP pre-existed but was lost from most branches of the teleost radiation. We propose instead that lateral gene transfer has resulted in the occurrence of the type II AFPs in herring, smelt and sea raven and allowed these species to survive in an otherwise lethal niche.

  14. Quality Control System for Beer Developed with Monoclonal Antibodies Specific to Barley Lipid Transfer Protein

    Directory of Open Access Journals (Sweden)

    Yukie Murakami-Yamaguchi

    2012-10-01

    Full Text Available Non-specific lipid transfer protein (LTP in barley grain reacted with the IgE in sera drawn from food allergy patients. A sandwich-type of enzyme-linked immunosorbent assay (ELISA was developed with mouse monoclonal antibodies raised against LTP purified with barley flour. This ELISA showed a practical working range of 0.3–3 ng/mL and no cross-reactivity with wheat, adlay and rye. Using this ELISA, LTP was determined in several types of barley-foods, including fermented foods such as malt vinegar, barley-malt miso and beer. LTP content in beer of the same kind was approximately constant, even if manufacturing factory and production days were different. Not only as a factor of foam formation and stability but also as an allergen, controlling and monitoring of LTP in beer should be considered. Taken together, our LTP-detecting ELISA can be proposed as an appropriate system for the quality control of beer.

  15. Cholesteryl ester transfer protein levels and gene deficiency in Chinese patients with cardio-cerebrovascular diseases

    Institute of Scientific and Technical Information of China (English)

    庄一义; 汪俊军; 张宏娟; 李勇; 刘小传; 李露言; 陈光辉

    2002-01-01

    Objective To detect cholesteryl ester transfer protein (CETP) levels, frequencies of CETP D442G and Ⅰ14A mutations and characteristics of abnormal lipids in patients with cardio-cerebro vascular diseases. Methods Ninety-four myocardial infarction (MI) patients,110 stroke patients and 335 healthy controls were selected. The CETP concentration was determined using ELISA. The CETP activity was measured using a substrate of 14 C-radiolabeled discoidal bilayer particles. The CETP gene mutations were detected by PCR-RFLP. Results The CETP concentrations in the MI and stroke group, were higher than those in the controls. The gene mutation frequencies of D442G in the MI, stroke and control group were 3.5%, 3.6% and 5%, respectively, and the frequencies of Ⅰ14A were 1.05%, 0.91% and 1%, respectively. One case of D442G homozygote was detected in the healthy group. The frequency of two CETP gene mutations showed no significant difference among the patients and controls. The CETP concentration and activity in subjects with CETP mutations were one-third of those in the control group. The level of HDL-C, apo-A1 increased in the mutation subjects, while the TG level decreased. Conclusions The CETP level increased significantly in patients with cardio-cerebrovascular diseases. The carriers of CETP deficiency had CETP and lipid abnormalities.

  16. Linkage and association of phospholipid transfer protein activity to LASS4.

    Science.gov (United States)

    Rosenthal, Elisabeth A; Ronald, James; Rothstein, Joseph; Rajagopalan, Ramakrishnan; Ranchalis, Jane; Wolfbauer, G; Albers, John J; Brunzell, John D; Motulsky, Arno G; Rieder, Mark J; Nickerson, Deborah A; Wijsman, Ellen M; Jarvik, Gail P

    2011-10-01

    Phospholipid transfer protein activity (PLTPa) is associated with insulin levels and has been implicated in atherosclerotic disease in both mice and humans. Variation at the PLTP structural locus on chromosome 20 explains some, but not all, heritable variation in PLTPa. In order to detect quantitative trait loci (QTLs) elsewhere in the genome that affect PLTPa, we performed both oligogenic and single QTL linkage analysis on four large families (n = 227 with phenotype, n = 330 with genotype, n = 462 total), ascertained for familial combined hyperlipidemia. We detected evidence of linkage between PLTPa and chromosome 19p (lod = 3.2) for a single family and chromosome 2q (lod = 2.8) for all families. Inclusion of additional marker and exome sequence data in the analysis refined the linkage signal on chromosome 19 and implicated coding variation in LASS4, a gene regulated by leptin that is involved in ceramide synthesis. Association between PLTPa and LASS4 variation was replicated in the other three families (P = 0.02), adjusting for pedigree structure. To our knowledge, this is the first example for which exome data was used in families to identify a complex QTL that is not the structural locus.

  17. 植物脂质转移蛋白%Lipid Transfer Proteins in Plants

    Institute of Scientific and Technical Information of China (English)

    田爱梅; 曹家树

    2008-01-01

    脂质转移蛋白(lipid transfer proteins,LTPs)是植物生命活动中一类重要的活性蛋白质,在体外能够可逆地结合和转运多种脂质分子.目前已从多种植物中分离到LTPs基因.随着研究的深入,其不同水平的转录本在不同植物的不同发育阶段和生理条件下的不同组织中被发现,但LTPs体内确切的生理、生化功能和作用机制尚不明确.现介绍目前这一领域细胞与分子生物学方面的研究进展,并结合本课题组的研究结果进行了相关探讨,为进一步研究LTPs在植物生殖发育、抗性和防御反应及信号转导中的作用机制提供了新的线索.

  18. The α-tocopherol transfer protein is essential for vertebrate embryogenesis.

    Directory of Open Access Journals (Sweden)

    Galen W Miller

    Full Text Available The hepatic α-tocopherol transfer protein (TTP is required for optimal α-tocopherol bioavailability in humans; mutations in the human TTPA gene result in the heritable disorder ataxia with vitamin E deficiency (AVED, OMIM #277460. TTP is also expressed in mammalian uterine and placental cells and in the human embryonic yolk-sac, underscoring TTP's significance during fetal development. TTP and vitamin E are essential for productive pregnancy in rodents, but their precise physiological role in embryogenesis is unknown. We hypothesize that TTP is required to regulate delivery of α-tocopherol to critical target sites in the developing embryo. We tested to find if TTP is essential for proper vertebrate development, utilizing the zebrafish as a non-placental model. We verify that TTP is expressed in the adult zebrafish and its amino acid sequence is homologous to the human ortholog. We show that embryonic transcription of TTP mRNA increases >7-fold during the first 24 hours following fertilization. In situ hybridization demonstrates that Ttpa transcripts are localized in the developing brain, eyes and tail bud at 1-day post fertilization. Inhibiting TTP expression using oligonucleotide morpholinos results in severe malformations of the head and eyes in nearly all morpholino-injected embryos (88% compared with 5.6% in those injected with control morpholinos or 1.7% in non-injected embryos. We conclude that TTP is essential for early development of the vertebrate central nervous system.

  19. Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens.

    Science.gov (United States)

    Rossi, L; Hohn, B; Tinland, B

    1996-01-01

    Agrobacterium tumefaciens transfers transferred DNA (T-DNA), a single-stranded segment of its tumor-inducing (Ti) plasmid, to the plant cell nucleus. The Ti-plasmid-encoded virulence E2 (VirE2) protein expressed in the bacterium has single-stranded DNA (ssDNA)-binding properties and has been reported to act in the plant cell. This protein is thought to exert its influence on transfer efficiency by coating and accompanying the single-stranded T-DNA (ss-T-DNA) to the plant cell genome. Here, we analyze different putative roles of the VirE2 protein in the plant cell. In the absence of VirE2 protein, mainly truncated versions of the T-DNA are integrated. We infer that VirE2 protects the ss-T-DNA against nucleolytic attack during the transfer process and that it is interacting with the ss-T-DNA on its way to the plant cell nucleus. Furthermore, the VirE2 protein was found not to be involved in directing the ss-T-DNA to the plant cell nucleus in a manner dependent on a nuclear localization signal, a function which is carried by the NLS of VirD2. In addition, the efficiency of T-DNA integration into the plant genome was found to be VirE2 independent. We conclude that the VirE2 protein of A. tumefaciens is required to preserve the integrity of the T-DNA but does not contribute to the efficiency of the integration step per se. PMID:8552588

  20. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc{sub 1} complex

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Daniel R.; Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2015-04-28

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc{sub 1} bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  1. Mechanism of phosphoryl transfer and protein-protein interaction in the PTS system-an NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, P.; Klevit, R.E. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    HPr and Enzyme IIA{sup Glc} are two of the components of the bacterial PTS (phosphoenolpyruvate: sugar phosphotranferase system) and are involved in the phosphorylation and concomitant translocation of sugars across the membrane. These PTS protein complexes also regulate sugar transport. HPr, phosphorylated at a histidine N1 site by Enzyme I and phosphoenol pyruvate, transfers the phosphoryl group to a histidine N3 position in Enzyme IIA{sup Glc}. HPrs from Gram-positive bacteria undergo regulatory phosphorylation at Ser{sup 46}, whereby phosphorylation of the histidine residue is inhibited. Conversely, histidine phosphorylation inhibits phosphorylation at Ser{sup 46}. HPrs from Gram-negative bacteria possess a serine residue at position 46, but do not undergo regulatory phosphorylation. HPr forms an open-faced sandwich structure with a four-strand S-sheet and 2 to 3 helices lying on top of the sheet. The active-site histidine and Ser{sup 46} occur in conformationally flexible regions. P-His-HPr from the Gram-positive bacterium Bacillus subtilus has been investigated by both homonuclear and heteronuclear two-dimensional and three-dimensional NMR experiments using an in-situ enzymatic regeneration system to maintain a constant level of P-His-HPr. The results show that localized conformational changes occur in the vicinity of the active-site histidine and also near Ser{sup 46}. HPr-Enzyme IIA{sup Glc} complexes from both Bacillus subtilis and Gram-negative Escherichia coli were also studied by a variety of {sup 15}N-edited two-dimensional NMR experiments, which were performed on uniformly {sup 15}N-labeled HPr complexed to unlabeled Enzyme IIA{sup Glc}. The complex is in fast exchange with a molecular weight of about 27 kDa. The focus of our work is to assess the changes undergone by HPr (the smaller of the two components), and so all the experiments were performed with excess Enzyme IIA present in the system.

  2. Higher high density lipoprotein cholesterol associated with moderate alcohol consumption is not related to altered plasma lecithin : cholesterol acyltransferase and lipid transfer protein activity levels

    NARCIS (Netherlands)

    Riemens, SC; vanTol, A; Hoogenberg, K; vanGent, T; Scheek, LM; Sluiter, WJ; Dullaart, RPF

    1997-01-01

    Lecithin:cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP) are important factors involved in HDL metabolism. Altered plasma activity levels of these factors could play a role in the increase in high density lipoprotein (HDL) choles

  3. Effect of growth hormone replacement therapy on plasma lecithin : cholesterol acyltransferase and lipid transfer protein activities in growth hormone-deficient adults

    NARCIS (Netherlands)

    Beentjes, JAM; van Tol, A; Sluiter, WJ; Dullaart, RPF

    2000-01-01

    The effects of growth hormone (GH) replacement on plasma lecithin:cholesterol acyltransferase (LCAT), cholesteryl ester transfer protein (CETP), and phospholipid transfer protein (PLTP), factors involved in high density lipoprotein (HDL) metabolism, We unknown. We carried out a 6 mouths study in 24

  4. Gene gun transferring-bone morphogenetic protein 2 (BMP-2) gene enhanced bone fracture healing in rabbits

    OpenAIRE

    Li, Wenju; Wei, Haifeng; Xia, Chunmei; Zhu, Xiaomeng; Hou, Guozhu; Xu, Feng; Xinghua SONG; Zhan, Yulin

    2015-01-01

    Purpose: Transferring the bone morphogenetic protein 2 (BMP-2) genes into the tissues or cells can improve the bone healing of the fracture has been widely accepted. We evaluated the efficiency of using gene gun to transfer the BMP-2 gene thereby affected the healing of a fractured bone. Methods: The vector coding for BMP-2 was constructed by a non-replicating encephalo-myocarditis virus (ECMV)-based vector. The segmental bone defect (1.5 cm) model was created by a wire-saw at the middle part...

  5. Transferred DNA (T-DNA)-associated proteins of Agrobacterium tumefaciens are exported independently of virB.

    Science.gov (United States)

    Chen, L; Li, C M; Nester, E W

    2000-06-20

    The transfer of T-DNA from Agrobacterium to plant cells is mediated by a system which involves the virB operon of the Ti plasmid. We report that VirE2 and VirD2, two T-DNA-associated proteins, as well as VirF, a protein known to be secreted into plant cells, are present in the periplasm and supernatant fractions of growing cells of Agrobacterium as are VirJ and ChvE, two known periplasmic proteins. Two cytoplasmic proteins, Ros and chloramphenicol acetyl transferase, and a VirE2green fluorescent protein construct were not detected in the above fraction. Export of VirE2 into the culture supernatant did not require any Ti plasmid genes, except for VirE1, a specific chaperone for VirE2. The levels of the VirE2 and VirD2 proteins in the supernatant increased significantly when cells were grown at 19 degrees C as compared with 28 degrees C. When Agrobacterium expressed the oncogenic suppressive activity protein (Osa), VirE2 and VirF proteins could not be detected in the supernatant or the periplasm and the level of VirD2 was greatly reduced. However, oncogenic suppressive activity protein did not block the accumulation of VirJ and ChvE in the periplasm. Our data suggest that VirD2, VirE2, and VirF are transported across the cytoplasmic membrane by a specific pathway, independent of virB. Thus, transfer of the T-complex of Agrobacterium may take place in two steps, the first mediated by an unidentified pathway and the second by the virB system. PMID:10852952

  6. Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice.

    Directory of Open Access Journals (Sweden)

    Zhe Liang

    Full Text Available BACKGROUND: Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis. METHODS: Aged (20-24 months Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival. RESULTS: In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005. Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice. CONCLUSIONS: Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice.

  7. A Lipid Transfer Protein Increases the Glutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin.

    Directory of Open Access Journals (Sweden)

    John E McLaughlin

    Full Text Available Fusarium head blight (FHB or scab is one of the most important plant diseases worldwide, affecting wheat, barley and other small grains. Trichothecene mycotoxins such as deoxynivalenol (DON accumulate in the grain, presenting a food safety risk and health hazard to humans and animals. Despite considerable breeding efforts, highly resistant wheat or barley cultivars are not available. We screened an activation tagged Arabidopsis thaliana population for resistance to trichothecin (Tcin, a type B trichothecene in the same class as DON. Here we show that one of the resistant lines identified, trichothecene resistant 1 (trr1 contains a T-DNA insertion upstream of two nonspecific lipid transfer protein (nsLTP genes, AtLTP4.4 and AtLTP4.5. Expression of both nsLTP genes was induced in trr1 over 10-fold relative to wild type. Overexpression of AtLTP4.4 provided greater resistance to Tcin than AtLTP4.5 in Arabidopsis thaliana and in Saccharomyces cerevisiae relative to wild type or vector transformed lines, suggesting a conserved protection mechanism. Tcin treatment increased reactive oxygen species (ROS production in Arabidopsis and ROS stain was associated with the chloroplast, the cell wall and the apoplast. ROS levels were attenuated in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls. Exogenous addition of glutathione and other antioxidants enhanced resistance of Arabidopsis to Tcin while the addition of buthionine sulfoximine, an inhibitor of glutathione synthesis, increased sensitivity, suggesting that resistance was mediated by glutathione. Total glutathione content was significantly higher in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls, highlighting the importance of AtLTP4.4 in maintaining the redox state. These results demonstrate that trichothecenes cause ROS accumulation and overexpression of AtLTP4.4 protects against trichothecene-induced oxidative stress by increasing the glutathione

  8. Polymorphisms of microsomal triglycedde transfer protein in different hepatitis B virus-infected patients

    Institute of Scientific and Technical Information of China (English)

    Zhi-Tao Yang; Xin-Xin Zhang; Xiao-Fei Kong; Dong-Hua Zhang; Shen-Ying Zhang; Jie-Hong Jiang; Qi-Ming Gong; Gen-Di Jin; Zhi-Meng Lu

    2008-01-01

    AIM: To identify the two polymorphisms of microsomal triglyceride transfer protein (MTP) gene in the Chinese population and to explore their correlation with both hepatitis B virus (HBV) self-limited infection and persistent infection.METHODS: A total of 316 subjects with self-limited HBV infection and 316 patients with persistent HBV infection (195 subjects without familial history),matched with age and sex,from the Chinese Han population were enrolled in this study.Polymorphisms of MTP at the promoter region -493 and at H297Q were determined by the allele specific polymerase chain reaction (PCR).RESULTS: The ratio of males to females was 2.13:1 for each group and the average age in the self-limited and chronic infection groups was 38.36 and 38.28 years,respectively.None of the allelic distributions deviated significantly from that predicted by the Hardy-Weinberg equilibrium.There was a linkage disequilibrium between H297Q and -493G/T(D'=0.77).As the X2 test was used,the genotype distribution of MTP-493G/T demonstrated a significant difference between the self-limited infection group and the entire chronic group or the chronic patients with no family history (X2=8.543,P=0.015 and X2=7.199,P=0.019).The allele distribution at the MTP-493 position also demonstrated a significant difference between the study groups without family history (X2=6.212,P=0.013).The T allele emerged as a possible protective factor which may influence the outcomes of HBV infection (OR: 0.59; 95% CI: 0.389-0.897).CONCLUSION: The polymorphism of the MTP gene,T allele at -493,may be involved in determining the HBV infection outcomes,of which the mechanism needs to be further investigated.

  9. Markers of protein oxidation by hydroxyl radical and reactive nitrogen species in tissues of aging rats.

    Science.gov (United States)

    Leeuwenburgh, C; Hansen, P; Shaish, A; Holloszy, J O; Heinecke, J W

    1998-02-01

    Many lines of evidence implicate oxidative damage in aging. Possible pathways include reactions that modify aromatic amino acid residues on proteins. o-Tyrosine is a stable marker for oxidation of protein-bound phenylalanine by hydroxyl radical, whereas 3-nitrotyrosine is a marker for oxidation of protein-bound tyrosine by reactive nitrogen species. To test the hypothesis that proteins damaged by hydroxyl radical and reactive nitrogen accumulate with aging, we used isotope dilution gas chromatography-mass spectrometry to measure levels of o-tyrosine and 3-nitrotyrosine in heart, skeletal muscle, and liver from young adult (9 mo) and old (24 mo) female Long-Evans/Wistar hybrid rats. We also measured these markers in young adult and old rats that received antioxidant supplements (alpha-tocopherol, beta-carotene, butylated hydroxytoluene, and ascorbic acid) from the age of 5 mo. We found that aging did not significantly increase levels of protein-bound o-tyrosine or 3-nitrotyrosine in any of the tissues. Antioxidant supplementation had no effect on the levels of protein-bound o-tyrosine and 3-nitrotyrosine in either young or old animals. These observations indicate that the o-tyrosine and 3-nitrotyrosine do not increase significantly in heart, skeletal muscle, and liver in old rats, suggesting that proteins damaged by hydroxyl radical and reactive nitrogen species do not accumulate in these tissues with advancing age. PMID:9486304

  10. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling.

    Science.gov (United States)

    Lohse, Martin J; Nuber, Susanne; Hoffmann, Carsten

    2012-04-01

    Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments. PMID:22407612

  11. On the role of a Lipid-Transfer Protein. Arabidopsis ltp3 mutant is compromised in germination and seedling growth.

    Science.gov (United States)

    Pagnussat, Luciana A; Oyarburo, Natalia; Cimmino, Carlos; Pinedo, Marcela L; de la Canal, Laura

    2015-01-01

    Plant Lipid-Transfer Proteins (LTPs) exhibit the ability to reversibly bind/transport lipids in vitro. LTPs have been involved in diverse physiological processes but conclusive evidence on their role has only been presented for a few members, none of them related to seed physiology. Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for seedling growth. Here, Arabidopsis ltp3 mutant was analyzed for its ability to germinate and for seedling establishment. Ltp3 showed delayed germination and reduced germination frequency. Seedling growth appeared reduced in the mutant but this growth restriction was rescued by the addition of an exogenous carbon supply, suggesting a defective oil mobilization. Lipid breakdown analysis during seedling growth revealed a differential profile in the mutant compared to the wild type. The involvement of LTP3 in germination and seedling growth and its relationship with the lipid transfer ability of this protein is discussed. PMID:26479260

  12. Modeling, docking and dynamics simulations of a non-specific lipid transfer protein from Peganum harmala L.

    Science.gov (United States)

    Shi, Zheng; Wang, Zi-jie; Xu, Huai-long; Tian, Yang; Li, Xin; Bao, Jin-ku; Sun, Su-rong; Yue, Bi-song

    2013-12-01

    Non-specific lipid transfer proteins (ns-LTPs), ubiquitously found in various types of plants, have been well-known to transfer amphiphilic lipids and promote the lipid exchange between mitochondria and microbody. In this study, an in silico analysis was proposed to study ns-LTP in Peganum harmala L., which may belong to ns-LTP1 family, aiming at constructing its three-dimensional structure. Moreover, we adopted MEGA to analyze ns-LTPs and other species phylogenetically, which brought out an initial sequence alignment of ns-LTPs. In addition, we used molecular docking and molecular dynamics simulations to further investigate the affinities and stabilities of ns-LTP with several ligands complexes. Taken together, our results about ns-LTPs and their ligand-binding activities can provide a better understanding of the lipid-protein interactions, indicating some future applications of ns-LTP-mediated transport. PMID:23891721

  13. Nonspecific lipid-transfer protein genes expression in grape (vitis sp.) Cells in response to fungal elicitor treatments

    OpenAIRE

    Gomès, Eric; Sagot, Emeric; Gaillard, Cécile; Laquitaine, Laurent; Poinssot, Benoît; Sanejouand, Yves-Henri; Delrot, Serge; Coutos-Thévenot, Pierre

    2003-01-01

    Nonspecific lipid transfer proteins (nsLTPs) are small, basic cystein-rich proteins believed to be involved in plant defense mechanisms. Three cDNAs coding nsLTPs from grape (Vitis vinifera sp.) were cloned by reverse-transcriptase-polymerase chain reaction (RT-PCR) and PCR. The expression of nsLTP genes was investigated in 41B-rootstock grape cell suspension, in response to various defense-related signal molecules. Ergosterol (a fungi-specific sterol) and a proteinaceous elicitor puri...

  14. The ice-binding proteins of a snow alga, Chloromonas brevispina: probable acquisition by horizontal gene transfer.

    Science.gov (United States)

    Raymond, James A

    2014-11-01

    All ice-and snow-related unicellular algae examined so far secrete ice-binding proteins (IBPs) to mitigate freezing damage. Two types of IBP have been identified in chlorophytes. Type 1 IBPs are members of a large family of proteins that share a large domain of unknown function (DUF3494). Previous studies have suggested that the type 1 algal IBP genes were acquired by horizontal gene transfer. To test this hypothesis I sequenced the IBP genes of a snow alga, Chloromonas brevispina. The IBPs were identified by ice affinity purification, de novo sequencing of a tryptic peptide and large-scale sequencing of the transcriptome and genome. C. brevispina has genes for over 20 IBP isoforms, which strongly indicates their importance. The IBPs are all of type 1 and match fungal and bacterial proteins more closely than they match known algal IBPs, providing further evidence that the genes were acquired by horizontal transfer. Modeling of the 3D structures of the IBPs based on the known structure of a homologous protein suggests that the ice-binding site has characteristics that are shared by all DUF3494 proteins. PMID:25081506

  15. Impaired Macromolecular Protein Pools in Fronto-Striato-Thalamic Circuits in Type 2 Diabetes Revealed by Magnetization Transfer Imaging

    OpenAIRE

    Yang, Shaolin; Ajilore, Olusola; Wu, Minjie; Lamar, Melissa; Kumar, Anand

    2014-01-01

    Previous research has shown that type 2 diabetes mellitus (T2DM) is associated with white matter microstructural changes, cognitive impairment, and decreased resting-state functional connectivity and spontaneous brain activity. This study used magnetization transfer imaging to examine, for the first time, the integrity of macromolecular protein pools in fronto-striato-thalamic circuits and its clinical and cognitive correlates in patients with T2DM. T2DM patients without mood disorders (n = 2...

  16. On the role of a Lipid-Transfer Protein. Arabidopsis ltp3 mutant is compromised in germination and seedling growth.

    OpenAIRE

    Pagnussat, Luciana A; Oyarburo, Natalia; Cimmino, Carlos; Pinedo, Marcela L; de la Canal, Laura

    2015-01-01

    Plant Lipid-Transfer Proteins (LTPs) exhibit the ability to reversibly bind/transport lipids in vitro. LTPs have been involved in diverse physiological processes but conclusive evidence on their role has only been presented for a few members, none of them related to seed physiology. Arabidopsis seeds rely on storage oil breakdown to supply carbon skeletons and energy for seedling growth. Here, Arabidopsis ltp3 mutant was analyzed for its ability to germinate and for seedling establishment. Lt...

  17. Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2

    OpenAIRE

    Molina Fernández, Antonio; García Olmedo, Francisco

    1997-01-01

    Purified lipid transfer protein LTP2 from barley applied on tobacco leaves eliminated symptoms caused by infiltration of Pseudomonas syringae pv. tabaci 153. Growth of the pathogen in leaves of transgenic tobacco plants was retarded when compared with non-transformed controls. The percentage of inoculation points that showed necrotic lesions was greatly reduced in transgenic tobacco 17–38% versus 78%) and the average size of these lesions was 61–81% that of control. The average total lesion a...

  18. Liver fatty acid binding protein (LFABP) transfers fatty acids and fatty acyl coas to membranes

    OpenAIRE

    De Gerónimo, Eduardo; Hagan, Robert M; Wilton, David C.; Córsico, Betina

    2010-01-01

    The objective of this work was to analyze LFABP´s capacity to transfer acyl CoAs to artificial membranes and compare it to LCFA transfer employing natural ligands, in order to better understand the specific physiological role of LFABP in the cell.

  19. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.

    Science.gov (United States)

    Ahn, Tae Kyu; Avenson, Thomas J; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K; Bassi, Roberto; Fleming, Graham R

    2008-05-01

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). We found evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a delocalized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can "tune" the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophyll-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  20. ARCHITECTURE OF A CHARGE-TRANSFER STATE REGULATING LIGHT HARVESTING IN A PLANT ANTENNA PROTEIN

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Graham; Ahn, Tae Kyu; Avenson, Thomas J.; Ballottari, Matteo; Cheng, Yuan-Chung; Niyogi, Krishna K.; Bassi, Roberto; Fleming, Graham R.

    2008-04-02

    Energy-dependent quenching of excess absorbed light energy (qE) is a vital mechanism for regulating photosynthetic light harvesting in higher plants. All of the physiological characteristics of qE have been positively correlated with charge-transfer between coupled chlorophyll and zeaxanthin molecules in the light-harvesting antenna of photosystem II (PSII). In this work, we present evidence for charge-transfer quenching in all three of the individual minor antenna complexes of PSII (CP29, CP26, and CP24), and we conclude that charge-transfer quenching in CP29 involves a de-localized state of an excitonically coupled chlorophyll dimer. We propose that reversible conformational changes in CP29 can `tune? the electronic coupling between the chlorophylls in this dimer, thereby modulating the energy of the chlorophylls-zeaxanthin charge-transfer state and switching on and off the charge-transfer quenching during qE.

  1. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins

    DEFF Research Database (Denmark)

    Farver, O; Skov, L K; van de Kamp, M;

    1992-01-01

    -6972]. To further investigate the nature of this long-range electron transfer (LRET) proceeding within the protein matrix, we have now investigated it in two azurins where amino acids have been substituted by single-site mutation of the wild-type Pseudomonas aeruginosa azurin. In one mutated protein, a methionine......An intramolecular electron-transfer process has previously been shown to take place between the Cys3--Cys26 radical-ion (RSSR-) produced pulse radiolytically and the Cu(II) ion in the blue single-copper protein, azurin [Farver, O. & Pecht, I. (1989) Proc. Natl Acad. Sci. USA 86, 6868....... The rate of intramolecular electron transfer from RSSR- to Cu(II) in the wild-type P. aeruginosa azurin (delta G degrees = -68.9 kJ/mol) has previously been determined to be 44 +/- 7 s-1 at 298 K, pH 7.0. The [M44K]azurin mutant (delta G degrees = -75.3 kJ/mol) was now found to react considerably faster (k...

  2. Role of horizontal gene transfer as a control on the coevolution of ribosomal proteins and the genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Woese, Carl R.; Goldenfeld, Nigel; Luthey-Schulten, Zaida

    2011-03-31

    Our main goal is to develop the conceptual and computational tools necessary to understand the evolution of the universal processes of translation and replication and to identify events of horizontal gene transfer that occurred within the components. We will attempt to uncover the major evolutionary transitions that accompanied the development of protein synthesis by the ribosome and associated components of the translation apparatus. Our project goes beyond standard genomic approaches to explore homologs that are represented at both the structure and sequence level. Accordingly, use of structural phylogenetic analysis allows us to probe further back into deep evolutionary time than competing approaches, permitting greater resolution of primitive folds and structures. Specifically, our work focuses on the elements of translation, ranging from the emergence of the canonical genetic code to the evolution of specific protein folds, mediated by the predominance of horizontal gene transfer in early life. A unique element of this study is the explicit accounting for the impact of phenotype selection on translation, through a coevolutionary control mechanism. Our work contributes to DOE mission objectives through: (1) sophisticated computer simulation of protein dynamics and evolution, and the further refinement of techniques for structural phylogeny, which complement sequence information, leading to improved annotation of genomic databases; (2) development of evolutionary approaches to exploring cellular function and machinery in an integrated way; and (3) documentation of the phenotype interaction with translation over evolutionary time, reflecting the system response to changing selection pressures through horizontal gene transfer.

  3. Estimating protein-protein interaction affinity in single living cells using Förster resonance energy transfer measurements

    DEFF Research Database (Denmark)

    Jensen, Jens Ledet; Raarup, Merete Krog; Rubak, Ege

    Using Förster resonance energy transfer (FRET) images we study the possibility of estimating the equilibrium dissociation constant Kd and the intrinsic FRET efficiency Em from single cells. We model the measurement uncertainty in the acquired images and use the method of total least squares for e...

  4. Receptor-G Protein Interaction Studied by Bioluminescence Resonance Energy Transfer: Lessons From Protease-Activated Receptor 1

    Directory of Open Access Journals (Sweden)

    Mohammed Akli eAYOUB

    2012-06-01

    Full Text Available Since its development, the bioluminescence resonance energy transfer (BRET approach has been extensively applied to study G protein-coupled receptors (GPCRs in real time and in live cells. One of the major aspects of GPCRs investigated in considerable details is their physical coupling to the heterotrimeric G proteins. As a result, new concepts have emerged, but few questions are still a matter of debate illustrating the complexity of GPCR-G protein interactions and coupling. Here, we summarized the recent advances on our understanding of GPCR-G protein coupling based on BRET approaches and supported by other FRET-based studies. We essentially focused on our recent studies in which we addressed the concept of preassembly versus the agonist-dependent interaction between the protease-activated receptor 1 (PAR1 and its cognate G proteins. We discussed the concept of agonist-induced conformational changes within the preassembled PAR1-G protein complexes as well as the critical question how the multiple coupling of PAR1 with two different G proteins, Gi1 and G12, but also -arrestin 1, can be regulated.

  5. Setting up a Bioluminescence Resonance Energy Transfer high throughput screening assay to search for protein/protein interaction inhibitors in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Cyril eCouturier

    2012-09-01

    Full Text Available Each step of the cell life and its response or adaptation to its environment are mediated by a network of protein/protein interactions termed interactome. Our knowledge of this network keeps growing due to the development of sensitive techniques devoted to study these interactions. The bioluminescence resonance energy transfer (BRET technique was primarily developed to allow the dynamic monitoring of protein-protein interactions in living cells, and has widely been used to study receptor activation by intra- or extra-molecular conformational changes within receptors and activated complexes in mammal cells. Some interactions are described as crucial in human pathological processes, and a new class of drugs targeting them has recently emerged. The BRET method is well suited to identify inhibitors of protein-protein interactions and here is described why and how to set up and optimize a High Throughput Screening assay based on BRET to search for such inhibitory compounds. The different parameters to take into account when developing such BRET assays in mammal cells are reviewed to give general guidelines: considerations on the targeted interaction, choice of BRET version, inducibility of the interaction, kinetic of the monitored interaction, and of the BRET reading, influence substrate concentration, number of cells and medium composition used on the Z’ factor, and expected interferences for colored or fluorescent compounds.

  6. Leading coordinate analysis of reaction pathways in proton chain transfer: Application to a two-proton transfer model for the green fluorescent protein

    International Nuclear Information System (INIS)

    The 'leading coordinate' approach to computing an approximate reaction pathway, with subsequent determination of the true minimum energy profile, is applied to a two-proton chain transfer model based on the chromophore and its surrounding moieties within the green fluorescent protein (GFP). Using an ab initio quantum chemical method, a number of different relaxed energy profiles are found for several plausible guesses at leading coordinates. The results obtained for different trial leading coordinates are rationalized through the calculation of a two-dimensional relaxed potential energy surface (PES) for the system. Analysis of the 2-D relaxed PES reveals that two of the trial pathways are entirely spurious, while two others contain useful information and can be used to furnish starting points for successful saddle-point searches. Implications for selection of trial leading coordinates in this class of proton chain transfer reactions are discussed, and a simple diagnostic function is proposed for revealing whether or not a relaxed pathway based on a trial leading coordinate is likely to furnish useful information

  7. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Science.gov (United States)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-02-01

    An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU-PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU-PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU-PVP (6.0 h) film reduced greatly to 0.08 μg/cm2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  8. The lumenal loop M672-P707 of the Menkes protein (ATP7A) transfers copper to peptidylglycine monooxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Otoikhian, Adenike [Oregon Health & Sciences University; Barry, Amanda N. [Los Alamos National Laboratory; Mayfield, Mary [Oregon Health & Science University; Nilges, Mark [Illinois EPR Center; Huang, Yiping [Johns Hopkins University; Lutsenko, Svetlana [Johns Hopkins University; Blackburn, Ninian [Oregon Health & Science University

    2012-05-14

    Copper transfer to cuproproteins located in vesicular compartments of the secretory pathway depends on activity of the copper translocating ATPase (ATP7A or ATP7B) but the mechanism of transfer is largely unexplored. Copper-ATPase ATP7A is unique in having a sequence rich in histidine and methionine residues located on the lumenal side of the membrane. The corresponding fragment binds Cu(I) when expressed as a chimera with a scaffold protein, and mutations or deletions of His and/or Met residues in its sequence inhibit dephosphorylation of the ATPase, a catalytic step associated with copper release. Here we present evidence for a potential role of this lumenal region of ATP7A in copper transfer to cuproenzymes. Both Cu(II) and Cu(I) forms were investigated since the form in which copper is transferred to acceptor proteins is currently unknown. Analysis of Cu(II) using EPR demonstrated that at Cu:P ratios below 1:1, 15N-substituted protein had Cu(II) bound by 4 His residues, but this coordination changed as the Cu(II) to protein ratio increased towards 2:1. XAS confirmed this coordination via analysis of the intensity of outer-shell scattering from imidazole residues. The Cu(II) complexes could be reduced to their Cu(I) counterparts by ascorbate, but here again, as shown by EXAFS and XANES spectroscopy, the coordination was dependent on copper loading. At low copper Cu(I) was bound by a mixed ligand set of His + Met while at higher ratios His coordination predominated. The copper-loaded loop was able to transfer either Cu(II) or Cu(I) to peptidylglycine monooxygenase in the presence of chelating resin, generating catalytically active enzyme in a process that appeared to involve direct interaction between the two partners. The variation of coordination with copper loading suggests copper-dependent conformational change which in turn could act as a signal for regulating copper release by the ATPase pump.

  9. Formation of long-lived radicals on proteins by radical transfer from heme enzymes--a common process?

    DEFF Research Database (Denmark)

    Ostdal, H; Andersen, H J; Davies, Michael Jonathan

    1999-01-01

    Incubation of Fe(III)myoglobin (Fe(III)Mb) with H2O2 in the presence of bovine serum albumin (BSA) has been shown previously to give albumin-derived radicals as a result of radical transfer from myoglobin to BSA. In this study the occurrence of similar processes with peroxidases has been...... for these albumin radicals being located on buried tyrosine residues on the basis of blocking experiments. The effect of protein conformation on radical transfer has been investigated using partial proteolytic digestion prior to protein oxidation. With HRP/H2O2/BSA and Fe(III)Mb/H2O2/BSA increased radical...... concentrations were observed after limited digestion, although this effect was less marked with the HRP/H2O2/BSA system than with Fe(III)Mb/H2O2/BSA, consistent with different modes of radical transfer. More extensive digestion of BSA decreased the radical concentration to levels below those detected with native...

  10. EFFECT OF ADIPOSITY ON PLASMA-LIPID TRANSFER PROTEIN ACTIVITIES - A POSSIBLE LINK BETWEEN INSULIN-RESISTANCE AND HIGH-DENSITY-LIPOPROTEIN METABOLISM

    NARCIS (Netherlands)

    DULLAART, RPF; SLUITER, WJ; DIKKESCHEI, LD; HOOGENBERG, K; VANTOL, A

    1994-01-01

    The mechanisms responsible for the decreased high density lipoprotein (HDL) cholesterol levels associated with obesity and insulin resistance are not well understood. Lecithin: cholesterol acyltransferase (LCAT) and cholesterol ester transfer protein (CETP) are key factors in the esterification of c

  11. Atomic force microscopy study of the adsorption of protein molecules on transferred Langmuir monolayer

    International Nuclear Information System (INIS)

    Ordered protein films have been obtained by the adsorption of protein molecules on a Langmuir monolayer, which had previously formed on a silicon substrate, using the Langmuir-Blodgett and molecular self-organization methods. A mixture of cholesterol with dipalmitoylphosphatidylcholine (DPPC) and a polymer-cellulose acetopivalinate-were used as immobilization materials. Protein molecules (catalase and alkaline phosphatase) immobilized on solid substrates have been investigated by atomic force micros-copy. It was shown that the developed combined technique provides a deposition of homogeneous ultrathin protein films with a high degree of filling.

  12. The VirE2 protein of Agrobacterium tumefaciens: the Yin and Yang of T-DNA transfer.

    Science.gov (United States)

    Duckely, Myriam; Hohn, Barbara

    2003-06-01

    Agrobacterium tumefaciens has evolved a unique mechanism to solve the problem of transferring DNA across five bilayers; the inner and outer membranes of the bacterium, the plasma membrane of the plant cell and the double membrane formed by the nuclear envelope. The two first and two last seem to be mediated by, respectively, the type IV secretion system in Agrobacterium and the nuclear pore complex in the plant cell, but the mechanism by which the transferred DNA (T-DNA) crosses the plant membrane still remains a mystery. New biophysical experiments suggest that, in addition to its established role as a single-stranded DNA (ssDNA)-binding protein, the VirE2 protein forms a channel in the plant membrane allowing the passage of the T-DNA into the cell. Such a role would be reminiscent of translocator molecules secreted by the type III secretion system of pathogenic bacteria and inserting into the host eukaryotic plasma membrane. The implications for the structure of the protein, its regulation and role in vivo are discussed. PMID:12798992

  13. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers

    Science.gov (United States)

    Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, Sangyoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben

    2016-09-01

    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble.

  14. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers.

    Science.gov (United States)

    Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, SangYoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben

    2016-01-01

    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble. PMID:27641327

  15. Förster resonance energy transfer and protein-induced fluorescence enhancement as synergetic multi-scale molecular rulers

    Science.gov (United States)

    Ploetz, Evelyn; Lerner, Eitan; Husada, Florence; Roelfs, Martin; Chung, SangYoon; Hohlbein, Johannes; Weiss, Shimon; Cordes, Thorben

    2016-01-01

    Advanced microscopy methods allow obtaining information on (dynamic) conformational changes in biomolecules via measuring a single molecular distance in the structure. It is, however, extremely challenging to capture the full depth of a three-dimensional biochemical state, binding-related structural changes or conformational cross-talk in multi-protein complexes using one-dimensional assays. In this paper we address this fundamental problem by extending the standard molecular ruler based on Förster resonance energy transfer (FRET) into a two-dimensional assay via its combination with protein-induced fluorescence enhancement (PIFE). We show that donor brightness (via PIFE) and energy transfer efficiency (via FRET) can simultaneously report on e.g., the conformational state of double stranded DNA (dsDNA) following its interaction with unlabelled proteins (BamHI, EcoRV, and T7 DNA polymerase gp5/trx). The PIFE-FRET assay uses established labelling protocols and single molecule fluorescence detection schemes (alternating-laser excitation, ALEX). Besides quantitative studies of PIFE and FRET ruler characteristics, we outline possible applications of ALEX-based PIFE-FRET for single-molecule studies with diffusing and immobilized molecules. Finally, we study transcription initiation and scrunching of E. coli RNA-polymerase with PIFE-FRET and provide direct evidence for the physical presence and vicinity of the polymerase that causes structural changes and scrunching of the transcriptional DNA bubble. PMID:27641327

  16. The integrity of the alpha-helical domain of intestinal fatty acid binding protein is essential for the collision-mediated transfer of fatty acids to phospholipid membranes.

    Science.gov (United States)

    Franchini, G R; Storch, J; Corsico, B

    2008-04-01

    Intestinal FABP (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms of fatty acid transfer to acceptor model membranes. Transfer from IFABP occurs during protein-membrane collisional interactions, while for LFABP transfer occurs by diffusion through the aqueous phase. In addition, transfer from IFABP is markedly faster than from LFABP. The overall goal of this study was to further explore the structural differences between IFABP and LFABP which underlie their large functional differences in ligand transport. In particular, we addressed the role of the alphaI-helix domain in the unique transport properties of intestinal FABP. A chimeric protein was engineered with the 'body' (ligand binding domain) of IFABP and the alphaI-helix of LFABP (alpha(I)LbetaIFABP), and the fatty acid transfer properties of the chimeric FABP were examined using a fluorescence resonance energy transfer assay. The results showed a significant decrease in the absolute rate of FA transfer from alpha(I)LbetaIFABP compared to IFABP. The results indicate that the alphaI-helix is crucial for IFABP collisional FA transfer, and further indicate the participation of the alphaII-helix in the formation of a protein-membrane "collisional complex". Photo-crosslinking experiments with a photoactivable reagent demonstrated the direct interaction of IFABP with membranes and further support the importance of the alphaI helix of IFABP in its physical interaction with membranes. PMID:18284926

  17. Evolution of Type II Antifreeze Protein Genes in Teleost Fish: A Complex Scenario Involving Lateral Gene Transfers and Episodic Directional Selection

    OpenAIRE

    Ulf Sorhannus

    2012-01-01

    I examined hypotheses about lateral transfer of type II antifreeze protein (AFP) genes among “distantly” related teleost fish. The effects of episodic directional selection on amino acid evolution were also investigated. The strict consensus results showed that the type II AFP and type II antifreeze-like protein genes were transferred from Osmerus mordax to Clupea harengus, from the ancestral lineage of the Brachyopsis rostratus—Hemitripterus americanus clade to the ancestor of the Hypomesus ...

  18. Method for Targeted Therapeutic Delivery of Proteins into Cells | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The Protein Expression Laboratory at the National Cancer Institute in Frederick, MD is seeking statements of capability or interest from parties interested in collaborative research to further develop a platform technology for the targeted intra-cellular delivery of proteins using virus-like particles (VLPs).

  19. On the transfer of serum proteins to the rat intestinal juice

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Hansen, G H; Olsen, J;

    1994-01-01

    The in vivo pattern of serum proteins in the rat small-intestinal juice was characterized by crossed immunoelectrophoresis. Immunoglobulins and albumin, alpha-1-antitrypsin, transferrin, and orosomucoid were present. Larger serum proteins were absent (ceruloplasmin, haptoglobin, alpha-1-macroglob......The in vivo pattern of serum proteins in the rat small-intestinal juice was characterized by crossed immunoelectrophoresis. Immunoglobulins and albumin, alpha-1-antitrypsin, transferrin, and orosomucoid were present. Larger serum proteins were absent (ceruloplasmin, haptoglobin, alpha-1...... was seen to leak out into the intestinal lumen from the opened interstitial spaces. A weak labelling was also found in the lysosomal/endosomal-like structures, especially in the crypt enterocytes, indicating pinocytosis of albumin. We conclude that the main reason for the occurrence of certain serum...... proteins in the intestinal juice is a selective passage through the capillary wall followed by passive intercellular transport via delivery of the serum in the interstitial space during disintegration of the enterocytes....

  20. Transfer of Bt-toxin protein gene into maize by high-velocity microprojectile bombardments and regeneration of transgenic plants

    Institute of Scientific and Technical Information of China (English)

    王国英; 杜天兵; 张宏; 谢友菊; 戴景瑞; 米景九; 李太源; 田颖川; 乔利亚; 莽克强

    1995-01-01

    Bt-toxin protein gene was successfully transferred into maize by the microprojectile bombard-ments of cell suspension,embryogenic calli and immature embryos with a Chinese-made particle gun(JQ-700).Although the bombarded embryogenic calli and immature embryos produced less mean transformants per dishthan the cell suspensions,they were the suitable materials for maize transformation because their culture andregeneration have been achieved in most maize cultivars.The evaluation on the resistance of transgenic plantsto corn borer shows the significant difference between them,from highly resistant to susceptible.

  1. Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry

    DEFF Research Database (Denmark)

    Rand, Kasper D; Zehl, Martin; Jensen, Ole Nørregaard;

    2009-01-01

    Because of unparalleled sensitivity and tolerance to protein size, mass spectrometry (MS) has become a popular method for measuring the solution hydrogen (1H/2H) exchange (HX) of biologically relevant protein states. While incorporated deuterium can be localized to different regions by pepsin pro......-phase hydrogen (1H/2H) migration (i.e., hydrogen scrambling). This article demonstrates that ETD can be implemented in a mass spectrometric method to monitor the conformational dynamics of proteins in solution at single-residue resolution....

  2. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites.

    Directory of Open Access Journals (Sweden)

    Isabelle Derré

    2011-06-01

    Full Text Available Bacterial pathogens that reside in membrane bound compartment manipulate the host cell machinery to establish and maintain their intracellular niche. The hijacking of inter-organelle vesicular trafficking through the targeting of small GTPases or SNARE proteins has been well established. Here, we show that intracellular pathogens also establish direct membrane contact sites with organelles and exploit non-vesicular transport machinery. We identified the ER-to-Golgi ceramide transfer protein CERT as a host cell factor specifically recruited to the inclusion, a membrane-bound compartment harboring the obligate intracellular pathogen Chlamydia trachomatis. We further showed that CERT recruitment to the inclusion correlated with the recruitment of VAPA/B-positive tubules in close proximity of the inclusion membrane, suggesting that ER-Inclusion membrane contact sites are formed upon C. trachomatis infection. Moreover, we identified the C. trachomatis effector protein IncD as a specific binding partner for CERT. Finally we showed that depletion of either CERT or the VAP proteins impaired bacterial development. We propose that the presence of IncD, CERT, VAPA/B, and potentially additional host and/or bacterial factors, at points of contact between the ER and the inclusion membrane provides a specialized metabolic and/or signaling microenvironment favorable to bacterial development.

  3. A vertebrate model for the study of lipid binding/transfer protein function: conservation of OSBP-related proteins between zebrafish and human.

    Science.gov (United States)

    Zhou, You; Wohlfahrt, Gerd; Paavola, Jere; Olkkonen, Vesa M

    2014-04-11

    Oxysterol-binding protein (OSBP) and OSBP-related (ORP) or OSBP-like (OSBPL) proteins constitute a family of lipid-binding/transfer proteins (LTPs) present in eukaryotes from yeast to man. The mechanisms of ORP function have remained incompletely understood. However, several ORPs are present at membrane contact sites and act as either lipid transporters or sensors that control lipid metabolism, cell signaling, and vesicle transport. Zebrafish, Danio rerio, has gained increasing popularity as a model organism in developmental biology, human disease, toxicology, and drug discovery. However, LTPs in the fish are thus far unexplored. In this article we report a series of bioinformatic analyses showing that the OSBPL gene family is highly conserved between the fish and human. The OSBPL subfamily structure is markedly similar between the two organisms, and all 12 human genes have orthologs, designated osbpl and located on 11 chromosomes in D. rerio. Interestingly, osbpl2 and osbpl3 are present as two closely related homologs (a and b), due to gene duplication events in the teleost lineage. Moreover, the domain structures of the distinct ORP proteins are almost identical between zebrafish and man, and molecular modeling in the present study suggests that ORD liganding by phosphatidylinositol-4-phosphate (PI4P) is a feature conserved between yeast Osh3p, human ORP3, and zebrafish Osbpl3. The present analysis identifies D. rerio as an attractive model to study the functions of ORPs in vertebrate development and metabolism. PMID:24326072

  4. Effects of alpha-tocopherol on fracture resistance after endodontic treatment, bleaching and restoration

    Directory of Open Access Journals (Sweden)

    Keren Cristina Fagundes JORDÃO-BASSO

    2016-01-01

    Full Text Available Abstract This study evaluated the effects of 10% alphatocopherol on the fracture resistance of endodontically treated teeth subjected to tooth bleaching with hydrogen peroxide and immediately restored with composite resin. Fifty bovine incisors were selected, including 10 sound teeth that constituted the control group (G1 (C. The remaining 40 teeth, which were endodontically treated, were divided into four groups (n = 10: G2 (CR, consisting of teeth immediately restored with composite resin; G3 (HP + CR, consisting of teeth subjected to tooth bleaching with 38% hydrogen peroxide and immediately restored with composite resin; G4 (HP + SA + CR, which received treatment similar to that used for G3, but with 10% sodium ascorbate gel applied after the bleaching protocol; and G5 (HP + AT + CR, which was similar to G4 but included 10% alphatocopherol gel as an antioxidant. After 24 h, composite restorations were performed, and teeth were subjected to a fracture resistance test at a speed of 0.5 mm/min in an electromechanical testing machine. The axial force was applied with an angle of incidence of 135° relative to the long axis of the root. Data were subjected to ANOVA and Tukey tests (p = 0.05. G1 exhibited the highest fracture resistance (p < 0.05. No significant differences among the other experimental groups were observed. The 10% sodium ascorbate and 10% alphatocopherol gels did not improve the fracture resistance of endodontically treated teeth subjected to bleaching with 38% hydrogen peroxide.

  5. Alpha-tocopherol concentration in serum and colostrum of mothers with gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Fernanda Barros S. Resende

    2014-06-01

    Full Text Available OBJECTIVE: To evaluate and compare the levels of α-tocopherol in colostrum and in the serum of healthy and diabetic mothers.METHODS: This cross-sectional study enrolled 51 volunteer mothers, 20 with the diagnosis of gestational diabetes mellitus and 31 without associated diseases. Serum and colostrum samples were collected in fasting in the immediate postpartum period and α-tocopherol was analyzed by high performance liquid chromatography (HPLC. In order to define the nutritional status of vitamin E, the cutoff point for the serum (697.7µg/dL was adopted. Student's t-test for independent variables compared the average concentrations of α-tocopherol in the serum and in the colostrum between control and gestational diabetes mellitus groups. Pearson's correlation was used to assess the relationship between the concentration of α-tocopherol in serum and colostrum for both groups. Differences were considered significant when p<0.05.RESULTS: The α-tocopherol concentration in colostrum was 1,483.1±533.8µg/dL for Control Group and 1,368.8±681.8µg/dL for diabetic women, without differences between groups (p=0.50. However, α-tocopherol concentration in the serum was 1,059.5±372.7µg/dL in the Control Group and 1,391.4±531.5µg/dL in the diabetic one (p<0.01. No correlation was found between the concentration of α-tocopherol in the serum and in the colostrum for control and diabetic groups.CONCLUSIONS: The groups had adequate nutritional status of vitamin E. Gestational diabetes was not associated with changes in α-tocopherol concentration in colostrum.

  6. Alpha-Tocopherol Counteracts the Cytotoxicity Induced by Ochratoxin A in Primary Porcine Fibroblasts

    DEFF Research Database (Denmark)

    Fusi, Elenora; Rebucci, Raffaella; Pecorini, Chiara;

    2010-01-01

    The aims of the current study were to determine the half-lethal concentration of ochratoxin A (OTA) as well as the levels of lactate dehydrogenase release and DNA fragmentation induced by OTA in primary porcine fibroblasts, and to examine the role of α-tocopherol in counteracting its toxicity....... Cells showed a dose-, time- and origin-dependent (ear vs. embryo) sensitivity to ochratoxin A. Pre-incubation for 3 h with 1 nM α-tocopherol significantly (P

  7. Rectal administration of d-alpha tocopherol for active ulcerative colitis: A preliminary report

    Institute of Scientific and Technical Information of China (English)

    Seyed Amir Mirbagheri; Behtash Ghazi Nezami; Solmaz Assa; Mannan Hajimahmoodi

    2008-01-01

    AIM: To investigate the anti-oxidant and anti-neutrophil recruitment effects of rectal d-alpha (d-α) tocopherol administration on mild and moderately active ulcerative colitis (UC).METHODS: Fifteen patients with mild and moderately active ulcerative colitis were enrolled in an open-label study of d-α tocopherol enema (8000 U/d) for 12 wk. All patients were receiving concomitant therapy with 5-aminosalicylic acid derivatives (5-ASA) and/or immunomodulator medications. Endoscopic evaluation was performed at baseline and after 4th and 12th weeks. Disease activity was measured with the Mayo disease activity index (DAI) and remission was defined as DAI of≤2 with no blood in stool. Clinical response was defined as a DAI reduction of≥2.RESULTS: At the end of 12th week, the average DAI score significantly decreased compared to the beginning of the study (2.3±0.37 vs 8±0.48, P < 0.0001). One patient was withdrawn after 3 wk for being unavailable to follow-up. On the 4th week of therapy, 12 patients showed clinical response, 3 of whom (21.4%) achieving remission. After 12 wk, all 14 patients responded clinically to the therapy and remission was induced in 9 of them (64%). No patient reported adverse events or was hospitalized due to worsened disease activity.CONCLUSION: This preliminary report suggests that rectal d-α tocopherol may represent a novel therapy for mild and moderately active UC. The observed results might be due to the anti-inflammatory and anti-oxidative properties of vitamin E.

  8. Alpha -tocopherol supplementation on chromium toxicity : a study on rat liver and kidney cell membrane

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Membrane damage is one of the important consequence of chromium, an environmental toxicant, to produce cytotoxicity. α-tocopherol, a membrane protectant can be used to reduce the chromium-induced membrane damage. In the present study, the impact of chromium in presence and absence of α-tocopherol was studied on plasma membrane of liver and kidney in male Wistar rats (80 - 100g body weight). Significant increase in membrane cholesterol level as well as significant decrease in membrane phospholipid level in chromium exposed ( 0.8 mg /100g body weight/d, i.p., for 4 weeks) animals suggest structural alteration of both liver and kidney plasma memebrane. The alkaline phosphatase, total ATPase and Na+-K+-ATPase activities of plasma membrane were significantly decreased in both liver and kidney after chromium treatment. However, α-tocopherol (30 mg / 100g diet) supplementation can restrict the changes in these membrane-bound enzyme activities. Thus, the usefulness of dietary supplementation of α-tocopherol to restrain the chromium-induced membrane damage is suggested.

  9. Abiotic stress modifies the synthesis of alpha-tocopherol and beta-carotene in phytoplankton species.

    Science.gov (United States)

    Häubner, Norbert; Sylvander, Peter; Vuori, Kristiina; Snoeijs, Pauline

    2014-08-01

    We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants α-tocopherol (vitamin E) and β-carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe-ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K-0591, both good producers of this compound, α-tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv /Fm ). On the other hand, β-carotene accumulation was positively affected by higher Fv /Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K-0591 and R. salina SCCAP K-0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α-tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β-carotene performs immediate photo-oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short-term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α-tocopherol and β-carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo-synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large-scale environmental changes, such as climate change, may have serious consequences for aquatic food webs. PMID:26988459

  10. Alpha-tocopherol ameliorates experimental autoimmune encephalomyelitis through the regulation of Th1 cells

    Directory of Open Access Journals (Sweden)

    Haikuo Xue

    2016-05-01

    Full Text Available Objective(s: Multiple sclerosis (MS is a serious neurological autoimmune disease, it commonly affects young adults. Vitamin E (Vit E is an important component of human diet with antioxidant activity, which protects the body’s biological systems. In order to assess the effect of Vit E treatment on this autoimmune disease, we established experimental autoimmune encephalomyelitis (EAE, the animal model of MS, and treated EAE with α-tocopherol (AT which is the main content of Vit E. Materials and Methods:Twenty C57BL/6 adult female mice were used and divided into two groups randomly. EAE was induced with myelin oligodendrocyte glycoprotein (MOG, and one group was treated with AT, at a dose of 100 mg/kg on the 3th day post-immunization with MOG, the other group was treated with 1% alcohol. Mice were euthanized on day 14, post-immunization, spleens were removed for assessing splenocytes proliferation and cytokine profile, and spinal cords were dissected to assess the infiltration of inflammatory cells in spinal cord. Results:AT was able to attenuate the severity of EAE and delay the disease progression. H&E staining and fast blue staining indicated that AT reduced the inflammation and the demyelination reaction in the spinal cord. Treatment with AT significantly decreased the proliferation of splenocytes. AT also inhibited the production of IFN-γ (Th1 cytokine, though the other cytokines were only affected slightly. Conclusion:According to the results, AT ameliorated EAE, through suppressing the proliferation of T cells and the Th1 response. AT may be used as a potential treatment for MS.

  11. Maturity and storage influence on the apple (Malus domestica) allergen Mal d 3, a nonspecific lipid transfer protein.

    Science.gov (United States)

    Sancho, Ana I; Foxall, Robert; Rigby, Neil M; Browne, Thomas; Zuidmeer, Laurian; van Ree, Ronald; Waldron, Keith W; Mills, E N Clare

    2006-07-12

    Consumption of apples can provoke severe allergic reactions, in susceptible individuals, due to the presence of the allergen Mal d 3, a nonspecific lipid transfer protein, found largely in the fruit skin. Levels of Mal d 3 were determined in peel as a function of apple cultivar, position of the fruit growing on the tree, apple maturity, and postharvest storage by ELISA. As the apples mature, Mal d 3 levels increased, although the rate was dependent on cultivar and tree position. During storage, levels of Mal d 3 decreased in all cultivars (cvs. Cox, Jonagored, and Gala), the rate of overall decrease being greatest under controlled atmosphere conditions. There was no correlation between Mal d 3 levels and total apple peel protein, indicating specific alterations in Mal d 3 expression. Thus pre- and postharvest treatments (i.e., storage) can modify the allergen load in apple peel, the highest levels being found in overly mature and freshly harvested fruits.

  12. Electrochemiluminescence resonance energy transfer between graphene quantum dots and graphene oxide for sensitive protein kinase activity and inhibitor sensing.

    Science.gov (United States)

    Liang, Ru-Ping; Qiu, Wei-Bin; Zhao, Hui-Fang; Xiang, Cai-Yun; Qiu, Jian-Ding

    2016-01-21

    Herein, a novel electrochemiluminescence resonance energy transfer (ECL-RET) biosensor using graphene quantum dots (GQDs) as donor and graphene oxide (GO) as acceptor for monitoring the activity of protein kinase was presented for the first time. Anti-phosphoserine antibody conjugated graphene oxide (Ab-GO) nonocomposite could be captured onto the phosphorylated peptide/GQDs modified electrode surface through antibody-antigen interaction in the presence of casein kinase II (CK2) and adenosine 5'-triphosphate (ATP), resulting in ECL from the GQDs quenching by closely contacting GO. This ECL quenching degree was positively correlated with CK2 activity. Therefore, on the basis of ECL-RET between GQDs and GO, the activity of protein kinase can be detected sensitively. This biosensor can also be used for quantitative analysis CK2 activity in serum samples and qualitative screening kinase inhibition, indicating the potential application of the developed method in biochemical fundamental research and clinical diagnosis.

  13. Novel Methods To Detect Membrane Proteins | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Institute on Aging's Laboratory of Cardiovascular Sciences is seeking statements of capability or interest from parties interested in collaborative research to further develop, evaluate, or commercialize modules to aid the study of mammalian membrane proteins.

  14. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry

    OpenAIRE

    Syka, John E. P.; Coon, Joshua J.; Schroeder, Melanie J.; Shabanowitz, Jeffrey; Hunt, Donald F.

    2004-01-01

    Peptide sequence analysis using a combination of gas-phase ion/ion chemistry and tandem mass spectrometry (MS/MS) is demonstrated. Singly charged anthracene anions transfer an electron to multiply protonated peptides in a radio frequency quadrupole linear ion trap (QLT) and induce fragmentation of the peptide backbone along pathways that are analogous to those observed in electron capture dissociation. Modifications to the QLT that enable this ion/ion chemistry are presented, and automated ac...

  15. Functional Virus-Based Polymer-Protein Nanoparticles by Atom Transfer Radical Polymerization

    OpenAIRE

    Pokorski, Jonathan K.; Breitenkamp, Kurt; Finn, M. G.

    2011-01-01

    Viruses and virus-like particles (VLPs) are useful tools in biomedical research. Their defined structural attributes make them attractive platforms for engineered interactions over large molecular surface areas. In this report, we describe the use of VLPs as multivalent macroinitiators for atom transfer radical polymerization (ATRP). The introduction of chemically reactive monomers during polymerization provides a robust platform for post-synthetic modification via the copper-catalyzed azide-...

  16. Photoabsorption and resonance energy transfer phenomenon in CdTe-protein bioconjugates: an insight into QD-biomolecular interactions.

    Science.gov (United States)

    Vinayaka, Aaydha C; Thakur, Munna S

    2011-05-18

    Luminescent quantum dots (QDs) possess unique photophysical properties, which are advantageous in the development of new generation robust fluorescent probes based on Forster resonance energy transfer (FRET) phenomena. Bioconjugation of these QDs with biomolecules create hybrid materials having unique photophysical properties along with biological activity. The present study is aimed at characterizing QD bioconjugates in terms of optical behavior. Colloidal CdTe QDs capped with 3-mercaptopropionic acid (MPA) were conjugated to different proteins by the carbodiimide protocol using N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride (EDC) and a coupling reagent like N-hydroxysuccinimide (NHS). The photoabsorption of these QD-protein bioconjugates demonstrated an effective coupling of electronic orbitals of constituents. A linear variation in absorbance of bioconjugates at 330 nm proportionate to conjugation suggests a covalent attachment as confirmed by gel electrophoresis. A red shift in the fluorescence of bovine serum albumin (BSA) due to conjugation inferred a decrease in Stokes shift and solvent polarization effects on protein. A proportionate quenching in BSA fluorescence followed by an enhancement of QD fluorescence point toward nonradiative dipolar interactions. Further, reduction in photobleaching of BSA suggests QD-biomolecular interactions. Bioconjugation has significantly influenced the photoabsorption spectrum of QD bioconjugates suggesting the formation of a possible protein shell on the surface of QD. The experimental result suggests that these bioconjugates can be considered nanoparticle (NP) superstructures for the development of a new generation of robust nanoprobes. PMID:21452896

  17. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins.

    Science.gov (United States)

    Chan, Yuk-Kit; Zhang, Huoming; Liu, Pei; Tsao, Sai-Wah; Lung, Maria Li; Mak, Nai-Ki; Ngok-Shun Wong, Ricky; Ying-Kit Yue, Patrick

    2015-10-15

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1 and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future.

  18. Proteomic analysis of exosomes from nasopharyngeal carcinoma cell identifies intercellular transfer of angiogenic proteins

    KAUST Repository

    Chan, Yuk-kit

    2015-04-01

    Exosomes, a group of secreted extracellular nanovesicles containing genetic materials and signaling molecules, play a critical role in intercellular communication. During tumorigenesis, exosomes have been demonstrated to promote tumor angiogenesis and metastasis while their biological functions in nasopharyngeal carcinoma (NPC) are poorly understood. In this study, we focused on the role of NPC-derived exosomes on angiogenesis. Exosomes derived from the NPC C666-1 cells and immortalized nasopharyngeal epithelial cells (NP69 and NP460) were isolated using ultracentrifugation. The molecular profile and biophysical characteristics of exosomes were verified by Western blotting, sucrose density gradient, and electron microscopy. We showed that the C666-1 exosomes (10 and 20 μg/ml) could significantly increase the tubulogenesis, migration and invasion of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner. Subsequently, an iTRAQ-based quantitative proteomics was used to identify the differentially expressed proteins in C666-1 exosomes. Among the 640 identified proteins, 51 and 89 proteins were considered as up- and down-regulated (≥ 1.5-fold variations) in C666-1 exosomes compared to the normal counterparts, respectively. As expected, pro-angiogenic proteins including intercellular adhesion molecule-1 (ICAM-1) and CD44 variant isoform 5 (CD44v5) are among the up-regulated proteins, whereas angio-suppressive protein, thrombospondin-1 (TSP-1) was down-regulated in C666-1 exosomes. Further confocal microscopic study and Western blotting clearly demonstrated that the alteration of ICAM-1, and TSP-1 expressions in recipient HUVECs are due to internalization of exosomes. Taken together, these data strongly indicated the critical roles of identified angiogenic proteins in the involvement of exosomes-induced angiogenesis, which could potentially be developed as therapeutic targets in future. This article is protected by copyright. All rights reserved.

  19. The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Francesco Baldini

    2013-10-01

    Full Text Available Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male-female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria.

  20. The Interaction between a Sexually Transferred Steroid Hormone and a Female Protein Regulates Oogenesis in the Malaria Mosquito Anopheles gambiae

    Science.gov (United States)

    Baldini, Francesco; Gabrieli, Paolo; South, Adam; Valim, Clarissa; Mancini, Francesca; Catteruccia, Flaminia

    2013-01-01

    Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria. PMID:24204210

  1. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET).

    Science.gov (United States)

    Lerner, Eitan; Ploetz, Evelyn; Hohlbein, Johannes; Cordes, Thorben; Weiss, Shimon

    2016-07-01

    Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems. PMID:27184889

  2. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET).

    Science.gov (United States)

    Lerner, Eitan; Ploetz, Evelyn; Hohlbein, Johannes; Cordes, Thorben; Weiss, Shimon

    2016-07-01

    Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.

  3. BraLTP1, a Lipid Transfer Protein Gene Involved in Epicuticular Wax Deposition, Cell Proliferation and Flower Development in Brassica napus

    OpenAIRE

    Liu, Fang(Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China); Xiong, Xiaojuan; Wu, Lei; Fu, Donghui; Hayward, Alice; Zeng, Xinhua; Cao, Yinglong; Yuhua WU; Li, Yunjing; Wu, Gang

    2014-01-01

    Plant non-specific lipid transfer proteins (nsLTPs) constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and red...

  4. Ameliorated stress related proteins are associated with improved cardiac function by sarcoplasmic reticulum calcium ATPase gene transfer in heart failure

    Institute of Scientific and Technical Information of China (English)

    Zhi-Qing Fu; Xiao-Ying Li; Xiao-Chun Lu; Ya-Fei Mi; Tao Liu; Wei-Hua Ye

    2012-01-01

    Background Previous studies showed that overexpression of sarco-endoplasmic reticulum calcium ATPase (SERCA2a) in a variety of heart failure (HF) models was associated with greatly enhanced cardiac performance. However, it still undefined the effect of SERCA2a overexpression on the systemic inflammatory response and neuro-hormonal factors. Methods A rapid right ventricular pacing model of experimental HF was used in beagles. Then the animals underwent recombinant adeno-associated virus 1 (rAAV1) mediated gene transfection by direct intra-myocardium injection. HF animals were randomized to receive the SERCA2a gene, enhanced green fluorescent protein (control) gene, or equivalent phosphate buffered saline. Thirty days after gene delivery, the cardiac function was evaluated by echocardiographic testing. The protein level of SERCA2a was measured by western blotting. The proteomic analysis of left ventricular (LV) sample was determined using two-dimensional (2-D) gel electrophoresis and MALDI-TOF-MS. The serum levels of the systemic inflammatory and neuro-hormonal factors were assayed using radioimmunoassay kits. Results The cardiac function improved after SERCA- 2a gene transfer due to the significantly increased SERCA2a protein level. Beagles treated with SERCA2a had significantly decreased serum levels of the inflammatory markers (interleukin-6 and tumor necrosis factor-α) and neuro-hormonal factors (brain natriuretic peptide, endothelin-1 and angiotensin Ⅱ) compared with HF animals. The myocardial proteomic analysis showed that haptoglobin heavy chain, heat shock protein (alpha-crystallin-related, B6) were down-regulated, and galectin-1 was up-regulated in SERCA2a group compared with HF group, companied by up-regulated contractile proteins and NADH dehydrogenase. Conclusions These findings demonstrate that regional intramyocardial injections of rAAV1-SERCA2a vectors may improve global LV function, correlating with reverse activation of the systemic inflammatory

  5. Horizontal gene transfer of zinc and non-zinc forms of bacterial ribosomal protein S4

    OpenAIRE

    Luthey-Schulten Zaida; Roberts Elijah; Chen Ke

    2009-01-01

    Abstract Background The universal ribosomal protein S4 is essential for the initiation of small subunit ribosomal assembly and translational accuracy. Being part of the information processing machinery of the cell, the gene for S4 is generally thought of as being inherited vertically and has been used in concatenated gene phylogenies. Here we report the evolution of ribosomal protein S4 in relation to a broad sharing of zinc/non-zinc forms of the gene and study the scope of horizontal gene tr...

  6. Detection of thrombus size and protein content by ex vivo magnetization transfer and diffusion weighted MRI

    Directory of Open Access Journals (Sweden)

    Phinikaridou Alkystis

    2012-06-01

    Full Text Available Abstract Background To utilize a rabbit model of plaque disruption to assess the accuracy of different magnetic resonance sequences [T1-weighted (T1W, T2-weighted (T2W, magnetization transfer (MT and diffusion weighting (DW] at 11.7 T for the ex vivo detection of size and composition of thrombus associated with disrupted plaques. Methods Atherosclerosis was induced in the aorta of male New Zealand White rabbits (n = 17 by endothelial denudation and high-cholesterol diet. Subsequently, plaque disruption was induced by pharmacological triggering. Segments of infra-renal aorta were excised fixed in formalin and examined by ex vivo magnetic resonance imaging (MRI at 11.7 T and histology. Results MRI at 11.7 T showed that: (i magnetization transfer contrast (MTC and diffusion weighted images (DWI detected thrombus with higher sensitivity compared to T1W and T2W images [sensitivity: MTC = 88.2%, DWI = 76.5%, T1W = 66.6% and T2W = 43.7%, P P (ii MTC and DWI provided a more accurate detection of thrombus area with histology as the gold-standard [underestimation of 6% (MTC and 17.6% (DWI compared to an overestimation of thrombus area of 53.7% and 46.4% on T1W and T2W images, respectively]; (iii the percent magnetization transfer rate (MTR correlated with the fibrin (r = 0.73, P = 0.003 and collagen (r = 0.9, P = 0.004 content of the thrombus. Conclusions The conspicuity of the thrombus was increased on MTC and DW compared to T1W and T2W images. Changes in the %MTR and apparent diffusion coefficient can be used to identify the organization stage of the thrombus.

  7. Bid, a widely expressed proapoptotic protein of the Bcl-2 family, displays lipid transfer activity

    DEFF Research Database (Denmark)

    Esposti, M D; Erler, Janine Terra; Hickman, J A;

    2001-01-01

    Bid is an abundant proapoptotic protein of the Bcl-2 family that is crucial for the induction of death receptor-mediated apoptosis in primary tissues such as liver. Bid action has been proposed to involve the relocation of its truncated form, tBid, to mitochondria to facilitate the release of apo...

  8. Web-based computational chemistry education with CHARMMing III: Reduction potentials of electron transfer proteins.

    Directory of Open Access Journals (Sweden)

    B Scott Perrin

    2014-07-01

    Full Text Available A module for fast determination of reduction potentials, E°, of redox-active proteins has been implemented in the CHARMM INterface and Graphics (CHARMMing web portal (www.charmming.org. The free energy of reduction, which is proportional to E°, is composed of an intrinsic contribution due to the redox site and an environmental contribution due to the protein and solvent. Here, the intrinsic contribution is selected from a library of pre-calculated density functional theory values for each type of redox site and redox couple, while the environmental contribution is calculated from a crystal structure of the protein using Poisson-Boltzmann continuum electrostatics. An accompanying lesson demonstrates a calculation of E°. In this lesson, an ionizable residue in a [4Fe-4S]-protein that causes a pH-dependent E° is identified, and the E° of a mutant that would test the identification is predicted. This demonstration is valuable to both computational chemistry students and researchers interested in predicting sequence determinants of E° for mutagenesis.

  9. Direct transfer of viral and cellular proteins from varicella-zoster virus-infected non-neuronal cells to human axons.

    Directory of Open Access Journals (Sweden)

    Sergei Grigoryan

    Full Text Available Varicella Zoster Virus (VZV, the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk.

  10. The protein's role in triplet energy transfer in bacterial reaction centers.

    Energy Technology Data Exchange (ETDEWEB)

    Laible, P. D.

    1998-08-14

    When photosynthetic organisms are subjected to high-light conditions in nature, electron transfer becomes blocked as the rate of conversion of light into charge-separated states in the reaction center (RC) exceeds the capacity of the soluble carriers involved in cyclic electron transfer. In that event, a well-characterized T{sub 0}-polarized triplet state {sup T}P, is formed on the primary donor, P, from the P{sup +}H{sub A}{sup {minus}} state (reviewed in [1]). In an aerobic or semi-aerobic environment, the major role of the carotenoid (C), also bound by the RC, is to quench {sup T}P prior to its sensitization of the {sup 1}{Delta}{sub g} singlet state of oxygen--a potentially damaging biological oxidant. The carotenoid performs this function efficiently in most bacterial RCs by rapidly accepting the triplet state from P and dissipating this excited-state energy into heat through internal conversion. The lowest-lying triplet states of P and the carotenoid are sufficiently different that {sup T}P can promote oxygen to its excited singlet state whereas {sup T}C can quench the {sup T}P state (reviewed in [2]).

  11. Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Guescini, M. [Department of Biomolecular Sciences, University of Urbino ' Carlo Bo' , 61029 Urbino (Italy); Leo, G.; Genedani, S. [Department Biomedical Sciences, University of Modena and Reggio Emilia (Italy); Carone, C. [Department Biomedical Sciences, University of Modena and Reggio Emilia (Italy); IRCCS San Camillo Lido, Venezia (Italy); Pederzoli, F. [Department Biomedical Sciences, University of Modena and Reggio Emilia (Italy); Ciruela, F. [Departament Patologia i Terapeutica Experimental, Universitat de Barcelona (Spain); Guidolin, D. [Department of Human Anatomy and Physiology, University of Padua (Italy); Stocchi, V.; Mantuano, M. [Department of Biomolecular Sciences, University of Urbino ' Carlo Bo' , 61029 Urbino (Italy); Borroto-Escuela, D.O.; Fuxe, K. [Department of Neuroscience, Karolinska Institutet, Stockholm (Sweden); Agnati, L.F., E-mail: luigiagnati@tin.it [IRCCS San Camillo Lido, Venezia (Italy)

    2012-03-10

    Recent evidence shows that cells exchange collections of signals via microvesicles (MVs) and tunneling nano-tubes (TNTs). In this paper we have investigated whether in cell cultures GPCRs can be transferred by means of MVs and TNTs from a source cell to target cells. Western blot, transmission electron microscopy and gene expression analyses demonstrate that A{sub 2A} and D{sub 2} receptors are present in released MVs. In order to further demonstrate the involvement of MVs in cell-to-cell communication we created two populations of cells (HEK293T and COS-7) transiently transfected with D{sub 2}R-CFP or A{sub 2A}R-YFP. These two types of cells were co-cultured, and FRET analysis demonstrated simultaneously positive cells to the D{sub 2}R-CFP and A{sub 2A}R-YFP. Fluorescence microscopy analysis also showed that GPCRs can move from one cell to another also by means of TNTs. Finally, recipient cells pre-incubated for 24 h with A{sub 2A}R positive MVs were treated with the adenosine A{sub 2A} receptor agonist CGS-21680. The significant increase in cAMP accumulation clearly demonstrated that A{sub 2A}Rs were functionally competent in target cells. These findings demonstrate that A{sub 2A} receptors capable of recognizing and decoding extracellular signals can be safely transferred via MVs from source to target cells.

  12. Speed associated with plasma pH, oxygen content, total protein and urea in an 80 km race.

    Science.gov (United States)

    Hoffman, R M; Hess, T M; Williams, C A; Kronfeld, D S; Griewe-Crandell, K M; Waldron, J E; Graham-Thiers, P M; Gay, L S; Splan, R K; Saker, K E; Harris, P A

    2002-09-01

    To test the hypothesis that endurance performance may be related quantitatively to changes in blood, we measured selected blood variables then determined their reference ranges and associations with speed during an 80 km race. The plan had 46 horses in a 2 x 2 factorial design testing a potassium-free electrolyte mix and a vitamin supplement. Blood samples were collected before the race, at 21, 37, 56 and 80 km, and 20 min after finishing, for assay of haematocrit, plasma pH, pO2, pCO2, [Na+], [K+], [Ca++], [Mg++], [Cl-], lactate, glucose, urea, cortisol, alpha-tocopherol, ascorbate, creatine kinase, aspartate amino transferase, lipid hydroperoxides, total protein, albumin and creatinine, and erythrocyte glutathione and glutathione peroxidase. Data from 34 finishers were analysed statistically. Reference ranges for resting and running horses were wide and overlapping and, therefore, limiting with respect to evaluation of individual horses. Speed correlations were most repeatable, with variables reflecting blood oxygen transport (enabling exercise), acidity and electrolytes (limiting exercise) and total protein (enabling then, perhaps, limiting). Stepwise regressions also included plasma urea concentration (limiting). The association of speed with less plasma acidity and urea suggests the potential for fat adaptation and protein restriction in endurance horses, as found previously in Arabians performing repeated sprints. Conditioning horses fed fat-fortified and protein-restricted diets may not only improve performance but also avoid grain-associated disorders.

  13. Ready to use bioinformatics analysis as a tool to predict immobilisation strategies for protein direct electron transfer (DET).

    Science.gov (United States)

    Cazelles, R; Lalaoui, N; Hartmann, T; Leimkühler, S; Wollenberger, U; Antonietti, M; Cosnier, S

    2016-11-15

    Direct electron transfer (DET) to proteins is of considerable interest for the development of biosensors and bioelectrocatalysts. While protein structure is mainly used as a method of attaching the protein to the electrode surface, we employed bioinformatics analysis to predict the suitable orientation of the enzymes to promote DET. Structure similarity and secondary structure prediction were combined underlying localized amino-acids able to direct one of the enzyme's electron relays toward the electrode surface by creating a suitable bioelectrocatalytic nanostructure. The electro-polymerization of pyrene pyrrole onto a fluorine-doped tin oxide (FTO) electrode allowed the targeted orientation of the formate dehydrogenase enzyme from Rhodobacter capsulatus (RcFDH) by means of hydrophobic interactions. Its electron relays were directed to the FTO surface, thus promoting DET. The reduction of nicotinamide adenine dinucleotide (NAD(+)) generating a maximum current density of 1μAcm(-2) with 10mM NAD(+) leads to a turnover number of 0.09electron/s/molRcFDH. This work represents a practical approach to evaluate electrode surface modification strategies in order to create valuable bioelectrocatalysts.

  14. Determining protein complex structures based on a Bayesian model of in vivo Förster resonance energy transfer (FRET) data.

    Science.gov (United States)

    Bonomi, Massimiliano; Pellarin, Riccardo; Kim, Seung Joong; Russel, Daniel; Sundin, Bryan A; Riffle, Michael; Jaschob, Daniel; Ramsden, Richard; Davis, Trisha N; Muller, Eric G D; Sali, Andrej

    2014-11-01

    The use of in vivo Förster resonance energy transfer (FRET) data to determine the molecular architecture of a protein complex in living cells is challenging due to data sparseness, sample heterogeneity, signal contributions from multiple donors and acceptors, unequal fluorophore brightness, photobleaching, flexibility of the linker connecting the fluorophore to the tagged protein, and spectral cross-talk. We addressed these challenges by using a Bayesian approach that produces the posterior probability of a model, given the input data. The posterior probability is defined as a function of the dependence of our FRET metric FRETR on a structure (forward model), a model of noise in the data, as well as prior information about the structure, relative populations of distinct states in the sample, forward model parameters, and data noise. The forward model was validated against kinetic Monte Carlo simulations and in vivo experimental data collected on nine systems of known structure. In addition, our Bayesian approach was validated by a benchmark of 16 protein complexes of known structure. Given the structures of each subunit of the complexes, models were computed from synthetic FRETR data with a distance root-mean-squared deviation error of 14 to 17 Å. The approach is implemented in the open-source Integrative Modeling Platform, allowing us to determine macromolecular structures through a combination of in vivo FRETR data and data from other sources, such as electron microscopy and chemical cross-linking.

  15. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana.

    Science.gov (United States)

    Safi, Hela; Saibi, Walid; Alaoui, Meryem Mrani; Hmyene, Abdelaziz; Masmoudi, Khaled; Hanin, Moez; Brini, Faïçal

    2015-04-01

    Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, we report the isolation and characterization of a novel gene TdLTP4 encoding an LTP protein from durum wheat [Triticum turgidum L. subsp. Durum Desf.]. Molecular Phylogeny analyses of wheat TdLTP4 gene showed a high identity to other plant LTPs. Predicted three-dimensional structural model revealed the presence of six helices and nine loop turns. Expression analysis in two local durum wheat varieties with marked differences in salt and drought tolerance, revealed a higher transcript accumulation of TdLTP4 under different stress conditions in the tolerant variety, compared to the sensitive one. The overexpression of TdLTP4 in Arabidopsis resulted in a promoted plant growth under various stress conditions including NaCl, ABA, JA and H2O2 treatments. Moreover, the LTP-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants. Furthermore, detached leaves from transgenic Arabidopsis expressing TdLTP4 gene showed enhanced fungal resistance against Alternaria solani and Botrytis cinerea. Together, these data provide the evidence for the involvement of TdLTP4 gene in the tolerance to both abiotic and biotic stresses in crop plants. PMID:25703105

  16. Genomic organization and reproductive regulation of a large lipid transfer protein in the varroa mite, Varroa destructor (Anderson & Trueman).

    Science.gov (United States)

    Cabrera, A R; Shirk, P D; Duehl, A J; Donohue, K V; Grozinger, C M; Evans, J D; Teal, P E A

    2013-10-01

    The complete genomic region and corresponding transcript of the most abundant protein in phoretic varroa mites, Varroa destructor (Anderson & Trueman), were sequenced and have homology with acarine hemelipoglycoproteins and the large lipid transfer protein (LLTP) super family. The genomic sequence of VdLLTP included 14 introns and the mature transcript coded for a predicted polypeptide of 1575 amino acid residues. VdLLTP shared a minimum of 25% sequence identity with acarine LLTPs. Phylogenetic assessment showed VdLLTP was most closely related to Metaseiulus occidentalis vitellogenin and LLTP proteins of ticks; however, no heme binding by VdLLTP was detected. Analysis of lipids associated with VdLLTP showed that it was a carrier for free and esterified C12 -C22 fatty acids from triglycerides, diacylglycerides and monoacylglycerides. Additionally, cholesterol and β-sitosterol were found as cholesterol esters linked to common fatty acids. Transcript levels of VdLLTP were 42 and 310 times higher in phoretic female mites when compared with males and quiescent deutonymphs, respectively. Coincident with initiation of the reproductive phase, VdLLTP transcript levels declined to a third of those in phoretic female mites. VdLLTP functions as an important lipid transporter and should provide a significant RNA interference target for assessing the control of varroa mites.

  17. Molecular dynamics simulations of barley and maize lipid transfer proteins show different ligand binding preferences in agreement with experimental data.

    Science.gov (United States)

    Smith, Lorna J; Roby, Ysobel; Allison, Jane R; van Gunsteren, Wilfred F

    2013-07-30

    Experimental studies of barley and maize lipid transfer proteins (LTPs) show that the two proteins bind the ligand palmitate in opposite orientations in their internal cavities. Moreover, maize LTP is reported to bind the ligand caprate in the internal cavity in a mixture of two orientations with approximately equal occupancy. Six 30 ns molecular dynamics (MD) simulations of maize and barley LTP with ligands bound in two orientations (modes M and B) have been used to understand the different ligand binding preferences. The simulations show that both maize and barley LTP could bind palmitate in the orientation observed experimentally for maize LTP (mode M), with the predominant interaction being a salt bridge between the ligand carboxylate headgroup and a conserved arginine side chain. However, the simulation of barley LTP with palmitate in the mode B orientation shows the most favorable protein-ligand interaction energy. In contrast, the simulations of maize LTP with palmitate and with caprate in the mode B orientation show no persistent ligand binding, the ligands leaving the cavity during the simulations. Sequence differences between maize and barley LTP in the AB loop region, in residues at the base of the hydrophobic cavity, and in the helix A region are identified as contributing to the different behavior. The simulations reproduce well the experimentally observed binding preferences for palmitate and suggest that the experimental data for maize LTP with caprate reflect ligand mobility in binding mode M rather than the population of binding modes M and B. PMID:23834513

  18. Ready to use bioinformatics analysis as a tool to predict immobilisation strategies for protein direct electron transfer (DET).

    Science.gov (United States)

    Cazelles, R; Lalaoui, N; Hartmann, T; Leimkühler, S; Wollenberger, U; Antonietti, M; Cosnier, S

    2016-11-15

    Direct electron transfer (DET) to proteins is of considerable interest for the development of biosensors and bioelectrocatalysts. While protein structure is mainly used as a method of attaching the protein to the electrode surface, we employed bioinformatics analysis to predict the suitable orientation of the enzymes to promote DET. Structure similarity and secondary structure prediction were combined underlying localized amino-acids able to direct one of the enzyme's electron relays toward the electrode surface by creating a suitable bioelectrocatalytic nanostructure. The electro-polymerization of pyrene pyrrole onto a fluorine-doped tin oxide (FTO) electrode allowed the targeted orientation of the formate dehydrogenase enzyme from Rhodobacter capsulatus (RcFDH) by means of hydrophobic interactions. Its electron relays were directed to the FTO surface, thus promoting DET. The reduction of nicotinamide adenine dinucleotide (NAD(+)) generating a maximum current density of 1μAcm(-2) with 10mM NAD(+) leads to a turnover number of 0.09electron/s/molRcFDH. This work represents a practical approach to evaluate electrode surface modification strategies in order to create valuable bioelectrocatalysts. PMID:27156017

  19. Virus-Like Particles That Can Deliver Proteins and RNA | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The present invention describes novel virus-like particles (VLPs) that are capable of binding to and replicating within a target mammalian cell, including human cells. The claimed VLPs are safer than viral delivery because they are incapable of re-infecting target cells. The National Cancer Institute's Protein Expression Laboratory seeks parties interested in licensing the novel delivery of RNA to mammalian cells using virus-like particles.

  20. Retroviral-mediated transfer of genomic globin genes leads to regulated production of RNA and protein

    International Nuclear Information System (INIS)

    A high-titer amphotropic retroviral vector containing the neomycin resistance gene and a hybrid γ-β genomic human globin gene has been constructed. Mouse erythroleukemia cells infected with this virus were found to contain the full transcriptional unit of the transferred human globin gene by Southern blot analysis. These cells contain normally initiated, spliced, and terminated human globin mRNA. The human globin mRNA level increased 5- to 10-fold upon induction of the mouse erythroleukemia cells. Human globin chains were produced but only in a fraction of the cells as detected by immunofluorescent staining. A similar retrovirus containing a human β-globin gene was used to transduce mouse erythroleukemia cells resulting in much higher levels of human globin synthesis than detected in mouse erythroleukemia cells transduced with the γ-β globin virus

  1. CoMFA, CoMSIA and Eigenvalue Analysis on Dibenzodioxepinone and Dibenzodioxocinone Derivatives as Cholesteryl Ester Transfer Protein Inhibitors

    Directory of Open Access Journals (Sweden)

    Mao-sheng Cheng

    2008-08-01

    Full Text Available Abstract: CoMFA, CoMSIA and eigenvalue analysis (EVA were performed to study the structural features of 61 diverse dibenzodioxepinone and dibenzodioxocinone analogues to probe cholesteryl ester transfer protein (CETP inhibitory activity. Three methods yielded statistically significant models upon assessment of cross-validation, bootstrapping, and progressive scrambling. This was further validated by an external set of 13 derivatives. Our results demonstrate that three models have a good interpolation as well as extrapolation. The hydrophobic features were confirmed to contribute significantly to inhibitor potencies, while a pre-oriented hydrogen bond provided by the hydroxyl group at the 3-position indicated a good correlation with previous SAR, and a hydrogen bond acceptor may play a crucial role in CETP inhibition. These derived models may help us to gain a deeper understanding of the binding interaction of these lactone-based compounds and aid in the design of new potent compounds against CETP.

  2. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation

    DEFF Research Database (Denmark)

    Bartels, Emil D; Nielsen, Jan M; Hellgren, Lars I;

    2009-01-01

    Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and beta-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via...... secretion of apolipoproteinB-containing (apoB) lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP); the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism...... remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression...

  3. Ordered Assembly and Controlled Electron Transfer of the Blue Copper Protein Azurin at Gold (111) Single-Crystal Substrates

    DEFF Research Database (Denmark)

    Chi, Qijin; Zhang, Jingdong; Andersen, Jens Enevold Thaulov;

    2001-01-01

    ) with molecular resolution reveals that both well-ordered alkanethiol and protein adlayers are present. Adsorbed azurin molecules exhibit high stability and retain electron transfer (ET) function. Long-range interfacial ET between azurin and Au(111) across variable-length alkanethiol bridges was systematically...... investigated by different electrochemical techniques. Distance-dependent ET can be controlled by adjusting the length of the alkanethiol chain. The electrochemical ET rate constant is almost independent of the chain length up to ca. 9 methylene units but follows exponential distance decay with a decay factor...... (beta) of 1.03 +/- 0.02 per CH2 unit at longer chain lengths. Overvoltage-dependent ET was also examined. The results provide a strategy to ordered molecular assemblies, and controlled orientation and ET of azurin at atomically planar metallic surfaces. This approach can in principle be extended...

  4. Development of an isoform-specific tandem mass spectrometry assay for absolute quantitation of maize lipid transfer proteins.

    Science.gov (United States)

    Stevenson, Severin E; McClain, Scott; Thelen, Jay J

    2015-01-28

    Precise and accurate quantitation of maize grain allergens is important for seed and food industries. The major allergen in maize grain is Zea m 14, a lipid transfer protein (LTP). The B73 maize genome encodes for at least six LTPs sharing 15%-87% sequence identity to Zea m 14. Phylogenetic analysis of the maize LTP family revealed one gene that corresponds to Zea m 14 (denoted as LTPa) and two other genes sharing 43% (LTPc) and 74% (LTPb) identity with Zea m 14 that are putative homologues. Using stable isotope peptide mimics as internal standards for LTPs, we present a multiple reaction monitoring mass spectrometry approach for multiplexed, absolute quantitation of all three LTP proteins and alternative transcript models therein. To validate quantitative accuracy, a redundant peptide, simultaneously representing the two most abundant LTPs, was included. Analysis of 21 maize varieties revealed LTPa was most prominently expressed in maize grain, ranging from 9 to 32 μg LTP/mg protein. Proteins belonging to the LTPb and LTPc gene models were also expressed but at approximately 10- and 100-fold lower levels than LTPa, respectively. The quantitative results provided by the redundant peptide show around 95% agreement with the sum of the two unique peptides, thus providing support for the LTP gene models and validating the accuracy of this method. Though not all Zea m 14-related LTPs are abundant in grain, their high sequence homology and detectable expression in maize grain signify that LTPb and LTPc are putative allergens and should be accounted for in any quantitation strategy for maize LTP allergens. PMID:25540820

  5. Isoform identification, recombinant production and characterization of the allergen lipid transfer protein 1 from pear (Pyr c 3).

    Science.gov (United States)

    Ramazzina, Ileana; Amato, Stefano; Passera, Elisabetta; Sforza, Stefano; Mistrello, Gianni; Berni, Rodolfo; Folli, Claudia

    2012-01-10

    Non-specific lipid transfer proteins belonging to LTP1 family represent the most important allergens for non pollen-related allergies to Rosaceae fruits in the Mediterranean area. Peach LTP1 (Pru p 3) is a major allergen and is considered the prototypic allergenic LTP. On the contrary, pear allergy without pollinosis seems to be under-reported when compared to other Rosaceae fruits suggesting that the as-yet-uncharacterized pear LTP1 (Pyr c 3) has in vivo a low allergenicity. We report here on the identification of four cDNAs encoding for LTP1 in pear fruits. The two isoforms exhibiting amino acid sequences most similar to those of peach and apple homologues were obtained as recombinant proteins. Such isoforms exhibited CD spectra and lipid binding ability typical of LTP1 family. Moreover, pear LTP1 mRNA was mainly found in the peel, as previously shown for other Rosaceae fruits. By means of IgE ELISA assays a considerable immunoreactivity of these proteins to LTP-sensitive patient sera was detected, even though allergic reactions after ingestion of pear were not reported in the clinical history of the patients. Finally, the abundance of LTP1 in protein extracts from pear peel, in which LTP1 from Rosaceae fruits is mainly confined, was estimated to be much lower as compared to peach peel. Our data suggest that the two isoforms of pear LTP1 characterized in this study possess biochemical features and IgE-binding ability similar to allergenic LTPs. Their low concentrations in pear might be the cause of the low frequency of LTP-mediated pear allergy. PMID:22015956

  6. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement–Förster-Type Resonance Energy Transfer (PIFE-FRET)

    Science.gov (United States)

    2016-01-01

    Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein–DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems. PMID:27184889

  7. Transferable aspherical atom model refinement of protein and DNA structures against ultrahigh-resolution X-ray data.

    Science.gov (United States)

    Malinska, Maura; Dauter, Zbigniew

    2016-06-01

    In contrast to the independent-atom model (IAM), in which all atoms are assumed to be spherical and neutral, the transferable aspherical atom model (TAAM) takes into account the deformed valence charge density resulting from chemical bond formation and the presence of lone electron pairs. Both models can be used to refine small and large molecules, e.g. proteins and nucleic acids, against ultrahigh-resolution X-ray diffraction data. The University at Buffalo theoretical databank of aspherical pseudo-atoms has been used in the refinement of an oligopeptide, of Z-DNA hexamer and dodecamer duplexes, and of bovine trypsin. The application of the TAAM to these data improves the quality of the electron-density maps and the visibility of H atoms. It also lowers the conventional R factors and improves the atomic displacement parameters and the results of the Hirshfeld rigid-bond test. An additional advantage is that the transferred charge density allows the estimation of Coulombic interaction energy and electrostatic potential.

  8. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer; RMN de proteines (4Fe-4S): proprietes structurales et transfert electronique intramoleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J.G.

    1996-10-17

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an {alpha} helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S{sub {gamma}}-C{sub {beta}}-H{sub {beta}})Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven

  9. Protein-protein Förster resonance energy transfer analysis of nucleosome core particles containing H2A and H2A.Z.

    Science.gov (United States)

    Hoch, Duane A; Stratton, Jessica J; Gloss, Lisa M

    2007-08-24

    A protein-protein Förster resonance energy transfer (FRET) system, employing probes at multiple positions, was designed to specifically monitor the dissociation of the H2A-H2B dimer from the nucleosome core particle (NCP). Tryptophan donors and Cys-AEDANS acceptors were chosen because, compared to previous NCP FRET fluorophores, they: (1) are smaller and less hydrophobic, which should minimize perturbations of histone and NCP structure; and (2) have an R0 of 20 A, which is much less than the dimensions of the NCP (approximately 50 A width and approximately 100 A diameter). Equilibrium protein unfolding titrations indicate that the donor and acceptor moieties have minimal effects on the stability of the H2A-H2B dimer and (H3-H4)2 tetramer. NCPs containing the various FRET pairs were reconstituted with the 601 DNA positioning element. Equilibrium NaCl-induced dissociation of the modified NCPs showed that the 601 sequence stabilized the NCP to dimer dissociation relative to weaker positioning sequences. This finding implies a significant role for the H2A-H2B dimers in determining the DNA sequence dependence of NCP stability. The free energy of dissociation determined from reversible and well-defined sigmoidal transitions revealed two distinct phases reflecting the dissociation of individual H2A-H2B dimers, confirming cooperativity as suggested previously; these data allow quantitative description of the cooperativity. The FRET system was then used to study the effects of the histone variant H2A.Z on NCP stability; previous studies have reported both destabilizing and stabilizing effects. H2A.Z FRET NCP dissociation transitions suggest a slight increase in stability but a significant increase in cooperativity of the dimer dissociations. Thus, the utility of this protein-protein FRET system to monitor the effects of histone variants on NCP dynamics has been demonstrated, and the system appears equally well-suited for dissection of the kinetic processes of dimer

  10. Inhibition of hepatic microsomal triglyceride transfer protein – a novel therapeutic option for treatment of homozygous familial hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Vuorio A

    2014-05-01

    Full Text Available Alpo Vuorio,1,2 Matti J Tikkanen,3 Petri T Kovanen4 1Health Center Mehiläinen, Vantaa, Finland; 2Finnish Institute of Occupational Health, Lappeenranta, Finland; 3Heart and Lung Center, Helsinki University Central Hospital, Folkhälsan Research Center, Biomedicum, Helsinki, Finland; 4Wihuri Research Institute, Biomedicum, Helsinki, Finland Abstract: Familial hypercholesterolemia (FH is an autosomal dominant disease caused by mutations in the low-density lipoprotein (LDL-receptor gene (LDLR. Patients with homozygous FH (hoFH have inherited a mutated LDLR gene from both parents, and therefore all their LDL-receptors are incapable of functioning normally. In hoFH, serum LDL levels often exceed 13 mmol/L and tendon and cutaneous xanthomata appear early (under 10 years of age. If untreated, this extremely severe form of hypercholesterolemia may cause death in childhood or in early adulthood. Based on recent data, it can be estimated that the prevalence of hoFH is about 1:500,000 or even 1:400,000. Until now, the treatment of hoFH has been based on high-dose statin treatment combined with LDL apheresis. Since the LDL cholesterol-lowering effect of statins is weak in this disease, and apheresis is a cumbersome treatment and not available at all centers, alternative novel pharmaceutical therapies are needed. Lomitapide is a newly introduced drug, capable of effectively decreasing serum LDL cholesterol concentration in hoFH. It inhibits the microsomal triglyceride transfer protein (MTTP. By inhibiting in hepatocytes the transfer of triglycerides into very low density lipoprotein particles, the drug blocks their assembly and secretion into the circulating blood. Since the very low density lipoprotein particles are precursors of LDL particles in the circulation, the reduced secretion of the former results in lower plasma concentration of the latter. The greatest concern in lomitapide treatment has been the increase in liver fat, which can be, however

  11. VirE2, a type IV secretion substrate, interacts with the VirD4 transfer protein at cell poles of Agrobacterium tumefaciens.

    Science.gov (United States)

    Atmakuri, Krishnamohan; Ding, Zhiyong; Christie, Peter J

    2003-09-01

    Agrobacterium tumefaciens transfers oncogenic DNA and effector proteins to plant cells during the course of infection. Substrate translocation across the bacterial cell envelope is mediated by a type IV secretion (TFS) system composed of the VirB proteins, as well as VirD4, a member of a large family of inner membrane proteins implicated in the coupling of DNA transfer intermediates to the secretion machine. In this study, we demonstrate with novel cytological screens - a two-hybrid (C2H) assay and bimolecular fluorescence complementation (BiFC) - and by immunoprecipitation of chemically cross-linked protein complexes that the VirE2 effector protein interacts directly with the VirD4 coupling protein at cell poles of A. tumefaciens. Analyses of truncation derivatives showed that VirE2 interacts via its C terminus with VirD4, and, further, an NH2-terminal membrane-spanning domain of VirD4 is dispensable for complex formation. VirE2 interacts with VirD4 independently of the virB-encoded transfer machine and T pilus, the putative periplasmic chaperones AcvB and VirJ, and the T-DNA transfer intermediate. Finally, VirE2 is recruited to polar-localized VirD4 as a complex with its stabilizing secretion chaperone VirE1, yet the effector-coupling protein interaction is not dependent on chaperone binding. Together, our findings establish for the first time that a protein substrate of a type IV secretion system is recruited to a member of the coupling protein superfamily. PMID:12950931

  12. Transfer of Ho Endonuclease and Ufo1 to the Proteasome by the UbL-UbA Shuttle Protein, Ddi1, Analysed by Complex Formation In Vitro

    OpenAIRE

    Olga Voloshin; Anya Bakhrat; Sharon Herrmann; Dina Raveh

    2012-01-01

    The F-box protein, Ufo1, recruits Ho endonuclease to the SCF(Ufo1) complex for ubiquitylation. Both ubiquitylated Ho and Ufo1 are transferred by the UbL-UbA protein, Ddi1, to the 19S Regulatory Particle (RP) of the proteasome for degradation. The Ddi1-UbL domain binds Rpn1 of the 19S RP, the Ddi1-UbA domain binds ubiquitin chains on the degradation substrate. Here we used complex reconstitution in vitro to identify stages in the transfer of Ho and Ufo1 from the SCF(Ufo1) complex to the protea...

  13. Cytochrome C on a gold surface: investigating structural relaxations and their role in protein-surface electron transfer by molecular dynamics simulations.

    Science.gov (United States)

    Siwko, Magdalena E; Corni, Stefano

    2013-04-28

    Proteins immobilized on inorganic surfaces are important in technological fields such as biosensors, enzymatic biofuel cells and biomolecular electronics. In these frameworks, it has been demonstrated that some proteins are able to keep their functionality, although the latter may be somewhat modified by the interaction with the surface. Cytochrome C, an heme-based electron transfer protein, has been found to be able to exchange electrons with the gold surface on which it is immobilized, but some deviations from the expected electron transfer rates were evidenced [C. A. Bortolotti, et al., J. Phys. Chem. C 2007, 111, 12100-12105]. In this work we have used molecular dynamics simulations of (native and mutated) yeast cytochrome C supported on Au(111) to investigate the microscopic picture behind the experimental behavior of the molecule. In particular, we have focused on the structural re-arrangements due to the interactions with the surface. We found that, despite being secondary-structure preserving, they can profoundly affect protein-surface electronic coupling and, in turn, electron transfer rates, explaining experimental findings. The conformational flexibility of the protein in the region of the protein-surface bond is thus pivotal in determining the resulting ET functionality of the immobilized protein.

  14. In Vivo Analysis of Protein–Protein Interactions with Bioluminescence Resonance Energy Transfer (BRET): Progress and Prospects

    Science.gov (United States)

    Sun, Sihuai; Yang, Xiaobing; Wang, Yao; Shen, Xihui

    2016-01-01

    Proteins are the elementary machinery of life, and their functions are carried out mostly by molecular interactions. Among those interactions, protein–protein interactions (PPIs) are the most important as they participate in or mediate all essential biological processes. However, many common methods for PPI investigations are slightly unreliable and suffer from various limitations, especially in the studies of dynamic PPIs. To solve this problem, a method called Bioluminescence Resonance Energy Transfer (BRET) was developed about seventeen years ago. Since then, BRET has evolved into a whole class of methods that can be used to survey virtually any kinds of PPIs. Compared to many traditional methods, BRET is highly sensitive, reliable, easy to perform, and relatively inexpensive. However, most importantly, it can be done in vivo and allows the real-time monitoring of dynamic PPIs with the easily detectable light signal, which is extremely valuable for the PPI functional research. This review will take a comprehensive look at this powerful technique, including its principles, comparisons with other methods, experimental approaches, classifications, applications, early developments, recent progress, and prospects. PMID:27727181

  15. Hepatocellular carcinoma-derived exosomes promote motility of immortalized hepatocyte through transfer of oncogenic proteins and RNAs.

    Science.gov (United States)

    He, Mian; Qin, Hao; Poon, Terence C W; Sze, Siu-Ching; Ding, Xiaofan; Co, Ngai Na; Ngai, Sai-Ming; Chan, Ting-Fung; Wong, Nathalie

    2015-09-01

    Exosomes are increasingly recognized as important mediators of cell-cell communication in cancer progression through the horizontal transfer of RNAs and proteins to neighboring or distant cells. Hepatocellular carcinoma (HCC) is a highly malignant cancer, whose metastasis is largely influenced by the tumor microenvironment. The possible role of exosomes in the interactions between HCC tumor cell and its surrounding hepatic milieu are however largely unknown. In this study, we comprehensively characterized the exosomal RNA and proteome contents derived from three HCC cell lines (HKCI-C3, HKCI-8 and MHCC97L) and an immortalized hepatocyte line (MIHA) using Ion Torrent sequencing and mass spectrometry, respectively. RNA deep sequencing and proteomic analysis revealed exosomes derived from metastatic HCC cell lines carried a large number of protumorigenic RNAs and proteins, such as MET protooncogene, S100 family members and the caveolins. Of interest, we found that exosomes from motile HCC cell lines could significantly enhance the migratory and invasive abilities of non-motile MIHA cell. We further demonstrated that uptake of these shuttled molecules could trigger PI3K/AKT and MAPK signaling pathways in MIHA with increased secretion of active MMP-2 and MMP-9. Our study showed for the first time that HCC-derived exosomes could mobilize normal hepatocyte, which may have implication in facilitating the protrusive activity of HCC cells through liver parenchyma during the process of metastasis.

  16. The biochemical basis and clinical evidence of food allergy due to lipid transfer proteins: a comprehensive review.

    Science.gov (United States)

    Van Winkle, R Christopher; Chang, Christopher

    2014-06-01

    Plant lipid transfer proteins (LTPs) are ubiquitous proteins that are found in divergent plant species. Although the exact function of LTPs is not fully understood, LTPs are conserved across a broad range of plant species. Because LTPs share structural features, there is an increased probability for significant allergic cross-reactivity. The molecular features of LTPs also decrease the probability of degradation due to cooking or digestion, thereby increasing the probability of systemic absorption and severe allergic reactions. LTP allergy, unlike other forms of anaphylaxis, tends to occur more frequently in areas of lower latitude. The geographic distribution of LTP allergy, along with evidence of increased sensitization after respiratory exposure, has led to the hypothesis that LTP-related food allergy may be secondary to sensitization via the respiratory route. Clinical reactions associated with LTPs have broad clinical phenotypes and can be severe in nature. Life-threatening clinical reactions have been associated with ingestion of a multitude of plant products. Component-resolved diagnosis has played a significant role in research applications for LTP allergy. In the future, component-resolved diagnosis may play a significant role in day-to-day clinical care. Also, quantitative analysis of LTPs in foodstuffs may allow for the identification and/or production of low-LTP foods, thereby decreasing the risk to patients with LTP allergy. Furthermore, sublingual immunotherapy may provide a therapeutic option for patients with LTP allergy. PMID:23179517

  17. Cross-reactivity among non-specific lipid-transfer proteins from food and pollen allergenic sources.

    Science.gov (United States)

    Morales, María; López-Matas, M Ángeles; Moya, Raquel; Carnés, Jerónimo

    2014-12-15

    Non-specific lipid-transfer proteins (nsLTPs) are a family of pan-allergens present in foods and pollen. However, sequence homology among them is limited. The objective of this study was to evaluate the IgE-mediated cross-reactivity between nsLTPs from different sources and evaluate the allergenic properties of LTPs from peach (Pru p 3) and pellitory (Par j 1/Par j 2), major fruit and pollen allergens. Both proteins were purified and characterised. Cross-reactivity studies among nsLTPs from different foods and pollens were performed by immunoblot inhibition using sera specific to peach or pellitory pollen. Cross-reactivity with Pru p 3 was observed in hazelnut, onion, corn, peanut and apple while in pollens, none of the extracts was inhibited with Par j 1/2. In conclusion, Pru p 3 did not inhibit LTPs from most fruits. Therefore, although Pru p 3 covers the largest number of epitopes, diagnosis with only this allergen may not detect all LTP sensitivities. PMID:25038692

  18. SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Akinori Kiba

    Full Text Available We previously identified a gene related to the SEC14-gene phospholipid transfer protein superfamily that is induced in Nicotiana benthamiana (NbSEC14 in response to infection with Ralstonia solanacearum. We here report that NbSEC14 plays a role in plant immune responses via phospholipid-turnover. NbSEC14-silencing compromised expression of defense-related PR-4 and accumulation of jasmonic acid (JA and its derivative JA-Ile. Transient expression of NbSEC14 induced PR-4 gene expression. Activities of diacylglycerol kinase, phospholipase C and D, and the synthesis of diacylglycerol and phosphatidic acid elicited by avirulent R. solanacearum were reduced in NbSEC14-silenced plants. Accumulation of signaling lipids and activation of diacylglycerol kinase and phospholipases were enhanced by transient expression of NbSEC14. These results suggest that the NbSEC14 protein plays a role at the interface between lipid signaling-metabolism and plant innate immune responses.

  19. Genes encoding conserved hypothetical proteins localized in the conjugative transfer region of plasmid pRet42a from Rhizobium etli CFN42 participate in modulating transfer and affect conjugation from different donors.

    Directory of Open Access Journals (Sweden)

    Susana eBrom

    2015-01-01

    Full Text Available Among sequenced genomes, it is common to find a high proportion of genes encoding proteins that cannot be assigned a known function. In bacterial genomes, genes related to a similar function are often located in contiguous regions. The presence of genes encoding conserved hypothetical proteins (chp in such a region may suggest that they are related to that particular function. Plasmid pRet42a from Rhizobium etli CFN42 is a conjugative plasmid containing a segment of approximately 30 Kb encoding genes involved in conjugative transfer. In addition to genes responsible for Dtr (DNA transfer and replication, Mpf (Mating pair formation and regulation, it has two chp-encoding genes (RHE_PA00163 and RHE_PA00164 and a transcriptional regulator (RHE_PA00165. RHE_PA00163 encodes an uncharacterized protein conserved in bacteria that presents a COG4634 conserved domain, and RHE_PA00164 encodes an uncharacterized conserved protein with a DUF433 domain of unknown function. RHE_PA00165 presents a HTH_XRE domain, characteristic of DNA-binding proteins belonging to the xenobiotic response element family of transcriptional regulators. Interestingly, genes similar to these are also present in transfer regions of plasmids from other bacteria. To determine if these genes participate in conjugative transfer, we mutagenized them and analyzed their conjugative phenotype. A mutant in RHE_PA00163 showed a slight (10 times but reproducible increase in transfer frequency from Rhizobium donors, while mutants in RHE_PA00164 and RHE_PA00165 lost their ability to transfer the plasmid from some Agrobacterium donors. Our results indicate that the chp-encoding genes located among conjugation genes are indeed related to this function. However, the participation of RHE_PA00164 and RHE_PA00165 is only revealed under very specific circumstances, and is not perceived when the plasmid is transferred from the original host. RHE_PA00163 seems to be a fine-tuning modulator for conjugative

  20. Genome-wide survey and expression analysis of the putative non-specific lipid transfer proteins in Brassica rapa L.

    Directory of Open Access Journals (Sweden)

    Jun Li

    Full Text Available BACKGROUND: Plant non-specific lipid transfer proteins (nsLtps are small, basic proteins encoded by multigene families and have reported functions in many physiological processes such as mediating phospholipid transfer, defense reactions against phytopathogens, the adaptation of plants to various environmental conditions, and sexual reproduction. To date, no genome-wide overview of the Brassica rapa nsLtp (BrnsLtp gene family has been performed. Therefore, as the first step and as a helpful strategy to elucidate the functions of BrnsLtps, a genome-wide study for this gene family is necessary. METHODOLOGY/PRINCIPAL FINDING: In this study, a total of 63 putative BrnsLtp genes were identified through a comprehensive in silico analysis of the whole genome of B. rapa. Based on the sequence similarities, these BrnsLtps was grouped into nine types (I, II, III, IV, V, VI, VIII, IX, and XI. There is no type VII nsLtps in B. rapa, and a new type, XI nsLtps, was identified in B. rapa. Furthermore, nine type II AtLtps have no homologous genes in B. rapa. Gene duplication analysis demonstrated that the conserved collinear block of each BrnsLtp is highly identical to those in Arabidopsis and that both segmental duplications and tandem duplications seem to play equal roles in the diversification of this gene family. Expression analysis indicated that 29 out of the 63 BrnsLtps showed specific expression patterns. After careful comparison and analysis, we hypothesize that some of the type I BrnsLtps may function like Arabidopsis pathogenesis-related-14 (PR-14 proteins to protect the plant from phytopathogen attack. Eleven BrnsLtps with inflorescence-specific expression may play important roles in sexual reproduction. Additionally, BrnsLtpI.3 may have functions similar to Arabidopsis LTP1. CONCLUSIONS/SIGNIFICANCE: The genome-wide identification, bioinformatic analysis and expression analysis of BrnsLtp genes should facilitate research of this gene family and

  1. Production of Fibronectin Binding Protein A at the surface of Lactococcus lactis increases plasmid transfer in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Daniela Pontes

    Full Text Available Lactococci are noninvasive lactic acid bacteria frequently used as protein delivery vectors and, more recently, as DNA delivery vehicles. We previously showed that Lactococcus lactis (LL expressing the Fibronectin-Binding Protein A of Staphylococcus aureus (LL-FnBPA+ showed higher internalization rates in vitro in Caco-2 cells than the native (wt lactococci and were able to deliver a eukaryotic Green Fluorescent Protein (GFP expression plasmid in 1% of human Caco-2 cells. Here, using the bovine beta-lactoglobulin (BLG, one of the major cow's milk allergen, and GFP we characterized the potential of LL-FnBPA+ as an in vivo DNA vaccine delivery vehicle. We first showed that the invasive strain LL-FnBPA+ carrying the plasmid pValac:BLG (LL-FnBPA+ BLG was more invasive than LL-BLG and showed the same invasivity as LL-FnBPA+. Then we demonstrated that the Caco-2 cells, co-incubated with LL-FnBPA+ BLG produced up to 30 times more BLG than the Caco-2 cells co-incubated with the non invasive LL-BLG. Using two different gene reporters, BLG and GFP, and two different methods of detection, EIA and fluorescence microscopy, we showed in vivo that: i in order to be effective, LL-FnBPA+ required a pre-coating with Fetal Calf Serum before oral administration; ii plasmid transfer occurred in enterocytes without regard to the strains used (invasive or not; iii the use of LL-FnBPA+ increased the number of mice producing BLG, but not the level of BLG produced. We thus confirmed the good potential of invasive recombinant lactic acid bacteria as DNA delivery vector in vivo.

  2. Gene transfer and expression of enhanced green fluorescent protein in variant HT-29c cells

    Institute of Scientific and Technical Information of China (English)

    Min Wang; Lars Boenicke; Bradley D. Howard; Ilka Vogel; Hoiger Kalthoff

    2003-01-01

    AIM: To study the expression of enhanced green fluorescent protein (EGFP) gene in retrovirally transduced variant HT29 cells.METHODS: The retroviral vector prkat EGFP/neo was constructed and transfected into the 293T cell using a standard calcium phosphate precipitation method. HT-29c cells (selected from HT-29 cells) were transduced by a retroviral vector encoding the GEFP gene. The fluorescence intensity of colorectal carcinoma HT-29c cells after transduced with the EGFP bearing retrovirus was visualized using fluorescence microscope and fluorescence activated cell sorter (FACS) analysis. Multiple biological behaviors of transduced cells such as the proliferating potential and the expression of various antigens were comparatively analyzed between untransduced and transduced cells in vitro. EGFP expression of the fresh tumor tissue was assessed in vivo.RESULTS: After transduced, HT-29c cells displayed a stable and long-term EGFP expression under the nonselective conditionsin vitro. After cells were successively cultured to passage 50 in vitro, EGFP expression was still at a high level. Their biological behaviors, such as expression of tumor antigens, proliferation rate and aggregation capability were not different compared to untransduced parental cells in vitro. In subcutaneous tumors, EGFP was stable and highly expressed.CONCLUSION: An EGFP expressing retroviral vector was used to transduce HT-29c cells. The transduced cells show a stable and long-term EGFP expression in vitro and in vivo.These cells with EGFP are a valuable tool forin vivo research of tumor metastatic spread.

  3. Photosynthetic electron transfer from reaction center pigment-protein complex in silica nanopores.

    Science.gov (United States)

    Oda, Ippei; Iwaki, Masayo; Fujita, Daiju; Tsutsui, Yasutaka; Ishizaka, Souji; Dewa, Makiko; Nango, Mamoru; Kajino, Tsutomu; Fukushima, Yoshiaki; Itoh, Shigeru

    2010-08-17

    A photosynthetic reaction center (RC) pigment-protein complex purified from a thermophilic purple photosynthetic bacterium, Thermochromatium tepidum, was adsorbed to a folded-sheet silica mesoporous material (FSM). The RC has a molecular structure with a 7.0 x 5.0 x 13 nm diameter. The amount of RC adsorbed to the FSM compound with an average internal pore diameter of 7.9 nm (FSM(7.9)) was high at 0.29 gRC/gFSM, while that to the FSM(2.7) (2.7 nm diameter) was low at 0.02 gRC/gFSM, suggesting the specific binding of the RC into the 7.9 nm pores of FSM(7.9). An N(2)-adsorption isotherm study indicated the incorporation of the RC into the 7.9 nm pores. The RC inside FSM(7.9) showed absorption spectra in the visible and infrared regions similar to those of the RC in solution, indicating almost no structural changes induced by the adsorption. The RC-FSM(7.9) conjugate showed the high photochemical activity with the increased thermal stability up to 50 degrees C in the measurements by laser spectroscopy. The conjugates rapidly provided electrons to a dye in the outer medium or showed electric current on the ITO electrode upon the illumination. The RC-FSM conjugate will be useful for the construction of artificial photosynthetic systems and new photodevices. PMID:20695584

  4. A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties

    OpenAIRE

    Bogdanov, Ivan V.; Shenkarev, Zakhar O.; Finkina, Ekaterina I.; Melnikova, Daria N.; Rumynskiy, Eugene I.; Arseniev, Alexander S.; Ovchinnikova, Tatiana V.

    2016-01-01

    Background Plant lipid transfer proteins (LTPs) assemble a family of small (7–9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and i...

  5. Long-range protein electron transfer observed at the single-molecule level: In situ mapping of redox-gated tunneling resonance

    OpenAIRE

    Chi, Qijin; Farver, Ole; Ulstrup, Jens

    2005-01-01

    A biomimetic long-range electron transfer (ET) system consisting of the blue copper protein azurin, a tunneling barrier bridge, and a gold single-crystal electrode was designed on the basis of molecular wiring self-assembly principles. This system is sufficiently stable and sensitive in a quasi-biological environment, suitable for detailed observations of long-range protein interfacial ET at the nanoscale and single-molecule levels. Because azurin is located at clearly identifiable fixed site...

  6. Characterization of membrane protein interactions in plasma membrane derived vesicles with quantitative imaging Förster resonance energy transfer.

    Science.gov (United States)

    Sarabipour, Sarvenaz; Del Piccolo, Nuala; Hristova, Kalina

    2015-08-18

    Here we describe an experimental tool, termed quantitative imaging Förster resonance energy transfer (QI-FRET), that enables the quantitative characterization of membrane protein interactions. The QI-FRET methodology allows us to acquire binding curves and calculate association constants for complex membrane proteins in the native plasma membrane environment. The method utilizes FRET detection, and thus requires that the proteins of interest are labeled with florescent proteins, either FRET donors or FRET acceptors. Since plasma membranes of cells have complex topologies precluding the acquisition of two-dimensional binding curves, the FRET measurements are performed in plasma membrane derived vesicles that bud off cells as a result of chemical or osmotic stress. The results overviewed here are acquired in vesicles produced with an osmotic vesiculation buffer developed in our laboratory, which does not utilize harsh chemicals. The concentrations of the donor-labeled and the acceptor-labeled proteins are determined, along with the FRET efficiencies, in each vesicle. The experiments utilize transient transfection, such that a wide variety of concentrations is sampled. Then, data from hundreds of vesicles are combined to yield dimerization curves. Here we discuss recent findings about the dimerization of receptor tyrosine kinases (RTKs), membrane proteins that control cell growth and differentiation via lateral dimerization in the plasma membrane. We focus on the dimerization of fibroblast growth factor receptor 3 (FGFR3), a RTK that plays a critically important role in skeletal development. We study the role of different FGFR3 domains in FGFR3 dimerization in the absence of ligand, and we show that FGFR3 extracellular domains inhibit unliganded dimerization, while contacts between the juxtamembrane domains, which connect the transmembrane domains to the kinase domains, stabilize the unliganded FGFR3 dimers. Since FGFR3 has been documented to harbor many pathogenic

  7. Physical properties of whey protein coating solutions and films containing antioxidants.

    Science.gov (United States)

    Han, J H; Krochta, J M

    2007-06-01

    Antioxidants (ascorbyl palmitate and alpha-tocopherol) were incorporated into 10% (w/w) whey protein isolate (WPI) coating solution containing 6.67% (w/w) glycerol (WPI:glycerol = 6:4). Before incorporation, the antioxidants were mixed using either powder blending (Process 1) or ethanol solvent-mixing (Process 2). After the antioxidant mixtures were incorporated into heat-denatured WPI solution, viscosity and turbidity of the WPI solutions were determined. The WPI solutions were dried on a flat surface to produce WPI films. The WPI films were examined to determine transparency and oxygen-barrier properties (permeability, diffusivity, and solubility). WPI solution containing antioxidants produced by Process 1 and Process 2 did not show any difference in viscosity and turbidity, but viscosity was greater for the WPI solution with rather than without antioxidants. WPI films produced by Process 2 were more transparent than the films produced by Process 1. Oxygen permeability of Process 1 film was lower than Process 2 film. However, both the diffusivity and solubility of oxygen were statistically the same in Process 1 and Process 2 films. Both control WPI films and antioxidant-containing WPI films had very low oxygen solubility, comparable to polyethylene terephthalate films. Permeability of antioxidant-incorporated films was not enhanced compared to control WPI films.

  8. Effect of enhanced Renilla luciferase and fluorescent protein variants on the Foerster distance of Bioluminescence resonance energy transfer (BRET)

    Energy Technology Data Exchange (ETDEWEB)

    Dacres, Helen, E-mail: helen.dacres@csiro.au [CSIRO Food Futures Flagship and Ecosystem Sciences, Canberra (Australia); Michie, Michelle; Wang, Jian [CSIRO Food Futures Flagship and Ecosystem Sciences, Canberra (Australia); Pfleger, Kevin D.G. [Laboratory for Molecular Endocrinology-GPCRs, Western Australian Institute for Medical Research (WAIMR) and Centre for Medical Research, The University of Western Australia, Perth (Australia); Trowell, Stephen C. [CSIRO Food Futures Flagship and Ecosystem Sciences, Canberra (Australia)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer First experimental determination of Foerster distance (R{sub 0}) for enhanced BRET systems. Black-Right-Pointing-Pointer Effect of brighter BRET components RLuc2, RLuc8 and Venus was assessed. Black-Right-Pointing-Pointer Using brighter BRET components substantially increased (25%) R{sub 0} of the BRET{sup 1} system. Black-Right-Pointing-Pointer Using brighter BRET components marginally increased (2-9%) R{sub 0} of the BRET{sup 2} system. Black-Right-Pointing-Pointer Brighter BRET components improve the different weaknesses of BRET{sup 1} and BRET{sup 2} systems. -- Abstract: Bioluminescence resonance energy transfer (BRET) is an important tool for monitoring macromolecular interactions and is useful as a transduction technique for biosensor development. Foerster distance (R{sub 0}), the intermolecular separation characterized by 50% of the maximum possible energy transfer, is a critical BRET parameter. R{sub 0} provides a means of linking measured changes in BRET ratio to a physical dimension scale and allows estimation of the range of distances that can be measured by any donor-acceptor pair. The sensitivity of BRET assays has recently been improved by introduction of new BRET components, RLuc2, RLuc8 and Venus with improved quantum yields, stability and brightness. We determined R{sub 0} for BRET{sup 1} systems incorporating novel RLuc variants RLuc2 or RLuc8, in combination with Venus, as 5.68 or 5.55 nm respectively. These values were approximately 25% higher than the R{sub 0} of the original BRET{sup 1} system. R{sub 0} for BRET{sup 2} systems combining green fluorescent proteins (GFP{sup 2}) with RLuc2 or RLuc8 variants was 7.67 or 8.15 nm, i.e. only 2-9% greater than the original BRET{sup 2} system despite being {approx}30-fold brighter.

  9. Horizontal gene transfer of a chloroplast DnaJ-Fer protein to Thaumarchaeota and the evolutionary history of the DnaK chaperone system in Archaea

    Directory of Open Access Journals (Sweden)

    Petitjean Céline

    2012-11-01

    Full Text Available Abstract Background In 2004, we discovered an atypical protein in metagenomic data from marine thaumarchaeotal species. This protein, referred as DnaJ-Fer, is composed of a J domain fused to a Ferredoxin (Fer domain. Surprisingly, the same protein was also found in Viridiplantae (green algae and land plants. Because J domain-containing proteins are known to interact with the major chaperone DnaK/Hsp70, this suggested that a DnaK protein was present in Thaumarchaeota. DnaK/Hsp70, its co-chaperone DnaJ and the nucleotide exchange factor GrpE are involved, among others, in heat shocks and heavy metal cellular stress responses. Results Using phylogenomic approaches we have investigated the evolutionary history of the DnaJ-Fer protein and of interacting proteins DnaK, DnaJ and GrpE in Thaumarchaeota. These proteins have very complex histories, involving several inter-domain horizontal gene transfers (HGTs to explain the contemporary distribution of these proteins in archaea. These transfers include one from Cyanobacteria to Viridiplantae and one from Viridiplantae to Thaumarchaeota for the DnaJ-Fer protein, as well as independent HGTs from Bacteria to mesophilic archaea for the DnaK/DnaJ/GrpE system, followed by HGTs among mesophilic and thermophilic archaea. Conclusions We highlight the chimerical origin of the set of proteins DnaK, DnaJ, GrpE and DnaJ-Fer in Thaumarchaeota and suggest that the HGT of these proteins has played an important role in the adaptation of several archaeal groups to mesophilic and thermophilic environments from hyperthermophilic ancestors. Finally, the evolutionary history of DnaJ-Fer provides information useful for the relative dating of the diversification of Archaeplastida and Thaumarchaeota.

  10. Role of phospholipid transfer protein and pre beta-high density lipoproteins in maintaining cholesterol efflux from Fu5AH cells to plasma from insulin-resistant subjects

    NARCIS (Netherlands)

    Dullaart, RPF; Van Tol, A

    2001-01-01

    Plasma phospholipid transfer protein (PLTP) enhances the generation of pre beta -high density lipoproteins (HDL) that may act as initial accepters of cellular cholesterol, and are likely to play an important role in the antiatherogenic process of reverse cholesterol transport. We: examined the inter

  11. Antiproteinuric therapy decreases LDL-cholesterol as well as HDL-cholesterol in non-diabetic proteinuric patients: relationships with cholesteryl ester transfer protein mass and adiponectin

    NARCIS (Netherlands)

    J.A. Krikken; F. Waanders; G.M. Dallinga-Thie; L.D. Dikkeschei; L. Vogt; G.J. Navis; R.P.F. Dullaart

    2009-01-01

    Objective: Dyslipidemia contributes to increased cardiovascular risk in nephrotic syndrome. We questioned whether reduction in proteinuria not only lowers low-density lipoprotein cholesterol (LDL-C), but also high-density lipoprotein cholesterol (HDL-C) and cholesteryl ester transfer protein (CETP)

  12. Antiproteinuric therapy decreases LDL-cholesterol as well as HDL-cholesterol in non-diabetic proteinuric patients : relationships with cholesteryl ester transfer protein mass and adiponectin

    NARCIS (Netherlands)

    Krikken, J. A.; Waanders, F.; Dallinga-Thie, G. M.; Dikkeschei, L. D.; Vogt, L.; Navis, G. J.; Dullaart, R. P. F.

    2009-01-01

    Objective: Dyslipidemia contributes to increased cardiovascular risk in nephrotic syndrome. We questioned whether reduction in proteinuria not only lowers low-density lipoprotein cholesterol (LDL-C), but also high-density lipoprotein cholesterol (HDL-C) and cholesteryl ester transfer protein (CETP)

  13. Renin-angiotensin-aldosterone responsiveness to low sodium and blood pressure reactivity to angiotensin-II are unrelated to cholesteryl ester transfer protein mass in healthy subjects

    NARCIS (Netherlands)

    Krikken, Jan A.; Dallinga-Thie, Geesje M.; Navis, Gerjan; Dullaart, Robin P. F.

    2008-01-01

    Background: The blood pressure increase associated with the cholesteryl ester transfer protein (CETP) inhibitor, torcetrapib is probably attributable to an off-target effect but it is unknown whether activation of the renin-angiotensin-aldosterone system (RAAS) may be related to variation in the pla

  14. The effect of cholesteryl ester transfer protein-629C -> A promoter polymorphism on high-density lipoprotein cholesterol is dependent on serum triglycerides

    NARCIS (Netherlands)

    Borggreve, SE; Hillege, HL; Wolffenbuttel, BHR; de Jong, PE; Bakker, SJL; van der Steege, G; van Tol, A; Dullaart, RPF

    2005-01-01

    Context: The -629C -> A cholesteryl ester transfer protein (CETP) promoter polymorphism is a determinant of HDL cholesterol (HDL-C). The effect of the closely linked CETP TaqIB polymorphism on HDL-C has been suggested to be modified by obesity and hyperinsulinemia. Objective: Because the CETP-mediat

  15. Alcohol consumption, TaqIB polymorphism of cholesteryl ester transfer protein, high-density lipoprotein cholesterol, and risk of coronary heart disease in men and women

    DEFF Research Database (Denmark)

    Jensen, Majken K; Mukamal, Kenneth J; Overvad, Kim;

    2008-01-01

    AIMS: To investigate whether a common polymorphism in the cholesteryl ester transfer protein (CETP) gene modifies the relationship of alcohol intake with high-density lipoprotein cholesterol (HDL-C) and risk of coronary heart disease (CHD). METHODS AND RESULTS: Parallel nested case-control studies...

  16. Plasma pre beta-HDL formation is decreased by atorvastatin treatment in type 2 diabetes mellitus : Role of phospholipid transfer protein

    NARCIS (Netherlands)

    Dallinga-Thie, G. M.; van Tol, A.; Dullaart, R. P. F.

    2009-01-01

    Atorvastatin lowers plasma phospholipid transfer protein (PLTP) activity, which stimulates pre-beta-HDL, generation in vitro. We determined the effect of atorvastatin on pre-beta-HDL formation and its relation with PLTP activity in type 2 diabetes. Methods: Plasma pre-beta-HDL formation as well as p

  17. Molecular characterization of Api g 2, a novel allergenic member of the lipid-transfer protein 1 family from celery stalks

    NARCIS (Netherlands)

    G. Gadermaier; M. Egger; T. Girbl; A. Erler; A. Harrer; E. Vejvar; M. Liso; K. Richter; L. Zuidmeer; A. Mari; F. Ferreira

    2011-01-01

    Scope: Celery represents a relevant cross-reactive food allergen source in the adult population. As the currently known allergens are not typical elicitors of severe symptoms, we aimed to identify and characterize a non-specific lipid transfer protein (nsLTP). Methods and results: MS and cDNA clonin

  18. Important role for bone marrow-derived cholesteryl ester transfer protein in lipoprotein cholesterol redistribution and atherosclerotic lesion development in LDL receptor knockout mice

    NARCIS (Netherlands)

    Van Eck, Miranda; Ye, Dan; Hildebrand, Reeni B.; Kruijt, J. Kar; de Haan, Willeke; Hoekstra, Menno; Rensen, Patrick C. N.; Ehnholm, Christian; Jauhiainen, Matti; Van Berkel, Theo J. C.

    2007-01-01

    Abundant amounts of cholesteryl ester transfer protein (CETP) are found in macrophage-derived foam cells in the arterial wall, but its function in atherogenesis is unknown. To investigate the role of macrophage CETP in atherosclerosis, LDL receptor knockout mice were transplanted with bone marrow fr

  19. Long-range protein electron transfer observed at the single-molecule level: In situ mapping of redox-gated tunneling resonance

    DEFF Research Database (Denmark)

    Chi, Qijin; Farver, O; Ulstrup, Jens

    2005-01-01

    A biomimetic long-range electron transfer (ET) system consisting of the blue copper protein azurin, a tunneling barrier bridge, and a gold single-crystal electrode was designed on the basis of molecular wiring self-assembly principles. This system is sufficiently stable and sensitive in a quasi...

  20. The anti-apoptotic MAP kinase pathway is inhibited in NIH3T3 fibroblasts with increased expression of phosphatidylinositol transfer protein β

    NARCIS (Netherlands)

    Schenning, M.; van Tiel, C.M.; Wirtz, K.W.A.; Snoek, G.T.

    2007-01-01

    Mouse NIH3T3 fibroblast cells overexpressing phosphatidylinositol transfer protein ß (PI-TPß, SPIß cells) demonstrate a low rate of proliferation and a high sensitivity towards UV-induced apoptosis when compared with wtNIH3T3 cells. In contrast, SPIßS262A cells overexpressing a mutant PI-TPß that la

  1. Elevated cholesteryl ester transfer protein concentration is associated with an increased risk for cardiovascular disease in women, but not in men, with Type 2 diabetes : the Hoorn Study

    NARCIS (Netherlands)

    Alssema, M; Dekker, J M; Kuivenhoven, J A; Nijpels, G; Teerlink, T; Scheffer, P G; Diamant, M; Stehouwer, C D A; Bouter, L M; Heine, R J

    2007-01-01

    AIMS: Cholesteryl ester transfer protein (CETP) exchanges neutral lipids between lipoproteins. As the role of CETP in the atherogenic process is still not fully clarified, we studied the association of CETP concentration with the prevalence of cardiovascular disease (CVD) and with intima-media thick

  2. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  3. Cholesteryl ester transfer-protein modulator and inhibitors and their potential for the treatment of cardiovascular diseases

    Directory of Open Access Journals (Sweden)

    Shinkai H

    2012-05-01

    Full Text Available Hisashi ShinkaiCentral Pharmaceutical Research Institute, JT Inc, Osaka, JapanAbstract: Elevated low-density lipoprotein (LDL cholesterol and lowered high-density lipoprotein (HDL cholesterol are important risk factors for cardiovascular disease. Accordingly, raising HDL cholesterol induced by cholesteryl ester transfer protein (CETP inhibition is an attractive approach for reducing the residual risk of cardiovascular events that persist in many patients receiving low-density LDL cholesterol-lowering therapy with statins. The development of torcetrapib, a CETP inhibitor, was terminated due to its adverse cardiovascular effects. These adverse effects did not influence the mechanism of CETP inhibition, but affected the molecule itself. Therefore a CETP modulator, dalcetrapib, and a CETP inhibitor, anacetrapib, are in Phase III of clinical trials to evaluate their effects on cardiovascular outcomes. In the dal-VESSEL (dalcetrapib Phase IIb endothelial function study and the dal-PLAQUE (safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging clinical studies, dalcetrapib reduced CETP activity by 50% and increased HDL cholesterol levels by 31% without changing LDL cholesterol levels. Moreover, dalcetrapib was associated with a reduction in carotid vessel-wall inflammation at 6 months, as well as a reduced vessel-wall area at 24 months compared with the placebo. In the DEFINE (determining the efficacy and tolerability of CETP inhibition with anacetrapib clinical study, anacetrapib increased HDL cholesterol levels by 138% and decreased LDL cholesterol levels by 36%. In contrast with torcetrapib, anacetrapib had no adverse cardiovascular effects. The potential of dalcetrapib and anacetrapib in the treatment of cardiovascular diseases will be revealed by two large-scale clinical trials, the dal-OUTCOMES (efficacy and safety of dalcetrapib in patients with recent acute coronary syndrome study and the

  4. Colour, lipid and protein stability of Rhea americana meat during air- and vacuum-packaged storage: influence of muscle on oxidative processes.

    Science.gov (United States)

    Filgueras, R S; Gatellier, P; Aubry, L; Thomas, A; Bauchart, D; Durand, D; Zambiazi, R C; Santé-Lhoutellier, V

    2010-11-01

    Physicochemical characteristics and oxidative stability during storage were determined in Gastrocnemius pars interna (GN) and Iliofiburalis (IF) muscles of Rhea americana. Glycolytic potential (GP) and pH decline of muscles were measured within the first 24 h post mortem. Colour, lipid and protein stability were determined during storage of meat, i.e. 5 days under air-packaging at 4°C, or 28 days under vacuum-packaging at 4°C. In parallel, anti-oxidant status of muscles was estimated by measuring α-tocopherol content and anti-oxidant enzyme activities (superoxide dismutase and catalase), while pro-oxidant status was evaluated by determining haeminic iron and long chain fatty acids (especially polyunsaturated fatty acids). The ultimate pH was similar in both muscles, but the GP value was significantly higher in IF than in GN muscle. Haeminic iron and alpha-tocopherol content differed between muscles, with 30% more haeminic iron (ppackaging, lipid and protein oxidation of rhea muscles increased up to 275% and 30%, respectively. This increase was more rapidly and marked in IF muscle. The IF also showed high level of metmyoglobin accumulation after 3 days of storage (47%) and was rejected by 1 consumer out of 2 in sensorial analysis. Under vacuum-packaging, both muscles showed a high stability of colour and no oxidation of lipids and proteins.

  5. Identification of a Stelar-Localized Transport Protein That Facilitates Root-to-Shoot Transfer of Chloride in Arabidopsis

    KAUST Repository

    Li, Bo

    2015-12-11

    Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl–) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl– xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl– efflux out of cells and was much less permeable to NO3−. Shoot Cl– accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl– in plants, playing a role in the loading and the regulation of Cl– loading into the xylem of Arabidopsis roots during salinity stress.

  6. Farnesoid X receptor up-regulates expression of Lipid transfer inhibitor protein in liver cells and mice

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China); Liu, Hong [Department of Hematology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Peng, Jiahe; Wang, Yongchao; Zhang, Yan; Dong, Jinyu; Liu, Xiaohua; Guo, Dongmei [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China); Jiang, Yu, E-mail: yujiang61@gmail.com [Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038 (China)

    2013-11-29

    Highlights: •FXR up-regulates apoF. •It binds to ER1 element. •It activates apoF gene promoter. -- Abstract: Apolipoprotein F is a component protein mainly secreted by liver and resides on several lipoprotein classes. It can inhibit lipids transfer between different lipoproteins. FXR is a member of the nuclear receptor superfamily which is also highly expressed in the liver. It modulates bile acids synthesis and lipids metabolism by transcriptional regulation. We aimed to determine whether apoF can be regulated by FXR. The FXR agonist Chenodeoxycholic acid (CDCA) and GW4064 both can activate the expression of apoF in liver cell lines and in C57/BL6 mouse liver. This is dependent on the binding of FXR to the FXR element ER1 (−2904 to −2892 bp) in the apoF gene promoter. Taken together, we have identified apoF as likely another target gene of FXR.

  7. Farnesoid X receptor up-regulates expression of Lipid transfer inhibitor protein in liver cells and mice

    International Nuclear Information System (INIS)

    Highlights: •FXR up-regulates apoF. •It binds to ER1 element. •It activates apoF gene promoter. -- Abstract: Apolipoprotein F is a component protein mainly secreted by liver and resides on several lipoprotein classes. It can inhibit lipids transfer between different lipoproteins. FXR is a member of the nuclear receptor superfamily which is also highly expressed in the liver. It modulates bile acids synthesis and lipids metabolism by transcriptional regulation. We aimed to determine whether apoF can be regulated by FXR. The FXR agonist Chenodeoxycholic acid (CDCA) and GW4064 both can activate the expression of apoF in liver cell lines and in C57/BL6 mouse liver. This is dependent on the binding of FXR to the FXR element ER1 (−2904 to −2892 bp) in the apoF gene promoter. Taken together, we have identified apoF as likely another target gene of FXR

  8. G protein-coupled receptor signaling analysis using homogenous time-resolved Förster resonance energy transfer (HTRF®) technology.

    Science.gov (United States)

    Nørskov-Lauritsen, Lenea; Thomsen, Alex Rojas Bie; Bräuner-Osborne, Hans

    2014-01-01

    Studying multidimensional signaling of G protein-coupled receptors (GPCRs) in search of new and better treatments requires flexible, reliable and sensitive assays in high throughput screening (HTS) formats. Today, more than half of the detection techniques used in HTS are based on fluorescence, because of the high sensitivity and rich signal, but quenching, optical interferences and light scattering are serious drawbacks. In the 1990s the HTRF® (Cisbio Bioassays, Codolet, France) technology based on Förster resonance energy transfer (FRET) in a time-resolved homogeneous format was developed. This improved technology diminished the traditional drawbacks. The optimized protocol described here based on HTRF® technology was used to study the activation and signaling pathways of the calcium-sensing receptor, CaSR, a GPCR responsible for maintaining calcium homeostasis. Stimulation of the CaSR by agonists activated several pathways, which were detected by measuring accumulation of the second messengers D-myo-inositol 1-phosphate (IP1) and cyclic adenosine 3',5'-monophosphate (cAMP), and by measuring the phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Here we show how an optimized HTRF® platform with numerous advantages compared to previous assays provides a substantial and robust mode of investigating GPCR signaling. It is furthermore discussed how these assays can be optimized and miniaturized to meet HTS requirements and for screening compound libraries.

  9. Lipid exchange mechanism of the cholesteryl ester transfer protein clarified by atomistic and coarse-grained simulations.

    Directory of Open Access Journals (Sweden)

    Artturi Koivuniemi

    2012-01-01

    Full Text Available Cholesteryl ester transfer protein (CETP transports cholesteryl esters, triglycerides, and phospholipids between different lipoprotein fractions in blood plasma. The inhibition of CETP has been shown to be a sound strategy to prevent and treat the development of coronary heart disease. We employed molecular dynamics simulations to unravel the mechanisms associated with the CETP-mediated lipid exchange. To this end we used both atomistic and coarse-grained models whose results were consistent with each other. We found CETP to bind to the surface of high density lipoprotein (HDL -like lipid droplets through its charged and tryptophan residues. Upon binding, CETP rapidly (in about 10 ns induced the formation of a small hydrophobic patch to the phospholipid surface of the droplet, opening a route from the core of the lipid droplet to the binding pocket of CETP. This was followed by a conformational change of helix X of CETP to an open state, in which we found the accessibility of cholesteryl esters to the C-terminal tunnel opening of CETP to increase. Furthermore, in the absence of helix X, cholesteryl esters rapidly diffused into CETP through the C-terminal opening. The results provide compelling evidence that helix X acts as a lid which conducts lipid exchange by alternating the open and closed states. The findings have potential for the design of novel molecular agents to inhibit the activity of CETP.

  10. Association between TaqIB polymorphism of cholesteryl ester transfer protein and coronary artery disease in the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Qi YU; Peng-hui YANG; En-qi LIU; Si-hai ZHAO; Ya-feng LI; Yan-li WANG; Yu-long CHEN; Ke-na WEI; Bing-qiao HUANG; Jian-lin FAN

    2012-01-01

    Objective:To assess whether the TaqIB polymorphism of cholesteryl ester transfer protein (CETP) is associated with coronary artery disease (CAD) in Chinese population,we performed a meta-analysis in this paper.Methods:We searched PubMed,Embase,the Science Citation Index (SCI),the China Biological Medicine database (CBM),the China National Knowledge Infrastructure (CNKI),and the Wanfang database for relevant articles.Data were extracted,and pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated.Results:The literature search yielded 448 studies,in which 10 case-control studies including 1 694 cases and 1456 controls matched the selection criteria.The combined B1 and B2 allele frequencies were 0.587 and 0.413,respectively.The pooled OR was 1.10 (95% CI,0.89-1.34) for comparing the B1B1 or B1B2 carriers with B2B2 carriers,and was 1.27 (95% CI,1.09-1.49) in the B1B1 carriers versus B2B2 or B1B2 carriers.Conclusions:In the present study,the TaqIB polymorphism of CETP was found to be associated with CAD in the Chinese population.g

  11. Effect of microsomal triglyceride transfer protein gene polymorphism in the promoter region on dyslipidemia in type 2 diabetic subjects

    Institute of Scientific and Technical Information of China (English)

    陈莉明; 芳野原; 前田英一; 曾淑范

    2003-01-01

    Objective To explore the relationship between microsomal triglyceride transfer protein (MTP) gene variation and diabetic dyslipidemia among Chinese. Methods Using PCR restriction fragment length polymorphism (PCR-RFLP) analysis and gene sequencing, we studied the influence of a common MTP gene polymorphism in the p romoter region on the apoB-containing lipoproteins in 44 Chinese type 2 diabeti c subjects and 32 non-diabetic volunteers. Results A common functional G/T polymorphism in 493 bp upstream from the transcriptional start point was detected among native Chinese. There were 41 carriers (53.9%) of the MTP-493 G/G genotype, 28 (36.8%) of the MTP-493 G/T genotype and 7 (9.3%) of the MTP-493 T/T genotype. The allele frequency of M TP-493 T in the diabetic group was 0.30. The MTP-493 T/T diabetic group had significantly higher TG (P<0.05), VLDL-CH (P<0.05) and smaller LDL pa rticle size (P<0.001) than the MTP-493 common genotype group. Conclusion Genetic variation in the MTP promoter is likely to be highly involved in the production of dyslipidemia in type 2 diabetic subjects.

  12. JTT-130, a novel intestine-specific inhibitor of microsomal triglyceride transfer protein, reduces food preference for fat.

    Science.gov (United States)

    Mera, Yasuko; Hata, Takahiro; Ishii, Yukihito; Tomimoto, Daisuke; Kawai, Takashi; Ohta, Takeshi; Kakutani, Makoto

    2014-01-01

    Microsomal triglyceride transfer protein (MTP) is involved in the assembly and secretion of triglyceride-rich lipoproteins from enterocytes and hepatocytes. JTT-130 is a novel intestine-specific MTP inhibitor, which has been shown to be useful in the prevention and treatment of dyslipidemia, obesity, and diabetes. JTT-130 has also been shown to suppress food intake in a dietary fat-dependent manner in rats. However, whether JTT-130 enables changes in food preference and nutrient consumption remains to be determined. Therefore, the aim of the present study was to investigate the effects of JTT-130 on food preference in rat under free access to two different diets containing 3.3% fat (low-fat diet, LF diet) and 35% fat (high-fat diet, HF diet). JTT-130 decreased HF diet intake and increased LF diet intake, resulting in a change in ratio of caloric intake from LF and HF diets to total caloric intake. In addition, macronutrient analysis revealed that JTT-130 did not affect carbohydrate consumption but significantly decreased fat consumption (P fat absorption, but also suppresses food intake and specifically reduces food preference for fat. Therefore, JTT-130 is expected to provide a new option for the prevention and treatment of obesity and obesity-related metabolic disorders.

  13. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP) Gene Expression to the Clubroot Disease and Salt Stress.

    Science.gov (United States)

    Jülke, Sabine; Ludwig-Müller, Jutta

    2015-01-01

    The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana clubroots indicate that lipid transfer proteins (LTPs) could be involved in disease development or at least in adaptation to the disease symptoms. Therefore, the aim of the study was to examine the role of some, of the still enigmatic LTPs during clubroot development. For a functional approach, we have generated transgenic plants that overexpress LTP genes in a root specific manner or show reduced LTP gene expression. Our results showed that overexpression of some of the LTP genes resulted in reduced disease severity whereas the lipid content in clubs of LTP mutants seems to be unaffected. Additional studies indicate a role for some LTPs during salt stress conditions in roots of A. thaliana. PMID:27135222

  14. Response of Arabidopsis thaliana Roots with Altered Lipid Transfer Protein (LTP Gene Expression to the Clubroot Disease and Salt Stress

    Directory of Open Access Journals (Sweden)

    Sabine Jülke

    2015-12-01

    Full Text Available The clubroot disease of Brassicaceae is caused by the obligate biotrophic protist Plasmodiophora brassicae. The disease is characterized by abnormal tumorous swellings of infected roots that result in reduced drought resistance and insufficient distribution of nutrients, leading to reduced crop yield. It is one of the most damaging diseases among cruciferous crops worldwide. The acquisition of nutrients by the protist is not well understood. Gene expression profiles in Arabidopsis thaliana clubroots indicate that lipid transfer proteins (LTPs could be involved in disease development or at least in adaptation to the disease symptoms. Therefore, the aim of the study was to examine the role of some, of the still enigmatic LTPs during clubroot development. For a functional approach, we have generated transgenic plants that overexpress LTP genes in a root specific manner or show reduced LTP gene expression. Our results showed that overexpression of some of the LTP genes resulted in reduced disease severity whereas the lipid content in clubs of LTP mutants seems to be unaffected. Additional studies indicate a role for some LTPs during salt stress conditions in roots of A. thaliana.

  15. Interaction of Protease-Activated Receptor 2 with G Proteins and Beta-Arrestin 1 Studied by Bioluminescence Resonance Energy Transfer

    Directory of Open Access Journals (Sweden)

    Mohammed Akli eAyoub

    2013-12-01

    Full Text Available G protein-coupled receptors (GPCRs are well recognized as being able to activate several signaling pathways through the activation of different G proteins as well as other signaling proteins such as beta-arrestins. Therefore, understanding how such multiple GPCR-mediated signaling can be integrated constitute an important aspect. Here, we applied bioluminescence resonance energy transfer (BRET to shed more light on the G protein coupling profile of trypsin receptor, or protease-activated receptor 2 (PAR2, and its interaction with beta-arrestin1. Using YFP and Rluc fusion constructs expressed in COS-7 cells, BRET data revealed a pre-assembly of PAR2 with both Galphai1 and Galphao and a rapid and transient activation of these G proteins upon receptor activation. In contrast, no preassembly of PAR2 with Galpha12 could be detected and their physical association can be measured with a very slow and sustained kinetics similar to that of beta-arrestin1 recruitment. These data demonstrate the coupling of PAR2 with Galphai1, Galphao and Galpha12 in COS-7 cells with differences in the kinetics of GPCR-G protein coupling, a parameter that very likely influences the cellular response. Moreover, this further illustrates that preassembly or agonist-induced G protein interaction depends on receptor-G protein pairs indicating another level of complexity and regulation of the signaling of GPCR-G protein complexes and its multiplicity.

  16. Ciprofibrate increases cholesteryl ester transfer protein gene expression and the indirect reverse cholesterol transport to the liver

    Directory of Open Access Journals (Sweden)

    Berti Jairo A

    2009-11-01

    Full Text Available Abstract Background CETP is a plasma protein that modulates atherosclerosis risk through its HDL-cholesterol reducing action. The aim of this work was to examine the effect of the PPARα agonist, ciprofibrate, on the CETP gene expression, in the presence and absence of apolipoprotein (apo CIII induced hypertriglyceridemia, and its impact on the HDL metabolism. Results Mice expressing apo CIII and/or CETP and non-transgenic littermates (CIII, CIII/CETP, CETP, non-Tg were treated with ciprofibrate during 3 weeks. Drug treatment reduced plasma triglycerides (30-43% and non-esterified fatty acids (19-47% levels. Cholesterol (chol distribution in plasma lipoprotein responses to ciprofibrate treatment was dependent on the genotypes. Treated CIII expressing mice presented elevation in VLDL-chol and reduction in HDL-chol. Treated CETP expressing mice responded with reduction in LDL-chol whereas in non-Tg mice the LDL-chol increased. In addition, ciprofibrate increased plasma post heparin lipoprotein lipase activity (1.3-2.1 fold in all groups but hepatic lipase activity decreased in treated CETP and non-Tg mice. Plasma CETP activity and liver CETP mRNA levels were significantly increased in treated CIII/CETP and CETP mice (30-100%. Kinetic studies with 3H-cholesteryl ether (CEt labelled HDL showed a 50% reduction in the 3H-CEt found in the LDL fraction in ciprofibrate treated compared to non-treated CETP mice. This means that 3H-CEt transferred from HDL to LDL was more efficiently removed from the plasma in the fibrate treated mice. Accordingly, the amount of 3H-CEt recovered in the liver 6 hours after HDL injection was increased by 35%. Conclusion Together these data showed that the PPARα agonist ciprofibrate stimulates CETP gene expression and changes the cholesterol flow through the reverse cholesterol transport, increasing plasma cholesterol removal through LDL.

  17. Patient considerations and clinical impact of cholesteryl ester transfer protein inhibitors in the management of dyslipidemia: focus on anacetrapib.

    Science.gov (United States)

    Miyares, Marta A; Davis, Kyle

    2012-01-01

    Cardiovascular disease (CVD) is responsible for significant morbidity and mortality within the United States and worldwide. Although targeting low-density lipoprotein cholesterol (LDL-C) in the prevention of CVD has been shown to be effective, evidence exists to indicate that significant cardiovascular (CV) risk remains in patients receiving 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (statins) - a risk that may be correlated with low levels of high-density lipoprotein cholesterol (HDL-C). Among the various tactics under investigation to increase HDL-C, inhibition of cholesteryl ester transfer protein (CETP) appears the most adept to raise these levels. Although torcetrapib, a CETP inhibitor, demonstrated significant beneficial changes in HDL-C and LDL-C after 12 months of therapy when coadministered with atorvastatin, patients in the torcetrapib arm experienced a rise in mortality, including increased risk of death from CV and non-CV causes as well as a significant rise in major CV events. Later studies established that the adverse effects of torcetrapib were produced from molecule-specific off-target effects and not to the mechanism of CETP inhibition. These untoward outcomes have not been detected with anacetrapib, the third of the CETP inhibitors to enter Phase III trials. Furthermore, treatment with anacetrapib revealed both a statistically significant decrease in LDL-C and increase in HDL-C over placebo. While the place in therapy of niacin and fibrates to reduce CV events is currently in question secondary to the Atherothrombosis Intervention in Metabolic Syndrome with Low HDL Cholesterol/High Triglyceride and Impact on Global Health Outcomes and the Action to Control CV Risk in Diabetes trials, the ongoing large-scale, randomized-placebo, controlled-outcomes study with anacetrapib coadministered with statin treatment will not only test the hypothesis if CETP inhibition lowers residual CV risk but will also provide insight as to which patient

  18. A Novel Missense Mutation (L296Q) in Cholesteryl Ester Transfer Protein Gene Related to Coronary Heart Disease

    Institute of Scientific and Technical Information of China (English)

    Ke-Qin ZHENG; Si-Zhong ZHANG; Li ZHANG; De-Jia HUANG; Lin-Chuan LIAO; Yi-Ping HOU

    2004-01-01

    Cholesteryl ester transfer protein (CETP) is a key participant in the reverse transport ofcholesterol from the peripheral tissues to the liver. To understand the role that CETP gene plays in thepathogenesis of coronary heart disease (CHD), the promoter region, all 16 exons and adjacent intronicregions of CETP gene were screened for single nucleotide polymorphisms (SNPs) in 203 CHD patients and209 controls by a combination of PCR, denaturing high performance liquid chromatography (DHPLC),molecular cloning, and DNA sequencing. A novel missense mutation in the CETP gene was identified. Thismutation (L296Q) was a T-to-A conversion at codon 296 of exon 10 which replaced the codon for leucine(CTG) with the codon for glutamine (CAG). Association study revealed that L296Q mutation was associatedwith CHD with a significantly higher mutant allele frequency in the CHD patients than that in the controls (0.160 vs. 0.091,x2= 9.014, P = 0.003), and that the odds ratio for the development of CHD was 1.83 for the296Q allele carriers relative to 296LL homozygotes. Statistical analyses demonstrated that the mutant 296Q allelecarrier patients displayed significantly higher total cholesterol (TC) and low density lipoprotein cholesterol(LDL-C) concentrations than non-carrier patients. The results of the present study suggest that the L296Qmutation is related to CHD, and the identification of new mutations in the CETP gene will afford the oppor-tunity to investigate the relationship between CETP gene and CHD.

  19. Cholesteryl ester transfer protein, low density lipoprotein particle size and intima media thickness in patients with coronary heart disease.

    Science.gov (United States)

    Tosheska, Katerina; Labudovic, Danica; Jovanova, Silvana; Jaglikovski, Branko; Alabakovska, Sonja

    2011-08-01

    Cholesteryl ester transfer protein (CETP) plays a key role in reverse cholesterol transport and high density lipoprotein (HDL) metabolism. Predominance of small, dense LDL particles is associated with an increased risk of atherosclerosis and coronary heart disease (CHD).The aim of the study was to determine the potential relationship between the CETP concentration and low density lipoprotein (LDL) particle size and their association with intima media thickness (IMT) in patients with CHD. Lipid parameters, CETP concentration and LDL particle size were determined in 100 healthy subjects (control group) and in 100 patients with CHD, aged 43 to 77 years. Plasma CETP concentrations were measured by an enzyme-linked immuno-sorbent assay with two different monoclonal antibodies. LDL subclasses were separated by nondenaturing polyacrilamide 3-31% gradient gel electrophoresis. CETP concentration was higher in patients compared to controls (2.02 ± 0.75 mg/ml vs. 1.74 ± 0.63 mg/ml, p<0.01). Mean LDL particle size (nm) was significantly smaller in patients than in controls (24.5 ± 1.1 vs. 26.1 ± 0.9; p<0.001). There was no relation between LDL particle size and CETP concentration (r=-0.1807, p=0.072). Age, diastolic blood pressure, CETP concentration and LDL particle size were independent factors for determing IMT by multiple linear regression analysis. They accounted for 35.2 % of the observed variability in IMT. CETP is not an independent contributor of LDL particle size. CETP might play a role in determining lipoprotein distributions, but did not seem to be the sole factor in the formation of small LDL particles.

  20. A Novel Missense Mutation (L296Q) in Cholesteryl Ester Transfer Protein Gene Related to Coronary Heart Disease

    Institute of Scientific and Technical Information of China (English)

    Ke-QinZHENG; Si-ZhongZHANG; LiZHANG; De-JiaHUANG; Lin-ChuanLIAO; Yi-PingHOU

    2004-01-01

    Cholesteryl ester transfer protein (CETP) is a key participant in the, reverse transport of cholesterol from the peripheral tissues to the liver. To understand the role that CETP gene plays in the pathogenesis of coronary heart disease (CHD), the promoter region, all 16 exons and adjacent intronic regions of CETP gene were screened for single nucleotide polymorphisms (SNPs) in 203 CHD patients and 209 controls by a combination of PCR, denaturing high performance liquid chromatography (DHPLC),molecular cloning, and DNA sequencing. A novel missense mutation in the CETP geve was identified. This mutation (L296Q) was a T-to-A conversion at codon 296 of exon 10 which replaced the codon for leucine (CTG) with the codon for glutamine (CAG). Association study revealed that L296Q mutation was associated with CHD with a significantly higher mutant allele frequency in the CHD patients than that in the controls (0.160 vs. 0.091,x2=9.014, P=0.003), and that the odds ratio for the development of CHD was 1.83 for the 296Q allele carriers relative to 296LL homozygotes. Statistical analyses demonstrated thai the mutant 296Q allele carrier patients displayed significantly higher total cholesterol (TC) and low density lipoprotein cholesterol (LDL-C) concentrations than non-carrier patients. The results of the present study suggest that the L296Q mutation is related to CHD, and the identification of new mutations in the CETP gene will afford the opportunity to investigate the relationship between CETP gene and CHD.

  1. Cardiac expression of microsomal triglyceride transfer protein is increased in obesity and serves to attenuate cardiac triglyceride accumulation.

    Directory of Open Access Journals (Sweden)

    Emil D Bartels

    Full Text Available Obesity causes lipid accumulation in the heart and may lead to lipotoxic heart disease. Traditionally, the size of the cardiac triglyceride pool is thought to reflect the balance between uptake and beta-oxidation of fatty acids. However, triglycerides can also be exported from cardiomyocytes via secretion of apolipoproteinB-containing (apoB lipoproteins. Lipoprotein formation depends on expression of microsomal triglyceride transfer protein (MTP; the mouse expresses two isoforms of MTP, A and B. Since many aspects of the link between obesity-induced cardiac disease and cardiac lipid metabolism remain unknown, we investigated how cardiac lipoprotein synthesis affects cardiac expression of triglyceride metabolism-controlling genes, insulin sensitivity, and function in obese mice. Heart-specific ablation of MTP-A in mice using Cre-loxP technology impaired upregulation of MTP expression in response to increased fatty acid availability during fasting and fat feeding. This resulted in cardiac triglyceride accumulation but unaffected cardiac insulin-stimulated glucose uptake. Long-term fat-feeding of male C57Bl/6 mice increased cardiac triglycerides, induced cardiac expression of triglyceride metabolism-controlling genes and attenuated heart function. Abolishing cardiac triglyceride accumulation in fat-fed mice by overexpression of an apoB transgene in the heart prevented the induction of triglyceride metabolism-controlling genes and improved heart function. The results suggest that in obesity, the physiological increase of cardiac MTP expression serves to attenuate cardiac triglyceride accumulation albeit without major effects on cardiac insulin sensitivity. Nevertheless, the data suggest that genetically increased lipoprotein secretion prevents development of obesity-induced lipotoxic heart disease.

  2. The Relationship Between Genetic Variations of the Cholesteryl Ester Transfer Protein Gene and Coronary Artery Disease in Turkish Subjects

    Science.gov (United States)

    Gundogdu, Fuat; Gurlertop, Yekta; Pirim, Ibrahim; Sevimli, Serdar; Dogan, Hasan; Arslan, Sakir; Aksoy, Hulya; Karakelloglu, Sule; Senocak, Huseyin

    2009-01-01

    Objective Although the relationship between cholesteryl ester transfer protein (CETP) and cholesterol metabolism has been characterized in recent years, the effect of CETP genetic variants associated with coronary artery disease (CAD) is still unclear. Therefore, we investigated the association between CETP gene polymorphism and levels of lipid in patients with CAD. Materials and Methods We conducted a case-control study that included 194 unrelated subjects who underwent coronary angiography for suspected ischemic heart disease. This group was divided into 96 patients with angiographically documented CAD and 98 subjects (individuals matched for age and gender) without angiographically documented CAD (CAD-free subjects), all of whom were studied to examine the genotypic distribution of the CETP gene polymorphism in CAD. Genotyping was performed via polymerase chain reaction. Results Of the 96 patients with CAD, 38 (40%) were B1B1, 42 (44%) B1B2 and 16 (16%) B2B2, compared with the control subjects, of which 35 (36%) were B1B1, 44 (45%) B1B2 and 19 (19%) B2B2. There were no significant differences between patients with CAD and control subjects in the distribution of the CETP gene polymorphism. Patients with the B1B1 genotype had lower high-density lipoprotein-cholesterol (HDL-C) and higher triglyceride (TG) levels than patients with the B2B2 genotype (p<0.05). In addition, among control subjects HDL-C levels were significantly higher in subjects with the B2B2 genotype than in subjects with the B1B1 genotype (p<0.01). Conclusion Our results suggest that genetic variations of the CTEP gene may be responsible for low HDL-C levels but may not be considered as a risk factor for CAD in the Turkish population. PMID:25610061

  3. Expression and characterization of a new isoform of the 9 kDa allergenic lipid transfer protein from tomato (variety San Marzano).

    Science.gov (United States)

    Volpicella, Mariateresa; Leoni, Claudia; Fanizza, Immacolata; Rinalducci, Sara; Placido, Antonio; Ceci, Luigi R

    2015-11-01

    Lipid transfer proteins (LTPs) are food allergens found first in fruits of the Rosaceae family and later identified in other food plants. Their high structural stability causes them to behave as allergens in cooked and processed foods. Allergenic LTPs have been identified in tomato fruits as well, but studies of their thermal stability and structural characteristics are limited. In this article we report the identification of the coding region for a novel 9 kDa LTP isoform in the tomato variety San Marzano, together with the expression of the recombinant mature protein. The purified recombinant protein was further characterized for its thermal stability and was found to bind 1-palmitoil-2-lysophosphatidylcholine (Lyso-C16) after thermal treatments up to 105 °C. Analysis of a modeling derived structure of the protein allowed the identification of possible epitope regions on the molecular surface. PMID:26232648

  4. Upconversion nanophosphor: an efficient phosphopeptides-recognizing matrix and luminescence resonance energy transfer donor for robust detection of protein kinase activity.

    Science.gov (United States)

    Liu, Chenghui; Chang, Lijuan; Wang, Honghong; Bai, Jie; Ren, Wei; Li, Zhengping

    2014-06-17

    Protein kinases play important regulatory roles in intracellular signal transduction pathways. The aberrant activities of protein kinases are closely associated with the development of various diseases, which necessitates the development of practical and sensitive assays for monitoring protein kinase activities as well as for screening of potential kinase-targeted drugs. We demonstrate here a robust luminescence resonance energy transfer (LRET)-based protein kinase assay by using NaYF4:Yb,Er, one of the most efficient upconversion nanophosphors (UCNPs), as an autofluorescence-free LRET donor and a tetramethylrhodamine (TAMRA)-labeled substrate peptide as the acceptor. Fascinatingly, besides acting as the LRET donor, NaYF4:Yb,Er UCNPs also serve as the phosphopeptide-recognizing matrix because the intrinsic rare earth ions of UCNPs can specifically capture the fluorescent phosphopeptides catalyzed by protein kinases over the unphosphorylated ones. Therefore, a sensitive and generic protein kinase assay is developed in an extremely simple mix-and-read format without any requirement of surface modification, substrate immobilization, separation, or washing steps, showing great potential in protein kinases-related clinical diagnosis and drug discovery. To the best of our knowledge, this is the first report by use of rare earth-doped UCNPs as both the phospho-recognizing and signal reporting elements for protein kinase analysis.

  5. Upconversion nanophosphor: an efficient phosphopeptides-recognizing matrix and luminescence resonance energy transfer donor for robust detection of protein kinase activity.

    Science.gov (United States)

    Liu, Chenghui; Chang, Lijuan; Wang, Honghong; Bai, Jie; Ren, Wei; Li, Zhengping

    2014-06-17

    Protein kinases play important regulatory roles in intracellular signal transduction pathways. The aberrant activities of protein kinases are closely associated with the development of various diseases, which necessitates the development of practical and sensitive assays for monitoring protein kinase activities as well as for screening of potential kinase-targeted drugs. We demonstrate here a robust luminescence resonance energy transfer (LRET)-based protein kinase assay by using NaYF4:Yb,Er, one of the most efficient upconversion nanophosphors (UCNPs), as an autofluorescence-free LRET donor and a tetramethylrhodamine (TAMRA)-labeled substrate peptide as the acceptor. Fascinatingly, besides acting as the LRET donor, NaYF4:Yb,Er UCNPs also serve as the phosphopeptide-recognizing matrix because the intrinsic rare earth ions of UCNPs can specifically capture the fluorescent phosphopeptides catalyzed by protein kinases over the unphosphorylated ones. Therefore, a sensitive and generic protein kinase assay is developed in an extremely simple mix-and-read format without any requirement of surface modification, substrate immobilization, separation, or washing steps, showing great potential in protein kinases-related clinical diagnosis and drug discovery. To the best of our knowledge, this is the first report by use of rare earth-doped UCNPs as both the phospho-recognizing and signal reporting elements for protein kinase analysis. PMID:24871878

  6. An essential virulence protein of Agrobacterium tumefaciens, VirB4, requires an intact mononucleotide binding domain to function in transfer of T-DNA.

    Science.gov (United States)

    Fullner, K J; Stephens, K M; Nester, E W

    1994-12-15

    The 11 gene products of the Agrobacterium tumefaciens virB operon, together with the VirD4 protein, are proposed to form a membrane complex which mediates the transfer of T-DNA to plant cells. This study examined one putative component of that complex, VirB4. A deletion of the virB4 gene on the Ti plasmid pTiA6NC was constructed by replacing the virB4 gene with the kanamycin resistance-conferring nptII gene. The virB4 gene was found to be necessary for virulence on plants and for the transfer of IncQ plasmids to recipient cells of A. tumefaciens. Genetic complementation of the deletion strain by the virB4 gene under control of the virB promoter confirmed that the deletion was nonpolar on downstream virB genes. Genetic complementation was also achieved with the virB4 gene placed under control of the lac promoter, even though synthesis of the VirB4 protein from this promoter is far below wild-type levels. Having shown a role for the VirB4 protein in DNA transfer, lysine-439, found within the conserved mononucleotide binding domain of VirB4, was changed to a glutamic acid, methionine, or arginine by oligonucleotide-directed mutagenesis. virB4 genes bearing these mutations were unable to complement the virB4 deletion for either virulence or for IncQ transfer, showing that an intact mononucleotide binding site is necessary for the function of VirB4 in DNA transfer. The necessity of the VirB4 protein with an intact mononucleotide binding site for extracellular complementation of virE2 mutants was also shown. In merodiploid studies, lysine-439 mutations present in trans decreased IncQ plasmid transfer frequencies, suggesting that VirB4 functions within a complex to facilitate DNA transfer. PMID:7830718

  7. Molecular basis of allergen cross-reactivity: Non-specific lipid transfer proteins from wheat flour and peach fruit as models

    OpenAIRE

    Tordesillas Villuendas, Leticia; Pacios, Luis F.; Palacín Gómez, Aranzazu; Quirce, Santiago; Armentia, Alicia; Barber, Domingo; Díaz Perales, Araceli; Salcedo Duran, Gabriel

    2009-01-01

    Peach non-specific lipid transfer protein (Pru p 3; nsLTP) has been characterized as the major food allergen in the adult Mediterranean population. Its wheat homologous protein, Tri a 14 has a relevant inhalant allergen in occupational baker's asthma. Different sensitization patterns to these allergens have been found in patients with this latter disorder. The objective of the present study was to characterize IgE epitopes of Tri a 14 and to compare them with those of Pru p 3 using three comp...

  8. Transfer of Fas (CD95 protein from the cell surface to the surface of polystyrene beads coated with anti-Fas antibody clone CH-11

    Directory of Open Access Journals (Sweden)

    H. Sawai

    2010-02-01

    Full Text Available Mouse monoclonal anti-Fas (CD95 antibody clone CH-11 has been widely used in research on apoptosis. CH-11 has the ability to bind to Fas protein on cell surface and induce apoptosis. Here, we used polystyrene beads coated with CH-11 to investigate the role of lipid rafts in Fas-mediated apoptosis in SKW6.4 cells. Unexpectedly, by treatment of the cells with CH-11-coated beads Fas protein was detached from cell surface and transferred to the surface of CH-11-coated beads. Western blot analysis showed that Fas protein containing both extracellular and intracellular domains was attached to the beads. Fas protein was not transferred from the cells to the surface of the beads coated with other anti-Fas antibodies or Fas ligand. Similar phenomenon was observed in Jurkat T cells. Furthermore, CH-11-induced apoptosis was suppressed by pretreatment with CH-11-coated beads in Jurkat cells. These results suggest that CH-11 might possess distinct properties on Fas protein compared with other anti-Fas antibodies or Fas ligand, and also suggest that caution should be needed to use polystyrene beads coated with antibodies such as CH-11.

  9. Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for the T-DNA transfer process.

    Science.gov (United States)

    Citovsky, V; Wong, M L; Zambryski, P

    1989-02-01

    Induction of Agrobacterium tumefaciens vir gene expression by wounded plant cells results in production of a free transferable single-stranded (ss) copy of T-DNA, the T-strand. One of the Vir proteins, the VirE2 polypeptide, is a ssDNA-binding protein. In the present work, interaction of nopaline-specific VirE2 protein (Mr 69,000) with ssDNA was studied by using nitrocellulose filter binding, gel retardation, and electron microscopy techniques. The VirE2 protein was found to bind to ssDNA molecules with strong cooperativity, forming VirE2-ssDNA complexes with a binding site of 28-30 nucleotides. The VirE2-ssDNA complexes are stable at high salt concentrations and resistant to exonucleolytic activity. When examined under the electron microscope, the VirE2 protein converted collapsed free ssDNA molecules into unfolded and extended structures. The structure and properties of VirE2-ssDNA complexes predict possible functions in Agrobacterium virulence to (i) protect the T-strands from cellular nucleases and (ii) facilitate transfer of the T-strands through bacterial membranes possibly by specific interaction with putative membrane pores formed in plant-induced Agrobacterium cells. PMID:2919168

  10. Allergenic Lipid Transfer Proteins from Plant-Derived Foods Do Not Immunologically and Clinically Behave Homogeneously: The Kiwifruit LTP as a Model

    OpenAIRE

    Bernardi, Maria Livia; Giangrieco, Ivana; Camardella, Laura; Ferrara, Rosetta; Palazzo, Paola; Panico, Maria Rosaria; Crescenzo, Roberta; Carratore, Vito; Zennaro, Danila; Liso, Marina; Santoro, Mario; Zuzzi, Sara; Tamburrini, Maurizio; Ciardiello, Maria Antonietta; Mari, Adriano

    2011-01-01

    Background Food allergy is increasingly common worldwide. Tools for allergy diagnosis measuring IgE improved much since allergenic molecules and microarrays started to be used. IgE response toward allergens belonging to the same group of molecules has not been comprehensively explored using such approach yet. Objective Using the model of lipid transfer proteins (LTPs) from plants as allergens, including two new structures, we sought to define how heterogeneous is the behavior of homologous pr...

  11. Occupational Rhinoconjunctivitis due to Maize in a Snack Processor: A Cross-Reactivity Study Between Lipid Transfer Proteins From Different Cereals and Peach

    OpenAIRE

    Guillen, Daiana; Barranco, Pilar; Palacín, Arantxa; Quirce, Santiago

    2014-01-01

    We report the case of a snack processor who developed occupational rhinoconjunctivitis due to maize brand exposure during the extrusion process, and who experienced abdominal pain upon drinking beer. The allergens implicated and the cross-reactivity between non-specific lipid transfer proteins (LTPs) from different cereals and peach were investigated. Skin prick tests and specific IgE to cereal flours, pulmonary functions tests and specific conjunctival and inhalation challenges to maize extr...

  12. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor–Acceptor Assembly

    Directory of Open Access Journals (Sweden)

    Lauren D. Field

    2015-12-01

    Full Text Available Understanding how to controllably modulate the efficiency of energy transfer in Förster resonance energy transfer (FRET-based assemblies is critical to their implementation as sensing modalities. This is particularly true for sensing assemblies that are to be used as the basis for real time intracellular sensing of intracellular processes and events. We use a quantum dot (QD donor -mCherry acceptor platform that is engineered to self-assemble in situ wherein the protein acceptor is expressed via transient transfection and the QD donor is microinjected into the cell. QD-protein assembly is driven by metal-affinity interactions where a terminal polyhistidine tag on the protein binds to the QD surface. Using this system, we show the ability to modulate the efficiency of the donor–acceptor energy transfer process by controllably altering either the ligand coating on the QD surface or the precise location where the QD-protein assembly process occurs. Intracellularly, a short, zwitterionic ligand mediates more efficient FRET relative to longer ligand species that are based on the solubilizing polymer, poly(ethylene glycol. We further show that a greater FRET efficiency is achieved when the QD-protein assembly occurs free in the cytosol compared to when the mCherry acceptor is expressed tethered to the inner leaflet of the plasma membrane. In the latter case, the lower FRET efficiency is likely attributable to a lower expression level of the mCherry acceptor at the membrane combined with steric hindrance. Our work points to some of the design considerations that one must be mindful of when developing FRET-based sensing schemes for use in intracellular sensing.

  13. Arsenic trioxide suppresses liver X receptor β and enhances cholesteryl ester transfer protein expression without affecting the liver X receptor α in HepG2 cells.

    Science.gov (United States)

    Cheng, Tain-Junn; Lin, Shu-Wen; Chen, Chih-Wei; Guo, How-Ran; Wang, Ying-Jang

    2016-10-25

    Chronic arsenic exposure is associated with cerebrovascular disease and the formation of atherosclerotic lesions. Our previous study demonstrated that arsenic trioxide (ATO) exposure was associated with atherosclerotic lesion formation through alterations in lipid metabolism in the reverse cholesterol transport process. In mouse livers, the expression of the liver X receptor β (LXR-β) and the cholesteryl ester transfer protein (CETP) was suppressed without any changes to the lipid profile. The aim of this study was to elucidate whether ATO contributes to atherosclerotic lesions by suppressing LXR-β and CETP levels in hepatocytes. HepG2 cells, human hepatocytes, were exposed to different ATO concentrations in vitro. Cell viability was determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. The liver X receptor α (LXR-α), LXR-β, sterol regulatory element-binding protein-1c (SREBP-1c) and CETP protein levels were measured by Western blotting, and their mRNA levels were measured by real-time PCR. Cholesterol efflux was analyzed by flow cytometry. The results showed ATO inhibited LXR-β mRNA and protein levels with a subsequent decrease in SREBP-1c protein levels and reduced cholesterol efflux from HepG2 cells into the extracellular space without influencing LXR-α mRNA and protein levels. CETP protein levels of HepG2 cells were significantly elevated under arsenic exposure. Transfection of LXR-β shRNA did not change CETP protein levels, implying that there is no cross-talk between LXR-β and CETP. In conclusion, arsenic not only inhibits LXR-β and SREBP-1c mRNA and protein levels but also independently increases CETP protein levels in HepG2 cells. PMID:27622732

  14. Association between cholesteryl ester transfer protein gene polymorphisms and variations in lipid levels in patients with coronary heart disease

    Institute of Scientific and Technical Information of China (English)

    郑克勤; 张思仲; 贺勇; 张立; 张克兰; 黄德嘉; 孙岩

    2004-01-01

    Background The TaqⅠB, MspⅠ and I405V polymorphisms of cholesteryl ester transfer protein (CETP), an important regulatory factor of lipid metabolism, have been attracted much more attention by the researchers. In this study, we investigated the associations between these 3 polymorphisms of CETP gene and variations in plasma lipid and lipoprotein levels in patients with coronary heart disease (CHD).Methods Genomic DNA was extracted from leukocytes of 203 CHD patients and 100 control subjects using the salting out method. Genotyping of the CETP gene was performed using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) techniques. Statistical analysis was conducted using the SPSS 10.0 software package.Results The distribution of allele and genotype frequencies of the TaqⅠB, MspⅠ, and I405V polymorphisms was similar in the CHD patient group and the control group. The B1B1 genotype of the TaqⅠB polymorphism was associated with significantly higher TC (P=0.039) and LDL-C (P=0.044) levels than the B2B2 genotype in CHD patients, and with significantly higher LDL-C (P=0.034) levels than the B2B2 genotype in controls. Homozygotes of the I405V polymorphism exhibited significantly higher HDL-C levels than VV homozygotes among control subjects (P=0.023). In male CHD patients with unambiguously assigned haplotypes, B2-M2-V/B2-M2-I patients demonstrated significantly higher HDL-C concentrations than B1-M2-V/B1-M2-I (P=0.023) and B1-M2-V/B1-M2-V patients (P=0.047). Conclusions Genetic variations in the CETP gene may account for a significant proportion of the differences in plasma lipid and lipoprotein concentrations among the general population. The B1B1 genotype of the TaqⅠB polymorphism is probably a genetic risk factor for CHD in the study population.

  15. Cholesteryl Ester Transfer Protein (CETP polymorphisms affect mRNA splicing, HDL levels, and sex-dependent cardiovascular risk.

    Directory of Open Access Journals (Sweden)

    Audrey C Papp

    Full Text Available Polymorphisms in and around the Cholesteryl Ester Transfer Protein (CETP gene have been associated with HDL levels, risk for coronary artery disease (CAD, and response to therapy. The mechanism of action of these polymorphisms has yet to be defined. We used mRNA allelic expression and splice isoform measurements in human liver tissues to identify the genetic variants affecting CETP levels. Allelic CETP mRNA expression ratios in 56 human livers were strongly associated with several variants 2.5-7 kb upstream of the transcription start site (e.g., rs247616 p = 6.4 × 10(-5, allele frequency 33%. In addition, a common alternatively spliced CETP isoform lacking exon 9 (Δ9, has been shown to prevent CETP secretion in a dominant-negative manner. The Δ 9 expression ranged from 10 to 48% of total CETP mRNA in 94 livers. Increased formation of this isoform was exclusively associated with an exon 9 polymorphism rs5883-C>T (p = 6.8 × 10(-10 and intron 8 polymorphism rs9930761-T>C (5.6 × 10(-8 (in high linkage disequilibrium with allele frequencies 6-7%. rs9930761 changes a key splicing branch point nucleotide in intron 8, while rs5883 alters an exonic splicing enhancer sequence in exon 9.The effect of these polymorphisms was evaluated in two clinical studies. In the Whitehall II study of 4745 subjects, both rs247616 and rs5883T/rs9930761C were independently associated with increased HDL-C levels in males with similar effect size (rs247616 p = 9.6 × 10(-28 and rs5883 p = 8.6 × 10(-10, adjusted for rs247616. In an independent multiethnic US cohort of hypertensive subjects with CAD (INVEST-GENE, rs5883T/rs9930761C alone were significantly associated with increased incidence of MI, stroke, and all-cause mortality in males (rs5883: OR 2.36 (CI 1.29-4.30, p = 0.005, n = 866. These variants did not reach significance in females in either study. Similar to earlier results linking low CETP activity with poor outcomes in males, our results suggest genetic, sex

  16. Cholesteryl Ester Transfer Protein (CETP) polymorphisms affect mRNA splicing, HDL levels, and sex-dependent cardiovascular risk.

    Science.gov (United States)

    Papp, Audrey C; Pinsonneault, Julia K; Wang, Danxin; Newman, Leslie C; Gong, Yan; Johnson, Julie A; Pepine, Carl J; Kumari, Meena; Hingorani, Aroon D; Talmud, Philippa J; Shah, Sonia; Humphries, Steve E; Sadee, Wolfgang

    2012-01-01

    Polymorphisms in and around the Cholesteryl Ester Transfer Protein (CETP) gene have been associated with HDL levels, risk for coronary artery disease (CAD), and response to therapy. The mechanism of action of these polymorphisms has yet to be defined. We used mRNA allelic expression and splice isoform measurements in human liver tissues to identify the genetic variants affecting CETP levels. Allelic CETP mRNA expression ratios in 56 human livers were strongly associated with several variants 2.5-7 kb upstream of the transcription start site (e.g., rs247616 p = 6.4 × 10(-5), allele frequency 33%). In addition, a common alternatively spliced CETP isoform lacking exon 9 (Δ9), has been shown to prevent CETP secretion in a dominant-negative manner. The Δ 9 expression ranged from 10 to 48% of total CETP mRNA in 94 livers. Increased formation of this isoform was exclusively associated with an exon 9 polymorphism rs5883-C>T (p = 6.8 × 10(-10)) and intron 8 polymorphism rs9930761-T>C (5.6 × 10(-8)) (in high linkage disequilibrium with allele frequencies 6-7%). rs9930761 changes a key splicing branch point nucleotide in intron 8, while rs5883 alters an exonic splicing enhancer sequence in exon 9.The effect of these polymorphisms was evaluated in two clinical studies. In the Whitehall II study of 4745 subjects, both rs247616 and rs5883T/rs9930761C were independently associated with increased HDL-C levels in males with similar effect size (rs247616 p = 9.6 × 10(-28) and rs5883 p = 8.6 × 10(-10), adjusted for rs247616). In an independent multiethnic US cohort of hypertensive subjects with CAD (INVEST-GENE), rs5883T/rs9930761C alone were significantly associated with increased incidence of MI, stroke, and all-cause mortality in males (rs5883: OR 2.36 (CI 1.29-4.30), p = 0.005, n = 866). These variants did not reach significance in females in either study. Similar to earlier results linking low CETP activity with poor outcomes in males, our results suggest genetic, sex

  17. A Perspective on Studying G-Protein-Coupled Receptor Signaling with Resonance Energy Transfer Biosensors in Living Organisms

    NARCIS (Netherlands)

    J. van Unen; J. Woolard; A. Rinken; C. Hoffmann; S.J. Hill; J. Goedhart; M.R. Bruchas; M. Bouvier; M.J.W. Adjobo-Hermans

    2015-01-01

    The last frontier for a complete understanding of G-protein-coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR trafficking, dimerization, protein-protein

  18. Bimodal intramolecular excitation energy transfer in a multichromophore photosynthetic model system: hybrid fusion proteins comprising natural phycobilin- and artificial chlorophyll-binding domains.

    Science.gov (United States)

    Zeng, Xiao-Li; Tang, Kun; Zhou, Nan; Zhou, Ming; Hou, Harvey J M; Scheer, Hugo; Zhao, Kai-Hong; Noy, Dror

    2013-09-11

    The phycobilisomes of cyanobacteria and red-algae are highly efficient peripheral light-harvesting complexes that capture and transfer light energy in a cascade of excitation energy transfer steps through multiple phycobilin chromophores to the chlorophylls of core photosystems. In this work, we focus on the last step of this process by constructing simple functional analogs of natural phycobilisome-photosystem complexes that are based on bichromophoric protein complexes comprising a phycobilin- and a chlorophyll- or porphyrin-binding domain. The former is based on ApcE(1-240), the N-terminal chromophore-binding domain of the phycobilisome's L(CM) core-membrane linker, and the latter on HP7, a de novo designed four-helix bundle protein that was originally planned as a high-affinity heme-binding protein, analogous to b-type cytochromes. We fused a modified HP7 protein sequence to ApcEΔ, a water-soluble fragment of ApcE(1-240) obtained by excising a putative hydrophobic loop sequence of residues 77-153. HP7 was fused either to the N- or the C-terminus of ApcEΔ or inserted between residues 76 and 78, thereby replacing the native hydrophobic loop domain. We describe the assembly, spectral characteristics, and intramolecular excitation energy transfer of two unique systems: in the first, the short-wavelength absorbing zinc-mesoporphyrin is bound to the HP7 domain and serves as an excitation-energy donor to the long-wavelength absorbing phycocyanobilin bound to the ApcE domain; in the second, the short-wavelength absorbing phycoerythrobilin is bound to the ApcE domain and serves as an excitation energy donor to the long-wavelength absorbing zinc-bacteriochlorophyllide bound to the HP7 domain. All the systems that were constructed and tested exhibited significant intramolecular fluorescence resonance energy transfer with yields ranging from 21% to 50%. This confirms that our modular, covalent approach for studying EET between the cyclic and open chain tetrapyrroles is

  19. Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer

    DEFF Research Database (Denmark)

    Jensen, Palle Skovhus; Chi, Qijin; Grumsen, Flemming Bjerg;

    2007-01-01

    Interfacial electron transfer (ET) of biological macromolecules such as metalloproteins is the key process in bioelectrochemistry, enzymatic electrocatalysis, artificial ET chains, single-molecule electronic amplification and rectification, and other phenomena associated with the area of bioelect......Interfacial electron transfer (ET) of biological macromolecules such as metalloproteins is the key process in bioelectrochemistry, enzymatic electrocatalysis, artificial ET chains, single-molecule electronic amplification and rectification, and other phenomena associated with the area...

  20. Using Bioluminescence Resonance Energy Transfer (BRET) to Characterize Agonist-Induced Arrestin Recruitment to Modified and Unmodified G Protein-Coupled Receptors.

    Science.gov (United States)

    Donthamsetti, Prashant; Quejada, Jose Rafael; Javitch, Jonathan A; Gurevich, Vsevolod V; Lambert, Nevin A

    2015-09-01

    G protein-coupled receptors (GPCRs) represent ∼25% of current drug targets. Ligand binding to these receptors activates G proteins and arrestins, which are involved in differential signaling pathways. Because functionally selective or biased ligands activate one of these two pathways, they may be superior medications for certain diseases states. The identification of such ligands requires robust drug screening assays for both G protein and arrestin activity. This unit describes protocols for two bioluminescence resonance energy transfer (BRET)-based assays used to monitor arrestin recruitment to GPCRs. One assay requires modification of GPCRs by fusion to a BRET donor or acceptor moiety, whereas the other can detect arrestin recruitment to unmodified GPCRs.

  1. cDNA cloning, functional expression and cellular localization of rat liver mitochondrial electron-transfer flavoprotein-ubiquinone oxidoreductase protein

    Institute of Scientific and Technical Information of China (English)

    HUANG; Shengbing; SONG; Wei; LIN; Qishui

    2005-01-01

    A membrane-bound protein was purified from rat liver mitochondria. After being digested with V8 protease, two peptides containing identical 14 amino acid residue sequences were obtained. Using the 14 amino acid peptide derived DNA sequence as gene specific primer, the cDNA of correspondent gene 5'-terminal and 3'-terminal were obtained by RACE technique. The full-length cDNA that encoded a protein of 616 amino acids was thus cloned, which included the above mentioned peptide sequence. The full length cDNA was highly homologous to that of human ETF-QO, indicating that it may be the cDNA of rat ETF-QO. ETF-QO is an iron sulfur protein located in mitochondria inner membrane containing two kinds of redox center: FAD and [4Fe-4S] center. After comparing the sequence from the cDNA of the 616 amino acids protein with that of the mature protein of rat liver mitochondria, it was found that the N terminal 32 amino acid residues did not exist in the mature protein, indicating that the cDNA was that of ETF-Qop. When the cDNA was expressed in Saccharomyces cerevisiae with inducible vectors, the protein product was enriched in mitochondrial fraction and exhibited electron transfer activity (NBT reductase activity) of ETF-QO. Results demonstrated that the 32 amino acid peptide was a mitochondrial targeting peptide, and both FAD and iron-sulfur cluster were inserted properly into the expressed ETF-QO. ETF-QO had a high level expression in rat heart, liver and kidney. The fusion protein of GFP-ETF-QO co-localized with mitochondria in COS-7 cells.

  2. Cryptic single-stranded-DNA binding activities of the phage λ P and Escherichia coli DnaC replication initiation proteins facilitate the transfer of E. coli DnaB helicase onto DNA

    OpenAIRE

    Learn, Brian A.; Um, Soo-Jong; Huang, Li; McMacken, Roger

    1997-01-01

    The bacteriophage λ P and Escherichia coli DnaC proteins are known to recruit the bacterial DnaB replicative helicase to initiator complexes assembled at the phage and bacterial origins, respectively. These specialized nucleoprotein assemblies facilitate the transfer of one or more molecules of DnaB helicase onto the chromosome; the transferred DnaB, in turn, promotes establishment of a processive replication fork apparatus. To learn more about the mechanism of the DnaB transfer reaction, we ...

  3. BraLTP1, a lipid transfer protein gene involved in epicuticular wax deposition, cell proliferation and flower development in Brassica napus.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available Plant non-specific lipid transfer proteins (nsLTPs constitute large multigene families that possess complex physiological functions, many of which remain unclear. This study isolated and characterized the function of a lipid transfer protein gene, BraLTP1 from Brassica rapa, in the important oilseed crops Brassica napus. BraLTP1 encodes a predicted secretory protein, in the little known VI Class of nsLTP families. Overexpression of BnaLTP1 in B. napus caused abnormal green coloration and reduced wax deposition on leaves and detailed wax analysis revealed 17-80% reduction in various major wax components, which resulted in significant water-loss relative to wild type. BnaLTP1 overexpressing leaves exhibited morphological disfiguration and abaxially curled leaf edges, and leaf cross-sections revealed cell overproliferation that was correlated to increased cytokinin levels (tZ, tZR, iP, and iPR in leaves and high expression of the cytokinin biosynthsis gene IPT3. BnaLTP1-overexpressing plants also displayed morphological disfiguration of flowers, with early-onset and elongated carpel development and outwardly curled stamen. This was consistent with altered expression of a a number of ABC model genes related to flower development. Together, these results suggest that BraLTP1 is a new nsLTP gene involved in wax production or deposition, with additional direct or indirect effects on cell division and flower development.

  4. Excitation-Energy Transfer Paths from Tryptophans to Coordinated Copper Ions in Engineered Azurins: a Source of Observables for Monitoring Protein Structural Changes

    Science.gov (United States)

    Di Rocco, Giulia; Bernini, Fabrizio; Borsari, Marco; Martinelli, Ilaria; Bortolotti, Carlo Augusto; Battistuzzi, Gianantonio; Ranieri, Antonio; Caselli, Monica; Sola, Marco; Ponterini, Glauco

    2016-09-01

    The intrinsic fluorescence of recombinant proteins offers a powerful tool to detect and characterize structural changes induced by chemical or biological stimuli. We show that metal-ion binding to a hexahistidine tail can significantly broaden the range of such structurally sensitive fluorescence observables. Bipositive metal-ions as Cu2+, Ni2+ and Zn2+ bind 6xHis-tag azurin and its 6xHis-tagged R129W and W48A-R129W mutants with good efficiency and, thereby, quench their intrinsic fluorescence. Due to a much more favourable spectral overlap, the 6xHis-tag/Cu2+ complex(es) are the most efficient quenchers of both W48 and W129 emissions. Based on simple Förster-type dependence of energy-transfer efficiency on donor/acceptor distance, we can trace several excitation-energy transfer paths across the protein structure. Unexpected lifetime components in the azurin 6xHis-tag/Cu2+ complex emission decays reveal underneath complexity in the conformational landscape of these systems. The new tryptophan emission quenching paths provide additional signals for detecting and identifying protein structural changes.

  5. Surface-induced intramolecular electron transfer in multi-centre redox metalloproteins: the di-haem protein cytochrome c4 in homogeneous solution and at electrochemical surfaces

    Science.gov (United States)

    Chi, Qijin; Zhang, Jingdong; Jensen, Palle S.; Nazmudtinov, Renat R.; Ulstrup, Jens

    2008-09-01

    Intramolecular electron transfer (ET) between transition metal centres is a core feature of biological ET and redox enzyme function. The number of microscopic redox potentials and ET rate constants is, however, mostly prohibitive for experimental mapping, but two-centre proteins offer simple enough communication networks for complete mapping to be within reach. At the same time, multi-centre redox proteins operate in a membrane environment where conformational dynamics and ET patterns are quite different from the conditions in a homogeneous solution. The bacterial respiratory di-haem protein Pseudomonas stutzeri cytochrome c4 offers a prototype target for environmental gating of intra-haem ET. ET between P. stutzeri cyt c4 and small molecular reaction partners in solution appears completely dominated by intermolecular ET of each haem group/protein domain, with no competing intra-haem ET, for which accompanying propionate-mediated proton transfer is a further barrier. The protein can, however, be immobilized on single-crystal, modified Au(111) electrode surfaces with either the low-potential N terminal or the high-potential C terminal domain facing the surface, clearly with fast intramolecular ET as a key feature in the electrochemical two-ET process. This dual behaviour suggests a pattern for multi-centre redox metalloprotein function. In a homogeneous solution, which is not the natural environment of cyt c4, the two haem group domains operate largely independently with conformations prohibitive for intramolecular ET. Binding to a membrane or electrochemical surface, however, triggers conformational opening of intramolecular ET channels. The haem group orientation in P. stutzeri cyt c4 is finally noted to offer a case for orientation dependent electronic rectification between a substrate and a tip in electrochemical in situ scanning tunnelling microscopy or nanoscale electrode configurations.

  6. Delayed-onset ataxia in mice lacking α-tocopherol transfer protein: Model for neuronal degeneration caused by chronic oxidative stress

    OpenAIRE

    Yokota, Takanori; Igarashi, Keiji; Uchihara, Toshiki; Jishage, Kou-ichi; Tomita, Hiroshi; Inaba, Akira; Li, Yi; Arita, Makoto; Suzuki, Hiroshi; Mizusawa, Hidehiro; Arai, Hiroyuki

    2001-01-01

    α-Tocopherol transfer protein (α-TTP) maintains the concentration of serum α-tocopherol (vitamin E), one of the most potent fat-soluble antioxidants, by facilitating α-tocopherol export from the liver. Mutations of the α-TTP gene are linked to ataxia with isolated vitamin E deficiency (AVED). We produced a model mouse of AVED by deleting the α-TTP gene, which showed ataxia and retinal degeneration after 1 year of age. Because the brain α-TTP functions in maintainin...

  7. Mice lacking α-tocopherol transfer protein gene have severe α-tocopherol deficiency in multiple regions of the central nervous system

    OpenAIRE

    Gohil, Kishorchandra; Oommen, Saji; Quach, Hung T.; Vasu, Vihas T.; AUNG, HNIN HNIN; Schock, Bettina; Cross, Carroll E.; Vatassery, Govind T.

    2008-01-01

    Ataxia with vitamin E deficiency is caused by mutations in α-tocopherol transfer protein (α-TTP) gene and it can be experimentally generated in mice by α-TTP gene inactivation (α-TTP-KO). This study compared α-tocopherol (α-T) concentrations of five brain regions and of four peripheral organs from 5 months old, male and female, wild-type (WT) and α-TTP-KO mice. All brain regions of female WT mice contained significantly higher α-T than those from WT males. α-T concentration in the cerebellum ...

  8. Linkage map positions and allelic diversity of two Mal d 3 (non-specific lipid transfer protein) genes in the cultivated apple (Malus domestica)

    OpenAIRE

    Gao, Z. S.; Weg, van de, H; Schaart, J.G.; Meer, van der, D; Kodde, L.P.; Laimer, M; Breiteneder, H; K. Hoffmann-Sommergruber; Gilissen, L.J.W.J.

    2005-01-01

    Non-specific lipid transfer proteins (nsLTPs) of Rosaceae fruits, such as peach, apricot, cherry, plum and apple, represent major allergens for Mediterranean atopic populations. As a first step in elucidating the genetics of nsLTPs, we directed the research reported here towards identifying the number and location of nsLTP (Mal d 3) genes in the apple genome and determining their allelic diversity. PCR cloning was initially performed on two cultivars, Prima and Fiesta, parents of a core apple...

  9. Picosecond time-resolved fluorescence studies on excitation energy transfer in a histidine 117 mutant of the D2 protein of photosystem II in Synechocystis 6803.

    Science.gov (United States)

    Vasil'ev, S; Bruce, D

    2000-11-21

    The role of the peripheral reaction center chlorophyll a molecule associated with His117 of the D2 polypeptide in photosystem II was investigated in Synechocystis sp. PCC 6803 using a combination of steady state, pump-probe, and picosecond time-resolved fluorescence spectroscopy. Data were obtained from intact cells and isolated thylakoid membranes of a control mutant and a D2-H117T mutant, both of which lacked photosystem I. Excitation energy transfer and trapping were investigated by analyzing the data with a kinetic model that used an exact numerical solution of the Pauli master equation, taking into account available photosystem II spectral and structural information. The results of our kinetic analysis revealed the observed difference in excited-state dynamics between the H117T mutant and the control to be consistent with a retardation of the rate of excitation energy transfer from the peripheral chlorophyll of D2 (Chl at His117) to the electron-transfer pigments and an increase of the rate constant for charge recombination in the H117T mutant. The kinetic model was able to account for the experimentally observed changes in absorption cross section and fluorescence decay kinetics between the control and mutant by invoking changes in only these two rate constants. The results rule out quenching of excitation by a chlorophyll cation radical as a mechanism responsible for the lower efficiency of excitation energy utilization in the H117T mutant. Our work also demonstrates the importance of the chlorophyll associated with His117 of the D2 protein for excitation energy transfer to the PSII electron-transfer pigments and for the effective stabilization of the primary radical pair. PMID:11087370

  10. Labelling of endogenous target protein via N-S acyl transfer-mediated activation of N-sulfanylethylanilide.

    Science.gov (United States)

    Denda, Masaya; Morisaki, Takuya; Kohiki, Taiki; Yamamoto, Jun; Sato, Kohei; Sagawa, Ikuko; Inokuma, Tsubasa; Sato, Youichi; Yamauchi, Aiko; Shigenaga, Akira; Otaka, Akira

    2016-07-14

    The ligand-dependent incorporation of a reporter molecule (e.g., fluorescence dye or biotin) onto a endogenous target protein has emerged as an important strategy for elucidating protein function using various affinity-based labelling reagents consisting of reporter, ligand and reactive units. Conventional labelling reagents generally use a weakly activated reactive unit, which can result in the non-specific labelling of proteins in a ligand-independent manner. In this context, the activation of a labelling reagent through a targeted protein-ligand interaction could potentially overcome the problems associated with conventional affinity-based labelling reagents. We hypothesized that this type of protein-ligand-interaction-mediated activation could be accomplished using N-sulfanylethylanilide (SEAlide) as the reactive unit in the labelling reagent. Electrophilically unreactive amide-type SEAlide can be activated by its conversion to the corresponding active thioester in the presence of a phosphate salt, which can act as an acid-base catalyst. It has been suggested that protein surfaces consisting of hydrophilic residues such as amino, carboxyl and imidazole groups could function as acid-base catalysts. We therefore envisioned that a SEAlide-based labelling reagent (SEAL) bearing SEAlide as a reactive unit could be activated through the binding of the SEAL with a target protein. Several SEALs were readily prepared in this study using standard 9-fluorenylmethyloxycarbonyl (Fmoc)-based solid-phase protocols. These SEAL systems were subsequently applied to the ligand-dependent labelling of human carbonic anhydrase (hCA) and cyclooxyganese 1. Although we have not yet obtained any direct evidence for the target protein-mediated activation of the SEAlide unit, our results for the reaction of these SEALs with hCA1 or butylamine indirectly support our hypothesis. The SEALs reported in this study represent valuable new entries to the field of affinity-based labelling reagents

  11. Heme Transfer from Streptococcal Cell Surface Protein Shp to HtsA of Transporter HtsABC

    OpenAIRE

    Liu, Mengyao; Lei, Benfang

    2005-01-01

    Human pathogen group A streptococcus (GAS) can take up heme from host heme-containing proteins as a source of iron. Little is known about the heme acquisition mechanism in GAS. We recently identified a streptococcal cell surface protein (designated Shp) and the lipoprotein component (designated HtsA) of an ATP-binding cassette (ABC) transporter made by GAS as heme-binding proteins. In an effort to delineate the molecular mechanism involved in heme acquisition by GAS, heme-free Shp (apo-Shp) a...

  12. Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens

    OpenAIRE

    Molina Fernández, Antonio; Segura, Ana; García Olmedo, Francisco

    1993-01-01

    Four homogeneous proteins (Cw18, Cw20, Cw21, Cw22) were isolated from etiolated barley leaves by extraction of the insoluble pellet from a Tris-HCl (pH 7.5) homogenate with 1.5 M LiCl and fractionation by reverse-phase high-performance liquid chromatography. All 4 proteins inhibited growth of the pathogen Clavibacter michiganensis subsp. sepedonicus (EC50S = 1−3 × 10−7 M) and had closely related N-terminal amino acid sequences. The complete amino acid sequences of proteins Cw18 and Cw21 were ...

  13. Graph based study of allergen cross-reactivity of plant lipid transfer proteins (LTPs) using microarray in a multicenter study.

    OpenAIRE

    Palacín Gómez, Aranzazu; Gomez Casado, Cristina; Rivas, Luis; Aguirre, Jacobo; Tordesillas Villuendas, Leticia; Bartra, Joan; Blanco, Carlos; Carrillo, Teresa; Cuesta-Herranz, Javier; de Frutos, Consolación; García Álvarez-Eire, Genoveva; Fernández, Francisco; Gamboa, P. M.; Muñoz, Rosa; Sánchez-Monge Laguna de Rins, Rosa

    2012-01-01

    The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant...

  14. Two- and three-dimensional sup 1 H NMR studies of a wheat phospholipid transfer protein: Sequential resonance assignments and secondary structure

    Energy Technology Data Exchange (ETDEWEB)

    Simorre, J.P.; Caille, A. (Centre National de la Recherche Scientifique, Orleans (France)); Marion, D. (Laboratoire de Resonance Magnetique en Biologie et Medecine, Grenoble (France)); Marion, D. (INRA, Nantes (France)); Ptak, M. (Centre National de la Recherche Scientifique, Orleans (France) Univ. d' Orleans (France))

    1991-12-10

    Two- and three-dimensional {sup 1}H NMR experiments have been used to sequentially assign nearly all proton resonances of the 90 residues of wheat phospholipid transfer protein. Only a few side-chain protons were not identified because of degeneracy or overlapping. The identification of spin systems and the sequential assignment were made at the same time by combining the data of the two- and three-dimensional experiments. The classical two-dimensional COSY, HOHAHA, and NOESY experiments benefit from both good resolution and high sensitivity, allowing the detection of long-range dipolar connectivities. The three-dimensional HOHAHA-NOESY experiment offers the advantage of a faster and unambiguous assignment. As a matter of fact, homonuclear three-dimensional NMR spectroscopy prove to be a very efficient method for resonance assignments of protein {sup 1}H NMR spectra which cannot be unraveled by 2D methods. An assignment strategy which overcomes most of the ambiguities has been proposed, in which each individual assignment toward the C-terminal end is supported by another in the opposite direction originating from a completely different part of the spectrum. Location of secondary structures of the phospholipid transfer protein was determined by using the method of analysis introduced here and was confirmed by {sup 3}J{sub {alpha}NH} coupling and NH exchange rates. Except for the C-terminal part, the polypeptide chain appears to be organized mainly as helical fragments connected by disulfide bridges. Further modeling will display the overall folding of the protein and should provide a better understanding of its interactions with lipids.

  15. Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water.

    Science.gov (United States)

    Spolar, R S; Livingstone, J R; Record, M T

    1992-04-28

    This extension of the liquid hydrocarbon model seeks to quantify the thermodynamic contributions to protein stability from the removal of nonpolar and polar surface from water. Thermodynamic data for the transfer of hydrocarbons and organic amides from water to the pure liquid phase are analyzed to obtain contributions to the thermodynamics of folding from the reduction in water-accessible surface area. Although the removal of nonpolar surface makes the dominant contribution to the standard heat capacity change of folding (delta C0fold), here we show that inclusion of the contribution from removal of polar surface allows a quantitative prediction of delta C0fold within the uncertainty of the calorimetrically determined value. Moreover, analysis of the contribution of polar surface area to the enthalpy of transfer of liquid amides provides a means of estimating the contributions from changes in nonpolar and polar surface area as well as other factors to the enthalpy of folding (delta H0fold). In addition to estimates of delta H0fold, this extension of the liquid hydrocarbon model provides a thermodynamic explanation for the observation [Privalov, P. L., & Khechinashvili, N. N. (1974) J. Mol. Biol. 86, 665-684] that the specific enthalpy of folding (cal g-1) of a number of globular proteins converges to a common value at approximately 383 K. Because amounts of nonpolar and polar surface area buried by these proteins upon folding are found to be linear functions of molar mass, estimates of both delta C0fold and delta H0fold may be obtained given only the molar mass of the protein of interest.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Reproducible In-Silico Folding of a Four Helix 60 Amino Acid Protein in a Transferable All-Atom Forcefield

    Science.gov (United States)

    Schug, Alexander

    2005-03-01

    For predicting the protein tertiary structure one approach describes the native state of a protein as the global minimum of an appropiate free-energy forcefield. We have recently developed such a all-atom protein forcefield (PFF01). As major challenge remains the search for the global minimum for which we developed efficient methods. Using these we were able to predict the structure of helical proteins from different families ranging in size from 20 to 60 amino acids starting with random configurations. For the four helix 60 amino acid protein Bacterial Ribosomal Protein L20 (pdb code: 1GYZ) we used a simple client-master model for distributed computing. Starting from a set of random structures three phases of different folding simulations refined this set to a final one with 50 configurations. During this process the amount of native-like structures increased strongly. Six out of the ten structures best in energy approached the native structure within 5 åbackbone rmsd. The conformation with the lowest energy had a backbone rmsd value of 4.6 åtherefore correctly predicting the tertiary structure of 1GYZ.ReferencesA. Schug et al, Phys. Rev. Letters, 91:158102, 2003A. Schug et al, J. Am. Chem. Soc. (in press), 2004

  17. An endogenous green fluorescent protein-photoprotein pair in Clytia hemisphaerica eggs shows co-targeting to mitochondria and efficient bioluminescence energy transfer.

    Science.gov (United States)

    Fourrage, Cécile; Swann, Karl; Gonzalez Garcia, Jose Raul; Campbell, Anthony K; Houliston, Evelyn

    2014-04-09

    Green fluorescent proteins (GFPs) and calcium-activated photoproteins of the aequorin/clytin family, now widely used as research tools, were originally isolated from the hydrozoan jellyfish Aequora victoria. It is known that bioluminescence resonance energy transfer (BRET) is possible between these proteins to generate flashes of green light, but the native function and significance of this phenomenon is unclear. Using the hydrozoan Clytia hemisphaerica, we characterized differential expression of three clytin and four GFP genes in distinct tissues at larva, medusa and polyp stages, corresponding to the major in vivo sites of bioluminescence (medusa tentacles and eggs) and fluorescence (these sites plus medusa manubrium, gonad and larval ectoderms). Potential physiological functions at these sites include UV protection of stem cells for fluorescence alone, and prey attraction and camouflaging counter-illumination for bioluminescence. Remarkably, the clytin2 and GFP2 proteins, co-expressed in eggs, show particularly efficient BRET and co-localize to mitochondria, owing to parallel acquisition by the two genes of mitochondrial targeting sequences during hydrozoan evolution. Overall, our results indicate that endogenous GFPs and photoproteins can play diverse roles even within one species and provide a striking and novel example of protein coevolution, which could have facilitated efficient or brighter BRET flashes through mitochondrial compartmentalization.

  18. Optimised purification and characterisation of lipid transfer protein 1 (LTP1) and its lipid-bound isoform LTP1b from barley malt.

    Science.gov (United States)

    Nieuwoudt, Melanie; Lombard, Nicolaas; Rautenbach, Marina

    2014-08-15

    In beer brewing, brewers worldwide strive to obtain product consistency in terms of flavour, colour and foam. Important proteins contributing to beer foam are lipid transfer proteins (LTPs), in particular LTP1 and its lipid-bound isoform LTP1b, which are known to transport lipids in vivo and prevent lipids from destabilising the beer foam. LTP1 and LTP1b were successfully purified using only five purification steps with a high purified protein yield (160 mg LTP1 and LTP1b from 200 g barley). Circular dichroism of LTP1 and LTP1b confirmed that both proteins are highly tolerant to high temperatures (>90 °C) and are pH stable, particularly at a neutral to a more basic pH. Only LTP1 exhibited antiyeast and thermo-stable lytic activity, while LTP1b was inactive, indicating that the fatty acid moiety compromised the antimicrobial activity of LTP1. This lack in antiyeast activity and the positive foam properties of LTP1b would benefit beer fermentation and quality.

  19. Optimised purification and characterisation of lipid transfer protein 1 (LTP1) and its lipid-bound isoform LTP1b from barley malt.

    Science.gov (United States)

    Nieuwoudt, Melanie; Lombard, Nicolaas; Rautenbach, Marina

    2014-08-15

    In beer brewing, brewers worldwide strive to obtain product consistency in terms of flavour, colour and foam. Important proteins contributing to beer foam are lipid transfer proteins (LTPs), in particular LTP1 and its lipid-bound isoform LTP1b, which are known to transport lipids in vivo and prevent lipids from destabilising the beer foam. LTP1 and LTP1b were successfully purified using only five purification steps with a high purified protein yield (160 mg LTP1 and LTP1b from 200 g barley). Circular dichroism of LTP1 and LTP1b confirmed that both proteins are highly tolerant to high temperatures (>90 °C) and are pH stable, particularly at a neutral to a more basic pH. Only LTP1 exhibited antiyeast and thermo-stable lytic activity, while LTP1b was inactive, indicating that the fatty acid moiety compromised the antimicrobial activity of LTP1. This lack in antiyeast activity and the positive foam properties of LTP1b would benefit beer fermentation and quality. PMID:24679818

  20. Electrospray MS and MALDI imaging show that non-specific lipid-transfer proteins (LTPs) in tomato are present as several isoforms and are concentrated in seeds.

    Science.gov (United States)

    Bencivenni, Mariangela; Faccini, Andrea; Zecchi, Riccardo; Boscaro, Francesca; Moneti, Gloriano; Dossena, Arnaldo; Sforza, Stefano

    2014-12-01

    Non-specific lipid-transfer proteins (nsLTPs) are major human allergens in many plant species, albeit their role in plant biochemistry is still undefined. They are found in many plant species, either as one or several isoforms according to the species, and usually they are found to concentrate in the outer part of the fruits. In this work, the characterization of tomato nsLTP isoforms was performed on the three main fractions of Piccadilly tomato fruit (peel, pulp and seeds) by using ultracentrifuge devices with molecular cut-off able to retain proteins with molecular weight typical of plant LTPs. The isolated proteins were further analysed by LC-MS, in order to investigate the occurrence and the localization of tomato LTP isoforms. The chromatographic retention times, the molecular masses, the presence of eight cysteine residues in their tertiary structures and the sequence information obtained by MS, although not complete yet, allowed us to identify four different LTP isoforms, not yet reported in the literature, which were found to be concentrated in the seed fractions. None of the molecular masses of these potential LTPs was already present in the UniProtKB/SwissProt database. MALDI imaging experiments confirmed their presence and main localization in seeds, although the actual data hinted at their presence around seeds, rather than exactly in them. These data hint to a complicated scenario concerning LTP proteins in tomato. PMID:25476944

  1. Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer MR imaging at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shanshan [Southern Medical University, Department of Radiology, Zhujiang Hospital, Guangzhou, Guangdong (China); Johns Hopkins University School of Medicine, Department of Radiology, Baltimore, MD (United States); Yu, Hao; Wang, Xianlong; Lu, Shilong; Feng, Lyujin; Wen, Zhibo [Southern Medical University, Department of Radiology, Zhujiang Hospital, Guangzhou, Guangdong (China); Li, Yufa [Southern Medical University, Department of Pathology, Zhujiang Hospital, Guangzhou, Guangdong (China); Zhang, Yi; Heo, Hye-Young; Lee, Dong-Hoon; Zhou, Jinyuan [Johns Hopkins University School of Medicine, Department of Radiology, Baltimore, MD (United States)

    2016-01-15

    To show the ability of using the amide proton transfer-weighted (APTW) MRI signals as imaging biomarkers to differentiate primary central nervous system lymphomas (PCNSLs) from high-grade gliomas (HGGs). Eleven patients with lymphomas and 21 patients with HGGs were examined. Magnetization-transfer (MT) spectra over an offset range of ±6 ppm and the conventional MT ratio (MTR) at 15.6 ppm were acquired. The APTW signals, total chemical-exchange-saturation-transfer signal (integral between 0 and 5 ppm, CEST{sub total}), and MTR signal were obtained and compared between PCNSLs and HGGs. The diagnostic performance was assessed with the receiver operating characteristic (ROC) curve analysis. The PCNSLs usually showed more homogeneous APTW hyperintensity (spatially compared to normal brain tissue) than the HGGs. The APTW{sub max}, APTW{sub max-min} and CEST{sub total} signal intensities were significantly lower (P < 0.05, 0.001 and 0.05, respectively), while the APTW{sub min} and MTR were significantly higher (both P < 0.01) in PCNSL lesions than in HGG lesions. The APTW values in peritumoral oedema were significantly lower for PCNSLs than for HGGs (P < 0.01). APTW{sub max-min} had the highest area under the ROC curve (0.963) and accuracy (94.1 %) in differentiating PCNSLs from HGGs. The protein-based APTW signal would be a valuable MRI biomarker by which to identify PCNSLs and HGGs presurgically. (orig.)

  2. Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin-fed zebrafish have elevation of cholesteryl ester transfer protein activity in hypercholesterolemia.

    Science.gov (United States)

    Kim, Jae-Yong; Seo, Juyi; Cho, Kyung-Hyun

    2011-11-01

    Although many artificial sweeteners (AS) have safety issues, the AS have been widely used in industry. To determine the physiologic effect of AS in the presence of hyperlipidemia, zebrafish were fed aspartame or saccharin with a high-cholesterol diet (HCD). After 12 days, 30% of zebrafish, which consumed aspartame and HCD, died with exhibiting swimming defects. The aspartame group had 65% survivability, while the control and saccharin groups had 100% survivability. Under HCD, the saccharin-fed groups had the highest increase in the serum cholesterol level (599 mg/dL). Aspartame-fed group showed a remarkable increase in serum glucose (up to 125 mg/dL), which was 58% greater than the increase in the HCD alone group. The saccharin and HCD groups had the highest cholesteryl ester transfer protein (CETP) activity (52% CE-transfer), while the HCD alone group had 42% CE-transfer. Histologic analysis revealed that the aspartame and HCD groups showed more infiltration of inflammatory cells in the brain and liver sections. Conclusively, under presence of hyperlipidemia, aspartame-fed zebrafish exhibited acute swimming defects with an increase in brain inflammation. Saccharin-fed zebrafish had an increased atherogenic serum lipid profile with elevation of CETP activity.

  3. Protein resonance assignment at MAS frequencies approaching 100 kHz: a quantitative comparison of J-coupling and dipolar-coupling-based transfer methods

    Energy Technology Data Exchange (ETDEWEB)

    Penzel, Susanne; Smith, Albert A.; Agarwal, Vipin; Hunkeler, Andreas [ETH Zürich, Physical Chemistry (Switzerland); Org, Mai-Liis; Samoson, Ago, E-mail: ago.samoson@ttu.ee [Tallinn University of Technology, NMR Instituut, Tartu Teadus, Tehnomeedikum (Estonia); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS/Université de Lyon 1, Institut de Biologie et Chimie des Protéines (France); Ernst, Matthias, E-mail: maer@ethz.ch; Meier, Beat H., E-mail: beme@ethz.ch [ETH Zürich, Physical Chemistry (Switzerland)

    2015-10-15

    We discuss the optimum experimental conditions to obtain assignment spectra for solid proteins at magic-angle spinning (MAS) frequencies around 100 kHz. We present a systematic examination of the MAS dependence of the amide proton T{sub 2}′ times and a site-specific comparison of T{sub 2}′ at 93 kHz versus 60 kHz MAS frequency. A quantitative analysis of transfer efficiencies of building blocks, as they are used for typical 3D experiments, was performed. To do this, we compared dipolar-coupling and J-coupling based transfer steps. The building blocks were then combined into 3D experiments for sequential resonance assignment, where we evaluated signal-to-noise ratio and information content of the different 3D spectra in order to identify the best assignment strategy. Based on this comparison, six experiments were selected to optimally assign the model protein ubiquitin, solely using spectra acquired at 93 kHz MAS. Within 3 days of instrument time, the required spectra were recorded from which the backbone resonances have been assigned to over 96 %.

  4. Primary porcine fibroblasts: Ochratoxin A cytotoxicity and role of all-trans-retinol and alpha-tocopherol

    Directory of Open Access Journals (Sweden)

    A. Baldi

    2010-01-01

    Full Text Available Ochratoxin A (OTA is a mycotoxin produced by Aspergillus and Penicillium species and it is a contaminant of food and feeds (O’Brien et al., 2001. OTA is a nephrotoxic, carcinogenic and teratogenic compound and one of the most sensible species among domestic animals is the pig (JECFA, 2001. Production of free radicals or reactive oxygen species (ROS leading to lipid peroxidation was suggested to be one of the mechanisms by which OTA damages the cell (Rahimtula et al., 1988.

  5. Protective effects of carnosine alone and together with alpha-tocopherol on lipopolysaccharide (LPS) plus ethanol-induced liver injury.

    Science.gov (United States)

    Kalaz, Esra Betül; Aydın, A Fatih; Doğan-Ekici, Işın; Çoban, Jale; Doğru-Abbasoğlu, Semra; Uysal, Müjdat

    2016-03-01

    The aim of this study was to investigate the effect of carnosine (CAR) alone and together with vitamin E (Vit E) on alcoholic steatohepatitis (ASH) in rats. ASH was induced by ethanol (3 times; 5 g/kg; 12 h intervals, via gavage), followed by a single dose of lipopolysaccharide (LPS; 10 mg/kg; i.p.). CAR (250 mg/kg; i.p.) and Vit E (200 mg D-α-tocopherol/kg; via gavage) were administered 30 min before and 90 min after the LPS injection. CAR treatment lowered high serum transaminase activities together with hepatic histopathologic improvements in rats with ASH. Reactive oxygen species formation, malondialdehyde levels, myeloperoxidase activities and transforming growth factor β1 (TGF-β1) and collagen 1α1 (COL1A1) expressions were observed to decrease. These improvements were more remarkable in CAR plus Vit E-treated rats. Our results indicate that CAR may be effective in suppressing proinflammatory, prooxidant, and profibrotic factors in the liver of rats with ASH. PMID:26773358

  6. Rapid determination of alpha tocopherol in olive oil adulterated with sunflower oil by reversed phase high-performance liquid chromatography.

    Science.gov (United States)

    Bakre, S M; Gadmale, D K; Toche, R B; Gaikwad, V B

    2015-05-01

    A new method is developed to determine the presence of sunflower oil in olive oil. α-tocopherol is selected as discriminating parameter for detecting sunflower oil adulterant in olive oil. Admixtures of olive oil and sunflower oil (5 %, 10 %, 15 % and 20 % sunflower oil in olive oil) are prepared. These admixtures are analysed by reversed phase high pressure liquid chromatography coupled with fluorescence detector. The sample preparation does not require saponification or addition of antioxidant. The chromatographic system consists of a C18 column with methanol: acetonitrile (50:50) mobile phase. Fluorescence detector excitation wavelength is set at 290 nm and emission wavelength is set at 330 nm. The α tocopherol concentration increases linearly in olive oil adulterated with sunflower oil. The method is simple, selective, sensitive and is precise (RSD = 2.65 %) for α tocopherol. The present method can precisely detect 5 % sunflower oil in olive oil.

  7. Prevention and Treatment of Functional and Structural Radiation Injury in the Rat Heart by Pentoxifylline and Alpha-Tocopherol

    International Nuclear Information System (INIS)

    Purpose: Radiation-induced heart disease (RIHD) is a severe side effect of thoracic radiotherapy. This study examined the effects of pentoxifylline (PTX) and α-tocopherol on cardiac injury in a rat model of RIHD. Methods and Materials: Male Sprague-Dawley rats received fractionated local heart irradiation with a daily dose of 9 Gy for 5 days and were observed for 6 months after irradiation. Rats were treated with a combination of PTX, 100 mg/kg/day, and α-tocopherol (20 IU/kg/day) and received these compounds either from 1 week before until 6 months after irradiation or starting 3 months after irradiation, a time point at which histopathologic changes become apparent in our model of RIHD. Results: Radiation-induced increases in left ventricular diastolic pressure (in mm Hg: 35 ± 6 after sham-irradiation, 82 ± 11 after irradiation) were significantly reduced by PTX and α-tocopherol (early treatment: 48 ± 7; late treatment: 53 ± 6). PTX and α-tocopherol significantly reduced deposition of collagen types I (radiation only: 3.5 ± 0.2 μm2 per 100 μm2; early treatment: 2.7 ± 0.8; late treatment: 2.2 ± 0.2) and III (radiation only: 13.9 ± 0.8; early treatment: 11.0 ± 1.2; late treatment: 10.6 ± 0.8). On the other hand, radiation-induced alterations in heart/body weight ratios, myocardial degeneration, left ventricular mast cell densities, and most echocardiographic parameters were not significantly altered by PTX and α-tocopherol. Conclusions: Treatment with PTX and α-tocopherol may have beneficial effects on radiation-induced myocardial fibrosis and left ventricular function, both when started before irradiation and when started later during the process of RIHD

  8. Photostability of alpha-tocopherol ester derivatives in solutions and liposomes. Spectroscopic and LC-MS studies.

    Science.gov (United States)

    Neunert, Grazyna; Szwengiel, Artur; Walejko, Piotr; Witkowski, Stanislaw; Polewski, Krzysztof

    2016-07-01

    α-Tocopherol (Toc) is known to degrade to the tocopheroxyl radicals (Toc) by exposure to UV light irradiation. In the present study, the stability of Toc ester derivatives exposed to UV light was investigated and compared with Toc in organic solution and in phospholipid vesicles. To follow the depletion of Toc and its esters the absorbance and fluorescence methods were applied whereas degradation products were detected using LC-MS method. The irradiation with UVB light of air-equilibrated solutions of di-α-Tocopheryl malonate (DTMO), α-Tocopheryl malonate (TMO) and α-Tocopheryl succinate (TS) strongly modifies their absorption and fluorescence spectra. Upon UVB irradiation, absorption band at 279/285nm becomes less pronounced indicating the photodegradation of esters. During irradiation, the fluorescence maximum of esters at 305nm shifts to 326nm, a maximum characteristic for Toc. Photorecovery of Toc from its esters derivatives was finally confirmed by LC-MS method. Among studied esters, only α-tocopheryl nicotinate (TN) did not undergo depletion and appeared resistant to UVB radiation. Kinetic studies indicated that photoinduced transformation occurs through the first order consecutive reaction chain mechanism. The photodissociation of Toc esters in the liposomes occurred with one order of magnitude slower than in organic solvents. Using MS/MS method it was found that final stable product of irradiation was α-tocopheryl quinone (TQ), an animal and plant metabolite of Toc. PMID:27107331

  9. Vitamin A (retinol and retinyl esters), alpha-tocopherol and lipid levels in plasma of captive wild mammals and birds.

    Science.gov (United States)

    Schweigert, F J; Uehlein-Harrell, S; von Hegel, G; Wiesner, H

    1991-02-01

    Vitamin A (retinol and retinyl esters), vitamin E and lipids were determined in a wide variety of wild mammals and birds held in captivity. In mammals plasma levels of vitamin A were generally below 500 ng/ml and those of vitamin E were highly variable (0.1-2 micrograms/ml). In primates, vitamin E levels were 3 to 8 micrograms/ml. Whereas in Marsupialia, Chiroptera, primates, Rodentia, Proboscidea, Sirenia, Perissodactyla and Artiodactyla only retinol was found, retinyl esters (basically retinol palmitate/oleate) represented 10 to 50% of the total plasma vitamin A in some birds of the order Ciconiiformes and Falconiformes. Retinol levels in birds were higher compared to mammals (500-2,000 ng/ml). The same was true for lipids as well as for vitamin E levels (1-26 micrograms/ml) in the plasma of birds. PMID:1905864

  10. The Cardioprotective Effect of Vitamin E (Alpha-Tocopherol) Is Strongly Related to Age and Gender in Mice

    OpenAIRE

    Hu, Xiao-Xia; Fu, Li; Li, Yan; Lin, Ze-Bang; Liu, Xiang; Wang, Jing-Feng; Chen, Yang-xin; Wang, Zhi-Ping; Zhang, Xi; Ou, Zhi-Jun; Ou, Jing-Song

    2015-01-01

    Vitamin E (VitE) only prevented cardiovascular diseases in some patients and the mechanisms remain unknown. VitE levels can be affected by aging and gender. We hypothesize that age and gender can influence VitE’s cardioprotective effect. Mice were divided into 4 groups according to age and gender, and each group of mice were divided into a control group and a VitE group. The mice were administered water or VitE for 21 days; Afterward, the cardiac function and myocardial infarct size and cardi...

  11. Distribution of vitamins A (retinol) and E (alpha-tocopherol) in polar bear kidney: Implications for biomarker studies

    DEFF Research Database (Denmark)

    Bechshøft, T.Ø.; Jakobsen, Jette; Sonne, C.;

    2011-01-01

    Vitamins A and E content of inner organs, among these the kidneys, are increasingly being used as an indicator of adverse effects caused to the organism by e.g. environmental contaminants. In general, only a renal sub sample is used for analyses, and it is thus essential to know which part...... of the organ to sample in order to get a representative value for this important biomarker. The aim here was to assess the distribution of vitamins A (retinol) and E (α-tocopherol) within the polar bear multireniculate kidney (i.e. polar vs. medial position) and also within the cortex vs. medulla of each...... separate renculi. The results showed no significant difference between the medial and polar renculi with regards to either retinol (p=0.44) or α-tocopherol (p=0.75). There were, however, significant differences between cortex and medulla for both vitamins (retinol, p=0.0003; α-tocopherol, p...

  12. Maternal dietary loads of alpha-tocopherol increase synapse density and glial synaptic coverage in the hippocampus of adult offspring

    Directory of Open Access Journals (Sweden)

    S. Salucci

    2014-05-01

    Full Text Available An increased intake of the antioxidant α-Tocopherol (vitamin E is recommended in complicated pregnancies, to prevent free radical damage to mother and fetus. However, the anti-PKC and antimitotic activity of α-Tocopherol raises concerns about its potential effects on brain development. Recently, we found that maternal dietary loads of α-Tocopherol through pregnancy and lactation cause developmental deficit in hippocampal synaptic plasticity in rat offspring. The defect persisted into adulthood, with behavioral alterations in hippocampus-dependent learning. Here, using the same rat model of maternal supplementation, ultrastructural morphometric studies were carried out to provide mechanistic interpretation to such a functional impairment in adult offspring by the occurrence of long-term changes in density and morphological features of hippocampal synapses. Higher density of axo-spinous synapses was found in CA1 stratum radiatum of α-Tocopherol-exposed rats compared to controls, pointing to a reduced synapse pruning. No morphometric changes were found in synaptic ultrastructural features, i.e., perimeter of axon terminals, length of synaptic specializations, extension of bouton-spine contact. Glia-synapse anatomical relationship was also affected. Heavier astrocytic coverage of synapses was observed in Tocopherol-treated offspring, notably surrounding axon terminals; moreover, the percentage of synapses contacted by astrocytic endfeet at bouton-spine interface (tripartite synapses was increased. These findings indicate that gestational and neonatal exposure to supranutritional tocopherol intake can result in anatomical changes of offspring hippocampus that last through adulthood. These include a surplus of axo-spinous synapses and an aberrant glia-synapse relationship, which may represent the morphological signature of previously described alterations in synaptic plasticity and hippocampus-dependent learning.

  13. Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine.

    Science.gov (United States)

    Huang, Ming-Der; Chen, Tung-Ling L; Huang, Anthony H C

    2013-11-01

    Lipid transfer proteins (LTPs) are small secretory proteins in plants with defined lipid-binding structures for possible lipid exocytosis. Special groups of LTPs unique to the anther tapetum are abundant, but their functions are unclear. We studied a special group of LTPs, type III LTPs, in Arabidopsis (Arabidopsis thaliana). Their transcripts were restricted to the anther tapetum, with levels peaking at the developmental stage of maximal pollen-wall exine synthesis. We constructed an LTP-Green Fluorescent Protein (LTP-GFP) plasmid, transformed it into wild-type plants, and monitored LTP-GFP in developing anthers with confocal laser scanning microscopy. LTP-GFP appeared in the tapetum and was secreted via the endoplasmic reticulum-trans-Golgi network machinery into the locule. It then moved to the microspore surface and remained as a component of exine. Immuno-transmission electron microscopy of native LTP in anthers confirmed the LTP-GFP observations. The in vivo association of LTP-GFP and exine in anthers was not observed with non-type III or structurally modified type III LTPs or in transformed exine-defective mutant plants. RNA interference knockdown of individual type III LTPs produced no observable mutant phenotypes. RNA interference knockdown of two type III LTPs produced microscopy-observable morphologic changes in the intine underneath the exine (presumably as a consequence of changes in the exine not observed by transmission electron microscopy) and pollen susceptible to dehydration damage. Overall, we reveal a novel transfer pathway of LTPs in which LTPs bound or nonbound to exine precursors are secreted from the tapetum to become microspore exine constituents; this pathway explains the need for plentiful LTPs to incorporate into the abundant exine. PMID:24096413

  14. A Perspective on Studying G-Protein-Coupled Receptor Signaling with Resonance Energy Transfer Biosensors in Living Organisms

    NARCIS (Netherlands)

    Unen, J. van; Woolard, J.; Rinken, A.; Hoffmann, C.; Hill, S.J.; Goedhart, J.; Bruchas, M.R.; Bouvier, M.; Adjobo-Hermans, M.J.W.

    2015-01-01

    The last frontier for a complete understanding of G-protein-coupled receptor (GPCR) biology is to be able to assess GPCR activity, interactions, and signaling in vivo, in real time within biologically intact systems. This includes the ability to detect GPCR activity, trafficking, dimerization, prote

  15. Approach to Interfacial and Intramolecular Electron Transfer of the Diheme Protein Cytochrome c(4) Assembled on Au(111) Surfaces

    DEFF Research Database (Denmark)

    Chi, Qijin; Zhang, Jingdong; Taner, Arslan;

    2010-01-01

    protein Pseudomonas stutzeri cytochrome c(4) has been a target for intramolecular, interheme ET. We report here voltammetric and in situ scanning tunneling microscopy (STM) data for P. stutzeri cyt c(4) at single-crystal, atomically planar Au(111)-electrode surfaces modified by variable-length omega...

  16. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis.

    Science.gov (United States)

    Ren, Jihui; Pei-Chen Lin, Coney; Pathak, Manish C; Temple, Brenda R S; Nile, Aaron H; Mousley, Carl J; Duncan, Mara C; Eckert, Debra M; Leiker, Thomas J; Ivanova, Pavlina T; Myers, David S; Murphy, Robert C; Brown, H Alex; Verdaasdonk, Jolien; Bloom, Kerry S; Ortlund, Eric A; Neiman, Aaron M; Bankaitis, Vytas A

    2014-03-01

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches. PMID:24403601

  17. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jihui; Lin, Coney Pei-Chen; Pathak, Manish C.; Temple, Brenda R.S.; Nile, Aaron H.; Mousley, Carl J.; Duncan, Mara C.; Eckert, Debra M.; Leiker, Thomas J.; Ivanova, Pavlina T.; Myers, David S.; Murphy, Robert C.; Brown, H. Alex; Verdaasdonk, Jolien; Bloom, Kerry S.; Ortlund, Eric A.; Neiman, Aaron M.; Bankaitis, Vytas A. [Emory-MED; (SBU); (TAM); (UNC); (Vanderbilt-MED); (Utah); (UCHSC)

    2014-07-11

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.

  18. A phosphatidylinositol transfer protein integrates phosphoinositide signaling with lipid droplet metabolism to regulate a developmental program of nutrient stress-induced membrane biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jihui; Lin, Coney Pei-Chen; Pathak, Manish C.; Temple, Brenda R.S.; Nile, Aaron H.; Mousley, Carl J.; Duncan, Mara C.; Eckert, Debra M.; Leiker, Thomas J.; Ivanova, Pavlina T.; Myers, David S.; Murphy, Robert C.; Brown, H. Alex; Verdaasdonk, Jolien; Bloom, Kerry S.; Ortlund, Eric A.; Neiman, Aaron M.; Bankaitis, Vytas A. (Emory-MED); (UNCSM); (UNC); (UCHSC); (TAM); (Vanderbilt-MED); (SBU); (Utah)

    2016-07-06

    Lipid droplet (LD) utilization is an important cellular activity that regulates energy balance and release of lipid second messengers. Because fatty acids exhibit both beneficial and toxic properties, their release from LDs must be controlled. Here we demonstrate that yeast Sfh3, an unusual Sec14-like phosphatidylinositol transfer protein, is an LD-associated protein that inhibits lipid mobilization from these particles. We further document a complex biochemical diversification of LDs during sporulation in which Sfh3 and select other LD proteins redistribute into discrete LD subpopulations. The data show that Sfh3 modulates the efficiency with which a neutral lipid hydrolase-rich LD subclass is consumed during biogenesis of specialized membrane envelopes that package replicated haploid meiotic genomes. These results present novel insights into the interface between phosphoinositide signaling and developmental regulation of LD metabolism and unveil meiosis-specific aspects of Sfh3 (and phosphoinositide) biology that are invisible to contemporary haploid-centric cell biological, proteomic, and functional genomics approaches.

  19. Asymmetric Synthesis and Binding Study of New Long-Chain HPA-12 Analogues as Potent Ligands of the Ceramide Transfer Protein CERT.

    Science.gov (United States)

    Ďuriš, Andrej; Daïch, Adam; Santos, Cécile; Fleury, Laurence; Ausseil, Frédéric; Rodriguez, Frédéric; Ballereau, Stéphanie; Génisson, Yves; Berkeš, Dušan

    2016-05-01

    A series of 12 analogues of the Cer transfer protein (CERT) antagonist HPA-12 with long aliphatic chains were prepared as their (1R,3S)-syn and (1R,3R)-anti stereoisomers from pivotal chiral oxoamino acids. The enantioselective access to these intermediates as well as their ensuing transformation relied on a practical crystallization-induced asymmetric transformation (CIAT) process. Sonogashira coupling followed by triple bond reduction and thiophene ring hydrodesulfurization (HDS) into the corresponding alkane moieties was then implemented to complete the synthetic routes delivering the targeted HPA-12 analogues in concise 4- to 6-step reaction sequences. Ten compounds were evaluated regarding their ability to bind to the CERT START domain by using the recently developed time-resolved FRET-based homogeneous (HTR-FRET) binding assay. The introduction of a lipophilic appendage on the phenyl moiety led to an overall 10- to 1000-fold enhancement of the protein binding, with the highest effect being observed for a n-hexyl residue in the meta position. The importance of the phenyl ring for the activity was indicated by the reduced potency of the 3-deoxyphytoceramide aliphatic analogues. The 1,3-syn stereoisomers were systematically more potent than their 1,3-anti analogues. In silico studies were used to rationalized these trends, leading to a model of protein recognition coherent with the stronger binding of (1R,3S)-syn HPAs.

  20. An efficient method for purification of nonspecific lipid transfer protein-1 from rice seeds using kiwifruit actinidin proteolysis and ion exchange chromatography.

    Science.gov (United States)

    Ghobadi, Sirous; Yousefi, Fakhroddin; Khademi, Fatemeh; Padidar, Samira; Mostafaie, Ali

    2012-11-01

    Plant nonspecific lipid transfer proteins are small basic proteins that transport phospholipids between membranes and are subdivided into two subfamilies, nsLTP(1) (9 kDa) and nsLTP(2) (7 kDa). LTPs have potential application in the defense reactions against pathogens and the drug delivery systems. Many efforts have been made for purification of different nsLTPs from various plants; however, most of them used successive purification procedures. We have developed a relatively simple and efficient method for the purification of rice nsLTP(1), based on the proteolytic activity of kiwifruit actinidin on the rice seed extract and one-step chromatographic procedure on a CM-Sepharose column. The purity of protein was determined by reversed-phase high-performance liquid chromatography (RP-HPLC) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The isolated LTP(1) migrated as a homogenous polypeptide with molecular mass of 9 kDa that confirms the efficiency of actinidin on the digestion of major contaminations present in the rice seed extract without any harmful effect on the LTP(1). The advantages of using proteolytic activity of actinidin in purifying rice LTP(1) includes the reduced separation time allowing the purification of LTP(1) in one-step chromatographic procedure, low costing, high efficiency, and the relative simplicity of the method. PMID:22987614

  1. Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression.

    OpenAIRE

    Bourgouin, C.; Delécluse, A; La Torre, F.; Szulmajster, J

    1990-01-01

    The genes encoding the toxic determinants of Bacillus sphaericus have been expressed in a nontoxic and a toxic strain of Bacillus thuringiensis subsp. israelensis. In both cases, the B. sphaericus toxin proteins were produced at a high level during sporulation of B. thuringiensis and accumulated as crystalline structures. B. thuringiensis transformants expressing B. sphaericus and B. thuringiensis subsp. israelensis toxins did not show a significant enhancement of toxicity against Aedes aegyp...

  2. Improved Methods for the Clinical Manufacture of Proteins Used In Cancer Immunotherapy | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Interleukin-15 (IL-15) is an immune system modulating protein (cytokine) that stimulates the proliferation and differentiation of T- lymphocytes.  In the clinical context, IL-15 is being investigated for use in the treatment of diseases such as cancer.  Manufacture of IL-15 for clinical use can be problematic. The National Cancer Institute seeks partners to co-develop or license methods that facilitate pharmaceutical purification and processing of Interleukin-15 (IL-15).

  3. Human bone morphogenetic protein-2 gene transfer induces human mesenchymal stem cell proliferation and differentiation in vitro

    Institute of Scientific and Technical Information of China (English)

    李军; 范清宇; 钱济先; 马保安; 周勇; 张明华

    2004-01-01

    Objective: To identify eukaryotic expression vector of human bone morphogenetic protein 2 pcDNA3/BMP2, verify its expression in transfected human mesenchymal stem cells (hMSCs) and the effect on hMSCs differentiation.Methods: The BMP2 gene was cloned into a eukaryotic expression vector pcDNA3. Transfected the recombinant into hMSCs by liposome. Immunnohistochemistry and in situ hybridization methods were used to identify the expression of BMP2 mRNA and protein; ALP and Von Kossa stains were performed to identify the BMP2 gene differentiated effect on the hMSCs. Results: The pcDNA3/BMP2 fragments were as large as theory. BMP2 mRNA and protein were expressed and synthesized both in 48 h and 4 weeks after transfection, the ALP and Ca deposit exhibition, which marked the osteogenic lineage of hMSCs,were enhanced and sped. Conclusion: Transfection of pcDNA3/BMP2 is able to provide transient and persistent expression in hMSCs, and promote the MSCs differentiation to osteogenic lineage.

  4. Modeling and computations of the intramolecular electron transfer process in the two-heme protein cytochrome c4

    DEFF Research Database (Denmark)

    Natzmutdinov, Renat R.; Bronshtein, Michael D.; Zinkicheva, Tamara T.;

    2012-01-01

    ligands in both low- and high-spin states by structure-optimized DFT. The computations enable estimating the intramolecular reorganization energy of the ET process for different combinations of low- and high-spin heme couples. Environmental reorganization free energies, work terms (‘‘gating’’) and driving...... performed computational modeling of the intramolecular ET process by a combination of density functional theory (DFT) and quantum mechanical charge transfer theory to disclose reasons for this difference. We first address the electronic structures of the model heme core with histidine and methionine axial......–Fe separations. The reactivity of low- and high-spin heme groups was notably different. The ET rate is exceedingly low for the crystallographic equilibrium orientation but increases by several orders of magnitude for thermally accessible non-equilibrium configurations. Deprotonation of the propionate carboxyl...

  5. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins

    Science.gov (United States)

    Chevelkov, Veniamin; Habenstein, Birgit; Loquet, Antoine; Giller, Karin; Becker, Stefan; Lange, Adam

    2014-05-01

    Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained at a low protonation level of 10-20% at exchangeable amide positions. We developed efficient experimental protocols for resonance assignment tailored for this system and the employed experimental conditions. Using exclusively dipolar-based interspin magnetization transfers, we recorded two sets of 3D spectra allowing for an almost complete backbone resonance assignment of the needle subunit PrgI. The additional information provided by the well-resolved proton dimension revealed the presence of two sets of resonances in the N-terminal helix of PrgI, while in previous studies employing 13C detection only a single set of resonances was observed.

  6. 微粒体甘油三脂转运蛋白MTP的研究进展%Recent Advance On Microsomal Triglyceride Transfer Protein

    Institute of Scientific and Technical Information of China (English)

    叶健强; 王继文

    2005-01-01

    微粒体甘油三酯转运蛋白MTP(microsomal triglyceride transfer protein,MTP)首先是从牛的肝细胞微粒体碎片中分离获得的,其作用是加速甘油三脂(triglyceride,TG)、胆固醇(cholesteryl ester,CE)和磷脂酰胆碱(phosphatidylcholine,PC)的转运和细胞或亚细胞膜的生物合成.它后来在肝细胞和小肠的微粒体膜中发现[1],由于它的位置及其转运TG可以推测与血浆脂蛋白中极低密度脂蛋白(very low density lipoprotein,VLDL)和乳糜微粒(chylomicrons,CM)的组装过程有关.

  7. Photosynthetic reaction center functionalized nano-composite films: effective strategies for probing and exploiting the photo-induced electron transfer of photosensitive membrane protein.

    Science.gov (United States)

    Lu, Yidong; Xu, Jingjing; Liu, Baohong; Kong, Jilie

    2007-02-15

    Photosynthetic reaction center (RC), a robust transmembrane pigment-protein complex, works as the crucial component participating the primary event of the photo-electrochemical conversion in bacteria. Sparked by the high photo-induced charge separation yield (ca. 100%) of RC, great interests have been aroused to fabricate versatile RC-functionalized nano-composite films for exploring the initial photosynthetic electron transfer (ET) of RC, and thus exploiting well-designed bio-photoelectric converters. In this review, we classify and summarize the current status about the concepts and methods of constructing RC-immobilized nano-composite films or devices for probing the photo-induced ET, and applying to novel bioelectronics if it is possible.

  8. Brix refractometry in serum as a measure of failure of passive transfer compared to measured immunoglobulin G and total protein by refractometry in serum from dairy calves.

    Science.gov (United States)

    Hernandez, D; Nydam, D V; Godden, S M; Bristol, L S; Kryzer, A; Ranum, J; Schaefer, D

    2016-05-01

    A series of trials were conducted to evaluate Brix refractometry (Brix %) for the assessment of failure of passive transfer (FPT) in dairy calves compared to: (1) serum IgG (reference standard) when measured by radial immunodiffusion (RID) or a turbidometric immunoassay (TIA), and (2) serum total protein refractometry (STP). For the serum samples tested with TIA, STP, and Brix % (n = 310; Holstein calves), the median concentrations were 21.3 g/L IgG, 58 g/L STP, and 9.2%, respectively. For the serum samples tested with RID, STP and Brix % (n = 112; Jersey calves), the mean concentrations were 38 g/L IgG, 68 g/L STP, and 10.2%, respectively. For samples tested with only Brix % and STP (n = 265; Holstein calves), median STP and Brix % were 50 g/L STP and 8.5%, respectively. Correlations between Brix % and RID, and between Brix % and TIA were equal (r = 0.79, respectively). Brix % and STP were positively correlated (r = 0.99). Brix % estimated serum IgG concentrations determined by TIA and RID (r(2) = 0.63, 0.62, respectively). When FPT was defined as serum IgG refractometry predicted successful transfer of passive immunity in dairy calves, but further evaluation as a diagnostic tool for the diagnosis of FPT is warranted. PMID:26993533

  9. Modulation of adrenal catecholamine secretion by in vivo gene transfer and manipulation of G protein-coupled receptor kinase-2 activity.

    Science.gov (United States)

    Lymperopoulos, Anastasios; Rengo, Giuseppe; Zincarelli, Carmela; Soltys, Stephen; Koch, Walter J

    2008-02-01

    We recently reported that the upregulation of adrenal G protein-coupled receptor kinase-2 (GRK2) causes enhanced catecholamine (CA) secretion by desensitizing sympatho-inhibitory alpha (2)-adrenergic receptors (alpha (2)ARs) of chromaffin cells, and thereby aggravating heart failure (HF). In this study, we sought to develop an efficient and reproducible in vivo adrenal gene transfer method to determine whether manipulation of adrenal GRK2 levels/activity regulates physiological CA secretion in rats. We specifically investigated two different in vivo gene delivery methods: direct injection into the suprarenal glands, and retrograde delivery through the suprarenal veins. We delivered adenoviral (Ad) vectors containing either GRK2 or an inhibitor of GRK2 activity, the beta ARKct. We found both delivery approaches equally effective at supporting robust (>80% of the whole organ) and adrenal-restricted transgene expression, in the cortical region as well as in the medullar region. Additionally, rats with AdGRK2-infected adrenals exhibit enhanced plasma CA levels when compared with control rats (AdGFP-injected adrenals), whereas plasma CA levels after Ad beta ARKct infection were significantly lower. Finally, in isolated chromaffin cells, alpha (2)ARs of AdGRK2-infected cells failed to inhibit CA secretion whereas Ad beta ARKct-infected cells showed normal alpha (2)AR responsiveness. These results not only indicate that in vivo adrenal gene transfer is an effective way of manipulating adrenal gland signalling, but also identify GRK2 as a critically important molecule involved in CA secretion.

  10. Graph based study of allergen cross-reactivity of plant lipid transfer proteins (LTPs using microarray in a multicenter study.

    Directory of Open Access Journals (Sweden)

    Arantxa Palacín

    Full Text Available The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens.

  11. Graph based study of allergen cross-reactivity of plant lipid transfer proteins (LTPs) using microarray in a multicenter study.

    Science.gov (United States)

    Palacín, Arantxa; Gómez-Casado, Cristina; Rivas, Luis A; Aguirre, Jacobo; Tordesillas, Leticia; Bartra, Joan; Blanco, Carlos; Carrillo, Teresa; Cuesta-Herranz, Javier; de Frutos, Consolación; Alvarez-Eire, Genoveva García; Fernández, Francisco J; Gamboa, Pedro; Muñoz, Rosa; Sánchez-Monge, Rosa; Sirvent, Sofía; Torres, María J; Varela-Losada, Susana; Rodríguez, Rosalía; Parro, Victor; Blanca, Miguel; Salcedo, Gabriel; Díaz-Perales, Araceli

    2012-01-01

    The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens. PMID:23272072

  12. Relative Quantification of Sites of Peptide and Protein Modification Using Size Exclusion Chromatography Coupled with Electron Transfer Dissociation

    Science.gov (United States)

    Xie, Boer; Sharp, Joshua S.

    2016-08-01

    One difficult problem in the analysis of peptide modifications is quantifying isomeric modifications that differ by the position of the amino acid modified. HPLC separation using C18 reverse phase chromatography coupled with electron transfer dissociation (ETD) in tandem mass spectrometry has recently been shown to be able to relatively quantify how much of a given modification occurs at each amino acid position for isomeric mixtures; however, the resolution of reverse phase chromatography greatly complicates quantification of isomeric modifications by ETD because of the chromatographic separation of peptides with identical modifications at different sequence positions. Using peptide oxidation as a model system, we investigated the use of size exclusion chromatography coupled with ETD fragmentation to separate peptide sequences. This approach allows for the benefits of chromatographic separation of peptide sequences while ensuring co-elution of modification isomers for accurate relative quantification of modifications using standard data-dependent acquisitions. Using this method, the relative amount of modification at each amino acid can be accurately measured from single ETD MS/MS spectra in a standard data-dependent acquisition experiment.

  13. Relative Quantification of Sites of Peptide and Protein Modification Using Size Exclusion Chromatography Coupled with Electron Transfer Dissociation.

    Science.gov (United States)

    Xie, Boer; Sharp, Joshua S

    2016-08-01

    One difficult problem in the analysis of peptide modifications is quantifying isomeric modifications that differ by the position of the amino acid modified. HPLC separation using C18 reverse phase chromatography coupled with electron transfer dissociation (ETD) in tandem mass spectrometry has recently been shown to be able to relatively quantify how much of a given modification occurs at each amino acid position for isomeric mixtures; however, the resolution of reverse phase chromatography greatly complicates quantification of isomeric modifications by ETD because of the chromatographic separation of peptides with identical modifications at different sequence positions. Using peptide oxidation as a model system, we investigated the use of size exclusion chromatography coupled with ETD fragmentation to separate peptide sequences. This approach allows for the benefits of chromatographic separation of peptide sequences while ensuring co-elution of modification isomers for accurate relative quantification of modifications using standard data-dependent acquisitions. Using this method, the relative amount of modification at each amino acid can be accurately measured from single ETD MS/MS spectra in a standard data-dependent acquisition experiment. Graphical Abstract ᅟ. PMID:27075875

  14. Study on molecular interactions between proteins on live cell membranes using quantum dot-based fluorescence resonance energy transfer.

    Science.gov (United States)

    Liu, Tian-Cai; Zhang, Hai-Li; Wang, Jian-Hao; Wang, Hai-Qiao; Zhang, Zhi-Hong; Hua, Xiao-Feng; Cao, Yuan-Cheng; Luo, Qing-Ming; Zhao, Yuan-Di

    2008-08-01

    Mouse anti-human CD71 monoclonal antibody (anti-CD71) was conjugated with red quantum dots (QDs; 5.3 nm, emission wavelength lambda(em) = 614 nm) and used to label HeLa cells successfully. Then green QD-labeled goat anti-mouse immunoglobulin G (IgG; the size of the green QDs was 2.2 nm; lambda(em) = 544 nm) was added to bind the red-QD-conjugated anti-CD71 on the cell surface by immunoreactions. Such interaction between anti-CD71 and IgG lasted 4 min and was observed from the fluorescence spectra: the fluorescence intensity of the "red" peak at 614 nm increased by 32%; meanwhile that of the "green" one at 544 nm decreased by 55%. The ratio of the fluorescence intensities (I(544 nm)/I(614 nm)) decreased from 0.5 to 0.2. The fluorescence spectra as well as cell imaging showed that fluorescence resonance energy transfer took place between these two kinds of QDs on the HeLa cells through interactions between the primary antibody and the secondary antibody. PMID:18537029

  15. Influence of Isoforms and Carboxyl-Terminal Truncations on the Capacity of Apolipoprotein E To Associate with and Activate Phospholipid Transfer Protein.

    Science.gov (United States)

    Dafnis, Ioannis; Metso, Jari; Zannis, Vassilis I; Jauhiainen, Matti; Chroni, Angeliki

    2015-09-29

    Phospholipid transfer protein (PLTP), a main protein in lipid and lipoprotein metabolism, exists in high-activity (HA-PLTP) and low-activity (LA-PLTP) forms in human plasma. Proper phospholipid transfer activity of PLTP is modulated by interactions with various apolipoproteins (apo) including apoE. The domains of apoE involved in interactions with PLTP are not known. Here we analyzed the capacity of recombinant apoE isoforms and apoE4 mutants with progressive carboxyl-terminal deletions to bind to and activate HA-PLTP and LA-PLTP. Our analyses demonstrated that lipid-free apoE isoforms bind to both HA-PLTP and LA-PLTP, resulting in phospholipid transfer activation, with apoE3 inducing the highest PLTP activation. The isoform-specific differences in apoE/PLTP binding and PLTP activation were abolished following apoE lipidation. Lipid-free apoE4[Δ(260-299)], apoE4[Δ(230-299)], apoE4[Δ(203-299)], and apoE4[Δ(186-299)] activated HA-PLTP by 120-160% compared to full-length apoE4. Lipid-free apoE4[Δ(186-299)] also activated LA-PLTP by 85% compared to full-length apoE4. All lipidated truncated apoE4 forms displayed a similar effect on HA-PLTP and LA-PLTP activity as full-length apoE4. Strikingly, lipid-free or lipidated full-length apoE4 and apoE4[Δ(186-299)] demonstrated similar binding capacity to LA-PLTP and HA-PLTP. Biophysical studies showed that the carboxyl-terminal truncations of apoE4 resulted in small changes of the structural or thermodynamic properties of lipidated apoE4, that were much less pronounced compared to changes observed previously for lipid-free apoE4. Overall, our findings show an isoform-dependent binding to and activation of PLTP by lipid-free apoE. Furthermore, the domain of apoE4 required for PLTP activation resides within its amino-terminal 1-185 region. The apoE/PLTP interactions can be modulated by the conformation and lipidation state of apoE.

  16. Transgenic expression of green fluorescent protein in caprine embryos produced through electroporation-aided sperm-mediated gene transfer.

    Science.gov (United States)

    Kumar Pramod, R; Kumar, Rakesh; Mitra, Abhijit

    2016-01-15

    Current methods of transgenic animal production are afflicted by low efficiency and high cost. Recently, the electroporation aided sperm-mediated gene transfer (SMGT) emerges as a promising alternative with variable success rate. Among the domestic animal species, the electroporation-aided SMGT is less investigated in goats, except a few reports in which attempts have been made using the auto-uptake method of SMGT. In this study, we report an optimized electroporation condition for SMGT of caprine sperm cells. Results of this study demonstrated that electroporation of caprine sperm cells at 300 V for 200 mS in TALP medium allowed the maximum uptake of foreign DNA with minimum adverse effects on the vital semen parameters viz., progressive motility, viability, and membrane and acrosome integrity. Further, DNA binding assay revealed DNA uptake by 81.3% sperm cells when 1.0 μg of DNA was used under optimum electroporation conditions as compared to 16.5% on simple incubation. The qPCR analysis showed four-fold more (Pelectroporation than incubation. A similar cleavage rate was observed after IVF using either electroporated (23.20 ± 1.20) or non-electroporated (25.20 ± 2.41) sperm cells suggesting the absence of adverse effect of electroporation on the fertilizing ability. Out of the 116 embryos produced by electroporated sperm, five (4.31%) embryos showed the expression of the foreign gene. In conclusion, our results confirm that using optimized electroporation conditions, the caprine sperm cells can uptake foreign DNA effectively with minimum negative effect on the semen parameters and could produce transgenic embryos.

  17. Gestation-related gene expression and protein localization in endometrial tissue of Suffolk and Cheviot ewes at gestation Day 19, after transfer of Suffolk or Cheviot embryos.

    Science.gov (United States)

    Sequeira, M; Pain, S J; de Brun, V; Meikle, A; Kenyon, P R; Blair, H T

    2016-10-01

    The objective of this study was to investigate the gene expression of progesterone and estrogen receptor α (PR, ERα), insulin-like growth factor (IGF) 1, IGF-2, their receptor (IGFR1), IGF-binding proteins (BP) 1 to 6, insulin receptor, adiponectin receptors (AdipoR1/2), cyclooxygenase 2 (PTGS2), mucin 1 and to localize PR, ERα, IGF-1, IGFR1, PTGS2, and proliferating cellular nuclear antigen (PCNA) in the endometrium of pregnant (Day 19) Suffolk and Cheviot ewes carrying Suffolk and Cheviot embryos transferred within and reciprocally between breeds. Gene expression was determined by real-time quantitative polymerase chain reaction (RT-qPCR), and antigen determination was measured by immunohistochemistry in the luminal epithelium (LE), superficial and deep glands (SG, DG, respectively) and superficial and deep stroma. Gene expression of PR, IGF-1, IGFBP2, and IGFBP5 was higher in Suffolk than that in Cheviot ewes (P interaction between ewe and embryo breed affected PTGS2 staining (P protein expression in the endometrium of Suffolk and Cheviot ewes is affected by both ewe and embryo breed at Day 19 of pregnancy. PMID:27325575

  18. Evidence from NMR interaction studies challenges the hypothesis of direct lipid transfer from L-FABP to malaria sporozoite protein UIS3.

    Science.gov (United States)

    Favretto, Filippo; Assfalg, Michael; Molinari, Henriette; D'Onofrio, Mariapina

    2013-02-01

    UIS3 is a malaria parasite protein essential for liver stage development of Plasmodium species, presumably localized to the membrane of the parasitophorous vacuole formed in infected cells. It has been recently proposed that the soluble domain of UIS3 interacts with the host liver fatty acid binding protein (L-FABP), providing the parasite with a pathway for importing exogenous lipids required for its rapid growth. This finding may suggest novel strategies for arresting parasite development. In this study, we have investigated the interaction between human L-FABP and the soluble domain of Plasmodium falciparum UIS3 by NMR spectroscopy. The amino acid residue-specific analysis of (1)H,(15) N-2D NMR spectra excluded the occurrence of a direct interaction between L-FABP (in its unbound and oleate-loaded forms) and Pf-UIS3. Furthermore, the spectrum of Pf-UIS3 was unchanged when oleate or phospholipids were added. The present investigation entails a reformulation of the current model of host-pathogen lipid transfer, possibly redirecting research for early intervention against malaria.

  19. In-vivo identification of direct electron transfer from Shewanella oneidensis MR-1 to electrodes via outer-membrane OmcA-MtrCAB protein complexes

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Akihiro [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakamura, Ryuhei, E-mail: nakamura@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Hashimoto, Kazuhito, E-mail: hashimoto@light.t.u-tokyo.ac.jp [Department of Applied Chemistry, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); ERATO/JST, HASHIMOTO Light Energy Conversion Project (Japan)

    2011-06-30

    Graphical abstract: . Display Omitted Highlights: > Monolayer biofilm of Shewanella cells was prepared on an ITO electrode. > Extracellular electron transfer (EET) process was examined with series of mutants. > Direct ET was confirmed with outer-membrane-bound OmcA-MtrCAB complex. > The EET process was not prominently influenced by capsular polysaccharide. - Abstract: The direct electron-transfer (DET) property of Shewanella bacteria has not been resolved in detail due to the complexity of in vivo electrochemistry in whole-cell systems. Here, we report the in vivo assignment of the redox signal indicative of the DET property in biofilms of Shewanella oneidensis MR-1 by cyclic voltammetry (CV) with a series of mutants and a chemical marking technique. The CV measurements of monolayer biofilms formed by deletion mutants of c-type cytochromes ({Delta}mtrA, {Delta}mtrB, {Delta}mtrC/{Delta}omcA, and {Delta}cymA), and pilin ({Delta}pilD), capsular polysaccharide ({Delta}SO3177) and menaquinone ({Delta}menD) biosynthetic proteins demonstrated that the electrochemical redox signal with a midpoint potential at 50 mV (vs. SHE) was due to an outer-membrane-bound OmcA-MtrCAB protein complex of decaheme cytochromes, and did not involve either inner-membrane-bound CymA protein or secreted menaquinone. Using the specific binding affinity of nitric monoxide for the heme groups of c-type cytochromes, we further confirmed this conclusion. The heterogeneous standard rate constant for the DET process was estimated to be 300 {+-} 10 s{sup -1}, which was two orders of magnitude higher than that previously reported for the electron shuttling process via riboflavin. Experiments using a mutant unable to produce capsular polysaccharide ({Delta}SO3177) revealed that the DET property of the OmcA-MtrCAB complex was not influenced by insulating and hydrophilic extracellular polysaccharide. Accordingly, under physiological conditions, S. oneidensis MR-1 utilizes a high density of outer

  20. New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII.

    Directory of Open Access Journals (Sweden)

    Beate Bersch

    Full Text Available Zinc (Zn(2+ homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+ homeostasis. The phtD gene, coding for a Zn(2+-binding protein, is organized in an operon with adcAII coding for the extracellular part of a Zn(2+ transporter. In the present work, we investigate the relationship between PhtD and AdcAII using biochemical and structural biology approaches. Immuno-precipitation experiments on purified membranes of Streptococcus pneumoniae (S. pneumoniae demonstrate that native PhtD and AdcAII interact in vivo confirming our previous in vitro observations. NMR was used to demonstrate Zn(2+ transfer from the Zn(2+-bound form of a 137 amino acid N-terminal domain of PhtD (t-PhtD to AdcAII. The high resolution NMR structure of t-PhtD shows that Zn(2+ is bound in a tetrahedral site by histidines 83, 86, and 88 as well as by glutamate 63. Comparison of the NMR parameters measured for apo- and Zn(2+-t-PhtD shows that the loss of Zn(2+ leads to a diminished helical propensity at the C-terminus and increases the local dynamics and overall molecular volume. Structural comparison with the crystal structure of a 55-long fragment of PhtA suggests that Pht proteins are built from short repetitive units formed by three β-strands containing the conserved HxxHxH motif. Taken together, these results support a role for S. pneumoniae PhtD as a Zn(2+ scavenger for later release to the surface transporter AdcAII, leading to Zn(2+ uptake.

  1. A lipid transfer protein, OsLTPL36, is essential for seed development and seed quality in rice.

    Science.gov (United States)

    Wang, Xin; Zhou, Wei; Lu, Zhanhua; Ouyang, Yidan; O, Chol Su; Yao, Jialing

    2015-10-01

    Storage lipid is a vital component for maintaining structure of seed storage substances and valuable for rice quality and food texture. However, the knowledge of lipid transporting related genes and their function in seed development have not been well elucidated yet. In this study, we identified OsLTPL36, a homolog of putative lipid transport protein, and showed specific expression in rice developing seed. Transcriptional profiling and in situ hybridization analysis confirmed that OsLTPL36 was exclusively expressed in developing seed coat and endosperm aleurone cells. Down-regulated expression of OsLTPL36 led to decreased seed setting rate and 1000-grain weight in transgenic plants. Further studies showed that suppressed expression of OsLTPL36 caused chalky endosperm and resulted in reduced fat acid content in RNAi lines as compared with wild type (WT). Histological analysis showed that the embryo development was delayed after down regulation of OsLTPL36. Moreover, impeded seed germination and puny seedling were also observed in the OsLTPL36 RNAi lines. The data demonstrated that OsLTPL36, a lipid transporter, was critical important not only for seed quality but also for seed development and germination in rice. PMID:26398804

  2. Calibration Transfer of Near Infrared Spectrometric Models for Crude Protein of Protein Feed Materials%蛋白饲料原料粗蛋白含量近红外光谱模型转移研究

    Institute of Scientific and Technical Information of China (English)

    丁柯; 张月敬; 沈广辉; 于贤龙; 杨增玲; 刘贤

    2016-01-01

    The near infrared spectrometric quantitative model of protein feed and its sharing in different instruments can greatly improve the utilization efficiency of the model and meet the needs of rapid development of feed industry.Considering the issue of applicability of near infrared spectrometric models for crude protein of protein feed materials,calibration transfer was explored among three types of instruments using spectral subtraction correction,direct standardization and piecewise directs standardiza-tion methods for the first time.Four kinds of protein feed raw materials were involved in the present study,corn protein pow-der,rapeseed meal,fish meal and distillers dried grains with soluble.The experimental instruments included MATRIX-I Fourier transform near infrared instrument (master instrument),Spectrum 400 Fourier transform near infrared instrument (slave 1 instrument),and SupNIR-2750 grating near infrared instrument (slave 2 instrument).Results showed that the spectral data difference for all the samples between the master and slave 2 instrument was relatively small,and the difference between the master and slave 1 instrument,and slave 1 and slave 2 instrument were relatively large.All the root mean square error of predic-tion and bias values after calibration transfer were lower than the values before calibration transfer,except that no improvement was found for the prediction of corn protein powder of slave 2 instrument corrected by piecewise direct standardization method. The relative prediction deviation (RPD)of corn protein powder,rapeseed meal and distillers dried grains with soluble transferred by all three methods were higher than 3,which indicated good predictions,while the RPD of fish meal were all higher than 2.5, which indicated relative good predictions.All three techniques used in the study were effective in the correction of the difference between different instruments for protein feed materials.This study is of important practical

  3. Gene transfer of heat-shock protein 20 protects against ischemia/reperfusion injury in rat hearts

    Institute of Scientific and Technical Information of China (English)

    Yan-hui ZHU; Tie-min MA; Xian WANG

    2005-01-01

    Aim: To explore whether overexpression of HSP20 in the myocardium could protect against ischemia/reperfusion injury in rats. Methods: Rat hearts were injected with vector, recombinant adenovirus encoding green fluorescent protein (Ad. GFP) or recombinant adenovirus encoding wild-type HSP20 (Ad. HSP20) in the left ventricle. Four days later, hearts were removed and expression of HSP20was measured in the left ventricle. Subsets of animals in the vector-, Ad. GFP-, and Ad. HSP20-treated groups were subjected to 20-min ischemia and 120-min reperfusion. Myocardial injury was evaluated by infarct size and level of serum cardiac troponin T and creatine phosphokinase. Apoptosis of cardiomyocytes was determined by TUNEL staining. Cardiac function was evaluated by hemodynamic indexes. Results: Infarct size and serum cardiac troponin T and creatine phosphokinase levels were significantly reduced in Ad. HSP20-treated hearts compared with vector- and Ad. GFP-treated hearts. The ratio of TUNEL-positive cardiomyocytes to total number of cardiomyocytes in the Ad. HSP20 group was significantly reduced as compared with the vector and Ad. GFP groups. Left ventricular end systolic pressure, and maximal rate of pressure increase (+dp/dtmax)and decrease (-dp/dtmin) values were increased significantly, while left ventricular end diastolic pressure was decreased significantly in Ad.HSP20-treated hearts compared with vector- and Ad. GFP-treated hearts. Conclusion: These data indicate that the cardioprotective effects of HSP20 may contribute to the reduction of myocardial necrosis and apoptosis in ischemia/reperfusion injury in rats.

  4. A broad G protein-coupled receptor internalization assay that combines SNAP-tag labeling, diffusion-enhanced resonance energy transfer, and a highly emissive terbium cryptate acceptor

    Directory of Open Access Journals (Sweden)

    Angélique eLEVOYE

    2015-11-01

    Full Text Available Although G protein-coupled receptor (GPCR internalization has long been considered a major aspect of the desensitization process that tunes ligand responsiveness, internalization is also involved in receptor resensitization and signaling, as well as the ligand scavenging function of some atypical receptors. Internalization thus contributes to the diversity of GPCR-dependent signaling, and its dynamics and quantification in living cells has generated considerable interest. We developed a robust and sensitive assay to follow and quantify ligand-induced and constitutive GPCR internalization but also receptor recycling in living cells. This assay is based on diffusion-enhanced resonance energy transfer (DERET between cell surface GPCRs labeled with a luminescent terbium cryptate donor and a fluorescein acceptor present in the culture medium. GPCR internalization results in a quantifiable reduction of energy transfer. This method yields a high signal-to-noise ratio due to time-resolved measurements. For various GPCRs belonging to different classes, we demonstrated that constitutive and ligand-induced internalization could be monitored as a function of time and ligand concentration, thus allowing accurate quantitative determination of kinetics of receptor internalization but also half-maximal effective or inhibitory concentrations of compounds. In addition to its selectivity and sensitivity, we provided evidence that DERET-based internalization assay is particularly suitable for characterizing biased ligands. Furthermore, the determination of a Z’-factor value of 0.45 indicates the quality and suitability of DERET-based internalization assay for high-throughput screening (HTS of compounds that may modulate GPCRs internalization.

  5. Effect of enhanced Renilla luciferase and fluorescent protein variants on the Förster distance of Bioluminescence resonance energy transfer (BRET)

    International Nuclear Information System (INIS)

    Highlights: ► First experimental determination of Förster distance (R0) for enhanced BRET systems. ► Effect of brighter BRET components RLuc2, RLuc8 and Venus was assessed. ► Using brighter BRET components substantially increased (25%) R0 of the BRET1 system. ► Using brighter BRET components marginally increased (2–9%) R0 of the BRET2 system. ► Brighter BRET components improve the different weaknesses of BRET1 and BRET2 systems. -- Abstract: Bioluminescence resonance energy transfer (BRET) is an important tool for monitoring macromolecular interactions and is useful as a transduction technique for biosensor development. Förster distance (R0), the intermolecular separation characterized by 50% of the maximum possible energy transfer, is a critical BRET parameter. R0 provides a means of linking measured changes in BRET ratio to a physical dimension scale and allows estimation of the range of distances that can be measured by any donor–acceptor pair. The sensitivity of BRET assays has recently been improved by introduction of new BRET components, RLuc2, RLuc8 and Venus with improved quantum yields, stability and brightness. We determined R0 for BRET1 systems incorporating novel RLuc variants RLuc2 or RLuc8, in combination with Venus, as 5.68 or 5.55 nm respectively. These values were approximately 25% higher than the R0 of the original BRET1 system. R0 for BRET2 systems combining green fluorescent proteins (GFP2) with RLuc2 or RLuc8 variants was 7.67 or 8.15 nm, i.e. only 2–9% greater than the original BRET2 system despite being ∼30-fold brighter.

  6. High-density lipoprotein cholesterol is related to the TaqIB cholesteryl ester transfer protein gene polymorphism and smoking, but not to moderate alcohol consumption in insulin-dependent diabetic men

    NARCIS (Netherlands)

    Dullaart, RPF; Beusekamp, BJ; Riemens, SC; Hoogenberg, K; Stulp, BK; Van Tol, A; Sluiter, WJ

    1998-01-01

    In non-diabetic subjects, the high-density lipoprotein (HDL) cholesterol level is increased by alcohol and decreased by smoking. The biallelic B1B2 polymorphism of the cholesteryl ester transfer protein (CETP) gene is a genetic determinant of HDL cholesterol. We evaluated the effect of moderate alco

  7. An increased coronary risk is paradoxically associated with common cholesteryl ester transfer protein gene variations that relate to higher high-density lipoprotein cholesterol: A population-based study

    NARCIS (Netherlands)

    S.E. Borggreve (Susanna); H.L. Hillege (Hans); B.H.R. Wolffenbuttel (Bruce); P. de Jong (Paul); M.W. Zuurman (Mike); G. van der Steege (Gerrit); A. van Tol (Arie); R.P.F. Dullaart (Robin)

    2006-01-01

    textabstractBackground: Several cholesteryl ester transfer protein (CETP) polymorphisms affect high-density lipoprotein (HDL) cholesterol, but the impact of CETP gene variants on incident coronary disease in the general population is uncertain after correction for their effect on HDL cholesterol. De

  8. Cholesteryl ester transfer protein TaqIB variant, high-density lipoprotein cholesterol levels, cardiovascular risk, and efficacy of pravastatin treatment : individual patient meta-analysis of 13,677 subjects

    NARCIS (Netherlands)

    Boekholdt, S M; Sacks, F M; Jukema, J W; Shepherd, J; Freeman, D J; McMahon, A D; Cambien, F; Nicaud, V; de Grooth, G J; Talmud, P J; Humphries, S E; Miller, G J; Eiriksdottir, G; Gudnason, V; Kauma, H; Kakko, S; Savolainen, M J; Arca, M; Montali, A; Liu, S; Lanz, H J; Zwinderman, A H; Kuivenhoven, J A; Kastelein, J J P

    2005-01-01

    BACKGROUND: Several studies have reported that the cholesteryl ester transfer protein (CETP) TaqIB gene polymorphism is associated with HDL cholesterol (HDL-C) levels and the risk of coronary artery disease (CAD), but the results are inconsistent. In addition, an interaction has been implicated betw

  9. Structural studies of a bacterial tRNA(HIS guanylyltransferase (Thg1-like protein, with nucleotide in the activation and nucleotidyl transfer sites.

    Directory of Open Access Journals (Sweden)

    Samantha J Hyde

    Full Text Available All nucleotide polymerases and transferases catalyze nucleotide addition in a 5' to 3' direction. In contrast, tRNA(His guanylyltransferase (Thg1 enzymes catalyze the unusual reverse addition (3' to 5' of nucleotides to polynucleotide substrates. In eukaryotes, Thg1 enzymes use the 3'-5' addition activity to add G-1 to the 5'-end of tRNA(His, a modification required for efficient aminoacylation of the tRNA by the histidyl-tRNA synthetase. Thg1-like proteins (TLPs are found in Archaea, Bacteria, and mitochondria and are biochemically distinct from their eukaryotic Thg1 counterparts TLPs catalyze 5'-end repair of truncated tRNAs and act on a broad range of tRNA substrates instead of exhibiting strict specificity for tRNA(His. Taken together, these data suggest that TLPs function in distinct biological pathways from the tRNA(His maturation pathway, perhaps in tRNA quality control. Here we present the first crystal structure of a TLP, from the gram-positive soil bacterium Bacillus thuringiensis (BtTLP. The enzyme is a tetramer like human THG1, with which it shares substantial structural similarity. Catalysis of the 3'-5' reaction with 5'-monophosphorylated tRNA necessitates first an activation step, generating a 5'-adenylylated intermediate prior to a second nucleotidyl transfer step, in which a nucleotide is transferred to the tRNA 5'-end. Consistent with earlier characterization of human THG1, we observed distinct binding sites for the nucleotides involved in these two steps of activation and nucleotidyl transfer. A BtTLP complex with GTP reveals new interactions with the GTP nucleotide in the activation site that were not evident from the previously solved structure. Moreover, the BtTLP-ATP structure allows direct observation of ATP in the activation site for the first time. The BtTLP structural data, combined with kinetic analysis of selected variants, provide new insight into the role of key residues in the activation step.

  10. Preparation of a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine) by surface-initiated atom transfer radical polymerization and analysis of protein adsorption resistance.

    Science.gov (United States)

    Inoue, Yuuki; Onodera, Yuya; Ishihara, Kazuhiko

    2016-05-01

    The purpose of this study was to prepare a thick polymer brush layer composed of poly(2-methacryloyloxyethyl phosphorylcholine (MPC)) and assess its resistance to protein adsorption from the dissolved state of poly(MPC) chains in an aqueous condition. The thick poly(MPC) brush layer was prepared through the surface-initiated atom transfer radical polymerization (SI-ATRP) of MPC with a free initiator from an initiator-immobilized substrate at given [Monomer]/[Free initiator] ratios. The ellipsometric thickness of the poly(MPC) brush layers could be controlled by the polymerization degree of the poly(MPC) chains. The thickness of the poly(MPC) brush layer in an aqueous medium was larger than that in air, and this tendency became clearer when the polymerization degree of the poly(MPC) increased. The maximum thickness of the poly(MPC) brush layer in an aqueous medium was around 110 nm. The static air contact angle of the poly(MPC) brush layer in water indicated a reasonably hydrophilic nature, which was independent of the thickness of the poly(MPC) brush layer at the surface. This result occurred because the hydrated state of the poly(MPC) chains is not influenced by the environment surrounding them. Finally, as measured with a quartz crystal microbalance, the amount of protein adsorbed from a fetal bovine serum solution (10% in phosphate-buffered saline) on the original substrate was 420 ng/cm(2). However, the poly(MPC) brush layer reduced this value dramatically to less than 50 ng/cm(2). This effect was independent of the thickness of the poly(MPC) brush layer for thicknesses between 20 nm and about 110 nm. These results indicated that the surface covered with a poly(MPC) brush layer is a promising platform to avoid biofouling and could also be applied to analyze the reactions of biological molecules with a high signal/noise ratio.

  11. Allergenic lipid transfer proteins from plant-derived foods do not immunologically and clinically behave homogeneously: the kiwifruit LTP as a model.

    Directory of Open Access Journals (Sweden)

    Maria Livia Bernardi

    Full Text Available BACKGROUND: Food allergy is increasingly common worldwide. Tools for allergy diagnosis measuring IgE improved much since allergenic molecules and microarrays started to be used. IgE response toward allergens belonging to the same group of molecules has not been comprehensively explored using such approach yet. OBJECTIVE: Using the model of lipid transfer proteins (LTPs from plants as allergens, including two new structures, we sought to define how heterogeneous is the behavior of homologous proteins. METHODS: Two new allergenic LTPs, Act d 10 and Act c 10, have been identified in green (Actinidia deliciosa and gold (Actinidia chinensis kiwifruit (KF, respectively, using clinically characterized allergic patients, and their biochemical features comparatively evaluated by means of amino acid sequence alignments. Along with other five LTPs from peach, mulberry, hazelnut, peanut, mugwort, KF LTPs, preliminary tested positive for IgE, have been immobilized on a microarray, used for IgE testing 1,003 allergic subjects. Comparative analysis has been carried out. RESULTS: Alignment of Act d 10 primary structure with the other allergenic LTPs shows amino acid identities to be in a narrow range between 40 and 55%, with a number of substitutions making the sequences quite different from each other. Although peach LTP dominates the IgE immune response in terms of prevalence, epitope recognition driven by sequence heterogeneity has been recorded to be distributed in a wide range of behaviors. KF LTPs IgE positive results were obtained in a patient subset IgE positive for the peach LTP. Anyhow, the negative results on homologous molecules allowed us to reintroduce KF in patients' diet. CONCLUSION: The biochemical nature of allergenic molecule belonging to a group of homologous ones should not be taken as proof of immunological recognition as well. The availability of panels of homologous molecules to be tested using microarrays is valuable to address the

  12. Expression and methylation of microsomal triglyceride transfer protein and acetyl-CoA carboxylase are associated with fatty liver syndrome in chicken.

    Science.gov (United States)

    Liu, Zhen; Li, Qinghe; Liu, Ranran; Zhao, Guiping; Zhang, Yonghong; Zheng, Maiqing; Cui, Huanxian; Li, Peng; Cui, Xiaoyan; Liu, Jie; Wen, Jie

    2016-06-01

    The typical characteristic of fatty liver syndrome (FLS) is an increased hepatic triacylglycerol content, and a sudden decline in egg production often occurs. FLS may develop into fatty liver hemorrhagic syndrome (FLHS), characterized by sudden death from hepatic rupture and hemorrhage. DNA methylation is associated with transcriptional silencing, leading to the etiology and pathogenesis of some animal diseases. The roles of DNA methylation in the genesis of FLS, however, are largely unknown. The lipogenic methyl-deficient diet (MDD) caused FLS similar to human nonalcoholic steatohepatitis (NASH). After 16 Jingxing-Huang (JXH) hens were fed MDD for 10 wk, eight exhibited FLS (designated as FLS-susceptible birds); the remainder, without FLS, served as controls (NFLS). Physiological and biochemical variables, gene expression levels, and DNA methylation were determined in the liver. The development of FLS in JXH hens was accompanied by abnormal lipid accumulation. Relative expression of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and microsomal triglyceride transfer protein (MTTP) were significantly up-regulated in the FLS group in comparison with the NFLS group. The transcript abundance of sterol regulatory element binding protein 1 (SREBP-1c), stearoyl-CoA desaturase (SCD), liver X receptor alpha (LXRα), peroxisome proliferator-activated receptor alpha (PPARα), and peroxisome proliferator-activated receptor gamma (PPARγ) did not differ between the two groups. Interestingly, MTTP and ACC mRNA abundance were negatively correlated with the level of promoter methylation. The extent of DNA methylation of the cytosine-guanine (CpG) sites in the SREBP-1c, FAS, PPARα, and LXRα promoter regions was also analyzed by direct sequencing but none differed between FLS and NFLS birds. Taken together, these results specify link DNA methylation to the pathogenesis of FLS in chickens. PMID:27083546

  13. Measurement of neonatal equine immunoglobulins for assessment of colostral immunoglobulin transfer: comparison of single radial immunodiffusion with the zinc sulfate turbidity test, serum electrophoresis, refractometry for total serum protein, and the sodium sulfite precipitation test.

    Science.gov (United States)

    Rumbaugh, G E; Ardans, A A; Ginno, D; Trommershausen-Smith, A

    1978-02-01

    Four procedures for assessment of adequacy of colostral immunoglobulin (Ig) transfer in foals were evaluated. Results of zinc sulfate turbidity test, serum electrophoresis, total serum protein refractometry, and sodium sulfite precipitation test were compared with immunoglobulin G content determined by single radial immunodiffusion. The zinc sulfate turbidity test gave acceptable results for IgG, except that hemolyzed serum samples gave higher than expected values. A correction factor for hemolyzed serum was found to be useful. Serum electrophoresis was a satisfactory method of estimating IgG content. Total serum protein values may not be a valid basis for estimating IgG content, inasmuch as postsuckling total protein values were found to decrease in some foals in which passive transfer of IgG had been adequate. Sodium sulfite precipitation reactions were too unpredictable to be of value for determination of neonatal IgG concentration.

  14. Cell Geometry Guides the Dynamic Targeting of Apoplastic GPI-Linked Lipid Transfer Protein to Cell Wall Elements and Cell Borders in Arabidopsis thaliana

    Science.gov (United States)

    Wasteneys, Geoffrey

    2013-01-01

    During cellular morphogenesis, changes in cell shape and cell junction topology are fundamental to normal tissue and organ development. Here we show that apoplastic Glycophosphatidylinositol (GPI)-anchored Lipid Transfer Protein (LTPG) is excluded from cell junctions and flat wall regions, and passively accumulates around their borders in the epidermal cells of Arabidopsis thaliana. Beginning with intense accumulation beneath highly curved cell junction borders, this enrichment is gradually lost as cells become more bulbous during their differentiation. In fully mature epidermal cells, YFP-LTPG often shows a fibrous cellulose microfibril-like pattern within the bulging outer faces. Physical contact between a flat glass surface and bulbous cell surface induces rapid and reversible evacuation from contact sites and accumulation to the curved wall regions surrounding the contact borders. Thus, LTPG distribution is dynamic, responding to changes in cell shape and wall curvature during cell growth and differentiation. We hypothesize that this geometry-based mechanism guides wax-carrying LTPG to functional sites, where it may act to “seal” the vulnerable border surrounding cell-cell junctions and assist in cell wall fortification and cuticular wax deposition. PMID:24260561

  15. Distinct roles of Ape1 protein, an enzyme involved in DNA repair, in high or low linear energy transfer ionizing radiation-induced cell killing.

    Science.gov (United States)

    Wang, Hongyan; Wang, Xiang; Chen, Guangnan; Zhang, Xiangming; Tang, Xiaobing; Park, Dongkyoo; Cucinotta, Francis A; Yu, David S; Deng, Xingming; Dynan, William S; Doetsch, Paul W; Wang, Ya

    2014-10-31

    High linear energy transfer (LET) radiation from space heavy charged particles or a heavier ion radiotherapy machine kills more cells than low LET radiation, mainly because high LET radiation-induced DNA damage is more difficult to repair. Relative biological effectiveness (RBE) is the ratio of the effects generated by high LET radiation to low LET radiation. Previously, our group and others demonstrated that the cell-killing RBE is involved in the interference of high LET radiation with non-homologous end joining but not homologous recombination repair. This effect is attributable, in part, to the small DNA fragments (≤40 bp) directly produced by high LET radiation, the size of which prevents Ku protein from efficiently binding to the two ends of one fragment at the same time, thereby reducing non-homologous end joining efficiency. Here we demonstrate that Ape1, an enzyme required for processing apurinic/apyrimidinic (known as abasic) sites, is also involved in the generation of small DNA fragments during the repair of high LET radiation-induced base damage, which contributes to the higher RBE of high LET radiation-induced cell killing. This discovery opens a new direction to develop approaches for either protecting astronauts from exposure to space radiation or benefiting cancer patients by sensitizing tumor cells to high LET radiotherapy. PMID:25210033

  16. Interaction of cholesterol ester transfer protein polymo- rphisms, body mass index, and birth weight with the risk of dyslipidemia in children and adolescents: the CASPIAN-III study

    Directory of Open Access Journals (Sweden)

    Motahar Heidari-Beni

    2015-11-01

    Full Text Available Objective(s: This study aims to investigate joint association between cholesterol ester transfer protein (CETP polymorphisms and body mass index (BMI or birth weight with the risk of dyslipidemia in Iranian children and adolescents. Materials and Methods:This study was conducted as a sub-study of the “school-based nationwide health survey” (CASPIAN-III. We randomly selected 750 samples from the whole blood samples. Real-time PCR and high resolution melt (HRM analysis were performed to determine Taq1B (rs708272 and A373P (rs5880 polymorphisms. Results:Taq1B polymorphism increased HDL-C, and total cholesterol (TC as well as decreased triglyceride and LDL-C concentrations. LDL-C and triglyceride levels were significantly higher and HDL-C and TC levels were significantly lower among those with A373P polymorphism. CT/TT genotype in Taq1B polymorphism showed a protective effect on dyslipidemia (OR= 0.12, 95%CI: 0.07-0.20. G allele of A373P polymorphism increased the risk of dyslipidemia (OR=4.10, 95%CI: 2.14, 7.83 after adjusting the confounders. We observed interactive effects of CETP gene polymorphisms and BMI or birth weight on dyslipidemia. Conclusion:Findings showed Taq1B polymorphism might have a protective effect and A373P polymorphism had deleterious effect on dyslipidemia in Iranian children and adolescents. These associations interacted with BMI and birth weight.

  17. Site-selective probing of cTAR destabilization highlights the necessary plasticity of the HIV-1 nucleocapsid protein to chaperone the first strand transfer

    Science.gov (United States)

    Godet, Julien; Kenfack, Cyril; Przybilla, Frédéric; Richert, Ludovic; Duportail, Guy; Mély, Yves

    2013-01-01

    The HIV-1 nucleocapsid protein (NCp7) is a nucleic acid chaperone required during reverse transcription. During the first strand transfer, NCp7 is thought to destabilize cTAR, the (−)DNA copy of the TAR RNA hairpin, and subsequently direct the TAR/cTAR annealing through the zipping of their destabilized stem ends. To further characterize the destabilizing activity of NCp7, we locally probe the structure and dynamics of cTAR by steady-state and time resolved fluorescence spectroscopy. NC(11–55), a truncated NCp7 version corresponding to its zinc-finger domain, was found to bind all over the sequence and to preferentially destabilize the penultimate double-stranded segment in the lower part of the cTAR stem. This destabilization is achieved through zinc-finger–dependent binding of NC to the G10 and G50 residues. Sequence comparison further revealed that C•A mismatches close to the two G residues were critical for fine tuning the stability of the lower part of the cTAR stem and conferring to G10 and G50 the appropriate mobility and accessibility for specific recognition by NC. Our data also highlight the necessary plasticity of NCp7 to adapt to the sequence and structure variability of cTAR to chaperone its annealing with TAR through a specific pathway. PMID:23511968

  18. Usefulness of a commercial equine IgG test and serum protein concentration as indicators of failure of transfer of passive immunity in hospitalized foals.

    Science.gov (United States)

    Metzger, Nadine; Hinchcliff, Kenneth W; Hardy, Joanne; Schwarzwald, Colin C; Wittum, Thomas

    2006-01-01

    Detection of failure of transfer of passive immunity (FTPI) is important in reducing morbidity and mortality in neonatal foals. We investigated the performance of a commercial equine IgG test (SNAP Foal IgG Test Kit) to diagnose FTPI in hospitalized foals. Furthermore, we evaluated the usefulness of serum total protein (STP) and serum globulin (SG) concentrations as indicators of FTPI. Serum IgG concentration was measured by means of the SNAP test and single radial immunodiffusion, and SG and STP concentrations were determined by means of a clinical chemistry analyzer. Subjects were 67 hospitalized foals .05) by plasma fibrinogen concentration, sepsis score, or bacteremia. Specificity for detection of [IgG] < or = 800 mg/dl was lower (P < .05) in foals with sepsis score < or =11 (50% [31-60%] versus 100% [8-100%]) and bacteremia (25% [5-56%] versus 62% [45-62%]). Sensitivity and specificity of [STP] < or = 5.0 g/dl for [IgG] < or =800 mg/dl was 94% (83-99%) and 47% (30-56%), respectively. Performance of the SNAP test in hospitalized foals is impaired because of low specificity, but can have usefulness provided that the properties of the test and characteristics of the foal being examined are considered when interpreting the results. The STP and SG concentrations are poor sole indicators of FTPI in hospitalized foals, but may be useful adjunctive tests.

  19. JTT-130, a microsomal triglyceride transfer protein (MTP inhibitor lowers plasma triglycerides and LDL cholesterol concentrations without increasing hepatic triglycerides in guinea pigs

    Directory of Open Access Journals (Sweden)

    Shrestha Sudeep

    2005-09-01

    Full Text Available Abstract Background Microsomal transfer protein inhibitors (MTPi have the potential to be used as a drug to lower plasma lipids, mainly plasma triglycerides (TG. However, studies with animal models have indicated that MTPi treatment results in the accumulation of hepatic TG. The purpose of this study was to evaluate whether JTT-130, a unique MTPi, targeted to the intestine, would effectively reduce plasma lipids without inducing a fatty liver. Methods Male guinea pigs (n = 10 per group were used for this experiment. Initially all guinea pigs were fed a hypercholesterolemic diet containing 0.08 g/100 g dietary cholesterol for 3 wk. After this period, animals were randomly assigned to diets containing 0 (control, 0.0005 or 0.0015 g/100 g of MTPi for 4 wk. A diet containing 0.05 g/100 g of atorvastatin, an HMG-CoA reductase inhibitor was used as the positive control. At the end of the 7th week, guinea pigs were sacrificed to assess drug effects on plasma and hepatic lipids, composition of LDL and VLDL, hepatic cholesterol and lipoprotein metabolism. Results Plasma LDL cholesterol and TG were 25 and 30% lower in guinea pigs treated with MTPi compared to controls (P Conclusion These results suggest that JTT-130 could have potential clinical applications due to its plasma lipid lowering effects with no alterations in hepatic lipid concentrations.

  20. Occupational Rhinoconjunctivitis due to Maize in a Snack Processor: A Cross-Reactivity Study Between Lipid Transfer Proteins From Different Cereals and Peach.

    Science.gov (United States)

    Guillen, Daiana; Barranco, Pilar; Palacín, Arantxa; Quirce, Santiago

    2014-09-01

    We report the case of a snack processor who developed occupational rhinoconjunctivitis due to maize brand exposure during the extrusion process, and who experienced abdominal pain upon drinking beer. The allergens implicated and the cross-reactivity between non-specific lipid transfer proteins (LTPs) from different cereals and peach were investigated. Skin prick tests and specific IgE to cereal flours, pulmonary functions tests and specific conjunctival and inhalation challenges to maize extract were performed. In vitro studies included IgE immunoblotting and ELISA inhibition assays. Skin prick tests with maize flour, maize brand and wheat flour extracts were positive, whereas serum specific IgE was positive only to maize flour. Specific inhalation challenge (SIC) to maize flour did not elicit an asthmatic reaction; however, conjunctival challenge test with the same extract was positive. Patient's serum recognized IgE-binding bands in the maize and beer extracts corresponding to LTPs. In the ELISA inhibition assays, a significant degree of allergenic cross-reactivity was found between maize and beer LTPs, whereas no cross-reactivity was observed between maize LTP and wheat and peach LTPs. PMID:25229007